xref: /linux/mm/page_alloc.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 			       int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296 
297 int page_group_by_mobility_disabled __read_mostly;
298 
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301  * During boot we initialize deferred pages on-demand, as needed, but once
302  * page_alloc_init_late() has finished, the deferred pages are all initialized,
303  * and we can permanently disable that path.
304  */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306 
307 static inline bool deferred_pages_enabled(void)
308 {
309 	return static_branch_unlikely(&deferred_pages);
310 }
311 
312 /*
313  * deferred_grow_zone() is __init, but it is called from
314  * get_page_from_freelist() during early boot until deferred_pages permanently
315  * disables this call. This is why we have refdata wrapper to avoid warning,
316  * and to ensure that the function body gets unloaded.
317  */
318 static bool __ref
319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 	return deferred_grow_zone(zone, order);
322 }
323 #else
324 static inline bool deferred_pages_enabled(void)
325 {
326 	return false;
327 }
328 
329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 	return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334 
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 							unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 	return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 	return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345 
346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	pfn &= (PAGES_PER_SECTION-1);
350 #else
351 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355 
356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
357 {
358 	return pb_bit > PB_migrate_end && pb_bit < __NR_PAGEBLOCK_BITS;
359 }
360 
361 static __always_inline void
362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
363 			   unsigned long **bitmap_word, unsigned long *bitidx)
364 {
365 	unsigned long *bitmap;
366 	unsigned long word_bitidx;
367 
368 #ifdef CONFIG_MEMORY_ISOLATION
369 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
370 #else
371 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
372 #endif
373 	BUILD_BUG_ON(__MIGRATE_TYPE_END >= (1 << PB_migratetype_bits));
374 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
375 
376 	bitmap = get_pageblock_bitmap(page, pfn);
377 	*bitidx = pfn_to_bitidx(page, pfn);
378 	word_bitidx = *bitidx / BITS_PER_LONG;
379 	*bitidx &= (BITS_PER_LONG - 1);
380 	*bitmap_word = &bitmap[word_bitidx];
381 }
382 
383 
384 /**
385  * __get_pfnblock_flags_mask - Return the requested group of flags for
386  * a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @pfn: The target page frame number
389  * @mask: mask of bits that the caller is interested in
390  *
391  * Return: pageblock_bits flags
392  */
393 static unsigned long __get_pfnblock_flags_mask(const struct page *page,
394 					       unsigned long pfn,
395 					       unsigned long mask)
396 {
397 	unsigned long *bitmap_word;
398 	unsigned long bitidx;
399 	unsigned long word;
400 
401 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
402 	/*
403 	 * This races, without locks, with set_pfnblock_migratetype(). Ensure
404 	 * a consistent read of the memory array, so that results, even though
405 	 * racy, are not corrupted.
406 	 */
407 	word = READ_ONCE(*bitmap_word);
408 	return (word >> bitidx) & mask;
409 }
410 
411 /**
412  * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
413  * @page: The page within the block of interest
414  * @pfn: The target page frame number
415  * @pb_bit: pageblock bit to check
416  *
417  * Return: true if the bit is set, otherwise false
418  */
419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
420 		      enum pageblock_bits pb_bit)
421 {
422 	unsigned long *bitmap_word;
423 	unsigned long bitidx;
424 
425 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
426 		return false;
427 
428 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
429 
430 	return test_bit(bitidx + pb_bit, bitmap_word);
431 }
432 
433 /**
434  * get_pfnblock_migratetype - Return the migratetype of a pageblock
435  * @page: The page within the block of interest
436  * @pfn: The target page frame number
437  *
438  * Return: The migratetype of the pageblock
439  *
440  * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
441  * to save a call to page_to_pfn().
