1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28
29 static const struct class power_supply_class = {
30 .name = "power_supply",
31 .dev_uevent = power_supply_uevent,
32 };
33
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35
36 static const struct device_type power_supply_dev_type = {
37 .name = "power_supply",
38 .groups = power_supply_attr_groups,
39 };
40
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
42
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44 struct power_supply *supply)
45 {
46 int i;
47
48 if (!supply->supplied_from && !supplier->supplied_to)
49 return false;
50
51 /* Support both supplied_to and supplied_from modes */
52 if (supply->supplied_from) {
53 if (!supplier->desc->name)
54 return false;
55 for (i = 0; i < supply->num_supplies; i++)
56 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57 return true;
58 } else {
59 if (!supply->desc->name)
60 return false;
61 for (i = 0; i < supplier->num_supplicants; i++)
62 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63 return true;
64 }
65
66 return false;
67 }
68
__power_supply_changed_work(struct power_supply * pst,void * data)69 static int __power_supply_changed_work(struct power_supply *pst, void *data)
70 {
71 struct power_supply *psy = data;
72
73 if (__power_supply_is_supplied_by(psy, pst))
74 power_supply_external_power_changed(pst);
75
76 return 0;
77 }
78
power_supply_changed_work(struct work_struct * work)79 static void power_supply_changed_work(struct work_struct *work)
80 {
81 int ret;
82 unsigned long flags;
83 struct power_supply *psy = container_of(work, struct power_supply,
84 changed_work);
85
86 dev_dbg(&psy->dev, "%s\n", __func__);
87
88 spin_lock_irqsave(&psy->changed_lock, flags);
89
90 if (unlikely(psy->update_groups)) {
91 psy->update_groups = false;
92 spin_unlock_irqrestore(&psy->changed_lock, flags);
93 ret = sysfs_update_groups(&psy->dev.kobj, power_supply_dev_type.groups);
94 if (ret)
95 dev_warn(&psy->dev, "failed to update sysfs groups: %pe\n", ERR_PTR(ret));
96 spin_lock_irqsave(&psy->changed_lock, flags);
97 }
98
99 /*
100 * Check 'changed' here to avoid issues due to race between
101 * power_supply_changed() and this routine. In worst case
102 * power_supply_changed() can be called again just before we take above
103 * lock. During the first call of this routine we will mark 'changed' as
104 * false and it will stay false for the next call as well.
105 */
106 if (likely(psy->changed)) {
107 psy->changed = false;
108 spin_unlock_irqrestore(&psy->changed_lock, flags);
109 power_supply_for_each_psy(psy, __power_supply_changed_work);
110 power_supply_update_leds(psy);
111 blocking_notifier_call_chain(&power_supply_notifier,
112 PSY_EVENT_PROP_CHANGED, psy);
113 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
114 spin_lock_irqsave(&psy->changed_lock, flags);
115 }
116
117 /*
118 * Hold the wakeup_source until all events are processed.
119 * power_supply_changed() might have called again and have set 'changed'
120 * to true.
121 */
122 if (likely(!psy->changed))
123 pm_relax(&psy->dev);
124 spin_unlock_irqrestore(&psy->changed_lock, flags);
125 }
126
127 struct psy_for_each_psy_cb_data {
128 int (*fn)(struct power_supply *psy, void *data);
129 void *data;
130 };
131
psy_for_each_psy_cb(struct device * dev,void * data)132 static int psy_for_each_psy_cb(struct device *dev, void *data)
133 {
134 struct psy_for_each_psy_cb_data *cb_data = data;
135 struct power_supply *psy = dev_to_psy(dev);
136
137 return cb_data->fn(psy, cb_data->data);
138 }
139
power_supply_for_each_psy(void * data,int (* fn)(struct power_supply * psy,void * data))140 int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data))
141 {
142 struct psy_for_each_psy_cb_data cb_data = {
143 .fn = fn,
144 .data = data,
145 };
146
147 return class_for_each_device(&power_supply_class, NULL, &cb_data, psy_for_each_psy_cb);
148 }
149 EXPORT_SYMBOL_GPL(power_supply_for_each_psy);
150
power_supply_changed(struct power_supply * psy)151 void power_supply_changed(struct power_supply *psy)
152 {
153 unsigned long flags;
154
155 dev_dbg(&psy->dev, "%s\n", __func__);
156
157 spin_lock_irqsave(&psy->changed_lock, flags);
158 psy->changed = true;
159 pm_stay_awake(&psy->dev);
160 spin_unlock_irqrestore(&psy->changed_lock, flags);
161 schedule_work(&psy->changed_work);
162 }
163 EXPORT_SYMBOL_GPL(power_supply_changed);
164
165 /*
166 * Notify that power supply was registered after parent finished the probing.
167 *
168 * Often power supply is registered from driver's probe function. However
169 * calling power_supply_changed() directly from power_supply_register()
170 * would lead to execution of get_property() function provided by the driver
171 * too early - before the probe ends.
172 *
173 * Avoid that by waiting on parent's mutex.
174 */
power_supply_deferred_register_work(struct work_struct * work)175 static void power_supply_deferred_register_work(struct work_struct *work)
176 {
177 struct power_supply *psy = container_of(work, struct power_supply,
178 deferred_register_work.work);
179
180 if (psy->dev.parent) {
181 while (!device_trylock(psy->dev.parent)) {
182 if (psy->removing)
183 return;
184 msleep(10);
185 }
186 }
187
188 power_supply_changed(psy);
189
190 if (psy->dev.parent)
191 device_unlock(psy->dev.parent);
192 }
193
194 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct power_supply * epsy,void * data)195 static int __power_supply_populate_supplied_from(struct power_supply *epsy,
196 void *data)
197 {
198 struct power_supply *psy = data;
199 struct device_node *np;
200 int i = 0;
201
202 do {
203 np = of_parse_phandle(psy->dev.of_node, "power-supplies", i++);
204 if (!np)
205 break;
206
207 if (np == epsy->dev.of_node) {
208 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
209 psy->desc->name, epsy->desc->name);
210 psy->supplied_from[i-1] = (char *)epsy->desc->name;
211 psy->num_supplies++;
212 of_node_put(np);
213 break;
214 }
215 of_node_put(np);
216 } while (np);
217
218 return 0;
219 }
220
power_supply_populate_supplied_from(struct power_supply * psy)221 static int power_supply_populate_supplied_from(struct power_supply *psy)
222 {
223 int error;
224
225 error = power_supply_for_each_psy(psy, __power_supply_populate_supplied_from);
226
227 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
228
229 return error;
230 }
231
__power_supply_find_supply_from_node(struct power_supply * epsy,void * data)232 static int __power_supply_find_supply_from_node(struct power_supply *epsy,
233 void *data)
234 {
235 struct device_node *np = data;
236
237 /* returning non-zero breaks out of power_supply_for_each_psy loop */
238 if (epsy->dev.of_node == np)
239 return 1;
240
241 return 0;
242 }
243
power_supply_find_supply_from_node(struct device_node * supply_node)244 static int power_supply_find_supply_from_node(struct device_node *supply_node)
245 {
246 int error;
247
248 /*
249 * power_supply_for_each_psy() either returns its own errors or values
250 * returned by __power_supply_find_supply_from_node().
