xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision 641d47d4c9635987f2329054b1395421716d3fee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <linux/page_table_check.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22 
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25 
26 #include "internal.h"
27 
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34 
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39 
40 #ifdef CONFIG_KFENCE
41 extern bool kfence_early_init;
42 static int __init parse_kfence_early_init(char *arg)
43 {
44 	int val;
45 
46 	if (get_option(&arg, &val))
47 		kfence_early_init = !!val;
48 	return 0;
49 }
50 early_param("kfence.sample_interval", parse_kfence_early_init);
51 #endif
52 
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
54 /*
55  * This is called when relaxing access to a hugepage. It's also called in the page
56  * fault path when we don't hit any of the major fault cases, ie, a minor
57  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
58  * handled those two for us, we additionally deal with missing execute
59  * permission here on some processors
60  */
61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
62 			  pmd_t *pmdp, pmd_t entry, int dirty)
63 {
64 	int changed;
65 #ifdef CONFIG_DEBUG_VM
66 	WARN_ON(!pmd_trans_huge(*pmdp));
67 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
68 #endif
69 	changed = !pmd_same(*(pmdp), entry);
70 	if (changed) {
71 		/*
72 		 * We can use MMU_PAGE_2M here, because only radix
73 		 * path look at the psize.
74 		 */
75 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
76 					pmd_pte(entry), address, MMU_PAGE_2M);
77 	}
78 	return changed;
79 }
80 
81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
82 			  pud_t *pudp, pud_t entry, int dirty)
83 {
84 	int changed;
85 #ifdef CONFIG_DEBUG_VM
86 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
87 #endif
88 	changed = !pud_same(*(pudp), entry);
89 	if (changed) {
90 		/*
91 		 * We can use MMU_PAGE_1G here, because only radix
92 		 * path look at the psize.
93 		 */
94 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
95 					pud_pte(entry), address, MMU_PAGE_1G);
96 	}
97 	return changed;
98 }
99 
100 
101 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
102 			      unsigned long address, pmd_t *pmdp)
103 {
104 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
105 }
106 
107 int pudp_test_and_clear_young(struct vm_area_struct *vma,
108 			      unsigned long address, pud_t *pudp)
109 {
110 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
111 }
112 
113 /*
114  * set a new huge pmd. We should not be called for updating
115  * an existing pmd entry. That should go via pmd_hugepage_update.
116  */
117 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
118 		pmd_t *pmdp, pmd_t pmd)
119 {
120 #ifdef CONFIG_DEBUG_VM
121 	/*
122 	 * Make sure hardware valid bit is not set. We don't do
123 	 * tlb flush for this update.
124 	 */
125 
126 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
127 	assert_spin_locked(pmd_lockptr(mm, pmdp));
128 	WARN_ON(!(pmd_leaf(pmd)));
129 #endif
130 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
131 	page_table_check_pmd_set(mm, addr, pmdp, pmd);
132 	return set_pte_at_unchecked(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
133 }
134 
135 void set_pud_at(struct mm_struct *mm, unsigned long addr,
136 		pud_t *pudp, pud_t pud)
137 {
138 #ifdef CONFIG_DEBUG_VM
139 	/*
140 	 * Make sure hardware valid bit is not set. We don't do
141 	 * tlb flush for this update.
142 	 */
143 
144 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
145 	assert_spin_locked(pud_lockptr(mm, pudp));
146 	WARN_ON(!(pud_leaf(pud)));
147 #endif
148 	trace_hugepage_set_pud(addr, pud_val(pud));
149 	page_table_check_pud_set(mm, addr, pudp, pud);
150 	return set_pte_at_unchecked(mm, addr, pudp_ptep(pudp), pud_pte(pud));
151 }
152 
153 static void do_serialize(void *arg)
154 {
155 	/* We've taken the IPI, so try to trim the mask while here */
156 	if (radix_enabled()) {
157 		struct mm_struct *mm = arg;
158 		exit_lazy_flush_tlb(mm, false);
159 	}
160 }
161 
162 /*
163  * Serialize against __find_linux_pte() which does lock-less
164  * lookup in page tables with local interrupts disabled. For huge pages
165  * it casts pmd_t to pte_t. Since format of pte_t is different from
166  * pmd_t we want to prevent transit from pmd pointing to page table
167  * to pmd pointing to huge page (and back) while interrupts are disabled.
168  * We clear pmd to possibly replace it with page table pointer in
169  * different code paths. So make sure we wait for the parallel
170  * __find_linux_pte() to finish.
