xref: /linux/arch/x86/mm/pti.c (revision 04d29e3609b62896b94b60250d475f8f7c15db98)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  *
5  * This code is based in part on work published here:
6  *
7  *	https://github.com/IAIK/KAISER
8  *
9  * The original work was written by and signed off by for the Linux
10  * kernel by:
11  *
12  *   Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at>
13  *   Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
14  *   Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
15  *   Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
16  *
17  * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com>
18  * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and
19  *		       Andy Lutomirsky <luto@amacapital.net>
20  */
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/bug.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/cpu.h>
31 
32 #include <asm/cpufeature.h>
33 #include <asm/hypervisor.h>
34 #include <asm/vsyscall.h>
35 #include <asm/cmdline.h>
36 #include <asm/pti.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/sections.h>
40 #include <asm/set_memory.h>
41 #include <asm/bugs.h>
42 
43 #undef pr_fmt
44 #define pr_fmt(fmt)     "Kernel/User page tables isolation: " fmt
45 
46 /* Backporting helper */
47 #ifndef __GFP_NOTRACK
48 #define __GFP_NOTRACK	0
49 #endif
50 
51 /*
52  * Define the page-table levels we clone for user-space on 32
53  * and 64 bit.
54  */
55 #ifdef CONFIG_X86_64
56 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PMD
57 #else
58 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PTE
59 #endif
60 
pti_print_if_insecure(const char * reason)61 static void __init pti_print_if_insecure(const char *reason)
62 {
63 	if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
64 		pr_info("%s\n", reason);
65 }
66 
pti_print_if_secure(const char * reason)67 static void __init pti_print_if_secure(const char *reason)
68 {
69 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
70 		pr_info("%s\n", reason);
71 }
72 
73 /* Assume mode is auto unless overridden via cmdline below. */
74 static enum pti_mode {
75 	PTI_AUTO = 0,
76 	PTI_FORCE_OFF,
77 	PTI_FORCE_ON
78 } pti_mode;
79 
pti_check_boottime_disable(void)80 void __init pti_check_boottime_disable(void)
81 {
82 	if (hypervisor_is_type(X86_HYPER_XEN_PV)) {
83 		pti_mode = PTI_FORCE_OFF;
84 		pti_print_if_insecure("disabled on XEN PV.");
85 		return;
86 	}
87 
88 	if (pti_mode == PTI_AUTO &&
89 	    !cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
90 		pti_mode = PTI_FORCE_OFF;
91 	if (pti_mode == PTI_FORCE_OFF) {
92 		pti_print_if_insecure("disabled on command line.");
93 		return;
94 	}
95 
96 	if (pti_mode == PTI_FORCE_ON)
97 		pti_print_if_secure("force enabled on command line.");
98 
99 	if (pti_mode == PTI_AUTO && !boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
100 		return;
101 
102 	setup_force_cpu_cap(X86_FEATURE_PTI);
103 
104 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
105 		pr_debug("PTI enabled, disabling INVLPGB\n");
106 		setup_clear_cpu_cap(X86_FEATURE_INVLPGB);
107 	}
108 }
109 
pti_parse_cmdline(char * arg)110 static int __init pti_parse_cmdline(char *arg)
111 {
112 	if (!strcmp(arg, "off"))
113 		pti_mode = PTI_FORCE_OFF;
114 	else if (!strcmp(arg, "on"))
115 		pti_mode = PTI_FORCE_ON;
116 	else if (!strcmp(arg, "auto"))
117 		pti_mode = PTI_AUTO;
118 	else
119 		return -EINVAL;
120 	return 0;
121 }
122 early_param("pti", pti_parse_cmdline);
123 
pti_parse_cmdline_nopti(char * arg)124 static int __init pti_parse_cmdline_nopti(char *arg)
125 {
126 	pti_mode = PTI_FORCE_OFF;
127 	return 0;
128 }
129 early_param("nopti", pti_parse_cmdline_nopti);
130 
__pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)131 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
132 {
133 	/*
134 	 * Changes to the high (kernel) portion of the kernelmode page
135 	 * tables are not automatically propagated to the usermode tables.