251 *
252 * __power_supply_find_supply_from_node() will return 0 (no match)
253 * or 1 (match).
254 *
255 * We return 0 if power_supply_for_each_psy() returned 1, -EPROBE_DEFER if
256 * it returned 0, or error as returned by it.
257 */
258 error = power_supply_for_each_psy(supply_node, __power_supply_find_supply_from_node);
259
260 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
261 }
262
power_supply_check_supplies(struct power_supply * psy)263 static int power_supply_check_supplies(struct power_supply *psy)
264 {
265 struct device_node *np;
266 int cnt = 0;
267
268 /* If there is already a list honor it */
269 if (psy->supplied_from && psy->num_supplies > 0)
270 return 0;
271
272 /* No device node found, nothing to do */
273 if (!psy->dev.of_node)
274 return 0;
275
276 do {
277 int ret;
278
279 np = of_parse_phandle(psy->dev.of_node, "power-supplies", cnt++);
280 if (!np)
281 break;
282
283 ret = power_supply_find_supply_from_node(np);
284 of_node_put(np);
285
286 if (ret) {
287 dev_dbg(&psy->dev, "Failed to find supply!\n");
288 return ret;
289 }
290 } while (np);
291
292 /* Missing valid "power-supplies" entries */
293 if (cnt == 1)
294 return 0;
295
296 /* All supplies found, allocate char ** array for filling */
297 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
298 GFP_KERNEL);
299 if (!psy->supplied_from)
300 return -ENOMEM;
301
302 *psy->supplied_from = devm_kcalloc(&psy->dev,
303 cnt - 1, sizeof(**psy->supplied_from),
304 GFP_KERNEL);
305 if (!*psy->supplied_from)
306 return -ENOMEM;
307
308 return power_supply_populate_supplied_from(psy);
309 }
310 #else
power_supply_check_supplies(struct power_supply * psy)311 static int power_supply_check_supplies(struct power_supply *psy)
312 {
313 int nval, ret;
314
315 if (!psy->dev.parent)
316 return 0;
317
318 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
319 if (nval <= 0)
320 return 0;
321
322 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
323 sizeof(char *), GFP_KERNEL);
324 if (!psy->supplied_from)
325 return -ENOMEM;
326
327 ret = device_property_read_string_array(psy->dev.parent,
328 "supplied-from", (const char **)psy->supplied_from, nval);
329 if (ret < 0)
330 return ret;
331
332 psy->num_supplies = nval;
333
334 return 0;
335 }
336 #endif
337
338 struct psy_am_i_supplied_data {
339 struct power_supply *psy;
340 unsigned int count;
341 };
342
__power_supply_am_i_supplied(struct power_supply * epsy,void * _data)343 static int __power_supply_am_i_supplied(struct power_supply *epsy, void *_data)
344 {
345 union power_supply_propval ret = {0,};
346 struct psy_am_i_supplied_data *data = _data;
347
348 if (__power_supply_is_supplied_by(epsy, data->psy)) {
349 data->count++;
350 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
351 &ret))
352 return ret.intval;
353 }
354
355 return 0;
356 }
357
power_supply_am_i_supplied(struct power_supply * psy)358 int power_supply_am_i_supplied(struct power_supply *psy)
359 {
360 struct psy_am_i_supplied_data data = { psy, 0 };
361 int error;
362
363 error = power_supply_for_each_psy(&data, __power_supply_am_i_supplied);
364
365 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
366
367 if (data.count == 0)
368 return -ENODEV;
369
370 return error;
371 }
372 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
373
__power_supply_is_system_supplied(struct power_supply * psy,void * data)374 static int __power_supply_is_system_supplied(struct power_supply *psy, void *data)
375 {
376 union power_supply_propval ret = {0,};
377 unsigned int *count = data;
378
379 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
380 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
381 return 0;
382
383 (*count)++;
384 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
385 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
386 &ret))
387 return ret.intval;
388
389 return 0;
390 }
391
power_supply_is_system_supplied(void)392 int power_supply_is_system_supplied(void)
393 {
394 int error;
395 unsigned int count = 0;
396
397 error = power_supply_for_each_psy(&count, __power_supply_is_system_supplied);
398
399 /*
400 * If no system scope power class device was found at all, most probably we
401 * are running on a desktop system, so assume we are on mains power.
402 */
403 if (count == 0)
404 return 1;
405
406 return error;
407 }
408 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
409
410 struct psy_get_supplier_prop_data {
411 struct power_supply *psy;
412 enum power_supply_property psp;
413 union power_supply_propval *val;
414 };
415
__power_supply_get_supplier_property(struct power_supply * epsy,void * _data)416 static int __power_supply_get_supplier_property(struct power_supply *epsy, void *_data)
417 {
418 struct psy_get_supplier_prop_data *data = _data;
419
420 if (__power_supply_is_supplied_by(epsy, data->psy))
421 if (!power_supply_get_property(epsy, data->psp, data->val))
422 return 1; /* Success */
423
424 return 0; /* Continue iterating */
425 }
426
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)427 int power_supply_get_property_from_supplier(struct power_supply *psy,
428 enum power_supply_property psp,
429 union power_supply_propval *val)
430 {
431 struct psy_get_supplier_prop_data data = {
432 .psy = psy,
433 .psp = psp,
434 .val = val,
435 };
436 int ret;
437
438 /*
439 * This function is not intended for use with a supply with multiple
440 * suppliers, we simply pick the first supply to report the psp.
441 */
442 ret = power_supply_for_each_psy(&data, __power_supply_get_supplier_property);
443 if (ret < 0)
444 return ret;
445 if (ret == 0)
446 return -ENODEV;
447
448 return 0;
449 }
450 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
451
power_supply_match_device_by_name(struct device * dev,const void * data)452 static int power_supply_match_device_by_name(struct device *dev, const void *data)
453 {
454 const char *name = data;
455 struct power_supply *psy = dev_to_psy(dev);
456
457 return strcmp(psy->desc->name, name) == 0;
458 }
459
460 /**
461 * power_supply_get_by_name() - Search for a power supply and returns its ref
462 * @name: Power supply name to fetch
463 *
464 * If power supply was found, it increases reference count for the
465 * internal power supply's device. The user should power_supply_put()
466 * after usage.
467 *
468 * Return: On success returns a reference to a power supply with
469 * matching name equals to @name, a NULL otherwise.
