1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include <api/io_dir.h>
48 #include "asm/bug.h"
49 #include "tool.h"
50 #include "time-utils.h"
51 #include "units.h"
52 #include "util/util.h" // perf_exe()
53 #include "cputopo.h"
54 #include "bpf-event.h"
55 #include "bpf-utils.h"
56 #include "clockid.h"
57
58 #include <linux/ctype.h>
59 #include <internal/lib.h>
60
61 #ifdef HAVE_LIBTRACEEVENT
62 #include <event-parse.h>
63 #endif
64
65 /*
66 * magic2 = "PERFILE2"
67 * must be a numerical value to let the endianness
68 * determine the memory layout. That way we are able
69 * to detect endianness when reading the perf.data file
70 * back.
71 *
72 * we check for legacy (PERFFILE) format.
73 */
74 static const char *__perf_magic1 = "PERFFILE";
75 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
77
78 #define PERF_MAGIC __perf_magic2
79
80 const char perf_version_string[] = PERF_VERSION;
81
82 struct perf_file_attr {
83 struct perf_event_attr attr;
84 struct perf_file_section ids;
85 };
86
perf_header__set_feat(struct perf_header * header,int feat)87 void perf_header__set_feat(struct perf_header *header, int feat)
88 {
89 __set_bit(feat, header->adds_features);
90 }
91
perf_header__clear_feat(struct perf_header * header,int feat)92 void perf_header__clear_feat(struct perf_header *header, int feat)
93 {
94 __clear_bit(feat, header->adds_features);
95 }
96
perf_header__has_feat(const struct perf_header * header,int feat)97 bool perf_header__has_feat(const struct perf_header *header, int feat)
98 {
99 return test_bit(feat, header->adds_features);
100 }
101
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
103 {
104 ssize_t ret = writen(ff->fd, buf, size);
105
106 if (ret != (ssize_t)size)
107 return ret < 0 ? (int)ret : -1;
108 return 0;
109 }
110
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
112 {
113 /* struct perf_event_header::size is u16 */
114 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
115 size_t new_size = ff->size;
116 void *addr;
117
118 if (size + ff->offset > max_size)
119 return -E2BIG;
120
121 while (size > (new_size - ff->offset))
122 new_size <<= 1;
123 new_size = min(max_size, new_size);
124
125 if (ff->size < new_size) {
126 addr = realloc(ff->buf, new_size);
127 if (!addr)
128 return -ENOMEM;
129 ff->buf = addr;
130 ff->size = new_size;
131 }
132
133 memcpy(ff->buf + ff->offset, buf, size);
134 ff->offset += size;
135
136 return 0;
137 }
138
139 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)140 int do_write(struct feat_fd *ff, const void *buf, size_t size)
141 {
142 if (!ff->buf)
143 return __do_write_fd(ff, buf, size);
144 return __do_write_buf(ff, buf, size);
145 }
146
147 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
149 {
150 u64 *p = (u64 *) set;
151 int i, ret;
152
153 ret = do_write(ff, &size, sizeof(size));
154 if (ret < 0)
155 return ret;
156
157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
158 ret = do_write(ff, p + i, sizeof(*p));
159 if (ret < 0)
160 return ret;
161 }
162
163 return 0;
164 }
165
166 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)167 int write_padded(struct feat_fd *ff, const void *bf,
168 size_t count, size_t count_aligned)
169 {
170 static const char zero_buf[NAME_ALIGN];
171 int err = do_write(ff, bf, count);
172
173 if (!err)
174 err = do_write(ff, zero_buf, count_aligned - count);
175
176 return err;
177 }
178
179 #define string_size(str) \
180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
181
182 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)183 static int do_write_string(struct feat_fd *ff, const char *str)
184 {
185 u32 len, olen;
186 int ret;
187
188 olen = strlen(str) + 1;
189 len = PERF_ALIGN(olen, NAME_ALIGN);
190
191 /* write len, incl. \0 */
192 ret = do_write(ff, &len, sizeof(len));
193 if (ret < 0)
194 return ret;
195
196 return write_padded(ff, str, olen, len);
197 }
198
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
200 {
201 ssize_t ret = readn(ff->fd, addr, size);
202
203 if (ret != size)
204 return ret < 0 ? (int)ret : -1;
205 return 0;
206 }
207
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 if (size > (ssize_t)ff->size - ff->offset)
211 return -1;
212
213 memcpy(addr, ff->buf + ff->offset, size);
214 ff->offset += size;
215
216 return 0;
217
218 }
219
__do_read(struct feat_fd * ff,void * addr,ssize_t size)220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
221 {
222 if (!ff->buf)
223 return __do_read_fd(ff, addr, size);
224 return __do_read_buf(ff, addr, size);
225 }
226
do_read_u32(struct feat_fd * ff,u32 * addr)227 static int do_read_u32(struct feat_fd *ff, u32 *addr)
228 {
229 int ret;
230
231 ret = __do_read(ff, addr, sizeof(*addr));
232 if (ret)
233 return ret;
234
235 if (ff->ph->needs_swap)
236 *addr = bswap_32(*addr);
237 return 0;
238 }
239
do_read_u64(struct feat_fd * ff,u64 * addr)240 static int do_read_u64(struct feat_fd *ff, u64 *addr)
241 {
242 int ret;
243
244 ret = __do_read(ff, addr, sizeof(*addr));
245 if (ret)
246 return ret;
247
248 if (ff->ph->needs_swap)
249 *addr = bswap_64(*addr);
250 return 0;
251 }
252
do_read_string(struct feat_fd * ff)253 static char *do_read_string(struct feat_fd *ff)
254 {
255 u32 len;
256 char *buf;
257
258 if (do_read_u32(ff, &len))
259 return NULL;
260
261 buf = malloc(len);
262 if (!buf)
263 return NULL;
264
265 if (!__do_read(ff, buf, len)) {
266 /*
267 * strings are padded by zeroes
268 * thus the actual strlen of buf
269 * may be less than len
270 */
271 return buf;
272 }
273
274 free(buf);
275 return NULL;
276 }
277
278 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
280 {
281 unsigned long *set;
282 u64 size, *p;
283 int i, ret;
284
285 ret = do_read_u64(ff, &size);
286 if (ret)
287 return ret;
288
289 set = bitmap_zalloc(size);
290 if (!set)
291 return -ENOMEM;
292
293 p = (u64 *) set;
294
295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
296 ret = do_read_u64(ff, p + i);
297 if (ret < 0) {
298 free(set);
299 return ret;
300 }
301 }
302
303 *pset = set;
304 *psize = size;
305 return 0;
306 }
307
308 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)309 static int write_tracing_data(struct feat_fd *ff,
310 struct evlist *evlist)
311 {
312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
313 return -1;
314
315 return read_tracing_data(ff->fd, &evlist->core.entries);
316 }
317 #endif
318
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)319 static int write_build_id(struct feat_fd *ff,
320 struct evlist *evlist __maybe_unused)
321 {
322 struct perf_session *session;
323 int err;
324
325 session = container_of(ff->ph, struct perf_session, header);
326
327 if (!perf_session__read_build_ids(session, true))
328 return -1;
329
330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
331 return -1;
332
333 err = perf_session__write_buildid_table(session, ff);
334 if (err < 0) {
335 pr_debug("failed to write buildid table\n");
336 return err;
337 }
338 perf_session__cache_build_ids(session);
339
340 return 0;
341 }
342
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)343 static int write_hostname(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
345 {
346 struct utsname uts;
347 int ret;
348
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
352
353 return do_write_string(ff, uts.nodename);
354 }
355
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)356 static int write_osrelease(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
358 {
359 struct utsname uts;
360 int ret;
361
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
365
366 return do_write_string(ff, uts.release);
367 }
368
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)369 static int write_arch(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
371 {
372 struct utsname uts;
373 int ret;
374
375 ret = uname(&uts);
376 if (ret < 0)
377 return -1;
378
379 return do_write_string(ff, uts.machine);
380 }
381
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)382 static int write_version(struct feat_fd *ff,
383 struct evlist *evlist __maybe_unused)
384 {
385 return do_write_string(ff, perf_version_string);
386 }
387
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)388 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
389 {
390 FILE *file;
391 char *buf = NULL;
392 char *s, *p;
393 const char *search = cpuinfo_proc;
394 size_t len = 0;
395 int ret = -1;
396
397 if (!search)
398 return -1;
399
400 file = fopen("/proc/cpuinfo", "r");
401 if (!file)
402 return -1;
403
404 while (getline(&buf, &len, file) > 0) {
405 ret = strncmp(buf, search, strlen(search));
406 if (!ret)
407 break;
408 }
409
410 if (ret) {
411 ret = -1;
412 goto done;
413 }
414
415 s = buf;
416
417 p = strchr(buf, ':');
418 if (p && *(p+1) == ' ' && *(p+2))
419 s = p + 2;
420 p = strchr(s, '\n');
421 if (p)
422 *p = '\0';
423
424 /* squash extra space characters (branding string) */
425 p = s;
426 while (*p) {
427 if (isspace(*p)) {
428 char *r = p + 1;
429 char *q = skip_spaces(r);
430 *p = ' ';
431 if (q != (p+1))
432 while ((*r++ = *q++));
433 }
434 p++;
435 }
436 ret = do_write_string(ff, s);
437 done:
438 free(buf);
439 fclose(file);
440 return ret;
441 }
442
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)443 static int write_cpudesc(struct feat_fd *ff,
444 struct evlist *evlist __maybe_unused)
445 {
446 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
447 #define CPUINFO_PROC { "cpu", }
448 #elif defined(__s390__)
449 #define CPUINFO_PROC { "vendor_id", }
450 #elif defined(__sh__)
451 #define CPUINFO_PROC { "cpu type", }
452 #elif defined(__alpha__) || defined(__mips__)
453 #define CPUINFO_PROC { "cpu model", }
454 #elif defined(__arm__)
455 #define CPUINFO_PROC { "model name", "Processor", }
456 #elif defined(__arc__)
457 #define CPUINFO_PROC { "Processor", }
458 #elif defined(__xtensa__)
459 #define CPUINFO_PROC { "core ID", }
460 #elif defined(__loongarch__)
461 #define CPUINFO_PROC { "Model Name", }
462 #else
463 #define CPUINFO_PROC { "model name", }
464 #endif
465 const char *cpuinfo_procs[] = CPUINFO_PROC;
466 #undef CPUINFO_PROC
467 unsigned int i;
468
469 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
470 int ret;
471 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
472 if (ret >= 0)
473 return ret;
474 }
475 return -1;
476 }
477
478
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)479 static int write_nrcpus(struct feat_fd *ff,
480 struct evlist *evlist __maybe_unused)
481 {
482 long nr;
483 u32 nrc, nra;
484 int ret;
485
486 nrc = cpu__max_present_cpu().cpu;
487
488 nr = sysconf(_SC_NPROCESSORS_ONLN);
489 if (nr < 0)
490 return -1;
491
492 nra = (u32)(nr & UINT_MAX);
493
494 ret = do_write(ff, &nrc, sizeof(nrc));
495 if (ret < 0)
496 return ret;
497
498 return do_write(ff, &nra, sizeof(nra));
499 }
500
write_event_desc(struct feat_fd * ff,struct evlist * evlist)501 static int write_event_desc(struct feat_fd *ff,
502 struct evlist *evlist)
503 {
504 struct evsel *evsel;
505 u32 nre, nri, sz;
506 int ret;
507
508 nre = evlist->core.nr_entries;
509
510 /*
511 * write number of events
512 */
513 ret = do_write(ff, &nre, sizeof(nre));
514 if (ret < 0)
515 return ret;
516
517 /*
518 * size of perf_event_attr struct
519 */
520 sz = (u32)sizeof(evsel->core.attr);
521 ret = do_write(ff, &sz, sizeof(sz));
522 if (ret < 0)
523 return ret;
524
525 evlist__for_each_entry(evlist, evsel) {
526 ret = do_write(ff, &evsel->core.attr, sz);
527 if (ret < 0)
528 return ret;
529 /*
530 * write number of unique id per event
531 * there is one id per instance of an event
532 *
533 * copy into an nri to be independent of the
534 * type of ids,
535 */
536 nri = evsel->core.ids;
537 ret = do_write(ff, &nri, sizeof(nri));
538 if (ret < 0)
539 return ret;
540
541 /*
542 * write event string as passed on cmdline
543 */
544 ret = do_write_string(ff, evsel__name(evsel));
545 if (ret < 0)
546 return ret;
547 /*
548 * write unique ids for this event
549 */
550 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
551 if (ret < 0)
552 return ret;
553 }
554 return 0;
555 }
556
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)557 static int write_cmdline(struct feat_fd *ff,
558 struct evlist *evlist __maybe_unused)
559 {
560 struct perf_env *env = &ff->ph->env;
561 char pbuf[MAXPATHLEN], *buf;
562 int i, ret, n;
563
564 /* actual path to perf binary */
565 buf = perf_exe(pbuf, MAXPATHLEN);
566
567 /* account for binary path */
568 n = env->nr_cmdline + 1;
569
570 ret = do_write(ff, &n, sizeof(n));
571 if (ret < 0)
572 return ret;
573
574 ret = do_write_string(ff, buf);
575 if (ret < 0)
576 return ret;
577
578 for (i = 0 ; i < env->nr_cmdline; i++) {
579 ret = do_write_string(ff, env->cmdline_argv[i]);
580 if (ret < 0)
581 return ret;
582 }
583 return 0;
584 }
585
586
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)587 static int write_cpu_topology(struct feat_fd *ff,
588 struct evlist *evlist __maybe_unused)
589 {
590 struct perf_env *env = &ff->ph->env;
591 struct cpu_topology *tp;
592 u32 i;
593 int ret, j;
594
595 tp = cpu_topology__new();
596 if (!tp)
597 return -1;
598
599 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
600 if (ret < 0)
601 goto done;
602
603 for (i = 0; i < tp->package_cpus_lists; i++) {
604 ret = do_write_string(ff, tp->package_cpus_list[i]);
605 if (ret < 0)
606 goto done;
607 }
608 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
609 if (ret < 0)
610 goto done;
611
612 for (i = 0; i < tp->core_cpus_lists; i++) {
613 ret = do_write_string(ff, tp->core_cpus_list[i]);
614 if (ret < 0)
615 break;
616 }
617
618 ret = perf_env__read_cpu_topology_map(env);
619 if (ret < 0)
620 goto done;
621
622 for (j = 0; j < env->nr_cpus_avail; j++) {
623 ret = do_write(ff, &env->cpu[j].core_id,
624 sizeof(env->cpu[j].core_id));
625 if (ret < 0)
626 return ret;
627 ret = do_write(ff, &env->cpu[j].socket_id,
628 sizeof(env->cpu[j].socket_id));
629 if (ret < 0)
630 return ret;
631 }
632
633 if (!tp->die_cpus_lists)
634 goto done;
635
636 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
637 if (ret < 0)
638 goto done;
639
640 for (i = 0; i < tp->die_cpus_lists; i++) {
641 ret = do_write_string(ff, tp->die_cpus_list[i]);
642 if (ret < 0)
643 goto done;
644 }
645
646 for (j = 0; j < env->nr_cpus_avail; j++) {
647 ret = do_write(ff, &env->cpu[j].die_id,
648 sizeof(env->cpu[j].die_id));
649 if (ret < 0)
650 return ret;
651 }
652
653 done:
654 cpu_topology__delete(tp);
655 return ret;
656 }
657
658
659
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)660 static int write_total_mem(struct feat_fd *ff,
661 struct evlist *evlist __maybe_unused)
662 {
663 char *buf = NULL;
664 FILE *fp;
665 size_t len = 0;
666 int ret = -1, n;
667 uint64_t mem;
668
669 fp = fopen("/proc/meminfo", "r");
670 if (!fp)
671 return -1;
672
673 while (getline(&buf, &len, fp) > 0) {
674 ret = strncmp(buf, "MemTotal:", 9);
675 if (!ret)
676 break;
677 }
678 if (!ret) {
679 n = sscanf(buf, "%*s %"PRIu64, &mem);
680 if (n == 1)
681 ret = do_write(ff, &mem, sizeof(mem));
682 } else
683 ret = -1;
684 free(buf);
685 fclose(fp);
686 return ret;
687 }
688
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)689 static int write_numa_topology(struct feat_fd *ff,
690 struct evlist *evlist __maybe_unused)
691 {
692 struct numa_topology *tp;
693 int ret = -1;
694 u32 i;
695
696 tp = numa_topology__new();
697 if (!tp)
698 return -ENOMEM;
699
700 ret = do_write(ff, &tp->nr, sizeof(u32));
701 if (ret < 0)
702 goto err;
703
704 for (i = 0; i < tp->nr; i++) {
705 struct numa_topology_node *n = &tp->nodes[i];
706
707 ret = do_write(ff, &n->node, sizeof(u32));
708 if (ret < 0)
709 goto err;
710
711 ret = do_write(ff, &n->mem_total, sizeof(u64));
712 if (ret)
713 goto err;
714
715 ret = do_write(ff, &n->mem_free, sizeof(u64));
716 if (ret)
717 goto err;
718
719 ret = do_write_string(ff, n->cpus);
720 if (ret < 0)
721 goto err;
722 }
723
724 ret = 0;
725
726 err:
727 numa_topology__delete(tp);
728 return ret;
729 }
730
731 /*
732 * File format:
733 *
734 * struct pmu_mappings {
735 * u32 pmu_num;
736 * struct pmu_map {
737 * u32 type;
738 * char name[];
739 * }[pmu_num];
740 * };
741 */
742
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)743 static int write_pmu_mappings(struct feat_fd *ff,
744 struct evlist *evlist __maybe_unused)
745 {
746 struct perf_pmu *pmu = NULL;
747 u32 pmu_num = 0;
748 int ret;
749
750 /*
751 * Do a first pass to count number of pmu to avoid lseek so this
752 * works in pipe mode as well.