442  */
443 __always_inline enum migratetype
444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
445 {
446 	unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
447 	unsigned long flags;
448 
449 	flags = __get_pfnblock_flags_mask(page, pfn, mask);
450 
451 #ifdef CONFIG_MEMORY_ISOLATION
452 	if (flags & BIT(PB_migrate_isolate))
453 		return MIGRATE_ISOLATE;
454 #endif
455 	return flags & MIGRATETYPE_MASK;
456 }
457 
458 /**
459  * __set_pfnblock_flags_mask - Set the requested group of flags for
460  * a pageblock_nr_pages block of pages
461  * @page: The page within the block of interest
462  * @pfn: The target page frame number
463  * @flags: The flags to set
464  * @mask: mask of bits that the caller is interested in
465  */
466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
467 				      unsigned long flags, unsigned long mask)
468 {
469 	unsigned long *bitmap_word;
470 	unsigned long bitidx;
471 	unsigned long word;
472 
473 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
474 
475 	mask <<= bitidx;
476 	flags <<= bitidx;
477 
478 	word = READ_ONCE(*bitmap_word);
479 	do {
480 	} while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
481 }
482 
483 /**
484  * set_pfnblock_bit - Set a standalone bit of a pageblock
485  * @page: The page within the block of interest
486  * @pfn: The target page frame number
487  * @pb_bit: pageblock bit to set
488  */
489 void set_pfnblock_bit(const struct page *page, unsigned long pfn,
490 		      enum pageblock_bits pb_bit)
491 {
492 	unsigned long *bitmap_word;
493 	unsigned long bitidx;
494 
495 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
496 		return;
497 
498 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
499 
500 	set_bit(bitidx + pb_bit, bitmap_word);
501 }
502 
503 /**
504  * clear_pfnblock_bit - Clear a standalone bit of a pageblock
505  * @page: The page within the block of interest
506  * @pfn: The target page frame number
507  * @pb_bit: pageblock bit to clear
508  */
509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
510 			enum pageblock_bits pb_bit)
511 {
512 	unsigned long *bitmap_word;
513 	unsigned long bitidx;
514 
515 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
516 		return;
517 
518 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
519 
520 	clear_bit(bitidx + pb_bit, bitmap_word);
521 }
522 
523 /**
524  * set_pageblock_migratetype - Set the migratetype of a pageblock
525  * @page: The page within the block of interest
526  * @migratetype: migratetype to set
527  */
528 static void set_pageblock_migratetype(struct page *page,
529 				      enum migratetype migratetype)
530 {
531 	if (unlikely(page_group_by_mobility_disabled &&
532 		     migratetype < MIGRATE_PCPTYPES))
533 		migratetype = MIGRATE_UNMOVABLE;
534 
535 #ifdef CONFIG_MEMORY_ISOLATION
536 	if (migratetype == MIGRATE_ISOLATE) {
537 		VM_WARN_ONCE(1,
538 			"Use set_pageblock_isolate() for pageblock isolation");
539 		return;
540 	}
541 	VM_WARN_ONCE(get_pfnblock_bit(page, page_to_pfn(page),
542 				      PB_migrate_isolate),
543 		     "Use clear_pageblock_isolate() to unisolate pageblock");
544 	/* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
545 #endif
546 	__set_pfnblock_flags_mask(page, page_to_pfn(page),
547 				  (unsigned long)migratetype,
548 				  MIGRATETYPE_AND_ISO_MASK);
549 }
550 
551 void __meminit init_pageblock_migratetype(struct page *page,
552 					  enum migratetype migratetype,
553 					  bool isolate)
554 {
555 	unsigned long flags;
556 
557 	if (unlikely(page_group_by_mobility_disabled &&
558 		     migratetype < MIGRATE_PCPTYPES))
559 		migratetype = MIGRATE_UNMOVABLE;
560 
561 	flags = migratetype;
562 
563 #ifdef CONFIG_MEMORY_ISOLATION
564 	if (migratetype == MIGRATE_ISOLATE) {
565 		VM_WARN_ONCE(
566 			1,
567 			"Set isolate=true to isolate pageblock with a migratetype");
568 		return;
569 	}
570 	if (isolate)
571 		flags |= BIT(PB_migrate_isolate);
572 #endif
573 	__set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
574 				  MIGRATETYPE_AND_ISO_MASK);
575 }
576 
577 #ifdef CONFIG_DEBUG_VM
578 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
579 {
580 	int ret;
581 	unsigned seq;
582 	unsigned long pfn = page_to_pfn(page);
583 	unsigned long sp, start_pfn;
584 
585 	do {
586 		seq = zone_span_seqbegin(zone);
587 		start_pfn = zone->zone_start_pfn;
588 		sp = zone->spanned_pages;
589 		ret = !zone_spans_pfn(zone, pfn);
590 	} while (zone_span_seqretry(zone, seq));
591 
592 	if (ret)
593 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
594 			pfn, zone_to_nid(zone), zone->name,
595 			start_pfn, start_pfn + sp);
596 
597 	return ret;
598 }
599 
600 /*
601  * Temporary debugging check for pages not lying within a given zone.
