xref: /linux/fs/f2fs/segment.c (revision 91b76f1059b60f453b51877f29f0e35693737383)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		/*
205 		 * The vfs inode keeps clean during commit, but the f2fs inode
206 		 * doesn't. So clear the dirty state after commit and let
207 		 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 		 */
209 		f2fs_inode_synced(inode);
210 		f2fs_mark_inode_dirty_sync(inode, true);
211 	}
212 	stat_dec_atomic_inode(inode);
213 
214 	F2FS_I(inode)->atomic_write_task = NULL;
215 
216 	if (clean) {
217 		f2fs_i_size_write(inode, fi->original_i_size);
218 		fi->original_i_size = 0;
219 	}
220 	/* avoid stale dirty inode during eviction */
221 	sync_inode_metadata(inode, 0);
222 }
223 
224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 			block_t new_addr, block_t *old_addr, bool recover)
226 {
227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 	struct dnode_of_data dn;
229 	struct node_info ni;
230 	int err;
231 
232 retry:
233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
234 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 	if (err) {
236 		if (err == -ENOMEM) {
237 			memalloc_retry_wait(GFP_NOFS);
238 			goto retry;
239 		}
240 		return err;
241 	}
242 
243 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 	if (err) {
245 		f2fs_put_dnode(&dn);
246 		return err;
247 	}
248 
249 	if (recover) {
250 		/* dn.data_blkaddr is always valid */
251 		if (!__is_valid_data_blkaddr(new_addr)) {
252 			if (new_addr == NULL_ADDR)
253 				dec_valid_block_count(sbi, inode, 1);
254 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 			f2fs_update_data_blkaddr(&dn, new_addr);
256 		} else {
257 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 				new_addr, ni.version, true, true);
259 		}
260 	} else {
261 		blkcnt_t count = 1;
262 
263 		err = inc_valid_block_count(sbi, inode, &count, true);
264 		if (err) {
265 			f2fs_put_dnode(&dn);
266 			return err;
267 		}
268 
269 		*old_addr = dn.data_blkaddr;
270 		f2fs_truncate_data_blocks_range(&dn, 1);
271 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272 
273 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 					ni.version, true, false);
275 	}
276 
277 	f2fs_put_dnode(&dn);
278 
279 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 			index, old_addr ? *old_addr : 0, new_addr, recover);
281 	return 0;
282 }
283 
284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 					bool revoke)
286 {
287 	struct revoke_entry *cur, *tmp;
288 	pgoff_t start_index = 0;
289 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290 
291 	list_for_each_entry_safe(cur, tmp, head, list) {
292 		if (revoke) {
293 			__replace_atomic_write_block(inode, cur->index,
294 						cur->old_addr, NULL, true);
295 		} else if (truncate) {
296 			f2fs_truncate_hole(inode, start_index, cur->index);
297 			start_index = cur->index + 1;
298 		}
299 
300 		list_del(&cur->list);
301 		kmem_cache_free(revoke_entry_slab, cur);
302 	}
303 
304 	if (!revoke && truncate)
305 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307 
308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 	struct f2fs_inode_info *fi = F2FS_I(inode);
312 	struct inode *cow_inode = fi->cow_inode;
313 	struct revoke_entry *new;
314 	struct list_head revoke_list;
315 	block_t blkaddr;
316 	struct dnode_of_data dn;
317 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 	pgoff_t off = 0, blen, index;
319 	int ret = 0, i;
320 
321 	INIT_LIST_HEAD(&revoke_list);
322 
323 	while (len) {
324 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325 
326 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 		if (ret && ret != -ENOENT) {
329 			goto out;
330 		} else if (ret == -ENOENT) {
331 			ret = 0;
332 			if (dn.max_level == 0)
333 				goto out;
334 			goto next;
335 		}
336 
337 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, cow_inode),
338 				len);
339 		index = off;
340 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 			blkaddr = f2fs_data_blkaddr(&dn);
342 
343 			if (!__is_valid_data_blkaddr(blkaddr)) {
344 				continue;
345 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 					DATA_GENERIC_ENHANCE)) {
347 				f2fs_put_dnode(&dn);
348 				ret = -EFSCORRUPTED;
349 				goto out;
350 			}
351 
352 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 							true, NULL);
354 
355 			ret = __replace_atomic_write_block(inode, index, blkaddr,
356 							&new->old_addr, false);
357 			if (ret) {
358 				f2fs_put_dnode(&dn);
359 				kmem_cache_free(revoke_entry_slab, new);
360 				goto out;
361 			}
362 
363 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 			new->index = index;
365 			list_add_tail(&new->list, &revoke_list);
366 		}
367 		f2fs_put_dnode(&dn);
368 next:
369 		off += blen;
370 		len -= blen;
371 	}
372 
373 out:
374 	if (time_to_inject(sbi, FAULT_ATOMIC_TIMEOUT))
375 		f2fs_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT, true);
376 
377 	if (ret) {
378 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 	} else {
380 		sbi->committed_atomic_block += fi->atomic_write_cnt;
381 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382 
383 		/*
384 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 		 * before commit.
386 		 */
387 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 			/* clear atomic dirty status and set vfs dirty status */
389 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 			f2fs_mark_inode_dirty_sync(inode, true);
391 		}
392 	}
393 
394 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
395 
396 	return ret;
397 }
398 
399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 	struct f2fs_inode_info *fi = F2FS_I(inode);
403 	struct f2fs_lock_context lc;
404 	int err;
405 
406 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
407 	if (err)
408 		return err;
409 
410 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
411 	f2fs_lock_op(sbi, &lc);
412 
413 	err = __f2fs_commit_atomic_write(inode);
414 
415 	f2fs_unlock_op(sbi, &lc);
416 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
417 
418 	return err;
419 }
420 
421 /*
422  * This function balances dirty node and dentry pages.
423  * In addition, it controls garbage collection.
424  */
425 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
426 {
427 	if (f2fs_cp_error(sbi))
428 		return;
429 
430 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
431 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
432 
433 	/* balance_fs_bg is able to be pending */
434 	if (need && excess_cached_nats(sbi))
435 		f2fs_balance_fs_bg(sbi, false);
436 
437 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
438 		return;
439 
440 	/*
441 	 * We should do GC or end up with checkpoint, if there are so many dirty
442 	 * dir/node pages without enough free segments.
443 	 */
444 	if (has_enough_free_secs(sbi, 0, 0))
445 		return;
446 
447 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
448 				sbi->gc_thread->f2fs_gc_task) {
449 		DEFINE_WAIT(wait);
450 
451 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
452 					TASK_UNINTERRUPTIBLE);
453 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
454 		io_schedule();
455 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
456 	} else {
457 		struct f2fs_gc_control gc_control = {
458 			.victim_segno = NULL_SEGNO,
459 			.init_gc_type = f2fs_sb_has_blkzoned(sbi) ?
460 				FG_GC : BG_GC,
461 			.no_bg_gc = true,
462 			.should_migrate_blocks = false,
463 			.err_gc_skipped = false,
464 			.nr_free_secs = 1 };
465 		f2fs_down_write_trace(&sbi->gc_lock, &gc_control.lc);
466 		stat_inc_gc_call_count(sbi, FOREGROUND);
467 		f2fs_gc(sbi, &gc_control);
468 	}
469 }
470 
471 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
472 {
473 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
474 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
475 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
476 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
477 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
478 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
479 	unsigned int threshold =
480 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
481 	unsigned int global_threshold = threshold * 3 / 2;
482 
483 	if (dents >= threshold || qdata >= threshold ||
484 		nodes >= threshold || meta >= threshold ||
485 		imeta >= threshold)
486 		return true;
487 	return dents + qdata + nodes + meta + imeta >  global_threshold;
488 }
489 
490 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
491 {
492 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
493 		return;
494 
495 	/* try to shrink extent cache when there is no enough memory */
496 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
497 		f2fs_shrink_read_extent_tree(sbi,
498 				READ_EXTENT_CACHE_SHRINK_NUMBER);
499 
500 	/* try to shrink age extent cache when there is no enough memory */
501 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
502 		f2fs_shrink_age_extent_tree(sbi,
503 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
504 
505 	/* check the # of cached NAT entries */
506 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
507 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
508 
509 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
510 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
511 	else
512 		f2fs_build_free_nids(sbi, false, false);
513 
514 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
515 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
516 		goto do_sync;
517 
518 	/* there is background inflight IO or foreground operation recently */
519 	if (is_inflight_io(sbi, REQ_TIME) ||
520 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
521 		return;
522 
523 	/* exceed periodical checkpoint timeout threshold */
524 	if (f2fs_time_over(sbi, CP_TIME))
525 		goto do_sync;
526 
527 	/* checkpoint is the only way to shrink partial cached entries */
528 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
529 		f2fs_available_free_memory(sbi, INO_ENTRIES))
530 		return;
531 
532 do_sync:
533 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
534 		struct blk_plug plug;
535 
536 		mutex_lock(&sbi->flush_lock);
537 
538 		blk_start_plug(&plug);
539 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
540 		blk_finish_plug(&plug);
541 
542 		mutex_unlock(&sbi->flush_lock);
543 	}
544 	stat_inc_cp_call_count(sbi, BACKGROUND);
545 	f2fs_sync_fs(sbi->sb, 1);
546 }
547 
548 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
549 				struct block_device *bdev)
550 {
551 	int ret = blkdev_issue_flush(bdev);
552 
553 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
554 				test_opt(sbi, FLUSH_MERGE), ret);
555 	if (!ret)
556 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
557 	return ret;
558 }
559 
560 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
561 {
562 	int ret = 0;
563 	int i;
564 
565 	if (!f2fs_is_multi_device(sbi))
566 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
567 
568 	for (i = 0; i < sbi->s_ndevs; i++) {
569 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
570 			continue;
571 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
572 		if (ret)
573 			break;
574 	}
575 	return ret;
576 }
577 
578 static int issue_flush_thread(void *data)
579 {
580 	struct f2fs_sb_info *sbi = data;
581 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
582 	wait_queue_head_t *q = &fcc->flush_wait_queue;
583 repeat:
584 	if (kthread_should_stop())
585 		return 0;
586 
587 	if (!llist_empty(&fcc->issue_list)) {
588 		struct flush_cmd *cmd, *next;
589 		int ret;
590 
591 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
592 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
593 
594 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
595 
596 		ret = submit_flush_wait(sbi, cmd->ino);
597 		atomic_inc(&fcc->issued_flush);
598 
599 		llist_for_each_entry_safe(cmd, next,
600 					  fcc->dispatch_list, llnode) {
601 			cmd->ret = ret;
602 			complete(&cmd->wait);
603 		}
604 		fcc->dispatch_list = NULL;
605 	}
606 
607 	wait_event_interruptible(*q,
608 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
609 	goto repeat;
610 }
611 
612 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
613 {
614 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
615 	struct flush_cmd cmd;
616 	int ret;
617 
618 	if (test_opt(sbi, NOBARRIER))
619 		return 0;
620 
621 	if (!test_opt(sbi, FLUSH_MERGE)) {
622 		atomic_inc(&fcc->queued_flush);
623 		ret = submit_flush_wait(sbi, ino);
624 		atomic_dec(&fcc->queued_flush);
625 		atomic_inc(&fcc->issued_flush);
626 		return ret;
627 	}
628 
629 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
630 	    f2fs_is_multi_device(sbi)) {
631 		ret = submit_flush_wait(sbi, ino);
632 		atomic_dec(&fcc->queued_flush);
633 
634 		atomic_inc(&fcc->issued_flush);
635 		return ret;
636 	}
637 
638 	cmd.ino = ino;
639 	init_completion(&cmd.wait);
640 
641 	llist_add(&cmd.llnode, &fcc->issue_list);
642 
643 	/*
644 	 * update issue_list before we wake up issue_flush thread, this
645 	 * smp_mb() pairs with another barrier in ___wait_event(), see
646 	 * more details in comments of waitqueue_active().
647 	 */
648 	smp_mb();
649 
650 	if (waitqueue_active(&fcc->flush_wait_queue))
651 		wake_up(&fcc->flush_wait_queue);
652 
653 	if (fcc->f2fs_issue_flush) {
654 		wait_for_completion(&cmd.wait);
655 		atomic_dec(&fcc->queued_flush);
656 	} else {
657 		struct llist_node *list;
658 
659 		list = llist_del_all(&fcc->issue_list);
660 		if (!list) {
661 			wait_for_completion(&cmd.wait);
662 			atomic_dec(&fcc->queued_flush);
663 		} else {
664 			struct flush_cmd *tmp, *next;
665 
666 			ret = submit_flush_wait(sbi, ino);
667 
668 			llist_for_each_entry_safe(tmp, next, list, llnode) {
669 				if (tmp == &cmd) {
670 					cmd.ret = ret;
671 					atomic_dec(&fcc->queued_flush);
672 					continue;
673 				}
674 				tmp->ret = ret;
675 				complete(&tmp->wait);
676 			}
677 		}
678 	}
679 
680 	return cmd.ret;
681 }
682 
683 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
684 {
685 	dev_t dev = sbi->sb->s_bdev->bd_dev;
686 	struct flush_cmd_control *fcc;
687 
688 	if (SM_I(sbi)->fcc_info) {
689 		fcc = SM_I(sbi)->fcc_info;
690 		if (fcc->f2fs_issue_flush)
691 			return 0;
692 		goto init_thread;
693 	}
694 
695 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
696 	if (!fcc)
697 		return -ENOMEM;
698 	atomic_set(&fcc->issued_flush, 0);
699 	atomic_set(&fcc->queued_flush, 0);
700 	init_waitqueue_head(&fcc->flush_wait_queue);
701 	init_llist_head(&fcc->issue_list);
702 	SM_I(sbi)->fcc_info = fcc;
703 	if (!test_opt(sbi, FLUSH_MERGE))
704 		return 0;
705 
706 init_thread:
707 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
708 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
709 	if (IS_ERR(fcc->f2fs_issue_flush)) {
710 		int err = PTR_ERR(fcc->f2fs_issue_flush);
711 
712 		fcc->f2fs_issue_flush = NULL;
713 		return err;
714 	}
715 
716 	return 0;
717 }
718 
719 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
720 {
721 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
722 
723 	if (fcc && fcc->f2fs_issue_flush) {
724 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
725 
726 		fcc->f2fs_issue_flush = NULL;
727 		kthread_stop(flush_thread);
728 	}
729 	if (free) {
730 		kfree(fcc);
731 		SM_I(sbi)->fcc_info = NULL;
732 	}
733 }
734 
735 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
736 {
737 	int ret = 0, i;
738 
739 	if (!f2fs_is_multi_device(sbi))
740 		return 0;
741 
742 	if (test_opt(sbi, NOBARRIER))
743 		return 0;
744 
745 	for (i = 1; i < sbi->s_ndevs; i++) {
746 		int count = DEFAULT_RETRY_IO_COUNT;
747 
748 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
749 			continue;
750 
751 		do {
752 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
753 			if (ret)
754 				f2fs_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
755 		} while (ret && --count);
756 
757 		if (ret) {
758 			f2fs_stop_checkpoint(sbi, false,
759 					STOP_CP_REASON_FLUSH_FAIL);
760 			break;
761 		}
762 
763 		spin_lock(&sbi->dev_lock);
764 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
765 		spin_unlock(&sbi->dev_lock);
766 	}
767 
768 	return ret;
769 }
770 
771 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
772 		enum dirty_type dirty_type)
773 {
774 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
775 
776 	/* need not be added */
777 	if (is_curseg(sbi, segno))
778 		return;
779 
780 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
781 		dirty_i->nr_dirty[dirty_type]++;
782 
783 	if (dirty_type == DIRTY) {
784 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
785 		enum dirty_type t = sentry->type;
786 
787 		if (unlikely(t >= DIRTY)) {
788 			f2fs_bug_on(sbi, 1);
789 			return;
790 		}
791 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
792 			dirty_i->nr_dirty[t]++;
793 
794 		if (__is_large_section(sbi)) {
795 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
796 			block_t valid_blocks =
797 				get_valid_blocks(sbi, segno, true);
798 
799 			f2fs_bug_on(sbi,
800 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
801 				!valid_blocks) ||
802 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
803 
804 			if (!is_cursec(sbi, secno))
805 				set_bit(secno, dirty_i->dirty_secmap);
806 		}
807 	}
808 }
809 
810 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
811 		enum dirty_type dirty_type)
812 {
813 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
814 	block_t valid_blocks;
815 
816 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
817 		dirty_i->nr_dirty[dirty_type]--;
818 
819 	if (dirty_type == DIRTY) {
820 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
821 		enum dirty_type t = sentry->type;
822 
823 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
824 			dirty_i->nr_dirty[t]--;
825 
826 		valid_blocks = get_valid_blocks(sbi, segno, true);
827 		if (valid_blocks == 0) {
828 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
829 						dirty_i->victim_secmap);
830 #ifdef CONFIG_F2FS_CHECK_FS
831 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
832 #endif
833 		}
834 		if (__is_large_section(sbi)) {
835 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
836 
837 			if (!valid_blocks ||
838 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
839 				clear_bit(secno, dirty_i->dirty_secmap);
840 				return;
841 			}
842 
843 			if (!is_cursec(sbi, secno))
844 				set_bit(secno, dirty_i->dirty_secmap);
845 		}
846 	}
847 }
848 
849 /*
850  * Should not occur error such as -ENOMEM.
851  * Adding dirty entry into seglist is not critical operation.
852  * If a given segment is one of current working segments, it won't be added.
