xref: /linux/arch/powerpc/include/asm/nohash/32/pte-8xx.h (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PTE_8xx_H
3 #define _ASM_POWERPC_NOHASH_32_PTE_8xx_H
4 #ifdef __KERNEL__
5 
6 /*
7  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
8  * We also use the two level tables, but we can put the real bits in them
9  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
10  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
11  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
12  * based upon user/super access.  The TLB does not have accessed nor write
13  * protect.  We assume that if the TLB get loaded with an entry it is
14  * accessed, and overload the changed bit for write protect.  We use
15  * two bits in the software pte that are supposed to be set to zero in
16  * the TLB entry (24 and 25) for these indicators.  Although the level 1
17  * descriptor contains the guarded and writethrough/copyback bits, we can
18  * set these at the page level since they get copied from the Mx_TWC
19  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
20  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
21  * These will get masked from the level 2 descriptor at TLB load time, and
22  * copied to the MD_TWC before it gets loaded.
23  * Large page sizes added.  We currently support two sizes, 4K and 8M.
24  * This also allows a TLB hander optimization because we can directly
25  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
26  * mapping of well known areas.  The PMD (PGD) entries contain control
27  * flags in addition to the address, so care must be taken that the
28  * software no longer assumes these are only pointers.
29  */
30 
31 /* Definitions for 8xx embedded chips. */
32 #define _PAGE_PRESENT	0x0001	/* V: Page is valid */
33 #define _PAGE_NO_CACHE	0x0002	/* CI: cache inhibit */
34 #define _PAGE_SH	0x0004	/* SH: No ASID (context) compare */
35 #define _PAGE_SPS	0x0008	/* SPS: Small Page Size (1 if 16k, 512k or 8M)*/
36 #define _PAGE_DIRTY	0x0100	/* C: page changed */
37 
38 /* These 4 software bits must be masked out when the L2 entry is loaded
39  * into the TLB.
40  */
41 #define _PAGE_GUARDED	0x0010	/* Copied to L1 G entry in DTLB */
42 #define _PAGE_ACCESSED	0x0020	/* Copied to L1 APG 1 entry in I/DTLB */
43 #define _PAGE_EXEC	0x0040	/* Copied to PP (bit 21) in ITLB */
44 #define _PAGE_SPECIAL	0x0080	/* SW entry */
45 
46 #define _PAGE_NA	0x0200	/* Supervisor NA, User no access */
47 #define _PAGE_RO	0x0600	/* Supervisor RO, User no access */
48 
49 #define _PAGE_HUGE	0x0800	/* Copied to L1 PS bit 29 */
50 
51 #define _PAGE_NAX	(_PAGE_NA | _PAGE_EXEC)
52 #define _PAGE_ROX	(_PAGE_RO | _PAGE_EXEC)
53 #define _PAGE_RW	0
54 #define _PAGE_RWX	_PAGE_EXEC
55 
56 /* cache related flags non existing on 8xx */
57 #define _PAGE_COHERENT	0
58 #define _PAGE_WRITETHRU	0
59 
60 #define _PAGE_KERNEL_RO		(_PAGE_SH | _PAGE_RO)
61 #define _PAGE_KERNEL_ROX	(_PAGE_SH | _PAGE_RO | _PAGE_EXEC)
62 #define _PAGE_KERNEL_RW		(_PAGE_SH | _PAGE_DIRTY)
63 #define _PAGE_KERNEL_RWX	(_PAGE_SH | _PAGE_DIRTY | _PAGE_EXEC)
64 
65 #define _PMD_PRESENT	0x0001
66 #define _PMD_PRESENT_MASK	_PMD_PRESENT
67 #define _PMD_BAD	0x0f90
68 #define _PMD_PAGE_MASK	0x000c
69 #define _PMD_PAGE_8M	0x000c
70 #define _PMD_PAGE_512K	0x0004
71 #define _PMD_ACCESSED	0x0020	/* APG 1 */
72 #define _PMD_USER	0x0040	/* APG 2 */
73 
74 #define _PTE_NONE_MASK	0
75 
76 #ifdef CONFIG_PPC_16K_PAGES
77 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_SPS)
78 #else
79 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
80 #endif
81 
82 #define _PAGE_BASE	(_PAGE_BASE_NC)
83 
84 #include <asm/pgtable-masks.h>
85 
86 #ifndef __ASSEMBLY__
pte_wrprotect(pte_t pte)87 static inline pte_t pte_wrprotect(pte_t pte)
88 {
89 	return __pte(pte_val(pte) | _PAGE_RO);
90 }
91 
92 #define pte_wrprotect pte_wrprotect
93 
pte_read(pte_t pte)94 static inline int pte_read(pte_t pte)
95 {
96 	return (pte_val(pte) & _PAGE_RO) != _PAGE_NA;
97 }
98 
99 #define pte_read pte_read
100 
pte_write(pte_t pte)101 static inline int pte_write(pte_t pte)
102 {
103 	return !(pte_val(pte) & _PAGE_RO);
104 }
105 
106 #define pte_write pte_write
107 
pte_mkwrite_novma(pte_t pte)108 static inline pte_t pte_mkwrite_novma(pte_t pte)
109 {
110 	return __pte(pte_val(pte) & ~_PAGE_RO);
111 }
112 
113 #define pte_mkwrite_novma pte_mkwrite_novma
114 