136 	 *
137 	 * Users should keep in mind that, unlike the kernelmode tables,
138 	 * there is no vmalloc_fault equivalent for the usermode tables.
139 	 * Top-level entries added to init_mm's usermode pgd after boot
140 	 * will not be automatically propagated to other mms.
141 	 */
142 	if (!pgdp_maps_userspace(pgdp) || (pgd.pgd & _PAGE_NOPTISHADOW))
143 		return pgd;
144 
145 	/*
146 	 * The user page tables get the full PGD, accessible from
147 	 * userspace:
148 	 */
149 	kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;
150 
151 	/*
152 	 * If this is normal user memory, make it NX in the kernel
153 	 * pagetables so that, if we somehow screw up and return to
154 	 * usermode with the kernel CR3 loaded, we'll get a page fault
155 	 * instead of allowing user code to execute with the wrong CR3.
156 	 *
157 	 * As exceptions, we don't set NX if:
158 	 *  - _PAGE_USER is not set.  This could be an executable
159 	 *     EFI runtime mapping or something similar, and the kernel
160 	 *     may execute from it
161 	 *  - we don't have NX support
162 	 *  - we're clearing the PGD (i.e. the new pgd is not present).
163 	 */
164 	if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
165 	    (__supported_pte_mask & _PAGE_NX))
166 		pgd.pgd |= _PAGE_NX;
167 
168 	/* return the copy of the PGD we want the kernel to use: */
169 	return pgd;
170 }
171 
172 /*
173  * Walk the user copy of the page tables (optionally) trying to allocate
174  * page table pages on the way down.
175  *
176  * Returns a pointer to a P4D on success, or NULL on failure.
177  */
pti_user_pagetable_walk_p4d(unsigned long address)178 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
179 {
180 	pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address));
181 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
182 
183 	if (address < PAGE_OFFSET) {
184 		WARN_ONCE(1, "attempt to walk user address\n");
185 		return NULL;
186 	}
187 
188 	if (pgd_none(*pgd)) {
189 		unsigned long new_p4d_page = __get_free_page(gfp);
190 		if (WARN_ON_ONCE(!new_p4d_page))
191 			return NULL;
192 
193 		set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
194 	}
195 	BUILD_BUG_ON(pgd_leaf(*pgd));
196 
197 	return p4d_offset(pgd, address);
198 }
199 
200 /*
201  * Walk the user copy of the page tables (optionally) trying to allocate
202  * page table pages on the way down.
203  *
204  * Returns a pointer to a PMD on success, or NULL on failure.
205  */
pti_user_pagetable_walk_pmd(unsigned long address)206 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
207 {
208 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
209 	p4d_t *p4d;
210 	pud_t *pud;
211 
212 	p4d = pti_user_pagetable_walk_p4d(address);
213 	if (!p4d)
214 		return NULL;
215 
216 	BUILD_BUG_ON(p4d_leaf(*p4d));
217 	if (p4d_none(*p4d)) {
218 		unsigned long new_pud_page = __get_free_page(gfp);
219 		if (WARN_ON_ONCE(!new_pud_page))
220 			return NULL;
221 
222 		set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page)));
223 	}
224 
225 	pud = pud_offset(p4d, address);
226 	/* The user page tables do not use large mappings: */
227 	if (pud_leaf(*pud)) {
228 		WARN_ON(1);
229 		return NULL;
230 	}
231 	if (pud_none(*pud)) {
232 		unsigned long new_pmd_page = __get_free_page(gfp);
233 		if (WARN_ON_ONCE(!new_pmd_page))
234 			return NULL;
235 
236 		set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
237 	}
238 
239 	return pmd_offset(pud, address);
240 }
241 
242 /*
243  * Walk the shadow copy of the page tables (optionally) trying to allocate
244  * page table pages on the way down.  Does not support large pages.
245  *
246  * Note: this is only used when mapping *new* kernel data into the
247  * user/shadow page tables.  It is never used for userspace data.
