xref: /linux/include/rdma/ib_verbs.h (revision 55aa394a5ed871208eac11c5f4677cafd258c4dd)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 #include <linux/pci-tph.h>
46 
47 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
48 
49 struct ib_umem_odp;
50 struct ib_uqp_object;
51 struct ib_usrq_object;
52 struct ib_uwq_object;
53 struct rdma_cm_id;
54 struct ib_port;
55 struct hw_stats_device_data;
56 
57 extern struct workqueue_struct *ib_wq;
58 extern struct workqueue_struct *ib_comp_wq;
59 extern struct workqueue_struct *ib_comp_unbound_wq;
60 
61 struct ib_ucq_object;
62 
63 __printf(2, 3) __cold
64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77 
78 #if defined(CONFIG_DYNAMIC_DEBUG) || \
79 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80 #define ibdev_dbg(__dev, format, args...)                       \
81 	dynamic_ibdev_dbg(__dev, format, ##args)
82 #else
83 __printf(2, 3) __cold
84 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86 #endif
87 
88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
89 do {                                                                    \
90 	static DEFINE_RATELIMIT_STATE(_rs,                              \
91 				      DEFAULT_RATELIMIT_INTERVAL,       \
92 				      DEFAULT_RATELIMIT_BURST);         \
93 	if (__ratelimit(&_rs))                                          \
94 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
95 } while (0)
96 
97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111 
112 #if defined(CONFIG_DYNAMIC_DEBUG) || \
113 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
116 do {                                                                    \
117 	static DEFINE_RATELIMIT_STATE(_rs,                              \
118 				      DEFAULT_RATELIMIT_INTERVAL,       \
119 				      DEFAULT_RATELIMIT_BURST);         \
120 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
121 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
122 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
123 				    ##__VA_ARGS__);                     \
124 } while (0)
125 #else
126 __printf(2, 3) __cold
127 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129 #endif
130 
131 union ib_gid {
132 	u8	raw[16];
133 	struct {
134 		__be64	subnet_prefix;
135 		__be64	interface_id;
136 	} global;
137 };
138 
139 extern union ib_gid zgid;
140 
141 enum ib_gid_type {
142 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 	IB_GID_TYPE_SIZE
146 };
147 
148 #define ROCE_V2_UDP_DPORT      4791
149 struct ib_gid_attr {
150 	struct net_device __rcu	*ndev;
151 	struct ib_device	*device;
152 	union ib_gid		gid;
153 	enum ib_gid_type	gid_type;
154 	u16			index;
155 	u32			port_num;
156 };
157 
158 enum {
159 	/* set the local administered indication */
160 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
161 };
162 
163 enum rdma_transport_type {
164 	RDMA_TRANSPORT_IB,
165 	RDMA_TRANSPORT_IWARP,
166 	RDMA_TRANSPORT_USNIC,
167 	RDMA_TRANSPORT_USNIC_UDP,
168 	RDMA_TRANSPORT_UNSPECIFIED,
169 };
170 
171 enum rdma_protocol_type {
172 	RDMA_PROTOCOL_IB,
173 	RDMA_PROTOCOL_IBOE,
174 	RDMA_PROTOCOL_IWARP,
175 	RDMA_PROTOCOL_USNIC_UDP
176 };
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(unsigned int node_type);
180 
181 enum rdma_network_type {
182 	RDMA_NETWORK_IB,
183 	RDMA_NETWORK_ROCE_V1,
184 	RDMA_NETWORK_IPV4,
185 	RDMA_NETWORK_IPV6
186 };
187 
ib_network_to_gid_type(enum rdma_network_type network_type)188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189 {
190 	if (network_type == RDMA_NETWORK_IPV4 ||
191 	    network_type == RDMA_NETWORK_IPV6)
192 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 	else if (network_type == RDMA_NETWORK_ROCE_V1)
194 		return IB_GID_TYPE_ROCE;
195 	else
196 		return IB_GID_TYPE_IB;
197 }
198 
199 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201 {
202 	if (attr->gid_type == IB_GID_TYPE_IB)
203 		return RDMA_NETWORK_IB;
204 
205 	if (attr->gid_type == IB_GID_TYPE_ROCE)
206 		return RDMA_NETWORK_ROCE_V1;
207 
208 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 		return RDMA_NETWORK_IPV4;
210 	else
211 		return RDMA_NETWORK_IPV6;
212 }
213 
214 enum rdma_link_layer {
215 	IB_LINK_LAYER_UNSPECIFIED,
216 	IB_LINK_LAYER_INFINIBAND,
217 	IB_LINK_LAYER_ETHERNET,
218 };
219 
220 enum ib_device_cap_flags {
221 	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
222 	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
223 	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
224 	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
225 	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
226 	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
227 	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
228 	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
229 	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
230 	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
231 	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
232 	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
233 	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
234 	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
235 	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
236 
237 	/* Reserved, old SEND_W_INV = 1 << 16,*/
238 	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
239 	/*
240 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
241 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
242 	 * messages and can verify the validity of checksum for
243 	 * incoming messages.  Setting this flag implies that the
244 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
245 	 */
246 	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
247 	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
248 
249 	/*
250 	 * This device supports the IB "base memory management extension",
251 	 * which includes support for fast registrations (IB_WR_REG_MR,
252 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
253 	 * also be set by any iWarp device which must support FRs to comply
254 	 * to the iWarp verbs spec.  iWarp devices also support the
255 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
256 	 * stag.
257 	 */
258 	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
259 	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
260 	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
261 	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
262 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
263 	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
264 	IB_DEVICE_MANAGED_FLOW_STEERING =
265 		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
266 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
267 	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
268 	/* The device supports padding incoming writes to cacheline. */
269 	IB_DEVICE_PCI_WRITE_END_PADDING =
270 		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
271 	/* Placement type attributes */
272 	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
273 	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
274 	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
275 };
276 
277 enum ib_kernel_cap_flags {
278 	/*
279 	 * This device supports a per-device lkey or stag that can be
280 	 * used without performing a memory registration for the local
281 	 * memory.  Note that ULPs should never check this flag, but
282 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
283 	 * which will always contain a usable lkey.
284 	 */
285 	IBK_LOCAL_DMA_LKEY = 1 << 0,
286 	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
287 	IBK_INTEGRITY_HANDOVER = 1 << 1,
288 	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
289 	IBK_ON_DEMAND_PAGING = 1 << 2,
290 	/* IB_MR_TYPE_SG_GAPS is supported */
291 	IBK_SG_GAPS_REG = 1 << 3,
292 	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
293 	IBK_ALLOW_USER_UNREG = 1 << 4,
294 
295 	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
296 	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
297 	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
298 	IBK_UD_TSO = 1 << 6,
299 	/* iopib will use the device ops:
300 	 *   get_vf_config
301 	 *   get_vf_guid
302 	 *   get_vf_stats
303 	 *   set_vf_guid
304 	 *   set_vf_link_state
305 	 */
306 	IBK_VIRTUAL_FUNCTION = 1 << 7,
307 	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
308 	IBK_RDMA_NETDEV_OPA = 1 << 8,
309 };
310 
311 enum ib_atomic_cap {
312 	IB_ATOMIC_NONE,
313 	IB_ATOMIC_HCA,
314 	IB_ATOMIC_GLOB
315 };
316 
317 enum ib_odp_general_cap_bits {
318 	IB_ODP_SUPPORT		= IB_UVERBS_ODP_SUPPORT,
319 	IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
320 };
321 
322 enum ib_odp_transport_cap_bits {
323 	IB_ODP_SUPPORT_SEND	= IB_UVERBS_ODP_SUPPORT_SEND,
324 	IB_ODP_SUPPORT_RECV	= IB_UVERBS_ODP_SUPPORT_RECV,
325 	IB_ODP_SUPPORT_WRITE	= IB_UVERBS_ODP_SUPPORT_WRITE,
326 	IB_ODP_SUPPORT_READ	= IB_UVERBS_ODP_SUPPORT_READ,
327 	IB_ODP_SUPPORT_ATOMIC	= IB_UVERBS_ODP_SUPPORT_ATOMIC,
328 	IB_ODP_SUPPORT_SRQ_RECV	= IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
329 	IB_ODP_SUPPORT_FLUSH	= IB_UVERBS_ODP_SUPPORT_FLUSH,
330 	IB_ODP_SUPPORT_ATOMIC_WRITE	= IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
331 };
332 
333 struct ib_odp_caps {
334 	uint64_t general_caps;
335 	struct {
336 		uint32_t  rc_odp_caps;
337 		uint32_t  uc_odp_caps;
338 		uint32_t  ud_odp_caps;
339 		uint32_t  xrc_odp_caps;
340 	} per_transport_caps;
341 };
342 
343 struct ib_rss_caps {
344 	/* Corresponding bit will be set if qp type from
345 	 * 'enum ib_qp_type' is supported, e.g.
346 	 * supported_qpts |= 1 << IB_QPT_UD
347 	 */
348 	u32 supported_qpts;
349 	u32 max_rwq_indirection_tables;
350 	u32 max_rwq_indirection_table_size;
351 };
352 
353 enum ib_tm_cap_flags {
354 	/*  Support tag matching with rendezvous offload for RC transport */
355 	IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357 
358 struct ib_tm_caps {
359 	/* Max size of RNDV header */
360 	u32 max_rndv_hdr_size;
361 	/* Max number of entries in tag matching list */
362 	u32 max_num_tags;
363 	/* From enum ib_tm_cap_flags */
364 	u32 flags;
365 	/* Max number of outstanding list operations */
366 	u32 max_ops;
367 	/* Max number of SGE in tag matching entry */
368 	u32 max_sge;
369 };
370 
371 struct ib_cq_init_attr {
372 	unsigned int	cqe;
373 	u32		comp_vector;
374 	u32		flags;
375 };
376 
377 enum ib_cq_attr_mask {
378 	IB_CQ_MODERATE = 1 << 0,
379 };
380 
381 struct ib_cq_caps {
382 	u16     max_cq_moderation_count;
383 	u16     max_cq_moderation_period;
384 };
385 
386 struct ib_dm_mr_attr {
387 	u64		length;
388 	u64		offset;
389 	u32		access_flags;
390 };
391 
392 struct ib_dm_alloc_attr {
393 	u64	length;
394 	u32	alignment;
395 	u32	flags;
396 };
397 
398 struct ib_device_attr {
399 	u64			fw_ver;
400 	__be64			sys_image_guid;
401 	u64			max_mr_size;
402 	u64			page_size_cap;
403 	u32			vendor_id;
404 	u32			vendor_part_id;
405 	u32			hw_ver;
406 	int			max_qp;
407 	int			max_qp_wr;
408 	u64			device_cap_flags;
409 	u64			kernel_cap_flags;
410 	int			max_send_sge;
411 	int			max_recv_sge;
412 	int			max_sge_rd;
413 	int			max_cq;
414 	int			max_cqe;
415 	int			max_mr;
416 	int			max_pd;
417 	int			max_qp_rd_atom;
418 	int			max_ee_rd_atom;
419 	int			max_res_rd_atom;
420 	int			max_qp_init_rd_atom;
421 	int			max_ee_init_rd_atom;
422 	enum ib_atomic_cap	atomic_cap;
423 	enum ib_atomic_cap	masked_atomic_cap;
424 	int			max_ee;
425 	int			max_rdd;
426 	int			max_mw;
427 	int			max_raw_ipv6_qp;
428 	int			max_raw_ethy_qp;
429 	int			max_mcast_grp;
430 	int			max_mcast_qp_attach;
431 	int			max_total_mcast_qp_attach;
432 	int			max_ah;
433 	int			max_srq;
434 	int			max_srq_wr;
435 	int			max_srq_sge;
436 	unsigned int		max_fast_reg_page_list_len;
437 	unsigned int		max_pi_fast_reg_page_list_len;
438 	u16			max_pkeys;
439 	u8			local_ca_ack_delay;
440 	int			sig_prot_cap;
441 	int			sig_guard_cap;
442 	struct ib_odp_caps	odp_caps;
443 	uint64_t		timestamp_mask;
444 	uint64_t		hca_core_clock; /* in KHZ */
445 	struct ib_rss_caps	rss_caps;
446 	u32			max_wq_type_rq;
447 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 	struct ib_tm_caps	tm_caps;
449 	struct ib_cq_caps       cq_caps;
450 	u64			max_dm_size;
451 	/* Max entries for sgl for optimized performance per READ */
452 	u32			max_sgl_rd;
453 };
454 
455 enum ib_mtu {
456 	IB_MTU_256  = 1,
457 	IB_MTU_512  = 2,
458 	IB_MTU_1024 = 3,
459 	IB_MTU_2048 = 4,
460 	IB_MTU_4096 = 5
461 };
462 
463 enum opa_mtu {
464 	OPA_MTU_8192 = 6,
465 	OPA_MTU_10240 = 7
466 };
467 
ib_mtu_enum_to_int(enum ib_mtu mtu)468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 	switch (mtu) {
471 	case IB_MTU_256:  return  256;
472 	case IB_MTU_512:  return  512;
473 	case IB_MTU_1024: return 1024;
474 	case IB_MTU_2048: return 2048;
475 	case IB_MTU_4096: return 4096;
476 	default: 	  return -1;
477 	}
478 }
479 
ib_mtu_int_to_enum(int mtu)480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 	if (mtu >= 4096)
483 		return IB_MTU_4096;
484 	else if (mtu >= 2048)
485 		return IB_MTU_2048;
486 	else if (mtu >= 1024)
487 		return IB_MTU_1024;
488 	else if (mtu >= 512)
489 		return IB_MTU_512;
490 	else
491 		return IB_MTU_256;
492 }
493 
opa_mtu_enum_to_int(enum opa_mtu mtu)494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 	switch (mtu) {
497 	case OPA_MTU_8192:
498 		return 8192;
499 	case OPA_MTU_10240:
500 		return 10240;
501 	default:
502 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 	}
504 }
505 
opa_mtu_int_to_enum(int mtu)506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 	if (mtu >= 10240)
509 		return OPA_MTU_10240;
510 	else if (mtu >= 8192)
511 		return OPA_MTU_8192;
512 	else
513 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515 
516 enum ib_port_state {
517 	IB_PORT_NOP		= 0,
518 	IB_PORT_DOWN		= 1,
519 	IB_PORT_INIT		= 2,
520 	IB_PORT_ARMED		= 3,
521 	IB_PORT_ACTIVE		= 4,
522 	IB_PORT_ACTIVE_DEFER	= 5
523 };
524 
525 static inline const char *__attribute_const__
ib_port_state_to_str(enum ib_port_state state)526 ib_port_state_to_str(enum ib_port_state state)
527 {
528 	const char * const states[] = {
529 		[IB_PORT_NOP] = "NOP",
530 		[IB_PORT_DOWN] = "DOWN",
531 		[IB_PORT_INIT] = "INIT",
532 		[IB_PORT_ARMED] = "ARMED",
533 		[IB_PORT_ACTIVE] = "ACTIVE",
534 		[IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
535 	};
536 
537 	if (state < ARRAY_SIZE(states))
538 		return states[state];
539 	return "UNKNOWN";
540 }
541 
542 enum ib_port_phys_state {
543 	IB_PORT_PHYS_STATE_SLEEP = 1,
544 	IB_PORT_PHYS_STATE_POLLING = 2,
545 	IB_PORT_PHYS_STATE_DISABLED = 3,
546 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
547 	IB_PORT_PHYS_STATE_LINK_UP = 5,
548 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
549 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
550 };
551 
552 enum ib_port_width {
553 	IB_WIDTH_1X	= 1,
554 	IB_WIDTH_2X	= 16,
555 	IB_WIDTH_4X	= 2,
556 	IB_WIDTH_8X	= 4,
557 	IB_WIDTH_12X	= 8
558 };
559 
ib_width_enum_to_int(enum ib_port_width width)560 static inline int ib_width_enum_to_int(enum ib_port_width width)
561 {
562 	switch (width) {
563 	case IB_WIDTH_1X:  return  1;
564 	case IB_WIDTH_2X:  return  2;
565 	case IB_WIDTH_4X:  return  4;
566 	case IB_WIDTH_8X:  return  8;
567 	case IB_WIDTH_12X: return 12;
568 	default: 	  return -1;
569 	}
570 }
571 
572 enum ib_port_speed {
573 	IB_SPEED_SDR	= 1,
574 	IB_SPEED_DDR	= 2,
575 	IB_SPEED_QDR	= 4,
576 	IB_SPEED_FDR10	= 8,
577 	IB_SPEED_FDR	= 16,
578 	IB_SPEED_EDR	= 32,
579 	IB_SPEED_HDR	= 64,
580 	IB_SPEED_NDR	= 128,
581 	IB_SPEED_XDR	= 256,
582 };
583 
584 enum ib_stat_flag {
585 	IB_STAT_FLAG_OPTIONAL = 1 << 0,
586 };
587 
588 /**
589  * struct rdma_stat_desc - description of one rdma stat/counter
590  * @name: The name of the counter
591  * @flags: Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
592  * @priv: Driver private information; Core code should not use
593  */
594 struct rdma_stat_desc {
595 	const char *name;
596 	unsigned int flags;
597 	const void *priv;
598 };
599 
600 /**
601  * struct rdma_hw_stats - collection of hardware stats and their management
602  * @lock: Mutex to protect parallel write access to lifespan and values
603  *    of counters, which are 64bits and not guaranteed to be written
604  *    atomicaly on 32bits systems.
605  * @timestamp: Used by the core code to track when the last update was
606  * @lifespan: Used by the core code to determine how old the counters
607  *   should be before being updated again.  Stored in jiffies, defaults
608  *   to 10 milliseconds, drivers can override the default be specifying
609  *   their own value during their allocation routine.
610  * @descs: Array of pointers to static descriptors used for the counters
611  *   in directory.
612  * @is_disabled: A bitmap to indicate each counter is currently disabled
613  *   or not.
614  * @num_counters: How many hardware counters there are.  If name is
615  *   shorter than this number, a kernel oops will result.  Driver authors
616  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
617  *   in their code to prevent this.
618  * @value: Array of u64 counters that are accessed by the sysfs code and
619  *   filled in by the drivers get_stats routine
620  */
621 struct rdma_hw_stats {
622 	struct mutex	lock; /* Protect lifespan and values[] */
623 	unsigned long	timestamp;
624 	unsigned long	lifespan;
625 	const struct rdma_stat_desc *descs;
626 	unsigned long	*is_disabled;
627 	int		num_counters;
628 	u64		value[] __counted_by(num_counters);
629 };
630 
631 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
632 
633 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
634 	const struct rdma_stat_desc *descs, int num_counters,
635 	unsigned long lifespan);
636 
637 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
638 
639 /* Define bits for the various functionality this port needs to be supported by
640  * the core.