753 */
754 while ((pmu = perf_pmus__scan(pmu)))
755 pmu_num++;
756
757 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
758 if (ret < 0)
759 return ret;
760
761 while ((pmu = perf_pmus__scan(pmu))) {
762 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
763 if (ret < 0)
764 return ret;
765
766 ret = do_write_string(ff, pmu->name);
767 if (ret < 0)
768 return ret;
769 }
770
771 return 0;
772 }
773
774 /*
775 * File format:
776 *
777 * struct group_descs {
778 * u32 nr_groups;
779 * struct group_desc {
780 * char name[];
781 * u32 leader_idx;
782 * u32 nr_members;
783 * }[nr_groups];
784 * };
785 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)786 static int write_group_desc(struct feat_fd *ff,
787 struct evlist *evlist)
788 {
789 u32 nr_groups = evlist__nr_groups(evlist);
790 struct evsel *evsel;
791 int ret;
792
793 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
794 if (ret < 0)
795 return ret;
796
797 evlist__for_each_entry(evlist, evsel) {
798 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
799 const char *name = evsel->group_name ?: "{anon_group}";
800 u32 leader_idx = evsel->core.idx;
801 u32 nr_members = evsel->core.nr_members;
802
803 ret = do_write_string(ff, name);
804 if (ret < 0)
805 return ret;
806
807 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
808 if (ret < 0)
809 return ret;
810
811 ret = do_write(ff, &nr_members, sizeof(nr_members));
812 if (ret < 0)
813 return ret;
814 }
815 }
816 return 0;
817 }
818
819 /*
820 * Return the CPU id as a raw string.
821 *
822 * Each architecture should provide a more precise id string that
823 * can be use to match the architecture's "mapfile".
824 */
get_cpuid_str(struct perf_cpu cpu __maybe_unused)825 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
826 {
827 return NULL;
828 }
829
get_cpuid_allow_env_override(struct perf_cpu cpu)830 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
831 {
832 char *cpuid;
833 static bool printed;
834
835 cpuid = getenv("PERF_CPUID");
836 if (cpuid)
837 cpuid = strdup(cpuid);
838 if (!cpuid)
839 cpuid = get_cpuid_str(cpu);
840 if (!cpuid)
841 return NULL;
842
843 if (!printed) {
844 pr_debug("Using CPUID %s\n", cpuid);
845 printed = true;
846 }
847 return cpuid;
848 }
849
850 /* Return zero when the cpuid from the mapfile.csv matches the
851 * cpuid string generated on this platform.
852 * Otherwise return non-zero.
853 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)854 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
855 {
856 regex_t re;
857 regmatch_t pmatch[1];
858 int match;
859
860 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
861 /* Warn unable to generate match particular string. */
862 pr_info("Invalid regular expression %s\n", mapcpuid);
863 return 1;
864 }
865
866 match = !regexec(&re, cpuid, 1, pmatch, 0);
867 regfree(&re);
868 if (match) {
869 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
870
871 /* Verify the entire string matched. */
872 if (match_len == strlen(cpuid))
873 return 0;
874 }
875 return 1;
876 }
877
878 /*
879 * default get_cpuid(): nothing gets recorded
880 * actual implementation must be in arch/$(SRCARCH)/util/header.c
881 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused,struct perf_cpu cpu __maybe_unused)882 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
883 struct perf_cpu cpu __maybe_unused)
884 {
885 return ENOSYS; /* Not implemented */
886 }
887
write_cpuid(struct feat_fd * ff,struct evlist * evlist)888 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
889 {
890 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
891 char buffer[64];
892 int ret;
893
894 ret = get_cpuid(buffer, sizeof(buffer), cpu);
895 if (ret)
896 return -1;
897
898 return do_write_string(ff, buffer);
899 }
900
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)901 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
902 struct evlist *evlist __maybe_unused)
903 {
904 return 0;
905 }
906
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907 static int write_auxtrace(struct feat_fd *ff,
908 struct evlist *evlist __maybe_unused)
909 {
910 struct perf_session *session;
911 int err;
912
913 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
914 return -1;
915
916 session = container_of(ff->ph, struct perf_session, header);
917
918 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
919 if (err < 0)
920 pr_err("Failed to write auxtrace index\n");
921 return err;
922 }
923
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)924 static int write_clockid(struct feat_fd *ff,
925 struct evlist *evlist __maybe_unused)
926 {
927 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
928 sizeof(ff->ph->env.clock.clockid_res_ns));
929 }
930
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)931 static int write_clock_data(struct feat_fd *ff,
932 struct evlist *evlist __maybe_unused)
933 {
934 u64 *data64;
935 u32 data32;
936 int ret;
937
938 /* version */
939 data32 = 1;
940
941 ret = do_write(ff, &data32, sizeof(data32));
942 if (ret < 0)
943 return ret;
944
945 /* clockid */
946 data32 = ff->ph->env.clock.clockid;
947
948 ret = do_write(ff, &data32, sizeof(data32));
949 if (ret < 0)
950 return ret;
951
952 /* TOD ref time */
953 data64 = &ff->ph->env.clock.tod_ns;
954
955 ret = do_write(ff, data64, sizeof(*data64));
956 if (ret < 0)
957 return ret;
958
959 /* clockid ref time */
960 data64 = &ff->ph->env.clock.clockid_ns;
961
962 return do_write(ff, data64, sizeof(*data64));
963 }
964
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)965 static int write_hybrid_topology(struct feat_fd *ff,
966 struct evlist *evlist __maybe_unused)
967 {
968 struct hybrid_topology *tp;
969 int ret;
970 u32 i;
971
972 tp = hybrid_topology__new();
973 if (!tp)
974 return -ENOENT;
975
976 ret = do_write(ff, &tp->nr, sizeof(u32));
977 if (ret < 0)
978 goto err;
979
980 for (i = 0; i < tp->nr; i++) {
981 struct hybrid_topology_node *n = &tp->nodes[i];
982
983 ret = do_write_string(ff, n->pmu_name);
984 if (ret < 0)
985 goto err;
986
987 ret = do_write_string(ff, n->cpus);
988 if (ret < 0)
989 goto err;
990 }
991
992 ret = 0;
993
994 err:
995 hybrid_topology__delete(tp);
996 return ret;
997 }
998
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)999 static int write_dir_format(struct feat_fd *ff,
1000 struct evlist *evlist __maybe_unused)
1001 {
1002 struct perf_session *session;
1003 struct perf_data *data;
1004
1005 session = container_of(ff->ph, struct perf_session, header);
1006 data = session->data;
1007
1008 if (WARN_ON(!perf_data__is_dir(data)))
1009 return -1;
1010
1011 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1012 }
1013
1014 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1015 static int write_bpf_prog_info(struct feat_fd *ff,
1016 struct evlist *evlist __maybe_unused)
1017 {
1018 struct perf_env *env = &ff->ph->env;
1019 struct rb_root *root;
1020 struct rb_node *next;
1021 int ret = 0;
1022
1023 down_read(&env->bpf_progs.lock);
1024
1025 if (env->bpf_progs.infos_cnt == 0)
1026 goto out;
1027
1028 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1029 sizeof(env->bpf_progs.infos_cnt));
1030 if (ret < 0)
1031 goto out;
1032
1033 root = &env->bpf_progs.infos;
1034 next = rb_first(root);
1035 while (next) {
1036 struct bpf_prog_info_node *node;
1037 size_t len;
1038
1039 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1040 next = rb_next(&node->rb_node);
1041 len = sizeof(struct perf_bpil) +
1042 node->info_linear->data_len;
1043
1044 /* before writing to file, translate address to offset */
1045 bpil_addr_to_offs(node->info_linear);
1046 ret = do_write(ff, node->info_linear, len);
1047 /*
1048 * translate back to address even when do_write() fails,
1049 * so that this function never changes the data.
1050 */
1051 bpil_offs_to_addr(node->info_linear);
1052 if (ret < 0)
1053 goto out;
1054 }
1055 out:
1056 up_read(&env->bpf_progs.lock);
1057 return ret;
1058 }
1059
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1060 static int write_bpf_btf(struct feat_fd *ff,
1061 struct evlist *evlist __maybe_unused)
1062 {
1063 struct perf_env *env = &ff->ph->env;
1064 struct rb_root *root;
1065 struct rb_node *next;
1066 int ret = 0;
1067
1068 down_read(&env->bpf_progs.lock);
1069
1070 if (env->bpf_progs.btfs_cnt == 0)
1071 goto out;
1072
1073 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1074 sizeof(env->bpf_progs.btfs_cnt));
1075
1076 if (ret < 0)
1077 goto out;
1078
1079 root = &env->bpf_progs.btfs;
1080 next = rb_first(root);
1081 while (next) {
1082 struct btf_node *node;
1083
1084 node = rb_entry(next, struct btf_node, rb_node);
1085 next = rb_next(&node->rb_node);
1086 ret = do_write(ff, &node->id,
1087 sizeof(u32) * 2 + node->data_size);
1088 if (ret < 0)
1089 goto out;
1090 }
1091 out:
1092 up_read(&env->bpf_progs.lock);
1093 return ret;
1094 }
1095 #endif // HAVE_LIBBPF_SUPPORT
1096
cpu_cache_level__sort(const void * a,const void * b)1097 static int cpu_cache_level__sort(const void *a, const void *b)
1098 {
1099 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1100 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1101
1102 return cache_a->level - cache_b->level;
1103 }
1104
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1105 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1106 {
1107 if (a->level != b->level)
1108 return false;
1109
1110 if (a->line_size != b->line_size)
1111 return false;
1112
1113 if (a->sets != b->sets)
1114 return false;
1115
1116 if (a->ways != b->ways)
1117 return false;
1118
1119 if (strcmp(a->type, b->type))
1120 return false;
1121
1122 if (strcmp(a->size, b->size))
1123 return false;
1124
1125 if (strcmp(a->map, b->map))
1126 return false;
1127
1128 return true;
1129 }
1130
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1131 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1132 {
1133 char path[PATH_MAX], file[PATH_MAX];
1134 struct stat st;
1135 size_t len;
1136
1137 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1138 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1139
1140 if (stat(file, &st))
1141 return 1;
1142
1143 scnprintf(file, PATH_MAX, "%s/level", path);
1144 if (sysfs__read_int(file, (int *) &cache->level))
1145 return -1;
1146
1147 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1148 if (sysfs__read_int(file, (int *) &cache->line_size))
1149 return -1;
1150
1151 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1152 if (sysfs__read_int(file, (int *) &cache->sets))
1153 return -1;
1154
1155 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1156 if (sysfs__read_int(file, (int *) &cache->ways))
1157 return -1;
1158
1159 scnprintf(file, PATH_MAX, "%s/type", path);
1160 if (sysfs__read_str(file, &cache->type, &len))
1161 return -1;
1162
1163 cache->type[len] = 0;
1164 cache->type = strim(cache->type);
1165
1166 scnprintf(file, PATH_MAX, "%s/size", path);
1167 if (sysfs__read_str(file, &cache->size, &len)) {
1168 zfree(&cache->type);
1169 return -1;
1170 }
1171
1172 cache->size[len] = 0;
1173 cache->size = strim(cache->size);
1174
1175 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1176 if (sysfs__read_str(file, &cache->map, &len)) {
1177 zfree(&cache->size);
1178 zfree(&cache->type);
1179 return -1;
1180 }
1181
1182 cache->map[len] = 0;
1183 cache->map = strim(cache->map);
1184 return 0;
1185 }
1186
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1187 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1188 {
1189 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1190 }
1191
1192 /*
1193 * Build caches levels for a particular CPU from the data in
1194 * /sys/devices/system/cpu/cpu<cpu>/cache/
1195 * The cache level data is stored in caches[] from index at
1196 * *cntp.