171  */
172 void serialize_against_pte_lookup(struct mm_struct *mm)
173 {
174 	smp_mb();
175 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
176 }
177 
178 /*
179  * We use this to invalidate a pmdp entry before switching from a
180  * hugepte to regular pmd entry.
181  */
182 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
183 		     pmd_t *pmdp)
184 {
185 	pmd_t old_pmd;
186 
187 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
188 	old_pmd = __pmd(pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID));
189 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
190 	page_table_check_pmd_clear(vma->vm_mm, address, old_pmd);
191 
192 	return old_pmd;
193 }
194 
195 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
196 		      pud_t *pudp)
197 {
198 	pud_t old_pud;
199 
200 	VM_WARN_ON_ONCE(!pud_present(*pudp));
201 	old_pud = __pud(pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID));
202 	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
203 	page_table_check_pud_clear(vma->vm_mm, address, old_pud);
204 
205 	return old_pud;
206 }
207 
208 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
209 				   unsigned long addr, pmd_t *pmdp, int full)
210 {
211 	pmd_t pmd;
212 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
213 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)) ||
214 		   !pmd_present(*pmdp));
215 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
216 	/*
217 	 * if it not a fullmm flush, then we can possibly end up converting
218 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
219 	 * Make sure we flush the tlb in this case.
220 	 */
221 	if (!full)
222 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
223 	return pmd;
224 }
225 
226 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
227 				   unsigned long addr, pud_t *pudp, int full)
228 {
229 	pud_t pud;
230 
231 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
232 	VM_BUG_ON(!pud_present(*pudp));
233 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
234 	/*
235 	 * if it not a fullmm flush, then we can possibly end up converting
236 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
237 	 * Make sure we flush the tlb in this case.
238 	 */
239 	if (!full)
240 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
241 	return pud;
242 }
243 
244 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
245 {
246 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
247 }
248 
249 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
250 {
251 	return __pud(pud_val(pud) | pgprot_val(pgprot));
252 }
253 
254 /*
255  * At some point we should be able to get rid of
256  * pmd_mkhuge() and mk_huge_pmd() when we update all the
257  * other archs to mark the pmd huge in pfn_pmd()
258  */
259 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
260 {
261 	unsigned long pmdv;
262 
263 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
264 
265 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
266 }
267 
268 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
269 {
270 	unsigned long pudv;
271 
272 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
273 
274 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
275 }
276 
277 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
278 {
279 	unsigned long pmdv;
280 
281 	pmdv = pmd_val(pmd);
282 	pmdv &= _HPAGE_CHG_MASK;
283 	return pmd_set_protbits(__pmd(pmdv), newprot);
284 }
285 
286 pud_t pud_modify(pud_t pud, pgprot_t newprot)
287 {
288 	unsigned long pudv;
289 
290 	pudv = pud_val(pud);
291 	pudv &= _HPAGE_CHG_MASK;
292 	return pud_set_protbits(__pud(pudv), newprot);
293 }
294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
295 
296 /* For use by kexec, called with MMU off */
297 notrace void mmu_cleanup_all(void)
298 {
299 	if (radix_enabled())
300 		radix__mmu_cleanup_all();
301 	else if (mmu_hash_ops.hpte_clear_all)
302 		mmu_hash_ops.hpte_clear_all();
303 
304 	reset_sprs();
305 }
306 
307 #ifdef CONFIG_MEMORY_HOTPLUG
308 int __meminit create_section_mapping(unsigned long start, unsigned long end,
309 				     int nid, pgprot_t prot)
310 {
311 	if (radix_enabled())
312 		return radix__create_section_mapping(start, end, nid, prot);
313 
314 	return hash__create_section_mapping(start, end, nid, prot);
315 }
316 
317 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
318 {
319 	if (radix_enabled())
320 		return radix__remove_section_mapping(start, end);
321 
322 	return hash__remove_section_mapping(start, end);
323 }
324 #endif /* CONFIG_MEMORY_HOTPLUG */
325 
326 void __init mmu_partition_table_init(void)
327 {
328 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
329 	unsigned long ptcr;
330 
331 	/* Initialize the Partition Table with no entries */
332 	partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
333 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
334 	set_ptcr_when_no_uv(ptcr);
335 	powernv_set_nmmu_ptcr(ptcr);
336 }
337 
338 static void flush_partition(unsigned int lpid, bool radix)
339 {
340 	if (radix) {
341 		radix__flush_all_lpid(lpid);
342 		radix__flush_all_lpid_guest(lpid);
343 	} else {
344 		asm volatile("ptesync" : : : "memory");
345 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
346 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
347 		/* do we need fixup here ?*/
348 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
349 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
350 	}
351 }
352 
353 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
354 				  unsigned long dw1, bool flush)
355 {
356 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
357 
358 	/*
359 	 * When ultravisor is enabled, the partition table is stored in secure
360 	 * memory and can only be accessed doing an ultravisor call. However, we
361 	 * maintain a copy of the partition table in normal memory to allow Nest
362 	 * MMU translations to occur (for normal VMs).