641  */
642 /* Management                           0x00000FFF */
643 #define RDMA_CORE_CAP_IB_MAD            0x00000001
644 #define RDMA_CORE_CAP_IB_SMI            0x00000002
645 #define RDMA_CORE_CAP_IB_CM             0x00000004
646 #define RDMA_CORE_CAP_IW_CM             0x00000008
647 #define RDMA_CORE_CAP_IB_SA             0x00000010
648 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
649 
650 /* Address format                       0x000FF000 */
651 #define RDMA_CORE_CAP_AF_IB             0x00001000
652 #define RDMA_CORE_CAP_ETH_AH            0x00002000
653 #define RDMA_CORE_CAP_OPA_AH            0x00004000
654 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
655 
656 /* Protocol                             0xFFF00000 */
657 #define RDMA_CORE_CAP_PROT_IB           0x00100000
658 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
659 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
660 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
661 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
662 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
663 
664 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
665 					| RDMA_CORE_CAP_PROT_ROCE     \
666 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
667 
668 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
669 					| RDMA_CORE_CAP_IB_MAD \
670 					| RDMA_CORE_CAP_IB_SMI \
671 					| RDMA_CORE_CAP_IB_CM  \
672 					| RDMA_CORE_CAP_IB_SA  \
673 					| RDMA_CORE_CAP_AF_IB)
674 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
675 					| RDMA_CORE_CAP_IB_MAD  \
676 					| RDMA_CORE_CAP_IB_CM   \
677 					| RDMA_CORE_CAP_AF_IB   \
678 					| RDMA_CORE_CAP_ETH_AH)
679 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
680 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
681 					| RDMA_CORE_CAP_IB_MAD  \
682 					| RDMA_CORE_CAP_IB_CM   \
683 					| RDMA_CORE_CAP_AF_IB   \
684 					| RDMA_CORE_CAP_ETH_AH)
685 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
686 					| RDMA_CORE_CAP_IW_CM)
687 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
688 					| RDMA_CORE_CAP_OPA_MAD)
689 
690 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
691 
692 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
693 
694 struct ib_port_attr {
695 	u64			subnet_prefix;
696 	enum ib_port_state	state;
697 	enum ib_mtu		max_mtu;
698 	enum ib_mtu		active_mtu;
699 	u32                     phys_mtu;
700 	int			gid_tbl_len;
701 	unsigned int		ip_gids:1;
702 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
703 	u32			port_cap_flags;
704 	u32			max_msg_sz;
705 	u32			bad_pkey_cntr;
706 	u32			qkey_viol_cntr;
707 	u16			pkey_tbl_len;
708 	u32			sm_lid;
709 	u32			lid;
710 	u8			lmc;
711 	u8			max_vl_num;
712 	u8			sm_sl;
713 	u8			subnet_timeout;
714 	u8			init_type_reply;
715 	u8			active_width;
716 	u16			active_speed;
717 	u8                      phys_state;
718 	u16			port_cap_flags2;
719 };
720 
721 enum ib_device_modify_flags {
722 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
723 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
724 };
725 
726 #define IB_DEVICE_NODE_DESC_MAX 64
727 
728 struct ib_device_modify {
729 	u64	sys_image_guid;
730 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
731 };
732 
733 enum ib_port_modify_flags {
734 	IB_PORT_SHUTDOWN		= 1,
735 	IB_PORT_INIT_TYPE		= (1<<2),
736 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
737 	IB_PORT_OPA_MASK_CHG		= (1<<4)
738 };
739 
740 struct ib_port_modify {
741 	u32	set_port_cap_mask;
742 	u32	clr_port_cap_mask;
743 	u8	init_type;
744 };
745 
746 enum ib_event_type {
747 	IB_EVENT_CQ_ERR,
748 	IB_EVENT_QP_FATAL,
749 	IB_EVENT_QP_REQ_ERR,
750 	IB_EVENT_QP_ACCESS_ERR,
751 	IB_EVENT_COMM_EST,
752 	IB_EVENT_SQ_DRAINED,
753 	IB_EVENT_PATH_MIG,
754 	IB_EVENT_PATH_MIG_ERR,
755 	IB_EVENT_DEVICE_FATAL,
756 	IB_EVENT_PORT_ACTIVE,
757 	IB_EVENT_PORT_ERR,
758 	IB_EVENT_LID_CHANGE,
759 	IB_EVENT_PKEY_CHANGE,
760 	IB_EVENT_SM_CHANGE,
761 	IB_EVENT_SRQ_ERR,
762 	IB_EVENT_SRQ_LIMIT_REACHED,
763 	IB_EVENT_QP_LAST_WQE_REACHED,
764 	IB_EVENT_CLIENT_REREGISTER,
765 	IB_EVENT_GID_CHANGE,
766 	IB_EVENT_WQ_FATAL,
767 };
768 
769 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
770 
771 struct ib_event {
772 	struct ib_device	*device;
773 	union {
774 		struct ib_cq	*cq;
775 		struct ib_qp	*qp;
776 		struct ib_srq	*srq;
777 		struct ib_wq	*wq;
778 		u32		port_num;
779 	} element;
780 	enum ib_event_type	event;
781 };
782 
783 struct ib_event_handler {
784 	struct ib_device *device;
785 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
786 	struct list_head  list;
787 };
788 
789 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
790 	do {							\
791 		(_ptr)->device  = _device;			\
792 		(_ptr)->handler = _handler;			\
793 		INIT_LIST_HEAD(&(_ptr)->list);			\
794 	} while (0)
795 
796 struct ib_global_route {
797 	const struct ib_gid_attr *sgid_attr;
798 	union ib_gid	dgid;
799 	u32		flow_label;
800 	u8		sgid_index;
801 	u8		hop_limit;
802 	u8		traffic_class;
803 };
804 
805 struct ib_grh {
806 	__be32		version_tclass_flow;
807 	__be16		paylen;
808 	u8		next_hdr;
809 	u8		hop_limit;
810 	union ib_gid	sgid;
811 	union ib_gid	dgid;
812 };
813 
814 union rdma_network_hdr {
815 	struct ib_grh ibgrh;
816 	struct {
817 		/* The IB spec states that if it's IPv4, the header
818 		 * is located in the last 20 bytes of the header.
819 		 */
820 		u8		reserved[20];
821 		struct iphdr	roce4grh;
822 	};
823 };
824 
825 #define IB_QPN_MASK		0xFFFFFF
826 
827 enum {
828 	IB_MULTICAST_QPN = 0xffffff
829 };
830 
831 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
832 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
833 
834 enum ib_ah_flags {
835 	IB_AH_GRH	= 1
836 };
837 
838 enum ib_rate {
839 	IB_RATE_PORT_CURRENT = 0,
840 	IB_RATE_2_5_GBPS = 2,
841 	IB_RATE_5_GBPS   = 5,
842 	IB_RATE_10_GBPS  = 3,
843 	IB_RATE_20_GBPS  = 6,
844 	IB_RATE_30_GBPS  = 4,
845 	IB_RATE_40_GBPS  = 7,
846 	IB_RATE_60_GBPS  = 8,
847 	IB_RATE_80_GBPS  = 9,
848 	IB_RATE_120_GBPS = 10,
849 	IB_RATE_14_GBPS  = 11,
850 	IB_RATE_56_GBPS  = 12,
851 	IB_RATE_112_GBPS = 13,
852 	IB_RATE_168_GBPS = 14,
853 	IB_RATE_25_GBPS  = 15,
854 	IB_RATE_100_GBPS = 16,
855 	IB_RATE_200_GBPS = 17,
856 	IB_RATE_300_GBPS = 18,
857 	IB_RATE_28_GBPS  = 19,
858 	IB_RATE_50_GBPS  = 20,
859 	IB_RATE_400_GBPS = 21,
860 	IB_RATE_600_GBPS = 22,
861 	IB_RATE_800_GBPS = 23,
862 	IB_RATE_1600_GBPS = 25,
863 };
864 
865 /**
866  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
867  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
868  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
869  * @rate: rate to convert.
870  */
871 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
872 
873 /**
874  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
875  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
876  * @rate: rate to convert.
877  */
878 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
879 
880 
881 /**
882  * enum ib_mr_type - memory region type
883  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
884  *                            normal registration
885  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
886  *                            register any arbitrary sg lists (without
887  *                            the normal mr constraints - see
888  *                            ib_map_mr_sg)
889  * @IB_MR_TYPE_DM:            memory region that is used for device
890  *                            memory registration
891  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
892  *                            application
893  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
894  *                            without address translations (VA=PA)
895  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
896  *                            data integrity operations
897  */
898 enum ib_mr_type {
899 	IB_MR_TYPE_MEM_REG,
900 	IB_MR_TYPE_SG_GAPS,
901 	IB_MR_TYPE_DM,
902 	IB_MR_TYPE_USER,
903 	IB_MR_TYPE_DMA,
904 	IB_MR_TYPE_INTEGRITY,
905 };
906 
907 enum ib_mr_status_check {
908 	IB_MR_CHECK_SIG_STATUS = 1,
909 };
910 
911 /**
912  * struct ib_mr_status - Memory region status container
913  *
914  * @fail_status: Bitmask of MR checks status. For each
915  *     failed check a corresponding status bit is set.
916  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
917  *     failure.
918  */
919 struct ib_mr_status {
920 	u32		    fail_status;
921 	struct ib_sig_err   sig_err;
922 };
923 
924 /**
925  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
926  * enum.
927  * @mult: multiple to convert.
928  */
929 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
930 
931 struct rdma_ah_init_attr {
932 	struct rdma_ah_attr *ah_attr;
933 	u32 flags;
934 	struct net_device *xmit_slave;
935 };
936 
937 enum rdma_ah_attr_type {
938 	RDMA_AH_ATTR_TYPE_UNDEFINED,
939 	RDMA_AH_ATTR_TYPE_IB,
940 	RDMA_AH_ATTR_TYPE_ROCE,
941 	RDMA_AH_ATTR_TYPE_OPA,
942 };
943 
944 struct ib_ah_attr {
945 	u16			dlid;
946 	u8			src_path_bits;
947 };
948 
949 struct roce_ah_attr {
950 	u8			dmac[ETH_ALEN];
951 };
952 
953 struct opa_ah_attr {
954 	u32			dlid;
955 	u8			src_path_bits;
956 	bool			make_grd;
957 };
958 
959 struct rdma_ah_attr {
960 	struct ib_global_route	grh;
961 	u8			sl;
962 	u8			static_rate;
963 	u32			port_num;
964 	u8			ah_flags;
965 	enum rdma_ah_attr_type type;
966 	union {
967 		struct ib_ah_attr ib;
968 		struct roce_ah_attr roce;
969 		struct opa_ah_attr opa;
970 	};
971 };
972 
973 enum ib_wc_status {
974 	IB_WC_SUCCESS,
975 	IB_WC_LOC_LEN_ERR,
976 	IB_WC_LOC_QP_OP_ERR,
977 	IB_WC_LOC_EEC_OP_ERR,
978 	IB_WC_LOC_PROT_ERR,
979 	IB_WC_WR_FLUSH_ERR,
980 	IB_WC_MW_BIND_ERR,
981 	IB_WC_BAD_RESP_ERR,
982 	IB_WC_LOC_ACCESS_ERR,
983 	IB_WC_REM_INV_REQ_ERR,
984 	IB_WC_REM_ACCESS_ERR,
985 	IB_WC_REM_OP_ERR,
986 	IB_WC_RETRY_EXC_ERR,
987 	IB_WC_RNR_RETRY_EXC_ERR,
988 	IB_WC_LOC_RDD_VIOL_ERR,
989 	IB_WC_REM_INV_RD_REQ_ERR,
990 	IB_WC_REM_ABORT_ERR,
991 	IB_WC_INV_EECN_ERR,
992 	IB_WC_INV_EEC_STATE_ERR,
993 	IB_WC_FATAL_ERR,
994 	IB_WC_RESP_TIMEOUT_ERR,
995 	IB_WC_GENERAL_ERR
996 };
997 
998 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
999 
1000 enum ib_wc_opcode {
1001 	IB_WC_SEND = IB_UVERBS_WC_SEND,
1002 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1003 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1004 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1005 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1006 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1007 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1008 	IB_WC_LSO = IB_UVERBS_WC_TSO,
1009 	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1010 	IB_WC_REG_MR,
1011 	IB_WC_MASKED_COMP_SWAP,
1012 	IB_WC_MASKED_FETCH_ADD,
1013 	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1014 /*
1015  * Set value of IB_WC_RECV so consumers can test if a completion is a
1016  * receive by testing (opcode & IB_WC_RECV).
1017  */
1018 	IB_WC_RECV			= 1 << 7,
1019 	IB_WC_RECV_RDMA_WITH_IMM
1020 };
1021 
1022 enum ib_wc_flags {
1023 	IB_WC_GRH		= 1,
1024 	IB_WC_WITH_IMM		= (1<<1),
1025 	IB_WC_WITH_INVALIDATE	= (1<<2),
1026 	IB_WC_IP_CSUM_OK	= (1<<3),
1027 	IB_WC_WITH_SMAC		= (1<<4),
1028 	IB_WC_WITH_VLAN		= (1<<5),
1029 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1030 };
1031 
1032 struct ib_wc {
1033 	union {
1034 		u64		wr_id;
1035 		struct ib_cqe	*wr_cqe;
1036 	};
1037 	enum ib_wc_status	status;
1038 	enum ib_wc_opcode	opcode;
1039 	u32			vendor_err;
1040 	u32			byte_len;
1041 	struct ib_qp	       *qp;
1042 	union {
1043 		__be32		imm_data;
1044 		u32		invalidate_rkey;
1045 	} ex;
1046 	u32			src_qp;
1047 	u32			slid;
1048 	int			wc_flags;
1049 	u16			pkey_index;
1050 	u8			sl;
1051 	u8			dlid_path_bits;
1052 	u32 port_num; /* valid only for DR SMPs on switches */
1053 	u8			smac[ETH_ALEN];
1054 	u16			vlan_id;
1055 	u8			network_hdr_type;
1056 };
1057 
1058 enum ib_cq_notify_flags {
1059 	IB_CQ_SOLICITED			= 1 << 0,
1060 	IB_CQ_NEXT_COMP			= 1 << 1,
1061 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1062 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1063 };
1064 
1065 enum ib_srq_type {
1066 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1067 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1068 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1069 };
1070 
ib_srq_has_cq(enum ib_srq_type srq_type)1071 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1072 {
1073 	return srq_type == IB_SRQT_XRC ||
1074 	       srq_type == IB_SRQT_TM;
1075 }
1076 
1077 enum ib_srq_attr_mask {
1078 	IB_SRQ_MAX_WR	= 1 << 0,
1079 	IB_SRQ_LIMIT	= 1 << 1,
1080 };
1081 
1082 struct ib_srq_attr {
1083 	u32	max_wr;
1084 	u32	max_sge;
1085 	u32	srq_limit;
1086 };
1087 
1088 struct ib_srq_init_attr {
1089 	void		      (*event_handler)(struct ib_event *, void *);
1090 	void		       *srq_context;
1091 	struct ib_srq_attr	attr;
1092 	enum ib_srq_type	srq_type;
1093 
1094 	struct {
1095 		struct ib_cq   *cq;
1096 		union {
1097 			struct {
1098 				struct ib_xrcd *xrcd;
1099 			} xrc;
1100 
1101 			struct {
1102 				u32		max_num_tags;
1103 			} tag_matching;
1104 		};
1105 	} ext;
1106 };
1107 
1108 struct ib_qp_cap {
1109 	u32	max_send_wr;
1110 	u32	max_recv_wr;
1111 	u32	max_send_sge;
1112 	u32	max_recv_sge;
1113 	u32	max_inline_data;
1114 
1115 	/*
1116 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1117 	 * ib_create_qp() will calculate the right amount of needed WRs
1118 	 * and MRs based on this.
1119 	 */
1120 	u32	max_rdma_ctxs;
1121 };
1122 
1123 enum ib_sig_type {
1124 	IB_SIGNAL_ALL_WR,
1125 	IB_SIGNAL_REQ_WR
1126 };
1127 
1128 enum ib_qp_type {
1129 	/*
1130 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1131 	 * here (and in that order) since the MAD layer uses them as
1132 	 * indices into a 2-entry table.
1133 	 */
1134 	IB_QPT_SMI,
1135 	IB_QPT_GSI,
1136 
1137 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1138 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1139 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1140 	IB_QPT_RAW_IPV6,
1141 	IB_QPT_RAW_ETHERTYPE,
1142 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1143 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1144 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1145 	IB_QPT_MAX,
1146 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1147 	/* Reserve a range for qp types internal to the low level driver.
1148 	 * These qp types will not be visible at the IB core layer, so the
1149 	 * IB_QPT_MAX usages should not be affected in the core layer
1150 	 */
1151 	IB_QPT_RESERVED1 = 0x1000,
1152 	IB_QPT_RESERVED2,
1153 	IB_QPT_RESERVED3,
1154 	IB_QPT_RESERVED4,
1155 	IB_QPT_RESERVED5,
1156 	IB_QPT_RESERVED6,
1157 	IB_QPT_RESERVED7,
1158 	IB_QPT_RESERVED8,
1159 	IB_QPT_RESERVED9,
1160 	IB_QPT_RESERVED10,
1161 };
1162 
1163 enum ib_qp_create_flags {
1164 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1165 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1166 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1167 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1168 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1169 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1170 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1171 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1172 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1173 	IB_QP_CREATE_SCATTER_FCS		=
1174 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1175 	IB_QP_CREATE_CVLAN_STRIPPING		=
1176 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1177 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1178 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1179 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1180 	/* reserve bits 26-31 for low level drivers' internal use */
1181 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1182 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1183 };
1184 
1185 /*
1186  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1187  * callback to destroy the passed in QP.
1188  */
1189 
1190 struct ib_qp_init_attr {
1191 	/* This callback occurs in workqueue context */
1192 	void                  (*event_handler)(struct ib_event *, void *);
1193 
1194 	void		       *qp_context;
1195 	struct ib_cq	       *send_cq;
1196 	struct ib_cq	       *recv_cq;
1197 	struct ib_srq	       *srq;
1198 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1199 	struct ib_qp_cap	cap;
1200 	enum ib_sig_type	sq_sig_type;
1201 	enum ib_qp_type		qp_type;
1202 	u32			create_flags;
1203 
1204 	/*
1205 	 * Only needed for special QP types, or when using the RW API.