248  *
249  * Returns a pointer to a PTE on success, or NULL on failure.
250  */
pti_user_pagetable_walk_pte(unsigned long address,bool late_text)251 static pte_t *pti_user_pagetable_walk_pte(unsigned long address, bool late_text)
252 {
253 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
254 	pmd_t *pmd;
255 	pte_t *pte;
256 
257 	pmd = pti_user_pagetable_walk_pmd(address);
258 	if (!pmd)
259 		return NULL;
260 
261 	/* Large PMD mapping found */
262 	if (pmd_leaf(*pmd)) {
263 		/* Clear the PMD if we hit a large mapping from the first round */
264 		if (late_text) {
265 			set_pmd(pmd, __pmd(0));
266 		} else {
267 			WARN_ON_ONCE(1);
268 			return NULL;
269 		}
270 	}
271 
272 	if (pmd_none(*pmd)) {
273 		unsigned long new_pte_page = __get_free_page(gfp);
274 		if (!new_pte_page)
275 			return NULL;
276 
277 		set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
278 	}
279 
280 	pte = pte_offset_kernel(pmd, address);
281 	if (pte_flags(*pte) & _PAGE_USER) {
282 		WARN_ONCE(1, "attempt to walk to user pte\n");
283 		return NULL;
284 	}
285 	return pte;
286 }
287 
288 #ifdef CONFIG_X86_VSYSCALL_EMULATION
pti_setup_vsyscall(void)289 static void __init pti_setup_vsyscall(void)
290 {
291 	pte_t *pte, *target_pte;
292 	unsigned int level;
293 
294 	pte = lookup_address(VSYSCALL_ADDR, &level);
295 	if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte))
296 		return;
297 
298 	target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR, false);
299 	if (WARN_ON(!target_pte))
300 		return;
301 
302 	*target_pte = *pte;
303 	set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir));
304 }
305 #else
pti_setup_vsyscall(void)306 static void __init pti_setup_vsyscall(void) { }
307 #endif
308 
309 enum pti_clone_level {
310 	PTI_CLONE_PMD,
311 	PTI_CLONE_PTE,
312 };
313 
314 static void
pti_clone_pgtable(unsigned long start,unsigned long end,enum pti_clone_level level,bool late_text)315 pti_clone_pgtable(unsigned long start, unsigned long end,
316 		  enum pti_clone_level level, bool late_text)
317 {
318 	unsigned long addr;
319 
320 	/*
321 	 * Clone the populated PMDs which cover start to end. These PMD areas
322 	 * can have holes.
323 	 */
324 	for (addr = start; addr < end;) {
325 		pte_t *pte, *target_pte;
326 		pmd_t *pmd, *target_pmd;
327 		pgd_t *pgd;
328 		p4d_t *p4d;
329 		pud_t *pud;
330 
331 		/* Overflow check */
332 		if (addr < start)
333 			break;
334 
335 		pgd = pgd_offset_k(addr);
336 		if (WARN_ON(pgd_none(*pgd)))
337 			return;
338 		p4d = p4d_offset(pgd, addr);
339 		if (WARN_ON(p4d_none(*p4d)))
340 			return;
341 
342 		pud = pud_offset(p4d, addr);
343 		if (pud_none(*pud)) {
344 			WARN_ON_ONCE(addr & ~PUD_MASK);
345 			addr = round_up(addr + 1, PUD_SIZE);
346 			continue;
347 		}
348 
349 		pmd = pmd_offset(pud, addr);
350 		if (pmd_none(*pmd)) {
351 			WARN_ON_ONCE(addr & ~PMD_MASK);
352 			addr = round_up(addr + 1, PMD_SIZE);
353 			continue;
354 		}
355 
356 		if (pmd_leaf(*pmd) || level == PTI_CLONE_PMD) {
357 			target_pmd = pti_user_pagetable_walk_pmd(addr);
358 			if (WARN_ON(!target_pmd))
359 				return;
360 
361 			/*
362 			 * Only clone present PMDs.  This ensures only setting
363 			 * _PAGE_GLOBAL on present PMDs.  This should only be
364 			 * called on well-known addresses anyway, so a non-
365 			 * present PMD would be a surprise.