853  */
854 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
855 {
856 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 	unsigned short valid_blocks, ckpt_valid_blocks;
858 	unsigned int usable_blocks;
859 
860 	if (segno == NULL_SEGNO || is_curseg(sbi, segno))
861 		return;
862 
863 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
864 	mutex_lock(&dirty_i->seglist_lock);
865 
866 	valid_blocks = get_valid_blocks(sbi, segno, false);
867 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
868 
869 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
870 		ckpt_valid_blocks == usable_blocks)) {
871 		__locate_dirty_segment(sbi, segno, PRE);
872 		__remove_dirty_segment(sbi, segno, DIRTY);
873 	} else if (valid_blocks < usable_blocks) {
874 		__locate_dirty_segment(sbi, segno, DIRTY);
875 	} else {
876 		/* Recovery routine with SSR needs this */
877 		__remove_dirty_segment(sbi, segno, DIRTY);
878 	}
879 
880 	mutex_unlock(&dirty_i->seglist_lock);
881 }
882 
883 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
884 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
885 {
886 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
887 	unsigned int segno;
888 
889 	mutex_lock(&dirty_i->seglist_lock);
890 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
891 		if (get_valid_blocks(sbi, segno, false))
892 			continue;
893 		if (is_curseg(sbi, segno))
894 			continue;
895 		__locate_dirty_segment(sbi, segno, PRE);
896 		__remove_dirty_segment(sbi, segno, DIRTY);
897 	}
898 	mutex_unlock(&dirty_i->seglist_lock);
899 }
900 
901 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
902 {
903 	int ovp_hole_segs =
904 		(overprovision_segments(sbi) - reserved_segments(sbi));
905 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 	block_t holes[2] = {0, 0};	/* DATA and NODE */
908 	block_t unusable;
909 	struct seg_entry *se;
910 	unsigned int segno;
911 
912 	mutex_lock(&dirty_i->seglist_lock);
913 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
914 		se = get_seg_entry(sbi, segno);
915 		if (IS_NODESEG(se->type))
916 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
917 							se->valid_blocks;
918 		else
919 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
920 							se->valid_blocks;
921 	}
922 	mutex_unlock(&dirty_i->seglist_lock);
923 
924 	unusable = max(holes[DATA], holes[NODE]);
925 	if (unusable > ovp_holes)
926 		return unusable - ovp_holes;
927 	return 0;
928 }
929 
930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
931 {
932 	int ovp_hole_segs =
933 		(overprovision_segments(sbi) - reserved_segments(sbi));
934 
935 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
936 		return 0;
937 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
938 		return -EAGAIN;
939 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
940 		dirty_segments(sbi) > ovp_hole_segs)
941 		return -EAGAIN;
942 	if (has_not_enough_free_secs(sbi, 0, 0))
943 		return -EAGAIN;
944 	return 0;
945 }
946 
947 /* This is only used by SBI_CP_DISABLED */
948 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
949 {
950 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
951 	unsigned int segno = 0;
952 
953 	mutex_lock(&dirty_i->seglist_lock);
954 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
955 		if (get_valid_blocks(sbi, segno, false))
956 			continue;
957 		if (get_ckpt_valid_blocks(sbi, segno, false))
958 			continue;
959 		mutex_unlock(&dirty_i->seglist_lock);
960 		return segno;
961 	}
962 	mutex_unlock(&dirty_i->seglist_lock);
963 	return NULL_SEGNO;
964 }
965 
966 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
967 		struct block_device *bdev, block_t lstart,
968 		block_t start, block_t len)
969 {
970 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
971 	struct list_head *pend_list;
972 	struct discard_cmd *dc;
973 
974 	f2fs_bug_on(sbi, !len);
975 
976 	pend_list = &dcc->pend_list[plist_idx(len)];
977 
978 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
979 	INIT_LIST_HEAD(&dc->list);
980 	dc->bdev = bdev;
981 	dc->di.lstart = lstart;
982 	dc->di.start = start;
983 	dc->di.len = len;
984 	dc->ref = 0;
985 	dc->state = D_PREP;
986 	dc->queued = 0;
987 	dc->error = 0;
988 	init_completion(&dc->wait);
989 	list_add_tail(&dc->list, pend_list);
990 	spin_lock_init(&dc->lock);
991 	dc->bio_ref = 0;
992 	atomic_inc(&dcc->discard_cmd_cnt);
993 	dcc->undiscard_blks += len;
994 
995 	return dc;
996 }
997 
998 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
999 {
1000 #ifdef CONFIG_F2FS_CHECK_FS
1001 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1003 	struct discard_cmd *cur_dc, *next_dc;
1004 
1005 	while (cur) {
1006 		next = rb_next(cur);
1007 		if (!next)
1008 			return true;
1009 
1010 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1011 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
1012 
1013 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1014 			f2fs_info(sbi, "broken discard_rbtree, "
1015 				"cur(%u, %u) next(%u, %u)",
1016 				cur_dc->di.lstart, cur_dc->di.len,
1017 				next_dc->di.lstart, next_dc->di.len);
1018 			return false;
1019 		}
1020 		cur = next;
1021 	}
1022 #endif
1023 	return true;
1024 }
1025 
1026 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1027 						block_t blkaddr)
1028 {
1029 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1030 	struct rb_node *node = dcc->root.rb_root.rb_node;
1031 	struct discard_cmd *dc;
1032 
1033 	while (node) {
1034 		dc = rb_entry(node, struct discard_cmd, rb_node);
1035 
1036 		if (blkaddr < dc->di.lstart)
1037 			node = node->rb_left;
1038 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1039 			node = node->rb_right;
1040 		else
1041 			return dc;
1042 	}
1043 	return NULL;
1044 }
1045 
1046 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1047 				block_t blkaddr,
1048 				struct discard_cmd **prev_entry,
1049 				struct discard_cmd **next_entry,
1050 				struct rb_node ***insert_p,
1051 				struct rb_node **insert_parent)
1052 {
1053 	struct rb_node **pnode = &root->rb_root.rb_node;
1054 	struct rb_node *parent = NULL, *tmp_node;
1055 	struct discard_cmd *dc;
1056 
1057 	*insert_p = NULL;
1058 	*insert_parent = NULL;
1059 	*prev_entry = NULL;
1060 	*next_entry = NULL;
1061 
1062 	if (RB_EMPTY_ROOT(&root->rb_root))
1063 		return NULL;
1064 
1065 	while (*pnode) {
1066 		parent = *pnode;
1067 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1068 
1069 		if (blkaddr < dc->di.lstart)
1070 			pnode = &(*pnode)->rb_left;
1071 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1072 			pnode = &(*pnode)->rb_right;
1073 		else
1074 			goto lookup_neighbors;
1075 	}
1076 
1077 	*insert_p = pnode;
1078 	*insert_parent = parent;
1079 
1080 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1081 	tmp_node = parent;
1082 	if (parent && blkaddr > dc->di.lstart)
1083 		tmp_node = rb_next(parent);
1084 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1085 
1086 	tmp_node = parent;
1087 	if (parent && blkaddr < dc->di.lstart)
1088 		tmp_node = rb_prev(parent);
1089 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1090 	return NULL;
1091 
1092 lookup_neighbors:
1093 	/* lookup prev node for merging backward later */
1094 	tmp_node = rb_prev(&dc->rb_node);
1095 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1096 
1097 	/* lookup next node for merging frontward later */
1098 	tmp_node = rb_next(&dc->rb_node);
1099 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1100 	return dc;
1101 }
1102 
1103 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1104 							struct discard_cmd *dc)
1105 {
1106 	if (dc->state == D_DONE)
1107 		atomic_sub(dc->queued, &dcc->queued_discard);
1108 
1109 	list_del(&dc->list);
1110 	rb_erase_cached(&dc->rb_node, &dcc->root);
1111 	dcc->undiscard_blks -= dc->di.len;
1112 
1113 	kmem_cache_free(discard_cmd_slab, dc);
1114 
1115 	atomic_dec(&dcc->discard_cmd_cnt);
1116 }
1117 
1118 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1119 							struct discard_cmd *dc)
1120 {
1121 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122 	unsigned long flags;
1123 
1124 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1125 
1126 	spin_lock_irqsave(&dc->lock, flags);
1127 	if (dc->bio_ref) {
1128 		spin_unlock_irqrestore(&dc->lock, flags);
1129 		return;
1130 	}
1131 	spin_unlock_irqrestore(&dc->lock, flags);
1132 
1133 	f2fs_bug_on(sbi, dc->ref);
1134 
1135 	if (dc->error == -EOPNOTSUPP)
1136 		dc->error = 0;
1137 
1138 	if (dc->error)
1139 		f2fs_info_ratelimited(sbi,
1140 			"Issue discard(%u, %u, %u) failed, ret: %d",
1141 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1142 	__detach_discard_cmd(dcc, dc);
1143 }
1144 
1145 static void f2fs_submit_discard_endio(struct bio *bio)
1146 {
1147 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1148 	unsigned long flags;
1149 
1150 	spin_lock_irqsave(&dc->lock, flags);
1151 	if (!dc->error)
1152 		dc->error = blk_status_to_errno(bio->bi_status);
1153 	dc->bio_ref--;
1154 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1155 		dc->state = D_DONE;
1156 		complete_all(&dc->wait);
1157 	}
1158 	spin_unlock_irqrestore(&dc->lock, flags);
1159 	bio_put(bio);
1160 }
1161 
1162 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1163 				block_t start, block_t end)
1164 {
1165 #ifdef CONFIG_F2FS_CHECK_FS
1166 	struct seg_entry *sentry;
1167 	unsigned int segno;
1168 	block_t blk = start;
1169 	unsigned long offset, size, *map;
1170 
1171 	while (blk < end) {
1172 		segno = GET_SEGNO(sbi, blk);
1173 		sentry = get_seg_entry(sbi, segno);
1174 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1175 
1176 		if (end < START_BLOCK(sbi, segno + 1))
1177 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1178 		else
1179 			size = BLKS_PER_SEG(sbi);
1180 		map = (unsigned long *)(sentry->cur_valid_map);
1181 		offset = __find_rev_next_bit(map, size, offset);
1182 		f2fs_bug_on(sbi, offset != size);
1183 		blk = START_BLOCK(sbi, segno + 1);
1184 	}
1185 #endif
1186 }
1187 
1188 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1189 				struct discard_policy *dpolicy,
1190 				int discard_type, unsigned int granularity)
1191 {
1192 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1193 
1194 	/* common policy */
1195 	dpolicy->type = discard_type;
1196 	dpolicy->sync = true;
1197 	dpolicy->ordered = false;
1198 	dpolicy->granularity = granularity;
1199 
1200 	dpolicy->max_requests = dcc->max_discard_request;
1201 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1202 	dpolicy->timeout = false;
1203 
1204 	if (discard_type == DPOLICY_BG) {
1205 		dpolicy->min_interval = dcc->min_discard_issue_time;
1206 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1207 		dpolicy->max_interval = dcc->max_discard_issue_time;
1208 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1209 			dpolicy->io_aware = true;
1210 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1211 			dpolicy->io_aware = false;
1212 		dpolicy->sync = false;
1213 		dpolicy->ordered = true;
1214 		if (utilization(sbi) > dcc->discard_urgent_util) {
1215 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1216 			if (atomic_read(&dcc->discard_cmd_cnt))
1217 				dpolicy->max_interval =
1218 					dcc->min_discard_issue_time;
1219 		}
1220 	} else if (discard_type == DPOLICY_FORCE) {
1221 		dpolicy->min_interval = dcc->min_discard_issue_time;
1222 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1223 		dpolicy->max_interval = dcc->max_discard_issue_time;
1224 		dpolicy->io_aware = false;
1225 	} else if (discard_type == DPOLICY_FSTRIM) {
1226 		dpolicy->io_aware = false;
1227 	} else if (discard_type == DPOLICY_UMOUNT) {
1228 		dpolicy->io_aware = false;
1229 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1230 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1231 		dpolicy->timeout = true;
1232 	}
1233 }
1234 
1235 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1236 				struct block_device *bdev, block_t lstart,
1237 				block_t start, block_t len);
1238 
1239 #ifdef CONFIG_BLK_DEV_ZONED
1240 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1241 				   struct discard_cmd *dc, blk_opf_t flag,
1242 				   struct list_head *wait_list,
1243 				   unsigned int *issued)
1244 {
1245 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1246 	struct block_device *bdev = dc->bdev;
1247 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1248 	unsigned long flags;
1249 
1250 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1251 
1252 	spin_lock_irqsave(&dc->lock, flags);
1253 	dc->state = D_SUBMIT;
1254 	dc->bio_ref++;
1255 	spin_unlock_irqrestore(&dc->lock, flags);
1256 
1257 	if (issued)
1258 		(*issued)++;
1259 
1260 	atomic_inc(&dcc->queued_discard);
1261 	dc->queued++;
1262 	list_move_tail(&dc->list, wait_list);
1263 
1264 	/* sanity check on discard range */
1265 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1266 
1267 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1268 	bio->bi_private = dc;
1269 	bio->bi_end_io = f2fs_submit_discard_endio;
1270 	submit_bio(bio);
1271 
1272 	atomic_inc(&dcc->issued_discard);
1273 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1274 }
1275 #endif
1276 
1277 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1278 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1279 				struct discard_policy *dpolicy,
1280 				struct discard_cmd *dc, int *issued)
1281 {
1282 	struct block_device *bdev = dc->bdev;
1283 	unsigned int max_discard_blocks =
1284 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1285 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1286 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1287 					&(dcc->fstrim_list) : &(dcc->wait_list);
1288 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1289 	block_t lstart, start, len, total_len;
1290 
1291 	if (dc->state != D_PREP)
1292 		return 0;
1293 
1294 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1295 		return 0;
1296 
1297 #ifdef CONFIG_BLK_DEV_ZONED
1298 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1299 		int devi = f2fs_bdev_index(sbi, bdev);
1300 
1301 		if (devi < 0)
1302 			return -EINVAL;
1303 
1304 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1305 			__submit_zone_reset_cmd(sbi, dc, flag,
1306 						wait_list, issued);
1307 			return 0;
1308 		}
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * stop issuing discard for any of below cases:
1314 	 * 1. device is conventional zone, but it doesn't support discard.
1315 	 * 2. device is regulare device, after snapshot it doesn't support
1316 	 * discard.
1317 	 */
1318 	if (!bdev_max_discard_sectors(bdev))
1319 		return -EOPNOTSUPP;
1320 
1321 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1322 
1323 	lstart = dc->di.lstart;
1324 	start = dc->di.start;
1325 	len = dc->di.len;
1326 	total_len = len;
1327 
1328 	dc->di.len = 0;
1329 
1330 	while (total_len && *issued < dpolicy->max_requests) {
1331 		struct bio *bio = NULL;
1332 		unsigned long flags;
1333 		bool last = true;
1334 
1335 		if (len > max_discard_blocks) {
1336 			len = max_discard_blocks;
1337 			last = false;
1338 		}
1339 
1340 		(*issued)++;
1341 		if (*issued == dpolicy->max_requests)
1342 			last = true;
1343 
1344 		dc->di.len += len;
1345 
1346 		__blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(start),
1347 				SECTOR_FROM_BLOCK(len), GFP_NOFS, &bio);
1348 		f2fs_bug_on(sbi, !bio);
1349 
1350 		/*
1351 		 * should keep before submission to avoid D_DONE
1352 		 * right away
1353 		 */
1354 		spin_lock_irqsave(&dc->lock, flags);
1355 		if (last)
1356 			dc->state = D_SUBMIT;
1357 		else
1358 			dc->state = D_PARTIAL;
1359 		dc->bio_ref++;
1360 		spin_unlock_irqrestore(&dc->lock, flags);
1361 
1362 		atomic_inc(&dcc->queued_discard);
1363 		dc->queued++;
1364 		list_move_tail(&dc->list, wait_list);
1365 
1366 		/* sanity check on discard range */
1367 		__check_sit_bitmap(sbi, lstart, lstart + len);
1368 
1369 		bio->bi_private = dc;
1370 		bio->bi_end_io = f2fs_submit_discard_endio;
1371 		bio->bi_opf |= flag;
1372 		submit_bio(bio);
1373 
1374 		atomic_inc(&dcc->issued_discard);
1375 
1376 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1377 
1378 		lstart += len;
1379 		start += len;
1380 		total_len -= len;
1381 		len = total_len;
1382 	}
1383 
1384 	if (len) {
1385 		dcc->undiscard_blks -= len;
1386 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1387 	}
1388 	return 0;
1389 }
1390 
1391 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1392 				struct block_device *bdev, block_t lstart,
1393 				block_t start, block_t len)
1394 {
1395 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1396 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1397 	struct rb_node *parent = NULL;
1398 	struct discard_cmd *dc;
1399 	bool leftmost = true;
1400 
1401 	/* look up rb tree to find parent node */
1402 	while (*p) {
1403 		parent = *p;
1404 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1405 
1406 		if (lstart < dc->di.lstart) {
1407 			p = &(*p)->rb_left;
1408 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1409 			p = &(*p)->rb_right;
1410 			leftmost = false;
1411 		} else {
1412 			/* Let's skip to add, if exists */
1413 			return;
1414 		}
1415 	}
1416 
1417 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1418 
1419 	rb_link_node(&dc->rb_node, parent, p);
1420 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1421 }
1422 
1423 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1424 						struct discard_cmd *dc)
1425 {
1426 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1427 }
1428 
1429 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1430 				struct discard_cmd *dc, block_t blkaddr)
1431 {
1432 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 	struct discard_info di = dc->di;
1434 	bool modified = false;
1435 
1436 	if (dc->state == D_DONE || dc->di.len == 1) {
1437 		__remove_discard_cmd(sbi, dc);
1438 		return;
1439 	}
1440 
1441 	dcc->undiscard_blks -= di.len;
1442 
1443 	if (blkaddr > di.lstart) {
1444 		dc->di.len = blkaddr - dc->di.lstart;
1445 		dcc->undiscard_blks += dc->di.len;
1446 		__relocate_discard_cmd(dcc, dc);
1447 		modified = true;
1448 	}
1449 
1450 	if (blkaddr < di.lstart + di.len - 1) {
1451 		if (modified) {
1452 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1453 					di.start + blkaddr + 1 - di.lstart,
1454 					di.lstart + di.len - 1 - blkaddr);
1455 		} else {
1456 			dc->di.lstart++;
1457 			dc->di.len--;
1458 			dc->di.start++;
1459 			dcc->undiscard_blks += dc->di.len;
1460 			__relocate_discard_cmd(dcc, dc);
1461 		}
1462 	}
1463 }
1464 
1465 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1466 				struct block_device *bdev, block_t lstart,
1467 				block_t start, block_t len)
1468 {
1469 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1470 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1471 	struct discard_cmd *dc;
1472 	struct discard_info di = {0};
1473 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1474 	unsigned int max_discard_blocks =
1475 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1476 	block_t end = lstart + len;
1477 
1478 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1479 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1480 	if (dc)
1481 		prev_dc = dc;
1482 
1483 	if (!prev_dc) {
1484 		di.lstart = lstart;
1485 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1486 		di.len = min(di.len, len);
1487 		di.start = start;
1488 	}
1489 
1490 	while (1) {
1491 		struct rb_node *node;
1492 		bool merged = false;
1493 		struct discard_cmd *tdc = NULL;
1494 
1495 		if (prev_dc) {
1496 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1497 			if (di.lstart < lstart)
1498 				di.lstart = lstart;
1499 			if (di.lstart >= end)
1500 				break;
1501 
1502 			if (!next_dc || next_dc->di.lstart > end)
1503 				di.len = end - di.lstart;
1504 			else
1505 				di.len = next_dc->di.lstart - di.lstart;
1506 			di.start = start + di.lstart - lstart;
1507 		}
1508 
1509 		if (!di.len)
1510 			goto next;
1511 
1512 		if (prev_dc && prev_dc->state == D_PREP &&
1513 			prev_dc->bdev == bdev &&
1514 			__is_discard_back_mergeable(&di, &prev_dc->di,
1515 							max_discard_blocks)) {
1516 			prev_dc->di.len += di.len;
1517 			dcc->undiscard_blks += di.len;
1518 			__relocate_discard_cmd(dcc, prev_dc);
1519 			di = prev_dc->di;
1520 			tdc = prev_dc;
1521 			merged = true;
1522 		}
1523 
1524 		if (next_dc && next_dc->state == D_PREP &&
1525 			next_dc->bdev == bdev &&
1526 			__is_discard_front_mergeable(&di, &next_dc->di,
1527 							max_discard_blocks)) {
1528 			next_dc->di.lstart = di.lstart;
1529 			next_dc->di.len += di.len;
1530 			next_dc->di.start = di.start;
1531 			dcc->undiscard_blks += di.len;
1532 			__relocate_discard_cmd(dcc, next_dc);
1533 			if (tdc)
1534 				__remove_discard_cmd(sbi, tdc);
1535 			merged = true;
1536 		}
1537 
1538 		if (!merged)
1539 			__insert_discard_cmd(sbi, bdev,
1540 						di.lstart, di.start, di.len);
1541  next:
1542 		prev_dc = next_dc;
1543 		if (!prev_dc)
1544 			break;
1545 
1546 		node = rb_next(&prev_dc->rb_node);
1547 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1548 	}
1549 }
1550 
1551 #ifdef CONFIG_BLK_DEV_ZONED
1552 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1553 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1554 		block_t blklen)
1555 {
1556 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1557 
1558 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1559 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1560 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1561 }
1562 #endif
1563 
1564 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1565 		struct block_device *bdev, block_t blkstart, block_t blklen)
1566 {
1567 	block_t lblkstart = blkstart;
1568 
1569 	if (!f2fs_bdev_support_discard(bdev))
1570 		return;
1571 
1572 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1573 
1574 	if (f2fs_is_multi_device(sbi)) {
1575 		int devi = f2fs_target_device_index(sbi, blkstart);
1576 
1577 		blkstart -= FDEV(devi).start_blk;
1578 	}
1579 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1580 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1581 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1582 }
1583 
1584 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1585 		struct discard_policy *dpolicy, int *issued)
1586 {
1587 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1588 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1589 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1590 	struct discard_cmd *dc;
1591 	struct blk_plug plug;
1592 	bool io_interrupted = false;
1593 
1594 	mutex_lock(&dcc->cmd_lock);
1595 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1596 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1597 	if (!dc)
1598 		dc = next_dc;
1599 
1600 	blk_start_plug(&plug);
1601 
1602 	while (dc) {
1603 		struct rb_node *node;
1604 		int err = 0;
1605 
1606 		if (dc->state != D_PREP)
1607 			goto next;
1608 
1609 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1610 			io_interrupted = true;
1611 			break;
1612 		}
1613 
1614 		dcc->next_pos = dc->di.lstart + dc->di.len;
1615 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1616 
1617 		if (*issued >= dpolicy->max_requests)
1618 			break;
1619 next:
1620 		node = rb_next(&dc->rb_node);
1621 		if (err)
1622 			__remove_discard_cmd(sbi, dc);
1623 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1624 	}
1625 
1626 	blk_finish_plug(&plug);
1627 
1628 	if (!dc)
1629 		dcc->next_pos = 0;
1630 
1631 	mutex_unlock(&dcc->cmd_lock);
1632 
1633 	if (!(*issued) && io_interrupted)
1634 		*issued = -1;
1635 }
1636 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1637 					struct discard_policy *dpolicy);
1638 
1639 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1640 					struct discard_policy *dpolicy)