470 */
power_supply_get_by_name(const char * name)471 struct power_supply *power_supply_get_by_name(const char *name)
472 {
473 struct power_supply *psy = NULL;
474 struct device *dev = class_find_device(&power_supply_class, NULL, name,
475 power_supply_match_device_by_name);
476
477 if (dev) {
478 psy = dev_to_psy(dev);
479 atomic_inc(&psy->use_cnt);
480 }
481
482 return psy;
483 }
484 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
485
486 /**
487 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
488 * @psy: Reference to put
489 *
490 * The reference to power supply should be put before unregistering
491 * the power supply.
492 */
power_supply_put(struct power_supply * psy)493 void power_supply_put(struct power_supply *psy)
494 {
495 atomic_dec(&psy->use_cnt);
496 put_device(&psy->dev);
497 }
498 EXPORT_SYMBOL_GPL(power_supply_put);
499
500 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)501 static int power_supply_match_device_node(struct device *dev, const void *data)
502 {
503 return dev->parent && dev->parent->of_node == data;
504 }
505
506 /**
507 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
508 * @np: Pointer to device node holding phandle property
509 * @property: Name of property holding a power supply name
510 *
511 * If power supply was found, it increases reference count for the
512 * internal power supply's device. The user should power_supply_put()
513 * after usage.
514 *
515 * Return: On success returns a reference to a power supply with
516 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
517 */
power_supply_get_by_phandle(struct device_node * np,const char * property)518 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
519 const char *property)
520 {
521 struct device_node *power_supply_np;
522 struct power_supply *psy = NULL;
523 struct device *dev;
524
525 power_supply_np = of_parse_phandle(np, property, 0);
526 if (!power_supply_np)
527 return ERR_PTR(-ENODEV);
528
529 dev = class_find_device(&power_supply_class, NULL, power_supply_np,
530 power_supply_match_device_node);
531
532 of_node_put(power_supply_np);
533
534 if (dev) {
535 psy = dev_to_psy(dev);
536 atomic_inc(&psy->use_cnt);
537 }
538
539 return psy;
540 }
541 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
542
devm_power_supply_put(struct device * dev,void * res)543 static void devm_power_supply_put(struct device *dev, void *res)
544 {
545 struct power_supply **psy = res;
546
547 power_supply_put(*psy);
548 }
549
550 /**
551 * devm_power_supply_get_by_phandle() - Resource managed version of
552 * power_supply_get_by_phandle()
553 * @dev: Pointer to device holding phandle property
554 * @property: Name of property holding a power supply phandle
555 *
556 * Return: On success returns a reference to a power supply with
557 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
558 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)559 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
560 const char *property)
561 {
562 struct power_supply **ptr, *psy;
563
564 if (!dev->of_node)
565 return ERR_PTR(-ENODEV);
566
567 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
568 if (!ptr)
569 return ERR_PTR(-ENOMEM);
570
571 psy = power_supply_get_by_phandle(dev->of_node, property);
572 if (IS_ERR_OR_NULL(psy)) {
573 devres_free(ptr);
574 } else {
575 *ptr = psy;
576 devres_add(dev, ptr);
577 }
578 return psy;
579 }
580 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
581 #endif /* CONFIG_OF */
582
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info ** info_out)583 int power_supply_get_battery_info(struct power_supply *psy,
584 struct power_supply_battery_info **info_out)
585 {
586 struct power_supply_resistance_temp_table *resist_table;
587 struct power_supply_battery_info *info;
588 struct device_node *battery_np = NULL;
589 struct fwnode_reference_args args;
590 struct fwnode_handle *fwnode = NULL;
591 const char *value;
592 int err, len, index;
593 const __be32 *list;
594 u32 min_max[2];
595
596 if (psy->dev.of_node) {
597 battery_np = of_parse_phandle(psy->dev.of_node, "monitored-battery", 0);
598 if (!battery_np)
599 return -ENODEV;
600
601 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
602 } else if (psy->dev.parent) {
603 err = fwnode_property_get_reference_args(
604 dev_fwnode(psy->dev.parent),
605 "monitored-battery", NULL, 0, 0, &args);
606 if (err)
607 return err;
608
609 fwnode = args.fwnode;
610 }
611
612 if (!fwnode)
613 return -ENOENT;
614
615 err = fwnode_property_read_string(fwnode, "compatible", &value);
616 if (err)
617 goto out_put_node;
618
619
620 /* Try static batteries first */
621 err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
622 if (!err)
623 goto out_ret_pointer;
624 else if (err == -ENODEV)
625 /*
626 * Device does not have a static battery.
627 * Proceed to look for a simple battery.
628 */
629 err = 0;
630
631 if (strcmp("simple-battery", value)) {
632 err = -ENODEV;
633 goto out_put_node;
634 }
635
636 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
637 if (!info) {
638 err = -ENOMEM;
639 goto out_put_node;
640 }
641
642 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
643 info->energy_full_design_uwh = -EINVAL;
644 info->charge_full_design_uah = -EINVAL;
645 info->voltage_min_design_uv = -EINVAL;
646 info->voltage_max_design_uv = -EINVAL;
647 info->precharge_current_ua = -EINVAL;
648 info->charge_term_current_ua = -EINVAL;
649 info->constant_charge_current_max_ua = -EINVAL;
650 info->constant_charge_voltage_max_uv = -EINVAL;
651 info->tricklecharge_current_ua = -EINVAL;
652 info->precharge_voltage_max_uv = -EINVAL;
653 info->charge_restart_voltage_uv = -EINVAL;
654 info->overvoltage_limit_uv = -EINVAL;
655 info->maintenance_charge = NULL;
656 info->alert_low_temp_charge_current_ua = -EINVAL;
657 info->alert_low_temp_charge_voltage_uv = -EINVAL;
658 info->alert_high_temp_charge_current_ua = -EINVAL;
659 info->alert_high_temp_charge_voltage_uv = -EINVAL;
660 info->temp_ambient_alert_min = INT_MIN;
661 info->temp_ambient_alert_max = INT_MAX;
662 info->temp_alert_min = INT_MIN;
663 info->temp_alert_max = INT_MAX;
664 info->temp_min = INT_MIN;
665 info->temp_max = INT_MAX;
666 info->factory_internal_resistance_uohm = -EINVAL;
667 info->resist_table = NULL;
668 info->bti_resistance_ohm = -EINVAL;
669 info->bti_resistance_tolerance = -EINVAL;
670
671 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
672 info->ocv_table[index] = NULL;
673 info->ocv_temp[index] = -EINVAL;
674 info->ocv_table_size[index] = -EINVAL;
675 }
676
677 /* The property and field names below must correspond to elements
678 * in enum power_supply_property. For reasoning, see
679 * Documentation/power/power_supply_class.rst.