pte_mkhuge(pte_t pte)115 static inline pte_t pte_mkhuge(pte_t pte)
116 {
117 	return __pte(pte_val(pte) | _PAGE_SPS | _PAGE_HUGE);
118 }
119 
120 #define pte_mkhuge pte_mkhuge
121 
122 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
123 				     unsigned long clr, unsigned long set, int huge);
124 
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)125 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
126 {
127 	pte_update(mm, addr, ptep, 0, _PAGE_RO, 0);
128 }
129 #define ptep_set_wrprotect ptep_set_wrprotect
130 
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)131 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
132 					   pte_t entry, unsigned long address, int psize)
133 {
134 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_EXEC);
135 	unsigned long clr = ~pte_val(entry) & _PAGE_RO;
136 	int huge = psize > mmu_virtual_psize ? 1 : 0;
137 
138 	pte_update(vma->vm_mm, address, ptep, clr, set, huge);
139 
140 	flush_tlb_page(vma, address);
141 }
142 #define __ptep_set_access_flags __ptep_set_access_flags
143 
__pte_leaf_size(pmd_t pmd,pte_t pte)144 static inline unsigned long __pte_leaf_size(pmd_t pmd, pte_t pte)
145 {
146 	pte_basic_t val = pte_val(pte);
147 
148 	if (pmd_val(pmd) & _PMD_PAGE_8M)
149 		return SZ_8M;
150 	if (val & _PAGE_HUGE)
151 		return SZ_512K;
152 	if (val & _PAGE_SPS)
153 		return SZ_16K;
154 	return SZ_4K;
155 }
156 
157 #define __pte_leaf_size __pte_leaf_size
158 
159 /*
160  * On the 8xx, the page tables are a bit special. For 16k pages, we have
161  * 4 identical entries. For 512k pages, we have 128 entries as if it was
162  * 4k pages, but they are flagged as 512k pages for the hardware.
163  * For 8M pages, we have 1024 entries as if it was 4M pages (PMD_SIZE)
164  * but they are flagged as 8M pages for the hardware.
165  * For 4k pages, we have a single entry in the table.
166  */
167 static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
168 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address);
169 
ptep_is_8m_pmdp(struct mm_struct * mm,unsigned long addr,pte_t * ptep)170 static inline bool ptep_is_8m_pmdp(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
171 {
172 	return (pmd_t *)ptep == pmd_off(mm, ALIGN_DOWN(addr, SZ_8M));
173 }
174 
number_of_cells_per_pte(pmd_t * pmd,pte_basic_t val,int huge)175 static inline int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
176 {
177 	if (!huge)
178 		return PAGE_SIZE / SZ_4K;
179 	else if ((pmd_val(*pmd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M)
180 		return SZ_4M / SZ_4K;
181 	else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
182 		return SZ_16K / SZ_4K;
183 	else
184 		return SZ_512K / SZ_4K;
185 }
186 
__pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)187 static inline pte_basic_t __pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
188 				       unsigned long clr, unsigned long set, int huge)
189 {
190 	pte_basic_t *entry = (pte_basic_t *)p;
191 	pte_basic_t old = pte_val(*p);
192 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
193 	int num, i;
194 	pmd_t *pmd = pmd_off(mm, addr);
195 
196 	num = number_of_cells_per_pte(pmd, new, huge);
197 
198 	for (i = 0; i < num; i += PAGE_SIZE / SZ_4K, new += PAGE_SIZE) {
199 		*entry++ = new;
200 		if (IS_ENABLED(CONFIG_PPC_16K_PAGES)) {
201 			*entry++ = new;
202 			*entry++ = new;
203 			*entry++ = new;
204 		}
205 	}
206 
207 	return old;
208 }
209 
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)210 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
211 				     unsigned long clr, unsigned long set, int huge)
212 {
213 	pte_basic_t old;
214 
215 	if (huge && ptep_is_8m_pmdp(mm, addr, ptep)) {
216 		pmd_t *pmdp = (pmd_t *)ptep;
217 
218 		old = __pte_update(mm, addr, pte_offset_kernel(pmdp, 0), clr, set, huge);
219 		__pte_update(mm, addr, pte_offset_kernel(pmdp + 1, 0), clr, set, huge);
220 	} else {
221 		old = __pte_update(mm, addr, ptep, clr, set, huge);
222 	}
223 	return old;
224 }
225 #define pte_update pte_update
226 
227 #ifdef CONFIG_PPC_16K_PAGES
228 #define ptep_get ptep_get
ptep_get(pte_t * ptep)229 static inline pte_t ptep_get(pte_t *ptep)
230 {
231 	pte_basic_t val = READ_ONCE(ptep->pte);
232 	pte_t pte = {val, val, val, val};
233 
234 	return pte;
235 }
236 #endif /* CONFIG_PPC_16K_PAGES */
237 
238 #endif
239 
240 #endif /* __KERNEL__ */
241 #endif /*  _ASM_POWERPC_NOHASH_32_PTE_8xx_H */
242