366 			 */
367 			if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)))
368 				return;
369 
370 			/*
371 			 * Setting 'target_pmd' below creates a mapping in both
372 			 * the user and kernel page tables.  It is effectively
373 			 * global, so set it as global in both copies.  Note:
374 			 * the X86_FEATURE_PGE check is not _required_ because
375 			 * the CPU ignores _PAGE_GLOBAL when PGE is not
376 			 * supported.  The check keeps consistency with
377 			 * code that only set this bit when supported.
378 			 */
379 			if (boot_cpu_has(X86_FEATURE_PGE))
380 				*pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL);
381 
382 			/*
383 			 * Copy the PMD.  That is, the kernelmode and usermode
384 			 * tables will share the last-level page tables of this
385 			 * address range
386 			 */
387 			*target_pmd = *pmd;
388 
389 			addr = round_up(addr + 1, PMD_SIZE);
390 
391 		} else if (level == PTI_CLONE_PTE) {
392 
393 			/* Walk the page-table down to the pte level */
394 			pte = pte_offset_kernel(pmd, addr);
395 			if (pte_none(*pte)) {
396 				addr = round_up(addr + 1, PAGE_SIZE);
397 				continue;
398 			}
399 
400 			/* Only clone present PTEs */
401 			if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT)))
402 				return;
403 
404 			/* Allocate PTE in the user page-table */
405 			target_pte = pti_user_pagetable_walk_pte(addr, late_text);
406 			if (WARN_ON(!target_pte))
407 				return;
408 
409 			/* Set GLOBAL bit in both PTEs */
410 			if (boot_cpu_has(X86_FEATURE_PGE))
411 				*pte = pte_set_flags(*pte, _PAGE_GLOBAL);
412 
413 			/* Clone the PTE */
414 			*target_pte = *pte;
415 
416 			addr = round_up(addr + 1, PAGE_SIZE);
417 
418 		} else {
419 			BUG();
420 		}
421 	}
422 }
423 
424 #ifdef CONFIG_X86_64
425 /*
426  * Clone a single p4d (i.e. a top-level entry on 4-level systems and a
427  * next-level entry on 5-level systems.
428  */
pti_clone_p4d(unsigned long addr)429 static void __init pti_clone_p4d(unsigned long addr)
430 {
431 	p4d_t *kernel_p4d, *user_p4d;
432 	pgd_t *kernel_pgd;
433 
434 	user_p4d = pti_user_pagetable_walk_p4d(addr);
435 	if (!user_p4d)
436 		return;
437 
438 	kernel_pgd = pgd_offset_k(addr);
439 	kernel_p4d = p4d_offset(kernel_pgd, addr);
440 	*user_p4d = *kernel_p4d;
441 }
442 
443 /*
444  * Clone the CPU_ENTRY_AREA and associated data into the user space visible
445  * page table.
446  */
pti_clone_user_shared(void)447 static void __init pti_clone_user_shared(void)
448 {
449 	unsigned int cpu;
450 
451 	pti_clone_p4d(CPU_ENTRY_AREA_BASE);
452 
453 	for_each_possible_cpu(cpu) {
454 		/*
455 		 * The SYSCALL64 entry code needs one word of scratch space
456 		 * in which to spill a register.  It lives in the sp2 slot
457 		 * of the CPU's TSS.
458 		 *
459 		 * This is done for all possible CPUs during boot to ensure
460 		 * that it's propagated to all mms.
461 		 */
462 
463 		unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
464 		phys_addr_t pa = per_cpu_ptr_to_phys((void *)va);
465 		pte_t *target_pte;
466 
467 		target_pte = pti_user_pagetable_walk_pte(va, false);
468 		if (WARN_ON(!target_pte))
469 			return;
470 
471 		*target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL);
472 	}
473 }
474 
475 #else /* CONFIG_X86_64 */
476 
477 /*
478  * On 32 bit PAE systems with 1GB of Kernel address space there is only
479  * one pgd/p4d for the whole kernel. Cloning that would map the whole
480  * address space into the user page-tables, making PTI useless. So clone
481  * the page-table on the PMD level to prevent that.