1206 	 */
1207 	u32			port_num;
1208 	struct ib_rwq_ind_table *rwq_ind_tbl;
1209 	u32			source_qpn;
1210 };
1211 
1212 struct ib_qp_open_attr {
1213 	void                  (*event_handler)(struct ib_event *, void *);
1214 	void		       *qp_context;
1215 	u32			qp_num;
1216 	enum ib_qp_type		qp_type;
1217 };
1218 
1219 enum ib_rnr_timeout {
1220 	IB_RNR_TIMER_655_36 =  0,
1221 	IB_RNR_TIMER_000_01 =  1,
1222 	IB_RNR_TIMER_000_02 =  2,
1223 	IB_RNR_TIMER_000_03 =  3,
1224 	IB_RNR_TIMER_000_04 =  4,
1225 	IB_RNR_TIMER_000_06 =  5,
1226 	IB_RNR_TIMER_000_08 =  6,
1227 	IB_RNR_TIMER_000_12 =  7,
1228 	IB_RNR_TIMER_000_16 =  8,
1229 	IB_RNR_TIMER_000_24 =  9,
1230 	IB_RNR_TIMER_000_32 = 10,
1231 	IB_RNR_TIMER_000_48 = 11,
1232 	IB_RNR_TIMER_000_64 = 12,
1233 	IB_RNR_TIMER_000_96 = 13,
1234 	IB_RNR_TIMER_001_28 = 14,
1235 	IB_RNR_TIMER_001_92 = 15,
1236 	IB_RNR_TIMER_002_56 = 16,
1237 	IB_RNR_TIMER_003_84 = 17,
1238 	IB_RNR_TIMER_005_12 = 18,
1239 	IB_RNR_TIMER_007_68 = 19,
1240 	IB_RNR_TIMER_010_24 = 20,
1241 	IB_RNR_TIMER_015_36 = 21,
1242 	IB_RNR_TIMER_020_48 = 22,
1243 	IB_RNR_TIMER_030_72 = 23,
1244 	IB_RNR_TIMER_040_96 = 24,
1245 	IB_RNR_TIMER_061_44 = 25,
1246 	IB_RNR_TIMER_081_92 = 26,
1247 	IB_RNR_TIMER_122_88 = 27,
1248 	IB_RNR_TIMER_163_84 = 28,
1249 	IB_RNR_TIMER_245_76 = 29,
1250 	IB_RNR_TIMER_327_68 = 30,
1251 	IB_RNR_TIMER_491_52 = 31
1252 };
1253 
1254 enum ib_qp_attr_mask {
1255 	IB_QP_STATE			= 1,
1256 	IB_QP_CUR_STATE			= (1<<1),
1257 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1258 	IB_QP_ACCESS_FLAGS		= (1<<3),
1259 	IB_QP_PKEY_INDEX		= (1<<4),
1260 	IB_QP_PORT			= (1<<5),
1261 	IB_QP_QKEY			= (1<<6),
1262 	IB_QP_AV			= (1<<7),
1263 	IB_QP_PATH_MTU			= (1<<8),
1264 	IB_QP_TIMEOUT			= (1<<9),
1265 	IB_QP_RETRY_CNT			= (1<<10),
1266 	IB_QP_RNR_RETRY			= (1<<11),
1267 	IB_QP_RQ_PSN			= (1<<12),
1268 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1269 	IB_QP_ALT_PATH			= (1<<14),
1270 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1271 	IB_QP_SQ_PSN			= (1<<16),
1272 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1273 	IB_QP_PATH_MIG_STATE		= (1<<18),
1274 	IB_QP_CAP			= (1<<19),
1275 	IB_QP_DEST_QPN			= (1<<20),
1276 	IB_QP_RESERVED1			= (1<<21),
1277 	IB_QP_RESERVED2			= (1<<22),
1278 	IB_QP_RESERVED3			= (1<<23),
1279 	IB_QP_RESERVED4			= (1<<24),
1280 	IB_QP_RATE_LIMIT		= (1<<25),
1281 
1282 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1283 };
1284 
1285 enum ib_qp_state {
1286 	IB_QPS_RESET,
1287 	IB_QPS_INIT,
1288 	IB_QPS_RTR,
1289 	IB_QPS_RTS,
1290 	IB_QPS_SQD,
1291 	IB_QPS_SQE,
1292 	IB_QPS_ERR
1293 };
1294 
1295 enum ib_mig_state {
1296 	IB_MIG_MIGRATED,
1297 	IB_MIG_REARM,
1298 	IB_MIG_ARMED
1299 };
1300 
1301 enum ib_mw_type {
1302 	IB_MW_TYPE_1 = 1,
1303 	IB_MW_TYPE_2 = 2
1304 };
1305 
1306 struct ib_qp_attr {
1307 	enum ib_qp_state	qp_state;
1308 	enum ib_qp_state	cur_qp_state;
1309 	enum ib_mtu		path_mtu;
1310 	enum ib_mig_state	path_mig_state;
1311 	u32			qkey;
1312 	u32			rq_psn;
1313 	u32			sq_psn;
1314 	u32			dest_qp_num;
1315 	int			qp_access_flags;
1316 	struct ib_qp_cap	cap;
1317 	struct rdma_ah_attr	ah_attr;
1318 	struct rdma_ah_attr	alt_ah_attr;
1319 	u16			pkey_index;
1320 	u16			alt_pkey_index;
1321 	u8			en_sqd_async_notify;
1322 	u8			sq_draining;
1323 	u8			max_rd_atomic;
1324 	u8			max_dest_rd_atomic;
1325 	u8			min_rnr_timer;
1326 	u32			port_num;
1327 	u8			timeout;
1328 	u8			retry_cnt;
1329 	u8			rnr_retry;
1330 	u32			alt_port_num;
1331 	u8			alt_timeout;
1332 	u32			rate_limit;
1333 	struct net_device	*xmit_slave;
1334 };
1335 
1336 enum ib_wr_opcode {
1337 	/* These are shared with userspace */
1338 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1339 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1340 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1341 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1342 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1343 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1344 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1345 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1346 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1347 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1348 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1349 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1350 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1351 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1352 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1353 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1354 	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1355 	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1356 
1357 	/* These are kernel only and can not be issued by userspace */
1358 	IB_WR_REG_MR = 0x20,
1359 	IB_WR_REG_MR_INTEGRITY,
1360 
1361 	/* reserve values for low level drivers' internal use.
1362 	 * These values will not be used at all in the ib core layer.
1363 	 */
1364 	IB_WR_RESERVED1 = 0xf0,
1365 	IB_WR_RESERVED2,
1366 	IB_WR_RESERVED3,
1367 	IB_WR_RESERVED4,
1368 	IB_WR_RESERVED5,
1369 	IB_WR_RESERVED6,
1370 	IB_WR_RESERVED7,
1371 	IB_WR_RESERVED8,
1372 	IB_WR_RESERVED9,
1373 	IB_WR_RESERVED10,
1374 };
1375 
1376 enum ib_send_flags {
1377 	IB_SEND_FENCE		= 1,
1378 	IB_SEND_SIGNALED	= (1<<1),
1379 	IB_SEND_SOLICITED	= (1<<2),
1380 	IB_SEND_INLINE		= (1<<3),
1381 	IB_SEND_IP_CSUM		= (1<<4),
1382 
1383 	/* reserve bits 26-31 for low level drivers' internal use */
1384 	IB_SEND_RESERVED_START	= (1 << 26),
1385 	IB_SEND_RESERVED_END	= (1 << 31),
1386 };
1387 
1388 struct ib_sge {
1389 	u64	addr;
1390 	u32	length;
1391 	u32	lkey;
1392 };
1393 
1394 struct ib_cqe {
1395 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1396 };
1397 
1398 struct ib_send_wr {
1399 	struct ib_send_wr      *next;
1400 	union {
1401 		u64		wr_id;
1402 		struct ib_cqe	*wr_cqe;
1403 	};
1404 	struct ib_sge	       *sg_list;
1405 	int			num_sge;
1406 	enum ib_wr_opcode	opcode;
1407 	int			send_flags;
1408 	union {
1409 		__be32		imm_data;
1410 		u32		invalidate_rkey;
1411 	} ex;
1412 };
1413 
1414 struct ib_rdma_wr {
1415 	struct ib_send_wr	wr;
1416 	u64			remote_addr;
1417 	u32			rkey;
1418 };
1419 
rdma_wr(const struct ib_send_wr * wr)1420 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1421 {
1422 	return container_of(wr, struct ib_rdma_wr, wr);
1423 }
1424 
1425 struct ib_atomic_wr {
1426 	struct ib_send_wr	wr;
1427 	u64			remote_addr;
1428 	u64			compare_add;
1429 	u64			swap;
1430 	u64			compare_add_mask;
1431 	u64			swap_mask;
1432 	u32			rkey;
1433 };
1434 
atomic_wr(const struct ib_send_wr * wr)1435 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1436 {
1437 	return container_of(wr, struct ib_atomic_wr, wr);
1438 }
1439 
1440 struct ib_ud_wr {
1441 	struct ib_send_wr	wr;
1442 	struct ib_ah		*ah;
1443 	void			*header;
1444 	int			hlen;
1445 	int			mss;
1446 	u32			remote_qpn;
1447 	u32			remote_qkey;
1448 	u16			pkey_index; /* valid for GSI only */
1449 	u32			port_num; /* valid for DR SMPs on switch only */
1450 };
1451 
ud_wr(const struct ib_send_wr * wr)1452 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1453 {
1454 	return container_of(wr, struct ib_ud_wr, wr);
1455 }
1456 
1457 struct ib_reg_wr {
1458 	struct ib_send_wr	wr;
1459 	struct ib_mr		*mr;
1460 	u32			key;
1461 	int			access;
1462 };
1463 
reg_wr(const struct ib_send_wr * wr)1464 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1465 {
1466 	return container_of(wr, struct ib_reg_wr, wr);
1467 }
1468 
1469 struct ib_recv_wr {
1470 	struct ib_recv_wr      *next;
1471 	union {
1472 		u64		wr_id;
1473 		struct ib_cqe	*wr_cqe;
1474 	};
1475 	struct ib_sge	       *sg_list;
1476 	int			num_sge;
1477 };
1478 
1479 enum ib_access_flags {
1480 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1481 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1482 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1483 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1484 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1485 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1486 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1487 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1488 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1489 	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1490 	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1491 
1492 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1493 	IB_ACCESS_SUPPORTED =
1494 		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1495 };
1496 
1497 /*
1498  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1499  * are hidden here instead of a uapi header!
1500  */
1501 enum ib_mr_rereg_flags {
1502 	IB_MR_REREG_TRANS	= 1,
1503 	IB_MR_REREG_PD		= (1<<1),
1504 	IB_MR_REREG_ACCESS	= (1<<2),
1505 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1506 };
1507 
1508 struct ib_umem;
1509 
1510 enum rdma_remove_reason {
1511 	/*
1512 	 * Userspace requested uobject deletion or initial try
1513 	 * to remove uobject via cleanup. Call could fail
1514 	 */
1515 	RDMA_REMOVE_DESTROY,
1516 	/* Context deletion. This call should delete the actual object itself */
1517 	RDMA_REMOVE_CLOSE,
1518 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1519 	RDMA_REMOVE_DRIVER_REMOVE,
1520 	/* uobj is being cleaned-up before being committed */
1521 	RDMA_REMOVE_ABORT,
1522 	/* The driver failed to destroy the uobject and is being disconnected */
1523 	RDMA_REMOVE_DRIVER_FAILURE,
1524 };
1525 
1526 struct ib_rdmacg_object {
1527 #ifdef CONFIG_CGROUP_RDMA
1528 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1529 #endif
1530 };
1531 
1532 struct ib_ucontext {
1533 	struct ib_device       *device;
1534 	struct ib_uverbs_file  *ufile;
1535 
1536 	struct ib_rdmacg_object	cg_obj;
1537 	u64 enabled_caps;
1538 	/*
1539 	 * Implementation details of the RDMA core, don't use in drivers:
1540 	 */
1541 	struct rdma_restrack_entry res;
1542 	struct xarray mmap_xa;
1543 };
1544 
1545 struct ib_uobject {
1546 	u64			user_handle;	/* handle given to us by userspace */
1547 	/* ufile & ucontext owning this object */
1548 	struct ib_uverbs_file  *ufile;
1549 	/* FIXME, save memory: ufile->context == context */
1550 	struct ib_ucontext     *context;	/* associated user context */
1551 	void		       *object;		/* containing object */
1552 	struct list_head	list;		/* link to context's list */
1553 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1554 	int			id;		/* index into kernel idr */
1555 	struct kref		ref;
1556 	atomic_t		usecnt;		/* protects exclusive access */
1557 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1558 
1559 	const struct uverbs_api_object *uapi_object;
1560 };
1561 
1562 struct ib_udata {
1563 	const void __user *inbuf;
1564 	void __user *outbuf;
1565 	size_t       inlen;
1566 	size_t       outlen;
1567 };
1568 
1569 struct ib_pd {
1570 	u32			local_dma_lkey;
1571 	u32			flags;
1572 	struct ib_device       *device;
1573 	struct ib_uobject      *uobject;
1574 	atomic_t          	usecnt; /* count all resources */
1575 
1576 	u32			unsafe_global_rkey;
1577 
1578 	/*
1579 	 * Implementation details of the RDMA core, don't use in drivers:
1580 	 */
1581 	struct ib_mr	       *__internal_mr;
1582 	struct rdma_restrack_entry res;
1583 };
1584 
1585 struct ib_xrcd {
1586 	struct ib_device       *device;
1587 	atomic_t		usecnt; /* count all exposed resources */
1588 	struct inode	       *inode;
1589 	struct rw_semaphore	tgt_qps_rwsem;
1590 	struct xarray		tgt_qps;
1591 };
1592 
1593 struct ib_ah {
1594 	struct ib_device	*device;
1595 	struct ib_pd		*pd;
1596 	struct ib_uobject	*uobject;
1597 	const struct ib_gid_attr *sgid_attr;
1598 	enum rdma_ah_attr_type	type;
1599 };
1600 
1601 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1602 
1603 enum ib_poll_context {
1604 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1605 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1606 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1607 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1608 
1609 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1610 };
1611 
1612 struct ib_cq {
1613 	struct ib_device       *device;
1614 	struct ib_ucq_object   *uobject;
1615 	ib_comp_handler   	comp_handler;
1616 	void                  (*event_handler)(struct ib_event *, void *);
1617 	void                   *cq_context;
1618 	int               	cqe;
1619 	unsigned int		cqe_used;
1620 	atomic_t          	usecnt; /* count number of work queues */
1621 	enum ib_poll_context	poll_ctx;
1622 	struct ib_wc		*wc;
1623 	struct list_head        pool_entry;
1624 	union {
1625 		struct irq_poll		iop;
1626 		struct work_struct	work;
1627 	};
1628 	struct workqueue_struct *comp_wq;
1629 	struct dim *dim;
1630 
1631 	/* updated only by trace points */
1632 	ktime_t timestamp;
1633 	u8 interrupt:1;
1634 	u8 shared:1;
1635 	unsigned int comp_vector;
1636 
1637 	/*
1638 	 * Implementation details of the RDMA core, don't use in drivers:
1639 	 */
1640 	struct rdma_restrack_entry res;
1641 };
1642 
1643 struct ib_srq {
1644 	struct ib_device       *device;
1645 	struct ib_pd	       *pd;
1646 	struct ib_usrq_object  *uobject;
1647 	void		      (*event_handler)(struct ib_event *, void *);
1648 	void		       *srq_context;
1649 	enum ib_srq_type	srq_type;
1650 	atomic_t		usecnt;
1651 
1652 	struct {
1653 		struct ib_cq   *cq;
1654 		union {
1655 			struct {
1656 				struct ib_xrcd *xrcd;
1657 				u32		srq_num;
1658 			} xrc;
1659 		};
1660 	} ext;
1661 
1662 	/*
1663 	 * Implementation details of the RDMA core, don't use in drivers:
1664 	 */
1665 	struct rdma_restrack_entry res;
1666 };
1667 
1668 enum ib_raw_packet_caps {
1669 	/*
1670 	 * Strip cvlan from incoming packet and report it in the matching work
1671 	 * completion is supported.
1672 	 */
1673 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1674 		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1675 	/*
1676 	 * Scatter FCS field of an incoming packet to host memory is supported.
1677 	 */
1678 	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1679 	/* Checksum offloads are supported (for both send and receive). */
1680 	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1681 	/*
1682 	 * When a packet is received for an RQ with no receive WQEs, the
1683 	 * packet processing is delayed.
1684 	 */
1685 	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1686 };
1687 
1688 enum ib_wq_type {
1689 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1690 };
1691 
1692 enum ib_wq_state {
1693 	IB_WQS_RESET,
1694 	IB_WQS_RDY,
1695 	IB_WQS_ERR
1696 };
1697 
1698 struct ib_wq {
1699 	struct ib_device       *device;
1700 	struct ib_uwq_object   *uobject;
1701 	void		    *wq_context;
1702 	void		    (*event_handler)(struct ib_event *, void *);
1703 	struct ib_pd	       *pd;
1704 	struct ib_cq	       *cq;
1705 	u32		wq_num;
1706 	enum ib_wq_state       state;
1707 	enum ib_wq_type	wq_type;
1708 	atomic_t		usecnt;
1709 };
1710 
1711 enum ib_wq_flags {
1712 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1713 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1714 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1715 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1716 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1717 };
1718 
1719 struct ib_wq_init_attr {
1720 	void		       *wq_context;
1721 	enum ib_wq_type	wq_type;
1722 	u32		max_wr;
1723 	u32		max_sge;
1724 	struct	ib_cq	       *cq;
1725 	void		    (*event_handler)(struct ib_event *, void *);
1726 	u32		create_flags; /* Use enum ib_wq_flags */
1727 };
1728 
1729 enum ib_wq_attr_mask {
1730 	IB_WQ_STATE		= 1 << 0,
1731 	IB_WQ_CUR_STATE		= 1 << 1,
1732 	IB_WQ_FLAGS		= 1 << 2,
1733 };
1734 
1735 struct ib_wq_attr {
1736 	enum	ib_wq_state	wq_state;
1737 	enum	ib_wq_state	curr_wq_state;
1738 	u32			flags; /* Use enum ib_wq_flags */
1739 	u32			flags_mask; /* Use enum ib_wq_flags */
1740 };
1741 
1742 struct ib_rwq_ind_table {
1743 	struct ib_device	*device;
1744 	struct ib_uobject      *uobject;
1745 	atomic_t		usecnt;
1746 	u32		ind_tbl_num;
1747 	u32		log_ind_tbl_size;
1748 	struct ib_wq	**ind_tbl;
1749 };
1750 
1751 struct ib_rwq_ind_table_init_attr {
1752 	u32		log_ind_tbl_size;
1753 	/* Each entry is a pointer to Receive Work Queue */
1754 	struct ib_wq	**ind_tbl;
1755 };
1756 
1757 enum port_pkey_state {
1758 	IB_PORT_PKEY_NOT_VALID = 0,
1759 	IB_PORT_PKEY_VALID = 1,
1760 	IB_PORT_PKEY_LISTED = 2,
1761 };
1762 
1763 struct ib_qp_security;
1764 
1765 struct ib_port_pkey {
1766 	enum port_pkey_state	state;
1767 	u16			pkey_index;
1768 	u32			port_num;
1769 	struct list_head	qp_list;
1770 	struct list_head	to_error_list;
1771 	struct ib_qp_security  *sec;
1772 };
1773 
1774 struct ib_ports_pkeys {
1775 	struct ib_port_pkey	main;
1776 	struct ib_port_pkey	alt;
1777 };
1778 
1779 struct ib_qp_security {
1780 	struct ib_qp	       *qp;
1781 	struct ib_device       *dev;
1782 	/* Hold this mutex when changing port and pkey settings. */
1783 	struct mutex		mutex;
1784 	struct ib_ports_pkeys  *ports_pkeys;
1785 	/* A list of all open shared QP handles.  Required to enforce security
1786 	 * properly for all users of a shared QP.