363 	 *
364 	 * Therefore, here we always update partition_tb, regardless of whether
365 	 * we are running under an ultravisor or not.
366 	 */
367 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
368 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
369 
370 	/*
371 	 * If ultravisor is enabled, we do an ultravisor call to register the
372 	 * partition table entry (PATE), which also do a global flush of TLBs
373 	 * and partition table caches for the lpid. Otherwise, just do the
374 	 * flush. The type of flush (hash or radix) depends on what the previous
375 	 * use of the partition ID was, not the new use.
376 	 */
377 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
378 		uv_register_pate(lpid, dw0, dw1);
379 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
380 			dw0, dw1);
381 	} else if (flush) {
382 		/*
383 		 * Boot does not need to flush, because MMU is off and each
384 		 * CPU does a tlbiel_all() before switching them on, which
385 		 * flushes everything.
386 		 */
387 		flush_partition(lpid, (old & PATB_HR));
388 	}
389 }
390 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
391 
392 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
393 {
394 	void *pmd_frag, *ret;
395 
396 	if (PMD_FRAG_NR == 1)
397 		return NULL;
398 
399 	spin_lock(&mm->page_table_lock);
400 	ret = mm->context.pmd_frag;
401 	if (ret) {
402 		pmd_frag = ret + PMD_FRAG_SIZE;
403 		/*
404 		 * If we have taken up all the fragments mark PTE page NULL
405 		 */
406 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
407 			pmd_frag = NULL;
408 		mm->context.pmd_frag = pmd_frag;
409 	}
410 	spin_unlock(&mm->page_table_lock);
411 	return (pmd_t *)ret;
412 }
413 
414 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
415 {
416 	void *ret = NULL;
417 	struct ptdesc *ptdesc;
418 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
419 
420 	if (mm == &init_mm)
421 		gfp &= ~__GFP_ACCOUNT;
422 	ptdesc = pagetable_alloc(gfp, 0);
423 	if (!ptdesc)
424 		return NULL;
425 	if (!pagetable_pmd_ctor(mm, ptdesc)) {
426 		pagetable_free(ptdesc);
427 		return NULL;
428 	}
429 
430 	atomic_set(&ptdesc->pt_frag_refcount, 1);
431 
432 	ret = ptdesc_address(ptdesc);
433 	/*
434 	 * if we support only one fragment just return the
435 	 * allocated page.
436 	 */
437 	if (PMD_FRAG_NR == 1)
438 		return ret;
439 
440 	spin_lock(&mm->page_table_lock);
441 	/*
442 	 * If we find ptdesc_page set, we return
443 	 * the allocated page with single fragment
444 	 * count.
445 	 */
446 	if (likely(!mm->context.pmd_frag)) {
447 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
448 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
449 	}
450 	spin_unlock(&mm->page_table_lock);
451 
452 	return (pmd_t *)ret;
453 }
454 
455 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
456 {
457 	pmd_t *pmd;
458 
459 	pmd = get_pmd_from_cache(mm);
460 	if (pmd)
461 		return pmd;
462 
463 	return __alloc_for_pmdcache(mm);
464 }
465 
466 void pmd_fragment_free(unsigned long *pmd)
467 {
468 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
469 
470 	if (pagetable_is_reserved(ptdesc))
471 		return free_reserved_ptdesc(ptdesc);
472 
473 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
474 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
475 		pagetable_dtor(ptdesc);
476 		pagetable_free(ptdesc);
477 	}
478 }
479 
480 static inline void pgtable_free(void *table, int index)
481 {
482 	switch (index) {
483 	case PTE_INDEX:
484 		pte_fragment_free(table, 0);
485 		break;
486 	case PMD_INDEX:
487 		pmd_fragment_free(table);
488 		break;
489 	case PUD_INDEX:
490 		__pud_free(table);
491 		break;
492 		/* We don't free pgd table via RCU callback */
493 	default:
494 		BUG();
495 	}
496 }
497 
498 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
499 {
500 	unsigned long pgf = (unsigned long)table;
501 
502 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
503 	pgf |= index;
504 	tlb_remove_table(tlb, (void *)pgf);
505 }
506 
507 void __tlb_remove_table(void *_table)
508 {
509 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
510 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
511 
512 	return pgtable_free(table, index);
513 }
514 
515 #ifdef CONFIG_PROC_FS
516 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
517 
518 void arch_report_meminfo(struct seq_file *m)
519 {
520 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
521 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
522 	seq_printf(m, "DirectMap64k:   %8lu kB\n",
523 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
524 	if (radix_enabled()) {
525 		seq_printf(m, "DirectMap2M:    %8lu kB\n",
526 			   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
527 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
528 			   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
529 	} else {
530 		seq_printf(m, "DirectMap16M:   %8lu kB\n",
531 			   atomic_long_read(&direct_pages_count[MMU_PAGE_16M]) << 14);
532 		seq_printf(m, "DirectMap16G:   %8lu kB\n",
533 			   atomic_long_read(&direct_pages_count[MMU_PAGE_16G]) << 24);
534 	}
535 }
536 #endif /* CONFIG_PROC_FS */
537 
538 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
539 			     pte_t *ptep)
540 {
541 	unsigned long pte_val;
542 
543 	/*
544 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
545 	 * possible. Also keep the pte_present true so that we don't take
546 	 * wrong fault.