1641 {
1642 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1643 	struct list_head *pend_list;
1644 	struct discard_cmd *dc, *tmp;
1645 	struct blk_plug plug;
1646 	int i, issued;
1647 	bool io_interrupted = false;
1648 
1649 	if (dpolicy->timeout)
1650 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1651 
1652 retry:
1653 	issued = 0;
1654 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1655 		if (dpolicy->timeout &&
1656 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1657 			break;
1658 
1659 		if (i + 1 < dpolicy->granularity)
1660 			break;
1661 
1662 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1663 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1664 			return issued;
1665 		}
1666 
1667 		pend_list = &dcc->pend_list[i];
1668 
1669 		mutex_lock(&dcc->cmd_lock);
1670 		if (list_empty(pend_list))
1671 			goto next;
1672 		if (unlikely(dcc->rbtree_check))
1673 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1674 		blk_start_plug(&plug);
1675 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1676 			f2fs_bug_on(sbi, dc->state != D_PREP);
1677 
1678 			if (dpolicy->timeout &&
1679 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1680 				break;
1681 
1682 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1683 						!is_idle(sbi, DISCARD_TIME)) {
1684 				io_interrupted = true;
1685 				break;
1686 			}
1687 
1688 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1689 
1690 			if (issued >= dpolicy->max_requests)
1691 				break;
1692 		}
1693 		blk_finish_plug(&plug);
1694 next:
1695 		mutex_unlock(&dcc->cmd_lock);
1696 
1697 		if (issued >= dpolicy->max_requests || io_interrupted)
1698 			break;
1699 	}
1700 
1701 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1702 		__wait_all_discard_cmd(sbi, dpolicy);
1703 		goto retry;
1704 	}
1705 
1706 	if (!issued && io_interrupted)
1707 		issued = -1;
1708 
1709 	return issued;
1710 }
1711 
1712 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1713 {
1714 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1715 	struct list_head *pend_list;
1716 	struct discard_cmd *dc, *tmp;
1717 	int i;
1718 	bool dropped = false;
1719 
1720 	mutex_lock(&dcc->cmd_lock);
1721 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1722 		pend_list = &dcc->pend_list[i];
1723 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1724 			f2fs_bug_on(sbi, dc->state != D_PREP);
1725 			__remove_discard_cmd(sbi, dc);
1726 			dropped = true;
1727 		}
1728 	}
1729 	mutex_unlock(&dcc->cmd_lock);
1730 
1731 	return dropped;
1732 }
1733 
1734 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1735 {
1736 	__drop_discard_cmd(sbi);
1737 }
1738 
1739 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1740 							struct discard_cmd *dc)
1741 {
1742 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1743 	unsigned int len = 0;
1744 
1745 	wait_for_completion_io(&dc->wait);
1746 	mutex_lock(&dcc->cmd_lock);
1747 	f2fs_bug_on(sbi, dc->state != D_DONE);
1748 	dc->ref--;
1749 	if (!dc->ref) {
1750 		if (!dc->error)
1751 			len = dc->di.len;
1752 		__remove_discard_cmd(sbi, dc);
1753 	}
1754 	mutex_unlock(&dcc->cmd_lock);
1755 
1756 	return len;
1757 }
1758 
1759 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1760 						struct discard_policy *dpolicy,
1761 						block_t start, block_t end)
1762 {
1763 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1764 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1765 					&(dcc->fstrim_list) : &(dcc->wait_list);
1766 	struct discard_cmd *dc = NULL, *iter, *tmp;
1767 	unsigned int trimmed = 0;
1768 
1769 next:
1770 	dc = NULL;
1771 
1772 	mutex_lock(&dcc->cmd_lock);
1773 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1774 		if (iter->di.lstart + iter->di.len <= start ||
1775 					end <= iter->di.lstart)
1776 			continue;
1777 		if (iter->di.len < dpolicy->granularity)
1778 			continue;
1779 		if (iter->state == D_DONE && !iter->ref) {
1780 			wait_for_completion_io(&iter->wait);
1781 			if (!iter->error)
1782 				trimmed += iter->di.len;
1783 			__remove_discard_cmd(sbi, iter);
1784 		} else {
1785 			iter->ref++;
1786 			dc = iter;
1787 			break;
1788 		}
1789 	}
1790 	mutex_unlock(&dcc->cmd_lock);
1791 
1792 	if (dc) {
1793 		trimmed += __wait_one_discard_bio(sbi, dc);
1794 		goto next;
1795 	}
1796 
1797 	return trimmed;
1798 }
1799 
1800 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1801 						struct discard_policy *dpolicy)
1802 {
1803 	struct discard_policy dp;
1804 	unsigned int discard_blks;
1805 
1806 	if (dpolicy)
1807 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1808 
1809 	/* wait all */
1810 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1811 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1812 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1813 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1814 
1815 	return discard_blks;
1816 }
1817 
1818 /* This should be covered by global mutex, &sit_i->sentry_lock */
1819 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1820 {
1821 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1822 	struct discard_cmd *dc;
1823 	bool need_wait = false;
1824 
1825 	mutex_lock(&dcc->cmd_lock);
1826 	dc = __lookup_discard_cmd(sbi, blkaddr);
1827 #ifdef CONFIG_BLK_DEV_ZONED
1828 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1829 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1830 
1831 		if (devi < 0) {
1832 			mutex_unlock(&dcc->cmd_lock);
1833 			return;
1834 		}
1835 
1836 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1837 			/* force submit zone reset */
1838 			if (dc->state == D_PREP)
1839 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1840 							&dcc->wait_list, NULL);
1841 			dc->ref++;
1842 			mutex_unlock(&dcc->cmd_lock);
1843 			/* wait zone reset */
1844 			__wait_one_discard_bio(sbi, dc);
1845 			return;
1846 		}
1847 	}
1848 #endif
1849 	if (dc) {
1850 		if (dc->state == D_PREP) {
1851 			__punch_discard_cmd(sbi, dc, blkaddr);
1852 		} else {
1853 			dc->ref++;
1854 			need_wait = true;
1855 		}
1856 	}
1857 	mutex_unlock(&dcc->cmd_lock);
1858 
1859 	if (need_wait)
1860 		__wait_one_discard_bio(sbi, dc);
1861 }
1862 
1863 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1864 {
1865 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1866 
1867 	if (dcc && dcc->f2fs_issue_discard) {
1868 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1869 
1870 		dcc->f2fs_issue_discard = NULL;
1871 		kthread_stop(discard_thread);
1872 	}
1873 }
1874 
1875 /**
1876  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1877  * @sbi: the f2fs_sb_info data for discard cmd to issue
1878  *
1879  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1880  *
1881  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1882  */
1883 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1884 {
1885 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1886 	struct discard_policy dpolicy;
1887 	bool dropped;
1888 
1889 	if (!atomic_read(&dcc->discard_cmd_cnt))
1890 		return true;
1891 
1892 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1893 					dcc->discard_granularity);
1894 	__issue_discard_cmd(sbi, &dpolicy);
1895 	dropped = __drop_discard_cmd(sbi);
1896 
1897 	/* just to make sure there is no pending discard commands */
1898 	__wait_all_discard_cmd(sbi, NULL);
1899 
1900 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1901 	return !dropped;
1902 }
1903 
1904 static int issue_discard_thread(void *data)
1905 {
1906 	struct f2fs_sb_info *sbi = data;
1907 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1908 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1909 	struct discard_policy dpolicy;
1910 	unsigned int wait_ms = dcc->min_discard_issue_time;
1911 	int issued;
1912 
1913 	set_freezable();
1914 
1915 	do {
1916 		wait_event_freezable_timeout(*q,
1917 				kthread_should_stop() || dcc->discard_wake,
1918 				msecs_to_jiffies(wait_ms));
1919 
1920 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1921 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1922 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1923 						MIN_DISCARD_GRANULARITY);
1924 		else
1925 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1926 						dcc->discard_granularity);
1927 
1928 		if (dcc->discard_wake)
1929 			dcc->discard_wake = false;
1930 
1931 		/* clean up pending candidates before going to sleep */
1932 		if (atomic_read(&dcc->queued_discard))
1933 			__wait_all_discard_cmd(sbi, NULL);
1934 
1935 		if (f2fs_readonly(sbi->sb))
1936 			continue;
1937 		if (kthread_should_stop())
1938 			return 0;
1939 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1940 			!atomic_read(&dcc->discard_cmd_cnt)) {
1941 			wait_ms = dpolicy.max_interval;
1942 			continue;
1943 		}
1944 
1945 		sb_start_intwrite(sbi->sb);
1946 
1947 		issued = __issue_discard_cmd(sbi, &dpolicy);
1948 		if (issued > 0) {
1949 			__wait_all_discard_cmd(sbi, &dpolicy);
1950 			wait_ms = dpolicy.min_interval;
1951 		} else if (issued == -1) {
1952 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1953 			if (!wait_ms)
1954 				wait_ms = dpolicy.mid_interval;
1955 		} else {
1956 			wait_ms = dpolicy.max_interval;
1957 		}
1958 		if (!atomic_read(&dcc->discard_cmd_cnt))
1959 			wait_ms = dpolicy.max_interval;
1960 
1961 		sb_end_intwrite(sbi->sb);
1962 
1963 	} while (!kthread_should_stop());
1964 	return 0;
1965 }
1966 
1967 #ifdef CONFIG_BLK_DEV_ZONED
1968 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1969 		struct block_device *bdev, block_t blkstart, block_t blklen)
1970 {
1971 	sector_t sector, nr_sects;
1972 	block_t lblkstart = blkstart;
1973 	int devi = 0;
1974 	u64 remainder = 0;
1975 
1976 	if (f2fs_is_multi_device(sbi)) {
1977 		devi = f2fs_target_device_index(sbi, blkstart);
1978 		if (blkstart < FDEV(devi).start_blk ||
1979 		    blkstart > FDEV(devi).end_blk) {
1980 			f2fs_err(sbi, "Invalid block %x", blkstart);
1981 			return -EIO;
1982 		}
1983 		blkstart -= FDEV(devi).start_blk;
1984 	}
1985 
1986 	/* For sequential zones, reset the zone write pointer */
1987 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1988 		sector = SECTOR_FROM_BLOCK(blkstart);
1989 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1990 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1991 
1992 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1993 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1994 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1995 				 blkstart, blklen);
1996 			return -EIO;
1997 		}
1998 
1999 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2000 			unsigned int nofs_flags;
2001 			int ret;
2002 
2003 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2004 			nofs_flags = memalloc_nofs_save();
2005 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2006 						sector, nr_sects);
2007 			memalloc_nofs_restore(nofs_flags);
2008 			return ret;
2009 		}
2010 
2011 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2012 		return 0;
2013 	}
2014 
2015 	/* For conventional zones, use regular discard if supported */
2016 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2017 	return 0;
2018 }
2019 #endif
2020 
2021 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2022 		struct block_device *bdev, block_t blkstart, block_t blklen)
2023 {
2024 #ifdef CONFIG_BLK_DEV_ZONED
2025 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2026 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2027 #endif
2028 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2029 	return 0;
2030 }
2031 
2032 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2033 				block_t blkstart, block_t blklen)
2034 {
2035 	sector_t start = blkstart, len = 0;
2036 	struct block_device *bdev;
2037 	struct seg_entry *se;
2038 	unsigned int offset;
2039 	block_t i;
2040 	int err = 0;
2041 
2042 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2043 
2044 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2045 		if (i != start) {
2046 			struct block_device *bdev2 =
2047 				f2fs_target_device(sbi, i, NULL);
2048 
2049 			if (bdev2 != bdev) {
2050 				err = __issue_discard_async(sbi, bdev,
2051 						start, len);
2052 				if (err)
2053 					return err;
2054 				bdev = bdev2;
2055 				start = i;
2056 				len = 0;
2057 			}
2058 		}
2059 
2060 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2061 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2062 
2063 		if (f2fs_block_unit_discard(sbi) &&
2064 				!f2fs_test_and_set_bit(offset, se->discard_map))
2065 			sbi->discard_blks--;
2066 	}
2067 
2068 	if (len)
2069 		err = __issue_discard_async(sbi, bdev, start, len);
2070 	return err;
2071 }
2072 
2073 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2074 							bool check_only)
2075 {
2076 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2077 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2078 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2079 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2080 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2081 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2082 	unsigned int start = 0, end = -1;
2083 	bool force = (cpc->reason & CP_DISCARD);
2084 	struct discard_entry *de = NULL;
2085 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2086 	int i;
2087 
2088 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2089 	    !f2fs_hw_support_discard(sbi) ||
2090 	    !f2fs_block_unit_discard(sbi))
2091 		return false;
2092 
2093 	if (!force) {
2094 		if (!f2fs_realtime_discard_enable(sbi) ||
2095 			(!se->valid_blocks &&
2096 				!is_curseg(sbi, cpc->trim_start)) ||
2097 			SM_I(sbi)->dcc_info->nr_discards >=
2098 				SM_I(sbi)->dcc_info->max_discards)
2099 			return false;
2100 	}
2101 
2102 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2103 	for (i = 0; i < entries; i++)
2104 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2105 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2106 
2107 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2108 				SM_I(sbi)->dcc_info->max_discards) {
2109 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2110 		if (start >= BLKS_PER_SEG(sbi))
2111 			break;
2112 
2113 		end = __find_rev_next_zero_bit(dmap,
2114 						BLKS_PER_SEG(sbi), start + 1);
2115 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2116 		    (end - start) < cpc->trim_minlen)
2117 			continue;
2118 
2119 		if (check_only)
2120 			return true;
2121 
2122 		if (!de) {
2123 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2124 						GFP_F2FS_ZERO, true, NULL);
2125 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2126 			list_add_tail(&de->list, head);
2127 		}
2128 
2129 		for (i = start; i < end; i++)
2130 			__set_bit_le(i, (void *)de->discard_map);
2131 
2132 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2133 	}
2134 	return false;
2135 }
2136 
2137 static void release_discard_addr(struct discard_entry *entry)
2138 {
2139 	list_del(&entry->list);
2140 	kmem_cache_free(discard_entry_slab, entry);
2141 }
2142 
2143 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2144 {
2145 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2146 	struct discard_entry *entry, *this;
2147 
2148 	/* drop caches */
2149 	list_for_each_entry_safe(entry, this, head, list)
2150 		release_discard_addr(entry);
2151 }
2152 
2153 /*
2154  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2155  */
2156 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2157 {
2158 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2159 	unsigned int segno;
2160 
2161 	mutex_lock(&dirty_i->seglist_lock);
2162 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2163 		__set_test_and_free(sbi, segno, false);
2164 	mutex_unlock(&dirty_i->seglist_lock);
2165 }
2166 
2167 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2168 						struct cp_control *cpc)
2169 {
2170 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2171 	struct list_head *head = &dcc->entry_list;
2172 	struct discard_entry *entry, *this;
2173 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2174 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2175 	unsigned int start = 0, end = -1;
2176 	unsigned int secno, start_segno;
2177 	bool force = (cpc->reason & CP_DISCARD);
2178 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2179 						DISCARD_UNIT_SECTION;
2180 
2181 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2182 		section_alignment = true;
2183 
2184 	mutex_lock(&dirty_i->seglist_lock);
2185 
2186 	while (1) {
2187 		int i;
2188 
2189 		if (section_alignment && end != -1)
2190 			end--;
2191 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2192 		if (start >= MAIN_SEGS(sbi))
2193 			break;
2194 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2195 								start + 1);
2196 
2197 		if (section_alignment) {
2198 			start = rounddown(start, SEGS_PER_SEC(sbi));
2199 			end = roundup(end, SEGS_PER_SEC(sbi));
2200 		}
2201 
2202 		for (i = start; i < end; i++) {
2203 			if (test_and_clear_bit(i, prefree_map))
2204 				dirty_i->nr_dirty[PRE]--;
2205 		}
2206 
2207 		if (!f2fs_realtime_discard_enable(sbi))
2208 			continue;
2209 
2210 		if (force && start >= cpc->trim_start &&
2211 					(end - 1) <= cpc->trim_end)
2212 			continue;
2213 
2214 		/* Should cover 2MB zoned device for zone-based reset */
2215 		if (!f2fs_sb_has_blkzoned(sbi) &&
2216 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2217 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2218 				SEGS_TO_BLKS(sbi, end - start));
2219 			continue;
2220 		}
2221 next:
2222 		secno = GET_SEC_FROM_SEG(sbi, start);
2223 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2224 		if (!is_cursec(sbi, secno) &&
2225 			!get_valid_blocks(sbi, start, true))
2226 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2227 						BLKS_PER_SEC(sbi));
2228 
2229 		start = start_segno + SEGS_PER_SEC(sbi);
2230 		if (start < end)
2231 			goto next;
2232 		else
2233 			end = start - 1;
2234 	}
2235 	mutex_unlock(&dirty_i->seglist_lock);
2236 
2237 	if (!f2fs_block_unit_discard(sbi))
2238 		goto wakeup;
2239 
2240 	/* send small discards */
2241 	list_for_each_entry_safe(entry, this, head, list) {
2242 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2243 		bool is_valid = test_bit_le(0, entry->discard_map);
2244 
2245 find_next:
2246 		if (is_valid) {
2247 			next_pos = find_next_zero_bit_le(entry->discard_map,
2248 						BLKS_PER_SEG(sbi), cur_pos);
2249 			len = next_pos - cur_pos;
2250 
2251 			if (f2fs_sb_has_blkzoned(sbi) ||
2252 			    (force && len < cpc->trim_minlen))
2253 				goto skip;
2254 
2255 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2256 									len);
2257 			total_len += len;
2258 		} else {
2259 			next_pos = find_next_bit_le(entry->discard_map,
2260 						BLKS_PER_SEG(sbi), cur_pos);
2261 		}
2262 skip:
2263 		cur_pos = next_pos;
2264 		is_valid = !is_valid;
2265 
2266 		if (cur_pos < BLKS_PER_SEG(sbi))
2267 			goto find_next;
2268 
2269 		release_discard_addr(entry);
2270 		dcc->nr_discards -= total_len;
2271 	}
2272 
2273 wakeup:
2274 	wake_up_discard_thread(sbi, false);
2275 }
2276 
2277 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2278 {
2279 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2280 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2281 	int err = 0;
2282 
2283 	if (f2fs_sb_has_readonly(sbi)) {
2284 		f2fs_info(sbi,
2285 			"Skip to start discard thread for readonly image");
2286 		return 0;
2287 	}
2288 
2289 	if (!f2fs_realtime_discard_enable(sbi))
2290 		return 0;
2291 
2292 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2293 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2294 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2295 		err = PTR_ERR(dcc->f2fs_issue_discard);
2296 		dcc->f2fs_issue_discard = NULL;
2297 	}
2298 
2299 	return err;
2300 }
2301 
2302 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2303 {
2304 	struct discard_cmd_control *dcc;
2305 	int err = 0, i;
2306 
2307 	if (SM_I(sbi)->dcc_info) {
2308 		dcc = SM_I(sbi)->dcc_info;
2309 		goto init_thread;
2310 	}
2311 
2312 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2313 	if (!dcc)
2314 		return -ENOMEM;
2315 
2316 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2317 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2318 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2319 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2320 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2321 		F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2322 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2323 
2324 	INIT_LIST_HEAD(&dcc->entry_list);
2325 	for (i = 0; i < MAX_PLIST_NUM; i++)
2326 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2327 	INIT_LIST_HEAD(&dcc->wait_list);
2328 	INIT_LIST_HEAD(&dcc->fstrim_list);
2329 	mutex_init(&dcc->cmd_lock);
2330 	atomic_set(&dcc->issued_discard, 0);
2331 	atomic_set(&dcc->queued_discard, 0);
2332 	atomic_set(&dcc->discard_cmd_cnt, 0);
2333 	dcc->nr_discards = 0;
2334 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2335 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2336 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2337 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2338 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2339 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2340 	dcc->undiscard_blks = 0;
2341 	dcc->next_pos = 0;
2342 	dcc->root = RB_ROOT_CACHED;
2343 	dcc->rbtree_check = false;
2344 
2345 	init_waitqueue_head(&dcc->discard_wait_queue);
2346 	SM_I(sbi)->dcc_info = dcc;
2347 init_thread:
2348 	err = f2fs_start_discard_thread(sbi);
2349 	if (err) {
2350 		kfree(dcc);
2351 		SM_I(sbi)->dcc_info = NULL;
2352 	}
2353 
2354 	return err;
2355 }
2356 
2357 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2358 {
2359 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2360 
2361 	if (!dcc)
2362 		return;
2363 
2364 	f2fs_stop_discard_thread(sbi);
2365 
2366 	/*
2367 	 * Recovery can cache discard commands, so in error path of
2368 	 * fill_super(), it needs to give a chance to handle them.
2369 	 */
2370 	f2fs_issue_discard_timeout(sbi);
2371 
2372 	kfree(dcc);
2373 	SM_I(sbi)->dcc_info = NULL;
2374 }
2375 
2376 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2377 {
2378 	struct sit_info *sit_i = SIT_I(sbi);
2379 
2380 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2381 		sit_i->dirty_sentries++;
2382 		return false;
2383 	}
2384 
2385 	return true;
2386 }
2387 
2388 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2389 					unsigned int segno, int modified)
2390 {
2391 	struct seg_entry *se = get_seg_entry(sbi, segno);
2392 
2393 	se->type = type;
2394 	if (modified)
2395 		__mark_sit_entry_dirty(sbi, segno);
2396 }
2397 
2398 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2399 								block_t blkaddr)
2400 {
2401 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2402 
2403 	if (segno == NULL_SEGNO)
2404 		return 0;
2405 	return get_seg_entry(sbi, segno)->mtime;
2406 }
2407 
2408 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2409 						unsigned long long old_mtime)
2410 {
2411 	struct seg_entry *se;
2412 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2413 	unsigned long long ctime = get_mtime(sbi, false);
2414 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2415 
2416 	if (segno == NULL_SEGNO)
2417 		return;
2418 
2419 	se = get_seg_entry(sbi, segno);
2420 
2421 	if (!se->mtime)
2422 		se->mtime = mtime;
2423 	else
2424 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2425 						se->valid_blocks + 1);
2426 
2427 	if (ctime > SIT_I(sbi)->max_mtime)
2428 		SIT_I(sbi)->max_mtime = ctime;
2429 }
2430 
2431 /*
2432  * NOTE: when updating multiple blocks at the same time, please ensure
2433  * that the consecutive input blocks belong to the same segment.