1197 */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1198 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1199 {
1200 u16 level;
1201
1202 for (level = 0; level < MAX_CACHE_LVL; level++) {
1203 struct cpu_cache_level c;
1204 int err;
1205 u32 i;
1206
1207 err = cpu_cache_level__read(&c, cpu, level);
1208 if (err < 0)
1209 return err;
1210
1211 if (err == 1)
1212 break;
1213
1214 for (i = 0; i < *cntp; i++) {
1215 if (cpu_cache_level__cmp(&c, &caches[i]))
1216 break;
1217 }
1218
1219 if (i == *cntp) {
1220 caches[*cntp] = c;
1221 *cntp = *cntp + 1;
1222 } else
1223 cpu_cache_level__free(&c);
1224 }
1225
1226 return 0;
1227 }
1228
build_caches(struct cpu_cache_level caches[],u32 * cntp)1229 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1230 {
1231 u32 nr, cpu, cnt = 0;
1232
1233 nr = cpu__max_cpu().cpu;
1234
1235 for (cpu = 0; cpu < nr; cpu++) {
1236 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1237
1238 if (ret)
1239 return ret;
1240 }
1241 *cntp = cnt;
1242 return 0;
1243 }
1244
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1245 static int write_cache(struct feat_fd *ff,
1246 struct evlist *evlist __maybe_unused)
1247 {
1248 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1249 struct cpu_cache_level caches[max_caches];
1250 u32 cnt = 0, i, version = 1;
1251 int ret;
1252
1253 ret = build_caches(caches, &cnt);
1254 if (ret)
1255 goto out;
1256
1257 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1258
1259 ret = do_write(ff, &version, sizeof(u32));
1260 if (ret < 0)
1261 goto out;
1262
1263 ret = do_write(ff, &cnt, sizeof(u32));
1264 if (ret < 0)
1265 goto out;
1266
1267 for (i = 0; i < cnt; i++) {
1268 struct cpu_cache_level *c = &caches[i];
1269
1270 #define _W(v) \
1271 ret = do_write(ff, &c->v, sizeof(u32)); \
1272 if (ret < 0) \
1273 goto out;
1274
1275 _W(level)
1276 _W(line_size)
1277 _W(sets)
1278 _W(ways)
1279 #undef _W
1280
1281 #define _W(v) \
1282 ret = do_write_string(ff, (const char *) c->v); \
1283 if (ret < 0) \
1284 goto out;
1285
1286 _W(type)
1287 _W(size)
1288 _W(map)
1289 #undef _W
1290 }
1291
1292 out:
1293 for (i = 0; i < cnt; i++)
1294 cpu_cache_level__free(&caches[i]);
1295 return ret;
1296 }
1297
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1298 static int write_stat(struct feat_fd *ff __maybe_unused,
1299 struct evlist *evlist __maybe_unused)
1300 {
1301 return 0;
1302 }
1303
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1304 static int write_sample_time(struct feat_fd *ff,
1305 struct evlist *evlist)
1306 {
1307 int ret;
1308
1309 ret = do_write(ff, &evlist->first_sample_time,
1310 sizeof(evlist->first_sample_time));
1311 if (ret < 0)
1312 return ret;
1313
1314 return do_write(ff, &evlist->last_sample_time,
1315 sizeof(evlist->last_sample_time));
1316 }
1317
1318
memory_node__read(struct memory_node * n,unsigned long idx)1319 static int memory_node__read(struct memory_node *n, unsigned long idx)
1320 {
1321 unsigned int phys, size = 0;
1322 char path[PATH_MAX];
1323 struct io_dirent64 *ent;
1324 struct io_dir dir;
1325
1326 #define for_each_memory(mem, dir) \
1327 while ((ent = io_dir__readdir(&dir)) != NULL) \
1328 if (strcmp(ent->d_name, ".") && \
1329 strcmp(ent->d_name, "..") && \
1330 sscanf(ent->d_name, "memory%u", &mem) == 1)
1331
1332 scnprintf(path, PATH_MAX,
1333 "%s/devices/system/node/node%lu",
1334 sysfs__mountpoint(), idx);
1335
1336 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1337 if (dir.dirfd < 0) {
1338 pr_warning("failed: can't open memory sysfs data '%s'\n", path);
1339 return -1;
1340 }
1341
1342 for_each_memory(phys, dir) {
1343 size = max(phys, size);
1344 }
1345
1346 size++;
1347
1348 n->set = bitmap_zalloc(size);
1349 if (!n->set) {
1350 close(dir.dirfd);
1351 return -ENOMEM;
1352 }
1353
1354 n->node = idx;
1355 n->size = size;
1356
1357 io_dir__rewinddir(&dir);
1358
1359 for_each_memory(phys, dir) {
1360 __set_bit(phys, n->set);
1361 }
1362
1363 close(dir.dirfd);
1364 return 0;
1365 }
1366
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1367 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1368 {
1369 for (u64 i = 0; i < cnt; i++)
1370 bitmap_free(nodesp[i].set);
1371
1372 free(nodesp);
1373 }
1374
memory_node__sort(const void * a,const void * b)1375 static int memory_node__sort(const void *a, const void *b)
1376 {
1377 const struct memory_node *na = a;
1378 const struct memory_node *nb = b;
1379
1380 return na->node - nb->node;
1381 }
1382
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1383 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1384 {
1385 char path[PATH_MAX];
1386 struct io_dirent64 *ent;
1387 struct io_dir dir;
1388 int ret = 0;
1389 size_t cnt = 0, size = 0;
1390 struct memory_node *nodes = NULL;
1391
1392 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1393 sysfs__mountpoint());
1394
1395 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1396 if (dir.dirfd < 0) {
1397 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1398 __func__, path);
1399 return -1;
1400 }
1401
1402 while (!ret && (ent = io_dir__readdir(&dir))) {
1403 unsigned int idx;
1404 int r;
1405
1406 if (!strcmp(ent->d_name, ".") ||
1407 !strcmp(ent->d_name, ".."))
1408 continue;
1409
1410 r = sscanf(ent->d_name, "node%u", &idx);
1411 if (r != 1)
1412 continue;
1413
1414 if (cnt >= size) {
1415 struct memory_node *new_nodes =
1416 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1417
1418 if (!new_nodes) {
1419 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1420 ret = -ENOMEM;
1421 goto out;
1422 }
1423 nodes = new_nodes;
1424 size += 4;
1425 }
1426 ret = memory_node__read(&nodes[cnt], idx);
1427 if (!ret)
1428 cnt += 1;
1429 }
1430 out:
1431 close(dir.dirfd);
1432 if (!ret) {
1433 *cntp = cnt;
1434 *nodesp = nodes;
1435 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1436 } else
1437 memory_node__delete_nodes(nodes, cnt);
1438
1439 return ret;
1440 }
1441
1442 /*
1443 * The MEM_TOPOLOGY holds physical memory map for every
1444 * node in system. The format of data is as follows:
1445 *
1446 * 0 - version | for future changes
1447 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1448 * 16 - count | number of nodes
1449 *
1450 * For each node we store map of physical indexes for
1451 * each node:
1452 *
1453 * 32 - node id | node index
1454 * 40 - size | size of bitmap
1455 * 48 - bitmap | bitmap of memory indexes that belongs to node
1456 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1457 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1458 struct evlist *evlist __maybe_unused)
1459 {
1460 struct memory_node *nodes = NULL;
1461 u64 bsize, version = 1, i, nr = 0;
1462 int ret;
1463
1464 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1465 (unsigned long long *) &bsize);
1466 if (ret)
1467 return ret;
1468
1469 ret = build_mem_topology(&nodes, &nr);
1470 if (ret)
1471 return ret;
1472
1473 ret = do_write(ff, &version, sizeof(version));
1474 if (ret < 0)
1475 goto out;
1476
1477 ret = do_write(ff, &bsize, sizeof(bsize));
1478 if (ret < 0)
1479 goto out;
1480
1481 ret = do_write(ff, &nr, sizeof(nr));
1482 if (ret < 0)
1483 goto out;
1484
1485 for (i = 0; i < nr; i++) {
1486 struct memory_node *n = &nodes[i];
1487
1488 #define _W(v) \
1489 ret = do_write(ff, &n->v, sizeof(n->v)); \
1490 if (ret < 0) \
1491 goto out;
1492
1493 _W(node)
1494 _W(size)
1495
1496 #undef _W
1497
1498 ret = do_write_bitmap(ff, n->set, n->size);
1499 if (ret < 0)
1500 goto out;
1501 }
1502
1503 out:
1504 memory_node__delete_nodes(nodes, nr);
1505 return ret;
1506 }
1507
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1508 static int write_compressed(struct feat_fd *ff __maybe_unused,
1509 struct evlist *evlist __maybe_unused)
1510 {
1511 int ret;
1512
1513 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1514 if (ret)
1515 return ret;
1516
1517 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1518 if (ret)
1519 return ret;
1520
1521 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1522 if (ret)
1523 return ret;
1524
1525 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1526 if (ret)
1527 return ret;
1528
1529 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1530 }
1531
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1532 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1533 bool write_pmu)
1534 {
1535 struct perf_pmu_caps *caps = NULL;
1536 int ret;
1537
1538 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1539 if (ret < 0)
1540 return ret;
1541
1542 list_for_each_entry(caps, &pmu->caps, list) {
1543 ret = do_write_string(ff, caps->name);
1544 if (ret < 0)
1545 return ret;
1546
1547 ret = do_write_string(ff, caps->value);
1548 if (ret < 0)
1549 return ret;
1550 }
1551
1552 if (write_pmu) {
1553 ret = do_write_string(ff, pmu->name);
1554 if (ret < 0)
1555 return ret;
1556 }
1557
1558 return ret;
1559 }
1560
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1561 static int write_cpu_pmu_caps(struct feat_fd *ff,
1562 struct evlist *evlist __maybe_unused)
1563 {
1564 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1565 int ret;
1566
1567 if (!cpu_pmu)
1568 return -ENOENT;
1569
1570 ret = perf_pmu__caps_parse(cpu_pmu);
1571 if (ret < 0)
1572 return ret;
1573
1574 return __write_pmu_caps(ff, cpu_pmu, false);
1575 }
1576
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1577 static int write_pmu_caps(struct feat_fd *ff,
1578 struct evlist *evlist __maybe_unused)
1579 {
1580 struct perf_pmu *pmu = NULL;
1581 int nr_pmu = 0;
1582 int ret;
1583
1584 while ((pmu = perf_pmus__scan(pmu))) {
1585 if (!strcmp(pmu->name, "cpu")) {
1586 /*
1587 * The "cpu" PMU is special and covered by
1588 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1589 * counted/written here for ARM, s390 and Intel hybrid.
1590 */
1591 continue;
1592 }
1593 if (perf_pmu__caps_parse(pmu) <= 0)
1594 continue;
1595 nr_pmu++;
1596 }
1597
1598 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1599 if (ret < 0)
1600 return ret;
1601
1602 if (!nr_pmu)
1603 return 0;
1604
1605 /*
1606 * Note older perf tools assume core PMUs come first, this is a property
1607 * of perf_pmus__scan.
1608 */
1609 pmu = NULL;
1610 while ((pmu = perf_pmus__scan(pmu))) {
1611 if (!strcmp(pmu->name, "cpu")) {
1612 /* Skip as above. */
1613 continue;
1614 }
1615 if (perf_pmu__caps_parse(pmu) <= 0)
1616 continue;
1617 ret = __write_pmu_caps(ff, pmu, true);
1618 if (ret < 0)
1619 return ret;
1620 }
1621 return 0;
1622 }
1623
print_hostname(struct feat_fd * ff,FILE * fp)1624 static void print_hostname(struct feat_fd *ff, FILE *fp)
1625 {
1626 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1627 }
1628
print_osrelease(struct feat_fd * ff,FILE * fp)1629 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1630 {
1631 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1632 }
1633
print_arch(struct feat_fd * ff,FILE * fp)1634 static void print_arch(struct feat_fd *ff, FILE *fp)
1635 {
1636 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1637 }
1638
print_cpudesc(struct feat_fd * ff,FILE * fp)1639 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1640 {
1641 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1642 }
1643
print_nrcpus(struct feat_fd * ff,FILE * fp)1644 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1645 {
1646 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1647 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1648 }
1649
print_version(struct feat_fd * ff,FILE * fp)1650 static void print_version(struct feat_fd *ff, FILE *fp)
1651 {
1652 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1653 }
1654
print_cmdline(struct feat_fd * ff,FILE * fp)1655 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1656 {
1657 int nr, i;
1658
1659 nr = ff->ph->env.nr_cmdline;
1660
1661 fprintf(fp, "# cmdline : ");
1662
1663 for (i = 0; i < nr; i++) {
1664 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1665 if (!argv_i) {
1666 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1667 } else {
1668 char *mem = argv_i;
1669 do {
1670 char *quote = strchr(argv_i, '\'');
1671 if (!quote)
1672 break;
1673 *quote++ = '\0';
1674 fprintf(fp, "%s\\\'", argv_i);
1675 argv_i = quote;
1676 } while (1);
1677 fprintf(fp, "%s ", argv_i);
1678 free(mem);
1679 }
1680 }
1681 fputc('\n', fp);
1682 }
1683
print_cpu_topology(struct feat_fd * ff,FILE * fp)1684 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1685 {
1686 struct perf_header *ph = ff->ph;
1687 int cpu_nr = ph->env.nr_cpus_avail;
1688 int nr, i;
1689 char *str;
1690
1691 nr = ph->env.nr_sibling_cores;
1692 str = ph->env.sibling_cores;
1693
1694 for (i = 0; i < nr; i++) {
1695 fprintf(fp, "# sibling sockets : %s\n", str);
1696 str += strlen(str) + 1;
1697 }
1698
1699 if (ph->env.nr_sibling_dies) {
1700 nr = ph->env.nr_sibling_dies;
1701 str = ph->env.sibling_dies;
1702
1703 for (i = 0; i < nr; i++) {
1704 fprintf(fp, "# sibling dies : %s\n", str);
1705 str += strlen(str) + 1;
1706 }
1707 }
1708
1709 nr = ph->env.nr_sibling_threads;
1710 str = ph->env.sibling_threads;
1711
1712 for (i = 0; i < nr; i++) {
1713 fprintf(fp, "# sibling threads : %s\n", str);
1714 str += strlen(str) + 1;
1715 }
1716
1717 if (ph->env.nr_sibling_dies) {
1718 if (ph->env.cpu != NULL) {
1719 for (i = 0; i < cpu_nr; i++)
1720 fprintf(fp, "# CPU %d: Core ID %d, "
1721 "Die ID %d, Socket ID %d\n",
1722 i, ph->env.cpu[i].core_id,
1723 ph->env.cpu[i].die_id,
1724 ph->env.cpu[i].socket_id);
1725 } else
1726 fprintf(fp, "# Core ID, Die ID and Socket ID "
1727 "information is not available\n");
1728 } else {
1729 if (ph->env.cpu != NULL) {
1730 for (i = 0; i < cpu_nr; i++)
1731 fprintf(fp, "# CPU %d: Core ID %d, "
1732 "Socket ID %d\n",
1733 i, ph->env.cpu[i].core_id,
1734 ph->env.cpu[i].socket_id);
1735 } else
1736 fprintf(fp, "# Core ID and Socket ID "
1737 "information is not available\n");
1738 }
1739 }
1740
print_clockid(struct feat_fd * ff,FILE * fp)1741 static void print_clockid(struct feat_fd *ff, FILE *fp)
1742 {
1743 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1744 ff->ph->env.clock.clockid_res_ns * 1000);
1745 }
1746
print_clock_data(struct feat_fd * ff,FILE * fp)1747 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1748 {
1749 struct timespec clockid_ns;
1750 char tstr[64], date[64];
1751 struct timeval tod_ns;
1752 clockid_t clockid;
1753 struct tm ltime;
1754 u64 ref;
1755
1756 if (!ff->ph->env.clock.enabled) {
1757 fprintf(fp, "# reference time disabled\n");
1758 return;
1759 }
1760
1761 /* Compute TOD time. */
1762 ref = ff->ph->env.clock.tod_ns;
1763 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1764 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1765 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1766
1767 /* Compute clockid time. */
1768 ref = ff->ph->env.clock.clockid_ns;
1769 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1770 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1771 clockid_ns.tv_nsec = ref;
1772
1773 clockid = ff->ph->env.clock.clockid;
1774
1775 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1776 snprintf(tstr, sizeof(tstr), "<error>");
1777 else {
1778 strftime(date, sizeof(date), "%F %T", <ime);
1779 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1780 date, (int) tod_ns.tv_usec);
1781 }
1782
1783 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1784 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1785 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1786 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1787 clockid_name(clockid));
1788 }
1789
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1790 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1791 {
1792 int i;
1793 struct hybrid_node *n;
1794
1795 fprintf(fp, "# hybrid cpu system:\n");
1796 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1797 n = &ff->ph->env.hybrid_nodes[i];
1798 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1799 }
1800 }
1801
print_dir_format(struct feat_fd * ff,FILE * fp)1802 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1803 {
1804 struct perf_session *session;
1805 struct perf_data *data;
1806
1807 session = container_of(ff->ph, struct perf_session, header);
1808 data = session->data;
1809
1810 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1811 }
1812
1813 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1814 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1815 {
1816 struct perf_env *env = &ff->ph->env;
1817 struct rb_root *root;
1818 struct rb_node *next;
1819
1820 down_read(&env->bpf_progs.lock);
1821
1822 root = &env->bpf_progs.infos;
1823 next = rb_first(root);
1824
1825 if (!next)
1826 printf("# bpf_prog_info empty\n");
1827
1828 while (next) {
1829 struct bpf_prog_info_node *node;
1830
1831 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1832 next = rb_next(&node->rb_node);
1833
1834 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1835 env, fp);
1836 }
1837
1838 up_read(&env->bpf_progs.lock);
1839 }
1840
print_bpf_btf(struct feat_fd * ff,FILE * fp)1841 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1842 {
1843 struct perf_env *env = &ff->ph->env;
1844 struct rb_root *root;
1845 struct rb_node *next;
1846
1847 down_read(&env->bpf_progs.lock);
1848
1849 root = &env->bpf_progs.btfs;
1850 next = rb_first(root);
1851
1852 if (!next)
1853 printf("# btf info empty\n");
1854
1855 while (next) {
1856 struct btf_node *node;
1857
1858 node = rb_entry(next, struct btf_node, rb_node);
1859 next = rb_next(&node->rb_node);
1860 fprintf(fp, "# btf info of id %u\n", node->id);
1861 }
1862
1863 up_read(&env->bpf_progs.lock);
1864 }
1865 #endif // HAVE_LIBBPF_SUPPORT
1866
free_event_desc(struct evsel * events)1867 static void free_event_desc(struct evsel *events)
1868 {
1869 struct evsel *evsel;
1870
1871 if (!events)
1872 return;
1873
1874 for (evsel = events; evsel->core.attr.size; evsel++) {
1875 zfree(&evsel->name);
1876 zfree(&evsel->core.id);
1877 }
1878
1879 free(events);
1880 }
1881
perf_attr_check(struct perf_event_attr * attr)1882 static bool perf_attr_check(struct perf_event_attr *attr)
1883 {
1884 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1885 pr_warning("Reserved bits are set unexpectedly. "
1886 "Please update perf tool.\n");
1887 return false;
1888 }
1889
1890 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1891 pr_warning("Unknown sample type (0x%llx) is detected. "
1892 "Please update perf tool.\n",
1893 attr->sample_type);
1894 return false;
1895 }
1896
1897 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1898 pr_warning("Unknown read format (0x%llx) is detected. "
1899 "Please update perf tool.\n",
1900 attr->read_format);
1901 return false;
1902 }
1903
1904 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1905 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1906 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1907 "Please update perf tool.\n",
1908 attr->branch_sample_type);
1909
1910 return false;
1911 }
1912
1913 return true;
1914 }
1915
read_event_desc(struct feat_fd * ff)1916 static struct evsel *read_event_desc(struct feat_fd *ff)
1917 {
1918 struct evsel *evsel, *events = NULL;
1919 u64 *id;
1920 void *buf = NULL;
1921 u32 nre, sz, nr, i, j;
1922 size_t msz;
1923
1924 /* number of events */
1925 if (do_read_u32(ff, &nre))
1926 goto error;
1927
1928 if (do_read_u32(ff, &sz))
1929 goto error;
1930
1931 /* buffer to hold on file attr struct */
1932 buf = malloc(sz);
1933 if (!buf)
1934 goto error;
1935
1936 /* the last event terminates with evsel->core.attr.size == 0: */
1937 events = calloc(nre + 1, sizeof(*events));
1938 if (!events)
1939 goto error;
1940
1941 msz = sizeof(evsel->core.attr);
1942 if (sz < msz)
1943 msz = sz;
1944
1945 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1946 evsel->core.idx = i;
1947
1948 /*
1949 * must read entire on-file attr struct to
1950 * sync up with layout.