680 */
681
682 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
683 if (!strcmp("nickel-cadmium", value))
684 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
685 else if (!strcmp("nickel-metal-hydride", value))
686 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
687 else if (!strcmp("lithium-ion", value))
688 /* Imprecise lithium-ion type */
689 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
690 else if (!strcmp("lithium-ion-polymer", value))
691 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
692 else if (!strcmp("lithium-ion-iron-phosphate", value))
693 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
694 else if (!strcmp("lithium-ion-manganese-oxide", value))
695 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
696 else
697 dev_warn(&psy->dev, "%s unknown battery type\n", value);
698 }
699
700 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
701 &info->energy_full_design_uwh);
702 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
703 &info->charge_full_design_uah);
704 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
705 &info->voltage_min_design_uv);
706 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
707 &info->voltage_max_design_uv);
708 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
709 &info->tricklecharge_current_ua);
710 fwnode_property_read_u32(fwnode, "precharge-current-microamp",
711 &info->precharge_current_ua);
712 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
713 &info->precharge_voltage_max_uv);
714 fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
715 &info->charge_term_current_ua);
716 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
717 &info->charge_restart_voltage_uv);
718 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
719 &info->overvoltage_limit_uv);
720 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
721 &info->constant_charge_current_max_ua);
722 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
723 &info->constant_charge_voltage_max_uv);
724 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
725 &info->factory_internal_resistance_uohm);
726
727 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
728 min_max, ARRAY_SIZE(min_max))) {
729 info->temp_ambient_alert_min = min_max[0];
730 info->temp_ambient_alert_max = min_max[1];
731 }
732 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
733 min_max, ARRAY_SIZE(min_max))) {
734 info->temp_alert_min = min_max[0];
735 info->temp_alert_max = min_max[1];
736 }
737 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
738 min_max, ARRAY_SIZE(min_max))) {
739 info->temp_min = min_max[0];
740 info->temp_max = min_max[1];
741 }
742
743 /*
744 * The below code uses raw of-data parsing to parse
745 * /schemas/types.yaml#/definitions/uint32-matrix
746 * data, so for now this is only support with of.
747 */
748 if (!battery_np)
749 goto out_ret_pointer;
750
751 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
752 if (len < 0 && len != -EINVAL) {
753 err = len;
754 goto out_put_node;
755 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
756 dev_err(&psy->dev, "Too many temperature values\n");
757 err = -EINVAL;
758 goto out_put_node;
759 } else if (len > 0) {
760 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
761 info->ocv_temp, len);
762 }
763
764 for (index = 0; index < len; index++) {
765 struct power_supply_battery_ocv_table *table;
766 int i, tab_len, size;
767
768 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
769 index);
770 if (!propname) {
771 power_supply_put_battery_info(psy, info);
772 err = -ENOMEM;
773 goto out_put_node;
774 }
775 list = of_get_property(battery_np, propname, &size);
776 if (!list || !size) {
777 dev_err(&psy->dev, "failed to get %s\n", propname);
778 power_supply_put_battery_info(psy, info);
779 err = -EINVAL;
780 goto out_put_node;
781 }
782
783 tab_len = size / (2 * sizeof(__be32));
784 info->ocv_table_size[index] = tab_len;
785
786 info->ocv_table[index] = table =
787 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
788 if (!info->ocv_table[index]) {
789 power_supply_put_battery_info(psy, info);
790 err = -ENOMEM;
791 goto out_put_node;
792 }
793
794 for (i = 0; i < tab_len; i++) {
795 table[i].ocv = be32_to_cpu(*list);
796 list++;
797 table[i].capacity = be32_to_cpu(*list);
798 list++;
799 }
800 }
801
802 list = of_get_property(battery_np, "resistance-temp-table", &len);
803 if (!list || !len)
804 goto out_ret_pointer;
805
806 info->resist_table_size = len / (2 * sizeof(__be32));
807 info->resist_table = resist_table = devm_kcalloc(&psy->dev,
808 info->resist_table_size,
809 sizeof(*resist_table),
810 GFP_KERNEL);
811 if (!info->resist_table) {
812 power_supply_put_battery_info(psy, info);
813 err = -ENOMEM;
814 goto out_put_node;
815 }
816
817 for (index = 0; index < info->resist_table_size; index++) {
818 resist_table[index].temp = be32_to_cpu(*list++);
819 resist_table[index].resistance = be32_to_cpu(*list++);
820 }
821
822 out_ret_pointer:
823 /* Finally return the whole thing */
824 *info_out = info;
825
826 out_put_node:
827 fwnode_handle_put(fwnode);
828 of_node_put(battery_np);
829 return err;
830 }
831 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
832
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)833 void power_supply_put_battery_info(struct power_supply *psy,
834 struct power_supply_battery_info *info)
835 {
836 int i;
837
838 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
839 if (info->ocv_table[i])
840 devm_kfree(&psy->dev, info->ocv_table[i]);
841 }
842
843 if (info->resist_table)
844 devm_kfree(&psy->dev, info->resist_table);
845
846 devm_kfree(&psy->dev, info);
847 }
848 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
849
850 const enum power_supply_property power_supply_battery_info_properties[] = {
851 POWER_SUPPLY_PROP_TECHNOLOGY,
852 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
853 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
854 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
855 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
856 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
857 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
858 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
859 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
860 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
861 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
862 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
863 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
864 POWER_SUPPLY_PROP_TEMP_MIN,
865 POWER_SUPPLY_PROP_TEMP_MAX,
866 };
867 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
868
869 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
870 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
871
power_supply_battery_info_has_prop(struct power_supply_battery_info * info,enum power_supply_property psp)872 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
873 enum power_supply_property psp)
874 {
875 if (!info)
876 return false;
877
878 switch (psp) {
879 case POWER_SUPPLY_PROP_TECHNOLOGY:
880 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
881 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
882 return info->energy_full_design_uwh >= 0;
883 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
884 return info->charge_full_design_uah >= 0;
885 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
886 return info->voltage_min_design_uv >= 0;
887 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
888 return info->voltage_max_design_uv >= 0;
889 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
890 return info->precharge_current_ua >= 0;