2434  */
2435 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2436 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2437 {
2438 	bool exist;
2439 #ifdef CONFIG_F2FS_CHECK_FS
2440 	bool mir_exist;
2441 #endif
2442 	int i;
2443 	int del_count = -del;
2444 
2445 	f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2446 
2447 	for (i = 0; i < del_count; i++) {
2448 		exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2449 #ifdef CONFIG_F2FS_CHECK_FS
2450 		mir_exist = f2fs_test_and_clear_bit(offset + i,
2451 						se->cur_valid_map_mir);
2452 		if (unlikely(exist != mir_exist)) {
2453 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2454 				blkaddr + i, exist);
2455 			f2fs_bug_on(sbi, 1);
2456 		}
2457 #endif
2458 		if (unlikely(!exist)) {
2459 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2460 			f2fs_bug_on(sbi, 1);
2461 			se->valid_blocks++;
2462 			del += 1;
2463 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2464 			/*
2465 			 * If checkpoints are off, we must not reuse data that
2466 			 * was used in the previous checkpoint. If it was used
2467 			 * before, we must track that to know how much space we
2468 			 * really have.
2469 			 */
2470 			if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2471 				spin_lock(&sbi->stat_lock);
2472 				sbi->unusable_block_count++;
2473 				spin_unlock(&sbi->stat_lock);
2474 			}
2475 		}
2476 
2477 		if (f2fs_block_unit_discard(sbi) &&
2478 				f2fs_test_and_clear_bit(offset + i, se->discard_map))
2479 			sbi->discard_blks++;
2480 
2481 		if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2482 			se->ckpt_valid_blocks -= 1;
2483 			if (__is_large_section(sbi))
2484 				get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2485 		}
2486 	}
2487 
2488 	if (__is_large_section(sbi))
2489 		sanity_check_valid_blocks(sbi, segno);
2490 
2491 	return del;
2492 }
2493 
2494 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2495 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2496 {
2497 	bool exist;
2498 #ifdef CONFIG_F2FS_CHECK_FS
2499 	bool mir_exist;
2500 #endif
2501 
2502 	exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2503 #ifdef CONFIG_F2FS_CHECK_FS
2504 	mir_exist = f2fs_test_and_set_bit(offset,
2505 					se->cur_valid_map_mir);
2506 	if (unlikely(exist != mir_exist)) {
2507 		f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2508 			blkaddr, exist);
2509 		f2fs_bug_on(sbi, 1);
2510 	}
2511 #endif
2512 	if (unlikely(exist)) {
2513 		f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2514 		f2fs_bug_on(sbi, 1);
2515 		se->valid_blocks--;
2516 		del = 0;
2517 	}
2518 
2519 	if (f2fs_block_unit_discard(sbi) &&
2520 			!f2fs_test_and_set_bit(offset, se->discard_map))
2521 		sbi->discard_blks--;
2522 
2523 	/*
2524 	 * SSR should never reuse block which is checkpointed
2525 	 * or newly invalidated.
2526 	 */
2527 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2528 		if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2529 			se->ckpt_valid_blocks++;
2530 			if (__is_large_section(sbi))
2531 				get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2532 		}
2533 	}
2534 
2535 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2536 		se->ckpt_valid_blocks += del;
2537 		if (__is_large_section(sbi))
2538 			get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2539 	}
2540 
2541 	if (__is_large_section(sbi))
2542 		sanity_check_valid_blocks(sbi, segno);
2543 
2544 	return del;
2545 }
2546 
2547 /*
2548  * If releasing blocks, this function supports updating multiple consecutive blocks
2549  * at one time, but please note that these consecutive blocks need to belong to the
2550  * same segment.
2551  */
2552 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2553 {
2554 	struct seg_entry *se;
2555 	unsigned int segno, offset;
2556 	long int new_vblocks;
2557 
2558 	segno = GET_SEGNO(sbi, blkaddr);
2559 	if (segno == NULL_SEGNO)
2560 		return;
2561 
2562 	se = get_seg_entry(sbi, segno);
2563 	new_vblocks = se->valid_blocks + del;
2564 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2565 
2566 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2567 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2568 
2569 	se->valid_blocks = new_vblocks;
2570 
2571 	/* Update valid block bitmap */
2572 	if (del > 0) {
2573 		del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2574 	} else {
2575 		del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2576 	}
2577 
2578 	__mark_sit_entry_dirty(sbi, segno);
2579 
2580 	/* update total number of valid blocks to be written in ckpt area */
2581 	SIT_I(sbi)->written_valid_blocks += del;
2582 
2583 	if (__is_large_section(sbi))
2584 		get_sec_entry(sbi, segno)->valid_blocks += del;
2585 }
2586 
2587 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2588 				unsigned int len)
2589 {
2590 	unsigned int segno = GET_SEGNO(sbi, addr);
2591 	struct sit_info *sit_i = SIT_I(sbi);
2592 	block_t addr_start = addr, addr_end = addr + len - 1;
2593 	unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2594 	unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2595 
2596 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2597 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2598 		return;
2599 
2600 	f2fs_invalidate_internal_cache(sbi, addr, len);
2601 
2602 	/* add it into sit main buffer */
2603 	down_write(&sit_i->sentry_lock);
2604 
2605 	if (seg_num == 1)
2606 		cnt = len;
2607 	else
2608 		cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2609 
2610 	do {
2611 		update_segment_mtime(sbi, addr_start, 0);
2612 		update_sit_entry(sbi, addr_start, -cnt);
2613 
2614 		/* add it into dirty seglist */
2615 		locate_dirty_segment(sbi, segno);
2616 
2617 		/* update @addr_start and @cnt and @segno */
2618 		addr_start = START_BLOCK(sbi, ++segno);
2619 		if (++i == seg_num)
2620 			cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2621 		else
2622 			cnt = max_blocks;
2623 	} while (i <= seg_num);
2624 
2625 	up_write(&sit_i->sentry_lock);
2626 }
2627 
2628 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2629 {
2630 	struct sit_info *sit_i = SIT_I(sbi);
2631 	unsigned int segno, offset;
2632 	struct seg_entry *se;
2633 	bool is_cp = false;
2634 
2635 	if (!__is_valid_data_blkaddr(blkaddr))
2636 		return true;
2637 
2638 	down_read(&sit_i->sentry_lock);
2639 
2640 	segno = GET_SEGNO(sbi, blkaddr);
2641 	se = get_seg_entry(sbi, segno);
2642 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2643 
2644 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2645 		is_cp = true;
2646 
2647 	up_read(&sit_i->sentry_lock);
2648 
2649 	return is_cp;
2650 }
2651 
2652 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2653 {
2654 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2655 
2656 	if (sbi->ckpt->alloc_type[type] == SSR)
2657 		return BLKS_PER_SEG(sbi);
2658 	return curseg->next_blkoff;
2659 }
2660 
2661 /*
2662  * Calculate the number of current summary pages for writing
2663  */
2664 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2665 {
2666 	int valid_sum_count = 0;
2667 	int i, sum_in_page;
2668 
2669 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2670 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2671 			valid_sum_count +=
2672 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2673 		else
2674 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2675 	}
2676 
2677 	sum_in_page = (sbi->blocksize - 2 * sbi->sum_journal_size -
2678 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2679 	if (valid_sum_count <= sum_in_page)
2680 		return 1;
2681 	else if ((valid_sum_count - sum_in_page) <=
2682 		(sbi->blocksize - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2683 		return 2;
2684 	return 3;
2685 }
2686 
2687 /*
2688  * Caller should put this summary folio
2689  */
2690 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2691 {
2692 	if (unlikely(f2fs_cp_error(sbi)))
2693 		return ERR_PTR(-EIO);
2694 	return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2695 }
2696 
2697 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2698 					void *src, block_t blk_addr)
2699 {
2700 	struct folio *folio;
2701 
2702 	if (!f2fs_sb_has_packed_ssa(sbi))
2703 		folio = f2fs_grab_meta_folio(sbi, blk_addr);
2704 	else
2705 		folio = f2fs_get_meta_folio_retry(sbi, blk_addr);
2706 
2707 	if (IS_ERR(folio))
2708 		return;
2709 
2710 	memcpy(folio_address(folio), src, PAGE_SIZE);
2711 	folio_mark_dirty(folio);
2712 	f2fs_folio_put(folio, true);
2713 }
2714 
2715 static void write_sum_page(struct f2fs_sb_info *sbi,
2716 		struct f2fs_summary_block *sum_blk, unsigned int segno)
2717 {
2718 	struct folio *folio;
2719 
2720 	if (!f2fs_sb_has_packed_ssa(sbi))
2721 		return f2fs_update_meta_page(sbi, (void *)sum_blk,
2722 				GET_SUM_BLOCK(sbi, segno));
2723 
2724 	folio = f2fs_get_sum_folio(sbi, segno);
2725 	if (IS_ERR(folio))
2726 		return;
2727 
2728 	memcpy(SUM_BLK_PAGE_ADDR(sbi, folio, segno), sum_blk,
2729 			sbi->sum_blocksize);
2730 	folio_mark_dirty(folio);
2731 	f2fs_folio_put(folio, true);
2732 }
2733 
2734 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2735 						int type, block_t blk_addr)
2736 {
2737 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2738 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2739 	struct f2fs_summary_block *src = curseg->sum_blk;
2740 	struct f2fs_summary_block *dst;
2741 
2742 	dst = folio_address(folio);
2743 	memset(dst, 0, PAGE_SIZE);
2744 
2745 	mutex_lock(&curseg->curseg_mutex);
2746 
2747 	down_read(&curseg->journal_rwsem);
2748 	memcpy(sum_journal(sbi, dst), curseg->journal, sbi->sum_journal_size);
2749 	up_read(&curseg->journal_rwsem);
2750 
2751 	memcpy(sum_entries(dst), sum_entries(src), sbi->sum_entry_size);
2752 	memcpy(sum_footer(sbi, dst), sum_footer(sbi, src), SUM_FOOTER_SIZE);
2753 
2754 	mutex_unlock(&curseg->curseg_mutex);
2755 
2756 	folio_mark_dirty(folio);
2757 	f2fs_folio_put(folio, true);
2758 }
2759 
2760 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2761 				struct curseg_info *curseg)
2762 {
2763 	unsigned int segno = curseg->segno + 1;
2764 	struct free_segmap_info *free_i = FREE_I(sbi);
2765 
2766 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2767 		return !test_bit(segno, free_i->free_segmap);
2768 	return 0;
2769 }
2770 
2771 /*
2772  * Find a new segment from the free segments bitmap to right order
2773  * This function should be returned with success, otherwise BUG
2774  */
2775 static int get_new_segment(struct f2fs_sb_info *sbi,
2776 			unsigned int *newseg, bool new_sec, bool pinning)
2777 {
2778 	struct free_segmap_info *free_i = FREE_I(sbi);
2779 	unsigned int segno, secno, zoneno;
2780 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2781 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2782 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2783 	unsigned int alloc_policy = sbi->allocate_section_policy;
2784 	unsigned int alloc_hint = sbi->allocate_section_hint;
2785 	bool init = true;
2786 	int i;
2787 	int ret = 0;
2788 
2789 	spin_lock(&free_i->segmap_lock);
2790 
2791 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2792 		ret = -ENOSPC;
2793 		goto out_unlock;
2794 	}
2795 
2796 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2797 		segno = find_next_zero_bit(free_i->free_segmap,
2798 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2799 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2800 			goto got_it;
2801 	}
2802 
2803 #ifdef CONFIG_BLK_DEV_ZONED
2804 	/*
2805 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2806 	 * from beginning of the storage, which should be a conventional one.
2807 	 */
2808 	if (f2fs_sb_has_blkzoned(sbi)) {
2809 		/* Prioritize writing to conventional zones */
2810 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2811 			segno = 0;
2812 		else
2813 			segno = max(sbi->first_seq_zone_segno, *newseg);
2814 		hint = GET_SEC_FROM_SEG(sbi, segno);
2815 	}
2816 #endif
2817 
2818 	/*
2819 	 * Prevent allocate_section_hint from exceeding MAIN_SECS()
2820 	 * due to desynchronization.
2821 	 */
2822 	if (alloc_policy != ALLOCATE_FORWARD_NOHINT &&
2823 		alloc_hint > MAIN_SECS(sbi))
2824 		alloc_hint = MAIN_SECS(sbi);
2825 
2826 	if (alloc_policy == ALLOCATE_FORWARD_FROM_HINT &&
2827 		hint < alloc_hint)
2828 		hint = alloc_hint;
2829 	else if (alloc_policy == ALLOCATE_FORWARD_WITHIN_HINT &&
2830 			hint >= alloc_hint)
2831 		hint = 0;
2832 
2833 find_other_zone:
2834 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2835 
2836 #ifdef CONFIG_BLK_DEV_ZONED
2837 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2838 		/* Write only to sequential zones */
2839 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2840 			hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2841 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2842 		} else
2843 			secno = find_first_zero_bit(free_i->free_secmap,
2844 								MAIN_SECS(sbi));
2845 		if (secno >= MAIN_SECS(sbi)) {
2846 			ret = -ENOSPC;
2847 			f2fs_bug_on(sbi, 1);
2848 			goto out_unlock;
2849 		}
2850 	}
2851 #endif
2852 
2853 	if (secno >= MAIN_SECS(sbi)) {
2854 		secno = find_first_zero_bit(free_i->free_secmap,
2855 							MAIN_SECS(sbi));
2856 		if (secno >= MAIN_SECS(sbi)) {
2857 			ret = -ENOSPC;
2858 			f2fs_bug_on(sbi, !pinning);
2859 			goto out_unlock;
2860 		}
2861 	}
2862 	segno = GET_SEG_FROM_SEC(sbi, secno);
2863 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2864 
2865 	/* give up on finding another zone */
2866 	if (!init)
2867 		goto got_it;
2868 	if (sbi->secs_per_zone == 1)
2869 		goto got_it;
2870 	if (zoneno == old_zoneno)
2871 		goto got_it;
2872 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2873 		if (CURSEG_I(sbi, i)->zone == zoneno)
2874 			break;
2875 
2876 	if (i < NR_CURSEG_TYPE) {
2877 		/* zone is in user, try another */
2878 		if (zoneno + 1 >= total_zones)
2879 			hint = 0;
2880 		else
2881 			hint = (zoneno + 1) * sbi->secs_per_zone;
2882 		init = false;
2883 		goto find_other_zone;
2884 	}
2885 got_it:
2886 	/* set it as dirty segment in free segmap */
2887 	if (test_bit(segno, free_i->free_segmap)) {
2888 		ret = -EFSCORRUPTED;
2889 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2890 		goto out_unlock;
2891 	}
2892 
2893 	/* no free section in conventional device or conventional zone */
2894 	if (new_sec && pinning &&
2895 		f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2896 		ret = -EAGAIN;
2897 		goto out_unlock;
2898 	}
2899 	__set_inuse(sbi, segno);
2900 	*newseg = segno;
2901 out_unlock:
2902 	spin_unlock(&free_i->segmap_lock);
2903 
2904 	if (ret == -ENOSPC && !pinning)
2905 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2906 	return ret;
2907 }
2908 
2909 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2910 {
2911 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2912 	struct summary_footer *sum_footer;
2913 	unsigned short seg_type = curseg->seg_type;
2914 
2915 	/* only happen when get_new_segment() fails */
2916 	if (curseg->next_segno == NULL_SEGNO)
2917 		return;
2918 
2919 	curseg->inited = true;
2920 	curseg->segno = curseg->next_segno;
2921 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2922 	curseg->next_blkoff = 0;
2923 	curseg->next_segno = NULL_SEGNO;
2924 
2925 	sum_footer = sum_footer(sbi, curseg->sum_blk);
2926 	memset(sum_footer, 0, sizeof(struct summary_footer));
2927 
2928 	sanity_check_seg_type(sbi, seg_type);
2929 
2930 	if (IS_DATASEG(seg_type))
2931 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2932 	if (IS_NODESEG(seg_type))
2933 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2934 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2935 }
2936 
2937 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2938 {
2939 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2940 	unsigned short seg_type = curseg->seg_type;
2941 
2942 	sanity_check_seg_type(sbi, seg_type);
2943 	if (__is_large_section(sbi)) {
2944 		if (f2fs_need_rand_seg(sbi)) {
2945 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2946 
2947 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2948 				return curseg->segno;
2949 			return get_random_u32_inclusive(curseg->segno + 1,
2950 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2951 		}
2952 		return curseg->segno;
2953 	} else if (f2fs_need_rand_seg(sbi)) {
2954 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2955 	}
2956 
2957 	/* inmem log may not locate on any segment after mount */
2958 	if (!curseg->inited)
2959 		return 0;
2960 
2961 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2962 		return 0;
2963 
2964 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2965 		return 0;
2966 
2967 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2968 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2969 
2970 	/* find segments from 0 to reuse freed segments */
2971 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2972 		return 0;
2973 
2974 	return curseg->segno;
2975 }
2976 
2977 static void reset_curseg_fields(struct curseg_info *curseg)
2978 {
2979 	curseg->inited = false;
2980 	curseg->segno = NULL_SEGNO;
2981 	curseg->next_segno = 0;
2982 }
2983 
2984 /*
2985  * Allocate a current working segment.
2986  * This function always allocates a free segment in LFS manner.