1787 	 */
1788 	struct list_head        shared_qp_list;
1789 	void                   *security;
1790 	bool			destroying;
1791 	atomic_t		error_list_count;
1792 	struct completion	error_complete;
1793 	int			error_comps_pending;
1794 };
1795 
1796 /*
1797  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1798  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1799  */
1800 struct ib_qp {
1801 	struct ib_device       *device;
1802 	struct ib_pd	       *pd;
1803 	struct ib_cq	       *send_cq;
1804 	struct ib_cq	       *recv_cq;
1805 	spinlock_t		mr_lock;
1806 	int			mrs_used;
1807 	struct list_head	rdma_mrs;
1808 	struct list_head	sig_mrs;
1809 	struct ib_srq	       *srq;
1810 	struct completion	srq_completion;
1811 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1812 	struct list_head	xrcd_list;
1813 
1814 	/* count times opened, mcast attaches, flow attaches */
1815 	atomic_t		usecnt;
1816 	struct list_head	open_list;
1817 	struct ib_qp           *real_qp;
1818 	struct ib_uqp_object   *uobject;
1819 	void                  (*event_handler)(struct ib_event *, void *);
1820 	void                  (*registered_event_handler)(struct ib_event *, void *);
1821 	void		       *qp_context;
1822 	/* sgid_attrs associated with the AV's */
1823 	const struct ib_gid_attr *av_sgid_attr;
1824 	const struct ib_gid_attr *alt_path_sgid_attr;
1825 	u32			qp_num;
1826 	u32			max_write_sge;
1827 	u32			max_read_sge;
1828 	enum ib_qp_type		qp_type;
1829 	struct ib_rwq_ind_table *rwq_ind_tbl;
1830 	struct ib_qp_security  *qp_sec;
1831 	u32			port;
1832 
1833 	bool			integrity_en;
1834 	/*
1835 	 * Implementation details of the RDMA core, don't use in drivers:
1836 	 */
1837 	struct rdma_restrack_entry     res;
1838 
1839 	/* The counter the qp is bind to */
1840 	struct rdma_counter    *counter;
1841 };
1842 
1843 struct ib_dm {
1844 	struct ib_device  *device;
1845 	u32		   length;
1846 	u32		   flags;
1847 	struct ib_uobject *uobject;
1848 	atomic_t	   usecnt;
1849 };
1850 
1851 /* bit values to mark existence of ib_dmah fields */
1852 enum {
1853 	IB_DMAH_CPU_ID_EXISTS,
1854 	IB_DMAH_MEM_TYPE_EXISTS,
1855 	IB_DMAH_PH_EXISTS,
1856 };
1857 
1858 struct ib_dmah {
1859 	struct ib_device *device;
1860 	struct ib_uobject *uobject;
1861 	/*
1862 	 * Implementation details of the RDMA core, don't use in drivers:
1863 	 */
1864 	struct rdma_restrack_entry res;
1865 	u32 cpu_id;
1866 	enum tph_mem_type mem_type;
1867 	atomic_t usecnt;
1868 	u8 ph;
1869 	u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */
1870 };
1871 
1872 struct ib_mr {
1873 	struct ib_device  *device;
1874 	struct ib_pd	  *pd;
1875 	u32		   lkey;
1876 	u32		   rkey;
1877 	u64		   iova;
1878 	u64		   length;
1879 	unsigned int	   page_size;
1880 	enum ib_mr_type	   type;
1881 	bool		   need_inval;
1882 	union {
1883 		struct ib_uobject	*uobject;	/* user */
1884 		struct list_head	qp_entry;	/* FR */
1885 	};
1886 
1887 	struct ib_dm      *dm;
1888 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1889 	struct ib_dmah *dmah;
1890 	/*
1891 	 * Implementation details of the RDMA core, don't use in drivers:
1892 	 */
1893 	struct rdma_restrack_entry res;
1894 };
1895 
1896 struct ib_mw {
1897 	struct ib_device	*device;
1898 	struct ib_pd		*pd;
1899 	struct ib_uobject	*uobject;
1900 	u32			rkey;
1901 	enum ib_mw_type         type;
1902 };
1903 
1904 /* Supported steering options */
1905 enum ib_flow_attr_type {
1906 	/* steering according to rule specifications */
1907 	IB_FLOW_ATTR_NORMAL		= 0x0,
1908 	/* default unicast and multicast rule -
1909 	 * receive all Eth traffic which isn't steered to any QP
1910 	 */
1911 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1912 	/* default multicast rule -
1913 	 * receive all Eth multicast traffic which isn't steered to any QP
1914 	 */
1915 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1916 	/* sniffer rule - receive all port traffic */
1917 	IB_FLOW_ATTR_SNIFFER		= 0x3
1918 };
1919 
1920 /* Supported steering header types */
1921 enum ib_flow_spec_type {
1922 	/* L2 headers*/
1923 	IB_FLOW_SPEC_ETH		= 0x20,
1924 	IB_FLOW_SPEC_IB			= 0x22,
1925 	/* L3 header*/
1926 	IB_FLOW_SPEC_IPV4		= 0x30,
1927 	IB_FLOW_SPEC_IPV6		= 0x31,
1928 	IB_FLOW_SPEC_ESP                = 0x34,
1929 	/* L4 headers*/
1930 	IB_FLOW_SPEC_TCP		= 0x40,
1931 	IB_FLOW_SPEC_UDP		= 0x41,
1932 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1933 	IB_FLOW_SPEC_GRE		= 0x51,
1934 	IB_FLOW_SPEC_MPLS		= 0x60,
1935 	IB_FLOW_SPEC_INNER		= 0x100,
1936 	/* Actions */
1937 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1938 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1939 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1940 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1941 };
1942 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1943 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1944 
1945 enum ib_flow_flags {
1946 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1947 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1948 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1949 };
1950 
1951 struct ib_flow_eth_filter {
1952 	u8	dst_mac[6];
1953 	u8	src_mac[6];
1954 	__be16	ether_type;
1955 	__be16	vlan_tag;
1956 };
1957 
1958 struct ib_flow_spec_eth {
1959 	u32			  type;
1960 	u16			  size;
1961 	struct ib_flow_eth_filter val;
1962 	struct ib_flow_eth_filter mask;
1963 };
1964 
1965 struct ib_flow_ib_filter {
1966 	__be16 dlid;
1967 	__u8   sl;
1968 };
1969 
1970 struct ib_flow_spec_ib {
1971 	u32			 type;
1972 	u16			 size;
1973 	struct ib_flow_ib_filter val;
1974 	struct ib_flow_ib_filter mask;
1975 };
1976 
1977 /* IPv4 header flags */
1978 enum ib_ipv4_flags {
1979 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1980 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1981 				    last have this flag set */
1982 };
1983 
1984 struct ib_flow_ipv4_filter {
1985 	__be32	src_ip;
1986 	__be32	dst_ip;
1987 	u8	proto;
1988 	u8	tos;
1989 	u8	ttl;
1990 	u8	flags;
1991 };
1992 
1993 struct ib_flow_spec_ipv4 {
1994 	u32			   type;
1995 	u16			   size;
1996 	struct ib_flow_ipv4_filter val;
1997 	struct ib_flow_ipv4_filter mask;
1998 };
1999 
2000 struct ib_flow_ipv6_filter {
2001 	u8	src_ip[16];
2002 	u8	dst_ip[16];
2003 	__be32	flow_label;
2004 	u8	next_hdr;
2005 	u8	traffic_class;
2006 	u8	hop_limit;
2007 } __packed;
2008 
2009 struct ib_flow_spec_ipv6 {
2010 	u32			   type;
2011 	u16			   size;
2012 	struct ib_flow_ipv6_filter val;
2013 	struct ib_flow_ipv6_filter mask;
2014 };
2015 
2016 struct ib_flow_tcp_udp_filter {
2017 	__be16	dst_port;
2018 	__be16	src_port;
2019 };
2020 
2021 struct ib_flow_spec_tcp_udp {
2022 	u32			      type;
2023 	u16			      size;
2024 	struct ib_flow_tcp_udp_filter val;
2025 	struct ib_flow_tcp_udp_filter mask;
2026 };
2027 
2028 struct ib_flow_tunnel_filter {
2029 	__be32	tunnel_id;
2030 };
2031 
2032 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2033  * the tunnel_id from val has the vni value
2034  */
2035 struct ib_flow_spec_tunnel {
2036 	u32			      type;
2037 	u16			      size;
2038 	struct ib_flow_tunnel_filter  val;
2039 	struct ib_flow_tunnel_filter  mask;
2040 };
2041 
2042 struct ib_flow_esp_filter {
2043 	__be32	spi;
2044 	__be32  seq;
2045 };
2046 
2047 struct ib_flow_spec_esp {
2048 	u32                           type;
2049 	u16			      size;
2050 	struct ib_flow_esp_filter     val;
2051 	struct ib_flow_esp_filter     mask;
2052 };
2053 
2054 struct ib_flow_gre_filter {
2055 	__be16 c_ks_res0_ver;
2056 	__be16 protocol;
2057 	__be32 key;
2058 };
2059 
2060 struct ib_flow_spec_gre {
2061 	u32                           type;
2062 	u16			      size;
2063 	struct ib_flow_gre_filter     val;
2064 	struct ib_flow_gre_filter     mask;
2065 };
2066 
2067 struct ib_flow_mpls_filter {
2068 	__be32 tag;
2069 };
2070 
2071 struct ib_flow_spec_mpls {
2072 	u32                           type;
2073 	u16			      size;
2074 	struct ib_flow_mpls_filter     val;
2075 	struct ib_flow_mpls_filter     mask;
2076 };
2077 
2078 struct ib_flow_spec_action_tag {
2079 	enum ib_flow_spec_type	      type;
2080 	u16			      size;
2081 	u32                           tag_id;
2082 };
2083 
2084 struct ib_flow_spec_action_drop {
2085 	enum ib_flow_spec_type	      type;
2086 	u16			      size;
2087 };
2088 
2089 struct ib_flow_spec_action_handle {
2090 	enum ib_flow_spec_type	      type;
2091 	u16			      size;
2092 	struct ib_flow_action	     *act;
2093 };
2094 
2095 enum ib_counters_description {
2096 	IB_COUNTER_PACKETS,
2097 	IB_COUNTER_BYTES,
2098 };
2099 
2100 struct ib_flow_spec_action_count {
2101 	enum ib_flow_spec_type type;
2102 	u16 size;
2103 	struct ib_counters *counters;
2104 };
2105 
2106 union ib_flow_spec {
2107 	struct {
2108 		u32			type;
2109 		u16			size;
2110 	};
2111 	struct ib_flow_spec_eth		eth;
2112 	struct ib_flow_spec_ib		ib;
2113 	struct ib_flow_spec_ipv4        ipv4;
2114 	struct ib_flow_spec_tcp_udp	tcp_udp;
2115 	struct ib_flow_spec_ipv6        ipv6;
2116 	struct ib_flow_spec_tunnel      tunnel;
2117 	struct ib_flow_spec_esp		esp;
2118 	struct ib_flow_spec_gre		gre;
2119 	struct ib_flow_spec_mpls	mpls;
2120 	struct ib_flow_spec_action_tag  flow_tag;
2121 	struct ib_flow_spec_action_drop drop;
2122 	struct ib_flow_spec_action_handle action;
2123 	struct ib_flow_spec_action_count flow_count;
2124 };
2125 
2126 struct ib_flow_attr {
2127 	enum ib_flow_attr_type type;
2128 	u16	     size;
2129 	u16	     priority;
2130 	u32	     flags;
2131 	u8	     num_of_specs;
2132 	u32	     port;
2133 	union ib_flow_spec flows[];
2134 };
2135 
2136 struct ib_flow {
2137 	struct ib_qp		*qp;
2138 	struct ib_device	*device;
2139 	struct ib_uobject	*uobject;
2140 };
2141 
2142 enum ib_flow_action_type {
2143 	IB_FLOW_ACTION_UNSPECIFIED,
2144 	IB_FLOW_ACTION_ESP = 1,
2145 };
2146 
2147 struct ib_flow_action_attrs_esp_keymats {
2148 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2149 	union {
2150 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2151 	} keymat;
2152 };
2153 
2154 struct ib_flow_action_attrs_esp_replays {
2155 	enum ib_uverbs_flow_action_esp_replay			protocol;
2156 	union {
2157 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2158 	} replay;
2159 };
2160 
2161 enum ib_flow_action_attrs_esp_flags {
2162 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2163 	 * This is done in order to share the same flags between user-space and
2164 	 * kernel and spare an unnecessary translation.
2165 	 */
2166 
2167 	/* Kernel flags */
2168 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2169 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2170 };
2171 
2172 struct ib_flow_spec_list {
2173 	struct ib_flow_spec_list	*next;
2174 	union ib_flow_spec		spec;
2175 };
2176 
2177 struct ib_flow_action_attrs_esp {
2178 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2179 	struct ib_flow_action_attrs_esp_replays		*replay;
2180 	struct ib_flow_spec_list			*encap;
2181 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2182 	 * Value of 0 is a valid value.
2183 	 */
2184 	u32						esn;
2185 	u32						spi;
2186 	u32						seq;
2187 	u32						tfc_pad;
2188 	/* Use enum ib_flow_action_attrs_esp_flags */
2189 	u64						flags;
2190 	u64						hard_limit_pkts;
2191 };
2192 
2193 struct ib_flow_action {
2194 	struct ib_device		*device;
2195 	struct ib_uobject		*uobject;
2196 	enum ib_flow_action_type	type;
2197 	atomic_t			usecnt;
2198 };
2199 
2200 struct ib_mad;
2201 
2202 enum ib_process_mad_flags {
2203 	IB_MAD_IGNORE_MKEY	= 1,
2204 	IB_MAD_IGNORE_BKEY	= 2,
2205 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2206 };
2207 
2208 enum ib_mad_result {
2209 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2210 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2211 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2212 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2213 };
2214 
2215 struct ib_port_cache {
2216 	u64		      subnet_prefix;
2217 	struct ib_pkey_cache  *pkey;
2218 	struct ib_gid_table   *gid;
2219 	u8                     lmc;
2220 	enum ib_port_state     port_state;
2221 	enum ib_port_state     last_port_state;
2222 };
2223 
2224 struct ib_port_immutable {
2225 	int                           pkey_tbl_len;
2226 	int                           gid_tbl_len;
2227 	u32                           core_cap_flags;
2228 	u32                           max_mad_size;
2229 };
2230 
2231 struct ib_port_data {
2232 	struct ib_device *ib_dev;
2233 
2234 	struct ib_port_immutable immutable;
2235 
2236 	spinlock_t pkey_list_lock;
2237 
2238 	spinlock_t netdev_lock;
2239 
2240 	struct list_head pkey_list;
2241 
2242 	struct ib_port_cache cache;
2243 
2244 	struct net_device __rcu *netdev;
2245 	netdevice_tracker netdev_tracker;
2246 	struct hlist_node ndev_hash_link;
2247 	struct rdma_port_counter port_counter;
2248 	struct ib_port *sysfs;
2249 };
2250 
2251 /* rdma netdev type - specifies protocol type */
2252 enum rdma_netdev_t {
2253 	RDMA_NETDEV_OPA_VNIC,
2254 	RDMA_NETDEV_IPOIB,
2255 };
2256 
2257 /**
2258  * struct rdma_netdev - rdma netdev
2259  * For cases where netstack interfacing is required.
2260  */
2261 struct rdma_netdev {
2262 	void              *clnt_priv;
2263 	struct ib_device  *hca;
2264 	u32		   port_num;
2265 	int                mtu;
2266 
2267 	/*
2268 	 * cleanup function must be specified.
2269 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2270 	 * removed too.
2271 	 */
2272 	void (*free_rdma_netdev)(struct net_device *netdev);
2273 
2274 	/* control functions */
2275 	void (*set_id)(struct net_device *netdev, int id);
2276 	/* send packet */
2277 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2278 		    struct ib_ah *address, u32 dqpn);
2279 	/* multicast */
2280 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2281 			    union ib_gid *gid, u16 mlid,
2282 			    int set_qkey, u32 qkey);
2283 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2284 			    union ib_gid *gid, u16 mlid);
2285 	/* timeout */
2286 	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2287 };
2288 
2289 struct rdma_netdev_alloc_params {
2290 	size_t sizeof_priv;
2291 	unsigned int txqs;
2292 	unsigned int rxqs;
2293 	void *param;
2294 
2295 	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2296 				      struct net_device *netdev, void *param);
2297 };
2298 
2299 struct ib_odp_counters {
2300 	atomic64_t faults;
2301 	atomic64_t faults_handled;
2302 	atomic64_t invalidations;
2303 	atomic64_t invalidations_handled;
2304 	atomic64_t prefetch;
2305 };
2306 
2307 struct ib_counters {
2308 	struct ib_device	*device;
2309 	struct ib_uobject	*uobject;
2310 	/* num of objects attached */
2311 	atomic_t	usecnt;
2312 };
2313 
2314 struct ib_counters_read_attr {
2315 	u64	*counters_buff;
2316 	u32	ncounters;
2317 	u32	flags; /* use enum ib_read_counters_flags */
2318 };
2319 
2320 struct uverbs_attr_bundle;
2321 struct iw_cm_id;
2322 struct iw_cm_conn_param;
2323 
2324 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2325 	.size_##ib_struct =                                                    \
2326 		(sizeof(struct drv_struct) +                                   \
2327 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2328 		 BUILD_BUG_ON_ZERO(                                            \
2329 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2330 				      struct ib_struct)))
2331 
2332 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2333 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2334 					   gfp, false))
2335 
2336 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2337 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2338 					   GFP_KERNEL, true))
2339 
2340 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2341 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2342 
2343 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2344 
2345 struct rdma_user_mmap_entry {
2346 	struct kref ref;
2347 	struct ib_ucontext *ucontext;
2348 	unsigned long start_pgoff;
2349 	size_t npages;
2350 	bool driver_removed;
2351 };
2352 
2353 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2354 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2355 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2356 {
2357 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2358 }
2359 
2360 /**
2361  * struct ib_device_ops - InfiniBand device operations
2362  * This structure defines all the InfiniBand device operations, providers will
2363  * need to define the supported operations, otherwise they will be set to null.
2364  */
2365 struct ib_device_ops {
2366 	struct module *owner;
2367 	enum rdma_driver_id driver_id;
2368 	u32 uverbs_abi_ver;
2369 	unsigned int uverbs_no_driver_id_binding:1;
2370 
2371 	/*
2372 	 * NOTE: New drivers should not make use of device_group; instead new
2373 	 * device parameter should be exposed via netlink command. This
2374 	 * mechanism exists only for existing drivers.
2375 	 */
2376 	const struct attribute_group *device_group;
2377 	const struct attribute_group **port_groups;
2378 
2379 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2380 			 const struct ib_send_wr **bad_send_wr);
2381 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2382 			 const struct ib_recv_wr **bad_recv_wr);
2383 	void (*drain_rq)(struct ib_qp *qp);
2384 	void (*drain_sq)(struct ib_qp *qp);
2385 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2386 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2387 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2388 	int (*post_srq_recv)(struct ib_srq *srq,
2389 			     const struct ib_recv_wr *recv_wr,
2390 			     const struct ib_recv_wr **bad_recv_wr);
2391 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2392 			   u32 port_num, const struct ib_wc *in_wc,
2393 			   const struct ib_grh *in_grh,
2394 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2395 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2396 	int (*query_device)(struct ib_device *device,
2397 			    struct ib_device_attr *device_attr,
2398 			    struct ib_udata *udata);
2399 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2400 			     struct ib_device_modify *device_modify);
2401 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2402 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2403 						     int comp_vector);
2404 	int (*query_port)(struct ib_device *device, u32 port_num,
2405 			  struct ib_port_attr *port_attr);
2406 	int (*modify_port)(struct ib_device *device, u32 port_num,
2407 			   int port_modify_mask,
2408 			   struct ib_port_modify *port_modify);
2409 	/*
2410 	 * The following mandatory functions are used only at device
2411 	 * registration.  Keep functions such as these at the end of this
2412 	 * structure to avoid cache line misses when accessing struct ib_device
2413 	 * in fast paths.
2414 	 */
2415 	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2416 				  struct ib_port_immutable *immutable);
2417 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2418 					       u32 port_num);
2419 	/*
2420 	 * When calling get_netdev, the HW vendor's driver should return the
2421 	 * net device of device @device at port @port_num or NULL if such
2422 	 * a net device doesn't exist. The vendor driver should call dev_hold
2423 	 * on this net device. The HW vendor's device driver must guarantee
2424 	 * that this function returns NULL before the net device has finished
2425 	 * NETDEV_UNREGISTER state.
2426 	 */
2427 	struct net_device *(*get_netdev)(struct ib_device *device,
2428 					 u32 port_num);
2429 	/*
2430 	 * rdma netdev operation
2431 	 *
2432 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2433 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2434 	 */
2435 	struct net_device *(*alloc_rdma_netdev)(
2436 		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2437 		const char *name, unsigned char name_assign_type,
2438 		void (*setup)(struct net_device *));
2439 
2440 	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2441 				      enum rdma_netdev_t type,
2442 				      struct rdma_netdev_alloc_params *params);
2443 	/*
2444 	 * query_gid should be return GID value for @device, when @port_num
2445 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2446 	 * is RoCE link layer.
2447 	 */
2448 	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2449 			 union ib_gid *gid);
2450 	/*
2451 	 * When calling add_gid, the HW vendor's driver should add the gid
2452 	 * of device of port at gid index available at @attr. Meta-info of
2453 	 * that gid (for example, the network device related to this gid) is
2454 	 * available at @attr. @context allows the HW vendor driver to store
2455 	 * extra information together with a GID entry. The HW vendor driver may
2456 	 * allocate memory to contain this information and store it in @context
2457 	 * when a new GID entry is written to. Params are consistent until the
2458 	 * next call of add_gid or delete_gid. The function should return 0 on
2459 	 * success or error otherwise. The function could be called
2460 	 * concurrently for different ports. This function is only called when
2461 	 * roce_gid_table is used.
2462 	 */
2463 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2464 	/*
2465 	 * When calling del_gid, the HW vendor's driver should delete the
2466 	 * gid of device @device at gid index gid_index of port port_num
2467 	 * available in @attr.