1951 */
1952 if (__do_read(ff, buf, sz))
1953 goto error;
1954
1955 if (ff->ph->needs_swap)
1956 perf_event__attr_swap(buf);
1957
1958 memcpy(&evsel->core.attr, buf, msz);
1959
1960 if (!perf_attr_check(&evsel->core.attr))
1961 goto error;
1962
1963 if (do_read_u32(ff, &nr))
1964 goto error;
1965
1966 if (ff->ph->needs_swap)
1967 evsel->needs_swap = true;
1968
1969 evsel->name = do_read_string(ff);
1970 if (!evsel->name)
1971 goto error;
1972
1973 if (!nr)
1974 continue;
1975
1976 id = calloc(nr, sizeof(*id));
1977 if (!id)
1978 goto error;
1979 evsel->core.ids = nr;
1980 evsel->core.id = id;
1981
1982 for (j = 0 ; j < nr; j++) {
1983 if (do_read_u64(ff, id))
1984 goto error;
1985 id++;
1986 }
1987 }
1988 out:
1989 free(buf);
1990 return events;
1991 error:
1992 free_event_desc(events);
1993 events = NULL;
1994 goto out;
1995 }
1996
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1997 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1998 void *priv __maybe_unused)
1999 {
2000 return fprintf(fp, ", %s = %s", name, val);
2001 }
2002
print_event_desc(struct feat_fd * ff,FILE * fp)2003 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2004 {
2005 struct evsel *evsel, *events;
2006 u32 j;
2007 u64 *id;
2008
2009 if (ff->events)
2010 events = ff->events;
2011 else
2012 events = read_event_desc(ff);
2013
2014 if (!events) {
2015 fprintf(fp, "# event desc: not available or unable to read\n");
2016 return;
2017 }
2018
2019 for (evsel = events; evsel->core.attr.size; evsel++) {
2020 fprintf(fp, "# event : name = %s, ", evsel->name);
2021
2022 if (evsel->core.ids) {
2023 fprintf(fp, ", id = {");
2024 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2025 if (j)
2026 fputc(',', fp);
2027 fprintf(fp, " %"PRIu64, *id);
2028 }
2029 fprintf(fp, " }");
2030 }
2031
2032 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2033
2034 fputc('\n', fp);
2035 }
2036
2037 free_event_desc(events);
2038 ff->events = NULL;
2039 }
2040
print_total_mem(struct feat_fd * ff,FILE * fp)2041 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2042 {
2043 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2044 }
2045
print_numa_topology(struct feat_fd * ff,FILE * fp)2046 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2047 {
2048 int i;
2049 struct numa_node *n;
2050
2051 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2052 n = &ff->ph->env.numa_nodes[i];
2053
2054 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2055 " free = %"PRIu64" kB\n",
2056 n->node, n->mem_total, n->mem_free);
2057
2058 fprintf(fp, "# node%u cpu list : ", n->node);
2059 cpu_map__fprintf(n->map, fp);
2060 }
2061 }
2062
print_cpuid(struct feat_fd * ff,FILE * fp)2063 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2064 {
2065 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2066 }
2067
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2068 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2069 {
2070 fprintf(fp, "# contains samples with branch stack\n");
2071 }
2072
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2073 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2074 {
2075 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2076 }
2077
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2078 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2079 {
2080 fprintf(fp, "# contains stat data\n");
2081 }
2082
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2083 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2084 {
2085 int i;
2086
2087 fprintf(fp, "# CPU cache info:\n");
2088 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2089 fprintf(fp, "# ");
2090 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2091 }
2092 }
2093
print_compressed(struct feat_fd * ff,FILE * fp)2094 static void print_compressed(struct feat_fd *ff, FILE *fp)
2095 {
2096 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2097 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2098 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2099 }
2100
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2101 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2102 {
2103 const char *delimiter = "";
2104 int i;
2105
2106 if (!nr_caps) {
2107 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2108 return;
2109 }
2110
2111 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2112 for (i = 0; i < nr_caps; i++) {
2113 fprintf(fp, "%s%s", delimiter, caps[i]);
2114 delimiter = ", ";
2115 }
2116
2117 fprintf(fp, "\n");
2118 }
2119
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2120 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2121 {
2122 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2123 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2124 }
2125
print_pmu_caps(struct feat_fd * ff,FILE * fp)2126 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2127 {
2128 struct perf_env *env = &ff->ph->env;
2129 struct pmu_caps *pmu_caps;
2130
2131 for (int i = 0; i < env->nr_pmus_with_caps; i++) {
2132 pmu_caps = &env->pmu_caps[i];
2133 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2134 pmu_caps->pmu_name);
2135 }
2136
2137 if (strcmp(perf_env__arch(env), "x86") == 0 &&
2138 perf_env__has_pmu_mapping(env, "ibs_op")) {
2139 char *max_precise = perf_env__find_pmu_cap(env, "cpu", "max_precise");
2140
2141 if (max_precise != NULL && atoi(max_precise) == 0)
2142 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2143 }
2144 }
2145
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2146 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2147 {
2148 struct perf_env *env = &ff->ph->env;
2149 const char *delimiter = "# pmu mappings: ";
2150 char *str, *tmp;
2151 u32 pmu_num;
2152 u32 type;
2153
2154 pmu_num = env->nr_pmu_mappings;
2155 if (!pmu_num) {
2156 fprintf(fp, "# pmu mappings: not available\n");
2157 return;
2158 }
2159
2160 str = env->pmu_mappings;
2161
2162 while (pmu_num) {
2163 type = strtoul(str, &tmp, 0);
2164 if (*tmp != ':')
2165 goto error;
2166
2167 str = tmp + 1;
2168 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2169
2170 delimiter = ", ";
2171 str += strlen(str) + 1;
2172 pmu_num--;
2173 }
2174
2175 fprintf(fp, "\n");
2176
2177 if (!pmu_num)
2178 return;
2179 error:
2180 fprintf(fp, "# pmu mappings: unable to read\n");
2181 }
2182
print_group_desc(struct feat_fd * ff,FILE * fp)2183 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2184 {
2185 struct perf_session *session;
2186 struct evsel *evsel;
2187 u32 nr = 0;
2188
2189 session = container_of(ff->ph, struct perf_session, header);
2190
2191 evlist__for_each_entry(session->evlist, evsel) {
2192 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2193 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2194
2195 nr = evsel->core.nr_members - 1;
2196 } else if (nr) {
2197 fprintf(fp, ",%s", evsel__name(evsel));
2198
2199 if (--nr == 0)
2200 fprintf(fp, "}\n");
2201 }
2202 }
2203 }
2204
print_sample_time(struct feat_fd * ff,FILE * fp)2205 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2206 {
2207 struct perf_session *session;
2208 char time_buf[32];
2209 double d;
2210
2211 session = container_of(ff->ph, struct perf_session, header);
2212
2213 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2214 time_buf, sizeof(time_buf));
2215 fprintf(fp, "# time of first sample : %s\n", time_buf);
2216
2217 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2218 time_buf, sizeof(time_buf));
2219 fprintf(fp, "# time of last sample : %s\n", time_buf);
2220
2221 d = (double)(session->evlist->last_sample_time -
2222 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2223
2224 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2225 }
2226
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2227 static void memory_node__fprintf(struct memory_node *n,
2228 unsigned long long bsize, FILE *fp)
2229 {
2230 char buf_map[100], buf_size[50];
2231 unsigned long long size;
2232
2233 size = bsize * bitmap_weight(n->set, n->size);
2234 unit_number__scnprintf(buf_size, 50, size);
2235
2236 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2237 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2238 }
2239
print_mem_topology(struct feat_fd * ff,FILE * fp)2240 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2241 {
2242 struct perf_env *env = &ff->ph->env;
2243 struct memory_node *nodes;
2244 int i, nr;
2245
2246 nodes = env->memory_nodes;
2247 nr = env->nr_memory_nodes;
2248
2249 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2250 nr, env->memory_bsize);
2251
2252 for (i = 0; i < nr; i++) {
2253 memory_node__fprintf(&nodes[i], env->memory_bsize, fp);
2254 }
2255 }
2256
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2257 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2258 char *filename,
2259 struct perf_session *session)
2260 {
2261 int err = -1;
2262 struct machine *machine;
2263 u16 cpumode;
2264 struct dso *dso;
2265 enum dso_space_type dso_space;
2266
2267 machine = perf_session__findnew_machine(session, bev->pid);
2268 if (!machine)
2269 goto out;
2270
2271 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2272
2273 switch (cpumode) {
2274 case PERF_RECORD_MISC_KERNEL:
2275 dso_space = DSO_SPACE__KERNEL;
2276 break;
2277 case PERF_RECORD_MISC_GUEST_KERNEL:
2278 dso_space = DSO_SPACE__KERNEL_GUEST;
2279 break;
2280 case PERF_RECORD_MISC_USER:
2281 case PERF_RECORD_MISC_GUEST_USER:
2282 dso_space = DSO_SPACE__USER;
2283 break;
2284 default:
2285 goto out;
2286 }
2287
2288 dso = machine__findnew_dso(machine, filename);
2289 if (dso != NULL) {
2290 char sbuild_id[SBUILD_ID_SIZE];
2291 struct build_id bid;
2292 size_t size = BUILD_ID_SIZE;
2293
2294 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2295 size = bev->size;
2296
2297 build_id__init(&bid, bev->data, size);
2298 dso__set_build_id(dso, &bid);
2299 dso__set_header_build_id(dso, true);
2300
2301 if (dso_space != DSO_SPACE__USER) {
2302 struct kmod_path m = { .name = NULL, };
2303
2304 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2305 dso__set_module_info(dso, &m, machine);
2306
2307 dso__set_kernel(dso, dso_space);
2308 free(m.name);
2309 }
2310
2311 build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id));
2312 pr_debug("build id event received for %s: %s [%zu]\n",
2313 dso__long_name(dso), sbuild_id, size);
2314 dso__put(dso);
2315 }
2316
2317 err = 0;
2318 out:
2319 return err;
2320 }
2321
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2322 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2323 int input, u64 offset, u64 size)
2324 {
2325 struct perf_session *session = container_of(header, struct perf_session, header);
2326 struct {
2327 struct perf_event_header header;
2328 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2329 char filename[0];
2330 } old_bev;
2331 struct perf_record_header_build_id bev;
2332 char filename[PATH_MAX];
2333 u64 limit = offset + size;
2334
2335 while (offset < limit) {
2336 ssize_t len;
2337
2338 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2339 return -1;
2340
2341 if (header->needs_swap)
2342 perf_event_header__bswap(&old_bev.header);
2343
2344 len = old_bev.header.size - sizeof(old_bev);
2345 if (readn(input, filename, len) != len)
2346 return -1;
2347
2348 bev.header = old_bev.header;
2349
2350 /*
2351 * As the pid is the missing value, we need to fill
2352 * it properly. The header.misc value give us nice hint.
2353 */
2354 bev.pid = HOST_KERNEL_ID;
2355 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2356 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2357 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2358
2359 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2360 __event_process_build_id(&bev, filename, session);
2361
2362 offset += bev.header.size;
2363 }
2364
2365 return 0;
2366 }
2367
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2368 static int perf_header__read_build_ids(struct perf_header *header,
2369 int input, u64 offset, u64 size)
2370 {
2371 struct perf_session *session = container_of(header, struct perf_session, header);
2372 struct perf_record_header_build_id bev;
2373 char filename[PATH_MAX];
2374 u64 limit = offset + size, orig_offset = offset;
2375 int err = -1;
2376
2377 while (offset < limit) {
2378 ssize_t len;
2379
2380 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2381 goto out;
2382
2383 if (header->needs_swap)
2384 perf_event_header__bswap(&bev.header);
2385
2386 len = bev.header.size - sizeof(bev);
2387 if (readn(input, filename, len) != len)
2388 goto out;
2389 /*
2390 * The a1645ce1 changeset:
2391 *
2392 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2393 *
2394 * Added a field to struct perf_record_header_build_id that broke the file
2395 * format.
2396 *
2397 * Since the kernel build-id is the first entry, process the
2398 * table using the old format if the well known
2399 * '[kernel.kallsyms]' string for the kernel build-id has the
2400 * first 4 characters chopped off (where the pid_t sits).