2987  */
2988 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2989 {
2990 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2991 	unsigned int segno = curseg->segno;
2992 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2993 	int ret;
2994 
2995 	if (curseg->inited)
2996 		write_sum_page(sbi, curseg->sum_blk, segno);
2997 
2998 	segno = __get_next_segno(sbi, type);
2999 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
3000 	if (ret) {
3001 		if (ret == -ENOSPC)
3002 			reset_curseg_fields(curseg);
3003 		return ret;
3004 	}
3005 
3006 	curseg->next_segno = segno;
3007 	reset_curseg(sbi, type, 1);
3008 	curseg->alloc_type = LFS;
3009 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3010 		curseg->fragment_remained_chunk =
3011 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3012 	return 0;
3013 }
3014 
3015 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
3016 					int segno, block_t start)
3017 {
3018 	struct seg_entry *se = get_seg_entry(sbi, segno);
3019 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
3020 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
3021 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
3022 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
3023 	int i;
3024 
3025 	for (i = 0; i < entries; i++)
3026 		target_map[i] = ckpt_map[i] | cur_map[i];
3027 
3028 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3029 }
3030 
3031 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3032 		struct curseg_info *seg)
3033 {
3034 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3035 }
3036 
3037 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3038 {
3039 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3040 }
3041 
3042 /*
3043  * This function always allocates a used segment(from dirty seglist) by SSR
3044  * manner, so it should recover the existing segment information of valid blocks
3045  */
3046 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3047 {
3048 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3049 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3050 	unsigned int new_segno = curseg->next_segno;
3051 	struct f2fs_summary_block *sum_node;
3052 	struct folio *sum_folio;
3053 
3054 	if (curseg->inited)
3055 		write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3056 
3057 	__set_test_and_inuse(sbi, new_segno);
3058 
3059 	mutex_lock(&dirty_i->seglist_lock);
3060 	__remove_dirty_segment(sbi, new_segno, PRE);
3061 	__remove_dirty_segment(sbi, new_segno, DIRTY);
3062 	mutex_unlock(&dirty_i->seglist_lock);
3063 
3064 	reset_curseg(sbi, type, 1);
3065 	curseg->alloc_type = SSR;
3066 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3067 
3068 	sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3069 	if (IS_ERR(sum_folio)) {
3070 		/* GC won't be able to use stale summary pages by cp_error */
3071 		memset(curseg->sum_blk, 0, sbi->sum_entry_size);
3072 		return PTR_ERR(sum_folio);
3073 	}
3074 	sum_node = SUM_BLK_PAGE_ADDR(sbi, sum_folio, new_segno);
3075 	memcpy(curseg->sum_blk, sum_node, sbi->sum_entry_size);
3076 	f2fs_folio_put(sum_folio, true);
3077 	return 0;
3078 }
3079 
3080 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3081 				int alloc_mode, unsigned long long age);
3082 
3083 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3084 					int target_type, int alloc_mode,
3085 					unsigned long long age)
3086 {
3087 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3088 	int ret = 0;
3089 
3090 	curseg->seg_type = target_type;
3091 
3092 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3093 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3094 
3095 		curseg->seg_type = se->type;
3096 		ret = change_curseg(sbi, type);
3097 	} else {
3098 		/* allocate cold segment by default */
3099 		curseg->seg_type = CURSEG_COLD_DATA;
3100 		ret = new_curseg(sbi, type, true);
3101 	}
3102 	stat_inc_seg_type(sbi, curseg);
3103 	return ret;
3104 }
3105 
3106 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3107 {
3108 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3109 	int ret = 0;
3110 
3111 	if (!sbi->am.atgc_enabled && !force)
3112 		return 0;
3113 
3114 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3115 
3116 	mutex_lock(&curseg->curseg_mutex);
3117 	down_write(&SIT_I(sbi)->sentry_lock);
3118 
3119 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3120 					CURSEG_COLD_DATA, SSR, 0);
3121 
3122 	up_write(&SIT_I(sbi)->sentry_lock);
3123 	mutex_unlock(&curseg->curseg_mutex);
3124 
3125 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3126 	return ret;
3127 }
3128 
3129 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3130 {
3131 	return __f2fs_init_atgc_curseg(sbi, false);
3132 }
3133 
3134 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3135 {
3136 	int ret;
3137 
3138 	if (!test_opt(sbi, ATGC))
3139 		return 0;
3140 	if (sbi->am.atgc_enabled)
3141 		return 0;
3142 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3143 			sbi->am.age_threshold)
3144 		return 0;
3145 
3146 	ret = __f2fs_init_atgc_curseg(sbi, true);
3147 	if (!ret) {
3148 		sbi->am.atgc_enabled = true;
3149 		f2fs_info(sbi, "reenabled age threshold GC");
3150 	}
3151 	return ret;
3152 }
3153 
3154 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3155 {
3156 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3157 
3158 	mutex_lock(&curseg->curseg_mutex);
3159 	if (!curseg->inited)
3160 		goto out;
3161 
3162 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3163 		write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3164 	} else {
3165 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3166 		__set_test_and_free(sbi, curseg->segno, true);
3167 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3168 	}
3169 out:
3170 	mutex_unlock(&curseg->curseg_mutex);
3171 }
3172 
3173 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3174 {
3175 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3176 
3177 	if (sbi->am.atgc_enabled)
3178 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3179 }
3180 
3181 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3182 {
3183 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3184 
3185 	mutex_lock(&curseg->curseg_mutex);
3186 	if (!curseg->inited)
3187 		goto out;
3188 	if (get_valid_blocks(sbi, curseg->segno, false))
3189 		goto out;
3190 
3191 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3192 	__set_test_and_inuse(sbi, curseg->segno);
3193 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3194 out:
3195 	mutex_unlock(&curseg->curseg_mutex);
3196 }
3197 
3198 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3199 {
3200 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3201 
3202 	if (sbi->am.atgc_enabled)
3203 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3204 }
3205 
3206 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3207 				int alloc_mode, unsigned long long age)
3208 {
3209 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3210 	unsigned segno = NULL_SEGNO;
3211 	unsigned short seg_type = curseg->seg_type;
3212 	int i, cnt;
3213 	bool reversed = false;
3214 
3215 	sanity_check_seg_type(sbi, seg_type);
3216 
3217 	/* f2fs_need_SSR() already forces to do this */
3218 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3219 				alloc_mode, age, false)) {
3220 		curseg->next_segno = segno;
3221 		return 1;
3222 	}
3223 
3224 	/* For node segments, let's do SSR more intensively */
3225 	if (IS_NODESEG(seg_type)) {
3226 		if (seg_type >= CURSEG_WARM_NODE) {
3227 			reversed = true;
3228 			i = CURSEG_COLD_NODE;
3229 		} else {
3230 			i = CURSEG_HOT_NODE;
3231 		}
3232 		cnt = NR_CURSEG_NODE_TYPE;
3233 	} else {
3234 		if (seg_type >= CURSEG_WARM_DATA) {
3235 			reversed = true;
3236 			i = CURSEG_COLD_DATA;
3237 		} else {
3238 			i = CURSEG_HOT_DATA;
3239 		}
3240 		cnt = NR_CURSEG_DATA_TYPE;
3241 	}
3242 
3243 	for (; cnt-- > 0; reversed ? i-- : i++) {
3244 		if (i == seg_type)
3245 			continue;
3246 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3247 					alloc_mode, age, false)) {
3248 			curseg->next_segno = segno;
3249 			return 1;
3250 		}
3251 	}
3252 
3253 	/* find valid_blocks=0 in dirty list */
3254 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3255 		segno = get_free_segment(sbi);
3256 		if (segno != NULL_SEGNO) {
3257 			curseg->next_segno = segno;
3258 			return 1;
3259 		}
3260 	}
3261 	return 0;
3262 }
3263 
3264 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3265 {
3266 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3267 
3268 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3269 	    curseg->seg_type == CURSEG_WARM_NODE)
3270 		return true;
3271 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3272 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3273 		return true;
3274 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3275 		return true;
3276 	return false;
3277 }
3278 
3279 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3280 					unsigned int start, unsigned int end)
3281 {
3282 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3283 	unsigned int segno;
3284 	int ret = 0;
3285 
3286 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3287 	mutex_lock(&curseg->curseg_mutex);
3288 	down_write(&SIT_I(sbi)->sentry_lock);
3289 
3290 	segno = CURSEG_I(sbi, type)->segno;
3291 	if (segno < start || segno > end)
3292 		goto unlock;
3293 
3294 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3295 		ret = change_curseg(sbi, type);
3296 	else
3297 		ret = new_curseg(sbi, type, true);
3298 
3299 	stat_inc_seg_type(sbi, curseg);
3300 
3301 	locate_dirty_segment(sbi, segno);
3302 unlock:
3303 	up_write(&SIT_I(sbi)->sentry_lock);
3304 
3305 	if (segno != curseg->segno)
3306 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3307 			    type, segno, curseg->segno);
3308 
3309 	mutex_unlock(&curseg->curseg_mutex);
3310 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3311 	return ret;
3312 }
3313 
3314 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3315 						bool new_sec, bool force)
3316 {
3317 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3318 	unsigned int old_segno;
3319 	int err = 0;
3320 
3321 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3322 		goto allocate;
3323 
3324 	if (!force && curseg->inited &&
3325 	    !curseg->next_blkoff &&
3326 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3327 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3328 		return 0;
3329 
3330 allocate:
3331 	old_segno = curseg->segno;
3332 	err = new_curseg(sbi, type, true);
3333 	if (err)
3334 		return err;
3335 	stat_inc_seg_type(sbi, curseg);
3336 	locate_dirty_segment(sbi, old_segno);
3337 	return 0;
3338 }
3339 
3340 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3341 {
3342 	int ret;
3343 
3344 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3345 	down_write(&SIT_I(sbi)->sentry_lock);
3346 	ret = __allocate_new_segment(sbi, type, true, force);
3347 	up_write(&SIT_I(sbi)->sentry_lock);
3348 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3349 
3350 	return ret;
3351 }
3352 
3353 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3354 {
3355 	struct f2fs_lock_context lc;
3356 	int err;
3357 	bool gc_required = true;
3358 
3359 retry:
3360 	f2fs_lock_op(sbi, &lc);
3361 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3362 	f2fs_unlock_op(sbi, &lc);
3363 
3364 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3365 		f2fs_down_write_trace(&sbi->gc_lock, &lc);
3366 		err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3367 				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3368 		f2fs_up_write_trace(&sbi->gc_lock, &lc);
3369 
3370 		gc_required = false;
3371 		if (!err)
3372 			goto retry;
3373 	}
3374 
3375 	return err;
3376 }
3377 
3378 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3379 {
3380 	int i;
3381 	int err = 0;
3382 
3383 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3384 	down_write(&SIT_I(sbi)->sentry_lock);
3385 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3386 		err += __allocate_new_segment(sbi, i, false, false);
3387 	up_write(&SIT_I(sbi)->sentry_lock);
3388 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3389 
3390 	return err;
3391 }
3392 
3393 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3394 						struct cp_control *cpc)
3395 {
3396 	__u64 trim_start = cpc->trim_start;
3397 	bool has_candidate = false;
3398 
3399 	down_write(&SIT_I(sbi)->sentry_lock);
3400 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3401 		if (add_discard_addrs(sbi, cpc, true)) {
3402 			has_candidate = true;
3403 			break;
3404 		}
3405 	}
3406 	up_write(&SIT_I(sbi)->sentry_lock);
3407 
3408 	cpc->trim_start = trim_start;
3409 	return has_candidate;
3410 }
3411 
3412 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3413 					struct discard_policy *dpolicy,
3414 					unsigned int start, unsigned int end)
3415 {
3416 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3417 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3418 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3419 	struct discard_cmd *dc;
3420 	struct blk_plug plug;
3421 	int issued;
3422 	unsigned int trimmed = 0;
3423 
3424 next:
3425 	issued = 0;
3426 
3427 	mutex_lock(&dcc->cmd_lock);
3428 	if (unlikely(dcc->rbtree_check))
3429 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3430 
3431 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3432 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3433 	if (!dc)
3434 		dc = next_dc;
3435 
3436 	blk_start_plug(&plug);
3437 
3438 	while (dc && dc->di.lstart <= end) {
3439 		struct rb_node *node;
3440 		int err = 0;
3441 
3442 		if (dc->di.len < dpolicy->granularity)
3443 			goto skip;
3444 
3445 		if (dc->state != D_PREP) {
3446 			list_move_tail(&dc->list, &dcc->fstrim_list);
3447 			goto skip;
3448 		}
3449 
3450 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3451 
3452 		if (issued >= dpolicy->max_requests) {
3453 			start = dc->di.lstart + dc->di.len;
3454 
3455 			if (err)
3456 				__remove_discard_cmd(sbi, dc);
3457 
3458 			blk_finish_plug(&plug);
3459 			mutex_unlock(&dcc->cmd_lock);
3460 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3461 			f2fs_schedule_timeout(DEFAULT_DISCARD_INTERVAL);
3462 			goto next;
3463 		}
3464 skip:
3465 		node = rb_next(&dc->rb_node);
3466 		if (err)
3467 			__remove_discard_cmd(sbi, dc);
3468 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3469 
3470 		if (fatal_signal_pending(current))
3471 			break;
3472 	}
3473 
3474 	blk_finish_plug(&plug);
3475 	mutex_unlock(&dcc->cmd_lock);
3476 
3477 	return trimmed;
3478 }
3479 
3480 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3481 {
3482 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3483 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3484 	unsigned int start_segno, end_segno;
3485 	block_t start_block, end_block;
3486 	struct cp_control cpc;
3487 	struct discard_policy dpolicy;
3488 	struct f2fs_lock_context lc;
3489 	unsigned long long trimmed = 0;
3490 	int err = 0;
3491 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3492 
3493 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3494 		return -EINVAL;
3495 
3496 	if (end < MAIN_BLKADDR(sbi))
3497 		goto out;
3498 
3499 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3500 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3501 		return -EFSCORRUPTED;
3502 	}
3503 
3504 	/* start/end segment number in main_area */
3505 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3506 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3507 						GET_SEGNO(sbi, end);
3508 	if (need_align) {
3509 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3510 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3511 	}
3512 
3513 	cpc.reason = CP_DISCARD;
3514 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3515 	cpc.trim_start = start_segno;
3516 	cpc.trim_end = end_segno;
3517 
3518 	if (sbi->discard_blks == 0)
3519 		goto out;
3520 
3521 	f2fs_down_write_trace(&sbi->gc_lock, &lc);
3522 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3523 	err = f2fs_write_checkpoint(sbi, &cpc);
3524 	f2fs_up_write_trace(&sbi->gc_lock, &lc);
3525 	if (err)
3526 		goto out;
3527 
3528 	/*
3529 	 * We filed discard candidates, but actually we don't need to wait for
3530 	 * all of them, since they'll be issued in idle time along with runtime
3531 	 * discard option. User configuration looks like using runtime discard
3532 	 * or periodic fstrim instead of it.
3533 	 */
3534 	if (f2fs_realtime_discard_enable(sbi))
3535 		goto out;
3536 
3537 	start_block = START_BLOCK(sbi, start_segno);
3538 	end_block = START_BLOCK(sbi, end_segno + 1);
3539 
3540 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3541 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3542 					start_block, end_block);
3543 
3544 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3545 					start_block, end_block);
3546 out:
3547 	if (!err)
3548 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3549 	return err;
3550 }
3551 
3552 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3553 {
3554 	if (F2FS_OPTION(sbi).active_logs == 2)
3555 		return CURSEG_HOT_DATA;
3556 	else if (F2FS_OPTION(sbi).active_logs == 4)
3557 		return CURSEG_COLD_DATA;
3558 
3559 	/* active_log == 6 */
3560 	switch (hint) {
3561 	case WRITE_LIFE_SHORT:
3562 		return CURSEG_HOT_DATA;
3563 	case WRITE_LIFE_EXTREME:
3564 		return CURSEG_COLD_DATA;
3565 	default:
3566 		return CURSEG_WARM_DATA;
3567 	}
3568 }
3569 
3570 /*
3571  * This returns write hints for each segment type. This hints will be
3572  * passed down to block layer as below by default.
3573  *
3574  * User                  F2FS                     Block
3575  * ----                  ----                     -----
3576  *                       META                     WRITE_LIFE_NONE|REQ_META
3577  *                       HOT_NODE                 WRITE_LIFE_NONE
3578  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3579  *                       COLD_NODE                WRITE_LIFE_LONG
3580  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3581  * extension list        "                        "
3582  *
3583  * -- buffered io
3584  *                       COLD_DATA                WRITE_LIFE_EXTREME
3585  *                       HOT_DATA                 WRITE_LIFE_SHORT
3586  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3587  *
3588  * -- direct io
3589  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3590  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3591  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3592  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3593  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3594  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3595  */
3596 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3597 				enum page_type type, enum temp_type temp)
3598 {
3599 	switch (type) {
3600 	case DATA:
3601 		switch (temp) {
3602 		case WARM:
3603 			return WRITE_LIFE_NOT_SET;
3604 		case HOT:
3605 			return WRITE_LIFE_SHORT;
3606 		case COLD:
3607 			return WRITE_LIFE_EXTREME;
3608 		default:
3609 			return WRITE_LIFE_NONE;
3610 		}
3611 	case NODE:
3612 		switch (temp) {
3613 		case WARM:
3614 			return WRITE_LIFE_MEDIUM;
3615 		case HOT:
3616 			return WRITE_LIFE_NONE;
3617 		case COLD:
3618 			return WRITE_LIFE_LONG;
3619 		default:
3620 			return WRITE_LIFE_NONE;
3621 		}
3622 	case META:
3623 		return WRITE_LIFE_NONE;
3624 	default:
3625 		return WRITE_LIFE_NONE;
3626 	}
3627 }
3628 
3629 static int __get_segment_type_2(struct f2fs_io_info *fio)
3630 {
3631 	if (fio->type == DATA)
3632 		return CURSEG_HOT_DATA;
3633 	else
3634 		return CURSEG_HOT_NODE;
3635 }
3636 
3637 static int __get_segment_type_4(struct f2fs_io_info *fio)
3638 {
3639 	if (fio->type == DATA) {
3640 		struct inode *inode = fio_inode(fio);
3641 
3642 		if (S_ISDIR(inode->i_mode))
3643 			return CURSEG_HOT_DATA;
3644 		else
3645 			return CURSEG_COLD_DATA;
3646 	} else {
3647 		if (IS_DNODE(fio->folio) && is_cold_node(fio->folio))
3648 			return CURSEG_WARM_NODE;
3649 		else
3650 			return CURSEG_COLD_NODE;
3651 	}
3652 }
3653 
3654 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3655 {
3656 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3657 	struct extent_info ei = {};
3658 
3659 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3660 		if (!ei.age)
3661 			return NO_CHECK_TYPE;
3662 		if (ei.age <= sbi->hot_data_age_threshold)
3663 			return CURSEG_HOT_DATA;
3664 		if (ei.age <= sbi->warm_data_age_threshold)
3665 			return CURSEG_WARM_DATA;
3666 		return CURSEG_COLD_DATA;
3667 	}
3668 	return NO_CHECK_TYPE;
3669 }
3670 
3671 static int __get_segment_type_6(struct f2fs_io_info *fio)
3672 {
3673 	if (fio->type == DATA) {
3674 		struct inode *inode = fio_inode(fio);
3675 		int type;
3676 
3677 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3678 			return CURSEG_COLD_DATA_PINNED;
3679 
3680 		if (page_private_gcing(fio->page)) {
3681 			if (fio->sbi->am.atgc_enabled &&
3682 				(fio->io_type == FS_DATA_IO) &&
3683 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3684 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3685 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3686 				return CURSEG_ALL_DATA_ATGC;
3687 			else
3688 				return CURSEG_COLD_DATA;
3689 		}
3690 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3691 			return CURSEG_COLD_DATA;
3692 
3693 		type = __get_age_segment_type(inode, fio->folio->index);
3694 		if (type != NO_CHECK_TYPE)
3695 			return type;
3696 
3697 		if (file_is_hot(inode) ||
3698 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3699 				f2fs_is_cow_file(inode) ||
3700 				is_inode_flag_set(inode, FI_NEED_IPU))
3701 			return CURSEG_HOT_DATA;
3702 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3703 						inode->i_write_hint);
3704 	} else {
3705 		if (IS_DNODE(fio->folio))
3706 			return is_cold_node(fio->folio) ? CURSEG_WARM_NODE :
3707 						CURSEG_HOT_NODE;
3708 		return CURSEG_COLD_NODE;
3709 	}
3710 }
3711 
3712 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3713 						enum log_type type)
3714 {
3715 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3716 	enum temp_type temp = COLD;
3717 
3718 	switch (curseg->seg_type) {
3719 	case CURSEG_HOT_NODE:
3720 	case CURSEG_HOT_DATA:
3721 		temp = HOT;
3722 		break;
3723 	case CURSEG_WARM_NODE:
3724 	case CURSEG_WARM_DATA:
3725 		temp = WARM;
3726 		break;
3727 	case CURSEG_COLD_NODE:
3728 	case CURSEG_COLD_DATA:
3729 		temp = COLD;
3730 		break;
3731 	default:
3732 		f2fs_bug_on(sbi, 1);
3733 	}
3734 
3735 	return temp;
3736 }
3737 
3738 static int __get_segment_type(struct f2fs_io_info *fio)
3739 {
3740 	enum log_type type = CURSEG_HOT_DATA;
3741 
3742 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3743 	case 2:
3744 		type = __get_segment_type_2(fio);
3745 		break;
3746 	case 4:
3747 		type = __get_segment_type_4(fio);
3748 		break;
3749 	case 6:
3750 		type = __get_segment_type_6(fio);
3751 		break;
3752 	default:
3753 		f2fs_bug_on(fio->sbi, true);
3754 	}
3755 
3756 	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3757 
3758 	return type;
3759 }
3760 
3761 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3762 		struct curseg_info *seg)
3763 {
3764 	/* To allocate block chunks in different sizes, use random number */
3765 	if (--seg->fragment_remained_chunk > 0)
3766 		return;
3767 
3768 	seg->fragment_remained_chunk =
3769 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3770 	seg->next_blkoff +=
3771 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3772 }
3773 
3774 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3775 		block_t old_blkaddr, block_t *new_blkaddr,
3776 		struct f2fs_summary *sum, int type,
3777 		struct f2fs_io_info *fio)
3778 {
3779 	struct sit_info *sit_i = SIT_I(sbi);
3780 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3781 	unsigned long long old_mtime;
3782 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3783 	struct seg_entry *se = NULL;
3784 	bool segment_full = false;
3785 	int ret = 0;
3786 
3787 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3788 
3789 	mutex_lock(&curseg->curseg_mutex);
3790 	down_write(&sit_i->sentry_lock);
3791 
3792 	if (curseg->segno == NULL_SEGNO) {
3793 		ret = -ENOSPC;
3794 		goto out_err;
3795 	}
3796 
3797 	if (from_gc) {
3798 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3799 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3800 		sanity_check_seg_type(sbi, se->type);
3801 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3802 	}
3803 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3804 
3805 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3806 
3807 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3808 
3809 	sum_entries(curseg->sum_blk)[curseg->next_blkoff] = *sum;
3810 	if (curseg->alloc_type == SSR) {
3811 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3812 	} else {
3813 		curseg->next_blkoff++;
3814 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3815 			f2fs_randomize_chunk(sbi, curseg);
3816 	}
3817 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3818 		segment_full = true;
3819 	stat_inc_block_count(sbi, curseg);
3820 
3821 	if (from_gc) {
3822 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3823 	} else {
3824 		update_segment_mtime(sbi, old_blkaddr, 0);
3825 		old_mtime = 0;
3826 	}
3827 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3828 
3829 	/*
3830 	 * SIT information should be updated before segment allocation,
3831 	 * since SSR needs latest valid block information.
3832 	 */
3833 	update_sit_entry(sbi, *new_blkaddr, 1);
3834 	update_sit_entry(sbi, old_blkaddr, -1);
3835 
3836 	/*
3837 	 * If the current segment is full, flush it out and replace it with a
3838 	 * new segment.