891 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
892 return info->charge_term_current_ua >= 0;
893 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
894 return info->constant_charge_current_max_ua >= 0;
895 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
896 return info->constant_charge_voltage_max_uv >= 0;
897 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
898 return info->temp_ambient_alert_min > INT_MIN;
899 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
900 return info->temp_ambient_alert_max < INT_MAX;
901 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
902 return info->temp_alert_min > INT_MIN;
903 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
904 return info->temp_alert_max < INT_MAX;
905 case POWER_SUPPLY_PROP_TEMP_MIN:
906 return info->temp_min > INT_MIN;
907 case POWER_SUPPLY_PROP_TEMP_MAX:
908 return info->temp_max < INT_MAX;
909 default:
910 return false;
911 }
912 }
913 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
914
power_supply_battery_info_get_prop(struct power_supply_battery_info * info,enum power_supply_property psp,union power_supply_propval * val)915 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
916 enum power_supply_property psp,
917 union power_supply_propval *val)
918 {
919 if (!info)
920 return -EINVAL;
921
922 if (!power_supply_battery_info_has_prop(info, psp))
923 return -EINVAL;
924
925 switch (psp) {
926 case POWER_SUPPLY_PROP_TECHNOLOGY:
927 val->intval = info->technology;
928 return 0;
929 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
930 val->intval = info->energy_full_design_uwh;
931 return 0;
932 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
933 val->intval = info->charge_full_design_uah;
934 return 0;
935 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
936 val->intval = info->voltage_min_design_uv;
937 return 0;
938 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
939 val->intval = info->voltage_max_design_uv;
940 return 0;
941 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
942 val->intval = info->precharge_current_ua;
943 return 0;
944 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
945 val->intval = info->charge_term_current_ua;
946 return 0;
947 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
948 val->intval = info->constant_charge_current_max_ua;
949 return 0;
950 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
951 val->intval = info->constant_charge_voltage_max_uv;
952 return 0;
953 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
954 val->intval = info->temp_ambient_alert_min;
955 return 0;
956 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
957 val->intval = info->temp_ambient_alert_max;
958 return 0;
959 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
960 val->intval = info->temp_alert_min;
961 return 0;
962 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
963 val->intval = info->temp_alert_max;
964 return 0;
965 case POWER_SUPPLY_PROP_TEMP_MIN:
966 val->intval = info->temp_min;
967 return 0;
968 case POWER_SUPPLY_PROP_TEMP_MAX:
969 val->intval = info->temp_max;
970 return 0;
971 default:
972 return -EINVAL;
973 }
974 }
975 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
976
977 /**
978 * power_supply_temp2resist_simple() - find the battery internal resistance
979 * percent from temperature
980 * @table: Pointer to battery resistance temperature table
981 * @table_len: The table length
982 * @temp: Current temperature
983 *
984 * This helper function is used to look up battery internal resistance percent
985 * according to current temperature value from the resistance temperature table,
986 * and the table must be ordered descending. Then the actual battery internal
987 * resistance = the ideal battery internal resistance * percent / 100.
988 *
989 * Return: the battery internal resistance percent
990 */
power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table * table,int table_len,int temp)991 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
992 int table_len, int temp)
993 {
994 int i, high, low;
995
996 for (i = 0; i < table_len; i++)
997 if (temp > table[i].temp)
998 break;
999
1000 /* The library function will deal with high == low */
1001 if (i == 0)
1002 high = low = i;
1003 else if (i == table_len)
1004 high = low = i - 1;
1005 else
1006 high = (low = i) - 1;
1007
1008 return fixp_linear_interpolate(table[low].temp,
1009 table[low].resistance,
1010 table[high].temp,
1011 table[high].resistance,
1012 temp);
1013 }
1014 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1015
1016 /**
1017 * power_supply_vbat2ri() - find the battery internal resistance
1018 * from the battery voltage
1019 * @info: The battery information container
1020 * @vbat_uv: The battery voltage in microvolt
1021 * @charging: If we are charging (true) or not (false)
1022 *
1023 * This helper function is used to look up battery internal resistance
1024 * according to current battery voltage. Depending on whether the battery
1025 * is currently charging or not, different resistance will be returned.
1026 *
1027 * Returns the internal resistance in microohm or negative error code.
1028 */
power_supply_vbat2ri(struct power_supply_battery_info * info,int vbat_uv,bool charging)1029 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1030 int vbat_uv, bool charging)
1031 {
1032 const struct power_supply_vbat_ri_table *vbat2ri;
1033 int table_len;
1034 int i, high, low;
1035
1036 /*
1037 * If we are charging, and the battery supplies a separate table
1038 * for this state, we use that in order to compensate for the
1039 * charging voltage. Otherwise we use the main table.
1040 */
1041 if (charging && info->vbat2ri_charging) {
1042 vbat2ri = info->vbat2ri_charging;
1043 table_len = info->vbat2ri_charging_size;
1044 } else {
1045 vbat2ri = info->vbat2ri_discharging;
1046 table_len = info->vbat2ri_discharging_size;
1047 }
1048
1049 /*
1050 * If no tables are specified, or if we are above the highest voltage in
1051 * the voltage table, just return the factory specified internal resistance.
1052 */
1053 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1054 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1055 return info->factory_internal_resistance_charging_uohm;
1056 else
1057 return info->factory_internal_resistance_uohm;
1058 }
1059
1060 /* Break loop at table_len - 1 because that is the highest index */
1061 for (i = 0; i < table_len - 1; i++)
1062 if (vbat_uv > vbat2ri[i].vbat_uv)
1063 break;
1064
1065 /* The library function will deal with high == low */
1066 if ((i == 0) || (i == (table_len - 1)))
1067 high = i;
1068 else
1069 high = i - 1;
1070 low = i;
1071
1072 return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1073 vbat2ri[low].ri_uohm,
1074 vbat2ri[high].vbat_uv,
1075 vbat2ri[high].ri_uohm,
1076 vbat_uv);
1077 }
1078 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1079
1080 const struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info * info,int index)1081 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1082 int index)
1083 {
1084 if (index >= info->maintenance_charge_size)
1085 return NULL;
1086 return &info->maintenance_charge[index];
1087 }
1088 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1089
1090 /**
1091 * power_supply_ocv2cap_simple() - find the battery capacity
1092 * @table: Pointer to battery OCV lookup table
1093 * @table_len: OCV table length
1094 * @ocv: Current OCV value
1095 *
1096 * This helper function is used to look up battery capacity according to
1097 * current OCV value from one OCV table, and the OCV table must be ordered
1098 * descending.
1099 *
1100 * Return: the battery capacity.