482  */
pti_clone_user_shared(void)483 static void __init pti_clone_user_shared(void)
484 {
485 	unsigned long start, end;
486 
487 	start = CPU_ENTRY_AREA_BASE;
488 	end   = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES);
489 
490 	pti_clone_pgtable(start, end, PTI_CLONE_PMD, false);
491 }
492 #endif /* CONFIG_X86_64 */
493 
494 /*
495  * Clone the ESPFIX P4D into the user space visible page table
496  */
pti_setup_espfix64(void)497 static void __init pti_setup_espfix64(void)
498 {
499 #ifdef CONFIG_X86_ESPFIX64
500 	pti_clone_p4d(ESPFIX_BASE_ADDR);
501 #endif
502 }
503 
504 /*
505  * Clone the populated PMDs of the entry text and force it RO.
506  */
pti_clone_entry_text(bool late)507 static void pti_clone_entry_text(bool late)
508 {
509 	pti_clone_pgtable((unsigned long) __entry_text_start,
510 			  (unsigned long) __entry_text_end,
511 			  PTI_LEVEL_KERNEL_IMAGE, late);
512 }
513 
514 /*
515  * Global pages and PCIDs are both ways to make kernel TLB entries
516  * live longer, reduce TLB misses and improve kernel performance.
517  * But, leaving all kernel text Global makes it potentially accessible
518  * to Meltdown-style attacks which make it trivial to find gadgets or
519  * defeat KASLR.
520  *
521  * Only use global pages when it is really worth it.
522  */
pti_kernel_image_global_ok(void)523 static inline bool pti_kernel_image_global_ok(void)
524 {
525 	/*
526 	 * Systems with PCIDs get little benefit from global
527 	 * kernel text and are not worth the downsides.
528 	 */
529 	if (cpu_feature_enabled(X86_FEATURE_PCID))
530 		return false;
531 
532 	/*
533 	 * Only do global kernel image for pti=auto.  Do the most
534 	 * secure thing (not global) if pti=on specified.
535 	 */
536 	if (pti_mode != PTI_AUTO)
537 		return false;
538 
539 	/*
540 	 * K8 may not tolerate the cleared _PAGE_RW on the userspace
541 	 * global kernel image pages.  Do the safe thing (disable
542 	 * global kernel image).  This is unlikely to ever be
543 	 * noticed because PTI is disabled by default on AMD CPUs.
544 	 */
545 	if (boot_cpu_has(X86_FEATURE_K8))
546 		return false;
547 
548 	/*
549 	 * RANDSTRUCT derives its hardening benefits from the
550 	 * attacker's lack of knowledge about the layout of kernel
551 	 * data structures.  Keep the kernel image non-global in
552 	 * cases where RANDSTRUCT is in use to help keep the layout a
553 	 * secret.
554 	 */
555 	if (IS_ENABLED(CONFIG_RANDSTRUCT))
556 		return false;
557 
558 	return true;
559 }
560 
561 /*
562  * For some configurations, map all of kernel text into the user page
563  * tables.  This reduces TLB misses, especially on non-PCID systems.
564  */
pti_clone_kernel_text(void)565 static void pti_clone_kernel_text(void)
566 {
567 	/*
568 	 * rodata is part of the kernel image and is normally
569 	 * readable on the filesystem or on the web.  But, do not
570 	 * clone the areas past rodata, they might contain secrets.
571 	 */
572 	unsigned long start = PFN_ALIGN(_text);
573 	unsigned long end_clone  = (unsigned long)__end_rodata_aligned;
574 	unsigned long end_global = PFN_ALIGN((unsigned long)_etext);
575 
576 	if (!pti_kernel_image_global_ok())
577 		return;
578 
579 	pr_debug("mapping partial kernel image into user address space\n");
580 
581 	/*
582 	 * Note that this will undo _some_ of the work that
583 	 * pti_set_kernel_image_nonglobal() did to clear the
584 	 * global bit.