3839 	 */
3840 	if (segment_full) {
3841 		if (type == CURSEG_COLD_DATA_PINNED &&
3842 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3843 			write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3844 			reset_curseg_fields(curseg);
3845 			goto skip_new_segment;
3846 		}
3847 
3848 		if (from_gc) {
3849 			ret = get_atssr_segment(sbi, type, se->type,
3850 						AT_SSR, se->mtime);
3851 		} else {
3852 			if (need_new_seg(sbi, type))
3853 				ret = new_curseg(sbi, type, false);
3854 			else
3855 				ret = change_curseg(sbi, type);
3856 			stat_inc_seg_type(sbi, curseg);
3857 		}
3858 
3859 		if (ret)
3860 			goto out_err;
3861 	}
3862 
3863 skip_new_segment:
3864 	/*
3865 	 * segment dirty status should be updated after segment allocation,
3866 	 * so we just need to update status only one time after previous
3867 	 * segment being closed.
3868 	 */
3869 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3870 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3871 
3872 	if (IS_DATASEG(curseg->seg_type)) {
3873 		unsigned long long new_val;
3874 
3875 		new_val = atomic64_inc_return(&sbi->allocated_data_blocks);
3876 		if (unlikely(new_val == ULLONG_MAX))
3877 			atomic64_set(&sbi->allocated_data_blocks, 0);
3878 	}
3879 
3880 	up_write(&sit_i->sentry_lock);
3881 
3882 	if (folio && IS_NODESEG(curseg->seg_type)) {
3883 		fill_node_footer_blkaddr(folio, NEXT_FREE_BLKADDR(sbi, curseg));
3884 
3885 		f2fs_inode_chksum_set(sbi, folio);
3886 	}
3887 
3888 	if (fio) {
3889 		struct f2fs_bio_info *io;
3890 
3891 		INIT_LIST_HEAD(&fio->list);
3892 		fio->in_list = 1;
3893 		io = sbi->write_io[fio->type] + fio->temp;
3894 		spin_lock(&io->io_lock);
3895 		list_add_tail(&fio->list, &io->io_list);
3896 		spin_unlock(&io->io_lock);
3897 	}
3898 
3899 	mutex_unlock(&curseg->curseg_mutex);
3900 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3901 	return 0;
3902 
3903 out_err:
3904 	*new_blkaddr = NULL_ADDR;
3905 	up_write(&sit_i->sentry_lock);
3906 	mutex_unlock(&curseg->curseg_mutex);
3907 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3908 	return ret;
3909 }
3910 
3911 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3912 					block_t blkaddr, unsigned int blkcnt)
3913 {
3914 	if (!f2fs_is_multi_device(sbi))
3915 		return;
3916 
3917 	while (1) {
3918 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3919 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3920 
3921 		/* update device state for fsync */
3922 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3923 
3924 		/* update device state for checkpoint */
3925 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3926 			spin_lock(&sbi->dev_lock);
3927 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3928 			spin_unlock(&sbi->dev_lock);
3929 		}
3930 
3931 		if (blkcnt <= blks)
3932 			break;
3933 		blkcnt -= blks;
3934 		blkaddr += blks;
3935 	}
3936 }
3937 
3938 static int log_type_to_seg_type(enum log_type type)
3939 {
3940 	int seg_type = CURSEG_COLD_DATA;
3941 
3942 	switch (type) {
3943 	case CURSEG_HOT_DATA:
3944 	case CURSEG_WARM_DATA:
3945 	case CURSEG_COLD_DATA:
3946 	case CURSEG_HOT_NODE:
3947 	case CURSEG_WARM_NODE:
3948 	case CURSEG_COLD_NODE:
3949 		seg_type = (int)type;
3950 		break;
3951 	case CURSEG_COLD_DATA_PINNED:
3952 	case CURSEG_ALL_DATA_ATGC:
3953 		seg_type = CURSEG_COLD_DATA;
3954 		break;
3955 	default:
3956 		break;
3957 	}
3958 	return seg_type;
3959 }
3960 
3961 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3962 {
3963 	struct folio *folio = fio->folio;
3964 	enum log_type type = __get_segment_type(fio);
3965 	int seg_type = log_type_to_seg_type(type);
3966 	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3967 				seg_type == CURSEG_COLD_DATA);
3968 	int err;
3969 
3970 	if (keep_order)
3971 		f2fs_down_read(&fio->sbi->io_order_lock);
3972 
3973 	err = f2fs_allocate_data_block(fio->sbi, folio, fio->old_blkaddr,
3974 			&fio->new_blkaddr, sum, type, fio);
3975 	if (unlikely(err)) {
3976 		f2fs_err_ratelimited(fio->sbi,
3977 			"%s Failed to allocate data block, ino:%u, index:%lu, type:%d, old_blkaddr:0x%x, new_blkaddr:0x%x, err:%d",
3978 			__func__, fio->ino, folio->index, type,
3979 			fio->old_blkaddr, fio->new_blkaddr, err);
3980 		if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3981 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3982 		folio_end_writeback(folio);
3983 		if (f2fs_in_warm_node_list(fio->sbi, folio))
3984 			f2fs_del_fsync_node_entry(fio->sbi, folio);
3985 		f2fs_bug_on(fio->sbi, !is_set_ckpt_flags(fio->sbi,
3986 							CP_ERROR_FLAG));
3987 		goto out;
3988 	}
3989 
3990 	f2fs_bug_on(fio->sbi, !f2fs_is_valid_blkaddr_raw(fio->sbi,
3991 				fio->new_blkaddr, DATA_GENERIC_ENHANCE));
3992 
3993 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3994 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3995 
3996 	/* writeout dirty page into bdev */
3997 	f2fs_submit_page_write(fio);
3998 
3999 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
4000 out:
4001 	if (keep_order)
4002 		f2fs_up_read(&fio->sbi->io_order_lock);
4003 }
4004 
4005 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
4006 					enum iostat_type io_type)
4007 {
4008 	struct f2fs_io_info fio = {
4009 		.sbi = sbi,
4010 		.type = META,
4011 		.temp = HOT,
4012 		.op = REQ_OP_WRITE,
4013 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
4014 		.old_blkaddr = folio->index,
4015 		.new_blkaddr = folio->index,
4016 		.folio = folio,
4017 		.encrypted_page = NULL,
4018 		.in_list = 0,
4019 	};
4020 
4021 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
4022 		fio.op_flags &= ~REQ_META;
4023 
4024 	folio_start_writeback(folio);
4025 	f2fs_submit_page_write(&fio);
4026 
4027 	stat_inc_meta_count(sbi, folio->index);
4028 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
4029 }
4030 
4031 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
4032 {
4033 	struct f2fs_summary sum;
4034 
4035 	set_summary(&sum, nid, 0, 0);
4036 	do_write_page(&sum, fio);
4037 
4038 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
4039 }
4040 
4041 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4042 					struct f2fs_io_info *fio)
4043 {
4044 	struct f2fs_sb_info *sbi = fio->sbi;
4045 	struct f2fs_summary sum;
4046 
4047 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4048 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4049 		f2fs_update_age_extent_cache(dn);
4050 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4051 	do_write_page(&sum, fio);
4052 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4053 
4054 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4055 }
4056 
4057 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4058 {
4059 	int err;
4060 	struct f2fs_sb_info *sbi = fio->sbi;
4061 	unsigned int segno;
4062 
4063 	fio->new_blkaddr = fio->old_blkaddr;
4064 	/* i/o temperature is needed for passing down write hints */
4065 	__get_segment_type(fio);
4066 
4067 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
4068 
4069 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4070 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4071 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4072 			  __func__, segno);
4073 		err = -EFSCORRUPTED;
4074 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4075 		goto drop_bio;
4076 	}
4077 
4078 	if (f2fs_cp_error(sbi)) {
4079 		err = -EIO;
4080 		goto drop_bio;
4081 	}
4082 
4083 	if (fio->meta_gc)
4084 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4085 
4086 	stat_inc_inplace_blocks(fio->sbi);
4087 
4088 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4089 		err = f2fs_merge_page_bio(fio);
4090 	else
4091 		err = f2fs_submit_page_bio(fio);
4092 	if (!err) {
4093 		f2fs_update_device_state(fio->sbi, fio->ino,
4094 						fio->new_blkaddr, 1);
4095 		f2fs_update_iostat(fio->sbi, fio_inode(fio),
4096 						fio->io_type, F2FS_BLKSIZE);
4097 	}
4098 
4099 	return err;
4100 drop_bio:
4101 	if (fio->bio && *(fio->bio)) {
4102 		struct bio *bio = *(fio->bio);
4103 
4104 		bio->bi_status = BLK_STS_IOERR;
4105 		bio_endio(bio);
4106 		*(fio->bio) = NULL;
4107 	}
4108 	return err;
4109 }
4110 
4111 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4112 						unsigned int segno)
4113 {
4114 	int i;
4115 
4116 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4117 		if (CURSEG_I(sbi, i)->segno == segno)
4118 			break;
4119 	}
4120 	return i;
4121 }
4122 
4123 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4124 				block_t old_blkaddr, block_t new_blkaddr,
4125 				bool recover_curseg, bool recover_newaddr,
4126 				bool from_gc)
4127 {
4128 	struct sit_info *sit_i = SIT_I(sbi);
4129 	struct curseg_info *curseg;
4130 	unsigned int segno, old_cursegno;
4131 	struct seg_entry *se;
4132 	int type;
4133 	unsigned short old_blkoff;
4134 	unsigned char old_alloc_type;
4135 
4136 	segno = GET_SEGNO(sbi, new_blkaddr);
4137 	se = get_seg_entry(sbi, segno);
4138 	type = se->type;
4139 
4140 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4141 
4142 	if (!recover_curseg) {
4143 		/* for recovery flow */
4144 		if (se->valid_blocks == 0 && !is_curseg(sbi, segno)) {
4145 			if (old_blkaddr == NULL_ADDR)
4146 				type = CURSEG_COLD_DATA;
4147 			else
4148 				type = CURSEG_WARM_DATA;
4149 		}
4150 	} else {
4151 		if (is_curseg(sbi, segno)) {
4152 			/* se->type is volatile as SSR allocation */
4153 			type = __f2fs_get_curseg(sbi, segno);
4154 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4155 		} else {
4156 			type = CURSEG_WARM_DATA;
4157 		}
4158 	}
4159 
4160 	curseg = CURSEG_I(sbi, type);
4161 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4162 
4163 	mutex_lock(&curseg->curseg_mutex);
4164 	down_write(&sit_i->sentry_lock);
4165 
4166 	old_cursegno = curseg->segno;
4167 	old_blkoff = curseg->next_blkoff;
4168 	old_alloc_type = curseg->alloc_type;
4169 
4170 	/* change the current segment */
4171 	if (segno != curseg->segno) {
4172 		curseg->next_segno = segno;
4173 		if (change_curseg(sbi, type))
4174 			goto out_unlock;
4175 	}
4176 
4177 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4178 	sum_entries(curseg->sum_blk)[curseg->next_blkoff] = *sum;
4179 
4180 	if (!recover_curseg || recover_newaddr) {
4181 		if (!from_gc)
4182 			update_segment_mtime(sbi, new_blkaddr, 0);
4183 		update_sit_entry(sbi, new_blkaddr, 1);
4184 	}
4185 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4186 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4187 		if (!from_gc)
4188 			update_segment_mtime(sbi, old_blkaddr, 0);
4189 		update_sit_entry(sbi, old_blkaddr, -1);
4190 	}
4191 
4192 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4193 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4194 
4195 	locate_dirty_segment(sbi, old_cursegno);
4196 
4197 	if (recover_curseg) {
4198 		if (old_cursegno != curseg->segno) {
4199 			curseg->next_segno = old_cursegno;
4200 			if (change_curseg(sbi, type))
4201 				goto out_unlock;
4202 		}
4203 		curseg->next_blkoff = old_blkoff;
4204 		curseg->alloc_type = old_alloc_type;
4205 	}
4206 
4207 out_unlock:
4208 	up_write(&sit_i->sentry_lock);
4209 	mutex_unlock(&curseg->curseg_mutex);
4210 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4211 }
4212 
4213 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4214 				block_t old_addr, block_t new_addr,
4215 				unsigned char version, bool recover_curseg,
4216 				bool recover_newaddr)
4217 {
4218 	struct f2fs_summary sum;
4219 
4220 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4221 
4222 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4223 					recover_curseg, recover_newaddr, false);
4224 
4225 	f2fs_update_data_blkaddr(dn, new_addr);
4226 }
4227 
4228 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4229 		bool ordered, bool locked)
4230 {
4231 	if (folio_test_writeback(folio)) {
4232 		struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4233 
4234 		/* submit cached LFS IO */
4235 		f2fs_submit_merged_write_folio(sbi, folio, type);
4236 		/* submit cached IPU IO */
4237 		f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4238 		if (ordered) {
4239 			folio_wait_writeback(folio);
4240 			f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4241 		} else {
4242 			folio_wait_stable(folio);
4243 		}
4244 	}
4245 }
4246 
4247 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4248 {
4249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4250 	struct folio *cfolio;
4251 
4252 	if (!f2fs_meta_inode_gc_required(inode))
4253 		return;
4254 
4255 	if (!__is_valid_data_blkaddr(blkaddr))
4256 		return;
4257 
4258 	cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4259 	if (!IS_ERR(cfolio)) {
4260 		f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4261 		f2fs_folio_put(cfolio, true);
4262 	}
4263 }
4264 
4265 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4266 								block_t len)
4267 {
4268 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4269 	block_t i;
4270 
4271 	if (!f2fs_meta_inode_gc_required(inode))
4272 		return;
4273 
4274 	for (i = 0; i < len; i++)
4275 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4276 
4277 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4278 }
4279 
4280 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4281 {
4282 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4283 	struct curseg_info *seg_i;
4284 	unsigned char *kaddr;
4285 	struct folio *folio;
4286 	block_t start;
4287 	int i, j, offset;
4288 
4289 	start = start_sum_block(sbi);
4290 
4291 	folio = f2fs_get_meta_folio(sbi, start++);
4292 	if (IS_ERR(folio))
4293 		return PTR_ERR(folio);
4294 	kaddr = folio_address(folio);
4295 
4296 	/* Step 1: restore nat cache */
4297 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4298 	memcpy(seg_i->journal, kaddr, sbi->sum_journal_size);
4299 
4300 	/* Step 2: restore sit cache */
4301 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4302 	memcpy(seg_i->journal, kaddr + sbi->sum_journal_size, sbi->sum_journal_size);
4303 	offset = 2 * sbi->sum_journal_size;
4304 
4305 	/* Step 3: restore summary entries */
4306 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4307 		unsigned short blk_off;
4308 		unsigned int segno;
4309 
4310 		seg_i = CURSEG_I(sbi, i);
4311 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4312 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4313 		seg_i->next_segno = segno;
4314 		reset_curseg(sbi, i, 0);
4315 		seg_i->alloc_type = ckpt->alloc_type[i];
4316 		seg_i->next_blkoff = blk_off;
4317 
4318 		if (seg_i->alloc_type == SSR)
4319 			blk_off = BLKS_PER_SEG(sbi);
4320 
4321 		for (j = 0; j < blk_off; j++) {
4322 			struct f2fs_summary *s;
4323 
4324 			s = (struct f2fs_summary *)(kaddr + offset);
4325 			sum_entries(seg_i->sum_blk)[j] = *s;
4326 			offset += SUMMARY_SIZE;
4327 			if (offset + SUMMARY_SIZE <= sbi->blocksize -
4328 						SUM_FOOTER_SIZE)
4329 				continue;
4330 
4331 			f2fs_folio_put(folio, true);
4332 
4333 			folio = f2fs_get_meta_folio(sbi, start++);
4334 			if (IS_ERR(folio))
4335 				return PTR_ERR(folio);
4336 			kaddr = folio_address(folio);
4337 			offset = 0;
4338 		}
4339 	}
4340 	f2fs_folio_put(folio, true);
4341 	return 0;
4342 }
4343 
4344 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4345 {
4346 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4347 	struct f2fs_summary_block *sum;
4348 	struct curseg_info *curseg;
4349 	struct folio *new;
4350 	unsigned short blk_off;
4351 	unsigned int segno = 0;
4352 	block_t blk_addr = 0;
4353 	int err = 0;
4354 
4355 	/* get segment number and block addr */
4356 	if (IS_DATASEG(type)) {
4357 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4358 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4359 							CURSEG_HOT_DATA]);
4360 		if (__exist_node_summaries(sbi))
4361 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4362 		else
4363 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4364 	} else {
4365 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4366 							CURSEG_HOT_NODE]);
4367 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4368 							CURSEG_HOT_NODE]);
4369 		if (__exist_node_summaries(sbi))
4370 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4371 							type - CURSEG_HOT_NODE);
4372 		else
4373 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4374 	}
4375 
4376 	new = f2fs_get_meta_folio(sbi, blk_addr);
4377 	if (IS_ERR(new))
4378 		return PTR_ERR(new);
4379 	sum = folio_address(new);
4380 
4381 	if (IS_NODESEG(type)) {
4382 		if (__exist_node_summaries(sbi)) {
4383 			struct f2fs_summary *ns = sum_entries(sum);
4384 			int i;
4385 
4386 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4387 				ns->version = 0;
4388 				ns->ofs_in_node = 0;
4389 			}
4390 		} else {
4391 			err = f2fs_restore_node_summary(sbi, segno, sum);
4392 			if (err)
4393 				goto out;
4394 		}
4395 	}
4396 
4397 	/* set uncompleted segment to curseg */
4398 	curseg = CURSEG_I(sbi, type);
4399 	mutex_lock(&curseg->curseg_mutex);
4400 
4401 	/* update journal info */
4402 	down_write(&curseg->journal_rwsem);
4403 	memcpy(curseg->journal, sum_journal(sbi, sum), sbi->sum_journal_size);
4404 	up_write(&curseg->journal_rwsem);
4405 
4406 	memcpy(sum_entries(curseg->sum_blk), sum_entries(sum),
4407 			sbi->sum_entry_size);
4408 	memcpy(sum_footer(sbi, curseg->sum_blk), sum_footer(sbi, sum),
4409 			SUM_FOOTER_SIZE);
4410 	curseg->next_segno = segno;
4411 	reset_curseg(sbi, type, 0);
4412 	curseg->alloc_type = ckpt->alloc_type[type];
4413 	curseg->next_blkoff = blk_off;
4414 	mutex_unlock(&curseg->curseg_mutex);
4415 out:
4416 	f2fs_folio_put(new, true);
4417 	return err;
4418 }
4419 
4420 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4421 {
4422 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4423 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4424 	int type = CURSEG_HOT_DATA;
4425 	int err;
4426 
4427 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4428 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4429 
4430 		if (npages >= 2)
4431 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4432 							META_CP, true);
4433 
4434 		/* restore for compacted data summary */
4435 		err = read_compacted_summaries(sbi);
4436 		if (err)
4437 			return err;
4438 		type = CURSEG_HOT_NODE;
4439 	}
4440 
4441 	if (__exist_node_summaries(sbi))
4442 		f2fs_ra_meta_pages(sbi,
4443 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4444 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4445 
4446 	for (; type <= CURSEG_COLD_NODE; type++) {
4447 		err = read_normal_summaries(sbi, type);
4448 		if (err)
4449 			return err;
4450 	}
4451 
4452 	/* sanity check for summary blocks */
4453 	if (nats_in_cursum(nat_j) > sbi->nat_journal_entries ||
4454 			sits_in_cursum(sit_j) > sbi->sit_journal_entries) {
4455 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4456 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4457 		return -EINVAL;
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4464 {
4465 	struct folio *folio;
4466 	unsigned char *kaddr;
4467 	struct f2fs_summary *summary;
4468 	struct curseg_info *seg_i;
4469 	int written_size = 0;
4470 	int i, j;
4471 
4472 	folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4473 	kaddr = folio_address(folio);
4474 	memset(kaddr, 0, PAGE_SIZE);
4475 
4476 	/* Step 1: write nat cache */
4477 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4478 	memcpy(kaddr, seg_i->journal, sbi->sum_journal_size);
4479 	written_size += sbi->sum_journal_size;
4480 
4481 	/* Step 2: write sit cache */
4482 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4483 	memcpy(kaddr + written_size, seg_i->journal, sbi->sum_journal_size);
4484 	written_size += sbi->sum_journal_size;
4485 
4486 	/* Step 3: write summary entries */
4487 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4488 		seg_i = CURSEG_I(sbi, i);
4489 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4490 			if (!folio) {
4491 				folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4492 				kaddr = folio_address(folio);
4493 				memset(kaddr, 0, PAGE_SIZE);
4494 				written_size = 0;
4495 			}
4496 			summary = (struct f2fs_summary *)(kaddr + written_size);
4497 			*summary = sum_entries(seg_i->sum_blk)[j];
4498 			written_size += SUMMARY_SIZE;
4499 
4500 			if (written_size + SUMMARY_SIZE <= sbi->blocksize -
4501 							SUM_FOOTER_SIZE)
4502 				continue;
4503 
4504 			folio_mark_dirty(folio);
4505 			f2fs_folio_put(folio, true);
4506 			folio = NULL;
4507 		}
4508 	}
4509 	if (folio) {
4510 		folio_mark_dirty(folio);
4511 		f2fs_folio_put(folio, true);
4512 	}
4513 }
4514 
4515 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4516 					block_t blkaddr, int type)
4517 {
4518 	int i, end;
4519 
4520 	if (IS_DATASEG(type))
4521 		end = type + NR_CURSEG_DATA_TYPE;
4522 	else
4523 		end = type + NR_CURSEG_NODE_TYPE;
4524 
4525 	for (i = type; i < end; i++)
4526 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4527 }
4528 
4529 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4530 {
4531 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4532 		write_compacted_summaries(sbi, start_blk);
4533 	else
4534 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4535 }
4536 
4537 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4538 {
4539 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4540 }
4541 
4542 int f2fs_lookup_journal_in_cursum(struct f2fs_sb_info *sbi,
4543 			struct f2fs_journal *journal, int type,
4544 			unsigned int val, int alloc)
4545 {
4546 	int i;
4547 
4548 	if (type == NAT_JOURNAL) {
4549 		for (i = 0; i < nats_in_cursum(journal); i++) {
4550 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4551 				return i;
4552 		}
4553 		if (alloc && __has_cursum_space(sbi, journal, 1, NAT_JOURNAL))
4554 			return update_nats_in_cursum(journal, 1);
4555 	} else if (type == SIT_JOURNAL) {
4556 		for (i = 0; i < sits_in_cursum(journal); i++)
4557 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4558 				return i;
4559 		if (alloc && __has_cursum_space(sbi, journal, 1, SIT_JOURNAL))
4560 			return update_sits_in_cursum(journal, 1);
4561 	}
4562 	return -1;
4563 }
4564 
4565 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4566 					unsigned int segno)
4567 {
4568 	return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4569 }
4570 
4571 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4572 					unsigned int start)
4573 {
4574 	struct sit_info *sit_i = SIT_I(sbi);
4575 	struct folio *folio;
4576 	pgoff_t src_off, dst_off;
4577 
4578 	src_off = current_sit_addr(sbi, start);
4579 	dst_off = next_sit_addr(sbi, src_off);
4580 
4581 	folio = f2fs_grab_meta_folio(sbi, dst_off);
4582 	seg_info_to_sit_folio(sbi, folio, start);
4583 
4584 	folio_mark_dirty(folio);
4585 	set_to_next_sit(sit_i, start);
4586 
4587 	return folio;
4588 }
4589 
4590 static struct sit_entry_set *grab_sit_entry_set(void)
4591 {
4592 	struct sit_entry_set *ses =
4593 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4594 						GFP_NOFS, true, NULL);
4595 
4596 	ses->entry_cnt = 0;
4597 	INIT_LIST_HEAD(&ses->set_list);
4598 	return ses;
4599 }
4600 
4601 static void release_sit_entry_set(struct sit_entry_set *ses)
4602 {
4603 	list_del(&ses->set_list);
4604 	kmem_cache_free(sit_entry_set_slab, ses);
4605 }
4606 
4607 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4608 						struct list_head *head)
4609 {
4610 	struct sit_entry_set *next = ses;
4611 
4612 	if (list_is_last(&ses->set_list, head))
4613 		return;
4614 
4615 	list_for_each_entry_continue(next, head, set_list)
4616 		if (ses->entry_cnt <= next->entry_cnt) {
4617 			list_move_tail(&ses->set_list, &next->set_list);
4618 			return;
4619 		}
4620 
4621 	list_move_tail(&ses->set_list, head);
4622 }
4623 
4624 static void add_sit_entry(unsigned int segno, struct list_head *head)
4625 {
4626 	struct sit_entry_set *ses;
4627 	unsigned int start_segno = START_SEGNO(segno);
4628 
4629 	list_for_each_entry(ses, head, set_list) {
4630 		if (ses->start_segno == start_segno) {
4631 			ses->entry_cnt++;
4632 			adjust_sit_entry_set(ses, head);
4633 			return;
4634 		}
4635 	}
4636 
4637 	ses = grab_sit_entry_set();
4638 
4639 	ses->start_segno = start_segno;
4640 	ses->entry_cnt++;
4641 	list_add(&ses->set_list, head);
4642 }
4643 
4644 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4645 {
4646 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4647 	struct list_head *set_list = &sm_info->sit_entry_set;
4648 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4649 	unsigned int segno;
4650 
4651 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4652 		add_sit_entry(segno, set_list);
4653 }
4654 
4655 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4656 {
4657 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4658 	struct f2fs_journal *journal = curseg->journal;
4659 	int i;
4660 
4661 	down_write(&curseg->journal_rwsem);
4662 	for (i = 0; i < sits_in_cursum(journal); i++) {
4663 		unsigned int segno;
4664 		bool dirtied;
4665 
4666 		segno = le32_to_cpu(segno_in_journal(journal, i));
4667 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4668 
4669 		if (!dirtied)
4670 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4671 	}
4672 	update_sits_in_cursum(journal, -i);
4673 	up_write(&curseg->journal_rwsem);
4674 }
4675 
4676 /*
4677  * CP calls this function, which flushes SIT entries including sit_journal,
4678  * and moves prefree segs to free segs.