1101 */
power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table * table,int table_len,int ocv)1102 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
1103 int table_len, int ocv)
1104 {
1105 int i, high, low;
1106
1107 for (i = 0; i < table_len; i++)
1108 if (ocv > table[i].ocv)
1109 break;
1110
1111 /* The library function will deal with high == low */
1112 if (i == 0)
1113 high = low = i;
1114 else if (i == table_len)
1115 high = low = i - 1;
1116 else
1117 high = (low = i) - 1;
1118
1119 return fixp_linear_interpolate(table[low].ocv,
1120 table[low].capacity,
1121 table[high].ocv,
1122 table[high].capacity,
1123 ocv);
1124 }
1125 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1126
1127 const struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)1128 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1129 int temp, int *table_len)
1130 {
1131 int best_temp_diff = INT_MAX, temp_diff;
1132 u8 i, best_index = 0;
1133
1134 if (!info->ocv_table[0])
1135 return NULL;
1136
1137 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1138 /* Out of capacity tables */
1139 if (!info->ocv_table[i])
1140 break;
1141
1142 temp_diff = abs(info->ocv_temp[i] - temp);
1143
1144 if (temp_diff < best_temp_diff) {
1145 best_temp_diff = temp_diff;
1146 best_index = i;
1147 }
1148 }
1149
1150 *table_len = info->ocv_table_size[best_index];
1151 return info->ocv_table[best_index];
1152 }
1153 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1154
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)1155 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1156 int ocv, int temp)
1157 {
1158 const struct power_supply_battery_ocv_table *table;
1159 int table_len;
1160
1161 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1162 if (!table)
1163 return -EINVAL;
1164
1165 return power_supply_ocv2cap_simple(table, table_len, ocv);
1166 }
1167 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1168
power_supply_battery_bti_in_range(struct power_supply_battery_info * info,int resistance)1169 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1170 int resistance)
1171 {
1172 int low, high;
1173
1174 /* Nothing like this can be checked */
1175 if (info->bti_resistance_ohm <= 0)
1176 return false;
1177
1178 /* This will be extremely strict and unlikely to work */
1179 if (info->bti_resistance_tolerance <= 0)
1180 return (info->bti_resistance_ohm == resistance);
1181
1182 low = info->bti_resistance_ohm -
1183 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1184 high = info->bti_resistance_ohm +
1185 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1186
1187 return ((resistance >= low) && (resistance <= high));
1188 }
1189 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1190
psy_desc_has_property(const struct power_supply_desc * psy_desc,enum power_supply_property psp)1191 static bool psy_desc_has_property(const struct power_supply_desc *psy_desc,
1192 enum power_supply_property psp)
1193 {
1194 bool found = false;
1195 int i;
1196
1197 for (i = 0; i < psy_desc->num_properties; i++) {
1198 if (psy_desc->properties[i] == psp) {
1199 found = true;
1200 break;
1201 }
1202 }
1203
1204 return found;
1205 }
1206
power_supply_ext_has_property(const struct power_supply_ext * psy_ext,enum power_supply_property psp)1207 bool power_supply_ext_has_property(const struct power_supply_ext *psy_ext,
1208 enum power_supply_property psp)
1209 {
1210 int i;
1211
1212 for (i = 0; i < psy_ext->num_properties; i++)
1213 if (psy_ext->properties[i] == psp)
1214 return true;
1215
1216 return false;
1217 }
1218
power_supply_has_property(struct power_supply * psy,enum power_supply_property psp)1219 bool power_supply_has_property(struct power_supply *psy,
1220 enum power_supply_property psp)
1221 {
1222 struct power_supply_ext_registration *reg;
1223
1224 if (psy_desc_has_property(psy->desc, psp))
1225 return true;
1226
1227 if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1228 return true;
1229
1230 power_supply_for_each_extension(reg, psy) {
1231 if (power_supply_ext_has_property(reg->ext, psp))
1232 return true;
1233 }
1234
1235 return false;
1236 }
1237
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)1238 int power_supply_get_property(struct power_supply *psy,
1239 enum power_supply_property psp,
1240 union power_supply_propval *val)
1241 {
1242 struct power_supply_ext_registration *reg;
1243
1244 if (atomic_read(&psy->use_cnt) <= 0) {
1245 if (!psy->initialized)
1246 return -EAGAIN;
1247 return -ENODEV;
1248 }
1249
1250 scoped_guard(rwsem_read, &psy->extensions_sem) {
1251 power_supply_for_each_extension(reg, psy) {
1252 if (power_supply_ext_has_property(reg->ext, psp))
1253 return reg->ext->get_property(psy, reg->ext, reg->data, psp, val);
1254 }
1255 }
1256
1257 if (psy_desc_has_property(psy->desc, psp))
1258 return psy->desc->get_property(psy, psp, val);
1259 else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1260 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1261 else
1262 return -EINVAL;
1263 }
1264 EXPORT_SYMBOL_GPL(power_supply_get_property);
1265
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)1266 int power_supply_set_property(struct power_supply *psy,
1267 enum power_supply_property psp,
1268 const union power_supply_propval *val)
1269 {
1270 struct power_supply_ext_registration *reg;
1271
1272 if (atomic_read(&psy->use_cnt) <= 0)
1273 return -ENODEV;
1274
1275 scoped_guard(rwsem_read, &psy->extensions_sem) {
1276 power_supply_for_each_extension(reg, psy) {
1277 if (power_supply_ext_has_property(reg->ext, psp)) {
1278 if (reg->ext->set_property)
1279 return reg->ext->set_property(psy, reg->ext, reg->data,
1280 psp, val);
1281 else
1282 return -ENODEV;
1283 }
1284 }
1285 }
1286
1287 if (!psy->desc->set_property)
1288 return -ENODEV;
1289
1290 return psy->desc->set_property(psy, psp, val);
1291 }
1292 EXPORT_SYMBOL_GPL(power_supply_set_property);
1293
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)1294 int power_supply_property_is_writeable(struct power_supply *psy,
1295 enum power_supply_property psp)
1296 {
1297 struct power_supply_ext_registration *reg;
1298
1299 power_supply_for_each_extension(reg, psy) {
1300 if (power_supply_ext_has_property(reg->ext, psp)) {
1301 if (reg->ext->property_is_writeable)
1302 return reg->ext->property_is_writeable(psy, reg->ext,
1303 reg->data, psp);
1304 else
1305 return 0;
1306 }
1307 }
1308
1309 if (!psy->desc->property_is_writeable)
1310 return 0;
1311
1312 return psy->desc->property_is_writeable(psy, psp);
1313 }
1314
power_supply_external_power_changed(struct power_supply * psy)1315 void power_supply_external_power_changed(struct power_supply *psy)
1316 {
1317 if (atomic_read(&psy->use_cnt) <= 0 ||
1318 !psy->desc->external_power_changed)
1319 return;
1320
1321 psy->desc->external_power_changed(psy);
1322 }
1323 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1324
power_supply_powers(struct power_supply * psy,struct device * dev)1325 int power_supply_powers(struct power_supply *psy, struct device *dev)
1326 {
1327 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1328 }
1329 EXPORT_SYMBOL_GPL(power_supply_powers);