547 	 */
548 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
549 
550 	return __pte(pte_val);
551 
552 }
553 
554 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
555 			     pte_t *ptep, pte_t old_pte, pte_t pte)
556 {
557 	if (radix_enabled())
558 		return radix__ptep_modify_prot_commit(vma, addr,
559 						      ptep, old_pte, pte);
560 	set_pte_at_unchecked(vma->vm_mm, addr, ptep, pte);
561 }
562 
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 /*
565  * For hash translation mode, we use the deposited table to store hash slot
566  * information and they are stored at PTRS_PER_PMD offset from related pmd
567  * location. Hence a pmd move requires deposit and withdraw.
568  *
569  * For radix translation with split pmd ptl, we store the deposited table in the
570  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
571  * move.
572  *
573  * With hash we use deposited table always irrespective of anon or not.
574  * With radix we use deposited table only for anonymous mapping.
575  */
576 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
577 			   struct spinlock *old_pmd_ptl,
578 			   struct vm_area_struct *vma)
579 {
580 	if (radix_enabled())
581 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
582 
583 	return true;
584 }
585 #endif
586 
587 /*
588  * Does the CPU support tlbie?
589  */
590 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
591 EXPORT_SYMBOL(tlbie_capable);
592 
593 /*
594  * Should tlbie be used for management of CPU TLBs, for kernel and process
595  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
596  * guest address spaces.
597  */
598 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
599 
600 static int __init setup_disable_tlbie(char *str)
601 {
602 	if (!radix_enabled()) {
603 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
604 		return 1;
605 	}
606 
607 	tlbie_capable = false;
608 	tlbie_enabled = false;
609 
610         return 1;
611 }
612 __setup("disable_tlbie", setup_disable_tlbie);
613 
614 static int __init pgtable_debugfs_setup(void)
615 {
616 	if (!tlbie_capable)
617 		return 0;
618 
619 	/*
620 	 * There is no locking vs tlb flushing when changing this value.
621 	 * The tlb flushers will see one value or another, and use either
622 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
623 	 * invalidated as expected.
624 	 */
625 	debugfs_create_bool("tlbie_enabled", 0600,
626 			arch_debugfs_dir,
627 			&tlbie_enabled);
628 
629 	return 0;
630 }
631 arch_initcall(pgtable_debugfs_setup);
632 
633 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
634 /*
635  * Override the generic version in mm/memremap.c.
636  *
637  * With hash translation, the direct-map range is mapped with just one
638  * page size selected by htab_init_page_sizes(). Consult
639  * mmu_psize_defs[] to determine the minimum page size alignment.
640 */
641 unsigned long memremap_compat_align(void)
642 {
643 	if (!radix_enabled()) {
644 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
645 		return max(SUBSECTION_SIZE, 1UL << shift);
646 	}
647 
648 	return SUBSECTION_SIZE;
649 }
650 EXPORT_SYMBOL_GPL(memremap_compat_align);
651 #endif
652 
653 pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
654 {
655 	unsigned long prot;
656 
657 	/* Radix supports execute-only, but protection_map maps X -> RX */
658 	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
659 		vm_flags |= VM_READ;
660 
661 	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
662 
663 	if (vm_flags & VM_SAO)
664 		prot |= _PAGE_SAO;
665 
666 #ifdef CONFIG_PPC_MEM_KEYS
667 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
668 #endif
669 
670 	return __pgprot(prot);
671 }
672 EXPORT_SYMBOL(vm_get_page_prot);
673