2401 */
2402 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2403 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2404 return -1;
2405 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2406 }
2407
2408 __event_process_build_id(&bev, filename, session);
2409
2410 offset += bev.header.size;
2411 }
2412 err = 0;
2413 out:
2414 return err;
2415 }
2416
2417 /* Macro for features that simply need to read and store a string. */
2418 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2419 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2420 {\
2421 free(ff->ph->env.__feat_env); \
2422 ff->ph->env.__feat_env = do_read_string(ff); \
2423 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2424 }
2425
2426 FEAT_PROCESS_STR_FUN(hostname, hostname);
2427 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2428 FEAT_PROCESS_STR_FUN(version, version);
2429 FEAT_PROCESS_STR_FUN(arch, arch);
2430 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2431 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2432
2433 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2434 static int process_tracing_data(struct feat_fd *ff, void *data)
2435 {
2436 ssize_t ret = trace_report(ff->fd, data, false);
2437
2438 return ret < 0 ? -1 : 0;
2439 }
2440 #endif
2441
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2442 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2443 {
2444 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2445 pr_debug("Failed to read buildids, continuing...\n");
2446 return 0;
2447 }
2448
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2449 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2450 {
2451 struct perf_env *env = &ff->ph->env;
2452 int ret;
2453 u32 nr_cpus_avail, nr_cpus_online;
2454
2455 ret = do_read_u32(ff, &nr_cpus_avail);
2456 if (ret)
2457 return ret;
2458
2459 ret = do_read_u32(ff, &nr_cpus_online);
2460 if (ret)
2461 return ret;
2462 env->nr_cpus_avail = (int)nr_cpus_avail;
2463 env->nr_cpus_online = (int)nr_cpus_online;
2464 return 0;
2465 }
2466
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2467 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2468 {
2469 struct perf_env *env = &ff->ph->env;
2470 u64 total_mem;
2471 int ret;
2472
2473 ret = do_read_u64(ff, &total_mem);
2474 if (ret)
2475 return -1;
2476 env->total_mem = (unsigned long long)total_mem;
2477 return 0;
2478 }
2479
evlist__find_by_index(struct evlist * evlist,int idx)2480 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2481 {
2482 struct evsel *evsel;
2483
2484 evlist__for_each_entry(evlist, evsel) {
2485 if (evsel->core.idx == idx)
2486 return evsel;
2487 }
2488
2489 return NULL;
2490 }
2491
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2492 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2493 {
2494 struct evsel *evsel;
2495
2496 if (!event->name)
2497 return;
2498
2499 evsel = evlist__find_by_index(evlist, event->core.idx);
2500 if (!evsel)
2501 return;
2502
2503 if (evsel->name)
2504 return;
2505
2506 evsel->name = strdup(event->name);
2507 }
2508
2509 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2510 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2511 {
2512 struct perf_session *session;
2513 struct evsel *evsel, *events = read_event_desc(ff);
2514
2515 if (!events)
2516 return 0;
2517
2518 session = container_of(ff->ph, struct perf_session, header);
2519
2520 if (session->data->is_pipe) {
2521 /* Save events for reading later by print_event_desc,
2522 * since they can't be read again in pipe mode. */
2523 ff->events = events;
2524 }
2525
2526 for (evsel = events; evsel->core.attr.size; evsel++)
2527 evlist__set_event_name(session->evlist, evsel);
2528
2529 if (!session->data->is_pipe)
2530 free_event_desc(events);
2531
2532 return 0;
2533 }
2534
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2535 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2536 {
2537 struct perf_env *env = &ff->ph->env;
2538 char *str, *cmdline = NULL, **argv = NULL;
2539 u32 nr, i, len = 0;
2540
2541 if (do_read_u32(ff, &nr))
2542 return -1;
2543
2544 env->nr_cmdline = nr;
2545
2546 cmdline = zalloc(ff->size + nr + 1);
2547 if (!cmdline)
2548 return -1;
2549
2550 argv = zalloc(sizeof(char *) * (nr + 1));
2551 if (!argv)
2552 goto error;
2553
2554 for (i = 0; i < nr; i++) {
2555 str = do_read_string(ff);
2556 if (!str)
2557 goto error;
2558
2559 argv[i] = cmdline + len;
2560 memcpy(argv[i], str, strlen(str) + 1);
2561 len += strlen(str) + 1;
2562 free(str);
2563 }
2564 env->cmdline = cmdline;
2565 env->cmdline_argv = (const char **) argv;
2566 return 0;
2567
2568 error:
2569 free(argv);
2570 free(cmdline);
2571 return -1;
2572 }
2573
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2574 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2575 {
2576 u32 nr, i;
2577 char *str = NULL;
2578 struct strbuf sb;
2579 struct perf_env *env = &ff->ph->env;
2580 int cpu_nr = env->nr_cpus_avail;
2581 u64 size = 0;
2582
2583 env->cpu = calloc(cpu_nr, sizeof(*env->cpu));
2584 if (!env->cpu)
2585 return -1;
2586
2587 if (do_read_u32(ff, &nr))
2588 goto free_cpu;
2589
2590 env->nr_sibling_cores = nr;
2591 size += sizeof(u32);
2592 if (strbuf_init(&sb, 128) < 0)
2593 goto free_cpu;
2594
2595 for (i = 0; i < nr; i++) {
2596 str = do_read_string(ff);
2597 if (!str)
2598 goto error;
2599
2600 /* include a NULL character at the end */
2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2602 goto error;
2603 size += string_size(str);
2604 zfree(&str);
2605 }
2606 env->sibling_cores = strbuf_detach(&sb, NULL);
2607
2608 if (do_read_u32(ff, &nr))
2609 return -1;
2610
2611 env->nr_sibling_threads = nr;
2612 size += sizeof(u32);
2613
2614 for (i = 0; i < nr; i++) {
2615 str = do_read_string(ff);
2616 if (!str)
2617 goto error;
2618
2619 /* include a NULL character at the end */
2620 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2621 goto error;
2622 size += string_size(str);
2623 zfree(&str);
2624 }
2625 env->sibling_threads = strbuf_detach(&sb, NULL);
2626
2627 /*
2628 * The header may be from old perf,
2629 * which doesn't include core id and socket id information.
2630 */
2631 if (ff->size <= size) {
2632 zfree(&env->cpu);
2633 return 0;
2634 }
2635
2636 for (i = 0; i < (u32)cpu_nr; i++) {
2637 if (do_read_u32(ff, &nr))
2638 goto free_cpu;
2639
2640 env->cpu[i].core_id = nr;
2641 size += sizeof(u32);
2642
2643 if (do_read_u32(ff, &nr))
2644 goto free_cpu;
2645
2646 env->cpu[i].socket_id = nr;
2647 size += sizeof(u32);
2648 }
2649
2650 /*
2651 * The header may be from old perf,
2652 * which doesn't include die information.
2653 */
2654 if (ff->size <= size)
2655 return 0;
2656
2657 if (do_read_u32(ff, &nr))
2658 return -1;
2659
2660 env->nr_sibling_dies = nr;
2661 size += sizeof(u32);
2662
2663 for (i = 0; i < nr; i++) {
2664 str = do_read_string(ff);
2665 if (!str)
2666 goto error;
2667
2668 /* include a NULL character at the end */
2669 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2670 goto error;
2671 size += string_size(str);
2672 zfree(&str);
2673 }
2674 env->sibling_dies = strbuf_detach(&sb, NULL);
2675
2676 for (i = 0; i < (u32)cpu_nr; i++) {
2677 if (do_read_u32(ff, &nr))
2678 goto free_cpu;
2679
2680 env->cpu[i].die_id = nr;
2681 }
2682
2683 return 0;
2684
2685 error:
2686 strbuf_release(&sb);
2687 zfree(&str);
2688 free_cpu:
2689 zfree(&env->cpu);
2690 return -1;
2691 }
2692
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2693 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2694 {
2695 struct perf_env *env = &ff->ph->env;
2696 struct numa_node *nodes, *n;
2697 u32 nr, i;
2698 char *str;
2699
2700 /* nr nodes */
2701 if (do_read_u32(ff, &nr))
2702 return -1;
2703
2704 nodes = zalloc(sizeof(*nodes) * nr);
2705 if (!nodes)
2706 return -ENOMEM;
2707
2708 for (i = 0; i < nr; i++) {
2709 n = &nodes[i];
2710
2711 /* node number */
2712 if (do_read_u32(ff, &n->node))
2713 goto error;
2714
2715 if (do_read_u64(ff, &n->mem_total))
2716 goto error;
2717
2718 if (do_read_u64(ff, &n->mem_free))
2719 goto error;
2720
2721 str = do_read_string(ff);
2722 if (!str)
2723 goto error;
2724
2725 n->map = perf_cpu_map__new(str);
2726 free(str);
2727 if (!n->map)
2728 goto error;
2729 }
2730 env->nr_numa_nodes = nr;
2731 env->numa_nodes = nodes;
2732 return 0;
2733
2734 error:
2735 free(nodes);
2736 return -1;
2737 }
2738
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2739 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2740 {
2741 struct perf_env *env = &ff->ph->env;
2742 char *name;
2743 u32 pmu_num;
2744 u32 type;
2745 struct strbuf sb;
2746
2747 if (do_read_u32(ff, &pmu_num))
2748 return -1;
2749
2750 if (!pmu_num) {
2751 pr_debug("pmu mappings not available\n");
2752 return 0;
2753 }
2754
2755 env->nr_pmu_mappings = pmu_num;
2756 if (strbuf_init(&sb, 128) < 0)
2757 return -1;
2758
2759 while (pmu_num) {
2760 if (do_read_u32(ff, &type))
2761 goto error;
2762
2763 name = do_read_string(ff);
2764 if (!name)
2765 goto error;
2766
2767 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2768 goto error;
2769 /* include a NULL character at the end */
2770 if (strbuf_add(&sb, "", 1) < 0)
2771 goto error;
2772
2773 if (!strcmp(name, "msr"))
2774 env->msr_pmu_type = type;
2775
2776 free(name);
2777 pmu_num--;
2778 }
2779 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */
2780 free(env->pmu_mappings);
2781 env->pmu_mappings = strbuf_detach(&sb, NULL);
2782 return 0;
2783
2784 error:
2785 strbuf_release(&sb);
2786 return -1;
2787 }
2788
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2789 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2790 {
2791 struct perf_env *env = &ff->ph->env;
2792 size_t ret = -1;
2793 u32 i, nr, nr_groups;
2794 struct perf_session *session;
2795 struct evsel *evsel, *leader = NULL;
2796 struct group_desc {
2797 char *name;
2798 u32 leader_idx;
2799 u32 nr_members;
2800 } *desc;
2801
2802 if (do_read_u32(ff, &nr_groups))
2803 return -1;
2804
2805 env->nr_groups = nr_groups;
2806 if (!nr_groups) {
2807 pr_debug("group desc not available\n");
2808 return 0;
2809 }
2810
2811 desc = calloc(nr_groups, sizeof(*desc));
2812 if (!desc)
2813 return -1;
2814
2815 for (i = 0; i < nr_groups; i++) {
2816 desc[i].name = do_read_string(ff);
2817 if (!desc[i].name)
2818 goto out_free;
2819
2820 if (do_read_u32(ff, &desc[i].leader_idx))
2821 goto out_free;
2822
2823 if (do_read_u32(ff, &desc[i].nr_members))
2824 goto out_free;
2825 }
2826
2827 /*
2828 * Rebuild group relationship based on the group_desc
2829 */
2830 session = container_of(ff->ph, struct perf_session, header);
2831
2832 i = nr = 0;
2833 evlist__for_each_entry(session->evlist, evsel) {
2834 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2835 evsel__set_leader(evsel, evsel);
2836 /* {anon_group} is a dummy name */
2837 if (strcmp(desc[i].name, "{anon_group}")) {
2838 evsel->group_name = desc[i].name;
2839 desc[i].name = NULL;
2840 }
2841 evsel->core.nr_members = desc[i].nr_members;
2842
2843 if (i >= nr_groups || nr > 0) {
2844 pr_debug("invalid group desc\n");
2845 goto out_free;
2846 }
2847
2848 leader = evsel;
2849 nr = evsel->core.nr_members - 1;
2850 i++;
2851 } else if (nr) {
2852 /* This is a group member */
2853 evsel__set_leader(evsel, leader);
2854
2855 nr--;
2856 }
2857 }
2858
2859 if (i != nr_groups || nr != 0) {
2860 pr_debug("invalid group desc\n");
2861 goto out_free;
2862 }
2863
2864 ret = 0;
2865 out_free:
2866 for (i = 0; i < nr_groups; i++)
2867 zfree(&desc[i].name);
2868 free(desc);
2869
2870 return ret;
2871 }
2872
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2873 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2874 {
2875 struct perf_session *session;
2876 int err;
2877
2878 session = container_of(ff->ph, struct perf_session, header);
2879
2880 err = auxtrace_index__process(ff->fd, ff->size, session,
2881 ff->ph->needs_swap);
2882 if (err < 0)
2883 pr_err("Failed to process auxtrace index\n");
2884 return err;
2885 }
2886
process_cache(struct feat_fd * ff,void * data __maybe_unused)2887 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2888 {
2889 struct perf_env *env = &ff->ph->env;
2890 struct cpu_cache_level *caches;
2891 u32 cnt, i, version;
2892
2893 if (do_read_u32(ff, &version))
2894 return -1;
2895
2896 if (version != 1)
2897 return -1;
2898
2899 if (do_read_u32(ff, &cnt))
2900 return -1;
2901
2902 caches = zalloc(sizeof(*caches) * cnt);
2903 if (!caches)
2904 return -1;
2905
2906 for (i = 0; i < cnt; i++) {
2907 struct cpu_cache_level *c = &caches[i];
2908
2909 #define _R(v) \
2910 if (do_read_u32(ff, &c->v)) \
2911 goto out_free_caches; \
2912
2913 _R(level)
2914 _R(line_size)
2915 _R(sets)
2916 _R(ways)
2917 #undef _R
2918
2919 #define _R(v) \
2920 c->v = do_read_string(ff); \
2921 if (!c->v) \
2922 goto out_free_caches; \
2923
2924 _R(type)
2925 _R(size)
2926 _R(map)
2927 #undef _R
2928 }
2929
2930 env->caches = caches;
2931 env->caches_cnt = cnt;
2932 return 0;
2933 out_free_caches:
2934 for (i = 0; i < cnt; i++) {
2935 free(caches[i].type);
2936 free(caches[i].size);
2937 free(caches[i].map);
2938 }
2939 free(caches);
2940 return -1;
2941 }
2942
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2943 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2944 {
2945 struct perf_session *session;
2946 u64 first_sample_time, last_sample_time;
2947 int ret;
2948
2949 session = container_of(ff->ph, struct perf_session, header);
2950
2951 ret = do_read_u64(ff, &first_sample_time);
2952 if (ret)
2953 return -1;
2954
2955 ret = do_read_u64(ff, &last_sample_time);
2956 if (ret)
2957 return -1;
2958
2959 session->evlist->first_sample_time = first_sample_time;
2960 session->evlist->last_sample_time = last_sample_time;
2961 return 0;
2962 }
2963
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2964 static int process_mem_topology(struct feat_fd *ff,
2965 void *data __maybe_unused)
2966 {
2967 struct perf_env *env = &ff->ph->env;
2968 struct memory_node *nodes;
2969 u64 version, i, nr, bsize;
2970 int ret = -1;
2971
2972 if (do_read_u64(ff, &version))
2973 return -1;
2974
2975 if (version != 1)
2976 return -1;
2977
2978 if (do_read_u64(ff, &bsize))
2979 return -1;
2980
2981 if (do_read_u64(ff, &nr))
2982 return -1;
2983
2984 nodes = zalloc(sizeof(*nodes) * nr);
2985 if (!nodes)
2986 return -1;
2987
2988 for (i = 0; i < nr; i++) {
2989 struct memory_node n;
2990
2991 #define _R(v) \
2992 if (do_read_u64(ff, &n.v)) \
2993 goto out; \
2994
2995 _R(node)
2996 _R(size)
2997
2998 #undef _R
2999
3000 if (do_read_bitmap(ff, &n.set, &n.size))
3001 goto out;
3002
3003 nodes[i] = n;
3004 }
3005
3006 env->memory_bsize = bsize;
3007 env->memory_nodes = nodes;
3008 env->nr_memory_nodes = nr;
3009 ret = 0;
3010
3011 out:
3012 if (ret)
3013 free(nodes);