1330
power_supply_update_sysfs_and_hwmon(struct power_supply * psy)1331 static int power_supply_update_sysfs_and_hwmon(struct power_supply *psy)
1332 {
1333 unsigned long flags;
1334
1335 spin_lock_irqsave(&psy->changed_lock, flags);
1336 psy->update_groups = true;
1337 spin_unlock_irqrestore(&psy->changed_lock, flags);
1338
1339 power_supply_changed(psy);
1340
1341 power_supply_remove_hwmon_sysfs(psy);
1342 return power_supply_add_hwmon_sysfs(psy);
1343 }
1344
power_supply_register_extension(struct power_supply * psy,const struct power_supply_ext * ext,struct device * dev,void * data)1345 int power_supply_register_extension(struct power_supply *psy, const struct power_supply_ext *ext,
1346 struct device *dev, void *data)
1347 {
1348 struct power_supply_ext_registration *reg;
1349 size_t i;
1350 int ret;
1351
1352 if (!psy || !dev || !ext || !ext->name || !ext->properties || !ext->num_properties)
1353 return -EINVAL;
1354
1355 guard(rwsem_write)(&psy->extensions_sem);
1356
1357 power_supply_for_each_extension(reg, psy)
1358 if (strcmp(ext->name, reg->ext->name) == 0)
1359 return -EEXIST;
1360
1361 for (i = 0; i < ext->num_properties; i++)
1362 if (power_supply_has_property(psy, ext->properties[i]))
1363 return -EEXIST;
1364
1365 reg = kmalloc(sizeof(*reg), GFP_KERNEL);
1366 if (!reg)
1367 return -ENOMEM;
1368
1369 reg->ext = ext;
1370 reg->dev = dev;
1371 reg->data = data;
1372 list_add(®->list_head, &psy->extensions);
1373
1374 ret = power_supply_sysfs_add_extension(psy, ext, dev);
1375 if (ret)
1376 goto sysfs_add_failed;
1377
1378 ret = power_supply_update_sysfs_and_hwmon(psy);
1379 if (ret)
1380 goto sysfs_hwmon_failed;
1381
1382 return 0;
1383
1384 sysfs_hwmon_failed:
1385 power_supply_sysfs_remove_extension(psy, ext);
1386 sysfs_add_failed:
1387 list_del(®->list_head);
1388 kfree(reg);
1389 return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(power_supply_register_extension);
1392
power_supply_unregister_extension(struct power_supply * psy,const struct power_supply_ext * ext)1393 void power_supply_unregister_extension(struct power_supply *psy, const struct power_supply_ext *ext)
1394 {
1395 struct power_supply_ext_registration *reg;
1396
1397 guard(rwsem_write)(&psy->extensions_sem);
1398
1399 power_supply_for_each_extension(reg, psy) {
1400 if (reg->ext == ext) {
1401 list_del(®->list_head);
1402 power_supply_sysfs_remove_extension(psy, ext);
1403 kfree(reg);
1404 power_supply_update_sysfs_and_hwmon(psy);
1405 return;
1406 }
1407 }
1408
1409 dev_warn(&psy->dev, "Trying to unregister invalid extension");
1410 }
1411 EXPORT_SYMBOL_GPL(power_supply_unregister_extension);
1412
power_supply_dev_release(struct device * dev)1413 static void power_supply_dev_release(struct device *dev)
1414 {
1415 struct power_supply *psy = to_power_supply(dev);
1416
1417 dev_dbg(dev, "%s\n", __func__);
1418 kfree(psy);
1419 }
1420
power_supply_reg_notifier(struct notifier_block * nb)1421 int power_supply_reg_notifier(struct notifier_block *nb)
1422 {
1423 return blocking_notifier_chain_register(&power_supply_notifier, nb);
1424 }
1425 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1426
power_supply_unreg_notifier(struct notifier_block * nb)1427 void power_supply_unreg_notifier(struct notifier_block *nb)
1428 {
1429 blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1430 }
1431 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1432
1433 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)1434 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1435 int *temp)
1436 {
1437 struct power_supply *psy;
1438 union power_supply_propval val;
1439 int ret;
1440
1441 WARN_ON(tzd == NULL);
1442 psy = thermal_zone_device_priv(tzd);
1443 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1444 if (ret)
1445 return ret;
1446
1447 /* Convert tenths of degree Celsius to milli degree Celsius. */
1448 *temp = val.intval * 100;
1449
1450 return ret;
1451 }
1452
1453 static const struct thermal_zone_device_ops psy_tzd_ops = {
1454 .get_temp = power_supply_read_temp,
1455 };
1456
psy_register_thermal(struct power_supply * psy)1457 static int psy_register_thermal(struct power_supply *psy)
1458 {
1459 int ret;
1460
1461 if (psy->desc->no_thermal)
1462 return 0;
1463
1464 /* Register battery zone device psy reports temperature */
1465 if (psy_desc_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1466 /* Prefer our hwmon device and avoid duplicates */
1467 struct thermal_zone_params tzp = {
1468 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1469 };
1470 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1471 psy, &psy_tzd_ops, &tzp);
1472 if (IS_ERR(psy->tzd))
1473 return PTR_ERR(psy->tzd);
1474 ret = thermal_zone_device_enable(psy->tzd);
1475 if (ret)
1476 thermal_zone_device_unregister(psy->tzd);
1477 return ret;
1478 }
1479
1480 return 0;
1481 }
1482
psy_unregister_thermal(struct power_supply * psy)1483 static void psy_unregister_thermal(struct power_supply *psy)
1484 {
1485 if (IS_ERR_OR_NULL(psy->tzd))
1486 return;
1487 thermal_zone_device_unregister(psy->tzd);
1488 }
1489
1490 #else
psy_register_thermal(struct power_supply * psy)1491 static int psy_register_thermal(struct power_supply *psy)
1492 {
1493 return 0;
1494 }
1495
psy_unregister_thermal(struct power_supply * psy)1496 static void psy_unregister_thermal(struct power_supply *psy)
1497 {
1498 }
1499 #endif
1500
1501 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1502 __power_supply_register(struct device *parent,
1503 const struct power_supply_desc *desc,
1504 const struct power_supply_config *cfg)
1505 {
1506 struct device *dev;
1507 struct power_supply *psy;
1508 int rc;
1509
1510 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1511 return ERR_PTR(-EINVAL);
1512
1513 if (!parent)
1514 pr_warn("%s: Expected proper parent device for '%s'\n",
1515 __func__, desc->name);
1516
1517 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1518 if (!psy)
1519 return ERR_PTR(-ENOMEM);
1520
1521 dev = &psy->dev;
1522
1523 device_initialize(dev);
1524
1525 dev->class = &power_supply_class;
1526 dev->type = &power_supply_dev_type;
1527 dev->parent = parent;
1528 dev->release = power_supply_dev_release;
1529 dev_set_drvdata(dev, psy);
1530 psy->desc = desc;
1531 if (cfg) {
1532 dev->groups = cfg->attr_grp;
1533 psy->drv_data = cfg->drv_data;
1534 dev->of_node =
1535 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1536 psy->supplied_to = cfg->supplied_to;
1537 psy->num_supplicants = cfg->num_supplicants;
1538 }
1539
1540 rc = dev_set_name(dev, "%s", desc->name);
1541 if (rc)
1542 goto dev_set_name_failed;
1543
1544 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1545 INIT_DELAYED_WORK(&psy->deferred_register_work,
1546 power_supply_deferred_register_work);
1547
1548 rc = power_supply_check_supplies(psy);
1549 if (rc) {
1550 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1551 goto check_supplies_failed;
1552 }
1553
1554 /*
1555 * Expose constant battery info, if it is available. While there are
1556 * some chargers accessing constant battery data, we only want to
1557 * expose battery data to userspace for battery devices.