2468 	 * Upon the deletion of a GID entry, the HW vendor must free any
2469 	 * allocated memory. The caller will clear @context afterwards.
2470 	 * This function is only called when roce_gid_table is used.
2471 	 */
2472 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2473 	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2474 			  u16 *pkey);
2475 	int (*alloc_ucontext)(struct ib_ucontext *context,
2476 			      struct ib_udata *udata);
2477 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2478 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2479 	/*
2480 	 * This will be called once refcount of an entry in mmap_xa reaches
2481 	 * zero. The type of the memory that was mapped may differ between
2482 	 * entries and is opaque to the rdma_user_mmap interface.
2483 	 * Therefore needs to be implemented by the driver in mmap_free.
2484 	 */
2485 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2486 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2487 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2488 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2489 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2490 			 struct ib_udata *udata);
2491 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2492 			      struct ib_udata *udata);
2493 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2494 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2495 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2496 	int (*create_srq)(struct ib_srq *srq,
2497 			  struct ib_srq_init_attr *srq_init_attr,
2498 			  struct ib_udata *udata);
2499 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2500 			  enum ib_srq_attr_mask srq_attr_mask,
2501 			  struct ib_udata *udata);
2502 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2503 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2504 	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2505 			 struct ib_udata *udata);
2506 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2507 			 int qp_attr_mask, struct ib_udata *udata);
2508 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2509 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2510 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2511 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2512 			 struct uverbs_attr_bundle *attrs);
2513 	int (*create_cq_umem)(struct ib_cq *cq,
2514 			      const struct ib_cq_init_attr *attr,
2515 			      struct ib_umem *umem,
2516 			      struct uverbs_attr_bundle *attrs);
2517 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2518 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2519 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2520 	/*
2521 	 * pre_destroy_cq - Prevent a cq from generating any new work
2522 	 * completions, but not free any kernel resources
2523 	 */
2524 	int (*pre_destroy_cq)(struct ib_cq *cq);
2525 	/*
2526 	 * post_destroy_cq - Free all kernel resources
2527 	 */
2528 	void (*post_destroy_cq)(struct ib_cq *cq);
2529 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2530 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2531 				     u64 virt_addr, int mr_access_flags,
2532 				     struct ib_dmah *dmah,
2533 				     struct ib_udata *udata);
2534 	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2535 					    u64 length, u64 virt_addr, int fd,
2536 					    int mr_access_flags,
2537 					    struct ib_dmah *dmah,
2538 					    struct uverbs_attr_bundle *attrs);
2539 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2540 				       u64 length, u64 virt_addr,
2541 				       int mr_access_flags, struct ib_pd *pd,
2542 				       struct ib_udata *udata);
2543 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2544 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2545 				  u32 max_num_sg);
2546 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2547 					    u32 max_num_data_sg,
2548 					    u32 max_num_meta_sg);
2549 	int (*advise_mr)(struct ib_pd *pd,
2550 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2551 			 struct ib_sge *sg_list, u32 num_sge,
2552 			 struct uverbs_attr_bundle *attrs);
2553 
2554 	/*
2555 	 * Kernel users should universally support relaxed ordering (RO), as
2556 	 * they are designed to read data only after observing the CQE and use
2557 	 * the DMA API correctly.
2558 	 *
2559 	 * Some drivers implicitly enable RO if platform supports it.
2560 	 */
2561 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2562 			 unsigned int *sg_offset);
2563 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2564 			       struct ib_mr_status *mr_status);
2565 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2566 	int (*dealloc_mw)(struct ib_mw *mw);
2567 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2569 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2570 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2571 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2572 				       struct ib_flow_attr *flow_attr,
2573 				       struct ib_udata *udata);
2574 	int (*destroy_flow)(struct ib_flow *flow_id);
2575 	int (*destroy_flow_action)(struct ib_flow_action *action);
2576 	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2577 				 int state);
2578 	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2579 			     struct ifla_vf_info *ivf);
2580 	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2581 			    struct ifla_vf_stats *stats);
2582 	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2583 			    struct ifla_vf_guid *node_guid,
2584 			    struct ifla_vf_guid *port_guid);
2585 	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2586 			   int type);
2587 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2588 				   struct ib_wq_init_attr *init_attr,
2589 				   struct ib_udata *udata);
2590 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2591 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2592 			 u32 wq_attr_mask, struct ib_udata *udata);
2593 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2594 				    struct ib_rwq_ind_table_init_attr *init_attr,
2595 				    struct ib_udata *udata);
2596 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2597 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2598 				  struct ib_ucontext *context,
2599 				  struct ib_dm_alloc_attr *attr,
2600 				  struct uverbs_attr_bundle *attrs);
2601 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2602 	int (*alloc_dmah)(struct ib_dmah *ibdmah,
2603 			  struct uverbs_attr_bundle *attrs);
2604 	int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs);
2605 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2606 				   struct ib_dm_mr_attr *attr,
2607 				   struct uverbs_attr_bundle *attrs);
2608 	int (*create_counters)(struct ib_counters *counters,
2609 			       struct uverbs_attr_bundle *attrs);
2610 	int (*destroy_counters)(struct ib_counters *counters);
2611 	int (*read_counters)(struct ib_counters *counters,
2612 			     struct ib_counters_read_attr *counters_read_attr,
2613 			     struct uverbs_attr_bundle *attrs);
2614 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2615 			    int data_sg_nents, unsigned int *data_sg_offset,
2616 			    struct scatterlist *meta_sg, int meta_sg_nents,
2617 			    unsigned int *meta_sg_offset);
2618 
2619 	/*
2620 	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2621 	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2622 	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2623 	 *   return struct tells the core to set a default lifespan.
2624 	 */
2625 	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2626 	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2627 						     u32 port_num);
2628 	/*
2629 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2630 	 * @index - The index in the value array we wish to have updated, or
2631 	 *   num_counters if we want all stats updated
2632 	 * Return codes -
2633 	 *   < 0 - Error, no counters updated
2634 	 *   index - Updated the single counter pointed to by index
2635 	 *   num_counters - Updated all counters (will reset the timestamp
2636 	 *     and prevent further calls for lifespan milliseconds)
2637 	 * Drivers are allowed to update all counters in leiu of just the
2638 	 *   one given in index at their option
2639 	 */
2640 	int (*get_hw_stats)(struct ib_device *device,
2641 			    struct rdma_hw_stats *stats, u32 port, int index);
2642 
2643 	/*
2644 	 * modify_hw_stat - Modify the counter configuration
2645 	 * @enable: true/false when enable/disable a counter
2646 	 * Return codes - 0 on success or error code otherwise.
2647 	 */
2648 	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2649 			      unsigned int counter_index, bool enable);
2650 	/*
2651 	 * Allows rdma drivers to add their own restrack attributes.
2652 	 */
2653 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2654 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2655 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2656 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2657 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2658 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2659 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2660 	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2661 	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2662 
2663 	/* Device lifecycle callbacks */
2664 	/*
2665 	 * Called after the device becomes registered, before clients are
2666 	 * attached
2667 	 */
2668 	int (*enable_driver)(struct ib_device *dev);
2669 	/*
2670 	 * This is called as part of ib_dealloc_device().
2671 	 */
2672 	void (*dealloc_driver)(struct ib_device *dev);
2673 
2674 	/* iWarp CM callbacks */
2675 	void (*iw_add_ref)(struct ib_qp *qp);
2676 	void (*iw_rem_ref)(struct ib_qp *qp);
2677 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2678 	int (*iw_connect)(struct iw_cm_id *cm_id,
2679 			  struct iw_cm_conn_param *conn_param);
2680 	int (*iw_accept)(struct iw_cm_id *cm_id,
2681 			 struct iw_cm_conn_param *conn_param);
2682 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2683 			 u8 pdata_len);
2684 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2685 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2686 	/*
2687 	 * counter_bind_qp - Bind a QP to a counter.
2688 	 * @counter - The counter to be bound. If counter->id is zero then
2689 	 *   the driver needs to allocate a new counter and set counter->id
2690 	 */
2691 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2692 			       u32 port);
2693 	/*
2694 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2695 	 *   counter and bind it onto the default one
2696 	 */
2697 	int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2698 	/*
2699 	 * counter_dealloc -De-allocate the hw counter
2700 	 */
2701 	int (*counter_dealloc)(struct rdma_counter *counter);
2702 	/*
2703 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2704 	 * the driver initialized data.
2705 	 */
2706 	struct rdma_hw_stats *(*counter_alloc_stats)(
2707 		struct rdma_counter *counter);
2708 	/*
2709 	 * counter_update_stats - Query the stats value of this counter
2710 	 */
2711 	int (*counter_update_stats)(struct rdma_counter *counter);
2712 
2713 	/*
2714 	 * counter_init - Initialize the driver specific rdma counter struct.
2715 	 */
2716 	void (*counter_init)(struct rdma_counter *counter);
2717 
2718 	/*
2719 	 * Allows rdma drivers to add their own restrack attributes
2720 	 * dumped via 'rdma stat' iproute2 command.
2721 	 */
2722 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2723 
2724 	/* query driver for its ucontext properties */
2725 	int (*query_ucontext)(struct ib_ucontext *context,
2726 			      struct uverbs_attr_bundle *attrs);
2727 
2728 	/*
2729 	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2730 	 * Everyone else relies on Linux memory management model.
2731 	 */
2732 	int (*get_numa_node)(struct ib_device *dev);
2733 
2734 	/*
2735 	 * add_sub_dev - Add a sub IB device
2736 	 */
2737 	struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2738 					 enum rdma_nl_dev_type type,
2739 					 const char *name);
2740 
2741 	/*
2742 	 * del_sub_dev - Delete a sub IB device
2743 	 */
2744 	void (*del_sub_dev)(struct ib_device *sub_dev);
2745 
2746 	/*
2747 	 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2748 	 * the ufile.
2749 	 */
2750 	void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2751 
2752 	/*
2753 	 * report_port_event - Drivers need to implement this if they have
2754 	 * some private stuff to handle when link status changes.
2755 	 */
2756 	void (*report_port_event)(struct ib_device *ibdev,
2757 				  struct net_device *ndev, unsigned long event);
2758 
2759 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2760 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2761 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2762 	DECLARE_RDMA_OBJ_SIZE(ib_dmah);
2763 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2764 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2765 	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2766 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2767 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2768 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2769 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2770 	DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2771 };
2772 
2773 struct ib_core_device {
2774 	/* device must be the first element in structure until,
2775 	 * union of ib_core_device and device exists in ib_device.
2776 	 */
2777 	struct device dev;
2778 	possible_net_t rdma_net;
2779 	struct kobject *ports_kobj;
2780 	struct list_head port_list;
2781 	struct ib_device *owner; /* reach back to owner ib_device */
2782 };
2783 
2784 struct rdma_restrack_root;
2785 struct ib_device {
2786 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2787 	struct device                *dma_device;
2788 	struct ib_device_ops	     ops;
2789 	char                          name[IB_DEVICE_NAME_MAX];
2790 	struct rcu_head rcu_head;
2791 
2792 	struct list_head              event_handler_list;
2793 	/* Protects event_handler_list */
2794 	struct rw_semaphore event_handler_rwsem;
2795 
2796 	/* Protects QP's event_handler calls and open_qp list */
2797 	spinlock_t qp_open_list_lock;
2798 
2799 	struct rw_semaphore	      client_data_rwsem;
2800 	struct xarray                 client_data;
2801 	struct mutex                  unregistration_lock;
2802 
2803 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2804 	rwlock_t cache_lock;
2805 	/**
2806 	 * port_data is indexed by port number
2807 	 */
2808 	struct ib_port_data *port_data;
2809 
2810 	int			      num_comp_vectors;
2811 
2812 	union {
2813 		struct device		dev;
2814 		struct ib_core_device	coredev;
2815 	};
2816 
2817 	/* First group is for device attributes,
2818 	 * Second group is for driver provided attributes (optional).
2819 	 * Third group is for the hw_stats
2820 	 * It is a NULL terminated array.
2821 	 */
2822 	const struct attribute_group	*groups[4];
2823 	u8				hw_stats_attr_index;
2824 
2825 	u64			     uverbs_cmd_mask;
2826 
2827 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2828 	__be64			     node_guid;
2829 	u32			     local_dma_lkey;
2830 	u16                          is_switch:1;
2831 	/* Indicates kernel verbs support, should not be used in drivers */
2832 	u16                          kverbs_provider:1;
2833 	/* CQ adaptive moderation (RDMA DIM) */
2834 	u16                          use_cq_dim:1;
2835 	u8                           node_type;
2836 	u32			     phys_port_cnt;
2837 	struct ib_device_attr        attrs;
2838 	struct hw_stats_device_data *hw_stats_data;
2839 
2840 #ifdef CONFIG_CGROUP_RDMA
2841 	struct rdmacg_device         cg_device;
2842 #endif
2843 
2844 	u32                          index;
2845 
2846 	spinlock_t                   cq_pools_lock;
2847 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2848 
2849 	struct rdma_restrack_root *res;
2850 
2851 	const struct uapi_definition   *driver_def;
2852 
2853 	/*
2854 	 * Positive refcount indicates that the device is currently
2855 	 * registered and cannot be unregistered.
2856 	 */
2857 	refcount_t refcount;
2858 	struct completion unreg_completion;
2859 	struct work_struct unregistration_work;
2860 
2861 	const struct rdma_link_ops *link_ops;
2862 
2863 	/* Protects compat_devs xarray modifications */
2864 	struct mutex compat_devs_mutex;
2865 	/* Maintains compat devices for each net namespace */
2866 	struct xarray compat_devs;
2867 
2868 	/* Used by iWarp CM */
2869 	char iw_ifname[IFNAMSIZ];
2870 	u32 iw_driver_flags;
2871 	u32 lag_flags;
2872 
2873 	/* A parent device has a list of sub-devices */
2874 	struct mutex subdev_lock;
2875 	struct list_head subdev_list_head;
2876 
2877 	/* A sub device has a type and a parent */
2878 	enum rdma_nl_dev_type type;
2879 	struct ib_device *parent;
2880 	struct list_head subdev_list;
2881 
2882 	enum rdma_nl_name_assign_type name_assign_type;
2883 };
2884 
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2885 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2886 				    gfp_t gfp, bool is_numa_aware)
2887 {
2888 	if (is_numa_aware && dev->ops.get_numa_node)
2889 		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2890 
2891 	return kzalloc(size, gfp);
2892 }
2893 
2894 struct ib_client_nl_info;
2895 struct ib_client {
2896 	const char *name;
2897 	int (*add)(struct ib_device *ibdev);
2898 	void (*remove)(struct ib_device *, void *client_data);
2899 	void (*rename)(struct ib_device *dev, void *client_data);
2900 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2901 			   struct ib_client_nl_info *res);
2902 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2903 
2904 	/* Returns the net_dev belonging to this ib_client and matching the
2905 	 * given parameters.
2906 	 * @dev:	 An RDMA device that the net_dev use for communication.
2907 	 * @port:	 A physical port number on the RDMA device.
2908 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2909 	 * @gid:	 A GID that the net_dev uses to communicate.
2910 	 * @addr:	 An IP address the net_dev is configured with.
2911 	 * @client_data: The device's client data set by ib_set_client_data().
2912 	 *
2913 	 * An ib_client that implements a net_dev on top of RDMA devices
2914 	 * (such as IP over IB) should implement this callback, allowing the
2915 	 * rdma_cm module to find the right net_dev for a given request.
2916 	 *
2917 	 * The caller is responsible for calling dev_put on the returned
2918 	 * netdev. */
2919 	struct net_device *(*get_net_dev_by_params)(
2920 			struct ib_device *dev,
2921 			u32 port,
2922 			u16 pkey,
2923 			const union ib_gid *gid,
2924 			const struct sockaddr *addr,
2925 			void *client_data);
2926 
2927 	refcount_t uses;
2928 	struct completion uses_zero;
2929 	u32 client_id;
2930 
2931 	/* kverbs are not required by the client */
2932 	u8 no_kverbs_req:1;
2933 };
2934 
2935 /*
2936  * IB block DMA iterator
2937  *
2938  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2939  * to a HW supported page size.
2940  */
2941 struct ib_block_iter {
2942 	/* internal states */
2943 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2944 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2945 	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2946 	unsigned int __sg_nents;	/* number of SG entries */
2947 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2948 	unsigned int __pg_bit;		/* alignment of current block */
2949 };
2950 
2951 struct ib_device *_ib_alloc_device(size_t size, struct net *net);
2952 #define ib_alloc_device(drv_struct, member)                                    \
2953 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2954 				      BUILD_BUG_ON_ZERO(offsetof(              \
2955 					      struct drv_struct, member)),     \
2956 				      &init_net),			       \
2957 		     struct drv_struct, member)
2958 
2959 #define ib_alloc_device_with_net(drv_struct, member, net)		       \
2960 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2961 				      BUILD_BUG_ON_ZERO(offsetof(              \
2962 					struct drv_struct, member)), net),     \
2963 		     struct drv_struct, member)
2964 
2965 void ib_dealloc_device(struct ib_device *device);
2966 
2967 void ib_get_device_fw_str(struct ib_device *device, char *str);
2968 
2969 int ib_register_device(struct ib_device *device, const char *name,
2970 		       struct device *dma_device);
2971 void ib_unregister_device(struct ib_device *device);
2972 void ib_unregister_driver(enum rdma_driver_id driver_id);
2973 void ib_unregister_device_and_put(struct ib_device *device);
2974 void ib_unregister_device_queued(struct ib_device *ib_dev);
2975 
2976 int ib_register_client   (struct ib_client *client);
2977 void ib_unregister_client(struct ib_client *client);
2978 
2979 void __rdma_block_iter_start(struct ib_block_iter *biter,
2980 			     struct scatterlist *sglist,
2981 			     unsigned int nents,
2982 			     unsigned long pgsz);
2983 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2984 
2985 /**
2986  * rdma_block_iter_dma_address - get the aligned dma address of the current
2987  * block held by the block iterator.
2988  * @biter: block iterator holding the memory block
2989  */
2990 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2991 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2992 {
2993 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2994 }
2995 
2996 /**
2997  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2998  * @sglist: sglist to iterate over
2999  * @biter: block iterator holding the memory block
3000  * @nents: maximum number of sg entries to iterate over
3001  * @pgsz: best HW supported page size to use
3002  *
3003  * Callers may use rdma_block_iter_dma_address() to get each
3004  * blocks aligned DMA address.
3005  */
3006 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
3007 	for (__rdma_block_iter_start(biter, sglist, nents,	\
3008 				     pgsz);			\
3009 	     __rdma_block_iter_next(biter);)
3010 
3011 /**
3012  * ib_get_client_data - Get IB client context
3013  * @device:Device to get context for
3014  * @client:Client to get context for
3015  *
3016  * ib_get_client_data() returns the client context data set with
3017  * ib_set_client_data(). This can only be called while the client is
3018  * registered to the device, once the ib_client remove() callback returns this
3019  * cannot be called.