3014 return ret;
3015 }
3016
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3017 static int process_clockid(struct feat_fd *ff,
3018 void *data __maybe_unused)
3019 {
3020 struct perf_env *env = &ff->ph->env;
3021
3022 if (do_read_u64(ff, &env->clock.clockid_res_ns))
3023 return -1;
3024
3025 return 0;
3026 }
3027
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3028 static int process_clock_data(struct feat_fd *ff,
3029 void *_data __maybe_unused)
3030 {
3031 struct perf_env *env = &ff->ph->env;
3032 u32 data32;
3033 u64 data64;
3034
3035 /* version */
3036 if (do_read_u32(ff, &data32))
3037 return -1;
3038
3039 if (data32 != 1)
3040 return -1;
3041
3042 /* clockid */
3043 if (do_read_u32(ff, &data32))
3044 return -1;
3045
3046 env->clock.clockid = data32;
3047
3048 /* TOD ref time */
3049 if (do_read_u64(ff, &data64))
3050 return -1;
3051
3052 env->clock.tod_ns = data64;
3053
3054 /* clockid ref time */
3055 if (do_read_u64(ff, &data64))
3056 return -1;
3057
3058 env->clock.clockid_ns = data64;
3059 env->clock.enabled = true;
3060 return 0;
3061 }
3062
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3063 static int process_hybrid_topology(struct feat_fd *ff,
3064 void *data __maybe_unused)
3065 {
3066 struct perf_env *env = &ff->ph->env;
3067 struct hybrid_node *nodes, *n;
3068 u32 nr, i;
3069
3070 /* nr nodes */
3071 if (do_read_u32(ff, &nr))
3072 return -1;
3073
3074 nodes = zalloc(sizeof(*nodes) * nr);
3075 if (!nodes)
3076 return -ENOMEM;
3077
3078 for (i = 0; i < nr; i++) {
3079 n = &nodes[i];
3080
3081 n->pmu_name = do_read_string(ff);
3082 if (!n->pmu_name)
3083 goto error;
3084
3085 n->cpus = do_read_string(ff);
3086 if (!n->cpus)
3087 goto error;
3088 }
3089
3090 env->nr_hybrid_nodes = nr;
3091 env->hybrid_nodes = nodes;
3092 return 0;
3093
3094 error:
3095 for (i = 0; i < nr; i++) {
3096 free(nodes[i].pmu_name);
3097 free(nodes[i].cpus);
3098 }
3099
3100 free(nodes);
3101 return -1;
3102 }
3103
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3104 static int process_dir_format(struct feat_fd *ff,
3105 void *_data __maybe_unused)
3106 {
3107 struct perf_session *session;
3108 struct perf_data *data;
3109
3110 session = container_of(ff->ph, struct perf_session, header);
3111 data = session->data;
3112
3113 if (WARN_ON(!perf_data__is_dir(data)))
3114 return -1;
3115
3116 return do_read_u64(ff, &data->dir.version);
3117 }
3118
3119 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3120 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3121 {
3122 struct bpf_prog_info_node *info_node;
3123 struct perf_env *env = &ff->ph->env;
3124 struct perf_bpil *info_linear;
3125 u32 count, i;
3126 int err = -1;
3127
3128 if (ff->ph->needs_swap) {
3129 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3130 return 0;
3131 }
3132
3133 if (do_read_u32(ff, &count))
3134 return -1;
3135
3136 down_write(&env->bpf_progs.lock);
3137
3138 for (i = 0; i < count; ++i) {
3139 u32 info_len, data_len;
3140
3141 info_linear = NULL;
3142 info_node = NULL;
3143 if (do_read_u32(ff, &info_len))
3144 goto out;
3145 if (do_read_u32(ff, &data_len))
3146 goto out;
3147
3148 if (info_len > sizeof(struct bpf_prog_info)) {
3149 pr_warning("detected invalid bpf_prog_info\n");
3150 goto out;
3151 }
3152
3153 info_linear = malloc(sizeof(struct perf_bpil) +
3154 data_len);
3155 if (!info_linear)
3156 goto out;
3157 info_linear->info_len = sizeof(struct bpf_prog_info);
3158 info_linear->data_len = data_len;
3159 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3160 goto out;
3161 if (__do_read(ff, &info_linear->info, info_len))
3162 goto out;
3163 if (info_len < sizeof(struct bpf_prog_info))
3164 memset(((void *)(&info_linear->info)) + info_len, 0,
3165 sizeof(struct bpf_prog_info) - info_len);
3166
3167 if (__do_read(ff, info_linear->data, data_len))
3168 goto out;
3169
3170 info_node = malloc(sizeof(struct bpf_prog_info_node));
3171 if (!info_node)
3172 goto out;
3173
3174 /* after reading from file, translate offset to address */
3175 bpil_offs_to_addr(info_linear);
3176 info_node->info_linear = info_linear;
3177 info_node->metadata = NULL;
3178 if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3179 free(info_linear);
3180 free(info_node);
3181 }
3182 }
3183
3184 up_write(&env->bpf_progs.lock);
3185 return 0;
3186 out:
3187 free(info_linear);
3188 free(info_node);
3189 up_write(&env->bpf_progs.lock);
3190 return err;
3191 }
3192
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3193 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3194 {
3195 struct perf_env *env = &ff->ph->env;
3196 struct btf_node *node = NULL;
3197 u32 count, i;
3198 int err = -1;
3199
3200 if (ff->ph->needs_swap) {
3201 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3202 return 0;
3203 }
3204
3205 if (do_read_u32(ff, &count))
3206 return -1;
3207
3208 down_write(&env->bpf_progs.lock);
3209
3210 for (i = 0; i < count; ++i) {
3211 u32 id, data_size;
3212
3213 if (do_read_u32(ff, &id))
3214 goto out;
3215 if (do_read_u32(ff, &data_size))
3216 goto out;
3217
3218 node = malloc(sizeof(struct btf_node) + data_size);
3219 if (!node)
3220 goto out;
3221
3222 node->id = id;
3223 node->data_size = data_size;
3224
3225 if (__do_read(ff, node->data, data_size))
3226 goto out;
3227
3228 if (!__perf_env__insert_btf(env, node))
3229 free(node);
3230 node = NULL;
3231 }
3232
3233 err = 0;
3234 out:
3235 up_write(&env->bpf_progs.lock);
3236 free(node);
3237 return err;
3238 }
3239 #endif // HAVE_LIBBPF_SUPPORT
3240
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3241 static int process_compressed(struct feat_fd *ff,
3242 void *data __maybe_unused)
3243 {
3244 struct perf_env *env = &ff->ph->env;
3245
3246 if (do_read_u32(ff, &(env->comp_ver)))
3247 return -1;
3248
3249 if (do_read_u32(ff, &(env->comp_type)))
3250 return -1;
3251
3252 if (do_read_u32(ff, &(env->comp_level)))
3253 return -1;
3254
3255 if (do_read_u32(ff, &(env->comp_ratio)))
3256 return -1;
3257
3258 if (do_read_u32(ff, &(env->comp_mmap_len)))
3259 return -1;
3260
3261 return 0;
3262 }
3263
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3264 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3265 char ***caps, unsigned int *max_branches,
3266 unsigned int *br_cntr_nr,
3267 unsigned int *br_cntr_width)
3268 {
3269 char *name, *value, *ptr;
3270 u32 nr_pmu_caps, i;
3271
3272 *nr_caps = 0;
3273 *caps = NULL;
3274
3275 if (do_read_u32(ff, &nr_pmu_caps))
3276 return -1;
3277
3278 if (!nr_pmu_caps)
3279 return 0;
3280
3281 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3282 if (!*caps)
3283 return -1;
3284
3285 for (i = 0; i < nr_pmu_caps; i++) {
3286 name = do_read_string(ff);
3287 if (!name)
3288 goto error;
3289
3290 value = do_read_string(ff);
3291 if (!value)
3292 goto free_name;
3293
3294 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3295 goto free_value;
3296
3297 (*caps)[i] = ptr;
3298
3299 if (!strcmp(name, "branches"))
3300 *max_branches = atoi(value);
3301
3302 if (!strcmp(name, "branch_counter_nr"))
3303 *br_cntr_nr = atoi(value);
3304
3305 if (!strcmp(name, "branch_counter_width"))
3306 *br_cntr_width = atoi(value);
3307
3308 free(value);
3309 free(name);
3310 }
3311 *nr_caps = nr_pmu_caps;
3312 return 0;
3313
3314 free_value:
3315 free(value);
3316 free_name:
3317 free(name);
3318 error:
3319 for (; i > 0; i--)
3320 free((*caps)[i - 1]);
3321 free(*caps);
3322 *caps = NULL;
3323 *nr_caps = 0;
3324 return -1;
3325 }
3326
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3327 static int process_cpu_pmu_caps(struct feat_fd *ff,
3328 void *data __maybe_unused)
3329 {
3330 struct perf_env *env = &ff->ph->env;
3331 int ret = __process_pmu_caps(ff, &env->nr_cpu_pmu_caps,
3332 &env->cpu_pmu_caps,
3333 &env->max_branches,
3334 &env->br_cntr_nr,
3335 &env->br_cntr_width);
3336
3337 if (!ret && !env->cpu_pmu_caps)
3338 pr_debug("cpu pmu capabilities not available\n");
3339 return ret;
3340 }
3341
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3342 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3343 {
3344 struct perf_env *env = &ff->ph->env;
3345 struct pmu_caps *pmu_caps;
3346 u32 nr_pmu, i;
3347 int ret;
3348 int j;
3349
3350 if (do_read_u32(ff, &nr_pmu))
3351 return -1;
3352
3353 if (!nr_pmu) {
3354 pr_debug("pmu capabilities not available\n");
3355 return 0;
3356 }
3357
3358 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3359 if (!pmu_caps)
3360 return -ENOMEM;
3361
3362 for (i = 0; i < nr_pmu; i++) {
3363 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3364 &pmu_caps[i].caps,
3365 &pmu_caps[i].max_branches,
3366 &pmu_caps[i].br_cntr_nr,
3367 &pmu_caps[i].br_cntr_width);
3368 if (ret)
3369 goto err;
3370
3371 pmu_caps[i].pmu_name = do_read_string(ff);
3372 if (!pmu_caps[i].pmu_name) {
3373 ret = -1;
3374 goto err;
3375 }
3376 if (!pmu_caps[i].nr_caps) {
3377 pr_debug("%s pmu capabilities not available\n",
3378 pmu_caps[i].pmu_name);
3379 }
3380 }
3381
3382 env->nr_pmus_with_caps = nr_pmu;
3383 env->pmu_caps = pmu_caps;
3384 return 0;
3385
3386 err:
3387 for (i = 0; i < nr_pmu; i++) {
3388 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3389 free(pmu_caps[i].caps[j]);
3390 free(pmu_caps[i].caps);
3391 free(pmu_caps[i].pmu_name);
3392 }
3393
3394 free(pmu_caps);
3395 return ret;
3396 }
3397
3398 #define FEAT_OPR(n, func, __full_only) \
3399 [HEADER_##n] = { \
3400 .name = __stringify(n), \
3401 .write = write_##func, \
3402 .print = print_##func, \
3403 .full_only = __full_only, \
3404 .process = process_##func, \
3405 .synthesize = true \
3406 }
3407
3408 #define FEAT_OPN(n, func, __full_only) \
3409 [HEADER_##n] = { \
3410 .name = __stringify(n), \
3411 .write = write_##func, \
3412 .print = print_##func, \
3413 .full_only = __full_only, \
3414 .process = process_##func \
3415 }
3416
3417 /* feature_ops not implemented: */
3418 #define print_tracing_data NULL
3419 #define print_build_id NULL
3420
3421 #define process_branch_stack NULL
3422 #define process_stat NULL
3423
3424 // Only used in util/synthetic-events.c
3425 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3426
3427 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3428 #ifdef HAVE_LIBTRACEEVENT
3429 FEAT_OPN(TRACING_DATA, tracing_data, false),
3430 #endif
3431 FEAT_OPN(BUILD_ID, build_id, false),
3432 FEAT_OPR(HOSTNAME, hostname, false),
3433 FEAT_OPR(OSRELEASE, osrelease, false),
3434 FEAT_OPR(VERSION, version, false),
3435 FEAT_OPR(ARCH, arch, false),
3436 FEAT_OPR(NRCPUS, nrcpus, false),
3437 FEAT_OPR(CPUDESC, cpudesc, false),
3438 FEAT_OPR(CPUID, cpuid, false),
3439 FEAT_OPR(TOTAL_MEM, total_mem, false),
3440 FEAT_OPR(EVENT_DESC, event_desc, false),
3441 FEAT_OPR(CMDLINE, cmdline, false),
3442 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3443 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3444 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3445 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3446 FEAT_OPR(GROUP_DESC, group_desc, false),
3447 FEAT_OPN(AUXTRACE, auxtrace, false),
3448 FEAT_OPN(STAT, stat, false),
3449 FEAT_OPN(CACHE, cache, true),
3450 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3451 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3452 FEAT_OPR(CLOCKID, clockid, false),
3453 FEAT_OPN(DIR_FORMAT, dir_format, false),
3454 #ifdef HAVE_LIBBPF_SUPPORT
3455 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3456 FEAT_OPR(BPF_BTF, bpf_btf, false),
3457 #endif
3458 FEAT_OPR(COMPRESSED, compressed, false),
3459 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3460 FEAT_OPR(CLOCK_DATA, clock_data, false),
3461 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3462 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3463 };
3464
3465 struct header_print_data {
3466 FILE *fp;
3467 bool full; /* extended list of headers */
3468 };
3469
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3470 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3471 struct perf_header *ph,
3472 int feat, int fd, void *data)
3473 {
3474 struct header_print_data *hd = data;
3475 struct feat_fd ff;
3476
3477 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3478 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3479 "%d, continuing...\n", section->offset, feat);
3480 return 0;
3481 }
3482 if (feat >= HEADER_LAST_FEATURE) {
3483 pr_warning("unknown feature %d\n", feat);
3484 return 0;
3485 }
3486 if (!feat_ops[feat].print)
3487 return 0;
3488
3489 ff = (struct feat_fd) {
3490 .fd = fd,
3491 .ph = ph,
3492 };
3493
3494 if (!feat_ops[feat].full_only || hd->full)
3495 feat_ops[feat].print(&ff, hd->fp);
3496 else
3497 fprintf(hd->fp, "# %s info available, use -I to display\n",
3498 feat_ops[feat].name);
3499
3500 return 0;
3501 }
3502
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3503 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3504 {
3505 struct header_print_data hd;
3506 struct perf_header *header = &session->header;
3507 int fd = perf_data__fd(session->data);
3508 struct stat st;
3509 time_t stctime;
3510 int ret, bit;
3511
3512 hd.fp = fp;
3513 hd.full = full;
3514
3515 ret = fstat(fd, &st);
3516 if (ret == -1)
3517 return -1;
3518
3519 stctime = st.st_mtime;
3520 fprintf(fp, "# captured on : %s", ctime(&stctime));
3521
3522 fprintf(fp, "# header version : %u\n", header->version);
3523 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3524 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3525 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3526
3527 perf_header__process_sections(header, fd, &hd,
3528 perf_file_section__fprintf_info);
3529
3530 if (session->data->is_pipe)
3531 return 0;
3532
3533 fprintf(fp, "# missing features: ");
3534 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3535 if (bit)
3536 fprintf(fp, "%s ", feat_ops[bit].name);
3537 }
3538
3539 fprintf(fp, "\n");
3540 return 0;
3541 }
3542
3543 struct header_fw {
3544 struct feat_writer fw;
3545 struct feat_fd *ff;
3546 };
3547
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3548 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3549 {
3550 struct header_fw *h = container_of(fw, struct header_fw, fw);
3551
3552 return do_write(h->ff, buf, sz);
3553 }
3554
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3555 static int do_write_feat(struct feat_fd *ff, int type,
3556 struct perf_file_section **p,
3557 struct evlist *evlist,
3558 struct feat_copier *fc)
3559 {
3560 int err;
3561 int ret = 0;
3562
3563 if (perf_header__has_feat(ff->ph, type)) {
3564 if (!feat_ops[type].write)
3565 return -1;
3566
3567 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3568 return -1;
3569
3570 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3571
3572 /*
3573 * Hook to let perf inject copy features sections from the input
3574 * file.