1558 */
1559 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1560 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1561 if (rc && rc != -ENODEV && rc != -ENOENT)
1562 goto check_supplies_failed;
1563 }
1564
1565 spin_lock_init(&psy->changed_lock);
1566 init_rwsem(&psy->extensions_sem);
1567 INIT_LIST_HEAD(&psy->extensions);
1568
1569 rc = device_add(dev);
1570 if (rc)
1571 goto device_add_failed;
1572
1573 rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true);
1574 if (rc)
1575 goto wakeup_init_failed;
1576
1577 rc = psy_register_thermal(psy);
1578 if (rc)
1579 goto register_thermal_failed;
1580
1581 rc = power_supply_create_triggers(psy);
1582 if (rc)
1583 goto create_triggers_failed;
1584
1585 scoped_guard(rwsem_read, &psy->extensions_sem) {
1586 rc = power_supply_add_hwmon_sysfs(psy);
1587 if (rc)
1588 goto add_hwmon_sysfs_failed;
1589 }
1590
1591 /*
1592 * Update use_cnt after any uevents (most notably from device_add()).
1593 * We are here still during driver's probe but
1594 * the power_supply_uevent() calls back driver's get_property
1595 * method so:
1596 * 1. Driver did not assigned the returned struct power_supply,
1597 * 2. Driver could not finish initialization (anything in its probe
1598 * after calling power_supply_register()).
1599 */
1600 atomic_inc(&psy->use_cnt);
1601 psy->initialized = true;
1602
1603 queue_delayed_work(system_power_efficient_wq,
1604 &psy->deferred_register_work,
1605 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1606
1607 return psy;
1608
1609 add_hwmon_sysfs_failed:
1610 power_supply_remove_triggers(psy);
1611 create_triggers_failed:
1612 psy_unregister_thermal(psy);
1613 register_thermal_failed:
1614 wakeup_init_failed:
1615 device_del(dev);
1616 device_add_failed:
1617 check_supplies_failed:
1618 dev_set_name_failed:
1619 put_device(dev);
1620 return ERR_PTR(rc);
1621 }
1622
1623 /**
1624 * power_supply_register() - Register new power supply
1625 * @parent: Device to be a parent of power supply's device, usually
1626 * the device which probe function calls this
1627 * @desc: Description of power supply, must be valid through whole
1628 * lifetime of this power supply
1629 * @cfg: Run-time specific configuration accessed during registering,
1630 * may be NULL
1631 *
1632 * Return: A pointer to newly allocated power_supply on success
1633 * or ERR_PTR otherwise.
1634 * Use power_supply_unregister() on returned power_supply pointer to release
1635 * resources.
1636 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1637 struct power_supply *__must_check power_supply_register(struct device *parent,
1638 const struct power_supply_desc *desc,
1639 const struct power_supply_config *cfg)
1640 {
1641 return __power_supply_register(parent, desc, cfg);
1642 }
1643 EXPORT_SYMBOL_GPL(power_supply_register);
1644
devm_power_supply_release(struct device * dev,void * res)1645 static void devm_power_supply_release(struct device *dev, void *res)
1646 {
1647 struct power_supply **psy = res;
1648
1649 power_supply_unregister(*psy);
1650 }
1651
1652 /**
1653 * devm_power_supply_register() - Register managed power supply
1654 * @parent: Device to be a parent of power supply's device, usually
1655 * the device which probe function calls this
1656 * @desc: Description of power supply, must be valid through whole
1657 * lifetime of this power supply
1658 * @cfg: Run-time specific configuration accessed during registering,
1659 * may be NULL
1660 *
1661 * Return: A pointer to newly allocated power_supply on success
1662 * or ERR_PTR otherwise.
1663 * The returned power_supply pointer will be automatically unregistered
1664 * on driver detach.
1665 */
1666 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1667 devm_power_supply_register(struct device *parent,
1668 const struct power_supply_desc *desc,
1669 const struct power_supply_config *cfg)
1670 {
1671 struct power_supply **ptr, *psy;
1672
1673 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1674
1675 if (!ptr)
1676 return ERR_PTR(-ENOMEM);
1677 psy = __power_supply_register(parent, desc, cfg);
1678 if (IS_ERR(psy)) {
1679 devres_free(ptr);
1680 } else {
1681 *ptr = psy;
1682 devres_add(parent, ptr);
1683 }
1684 return psy;
1685 }
1686 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1687
1688 /**
1689 * power_supply_unregister() - Remove this power supply from system
1690 * @psy: Pointer to power supply to unregister
1691 *
1692 * Remove this power supply from the system. The resources of power supply
1693 * will be freed here or on last power_supply_put() call.
1694 */
power_supply_unregister(struct power_supply * psy)1695 void power_supply_unregister(struct power_supply *psy)
1696 {
1697 WARN_ON(atomic_dec_return(&psy->use_cnt));
1698 psy->removing = true;
1699 cancel_work_sync(&psy->changed_work);
1700 cancel_delayed_work_sync(&psy->deferred_register_work);
1701 sysfs_remove_link(&psy->dev.kobj, "powers");
1702 power_supply_remove_hwmon_sysfs(psy);
1703 power_supply_remove_triggers(psy);
1704 psy_unregister_thermal(psy);
1705 device_init_wakeup(&psy->dev, false);
1706 device_unregister(&psy->dev);
1707 }
1708 EXPORT_SYMBOL_GPL(power_supply_unregister);
1709
power_supply_get_drvdata(struct power_supply * psy)1710 void *power_supply_get_drvdata(struct power_supply *psy)
1711 {
1712 return psy->drv_data;
1713 }
1714 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1715
power_supply_class_init(void)1716 static int __init power_supply_class_init(void)
1717 {
1718 power_supply_init_attrs();
1719 return class_register(&power_supply_class);
1720 }
1721
power_supply_class_exit(void)1722 static void __exit power_supply_class_exit(void)
1723 {
1724 class_unregister(&power_supply_class);
1725 }
1726
1727 subsys_initcall(power_supply_class_init);
1728 module_exit(power_supply_class_exit);
1729
1730 MODULE_DESCRIPTION("Universal power supply monitor class");
1731 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1732 MODULE_AUTHOR("Szabolcs Gyurko");
1733 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1734