3020  */
ib_get_client_data(struct ib_device * device,struct ib_client * client)3021 static inline void *ib_get_client_data(struct ib_device *device,
3022 				       struct ib_client *client)
3023 {
3024 	return xa_load(&device->client_data, client->client_id);
3025 }
3026 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
3027 			 void *data);
3028 void ib_set_device_ops(struct ib_device *device,
3029 		       const struct ib_device_ops *ops);
3030 
3031 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
3032 		      unsigned long pfn, unsigned long size, pgprot_t prot,
3033 		      struct rdma_user_mmap_entry *entry);
3034 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
3035 				struct rdma_user_mmap_entry *entry,
3036 				size_t length);
3037 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
3038 				      struct rdma_user_mmap_entry *entry,
3039 				      size_t length, u32 min_pgoff,
3040 				      u32 max_pgoff);
3041 
3042 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
3043 void rdma_user_mmap_disassociate(struct ib_device *device);
3044 #else
rdma_user_mmap_disassociate(struct ib_device * device)3045 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
3046 {
3047 }
3048 #endif
3049 
3050 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)3051 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3052 				  struct rdma_user_mmap_entry *entry,
3053 				  size_t length, u32 pgoff)
3054 {
3055 	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3056 						 pgoff);
3057 }
3058 
3059 struct rdma_user_mmap_entry *
3060 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3061 			       unsigned long pgoff);
3062 struct rdma_user_mmap_entry *
3063 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3064 			 struct vm_area_struct *vma);
3065 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3066 
3067 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3068 
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)3069 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3070 {
3071 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3072 }
3073 
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)3074 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3075 {
3076 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3077 }
3078 
ib_is_buffer_cleared(const void __user * p,size_t len)3079 static inline bool ib_is_buffer_cleared(const void __user *p,
3080 					size_t len)
3081 {
3082 	bool ret;
3083 	u8 *buf;
3084 
3085 	if (len > USHRT_MAX)
3086 		return false;
3087 
3088 	buf = memdup_user(p, len);
3089 	if (IS_ERR(buf))
3090 		return false;
3091 
3092 	ret = !memchr_inv(buf, 0, len);
3093 	kfree(buf);
3094 	return ret;
3095 }
3096 
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)3097 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3098 				       size_t offset,
3099 				       size_t len)
3100 {
3101 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
3102 }
3103 
3104 /**
3105  * ib_modify_qp_is_ok - Check that the supplied attribute mask
3106  * contains all required attributes and no attributes not allowed for
3107  * the given QP state transition.
3108  * @cur_state: Current QP state
3109  * @next_state: Next QP state
3110  * @type: QP type
3111  * @mask: Mask of supplied QP attributes
3112  *
3113  * This function is a helper function that a low-level driver's
3114  * modify_qp method can use to validate the consumer's input.  It
3115  * checks that cur_state and next_state are valid QP states, that a
3116  * transition from cur_state to next_state is allowed by the IB spec,
3117  * and that the attribute mask supplied is allowed for the transition.
3118  */
3119 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3120 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3121 
3122 void ib_register_event_handler(struct ib_event_handler *event_handler);
3123 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3124 void ib_dispatch_event(const struct ib_event *event);
3125 
3126 int ib_query_port(struct ib_device *device,
3127 		  u32 port_num, struct ib_port_attr *port_attr);
3128 
3129 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3130 					       u32 port_num);
3131 
3132 /**
3133  * rdma_cap_ib_switch - Check if the device is IB switch
3134  * @device: Device to check
3135  *
3136  * Device driver is responsible for setting is_switch bit on
3137  * in ib_device structure at init time.
3138  *
3139  * Return: true if the device is IB switch.
3140  */
rdma_cap_ib_switch(const struct ib_device * device)3141 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3142 {
3143 	return device->is_switch;
3144 }
3145 
3146 /**
3147  * rdma_start_port - Return the first valid port number for the device
3148  * specified
3149  *
3150  * @device: Device to be checked
3151  *
3152  * Return start port number
3153  */
rdma_start_port(const struct ib_device * device)3154 static inline u32 rdma_start_port(const struct ib_device *device)
3155 {
3156 	return rdma_cap_ib_switch(device) ? 0 : 1;
3157 }
3158 
3159 /**
3160  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3161  * @device: The struct ib_device * to iterate over
3162  * @iter: The unsigned int to store the port number
3163  */
3164 #define rdma_for_each_port(device, iter)                                       \
3165 	for (iter = rdma_start_port(device +				       \
3166 				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3167 								   iter)));    \
3168 	     iter <= rdma_end_port(device); iter++)
3169 
3170 /**
3171  * rdma_end_port - Return the last valid port number for the device
3172  * specified
3173  *
3174  * @device: Device to be checked
3175  *
3176  * Return last port number
3177  */
rdma_end_port(const struct ib_device * device)3178 static inline u32 rdma_end_port(const struct ib_device *device)
3179 {
3180 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3181 }
3182 
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3183 static inline int rdma_is_port_valid(const struct ib_device *device,
3184 				     unsigned int port)
3185 {
3186 	return (port >= rdma_start_port(device) &&
3187 		port <= rdma_end_port(device));
3188 }
3189 
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3190 static inline bool rdma_is_grh_required(const struct ib_device *device,
3191 					u32 port_num)
3192 {
3193 	return device->port_data[port_num].immutable.core_cap_flags &
3194 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3195 }
3196 
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3197 static inline bool rdma_protocol_ib(const struct ib_device *device,
3198 				    u32 port_num)
3199 {
3200 	return device->port_data[port_num].immutable.core_cap_flags &
3201 	       RDMA_CORE_CAP_PROT_IB;
3202 }
3203 
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3204 static inline bool rdma_protocol_roce(const struct ib_device *device,
3205 				      u32 port_num)
3206 {
3207 	return device->port_data[port_num].immutable.core_cap_flags &
3208 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3209 }
3210 
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3211 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3212 						u32 port_num)
3213 {
3214 	return device->port_data[port_num].immutable.core_cap_flags &
3215 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3216 }
3217 
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3218 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3219 						u32 port_num)
3220 {
3221 	return device->port_data[port_num].immutable.core_cap_flags &
3222 	       RDMA_CORE_CAP_PROT_ROCE;
3223 }
3224 
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3225 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3226 				       u32 port_num)
3227 {
3228 	return device->port_data[port_num].immutable.core_cap_flags &
3229 	       RDMA_CORE_CAP_PROT_IWARP;
3230 }
3231 
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3232 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3233 				   u32 port_num)
3234 {
3235 	return rdma_protocol_ib(device, port_num) ||
3236 		rdma_protocol_roce(device, port_num);
3237 }
3238 
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3239 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3240 					    u32 port_num)
3241 {
3242 	return device->port_data[port_num].immutable.core_cap_flags &
3243 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3244 }
3245 
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3246 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3247 				       u32 port_num)
3248 {
3249 	return device->port_data[port_num].immutable.core_cap_flags &
3250 	       RDMA_CORE_CAP_PROT_USNIC;
3251 }
3252 
3253 /**
3254  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3255  * Management Datagrams.
3256  * @device: Device to check
3257  * @port_num: Port number to check
3258  *
3259  * Management Datagrams (MAD) are a required part of the InfiniBand
3260  * specification and are supported on all InfiniBand devices.  A slightly
3261  * extended version are also supported on OPA interfaces.
3262  *
3263  * Return: true if the port supports sending/receiving of MAD packets.
3264  */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3265 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3266 {
3267 	return device->port_data[port_num].immutable.core_cap_flags &
3268 	       RDMA_CORE_CAP_IB_MAD;
3269 }
3270 
3271 /**
3272  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3273  * Management Datagrams.
3274  * @device: Device to check
3275  * @port_num: Port number to check
3276  *
3277  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3278  * datagrams with their own versions.  These OPA MADs share many but not all of
3279  * the characteristics of InfiniBand MADs.
3280  *
3281  * OPA MADs differ in the following ways:
3282  *
3283  *    1) MADs are variable size up to 2K
3284  *       IBTA defined MADs remain fixed at 256 bytes
3285  *    2) OPA SMPs must carry valid PKeys
3286  *    3) OPA SMP packets are a different format
3287  *
3288  * Return: true if the port supports OPA MAD packet formats.
3289  */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3290 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3291 {
3292 	return device->port_data[port_num].immutable.core_cap_flags &
3293 		RDMA_CORE_CAP_OPA_MAD;
3294 }
3295 
3296 /**
3297  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3298  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3299  * @device: Device to check
3300  * @port_num: Port number to check
3301  *
3302  * Each InfiniBand node is required to provide a Subnet Management Agent
3303  * that the subnet manager can access.  Prior to the fabric being fully
3304  * configured by the subnet manager, the SMA is accessed via a well known
3305  * interface called the Subnet Management Interface (SMI).  This interface
3306  * uses directed route packets to communicate with the SM to get around the
3307  * chicken and egg problem of the SM needing to know what's on the fabric
3308  * in order to configure the fabric, and needing to configure the fabric in
3309  * order to send packets to the devices on the fabric.  These directed
3310  * route packets do not need the fabric fully configured in order to reach
3311  * their destination.  The SMI is the only method allowed to send
3312  * directed route packets on an InfiniBand fabric.
3313  *
3314  * Return: true if the port provides an SMI.
3315  */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3316 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3317 {
3318 	return device->port_data[port_num].immutable.core_cap_flags &
3319 	       RDMA_CORE_CAP_IB_SMI;
3320 }
3321 
3322 /**
3323  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3324  * Communication Manager.
3325  * @device: Device to check
3326  * @port_num: Port number to check
3327  *
3328  * The InfiniBand Communication Manager is one of many pre-defined General
3329  * Service Agents (GSA) that are accessed via the General Service
3330  * Interface (GSI).  It's role is to facilitate establishment of connections
3331  * between nodes as well as other management related tasks for established
3332  * connections.
3333  *
3334  * Return: true if the port supports an IB CM (this does not guarantee that
3335  * a CM is actually running however).
3336  */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3337 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3338 {
3339 	return device->port_data[port_num].immutable.core_cap_flags &
3340 	       RDMA_CORE_CAP_IB_CM;
3341 }
3342 
3343 /**
3344  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3345  * Communication Manager.
3346  * @device: Device to check
3347  * @port_num: Port number to check
3348  *
3349  * Similar to above, but specific to iWARP connections which have a different
3350  * managment protocol than InfiniBand.
3351  *
3352  * Return: true if the port supports an iWARP CM (this does not guarantee that
3353  * a CM is actually running however).
3354  */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3355 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3356 {
3357 	return device->port_data[port_num].immutable.core_cap_flags &
3358 	       RDMA_CORE_CAP_IW_CM;
3359 }
3360 
3361 /**
3362  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3363  * Subnet Administration.
3364  * @device: Device to check
3365  * @port_num: Port number to check
3366  *
3367  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3368  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3369  * fabrics, devices should resolve routes to other hosts by contacting the
3370  * SA to query the proper route.
3371  *
3372  * Return: true if the port should act as a client to the fabric Subnet
3373  * Administration interface.  This does not imply that the SA service is
3374  * running locally.
3375  */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3376 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3377 {
3378 	return device->port_data[port_num].immutable.core_cap_flags &
3379 	       RDMA_CORE_CAP_IB_SA;
3380 }
3381 
3382 /**
3383  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3384  * Multicast.
3385  * @device: Device to check
3386  * @port_num: Port number to check
3387  *
3388  * InfiniBand multicast registration is more complex than normal IPv4 or
3389  * IPv6 multicast registration.  Each Host Channel Adapter must register
3390  * with the Subnet Manager when it wishes to join a multicast group.  It
3391  * should do so only once regardless of how many queue pairs it subscribes
3392  * to this group.  And it should leave the group only after all queue pairs
3393  * attached to the group have been detached.
3394  *
3395  * Return: true if the port must undertake the additional adminstrative
3396  * overhead of registering/unregistering with the SM and tracking of the
3397  * total number of queue pairs attached to the multicast group.
3398  */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3399 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3400 				     u32 port_num)
3401 {
3402 	return rdma_cap_ib_sa(device, port_num);
3403 }
3404 
3405 /**
3406  * rdma_cap_af_ib - Check if the port of device has the capability
3407  * Native Infiniband Address.
3408  * @device: Device to check
3409  * @port_num: Port number to check
3410  *
3411  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3412  * GID.  RoCE uses a different mechanism, but still generates a GID via
3413  * a prescribed mechanism and port specific data.
3414  *
3415  * Return: true if the port uses a GID address to identify devices on the
3416  * network.
3417  */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3418 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3419 {
3420 	return device->port_data[port_num].immutable.core_cap_flags &
3421 	       RDMA_CORE_CAP_AF_IB;
3422 }
3423 
3424 /**
3425  * rdma_cap_eth_ah - Check if the port of device has the capability
3426  * Ethernet Address Handle.
3427  * @device: Device to check
3428  * @port_num: Port number to check
3429  *
3430  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3431  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3432  * port.  Normally, packet headers are generated by the sending host
3433  * adapter, but when sending connectionless datagrams, we must manually
3434  * inject the proper headers for the fabric we are communicating over.
3435  *
3436  * Return: true if we are running as a RoCE port and must force the
3437  * addition of a Global Route Header built from our Ethernet Address
3438  * Handle into our header list for connectionless packets.
3439  */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3440 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3441 {
3442 	return device->port_data[port_num].immutable.core_cap_flags &
3443 	       RDMA_CORE_CAP_ETH_AH;
3444 }
3445 
3446 /**
3447  * rdma_cap_opa_ah - Check if the port of device supports
3448  * OPA Address handles
3449  * @device: Device to check
3450  * @port_num: Port number to check
3451  *
3452  * Return: true if we are running on an OPA device which supports
3453  * the extended OPA addressing.
3454  */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3455 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3456 {
3457 	return (device->port_data[port_num].immutable.core_cap_flags &
3458 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3459 }
3460 
3461 /**
3462  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3463  *
3464  * @device: Device
3465  * @port_num: Port number
3466  *
3467  * This MAD size includes the MAD headers and MAD payload.  No other headers
3468  * are included.
3469  *
3470  * Return the max MAD size required by the Port.  Will return 0 if the port
3471  * does not support MADs
3472  */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3473 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3474 				       u32 port_num)
3475 {
3476 	return device->port_data[port_num].immutable.max_mad_size;
3477 }
3478 
3479 /**
3480  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3481  * @device: Device to check
3482  * @port_num: Port number to check
3483  *
3484  * RoCE GID table mechanism manages the various GIDs for a device.
3485  *
3486  * NOTE: if allocating the port's GID table has failed, this call will still
3487  * return true, but any RoCE GID table API will fail.
3488  *
3489  * Return: true if the port uses RoCE GID table mechanism in order to manage
3490  * its GIDs.
3491  */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3492 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3493 					   u32 port_num)
3494 {
3495 	return rdma_protocol_roce(device, port_num) &&
3496 		device->ops.add_gid && device->ops.del_gid;
3497 }
3498 
3499 /*
3500  * Check if the device supports READ W/ INVALIDATE.
3501  */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3502 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3503 {
3504 	/*
3505 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3506 	 * has support for it yet.
3507 	 */
3508 	return rdma_protocol_iwarp(dev, port_num);
3509 }
3510 
3511 /**
3512  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3513  * @device: Device
3514  * @port_num: 1 based Port number
3515  *
3516  * Return true if port is an Intel OPA port , false if not
3517  */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3518 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3519 					  u32 port_num)
3520 {
3521 	return (device->port_data[port_num].immutable.core_cap_flags &
3522 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3523 }
3524 
3525 /**
3526  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3527  * @device: Device
3528  * @port: Port number
3529  * @mtu: enum value of MTU
3530  *
3531  * Return the MTU size supported by the port as an integer value. Will return
3532  * -1 if enum value of mtu is not supported.
3533  */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3534 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3535 				       int mtu)
3536 {
3537 	if (rdma_core_cap_opa_port(device, port))
3538 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3539 	else
3540 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3541 }
3542 
3543 /**
3544  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3545  * @device: Device
3546  * @port: Port number
3547  * @attr: port attribute
3548  *
3549  * Return the MTU size supported by the port as an integer value.
3550  */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3551 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3552 				     struct ib_port_attr *attr)
3553 {
3554 	if (rdma_core_cap_opa_port(device, port))
3555 		return attr->phys_mtu;
3556 	else
3557 		return ib_mtu_enum_to_int(attr->max_mtu);
3558 }
3559 
3560 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3561 			 int state);
3562 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3563 		     struct ifla_vf_info *info);
3564 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3565 		    struct ifla_vf_stats *stats);
3566 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3567 		    struct ifla_vf_guid *node_guid,
3568 		    struct ifla_vf_guid *port_guid);
3569 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3570 		   int type);
3571 
3572 int ib_query_pkey(struct ib_device *device,
3573 		  u32 port_num, u16 index, u16 *pkey);
3574 
3575 int ib_modify_device(struct ib_device *device,
3576 		     int device_modify_mask,
3577 		     struct ib_device_modify *device_modify);
3578 
3579 int ib_modify_port(struct ib_device *device,
3580 		   u32 port_num, int port_modify_mask,
3581 		   struct ib_port_modify *port_modify);
3582 
3583 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3584 		u32 *port_num, u16 *index);
3585 
3586 int ib_find_pkey(struct ib_device *device,
3587 		 u32 port_num, u16 pkey, u16 *index);
3588 
3589 enum ib_pd_flags {
3590 	/*
3591 	 * Create a memory registration for all memory in the system and place
3592 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3593 	 * ULPs to avoid the overhead of dynamic MRs.
3594 	 *
3595 	 * This flag is generally considered unsafe and must only be used in
3596 	 * extremly trusted environments.  Every use of it will log a warning
3597 	 * in the kernel log.
3598 	 */
3599 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3600 };
3601 
3602 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3603 		const char *caller);
3604 
3605 /**
3606  * ib_alloc_pd - Allocates an unused protection domain.
3607  * @device: The device on which to allocate the protection domain.
3608  * @flags: protection domain flags
3609  *
3610  * A protection domain object provides an association between QPs, shared
3611  * receive queues, address handles, memory regions, and memory windows.
3612  *
3613  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3614  * memory operations.
3615  */
3616 #define ib_alloc_pd(device, flags) \
3617 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3618 
3619 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3620 
3621 /**
3622  * ib_dealloc_pd - Deallocate kernel PD
3623  * @pd: The protection domain
3624  *
3625  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3626  */
ib_dealloc_pd(struct ib_pd * pd)3627 static inline void ib_dealloc_pd(struct ib_pd *pd)
3628 {
3629 	int ret = ib_dealloc_pd_user(pd, NULL);
3630 
3631 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3632 }
3633 
3634 enum rdma_create_ah_flags {
3635 	/* In a sleepable context */
3636 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3637 };
3638 
3639 /**
3640  * rdma_create_ah - Creates an address handle for the given address vector.
3641  * @pd: The protection domain associated with the address handle.
3642  * @ah_attr: The attributes of the address vector.
3643  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3644  *
3645  * The address handle is used to reference a local or global destination
3646  * in all UD QP post sends.
3647  */
3648 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3649 			     u32 flags);
3650 
3651 /**
3652  * rdma_create_user_ah - Creates an address handle for the given address vector.
3653  * It resolves destination mac address for ah attribute of RoCE type.
3654  * @pd: The protection domain associated with the address handle.
3655  * @ah_attr: The attributes of the address vector.
3656  * @udata: pointer to user's input output buffer information need by
3657  *         provider driver.
3658  *
3659  * It returns 0 on success and returns appropriate error code on error.
3660  * The address handle is used to reference a local or global destination
3661  * in all UD QP post sends.
3662  */
3663 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3664 				  struct rdma_ah_attr *ah_attr,
3665 				  struct ib_udata *udata);
3666 /**
3667  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3668  *   work completion.
3669  * @hdr: the L3 header to parse
3670  * @net_type: type of header to parse
3671  * @sgid: place to store source gid
3672  * @dgid: place to store destination gid
3673  */
3674 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3675 			      enum rdma_network_type net_type,
3676 			      union ib_gid *sgid, union ib_gid *dgid);
3677 
3678 /**
3679  * ib_get_rdma_header_version - Get the header version
3680  * @hdr: the L3 header to parse
3681  */
3682 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3683 
3684 /**
3685  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3686  *   work completion.
3687  * @device: Device on which the received message arrived.
3688  * @port_num: Port on which the received message arrived.
3689  * @wc: Work completion associated with the received message.
3690  * @grh: References the received global route header.  This parameter is
3691  *   ignored unless the work completion indicates that the GRH is valid.
3692  * @ah_attr: Returned attributes that can be used when creating an address
3693  *   handle for replying to the message.