3575 */
3576 if (fc && fc->copy) {
3577 struct header_fw h = {
3578 .fw.write = feat_writer_cb,
3579 .ff = ff,
3580 };
3581
3582 /* ->copy() returns 0 if the feature was not copied */
3583 err = fc->copy(fc, type, &h.fw);
3584 } else {
3585 err = 0;
3586 }
3587 if (!err)
3588 err = feat_ops[type].write(ff, evlist);
3589 if (err < 0) {
3590 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3591
3592 /* undo anything written */
3593 lseek(ff->fd, (*p)->offset, SEEK_SET);
3594
3595 return -1;
3596 }
3597 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3598 (*p)++;
3599 }
3600 return ret;
3601 }
3602
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3603 static int perf_header__adds_write(struct perf_header *header,
3604 struct evlist *evlist, int fd,
3605 struct feat_copier *fc)
3606 {
3607 int nr_sections;
3608 struct feat_fd ff = {
3609 .fd = fd,
3610 .ph = header,
3611 };
3612 struct perf_file_section *feat_sec, *p;
3613 int sec_size;
3614 u64 sec_start;
3615 int feat;
3616 int err;
3617
3618 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3619 if (!nr_sections)
3620 return 0;
3621
3622 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3623 if (feat_sec == NULL)
3624 return -ENOMEM;
3625
3626 sec_size = sizeof(*feat_sec) * nr_sections;
3627
3628 sec_start = header->feat_offset;
3629 lseek(fd, sec_start + sec_size, SEEK_SET);
3630
3631 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3632 if (do_write_feat(&ff, feat, &p, evlist, fc))
3633 perf_header__clear_feat(header, feat);
3634 }
3635
3636 lseek(fd, sec_start, SEEK_SET);
3637 /*
3638 * may write more than needed due to dropped feature, but
3639 * this is okay, reader will skip the missing entries
3640 */
3641 err = do_write(&ff, feat_sec, sec_size);
3642 if (err < 0)
3643 pr_debug("failed to write feature section\n");
3644 free(ff.buf); /* TODO: added to silence clang-tidy. */
3645 free(feat_sec);
3646 return err;
3647 }
3648
perf_header__write_pipe(int fd)3649 int perf_header__write_pipe(int fd)
3650 {
3651 struct perf_pipe_file_header f_header;
3652 struct feat_fd ff = {
3653 .fd = fd,
3654 };
3655 int err;
3656
3657 f_header = (struct perf_pipe_file_header){
3658 .magic = PERF_MAGIC,
3659 .size = sizeof(f_header),
3660 };
3661
3662 err = do_write(&ff, &f_header, sizeof(f_header));
3663 if (err < 0) {
3664 pr_debug("failed to write perf pipe header\n");
3665 return err;
3666 }
3667 free(ff.buf);
3668 return 0;
3669 }
3670
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3671 static int perf_session__do_write_header(struct perf_session *session,
3672 struct evlist *evlist,
3673 int fd, bool at_exit,
3674 struct feat_copier *fc,
3675 bool write_attrs_after_data)
3676 {
3677 struct perf_file_header f_header;
3678 struct perf_header *header = &session->header;
3679 struct evsel *evsel;
3680 struct feat_fd ff = {
3681 .ph = header,
3682 .fd = fd,
3683 };
3684 u64 attr_offset = sizeof(f_header), attr_size = 0;
3685 int err;
3686
3687 if (write_attrs_after_data && at_exit) {
3688 /*
3689 * Write features at the end of the file first so that
3690 * attributes may come after them.
3691 */
3692 if (!header->data_offset && header->data_size) {
3693 pr_err("File contains data but offset unknown\n");
3694 err = -1;
3695 goto err_out;
3696 }
3697 header->feat_offset = header->data_offset + header->data_size;
3698 err = perf_header__adds_write(header, evlist, fd, fc);
3699 if (err < 0)
3700 goto err_out;
3701 attr_offset = lseek(fd, 0, SEEK_CUR);
3702 } else {
3703 lseek(fd, attr_offset, SEEK_SET);
3704 }
3705
3706 evlist__for_each_entry(session->evlist, evsel) {
3707 evsel->id_offset = attr_offset;
3708 /* Avoid writing at the end of the file until the session is exiting. */
3709 if (!write_attrs_after_data || at_exit) {
3710 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3711 if (err < 0) {
3712 pr_debug("failed to write perf header\n");
3713 goto err_out;
3714 }
3715 }
3716 attr_offset += evsel->core.ids * sizeof(u64);
3717 }
3718
3719 evlist__for_each_entry(evlist, evsel) {
3720 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3721 /*
3722 * We are likely in "perf inject" and have read
3723 * from an older file. Update attr size so that
3724 * reader gets the right offset to the ids.
3725 */
3726 evsel->core.attr.size = sizeof(evsel->core.attr);
3727 }
3728 /* Avoid writing at the end of the file until the session is exiting. */
3729 if (!write_attrs_after_data || at_exit) {
3730 struct perf_file_attr f_attr = {
3731 .attr = evsel->core.attr,
3732 .ids = {
3733 .offset = evsel->id_offset,
3734 .size = evsel->core.ids * sizeof(u64),
3735 }
3736 };
3737 err = do_write(&ff, &f_attr, sizeof(f_attr));
3738 if (err < 0) {
3739 pr_debug("failed to write perf header attribute\n");
3740 goto err_out;
3741 }
3742 }
3743 attr_size += sizeof(struct perf_file_attr);
3744 }
3745
3746 if (!header->data_offset) {
3747 if (write_attrs_after_data)
3748 header->data_offset = sizeof(f_header);
3749 else
3750 header->data_offset = attr_offset + attr_size;
3751 }
3752 header->feat_offset = header->data_offset + header->data_size;
3753
3754 if (!write_attrs_after_data && at_exit) {
3755 /* Write features now feat_offset is known. */
3756 err = perf_header__adds_write(header, evlist, fd, fc);
3757 if (err < 0)
3758 goto err_out;
3759 }
3760
3761 f_header = (struct perf_file_header){
3762 .magic = PERF_MAGIC,
3763 .size = sizeof(f_header),
3764 .attr_size = sizeof(struct perf_file_attr),
3765 .attrs = {
3766 .offset = attr_offset,
3767 .size = attr_size,
3768 },
3769 .data = {
3770 .offset = header->data_offset,
3771 .size = header->data_size,
3772 },
3773 /* event_types is ignored, store zeros */
3774 };
3775
3776 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3777
3778 lseek(fd, 0, SEEK_SET);
3779 err = do_write(&ff, &f_header, sizeof(f_header));
3780 if (err < 0) {
3781 pr_debug("failed to write perf header\n");
3782 goto err_out;
3783 } else {
3784 lseek(fd, 0, SEEK_END);
3785 err = 0;
3786 }
3787 err_out:
3788 free(ff.buf);
3789 return err;
3790 }
3791
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3792 int perf_session__write_header(struct perf_session *session,
3793 struct evlist *evlist,
3794 int fd, bool at_exit)
3795 {
3796 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3797 /*write_attrs_after_data=*/false);
3798 }
3799
perf_session__data_offset(const struct evlist * evlist)3800 size_t perf_session__data_offset(const struct evlist *evlist)
3801 {
3802 struct evsel *evsel;
3803 size_t data_offset;
3804
3805 data_offset = sizeof(struct perf_file_header);
3806 evlist__for_each_entry(evlist, evsel) {
3807 data_offset += evsel->core.ids * sizeof(u64);
3808 }
3809 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3810
3811 return data_offset;
3812 }
3813
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)3814 int perf_session__inject_header(struct perf_session *session,
3815 struct evlist *evlist,
3816 int fd,
3817 struct feat_copier *fc,
3818 bool write_attrs_after_data)
3819 {
3820 return perf_session__do_write_header(session, evlist, fd, true, fc,
3821 write_attrs_after_data);
3822 }
3823
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3824 static int perf_header__getbuffer64(struct perf_header *header,
3825 int fd, void *buf, size_t size)
3826 {
3827 if (readn(fd, buf, size) <= 0)
3828 return -1;
3829
3830 if (header->needs_swap)
3831 mem_bswap_64(buf, size);
3832
3833 return 0;
3834 }
3835
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3836 int perf_header__process_sections(struct perf_header *header, int fd,
3837 void *data,
3838 int (*process)(struct perf_file_section *section,
3839 struct perf_header *ph,
3840 int feat, int fd, void *data))
3841 {
3842 struct perf_file_section *feat_sec, *sec;
3843 int nr_sections;
3844 int sec_size;
3845 int feat;
3846 int err;
3847
3848 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3849 if (!nr_sections)
3850 return 0;
3851
3852 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3853 if (!feat_sec)
3854 return -1;
3855
3856 sec_size = sizeof(*feat_sec) * nr_sections;
3857
3858 lseek(fd, header->feat_offset, SEEK_SET);
3859
3860 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3861 if (err < 0)
3862 goto out_free;
3863
3864 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3865 err = process(sec++, header, feat, fd, data);
3866 if (err < 0)
3867 goto out_free;
3868 }
3869 err = 0;
3870 out_free:
3871 free(feat_sec);
3872 return err;
3873 }
3874
3875 static const int attr_file_abi_sizes[] = {
3876 [0] = PERF_ATTR_SIZE_VER0,
3877 [1] = PERF_ATTR_SIZE_VER1,
3878 [2] = PERF_ATTR_SIZE_VER2,
3879 [3] = PERF_ATTR_SIZE_VER3,
3880 [4] = PERF_ATTR_SIZE_VER4,
3881 0,
3882 };
3883
3884 /*
3885 * In the legacy file format, the magic number is not used to encode endianness.
3886 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3887 * on ABI revisions, we need to try all combinations for all endianness to
3888 * detect the endianness.
3889 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3890 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3891 {
3892 uint64_t ref_size, attr_size;
3893 int i;
3894
3895 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3896 ref_size = attr_file_abi_sizes[i]
3897 + sizeof(struct perf_file_section);
3898 if (hdr_sz != ref_size) {
3899 attr_size = bswap_64(hdr_sz);
3900 if (attr_size != ref_size)
3901 continue;
3902
3903 ph->needs_swap = true;
3904 }
3905 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3906 i,
3907 ph->needs_swap);
3908 return 0;
3909 }
3910 /* could not determine endianness */
3911 return -1;
3912 }
3913
3914 #define PERF_PIPE_HDR_VER0 16
3915
3916 static const size_t attr_pipe_abi_sizes[] = {
3917 [0] = PERF_PIPE_HDR_VER0,
3918 0,
3919 };
3920
3921 /*
3922 * In the legacy pipe format, there is an implicit assumption that endianness
3923 * between host recording the samples, and host parsing the samples is the
3924 * same. This is not always the case given that the pipe output may always be
3925 * redirected into a file and analyzed on a different machine with possibly a
3926 * different endianness and perf_event ABI revisions in the perf tool itself.
3927 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3928 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3929 {
3930 u64 attr_size;
3931 int i;
3932
3933 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3934 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3935 attr_size = bswap_64(hdr_sz);
3936 if (attr_size != hdr_sz)
3937 continue;
3938
3939 ph->needs_swap = true;
3940 }
3941 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3942 return 0;
3943 }
3944 return -1;
3945 }
3946
is_perf_magic(u64 magic)3947 bool is_perf_magic(u64 magic)
3948 {
3949 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3950 || magic == __perf_magic2
3951 || magic == __perf_magic2_sw)
3952 return true;
3953
3954 return false;
3955 }
3956
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3957 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3958 bool is_pipe, struct perf_header *ph)
3959 {
3960 int ret;
3961
3962 /* check for legacy format */
3963 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3964 if (ret == 0) {
3965 ph->version = PERF_HEADER_VERSION_1;
3966 pr_debug("legacy perf.data format\n");
3967 if (is_pipe)
3968 return try_all_pipe_abis(hdr_sz, ph);
3969
3970 return try_all_file_abis(hdr_sz, ph);
3971 }
3972 /*
3973 * the new magic number serves two purposes:
3974 * - unique number to identify actual perf.data files
3975 * - encode endianness of file
3976 */
3977 ph->version = PERF_HEADER_VERSION_2;
3978
3979 /* check magic number with one endianness */
3980 if (magic == __perf_magic2)
3981 return 0;
3982
3983 /* check magic number with opposite endianness */
3984 if (magic != __perf_magic2_sw)
3985 return -1;
3986
3987 ph->needs_swap = true;
3988
3989 return 0;
3990 }
3991
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3992 int perf_file_header__read(struct perf_file_header *header,
3993 struct perf_header *ph, int fd)
3994 {
3995 ssize_t ret;
3996
3997 lseek(fd, 0, SEEK_SET);
3998
3999 ret = readn(fd, header, sizeof(*header));
4000 if (ret <= 0)
4001 return -1;
4002
4003 if (check_magic_endian(header->magic,
4004 header->attr_size, false, ph) < 0) {
4005 pr_debug("magic/endian check failed\n");
4006 return -1;
4007 }
4008
4009 if (ph->needs_swap) {
4010 mem_bswap_64(header, offsetof(struct perf_file_header,
4011 adds_features));
4012 }
4013
4014 if (header->size > header->attrs.offset) {
4015 pr_err("Perf file header corrupt: header overlaps attrs\n");
4016 return -1;
4017 }
4018
4019 if (header->size > header->data.offset) {
4020 pr_err("Perf file header corrupt: header overlaps data\n");
4021 return -1;
4022 }
4023
4024 if ((header->attrs.offset <= header->data.offset &&
4025 header->attrs.offset + header->attrs.size > header->data.offset) ||
4026 (header->attrs.offset > header->data.offset &&
4027 header->data.offset + header->data.size > header->attrs.offset)) {
4028 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4029 return -1;
4030 }
4031
4032 if (header->size != sizeof(*header)) {
4033 /* Support the previous format */
4034 if (header->size == offsetof(typeof(*header), adds_features))
4035 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4036 else
4037 return -1;
4038 } else if (ph->needs_swap) {
4039 /*
4040 * feature bitmap is declared as an array of unsigned longs --
4041 * not good since its size can differ between the host that
4042 * generated the data file and the host analyzing the file.
4043 *
4044 * We need to handle endianness, but we don't know the size of
4045 * the unsigned long where the file was generated. Take a best
4046 * guess at determining it: try 64-bit swap first (ie., file
4047 * created on a 64-bit host), and check if the hostname feature
4048 * bit is set (this feature bit is forced on as of fbe96f2).
4049 * If the bit is not, undo the 64-bit swap and try a 32-bit
4050 * swap. If the hostname bit is still not set (e.g., older data
4051 * file), punt and fallback to the original behavior --
4052 * clearing all feature bits and setting buildid.