4679  */
4680 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4681 {
4682 	struct sit_info *sit_i = SIT_I(sbi);
4683 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4684 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4685 	struct f2fs_journal *journal = curseg->journal;
4686 	struct sit_entry_set *ses, *tmp;
4687 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4688 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4689 	struct seg_entry *se;
4690 
4691 	down_write(&sit_i->sentry_lock);
4692 
4693 	if (!sit_i->dirty_sentries)
4694 		goto out;
4695 
4696 	/*
4697 	 * add and account sit entries of dirty bitmap in sit entry
4698 	 * set temporarily
4699 	 */
4700 	add_sits_in_set(sbi);
4701 
4702 	/*
4703 	 * if there are no enough space in journal to store dirty sit
4704 	 * entries, remove all entries from journal and add and account
4705 	 * them in sit entry set.
4706 	 */
4707 	if (!__has_cursum_space(sbi, journal,
4708 			sit_i->dirty_sentries, SIT_JOURNAL) || !to_journal)
4709 		remove_sits_in_journal(sbi);
4710 
4711 	/*
4712 	 * there are two steps to flush sit entries:
4713 	 * #1, flush sit entries to journal in current cold data summary block.
4714 	 * #2, flush sit entries to sit page.
4715 	 */
4716 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4717 		struct folio *folio = NULL;
4718 		struct f2fs_sit_block *raw_sit = NULL;
4719 		unsigned int start_segno = ses->start_segno;
4720 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4721 						(unsigned long)MAIN_SEGS(sbi));
4722 		unsigned int segno = start_segno;
4723 
4724 		if (to_journal &&
4725 			!__has_cursum_space(sbi, journal, ses->entry_cnt,
4726 				SIT_JOURNAL))
4727 			to_journal = false;
4728 
4729 		if (to_journal) {
4730 			down_write(&curseg->journal_rwsem);
4731 		} else {
4732 			folio = get_next_sit_folio(sbi, start_segno);
4733 			raw_sit = folio_address(folio);
4734 		}
4735 
4736 		/* flush dirty sit entries in region of current sit set */
4737 		for_each_set_bit_from(segno, bitmap, end) {
4738 			int offset, sit_offset;
4739 
4740 			se = get_seg_entry(sbi, segno);
4741 #ifdef CONFIG_F2FS_CHECK_FS
4742 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4743 						SIT_VBLOCK_MAP_SIZE))
4744 				f2fs_bug_on(sbi, 1);
4745 #endif
4746 
4747 			/* add discard candidates */
4748 			if (!(cpc->reason & CP_DISCARD)) {
4749 				cpc->trim_start = segno;
4750 				add_discard_addrs(sbi, cpc, false);
4751 			}
4752 
4753 			if (to_journal) {
4754 				offset = f2fs_lookup_journal_in_cursum(sbi, journal,
4755 							SIT_JOURNAL, segno, 1);
4756 				f2fs_bug_on(sbi, offset < 0);
4757 				segno_in_journal(journal, offset) =
4758 							cpu_to_le32(segno);
4759 				seg_info_to_raw_sit(se,
4760 					&sit_in_journal(journal, offset));
4761 				check_block_count(sbi, segno,
4762 					&sit_in_journal(journal, offset));
4763 			} else {
4764 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4765 				seg_info_to_raw_sit(se,
4766 						&raw_sit->entries[sit_offset]);
4767 				check_block_count(sbi, segno,
4768 						&raw_sit->entries[sit_offset]);
4769 			}
4770 
4771 			/* update ckpt_valid_block */
4772 			if (__is_large_section(sbi)) {
4773 				set_ckpt_valid_blocks(sbi, segno);
4774 				sanity_check_valid_blocks(sbi, segno);
4775 			}
4776 
4777 			__clear_bit(segno, bitmap);
4778 			sit_i->dirty_sentries--;
4779 			ses->entry_cnt--;
4780 		}
4781 
4782 		if (to_journal)
4783 			up_write(&curseg->journal_rwsem);
4784 		else
4785 			f2fs_folio_put(folio, true);
4786 
4787 		f2fs_bug_on(sbi, ses->entry_cnt);
4788 		release_sit_entry_set(ses);
4789 	}
4790 
4791 	f2fs_bug_on(sbi, !list_empty(head));
4792 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4793 out:
4794 	if (cpc->reason & CP_DISCARD) {
4795 		__u64 trim_start = cpc->trim_start;
4796 
4797 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4798 			add_discard_addrs(sbi, cpc, false);
4799 
4800 		cpc->trim_start = trim_start;
4801 	}
4802 	up_write(&sit_i->sentry_lock);
4803 
4804 	set_prefree_as_free_segments(sbi);
4805 }
4806 
4807 static int build_sit_info(struct f2fs_sb_info *sbi)
4808 {
4809 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4810 	struct sit_info *sit_i;
4811 	unsigned int sit_segs, start;
4812 	char *src_bitmap, *bitmap;
4813 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4814 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4815 
4816 	/* allocate memory for SIT information */
4817 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4818 	if (!sit_i)
4819 		return -ENOMEM;
4820 
4821 	SM_I(sbi)->sit_info = sit_i;
4822 
4823 	sit_i->sentries =
4824 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4825 					      MAIN_SEGS(sbi)),
4826 			      GFP_KERNEL);
4827 	if (!sit_i->sentries)
4828 		return -ENOMEM;
4829 
4830 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4831 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4832 								GFP_KERNEL);
4833 	if (!sit_i->dirty_sentries_bitmap)
4834 		return -ENOMEM;
4835 
4836 #ifdef CONFIG_F2FS_CHECK_FS
4837 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4838 #else
4839 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4840 #endif
4841 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4842 	if (!sit_i->bitmap)
4843 		return -ENOMEM;
4844 
4845 	bitmap = sit_i->bitmap;
4846 
4847 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4848 		sit_i->sentries[start].cur_valid_map = bitmap;
4849 		bitmap += SIT_VBLOCK_MAP_SIZE;
4850 
4851 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4852 		bitmap += SIT_VBLOCK_MAP_SIZE;
4853 
4854 #ifdef CONFIG_F2FS_CHECK_FS
4855 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4856 		bitmap += SIT_VBLOCK_MAP_SIZE;
4857 #endif
4858 
4859 		if (discard_map) {
4860 			sit_i->sentries[start].discard_map = bitmap;
4861 			bitmap += SIT_VBLOCK_MAP_SIZE;
4862 		}
4863 	}
4864 
4865 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4866 	if (!sit_i->tmp_map)
4867 		return -ENOMEM;
4868 
4869 	if (__is_large_section(sbi)) {
4870 		sit_i->sec_entries =
4871 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4872 						      MAIN_SECS(sbi)),
4873 				      GFP_KERNEL);
4874 		if (!sit_i->sec_entries)
4875 			return -ENOMEM;
4876 	}
4877 
4878 	/* get information related with SIT */
4879 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4880 
4881 	/* setup SIT bitmap from ckeckpoint pack */
4882 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4883 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4884 
4885 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4886 	if (!sit_i->sit_bitmap)
4887 		return -ENOMEM;
4888 
4889 #ifdef CONFIG_F2FS_CHECK_FS
4890 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4891 					sit_bitmap_size, GFP_KERNEL);
4892 	if (!sit_i->sit_bitmap_mir)
4893 		return -ENOMEM;
4894 
4895 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4896 					main_bitmap_size, GFP_KERNEL);
4897 	if (!sit_i->invalid_segmap)
4898 		return -ENOMEM;
4899 #endif
4900 
4901 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4902 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4903 	sit_i->written_valid_blocks = 0;
4904 	sit_i->bitmap_size = sit_bitmap_size;
4905 	sit_i->dirty_sentries = 0;
4906 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4907 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4908 	sit_i->mounted_time = ktime_get_boottime_seconds();
4909 	init_rwsem(&sit_i->sentry_lock);
4910 	return 0;
4911 }
4912 
4913 static int build_free_segmap(struct f2fs_sb_info *sbi)
4914 {
4915 	struct free_segmap_info *free_i;
4916 	unsigned int bitmap_size, sec_bitmap_size;
4917 
4918 	/* allocate memory for free segmap information */
4919 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4920 	if (!free_i)
4921 		return -ENOMEM;
4922 
4923 	SM_I(sbi)->free_info = free_i;
4924 
4925 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4926 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4927 	if (!free_i->free_segmap)
4928 		return -ENOMEM;
4929 
4930 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4931 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4932 	if (!free_i->free_secmap)
4933 		return -ENOMEM;
4934 
4935 	/* set all segments as dirty temporarily */
4936 	memset(free_i->free_segmap, 0xff, bitmap_size);
4937 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4938 
4939 	/* init free segmap information */
4940 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4941 	free_i->free_segments = 0;
4942 	free_i->free_sections = 0;
4943 	spin_lock_init(&free_i->segmap_lock);
4944 	return 0;
4945 }
4946 
4947 static int build_curseg(struct f2fs_sb_info *sbi)
4948 {
4949 	struct curseg_info *array;
4950 	int i;
4951 
4952 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4953 					sizeof(*array)), GFP_KERNEL);
4954 	if (!array)
4955 		return -ENOMEM;
4956 
4957 	SM_I(sbi)->curseg_array = array;
4958 
4959 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4960 		mutex_init(&array[i].curseg_mutex);
4961 		array[i].sum_blk = f2fs_kzalloc(sbi, sbi->sum_blocksize,
4962 				GFP_KERNEL);
4963 		if (!array[i].sum_blk)
4964 			return -ENOMEM;
4965 		init_rwsem(&array[i].journal_rwsem);
4966 		array[i].journal = f2fs_kzalloc(sbi,
4967 				sbi->sum_journal_size, GFP_KERNEL);
4968 		if (!array[i].journal)
4969 			return -ENOMEM;
4970 		array[i].seg_type = log_type_to_seg_type(i);
4971 		reset_curseg_fields(&array[i]);
4972 	}
4973 	return restore_curseg_summaries(sbi);
4974 }
4975 
4976 static int build_sit_entries(struct f2fs_sb_info *sbi)
4977 {
4978 	struct sit_info *sit_i = SIT_I(sbi);
4979 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4980 	struct f2fs_journal *journal = curseg->journal;
4981 	struct seg_entry *se;
4982 	struct f2fs_sit_entry sit;
4983 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4984 	unsigned int i, start, end;
4985 	unsigned int readed, start_blk = 0;
4986 	int err = 0;
4987 	block_t sit_valid_blocks[2] = {0, 0};
4988 
4989 	do {
4990 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4991 							META_SIT, true);
4992 
4993 		start = start_blk * sit_i->sents_per_block;
4994 		end = (start_blk + readed) * sit_i->sents_per_block;
4995 
4996 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4997 			struct f2fs_sit_block *sit_blk;
4998 			struct folio *folio;
4999 
5000 			se = &sit_i->sentries[start];
5001 			folio = get_current_sit_folio(sbi, start);
5002 			if (IS_ERR(folio))
5003 				return PTR_ERR(folio);
5004 			sit_blk = folio_address(folio);
5005 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
5006 			f2fs_folio_put(folio, true);
5007 
5008 			err = check_block_count(sbi, start, &sit);
5009 			if (err)
5010 				return err;
5011 			seg_info_from_raw_sit(se, &sit);
5012 
5013 			if (se->type >= NR_PERSISTENT_LOG) {
5014 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5015 							se->type, start);
5016 				f2fs_handle_error(sbi,
5017 						ERROR_INCONSISTENT_SUM_TYPE);
5018 				return -EFSCORRUPTED;
5019 			}
5020 
5021 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5022 
5023 			if (!f2fs_block_unit_discard(sbi))
5024 				goto init_discard_map_done;
5025 
5026 			/* build discard map only one time */
5027 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5028 				memset(se->discard_map, 0xff,
5029 						SIT_VBLOCK_MAP_SIZE);
5030 				goto init_discard_map_done;
5031 			}
5032 			memcpy(se->discard_map, se->cur_valid_map,
5033 						SIT_VBLOCK_MAP_SIZE);
5034 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
5035 						se->valid_blocks;
5036 init_discard_map_done:
5037 			if (__is_large_section(sbi))
5038 				get_sec_entry(sbi, start)->valid_blocks +=
5039 							se->valid_blocks;
5040 		}
5041 		start_blk += readed;
5042 	} while (start_blk < sit_blk_cnt);
5043 
5044 	down_read(&curseg->journal_rwsem);
5045 	for (i = 0; i < sits_in_cursum(journal); i++) {
5046 		unsigned int old_valid_blocks;
5047 
5048 		start = le32_to_cpu(segno_in_journal(journal, i));
5049 		if (start >= MAIN_SEGS(sbi)) {
5050 			f2fs_err(sbi, "Wrong journal entry on segno %u",
5051 				 start);
5052 			err = -EFSCORRUPTED;
5053 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5054 			break;
5055 		}
5056 
5057 		se = &sit_i->sentries[start];
5058 		sit = sit_in_journal(journal, i);
5059 
5060 		old_valid_blocks = se->valid_blocks;
5061 
5062 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5063 
5064 		err = check_block_count(sbi, start, &sit);
5065 		if (err)
5066 			break;
5067 		seg_info_from_raw_sit(se, &sit);
5068 
5069 		if (se->type >= NR_PERSISTENT_LOG) {
5070 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5071 							se->type, start);
5072 			err = -EFSCORRUPTED;
5073 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5074 			break;
5075 		}
5076 
5077 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5078 
5079 		if (f2fs_block_unit_discard(sbi)) {
5080 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5081 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5082 			} else {
5083 				memcpy(se->discard_map, se->cur_valid_map,
5084 							SIT_VBLOCK_MAP_SIZE);
5085 				sbi->discard_blks += old_valid_blocks;
5086 				sbi->discard_blks -= se->valid_blocks;
5087 			}
5088 		}
5089 
5090 		if (__is_large_section(sbi)) {
5091 			get_sec_entry(sbi, start)->valid_blocks +=
5092 							se->valid_blocks;
5093 			get_sec_entry(sbi, start)->valid_blocks -=
5094 							old_valid_blocks;
5095 		}
5096 	}
5097 	up_read(&curseg->journal_rwsem);
5098 
5099 	/* update ckpt_valid_block */
5100 	if (__is_large_section(sbi)) {
5101 		unsigned int segno;
5102 
5103 		for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5104 			set_ckpt_valid_blocks(sbi, segno);
5105 			sanity_check_valid_blocks(sbi, segno);
5106 		}
5107 	}
5108 
5109 	if (err)
5110 		return err;
5111 
5112 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5113 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5114 			 sit_valid_blocks[NODE], valid_node_count(sbi));
5115 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5116 		return -EFSCORRUPTED;
5117 	}
5118 
5119 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5120 				valid_user_blocks(sbi)) {
5121 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5122 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5123 			 valid_user_blocks(sbi));
5124 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5125 		return -EFSCORRUPTED;
5126 	}
5127 
5128 	return 0;
5129 }
5130 
5131 static void init_free_segmap(struct f2fs_sb_info *sbi)
5132 {
5133 	unsigned int start;
5134 	int type;
5135 	struct seg_entry *sentry;
5136 
5137 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
5138 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5139 			continue;
5140 		sentry = get_seg_entry(sbi, start);
5141 		if (!sentry->valid_blocks)
5142 			__set_free(sbi, start);
5143 		else
5144 			SIT_I(sbi)->written_valid_blocks +=
5145 						sentry->valid_blocks;
5146 	}
5147 
5148 	/* set use the current segments */
5149 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5150 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5151 
5152 		__set_test_and_inuse(sbi, curseg_t->segno);
5153 	}
5154 }
5155 
5156 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5157 {
5158 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5159 	struct free_segmap_info *free_i = FREE_I(sbi);
5160 	unsigned int segno = 0, offset = 0, secno;
5161 	block_t valid_blocks, usable_blks_in_seg;
5162 
5163 	while (1) {
5164 		/* find dirty segment based on free segmap */
5165 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5166 		if (segno >= MAIN_SEGS(sbi))
5167 			break;
5168 		offset = segno + 1;
5169 		valid_blocks = get_valid_blocks(sbi, segno, false);
5170 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5171 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5172 			continue;
5173 		if (valid_blocks > usable_blks_in_seg) {
5174 			f2fs_bug_on(sbi, 1);
5175 			continue;
5176 		}
5177 		mutex_lock(&dirty_i->seglist_lock);
5178 		__locate_dirty_segment(sbi, segno, DIRTY);
5179 		mutex_unlock(&dirty_i->seglist_lock);
5180 	}
5181 
5182 	if (!__is_large_section(sbi))
5183 		return;
5184 
5185 	mutex_lock(&dirty_i->seglist_lock);
5186 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5187 		valid_blocks = get_valid_blocks(sbi, segno, true);
5188 		secno = GET_SEC_FROM_SEG(sbi, segno);
5189 
5190 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5191 			continue;
5192 		if (is_cursec(sbi, secno))
5193 			continue;
5194 		set_bit(secno, dirty_i->dirty_secmap);
5195 	}
5196 	mutex_unlock(&dirty_i->seglist_lock);
5197 }
5198 
5199 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5200 {
5201 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5202 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5203 
5204 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5205 	if (!dirty_i->victim_secmap)
5206 		return -ENOMEM;
5207 
5208 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5209 	if (!dirty_i->pinned_secmap)
5210 		return -ENOMEM;
5211 
5212 	dirty_i->pinned_secmap_cnt = 0;
5213 	dirty_i->enable_pin_section = true;
5214 	return 0;
5215 }
5216 
5217 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5218 {
5219 	struct dirty_seglist_info *dirty_i;
5220 	unsigned int bitmap_size, i;
5221 
5222 	/* allocate memory for dirty segments list information */
5223 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5224 								GFP_KERNEL);
5225 	if (!dirty_i)
5226 		return -ENOMEM;
5227 
5228 	SM_I(sbi)->dirty_info = dirty_i;
5229 	mutex_init(&dirty_i->seglist_lock);
5230 
5231 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5232 
5233 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5234 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5235 								GFP_KERNEL);
5236 		if (!dirty_i->dirty_segmap[i])
5237 			return -ENOMEM;
5238 	}
5239 
5240 	if (__is_large_section(sbi)) {
5241 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5242 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5243 						bitmap_size, GFP_KERNEL);
5244 		if (!dirty_i->dirty_secmap)
5245 			return -ENOMEM;
5246 	}
5247 
5248 	init_dirty_segmap(sbi);
5249 	return init_victim_secmap(sbi);
5250 }
5251 
5252 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5253 {
5254 	int i;
5255 
5256 	/*
5257 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5258 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5259 	 */
5260 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5261 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5262 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5263 		unsigned int blkofs = curseg->next_blkoff;
5264 
5265 		if (f2fs_sb_has_readonly(sbi) &&
5266 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5267 			continue;
5268 
5269 		sanity_check_seg_type(sbi, curseg->seg_type);
5270 
5271 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5272 			f2fs_err(sbi,
5273 				 "Current segment has invalid alloc_type:%d",
5274 				 curseg->alloc_type);
5275 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5276 			return -EFSCORRUPTED;
5277 		}
5278 
5279 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5280 			goto out;
5281 
5282 		if (curseg->alloc_type == SSR)
5283 			continue;
5284 
5285 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5286 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5287 				continue;
5288 out:
5289 			f2fs_err(sbi,
5290 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5291 				 i, curseg->segno, curseg->alloc_type,
5292 				 curseg->next_blkoff, blkofs);
5293 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5294 			return -EFSCORRUPTED;
5295 		}
5296 	}
5297 	return 0;
5298 }
5299 
5300 #ifdef CONFIG_BLK_DEV_ZONED
5301 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5302 				    struct f2fs_dev_info *fdev,
5303 				    struct blk_zone *zone)
5304 {
5305 	unsigned int zone_segno;
5306 	block_t zone_block, valid_block_cnt;
5307 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5308 	int ret;
5309 	unsigned int nofs_flags;
5310 
5311 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5312 		return 0;
5313 
5314 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5315 	zone_segno = GET_SEGNO(sbi, zone_block);
5316 
5317 	/*
5318 	 * Skip check of zones cursegs point to, since
5319 	 * fix_curseg_write_pointer() checks them.