3694  * When ib_init_ah_attr_from_wc() returns success,
3695  * (a) for IB link layer it optionally contains a reference to SGID attribute
3696  * when GRH is present for IB link layer.
3697  * (b) for RoCE link layer it contains a reference to SGID attribute.
3698  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3699  * attributes which are initialized using ib_init_ah_attr_from_wc().
3700  *
3701  */
3702 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3703 			    const struct ib_wc *wc, const struct ib_grh *grh,
3704 			    struct rdma_ah_attr *ah_attr);
3705 
3706 /**
3707  * ib_create_ah_from_wc - Creates an address handle associated with the
3708  *   sender of the specified work completion.
3709  * @pd: The protection domain associated with the address handle.
3710  * @wc: Work completion information associated with a received message.
3711  * @grh: References the received global route header.  This parameter is
3712  *   ignored unless the work completion indicates that the GRH is valid.
3713  * @port_num: The outbound port number to associate with the address.
3714  *
3715  * The address handle is used to reference a local or global destination
3716  * in all UD QP post sends.
3717  */
3718 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3719 				   const struct ib_grh *grh, u32 port_num);
3720 
3721 /**
3722  * rdma_modify_ah - Modifies the address vector associated with an address
3723  *   handle.
3724  * @ah: The address handle to modify.
3725  * @ah_attr: The new address vector attributes to associate with the
3726  *   address handle.
3727  */
3728 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3729 
3730 /**
3731  * rdma_query_ah - Queries the address vector associated with an address
3732  *   handle.
3733  * @ah: The address handle to query.
3734  * @ah_attr: The address vector attributes associated with the address
3735  *   handle.
3736  */
3737 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3738 
3739 enum rdma_destroy_ah_flags {
3740 	/* In a sleepable context */
3741 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3742 };
3743 
3744 /**
3745  * rdma_destroy_ah_user - Destroys an address handle.
3746  * @ah: The address handle to destroy.
3747  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3748  * @udata: Valid user data or NULL for kernel objects
3749  */
3750 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3751 
3752 /**
3753  * rdma_destroy_ah - Destroys an kernel address handle.
3754  * @ah: The address handle to destroy.
3755  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3756  *
3757  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3758  */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3759 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3760 {
3761 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3762 
3763 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3764 }
3765 
3766 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3767 				  struct ib_srq_init_attr *srq_init_attr,
3768 				  struct ib_usrq_object *uobject,
3769 				  struct ib_udata *udata);
3770 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3771 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3772 {
3773 	if (!pd->device->ops.create_srq)
3774 		return ERR_PTR(-EOPNOTSUPP);
3775 
3776 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3777 }
3778 
3779 /**
3780  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3781  * @srq: The SRQ to modify.
3782  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3783  *   the current values of selected SRQ attributes are returned.
3784  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3785  *   are being modified.
3786  *
3787  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3788  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3789  * the number of receives queued drops below the limit.
3790  */
3791 int ib_modify_srq(struct ib_srq *srq,
3792 		  struct ib_srq_attr *srq_attr,
3793 		  enum ib_srq_attr_mask srq_attr_mask);
3794 
3795 /**
3796  * ib_query_srq - Returns the attribute list and current values for the
3797  *   specified SRQ.
3798  * @srq: The SRQ to query.
3799  * @srq_attr: The attributes of the specified SRQ.
3800  */
3801 int ib_query_srq(struct ib_srq *srq,
3802 		 struct ib_srq_attr *srq_attr);
3803 
3804 /**
3805  * ib_destroy_srq_user - Destroys the specified SRQ.
3806  * @srq: The SRQ to destroy.
3807  * @udata: Valid user data or NULL for kernel objects
3808  */
3809 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3810 
3811 /**
3812  * ib_destroy_srq - Destroys the specified kernel SRQ.
3813  * @srq: The SRQ to destroy.
3814  *
3815  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3816  */
ib_destroy_srq(struct ib_srq * srq)3817 static inline void ib_destroy_srq(struct ib_srq *srq)
3818 {
3819 	int ret = ib_destroy_srq_user(srq, NULL);
3820 
3821 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3822 }
3823 
3824 /**
3825  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3826  * @srq: The SRQ to post the work request on.
3827  * @recv_wr: A list of work requests to post on the receive queue.
3828  * @bad_recv_wr: On an immediate failure, this parameter will reference
3829  *   the work request that failed to be posted on the QP.
3830  */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3831 static inline int ib_post_srq_recv(struct ib_srq *srq,
3832 				   const struct ib_recv_wr *recv_wr,
3833 				   const struct ib_recv_wr **bad_recv_wr)
3834 {
3835 	const struct ib_recv_wr *dummy;
3836 
3837 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3838 					      bad_recv_wr ? : &dummy);
3839 }
3840 
3841 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3842 				  struct ib_qp_init_attr *qp_init_attr,
3843 				  const char *caller);
3844 /**
3845  * ib_create_qp - Creates a kernel QP associated with the specific protection
3846  * domain.
3847  * @pd: The protection domain associated with the QP.
3848  * @init_attr: A list of initial attributes required to create the
3849  *   QP.  If QP creation succeeds, then the attributes are updated to
3850  *   the actual capabilities of the created QP.
3851  */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3852 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3853 					 struct ib_qp_init_attr *init_attr)
3854 {
3855 	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3856 }
3857 
3858 /**
3859  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3860  * @qp: The QP to modify.
3861  * @attr: On input, specifies the QP attributes to modify.  On output,
3862  *   the current values of selected QP attributes are returned.
3863  * @attr_mask: A bit-mask used to specify which attributes of the QP
3864  *   are being modified.
3865  * @udata: pointer to user's input output buffer information
3866  *   are being modified.
3867  * It returns 0 on success and returns appropriate error code on error.
3868  */
3869 int ib_modify_qp_with_udata(struct ib_qp *qp,
3870 			    struct ib_qp_attr *attr,
3871 			    int attr_mask,
3872 			    struct ib_udata *udata);
3873 
3874 /**
3875  * ib_modify_qp - Modifies the attributes for the specified QP and then
3876  *   transitions the QP to the given state.
3877  * @qp: The QP to modify.
3878  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3879  *   the current values of selected QP attributes are returned.
3880  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3881  *   are being modified.
3882  */
3883 int ib_modify_qp(struct ib_qp *qp,
3884 		 struct ib_qp_attr *qp_attr,
3885 		 int qp_attr_mask);
3886 
3887 /**
3888  * ib_query_qp - Returns the attribute list and current values for the
3889  *   specified QP.
3890  * @qp: The QP to query.
3891  * @qp_attr: The attributes of the specified QP.
3892  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3893  * @qp_init_attr: Additional attributes of the selected QP.
3894  *
3895  * The qp_attr_mask may be used to limit the query to gathering only the
3896  * selected attributes.
3897  */
3898 int ib_query_qp(struct ib_qp *qp,
3899 		struct ib_qp_attr *qp_attr,
3900 		int qp_attr_mask,
3901 		struct ib_qp_init_attr *qp_init_attr);
3902 
3903 /**
3904  * ib_destroy_qp - Destroys the specified QP.
3905  * @qp: The QP to destroy.
3906  * @udata: Valid udata or NULL for kernel objects
3907  */
3908 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3909 
3910 /**
3911  * ib_destroy_qp - Destroys the specified kernel QP.
3912  * @qp: The QP to destroy.
3913  *
3914  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3915  */
ib_destroy_qp(struct ib_qp * qp)3916 static inline int ib_destroy_qp(struct ib_qp *qp)
3917 {
3918 	return ib_destroy_qp_user(qp, NULL);
3919 }
3920 
3921 /**
3922  * ib_open_qp - Obtain a reference to an existing sharable QP.
3923  * @xrcd: XRC domain
3924  * @qp_open_attr: Attributes identifying the QP to open.
3925  *
3926  * Returns a reference to a sharable QP.
3927  */
3928 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3929 			 struct ib_qp_open_attr *qp_open_attr);
3930 
3931 /**
3932  * ib_close_qp - Release an external reference to a QP.
3933  * @qp: The QP handle to release
3934  *
3935  * The opened QP handle is released by the caller.  The underlying
3936  * shared QP is not destroyed until all internal references are released.
3937  */
3938 int ib_close_qp(struct ib_qp *qp);
3939 
3940 /**
3941  * ib_post_send - Posts a list of work requests to the send queue of
3942  *   the specified QP.
3943  * @qp: The QP to post the work request on.
3944  * @send_wr: A list of work requests to post on the send queue.
3945  * @bad_send_wr: On an immediate failure, this parameter will reference
3946  *   the work request that failed to be posted on the QP.
3947  *
3948  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3949  * error is returned, the QP state shall not be affected,
3950  * ib_post_send() will return an immediate error after queueing any
3951  * earlier work requests in the list.
3952  */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3953 static inline int ib_post_send(struct ib_qp *qp,
3954 			       const struct ib_send_wr *send_wr,
3955 			       const struct ib_send_wr **bad_send_wr)
3956 {
3957 	const struct ib_send_wr *dummy;
3958 
3959 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3960 }
3961 
3962 /**
3963  * ib_post_recv - Posts a list of work requests to the receive queue of
3964  *   the specified QP.
3965  * @qp: The QP to post the work request on.
3966  * @recv_wr: A list of work requests to post on the receive queue.
3967  * @bad_recv_wr: On an immediate failure, this parameter will reference
3968  *   the work request that failed to be posted on the QP.
3969  */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3970 static inline int ib_post_recv(struct ib_qp *qp,
3971 			       const struct ib_recv_wr *recv_wr,
3972 			       const struct ib_recv_wr **bad_recv_wr)
3973 {
3974 	const struct ib_recv_wr *dummy;
3975 
3976 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3977 }
3978 
3979 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3980 			    int comp_vector, enum ib_poll_context poll_ctx,
3981 			    const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3982 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3983 					int nr_cqe, int comp_vector,
3984 					enum ib_poll_context poll_ctx)
3985 {
3986 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3987 			     KBUILD_MODNAME);
3988 }
3989 
3990 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3991 				int nr_cqe, enum ib_poll_context poll_ctx,
3992 				const char *caller);
3993 
3994 /**
3995  * ib_alloc_cq_any: Allocate kernel CQ
3996  * @dev: The IB device
3997  * @private: Private data attached to the CQE
3998  * @nr_cqe: Number of CQEs in the CQ
3999  * @poll_ctx: Context used for polling the CQ
4000  */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)4001 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
4002 					    void *private, int nr_cqe,
4003 					    enum ib_poll_context poll_ctx)
4004 {
4005 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
4006 				 KBUILD_MODNAME);
4007 }
4008 
4009 void ib_free_cq(struct ib_cq *cq);
4010 int ib_process_cq_direct(struct ib_cq *cq, int budget);
4011 
4012 /**
4013  * ib_create_cq - Creates a CQ on the specified device.
4014  * @device: The device on which to create the CQ.
4015  * @comp_handler: A user-specified callback that is invoked when a
4016  *   completion event occurs on the CQ.
4017  * @event_handler: A user-specified callback that is invoked when an
4018  *   asynchronous event not associated with a completion occurs on the CQ.
4019  * @cq_context: Context associated with the CQ returned to the user via
4020  *   the associated completion and event handlers.
4021  * @cq_attr: The attributes the CQ should be created upon.
4022  *
4023  * Users can examine the cq structure to determine the actual CQ size.
4024  */
4025 struct ib_cq *__ib_create_cq(struct ib_device *device,
4026 			     ib_comp_handler comp_handler,
4027 			     void (*event_handler)(struct ib_event *, void *),
4028 			     void *cq_context,
4029 			     const struct ib_cq_init_attr *cq_attr,
4030 			     const char *caller);
4031 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
4032 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
4033 
4034 /**
4035  * ib_resize_cq - Modifies the capacity of the CQ.
4036  * @cq: The CQ to resize.
4037  * @cqe: The minimum size of the CQ.
4038  *
4039  * Users can examine the cq structure to determine the actual CQ size.
4040  */
4041 int ib_resize_cq(struct ib_cq *cq, int cqe);
4042 
4043 /**
4044  * rdma_set_cq_moderation - Modifies moderation params of the CQ
4045  * @cq: The CQ to modify.
4046  * @cq_count: number of CQEs that will trigger an event
4047  * @cq_period: max period of time in usec before triggering an event
4048  *
4049  */
4050 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4051 
4052 /**
4053  * ib_destroy_cq_user - Destroys the specified CQ.
4054  * @cq: The CQ to destroy.
4055  * @udata: Valid user data or NULL for kernel objects
4056  */
4057 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4058 
4059 /**
4060  * ib_destroy_cq - Destroys the specified kernel CQ.
4061  * @cq: The CQ to destroy.
4062  *
4063  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
4064  */
ib_destroy_cq(struct ib_cq * cq)4065 static inline void ib_destroy_cq(struct ib_cq *cq)
4066 {
4067 	int ret = ib_destroy_cq_user(cq, NULL);
4068 
4069 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4070 }
4071 
4072 /**
4073  * ib_poll_cq - poll a CQ for completion(s)
4074  * @cq:the CQ being polled
4075  * @num_entries:maximum number of completions to return
4076  * @wc:array of at least @num_entries &struct ib_wc where completions
4077  *   will be returned
4078  *
4079  * Poll a CQ for (possibly multiple) completions.  If the return value
4080  * is < 0, an error occurred.  If the return value is >= 0, it is the
4081  * number of completions returned.  If the return value is
4082  * non-negative and < num_entries, then the CQ was emptied.
4083  */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)4084 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4085 			     struct ib_wc *wc)
4086 {
4087 	return cq->device->ops.poll_cq(cq, num_entries, wc);
4088 }
4089 
4090 /**
4091  * ib_req_notify_cq - Request completion notification on a CQ.
4092  * @cq: The CQ to generate an event for.
4093  * @flags:
4094  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4095  *   to request an event on the next solicited event or next work
4096  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4097  *   may also be |ed in to request a hint about missed events, as
4098  *   described below.
4099  *
4100  * Return Value:
4101  *    < 0 means an error occurred while requesting notification
4102  *   == 0 means notification was requested successfully, and if
4103  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4104  *        were missed and it is safe to wait for another event.  In
4105  *        this case is it guaranteed that any work completions added
4106  *        to the CQ since the last CQ poll will trigger a completion
4107  *        notification event.
4108  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4109  *        in.  It means that the consumer must poll the CQ again to
4110  *        make sure it is empty to avoid missing an event because of a
4111  *        race between requesting notification and an entry being
4112  *        added to the CQ.  This return value means it is possible
4113  *        (but not guaranteed) that a work completion has been added
4114  *        to the CQ since the last poll without triggering a
4115  *        completion notification event.
4116  */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4117 static inline int ib_req_notify_cq(struct ib_cq *cq,
4118 				   enum ib_cq_notify_flags flags)
4119 {
4120 	return cq->device->ops.req_notify_cq(cq, flags);
4121 }
4122 
4123 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4124 			     int comp_vector_hint,
4125 			     enum ib_poll_context poll_ctx);
4126 
4127 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4128 
4129 /*
4130  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4131  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4132  * address into the dma address.
4133  */
ib_uses_virt_dma(struct ib_device * dev)4134 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4135 {
4136 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4137 }
4138 
4139 /*
4140  * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4141  */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4142 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4143 {
4144 	if (ib_uses_virt_dma(dev))
4145 		return false;
4146 
4147 	return dma_pci_p2pdma_supported(dev->dma_device);
4148 }
4149 
4150 /**
4151  * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4152  * @dma_addr: The DMA address
4153  *
4154  * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4155  * going through the dma_addr marshalling.
4156  */
ib_virt_dma_to_ptr(u64 dma_addr)4157 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4158 {
4159 	/* virt_dma mode maps the kvs's directly into the dma addr */
4160 	return (void *)(uintptr_t)dma_addr;
4161 }
4162 
4163 /**
4164  * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4165  * @dma_addr: The DMA address
4166  *
4167  * Used by ib_uses_virt_dma() device to get back to the struct page after going
4168  * through the dma_addr marshalling.
4169  */
ib_virt_dma_to_page(u64 dma_addr)4170 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4171 {
4172 	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4173 }
4174 
4175 /**
4176  * ib_dma_mapping_error - check a DMA addr for error
4177  * @dev: The device for which the dma_addr was created
4178  * @dma_addr: The DMA address to check
4179  */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4180 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4181 {
4182 	if (ib_uses_virt_dma(dev))
4183 		return 0;
4184 	return dma_mapping_error(dev->dma_device, dma_addr);
4185 }
4186 
4187 /**
4188  * ib_dma_map_single - Map a kernel virtual address to DMA address
4189  * @dev: The device for which the dma_addr is to be created
4190  * @cpu_addr: The kernel virtual address
4191  * @size: The size of the region in bytes
4192  * @direction: The direction of the DMA
4193  */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4194 static inline u64 ib_dma_map_single(struct ib_device *dev,
4195 				    void *cpu_addr, size_t size,
4196 				    enum dma_data_direction direction)
4197 {
4198 	if (ib_uses_virt_dma(dev))
4199 		return (uintptr_t)cpu_addr;
4200 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4201 }
4202 
4203 /**
4204  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4205  * @dev: The device for which the DMA address was created
4206  * @addr: The DMA address
4207  * @size: The size of the region in bytes
4208  * @direction: The direction of the DMA
4209  */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4210 static inline void ib_dma_unmap_single(struct ib_device *dev,
4211 				       u64 addr, size_t size,
4212 				       enum dma_data_direction direction)
4213 {
4214 	if (!ib_uses_virt_dma(dev))
4215 		dma_unmap_single(dev->dma_device, addr, size, direction);
4216 }
4217 
4218 /**
4219  * ib_dma_map_page - Map a physical page to DMA address
4220  * @dev: The device for which the dma_addr is to be created
4221  * @page: The page to be mapped
4222  * @offset: The offset within the page
4223  * @size: The size of the region in bytes
4224  * @direction: The direction of the DMA
4225  */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4226 static inline u64 ib_dma_map_page(struct ib_device *dev,
4227 				  struct page *page,
4228 				  unsigned long offset,
4229 				  size_t size,
4230 					 enum dma_data_direction direction)
4231 {
4232 	if (ib_uses_virt_dma(dev))
4233 		return (uintptr_t)(page_address(page) + offset);
4234 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4235 }
4236 
4237 /**
4238  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4239  * @dev: The device for which the DMA address was created
4240  * @addr: The DMA address
4241  * @size: The size of the region in bytes
4242  * @direction: The direction of the DMA
4243  */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4244 static inline void ib_dma_unmap_page(struct ib_device *dev,
4245 				     u64 addr, size_t size,
4246 				     enum dma_data_direction direction)
4247 {
4248 	if (!ib_uses_virt_dma(dev))
4249 		dma_unmap_page(dev->dma_device, addr, size, direction);
4250 }
4251 
4252 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4253 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4254 				      struct scatterlist *sg, int nents,
4255 				      enum dma_data_direction direction,
4256 				      unsigned long dma_attrs)
4257 {
4258 	if (ib_uses_virt_dma(dev))
4259 		return ib_dma_virt_map_sg(dev, sg, nents);
4260 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4261 				dma_attrs);
4262 }
4263 
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4264 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4265 					 struct scatterlist *sg, int nents,
4266 					 enum dma_data_direction direction,
4267 					 unsigned long dma_attrs)
4268 {
4269 	if (!ib_uses_virt_dma(dev))
4270 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4271 				   dma_attrs);
4272 }
4273 
4274 /**
4275  * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4276  * @dev: The device for which the DMA addresses are to be created
4277  * @sgt: The sg_table object describing the buffer
4278  * @direction: The direction of the DMA
4279  * @dma_attrs: Optional DMA attributes for the map operation
4280  */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4281 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4282 					   struct sg_table *sgt,
4283 					   enum dma_data_direction direction,
4284 					   unsigned long dma_attrs)
4285 {
4286 	int nents;
4287 
4288 	if (ib_uses_virt_dma(dev)) {
4289 		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4290 		if (!nents)
4291 			return -EIO;
4292 		sgt->nents = nents;
4293 		return 0;
4294 	}
4295 	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4296 }
4297 
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4298 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4299 					      struct sg_table *sgt,
4300 					      enum dma_data_direction direction,
4301 					      unsigned long dma_attrs)
4302 {
4303 	if (!ib_uses_virt_dma(dev))
4304 		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4305 }
4306 
4307 /**
4308  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4309  * @dev: The device for which the DMA addresses are to be created
4310  * @sg: The array of scatter/gather entries
4311  * @nents: The number of scatter/gather entries
4312  * @direction: The direction of the DMA
4313  */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4314 static inline int ib_dma_map_sg(struct ib_device *dev,
4315 				struct scatterlist *sg, int nents,
4316 				enum dma_data_direction direction)
4317 {
4318 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4319 }
4320 
4321 /**
4322  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4323  * @dev: The device for which the DMA addresses were created
4324  * @sg: The array of scatter/gather entries
4325  * @nents: The number of scatter/gather entries
4326  * @direction: The direction of the DMA
4327  */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4328 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4329 				   struct scatterlist *sg, int nents,
4330 				   enum dma_data_direction direction)
4331 {
4332 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4333 }
4334 
4335 /**
4336  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4337  * @dev: The device to query
4338  *
4339  * The returned value represents a size in bytes.