4053 */
4054 mem_bswap_64(&header->adds_features,
4055 BITS_TO_U64(HEADER_FEAT_BITS));
4056
4057 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4058 /* unswap as u64 */
4059 mem_bswap_64(&header->adds_features,
4060 BITS_TO_U64(HEADER_FEAT_BITS));
4061
4062 /* unswap as u32 */
4063 mem_bswap_32(&header->adds_features,
4064 BITS_TO_U32(HEADER_FEAT_BITS));
4065 }
4066
4067 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4068 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4069 __set_bit(HEADER_BUILD_ID, header->adds_features);
4070 }
4071 }
4072
4073 memcpy(&ph->adds_features, &header->adds_features,
4074 sizeof(ph->adds_features));
4075
4076 ph->data_offset = header->data.offset;
4077 ph->data_size = header->data.size;
4078 ph->feat_offset = header->data.offset + header->data.size;
4079 return 0;
4080 }
4081
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4082 static int perf_file_section__process(struct perf_file_section *section,
4083 struct perf_header *ph,
4084 int feat, int fd, void *data)
4085 {
4086 struct feat_fd fdd = {
4087 .fd = fd,
4088 .ph = ph,
4089 .size = section->size,
4090 .offset = section->offset,
4091 };
4092
4093 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4094 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4095 "%d, continuing...\n", section->offset, feat);
4096 return 0;
4097 }
4098
4099 if (feat >= HEADER_LAST_FEATURE) {
4100 pr_debug("unknown feature %d, continuing...\n", feat);
4101 return 0;
4102 }
4103
4104 if (!feat_ops[feat].process)
4105 return 0;
4106
4107 return feat_ops[feat].process(&fdd, data);
4108 }
4109
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4110 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4111 struct perf_header *ph,
4112 struct perf_data *data)
4113 {
4114 ssize_t ret;
4115
4116 ret = perf_data__read(data, header, sizeof(*header));
4117 if (ret <= 0)
4118 return -1;
4119
4120 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4121 pr_debug("endian/magic failed\n");
4122 return -1;
4123 }
4124
4125 if (ph->needs_swap)
4126 header->size = bswap_64(header->size);
4127
4128 return 0;
4129 }
4130
perf_header__read_pipe(struct perf_session * session)4131 static int perf_header__read_pipe(struct perf_session *session)
4132 {
4133 struct perf_header *header = &session->header;
4134 struct perf_pipe_file_header f_header;
4135
4136 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4137 pr_debug("incompatible file format\n");
4138 return -EINVAL;
4139 }
4140
4141 return f_header.size == sizeof(f_header) ? 0 : -1;
4142 }
4143
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4144 static int read_attr(int fd, struct perf_header *ph,
4145 struct perf_file_attr *f_attr)
4146 {
4147 struct perf_event_attr *attr = &f_attr->attr;
4148 size_t sz, left;
4149 size_t our_sz = sizeof(f_attr->attr);
4150 ssize_t ret;
4151
4152 memset(f_attr, 0, sizeof(*f_attr));
4153
4154 /* read minimal guaranteed structure */
4155 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4156 if (ret <= 0) {
4157 pr_debug("cannot read %d bytes of header attr\n",
4158 PERF_ATTR_SIZE_VER0);
4159 return -1;
4160 }
4161
4162 /* on file perf_event_attr size */
4163 sz = attr->size;
4164
4165 if (ph->needs_swap)
4166 sz = bswap_32(sz);
4167
4168 if (sz == 0) {
4169 /* assume ABI0 */
4170 sz = PERF_ATTR_SIZE_VER0;
4171 } else if (sz > our_sz) {
4172 pr_debug("file uses a more recent and unsupported ABI"
4173 " (%zu bytes extra)\n", sz - our_sz);
4174 return -1;
4175 }
4176 /* what we have not yet read and that we know about */
4177 left = sz - PERF_ATTR_SIZE_VER0;
4178 if (left) {
4179 void *ptr = attr;
4180 ptr += PERF_ATTR_SIZE_VER0;
4181
4182 ret = readn(fd, ptr, left);
4183 }
4184 /* read perf_file_section, ids are read in caller */
4185 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4186
4187 return ret <= 0 ? -1 : 0;
4188 }
4189
4190 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4191 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4192 {
4193 struct tep_event *event;
4194 char bf[128];
4195
4196 /* already prepared */
4197 if (evsel->tp_format)
4198 return 0;
4199
4200 if (pevent == NULL) {
4201 pr_debug("broken or missing trace data\n");
4202 return -1;
4203 }
4204
4205 event = tep_find_event(pevent, evsel->core.attr.config);
4206 if (event == NULL) {
4207 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4208 return -1;
4209 }
4210
4211 if (!evsel->name) {
4212 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4213 evsel->name = strdup(bf);
4214 if (evsel->name == NULL)
4215 return -1;
4216 }
4217
4218 evsel->tp_format = event;
4219 return 0;
4220 }
4221
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4222 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4223 {
4224 struct evsel *pos;
4225
4226 evlist__for_each_entry(evlist, pos) {
4227 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4228 evsel__prepare_tracepoint_event(pos, pevent))
4229 return -1;
4230 }
4231
4232 return 0;
4233 }
4234 #endif
4235
perf_session__read_header(struct perf_session * session)4236 int perf_session__read_header(struct perf_session *session)
4237 {
4238 struct perf_data *data = session->data;
4239 struct perf_header *header = &session->header;
4240 struct perf_file_header f_header;
4241 struct perf_file_attr f_attr;
4242 u64 f_id;
4243 int nr_attrs, nr_ids, i, j, err;
4244 int fd = perf_data__fd(data);
4245
4246 session->evlist = evlist__new();
4247 if (session->evlist == NULL)
4248 return -ENOMEM;
4249
4250 session->evlist->session = session;
4251 session->machines.host.env = &header->env;
4252
4253 /*
4254 * We can read 'pipe' data event from regular file,
4255 * check for the pipe header regardless of source.
4256 */
4257 err = perf_header__read_pipe(session);
4258 if (!err || perf_data__is_pipe(data)) {
4259 data->is_pipe = true;
4260 return err;
4261 }
4262
4263 if (perf_file_header__read(&f_header, header, fd) < 0)
4264 return -EINVAL;
4265
4266 if (header->needs_swap && data->in_place_update) {
4267 pr_err("In-place update not supported when byte-swapping is required\n");
4268 return -EINVAL;
4269 }
4270
4271 /*
4272 * Sanity check that perf.data was written cleanly; data size is
4273 * initialized to 0 and updated only if the on_exit function is run.
4274 * If data size is still 0 then the file contains only partial
4275 * information. Just warn user and process it as much as it can.
4276 */
4277 if (f_header.data.size == 0) {
4278 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4279 "Was the 'perf record' command properly terminated?\n",
4280 data->file.path);
4281 }
4282
4283 if (f_header.attr_size == 0) {
4284 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4285 "Was the 'perf record' command properly terminated?\n",
4286 data->file.path);
4287 return -EINVAL;
4288 }
4289
4290 nr_attrs = f_header.attrs.size / f_header.attr_size;
4291 lseek(fd, f_header.attrs.offset, SEEK_SET);
4292
4293 for (i = 0; i < nr_attrs; i++) {
4294 struct evsel *evsel;
4295 off_t tmp;
4296
4297 if (read_attr(fd, header, &f_attr) < 0)
4298 goto out_errno;
4299
4300 if (header->needs_swap) {
4301 f_attr.ids.size = bswap_64(f_attr.ids.size);
4302 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4303 perf_event__attr_swap(&f_attr.attr);
4304 }
4305
4306 tmp = lseek(fd, 0, SEEK_CUR);
4307 evsel = evsel__new(&f_attr.attr);
4308
4309 if (evsel == NULL)
4310 goto out_delete_evlist;
4311
4312 evsel->needs_swap = header->needs_swap;
4313 /*
4314 * Do it before so that if perf_evsel__alloc_id fails, this
4315 * entry gets purged too at evlist__delete().
4316 */
4317 evlist__add(session->evlist, evsel);
4318
4319 nr_ids = f_attr.ids.size / sizeof(u64);
4320 /*
4321 * We don't have the cpu and thread maps on the header, so
4322 * for allocating the perf_sample_id table we fake 1 cpu and
4323 * hattr->ids threads.
4324 */
4325 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4326 goto out_delete_evlist;
4327
4328 lseek(fd, f_attr.ids.offset, SEEK_SET);
4329
4330 for (j = 0; j < nr_ids; j++) {
4331 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4332 goto out_errno;
4333
4334 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4335 }
4336
4337 lseek(fd, tmp, SEEK_SET);
4338 }
4339
4340 #ifdef HAVE_LIBTRACEEVENT
4341 perf_header__process_sections(header, fd, &session->tevent,
4342 perf_file_section__process);
4343
4344 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4345 goto out_delete_evlist;
4346 #else
4347 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4348 #endif
4349
4350 return 0;
4351 out_errno:
4352 return -errno;
4353
4354 out_delete_evlist:
4355 evlist__delete(session->evlist);
4356 session->evlist = NULL;
4357 return -ENOMEM;
4358 }
4359
perf_event__process_feature(struct perf_session * session,union perf_event * event)4360 int perf_event__process_feature(struct perf_session *session,
4361 union perf_event *event)
4362 {
4363 struct feat_fd ff = { .fd = 0 };
4364 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4365 int type = fe->header.type;
4366 u64 feat = fe->feat_id;
4367 int ret = 0;
4368 bool print = dump_trace;
4369
4370 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4371 pr_warning("invalid record type %d in pipe-mode\n", type);
4372 return 0;
4373 }
4374 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4375 pr_warning("invalid record type %d in pipe-mode\n", type);
4376 return -1;
4377 }
4378
4379 ff.buf = (void *)fe->data;
4380 ff.size = event->header.size - sizeof(*fe);
4381 ff.ph = &session->header;
4382
4383 if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) {
4384 ret = -1;
4385 goto out;
4386 }
4387
4388 if (session->tool->show_feat_hdr) {
4389 if (!feat_ops[feat].full_only ||
4390 session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4391 print = true;
4392 } else {
4393 fprintf(stdout, "# %s info available, use -I to display\n",
4394 feat_ops[feat].name);
4395 }
4396 }
4397
4398 if (dump_trace)
4399 printf(", ");
4400
4401 if (print) {
4402 if (feat_ops[feat].print)
4403 feat_ops[feat].print(&ff, stdout);
4404 else
4405 printf("# %s", feat_ops[feat].name);
4406 }
4407
4408 out:
4409 free_event_desc(ff.events);
4410 return ret;
4411 }
4412
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4413 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4414 {
4415 struct perf_record_event_update *ev = &event->event_update;
4416 struct perf_cpu_map *map;
4417 size_t ret;
4418
4419 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4420
4421 switch (ev->type) {
4422 case PERF_EVENT_UPDATE__SCALE:
4423 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4424 break;
4425 case PERF_EVENT_UPDATE__UNIT:
4426 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4427 break;
4428 case PERF_EVENT_UPDATE__NAME:
4429 ret += fprintf(fp, "... name: %s\n", ev->name);
4430 break;
4431 case PERF_EVENT_UPDATE__CPUS:
4432 ret += fprintf(fp, "... ");
4433
4434 map = cpu_map__new_data(&ev->cpus.cpus);
4435 if (map) {
4436 ret += cpu_map__fprintf(map, fp);
4437 perf_cpu_map__put(map);
4438 } else
4439 ret += fprintf(fp, "failed to get cpus\n");
4440 break;
4441 default:
4442 ret += fprintf(fp, "... unknown type\n");
4443 break;
4444 }
4445
4446 return ret;
4447 }
4448
perf_event__fprintf_attr(union perf_event * event,FILE * fp)4449 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp)
4450 {
4451 return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL);
4452 }
4453
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4454 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4455 union perf_event *event,
4456 struct evlist **pevlist)
4457 {
4458 u32 i, n_ids;
4459 u64 *ids;
4460 struct evsel *evsel;
4461 struct evlist *evlist = *pevlist;
4462
4463 if (dump_trace)
4464 perf_event__fprintf_attr(event, stdout);
4465
4466 if (evlist == NULL) {
4467 *pevlist = evlist = evlist__new();
4468 if (evlist == NULL)
4469 return -ENOMEM;
4470 }
4471
4472 evsel = evsel__new(&event->attr.attr);
4473 if (evsel == NULL)
4474 return -ENOMEM;
4475
4476 evlist__add(evlist, evsel);
4477
4478 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4479 n_ids = n_ids / sizeof(u64);
4480 /*
4481 * We don't have the cpu and thread maps on the header, so
4482 * for allocating the perf_sample_id table we fake 1 cpu and
4483 * hattr->ids threads.
4484 */
4485 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4486 return -ENOMEM;
4487
4488 ids = perf_record_header_attr_id(event);
4489 for (i = 0; i < n_ids; i++) {
4490 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4491 }
4492
4493 return 0;
4494 }
4495
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4496 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4497 union perf_event *event,
4498 struct evlist **pevlist)
4499 {
4500 struct perf_record_event_update *ev = &event->event_update;
4501 struct evlist *evlist;
4502 struct evsel *evsel;
4503 struct perf_cpu_map *map;
4504
4505 if (dump_trace)
4506 perf_event__fprintf_event_update(event, stdout);
4507
4508 if (!pevlist || *pevlist == NULL)
4509 return -EINVAL;
4510
4511 evlist = *pevlist;
4512
4513 evsel = evlist__id2evsel(evlist, ev->id);
4514 if (evsel == NULL)
4515 return -EINVAL;
4516
4517 switch (ev->type) {
4518 case PERF_EVENT_UPDATE__UNIT:
4519 free((char *)evsel->unit);
4520 evsel->unit = strdup(ev->unit);
4521 break;
4522 case PERF_EVENT_UPDATE__NAME:
4523 free(evsel->name);
4524 evsel->name = strdup(ev->name);
4525 break;
4526 case PERF_EVENT_UPDATE__SCALE:
4527 evsel->scale = ev->scale.scale;
4528 break;
4529 case PERF_EVENT_UPDATE__CPUS:
4530 map = cpu_map__new_data(&ev->cpus.cpus);
4531 if (map) {
4532 perf_cpu_map__put(evsel->core.pmu_cpus);
4533 evsel->core.pmu_cpus = map;
4534 } else
4535 pr_err("failed to get event_update cpus\n");
4536 default:
4537 break;
4538 }
4539
4540 return 0;
4541 }
4542
4543 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4544 int perf_event__process_tracing_data(struct perf_session *session,
4545 union perf_event *event)
4546 {
4547 ssize_t size_read, padding, size = event->tracing_data.size;
4548 int fd = perf_data__fd(session->data);
4549 char buf[BUFSIZ];
4550
4551 /*
4552 * The pipe fd is already in proper place and in any case
4553 * we can't move it, and we'd screw the case where we read
4554 * 'pipe' data from regular file. The trace_report reads
4555 * data from 'fd' so we need to set it directly behind the
4556 * event, where the tracing data starts.
4557 */
4558 if (!perf_data__is_pipe(session->data)) {
4559 off_t offset = lseek(fd, 0, SEEK_CUR);
4560
4561 /* setup for reading amidst mmap */
4562 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4563 SEEK_SET);
4564 }
4565
4566 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4567 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4568
4569 if (readn(fd, buf, padding) < 0) {
4570 pr_err("%s: reading input file", __func__);
4571 return -1;
4572 }
4573 if (session->trace_event_repipe) {
4574 int retw = write(STDOUT_FILENO, buf, padding);
4575 if (retw <= 0 || retw != padding) {
4576 pr_err("%s: repiping tracing data padding", __func__);
4577 return -1;
4578 }
4579 }
4580
4581 if (size_read + padding != size) {
4582 pr_err("%s: tracing data size mismatch", __func__);
4583 return -1;
4584 }
4585
4586 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4587
4588 return size_read + padding;
4589 }
4590 #endif
4591
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4592 int perf_event__process_build_id(struct perf_session *session,
4593 union perf_event *event)
4594 {
4595 __event_process_build_id(&event->build_id,
4596 event->build_id.filename,
4597 session);
4598 return 0;
4599 }
4600