585 	 */
586 	pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE, false);
587 
588 	/*
589 	 * pti_clone_pgtable() will set the global bit in any PMDs
590 	 * that it clones, but we also need to get any PTEs in
591 	 * the last level for areas that are not huge-page-aligned.
592 	 */
593 
594 	/* Set the global bit for normal non-__init kernel text: */
595 	set_memory_global(start, (end_global - start) >> PAGE_SHIFT);
596 }
597 
pti_set_kernel_image_nonglobal(void)598 static void pti_set_kernel_image_nonglobal(void)
599 {
600 	/*
601 	 * The identity map is created with PMDs, regardless of the
602 	 * actual length of the kernel.  We need to clear
603 	 * _PAGE_GLOBAL up to a PMD boundary, not just to the end
604 	 * of the image.
605 	 */
606 	unsigned long start = PFN_ALIGN(_text);
607 	unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE);
608 
609 	/*
610 	 * This clears _PAGE_GLOBAL from the entire kernel image.
611 	 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for
612 	 * areas that are mapped to userspace.
613 	 */
614 	set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT);
615 }
616 
617 /*
618  * Initialize kernel page table isolation
619  */
pti_init(void)620 void __init pti_init(void)
621 {
622 	if (!boot_cpu_has(X86_FEATURE_PTI))
623 		return;
624 
625 	pr_info("enabled\n");
626 
627 #ifdef CONFIG_X86_32
628 	/*
629 	 * We check for X86_FEATURE_PCID here. But the init-code will
630 	 * clear the feature flag on 32 bit because the feature is not
631 	 * supported on 32 bit anyway. To print the warning we need to
632 	 * check with cpuid directly again.
633 	 */
634 	if (cpuid_ecx(0x1) & BIT(17)) {
635 		/* Use printk to work around pr_fmt() */
636 		printk(KERN_WARNING "\n");
637 		printk(KERN_WARNING "************************************************************\n");
638 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
639 		printk(KERN_WARNING "**                                                        **\n");
640 		printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n");
641 		printk(KERN_WARNING "** Your performance will increase dramatically if you     **\n");
642 		printk(KERN_WARNING "** switch to a 64-bit kernel!                             **\n");
643 		printk(KERN_WARNING "**                                                        **\n");
644 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
645 		printk(KERN_WARNING "************************************************************\n");
646 	}
647 #endif
648 
649 	pti_clone_user_shared();
650 
651 	/* Undo all global bits from the init pagetables in head_64.S: */
652 	pti_set_kernel_image_nonglobal();
653 
654 	/* Replace some of the global bits just for shared entry text: */
655 	/*
656 	 * This is very early in boot. Device and Late initcalls can do
657 	 * modprobe before free_initmem() and mark_readonly(). This
658 	 * pti_clone_entry_text() allows those user-mode-helpers to function,
659 	 * but notably the text is still RW.
660 	 */
661 	pti_clone_entry_text(false);
662 	pti_setup_espfix64();
663 	pti_setup_vsyscall();
664 }
665 
666 /*
667  * Finalize the kernel mappings in the userspace page-table. Some of the
668  * mappings for the kernel image might have changed since pti_init()
669  * cloned them. This is because parts of the kernel image have been
670  * mapped RO and/or NX.  These changes need to be cloned again to the
671  * userspace page-table.
672  */
pti_finalize(void)673 void pti_finalize(void)
674 {
675 	if (!boot_cpu_has(X86_FEATURE_PTI))
676 		return;
677 	/*
678 	 * This is after free_initmem() (all initcalls are done) and we've done
679 	 * mark_readonly(). Text is now NX which might've split some PMDs
680 	 * relative to the early clone.
681 	 */
682 	pti_clone_entry_text(true);
683 	pti_clone_kernel_text();
684 
685 	debug_checkwx_user();
686 }
687