5320 	 */
5321 	if (zone_segno >= MAIN_SEGS(sbi))
5322 		return 0;
5323 
5324 	/*
5325 	 * Get # of valid block of the zone.
5326 	 */
5327 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5328 	if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5329 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5330 				zone_segno, valid_block_cnt,
5331 				blk_zone_cond_str(zone->cond));
5332 		return 0;
5333 	}
5334 
5335 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5336 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5337 		return 0;
5338 
5339 	if (!valid_block_cnt) {
5340 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5341 			    "pointer. Reset the write pointer: cond[%s]",
5342 			    blk_zone_cond_str(zone->cond));
5343 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5344 					zone->len >> log_sectors_per_block);
5345 		if (ret)
5346 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5347 				 fdev->path, ret);
5348 		return ret;
5349 	}
5350 
5351 	/*
5352 	 * If there are valid blocks and the write pointer doesn't match
5353 	 * with them, we need to report the inconsistency and fill
5354 	 * the zone till the end to close the zone. This inconsistency
5355 	 * does not cause write error because the zone will not be
5356 	 * selected for write operation until it get discarded.
5357 	 */
5358 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5359 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5360 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5361 
5362 	nofs_flags = memalloc_nofs_save();
5363 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5364 				zone->start, zone->len);
5365 	memalloc_nofs_restore(nofs_flags);
5366 	if (ret == -EOPNOTSUPP) {
5367 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5368 					zone->len - (zone->wp - zone->start),
5369 					GFP_NOFS, 0);
5370 		if (ret)
5371 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5372 					fdev->path, ret);
5373 	} else if (ret) {
5374 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5375 				fdev->path, ret);
5376 	}
5377 
5378 	return ret;
5379 }
5380 
5381 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5382 						  block_t zone_blkaddr)
5383 {
5384 	int i;
5385 
5386 	for (i = 0; i < sbi->s_ndevs; i++) {
5387 		if (!bdev_is_zoned(FDEV(i).bdev))
5388 			continue;
5389 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5390 				zone_blkaddr <= FDEV(i).end_blk))
5391 			return &FDEV(i);
5392 	}
5393 
5394 	return NULL;
5395 }
5396 
5397 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5398 			      void *data)
5399 {
5400 	memcpy(data, zone, sizeof(struct blk_zone));
5401 	return 0;
5402 }
5403 
5404 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5405 {
5406 	struct curseg_info *cs = CURSEG_I(sbi, type);
5407 	struct f2fs_dev_info *zbd;
5408 	struct blk_zone zone;
5409 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5410 	block_t cs_zone_block, wp_block;
5411 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5412 	sector_t zone_sector;
5413 	int err;
5414 
5415 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5416 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5417 
5418 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5419 	if (!zbd)
5420 		return 0;
5421 
5422 	/* report zone for the sector the curseg points to */
5423 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5424 		<< log_sectors_per_block;
5425 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5426 				  report_one_zone_cb, &zone);
5427 	if (err != 1) {
5428 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5429 			 zbd->path, err);
5430 		return err;
5431 	}
5432 
5433 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5434 		return 0;
5435 
5436 	/*
5437 	 * When safely unmounted in the previous mount, we could use current
5438 	 * segments. Otherwise, allocate new sections.
5439 	 */
5440 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5441 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5442 		wp_segno = GET_SEGNO(sbi, wp_block);
5443 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5444 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5445 
5446 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5447 				wp_sector_off == 0)
5448 			return 0;
5449 
5450 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5451 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5452 			    cs->next_blkoff, wp_segno, wp_blkoff);
5453 	}
5454 
5455 	/* Allocate a new section if it's not new. */
5456 	if (cs->next_blkoff ||
5457 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5458 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5459 
5460 		f2fs_allocate_new_section(sbi, type, true);
5461 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5462 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5463 				type, old_segno, old_blkoff,
5464 				cs->segno, cs->next_blkoff);
5465 	}
5466 
5467 	/* check consistency of the zone curseg pointed to */
5468 	if (check_zone_write_pointer(sbi, zbd, &zone))
5469 		return -EIO;
5470 
5471 	/* check newly assigned zone */
5472 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5473 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5474 
5475 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5476 	if (!zbd)
5477 		return 0;
5478 
5479 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5480 		<< log_sectors_per_block;
5481 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5482 				  report_one_zone_cb, &zone);
5483 	if (err != 1) {
5484 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5485 			 zbd->path, err);
5486 		return err;
5487 	}
5488 
5489 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5490 		return 0;
5491 
5492 	if (zone.wp != zone.start) {
5493 		f2fs_notice(sbi,
5494 			    "New zone for curseg[%d] is not yet discarded. "
5495 			    "Reset the zone: curseg[0x%x,0x%x]",
5496 			    type, cs->segno, cs->next_blkoff);
5497 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5498 					zone.len >> log_sectors_per_block);
5499 		if (err) {
5500 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5501 				 zbd->path, err);
5502 			return err;
5503 		}
5504 	}
5505 
5506 	return 0;
5507 }
5508 
5509 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5510 {
5511 	int i, ret;
5512 
5513 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5514 		ret = do_fix_curseg_write_pointer(sbi, i);
5515 		if (ret)
5516 			return ret;
5517 	}
5518 
5519 	return 0;
5520 }
5521 
5522 struct check_zone_write_pointer_args {
5523 	struct f2fs_sb_info *sbi;
5524 	struct f2fs_dev_info *fdev;
5525 };
5526 
5527 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5528 				      void *data)
5529 {
5530 	struct check_zone_write_pointer_args *args;
5531 
5532 	args = (struct check_zone_write_pointer_args *)data;
5533 
5534 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5535 }
5536 
5537 static int check_write_pointer(struct f2fs_sb_info *sbi)
5538 {
5539 	int i, ret;
5540 	struct check_zone_write_pointer_args args;
5541 
5542 	for (i = 0; i < sbi->s_ndevs; i++) {
5543 		if (!bdev_is_zoned(FDEV(i).bdev))
5544 			continue;
5545 
5546 		args.sbi = sbi;
5547 		args.fdev = &FDEV(i);
5548 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5549 					  check_zone_write_pointer_cb, &args);
5550 		if (ret < 0)
5551 			return ret;
5552 	}
5553 
5554 	return 0;
5555 }
5556 
5557 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5558 {
5559 	int ret;
5560 
5561 	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5562 	    f2fs_hw_is_readonly(sbi))
5563 		return 0;
5564 
5565 	f2fs_notice(sbi, "Checking entire write pointers");
5566 	ret = fix_curseg_write_pointer(sbi);
5567 	if (!ret)
5568 		ret = check_write_pointer(sbi);
5569 	return ret;
5570 }
5571 
5572 /*
5573  * Return the number of usable blocks in a segment. The number of blocks
5574  * returned is always equal to the number of blocks in a segment for
5575  * segments fully contained within a sequential zone capacity or a
5576  * conventional zone. For segments partially contained in a sequential
5577  * zone capacity, the number of usable blocks up to the zone capacity
5578  * is returned. 0 is returned in all other cases.
5579  */
5580 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5581 			struct f2fs_sb_info *sbi, unsigned int segno)
5582 {
5583 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5584 	unsigned int secno;
5585 
5586 	if (!sbi->unusable_blocks_per_sec)
5587 		return BLKS_PER_SEG(sbi);
5588 
5589 	secno = GET_SEC_FROM_SEG(sbi, segno);
5590 	seg_start = START_BLOCK(sbi, segno);
5591 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5592 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5593 
5594 	/*
5595 	 * If segment starts before zone capacity and spans beyond
5596 	 * zone capacity, then usable blocks are from seg start to
5597 	 * zone capacity. If the segment starts after the zone capacity,
5598 	 * then there are no usable blocks.
5599 	 */
5600 	if (seg_start >= sec_cap_blkaddr)
5601 		return 0;
5602 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5603 		return sec_cap_blkaddr - seg_start;
5604 
5605 	return BLKS_PER_SEG(sbi);
5606 }
5607 #else
5608 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5609 {
5610 	return 0;
5611 }
5612 
5613 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5614 							unsigned int segno)
5615 {
5616 	return 0;
5617 }
5618 
5619 #endif
5620 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5621 					unsigned int segno)
5622 {
5623 	if (f2fs_sb_has_blkzoned(sbi))
5624 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5625 
5626 	return BLKS_PER_SEG(sbi);
5627 }
5628 
5629 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5630 {
5631 	if (f2fs_sb_has_blkzoned(sbi))
5632 		return CAP_SEGS_PER_SEC(sbi);
5633 
5634 	return SEGS_PER_SEC(sbi);
5635 }
5636 
5637 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5638 	unsigned int segno)
5639 {
5640 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5641 	unsigned int secno = 0, start = 0;
5642 	unsigned int total_valid_blocks = 0;
5643 	unsigned long long mtime = 0;
5644 	unsigned int i = 0;
5645 
5646 	secno = GET_SEC_FROM_SEG(sbi, segno);
5647 	start = GET_SEG_FROM_SEC(sbi, secno);
5648 
5649 	if (!__is_large_section(sbi)) {
5650 		mtime = get_seg_entry(sbi, start + i)->mtime;
5651 		goto out;
5652 	}
5653 
5654 	for (i = 0; i < usable_segs_per_sec; i++) {
5655 		/* for large section, only check the mtime of valid segments */
5656 		struct seg_entry *se = get_seg_entry(sbi, start+i);
5657 
5658 		mtime += se->mtime * se->valid_blocks;
5659 		total_valid_blocks += se->valid_blocks;
5660 	}
5661 
5662 	if (total_valid_blocks == 0)
5663 		return INVALID_MTIME;
5664 
5665 	mtime = div_u64(mtime, total_valid_blocks);
5666 out:
5667 	if (unlikely(mtime == INVALID_MTIME))
5668 		mtime -= 1;
5669 	return mtime;
5670 }
5671 
5672 /*
5673  * Update min, max modified time for cost-benefit GC algorithm
5674  */
5675 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5676 {
5677 	struct sit_info *sit_i = SIT_I(sbi);
5678 	unsigned int segno;
5679 
5680 	down_write(&sit_i->sentry_lock);
5681 
5682 	sit_i->min_mtime = ULLONG_MAX;
5683 
5684 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5685 		unsigned long long mtime = 0;
5686 
5687 		mtime = f2fs_get_section_mtime(sbi, segno);
5688 
5689 		if (sit_i->min_mtime > mtime)
5690 			sit_i->min_mtime = mtime;
5691 	}
5692 	sit_i->max_mtime = get_mtime(sbi, false);
5693 	sit_i->dirty_max_mtime = 0;
5694 	up_write(&sit_i->sentry_lock);
5695 }
5696 
5697 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5698 {
5699 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5700 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5701 	struct f2fs_sm_info *sm_info;
5702 	int err;
5703 
5704 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5705 	if (!sm_info)
5706 		return -ENOMEM;
5707 
5708 	/* init sm info */
5709 	sbi->sm_info = sm_info;
5710 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5711 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5712 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5713 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5714 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5715 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5716 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5717 	sm_info->rec_prefree_segments = sm_info->main_segments *
5718 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5719 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5720 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5721 
5722 	if (!f2fs_lfs_mode(sbi))
5723 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5724 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5725 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5726 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5727 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5728 	sm_info->min_ssr_sections = reserved_sections(sbi);
5729 
5730 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5731 
5732 	init_f2fs_rwsem(&sm_info->curseg_lock);
5733 
5734 	err = f2fs_create_flush_cmd_control(sbi);
5735 	if (err)
5736 		return err;
5737 
5738 	err = create_discard_cmd_control(sbi);
5739 	if (err)
5740 		return err;
5741 
5742 	err = build_sit_info(sbi);
5743 	if (err)
5744 		return err;
5745 	err = build_free_segmap(sbi);
5746 	if (err)
5747 		return err;
5748 	err = build_curseg(sbi);
5749 	if (err)
5750 		return err;
5751 
5752 	/* reinit free segmap based on SIT */
5753 	err = build_sit_entries(sbi);
5754 	if (err)
5755 		return err;
5756 
5757 	init_free_segmap(sbi);
5758 	err = build_dirty_segmap(sbi);
5759 	if (err)
5760 		return err;
5761 
5762 	err = sanity_check_curseg(sbi);
5763 	if (err)
5764 		return err;
5765 
5766 	init_min_max_mtime(sbi);
5767 	return 0;
5768 }
5769 
5770 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5771 		enum dirty_type dirty_type)
5772 {
5773 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5774 
5775 	mutex_lock(&dirty_i->seglist_lock);
5776 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5777 	dirty_i->nr_dirty[dirty_type] = 0;
5778 	mutex_unlock(&dirty_i->seglist_lock);
5779 }
5780 
5781 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5782 {
5783 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5784 
5785 	kvfree(dirty_i->pinned_secmap);
5786 	kvfree(dirty_i->victim_secmap);
5787 }
5788 
5789 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5790 {
5791 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5792 	int i;
5793 
5794 	if (!dirty_i)
5795 		return;
5796 
5797 	/* discard pre-free/dirty segments list */
5798 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5799 		discard_dirty_segmap(sbi, i);
5800 
5801 	if (__is_large_section(sbi)) {
5802 		mutex_lock(&dirty_i->seglist_lock);
5803 		kvfree(dirty_i->dirty_secmap);
5804 		mutex_unlock(&dirty_i->seglist_lock);
5805 	}
5806 
5807 	destroy_victim_secmap(sbi);
5808 	SM_I(sbi)->dirty_info = NULL;
5809 	kfree(dirty_i);
5810 }
5811 
5812 static void destroy_curseg(struct f2fs_sb_info *sbi)
5813 {
5814 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5815 	int i;
5816 
5817 	if (!array)
5818 		return;
5819 	SM_I(sbi)->curseg_array = NULL;
5820 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5821 		kfree(array[i].sum_blk);
5822 		kfree(array[i].journal);
5823 	}
5824 	kfree(array);
5825 }
5826 
5827 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5828 {
5829 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5830 
5831 	if (!free_i)
5832 		return;
5833 	SM_I(sbi)->free_info = NULL;
5834 	kvfree(free_i->free_segmap);
5835 	kvfree(free_i->free_secmap);
5836 	kfree(free_i);
5837 }
5838 
5839 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5840 {
5841 	struct sit_info *sit_i = SIT_I(sbi);
5842 
5843 	if (!sit_i)
5844 		return;
5845 
5846 	if (sit_i->sentries)
5847 		kvfree(sit_i->bitmap);
5848 	kfree(sit_i->tmp_map);
5849 
5850 	kvfree(sit_i->sentries);
5851 	kvfree(sit_i->sec_entries);
5852 	kvfree(sit_i->dirty_sentries_bitmap);
5853 
5854 	SM_I(sbi)->sit_info = NULL;
5855 	kfree(sit_i->sit_bitmap);
5856 #ifdef CONFIG_F2FS_CHECK_FS
5857 	kfree(sit_i->sit_bitmap_mir);
5858 	kvfree(sit_i->invalid_segmap);
5859 #endif
5860 	kfree(sit_i);
5861 }
5862 
5863 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5864 {
5865 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5866 
5867 	if (!sm_info)
5868 		return;
5869 	f2fs_destroy_flush_cmd_control(sbi, true);
5870 	destroy_discard_cmd_control(sbi);
5871 	destroy_dirty_segmap(sbi);
5872 	destroy_curseg(sbi);
5873 	destroy_free_segmap(sbi);
5874 	destroy_sit_info(sbi);
5875 	sbi->sm_info = NULL;
5876 	kfree(sm_info);
5877 }
5878 
5879 int __init f2fs_create_segment_manager_caches(void)
5880 {
5881 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5882 			sizeof(struct discard_entry));
5883 	if (!discard_entry_slab)
5884 		goto fail;
5885 
5886 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5887 			sizeof(struct discard_cmd));
5888 	if (!discard_cmd_slab)
5889 		goto destroy_discard_entry;
5890 
5891 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5892 			sizeof(struct sit_entry_set));
5893 	if (!sit_entry_set_slab)
5894 		goto destroy_discard_cmd;
5895 
5896 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5897 			sizeof(struct revoke_entry));
5898 	if (!revoke_entry_slab)
5899 		goto destroy_sit_entry_set;
5900 	return 0;
5901 
5902 destroy_sit_entry_set:
5903 	kmem_cache_destroy(sit_entry_set_slab);
5904 destroy_discard_cmd:
5905 	kmem_cache_destroy(discard_cmd_slab);
5906 destroy_discard_entry:
5907 	kmem_cache_destroy(discard_entry_slab);
5908 fail:
5909 	return -ENOMEM;
5910 }
5911 
5912 void f2fs_destroy_segment_manager_caches(void)
5913 {
5914 	kmem_cache_destroy(sit_entry_set_slab);
5915 	kmem_cache_destroy(discard_cmd_slab);
5916 	kmem_cache_destroy(discard_entry_slab);
5917 	kmem_cache_destroy(revoke_entry_slab);
5918 }
5919