4340  */
ib_dma_max_seg_size(struct ib_device * dev)4341 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4342 {
4343 	if (ib_uses_virt_dma(dev))
4344 		return UINT_MAX;
4345 	return dma_get_max_seg_size(dev->dma_device);
4346 }
4347 
4348 /**
4349  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4350  * @dev: The device for which the DMA address was created
4351  * @addr: The DMA address
4352  * @size: The size of the region in bytes
4353  * @dir: The direction of the DMA
4354  */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4355 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4356 					      u64 addr,
4357 					      size_t size,
4358 					      enum dma_data_direction dir)
4359 {
4360 	if (!ib_uses_virt_dma(dev))
4361 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4362 }
4363 
4364 /**
4365  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4366  * @dev: The device for which the DMA address was created
4367  * @addr: The DMA address
4368  * @size: The size of the region in bytes
4369  * @dir: The direction of the DMA
4370  */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4371 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4372 						 u64 addr,
4373 						 size_t size,
4374 						 enum dma_data_direction dir)
4375 {
4376 	if (!ib_uses_virt_dma(dev))
4377 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4378 }
4379 
4380 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4381  * space. This function should be called when 'current' is the owning MM.
4382  */
4383 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4384 			     u64 virt_addr, int mr_access_flags);
4385 
4386 /* ib_advise_mr -  give an advice about an address range in a memory region */
4387 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4388 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4389 /**
4390  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4391  *   HCA translation table.
4392  * @mr: The memory region to deregister.
4393  * @udata: Valid user data or NULL for kernel object
4394  *
4395  * This function can fail, if the memory region has memory windows bound to it.
4396  */
4397 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4398 
4399 /**
4400  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4401  *   HCA translation table.
4402  * @mr: The memory region to deregister.
4403  *
4404  * This function can fail, if the memory region has memory windows bound to it.
4405  *
4406  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4407  */
ib_dereg_mr(struct ib_mr * mr)4408 static inline int ib_dereg_mr(struct ib_mr *mr)
4409 {
4410 	return ib_dereg_mr_user(mr, NULL);
4411 }
4412 
4413 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4414 			  u32 max_num_sg);
4415 
4416 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4417 				    u32 max_num_data_sg,
4418 				    u32 max_num_meta_sg);
4419 
4420 /**
4421  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4422  *   R_Key and L_Key.
4423  * @mr: struct ib_mr pointer to be updated.
4424  * @newkey: new key to be used.
4425  */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4426 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4427 {
4428 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4429 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4430 }
4431 
4432 /**
4433  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4434  * for calculating a new rkey for type 2 memory windows.
4435  * @rkey: the rkey to increment.
4436  */
ib_inc_rkey(u32 rkey)4437 static inline u32 ib_inc_rkey(u32 rkey)
4438 {
4439 	const u32 mask = 0x000000ff;
4440 	return ((rkey + 1) & mask) | (rkey & ~mask);
4441 }
4442 
4443 /**
4444  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4445  * @qp: QP to attach to the multicast group.  The QP must be type
4446  *   IB_QPT_UD.
4447  * @gid: Multicast group GID.
4448  * @lid: Multicast group LID in host byte order.
4449  *
4450  * In order to send and receive multicast packets, subnet
4451  * administration must have created the multicast group and configured
4452  * the fabric appropriately.  The port associated with the specified
4453  * QP must also be a member of the multicast group.
4454  */
4455 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4456 
4457 /**
4458  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4459  * @qp: QP to detach from the multicast group.
4460  * @gid: Multicast group GID.
4461  * @lid: Multicast group LID in host byte order.
4462  */
4463 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4464 
4465 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4466 				   struct inode *inode, struct ib_udata *udata);
4467 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4468 
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4469 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4470 				     unsigned int flags)
4471 {
4472 	u64 device_cap = ib_dev->attrs.device_cap_flags;
4473 
4474 	/*
4475 	 * Local write permission is required if remote write or
4476 	 * remote atomic permission is also requested.
4477 	 */
4478 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4479 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4480 		return -EINVAL;
4481 
4482 	if (flags & ~IB_ACCESS_SUPPORTED)
4483 		return -EINVAL;
4484 
4485 	if (flags & IB_ACCESS_ON_DEMAND &&
4486 	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4487 		return -EOPNOTSUPP;
4488 
4489 	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4490 	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4491 	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4492 	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4493 		return -EOPNOTSUPP;
4494 
4495 	return 0;
4496 }
4497 
ib_access_writable(int access_flags)4498 static inline bool ib_access_writable(int access_flags)
4499 {
4500 	/*
4501 	 * We have writable memory backing the MR if any of the following
4502 	 * access flags are set.  "Local write" and "remote write" obviously
4503 	 * require write access.  "Remote atomic" can do things like fetch and
4504 	 * add, which will modify memory, and "MW bind" can change permissions
4505 	 * by binding a window.
4506 	 */
4507 	return access_flags &
4508 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4509 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4510 }
4511 
4512 /**
4513  * ib_check_mr_status: lightweight check of MR status.
4514  *     This routine may provide status checks on a selected
4515  *     ib_mr. first use is for signature status check.
4516  *
4517  * @mr: A memory region.
4518  * @check_mask: Bitmask of which checks to perform from
4519  *     ib_mr_status_check enumeration.
4520  * @mr_status: The container of relevant status checks.
4521  *     failed checks will be indicated in the status bitmask
4522  *     and the relevant info shall be in the error item.
4523  */
4524 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4525 		       struct ib_mr_status *mr_status);
4526 
4527 /**
4528  * ib_device_try_get: Hold a registration lock
4529  * @dev: The device to lock
4530  *
4531  * A device under an active registration lock cannot become unregistered. It
4532  * is only possible to obtain a registration lock on a device that is fully
4533  * registered, otherwise this function returns false.
4534  *
4535  * The registration lock is only necessary for actions which require the
4536  * device to still be registered. Uses that only require the device pointer to
4537  * be valid should use get_device(&ibdev->dev) to hold the memory.
4538  *
4539  */
ib_device_try_get(struct ib_device * dev)4540 static inline bool ib_device_try_get(struct ib_device *dev)
4541 {
4542 	return refcount_inc_not_zero(&dev->refcount);
4543 }
4544 
4545 void ib_device_put(struct ib_device *device);
4546 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4547 					  enum rdma_driver_id driver_id);
4548 struct ib_device *ib_device_get_by_name(const char *name,
4549 					enum rdma_driver_id driver_id);
4550 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4551 					    u16 pkey, const union ib_gid *gid,
4552 					    const struct sockaddr *addr);
4553 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4554 			 unsigned int port);
4555 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4556 					u32 port);
4557 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4558 			 u32 *port);
4559 
ib_get_curr_port_state(struct net_device * net_dev)4560 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4561 {
4562 	return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4563 		IB_PORT_ACTIVE : IB_PORT_DOWN;
4564 }
4565 
4566 void ib_dispatch_port_state_event(struct ib_device *ibdev,
4567 				  struct net_device *ndev);
4568 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4569 			   struct ib_wq_init_attr *init_attr);
4570 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4571 
4572 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4573 		 unsigned int *sg_offset, unsigned int page_size);
4574 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4575 		    int data_sg_nents, unsigned int *data_sg_offset,
4576 		    struct scatterlist *meta_sg, int meta_sg_nents,
4577 		    unsigned int *meta_sg_offset, unsigned int page_size);
4578 
4579 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4580 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4581 		  unsigned int *sg_offset, unsigned int page_size)
4582 {
4583 	int n;
4584 
4585 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4586 	mr->iova = 0;
4587 
4588 	return n;
4589 }
4590 
4591 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4592 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4593 
4594 void ib_drain_rq(struct ib_qp *qp);
4595 void ib_drain_sq(struct ib_qp *qp);
4596 void ib_drain_qp(struct ib_qp *qp);
4597 
4598 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4599 		     u8 *width);
4600 
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4601 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4602 {
4603 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4604 		return attr->roce.dmac;
4605 	return NULL;
4606 }
4607 
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4608 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4609 {
4610 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4611 		attr->ib.dlid = (u16)dlid;
4612 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4613 		attr->opa.dlid = dlid;
4614 }
4615 
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4616 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4617 {
4618 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4619 		return attr->ib.dlid;
4620 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4621 		return attr->opa.dlid;
4622 	return 0;
4623 }
4624 
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4625 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4626 {
4627 	attr->sl = sl;
4628 }
4629 
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4630 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4631 {
4632 	return attr->sl;
4633 }
4634 
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4635 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4636 					 u8 src_path_bits)
4637 {
4638 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4639 		attr->ib.src_path_bits = src_path_bits;
4640 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4641 		attr->opa.src_path_bits = src_path_bits;
4642 }
4643 
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4644 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4645 {
4646 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4647 		return attr->ib.src_path_bits;
4648 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4649 		return attr->opa.src_path_bits;
4650 	return 0;
4651 }
4652 
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4653 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4654 					bool make_grd)
4655 {
4656 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4657 		attr->opa.make_grd = make_grd;
4658 }
4659 
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4660 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4661 {
4662 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4663 		return attr->opa.make_grd;
4664 	return false;
4665 }
4666 
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4667 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4668 {
4669 	attr->port_num = port_num;
4670 }
4671 
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4672 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4673 {
4674 	return attr->port_num;
4675 }
4676 
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4677 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4678 					   u8 static_rate)
4679 {
4680 	attr->static_rate = static_rate;
4681 }
4682 
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4683 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4684 {
4685 	return attr->static_rate;
4686 }
4687 
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4688 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4689 					enum ib_ah_flags flag)
4690 {
4691 	attr->ah_flags = flag;
4692 }
4693 
4694 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4695 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4696 {
4697 	return attr->ah_flags;
4698 }
4699 
4700 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4701 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4702 {
4703 	return &attr->grh;
4704 }
4705 
4706 /*To retrieve and modify the grh */
4707 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4708 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4709 {
4710 	return &attr->grh;
4711 }
4712 
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4713 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4714 {
4715 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4716 
4717 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4718 }
4719 
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4720 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4721 					     __be64 prefix)
4722 {
4723 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4724 
4725 	grh->dgid.global.subnet_prefix = prefix;
4726 }
4727 
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4728 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4729 					    __be64 if_id)
4730 {
4731 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4732 
4733 	grh->dgid.global.interface_id = if_id;
4734 }
4735 
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4736 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4737 				   union ib_gid *dgid, u32 flow_label,
4738 				   u8 sgid_index, u8 hop_limit,
4739 				   u8 traffic_class)
4740 {
4741 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4742 
4743 	attr->ah_flags = IB_AH_GRH;
4744 	if (dgid)
4745 		grh->dgid = *dgid;
4746 	grh->flow_label = flow_label;
4747 	grh->sgid_index = sgid_index;
4748 	grh->hop_limit = hop_limit;
4749 	grh->traffic_class = traffic_class;
4750 	grh->sgid_attr = NULL;
4751 }
4752 
4753 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4754 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4755 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4756 			     const struct ib_gid_attr *sgid_attr);
4757 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4758 		       const struct rdma_ah_attr *src);
4759 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4760 			  const struct rdma_ah_attr *new);
4761 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4762 
4763 /**
4764  * rdma_ah_find_type - Return address handle type.
4765  *
4766  * @dev: Device to be checked
4767  * @port_num: Port number
4768  */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4769 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4770 						       u32 port_num)
4771 {
4772 	if (rdma_protocol_roce(dev, port_num))
4773 		return RDMA_AH_ATTR_TYPE_ROCE;
4774 	if (rdma_protocol_ib(dev, port_num)) {
4775 		if (rdma_cap_opa_ah(dev, port_num))
4776 			return RDMA_AH_ATTR_TYPE_OPA;
4777 		return RDMA_AH_ATTR_TYPE_IB;
4778 	}
4779 	if (dev->type == RDMA_DEVICE_TYPE_SMI)
4780 		return RDMA_AH_ATTR_TYPE_IB;
4781 
4782 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4783 }
4784 
4785 /**
4786  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4787  *     In the current implementation the only way to
4788  *     get the 32bit lid is from other sources for OPA.
4789  *     For IB, lids will always be 16bits so cast the
4790  *     value accordingly.
4791  *
4792  * @lid: A 32bit LID
4793  */
ib_lid_cpu16(u32 lid)4794 static inline u16 ib_lid_cpu16(u32 lid)
4795 {
4796 	WARN_ON_ONCE(lid & 0xFFFF0000);
4797 	return (u16)lid;
4798 }
4799 
4800 /**
4801  * ib_lid_be16 - Return lid in 16bit BE encoding.
4802  *
4803  * @lid: A 32bit LID
4804  */
ib_lid_be16(u32 lid)4805 static inline __be16 ib_lid_be16(u32 lid)
4806 {
4807 	WARN_ON_ONCE(lid & 0xFFFF0000);
4808 	return cpu_to_be16((u16)lid);
4809 }
4810 
4811 /**
4812  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4813  *   vector
4814  * @device:         the rdma device
4815  * @comp_vector:    index of completion vector
4816  *
4817  * Returns NULL on failure, otherwise a corresponding cpu map of the
4818  * completion vector (returns all-cpus map if the device driver doesn't
4819  * implement get_vector_affinity).
4820  */
4821 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4822 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4823 {
4824 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4825 	    !device->ops.get_vector_affinity)
4826 		return NULL;
4827 
4828 	return device->ops.get_vector_affinity(device, comp_vector);
4829 
4830 }
4831 
4832 /**
4833  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4834  * and add their gids, as needed, to the relevant RoCE devices.
4835  *
4836  * @ibdev:         the rdma device
4837  */
4838 void rdma_roce_rescan_device(struct ib_device *ibdev);
4839 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4840 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4841 			      u32 port, struct net_device *ndev);
4842 
4843 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4844 
4845 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4846 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4847 bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs);
4848 #else
uverbs_destroy_def_handler(struct uverbs_attr_bundle * attrs)4849 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4850 {
4851 	return 0;
4852 }
4853 static inline bool
rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle * attrs)4854 rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs)
4855 {
4856 	return false;
4857 }
4858 #endif
4859 
4860 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4861 				     enum rdma_netdev_t type, const char *name,
4862 				     unsigned char name_assign_type,
4863 				     void (*setup)(struct net_device *));
4864 
4865 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4866 		     enum rdma_netdev_t type, const char *name,
4867 		     unsigned char name_assign_type,
4868 		     void (*setup)(struct net_device *),
4869 		     struct net_device *netdev);
4870 
4871 /**
4872  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4873  *
4874  * @device:	device pointer for which ib_device pointer to retrieve
4875  *
4876  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4877  *
4878  */
rdma_device_to_ibdev(struct device * device)4879 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4880 {
4881 	struct ib_core_device *coredev =
4882 		container_of(device, struct ib_core_device, dev);
4883 
4884 	return coredev->owner;
4885 }
4886 
4887 /**
4888  * ibdev_to_node - return the NUMA node for a given ib_device
4889  * @ibdev:	device to get the NUMA node for.
4890  */
ibdev_to_node(struct ib_device * ibdev)4891 static inline int ibdev_to_node(struct ib_device *ibdev)
4892 {
4893 	struct device *parent = ibdev->dev.parent;
4894 
4895 	if (!parent)
4896 		return NUMA_NO_NODE;
4897 	return dev_to_node(parent);
4898 }
4899 
4900 /**
4901  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4902  *			       ib_device holder structure from device pointer.
4903  *
4904  * NOTE: New drivers should not make use of this API; This API is only for
4905  * existing drivers who have exposed sysfs entries using
4906  * ops->device_group.
4907  */
4908 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4909 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4910 
4911 bool rdma_dev_access_netns(const struct ib_device *device,
4912 			   const struct net *net);
4913 
4914 bool rdma_dev_has_raw_cap(const struct ib_device *dev);
rdma_dev_net(struct ib_device * device)4915 static inline struct net *rdma_dev_net(struct ib_device *device)
4916 {
4917 	return read_pnet(&device->coredev.rdma_net);
4918 }
4919 
4920 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4921 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4922 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4923 
4924 /**
4925  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4926  *                               on the flow_label
4927  * @fl: flow_label value
4928  *
4929  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4930  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4931  * convention.
4932  */
rdma_flow_label_to_udp_sport(u32 fl)4933 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4934 {
4935 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4936 
4937 	fl_low ^= fl_high >> 14;
4938 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4939 }
4940 
4941 /**
4942  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4943  *                        local and remote qpn values
4944  *
4945  * This function folded the multiplication results of two qpns, 24 bit each,
4946  * fields, and converts it to a 20 bit results.
4947  *
4948  * This function will create symmetric flow_label value based on the local
4949  * and remote qpn values. this will allow both the requester and responder
4950  * to calculate the same flow_label for a given connection.
4951  *
4952  * This helper function should be used by driver in case the upper layer
4953  * provide a zero flow_label value. This is to improve entropy of RDMA
4954  * traffic in the network.
4955  */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4956 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4957 {
4958 	u64 v = (u64)lqpn * rqpn;
4959 
4960 	v ^= v >> 20;
4961 	v ^= v >> 40;
4962 
4963 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4964 }
4965 
4966 /**
4967  * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4968  *                      label. If flow label is not defined in GRH then
4969  *                      calculate it based on lqpn/rqpn.
4970  *
4971  * @fl:                 flow label from GRH
4972  * @lqpn:               local qp number
4973  * @rqpn:               remote qp number
4974  */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4975 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4976 {
4977 	if (!fl)
4978 		fl = rdma_calc_flow_label(lqpn, rqpn);
4979 
4980 	return rdma_flow_label_to_udp_sport(fl);
4981 }
4982 
4983 const struct ib_port_immutable*
4984 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4985 
4986 /** ib_add_sub_device - Add a sub IB device on an existing one
4987  *
4988  * @parent: The IB device that needs to add a sub device
4989  * @type: The type of the new sub device
4990  * @name: The name of the new sub device
4991  *
4992  *
4993  * Return 0 on success, an error code otherwise
4994  */
4995 int ib_add_sub_device(struct ib_device *parent,
4996 		      enum rdma_nl_dev_type type,
4997 		      const char *name);
4998 
4999 
5000 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
5001  *
5002  * @sub: The sub device that is going to be deleted
5003  *
5004  * Return 0 on success, an error code otherwise
5005  */
5006 int ib_del_sub_device_and_put(struct ib_device *sub);
5007 
ib_mark_name_assigned_by_user(struct ib_device * ibdev)5008 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
5009 {
5010 	ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
5011 }
5012 
5013 #endif /* IB_VERBS_H */
5014