602  */
603 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
604 {
605 	if (page_outside_zone_boundaries(zone, page))
606 		return true;
607 	if (zone != page_zone(page))
608 		return true;
609 
610 	return false;
611 }
612 #else
613 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
614 {
615 	return false;
616 }
617 #endif
618 
619 static void bad_page(struct page *page, const char *reason)
620 {
621 	static unsigned long resume;
622 	static unsigned long nr_shown;
623 	static unsigned long nr_unshown;
624 
625 	/*
626 	 * Allow a burst of 60 reports, then keep quiet for that minute;
627 	 * or allow a steady drip of one report per second.
628 	 */
629 	if (nr_shown == 60) {
630 		if (time_before(jiffies, resume)) {
631 			nr_unshown++;
632 			goto out;
633 		}
634 		if (nr_unshown) {
635 			pr_alert(
636 			      "BUG: Bad page state: %lu messages suppressed\n",
637 				nr_unshown);
638 			nr_unshown = 0;
639 		}
640 		nr_shown = 0;
641 	}
642 	if (nr_shown++ == 0)
643 		resume = jiffies + 60 * HZ;
644 
645 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
646 		current->comm, page_to_pfn(page));
647 	dump_page(page, reason);
648 
649 	print_modules();
650 	dump_stack();
651 out:
652 	/* Leave bad fields for debug, except PageBuddy could make trouble */
653 	if (PageBuddy(page))
654 		__ClearPageBuddy(page);
655 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
656 }
657 
658 static inline unsigned int order_to_pindex(int migratetype, int order)
659 {
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 	bool movable;
663 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
664 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
665 
666 		movable = migratetype == MIGRATE_MOVABLE;
667 
668 		return NR_LOWORDER_PCP_LISTS + movable;
669 	}
670 #else
671 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672 #endif
673 
674 	return (MIGRATE_PCPTYPES * order) + migratetype;
675 }
676 
677 static inline int pindex_to_order(unsigned int pindex)
678 {
679 	int order = pindex / MIGRATE_PCPTYPES;
680 
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 	if (pindex >= NR_LOWORDER_PCP_LISTS)
683 		order = HPAGE_PMD_ORDER;
684 #else
685 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687 
688 	return order;
689 }
690 
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 		return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 	if (order == HPAGE_PMD_ORDER)
697 		return true;
698 #endif
699 	return false;
700 }
701 
702 /*
703  * Higher-order pages are called "compound pages".  They are structured thusly:
704  *
705  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
706  *
707  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
708  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
709  *
710  * The first tail page's ->compound_order holds the order of allocation.
711  * This usage means that zero-order pages may not be compound.
712  */
713 
714 void prep_compound_page(struct page *page, unsigned int order)
715 {
716 	int i;
717 	int nr_pages = 1 << order;
718 
719 	__SetPageHead(page);
720 	for (i = 1; i < nr_pages; i++)
721 		prep_compound_tail(page, i);
722 
723 	prep_compound_head(page, order);
724 }
725 
726 static inline void set_buddy_order(struct page *page, unsigned int order)
727 {
728 	set_page_private(page, order);
729 	__SetPageBuddy(page);
730 }
731 
732 #ifdef CONFIG_COMPACTION
733 static inline struct capture_control *task_capc(struct zone *zone)
734 {
735 	struct capture_control *capc = current->capture_control;
736 
737 	return unlikely(capc) &&
738 		!(current->flags & PF_KTHREAD) &&
739 		!capc->page &&
740 		capc->cc->zone == zone ? capc : NULL;
741 }
742 
743 static inline bool
744 compaction_capture(struct capture_control *capc, struct page *page,
745 		   int order, int migratetype)
746 {
747 	if (!capc || order != capc->cc->order)
748 		return false;
749 
750 	/* Do not accidentally pollute CMA or isolated regions*/
751 	if (is_migrate_cma(migratetype) ||
752 	    is_migrate_isolate(migratetype))
753 		return false;
754 
755 	/*
756 	 * Do not let lower order allocations pollute a movable pageblock
757 	 * unless compaction is also requesting movable pages.
758 	 * This might let an unmovable request use a reclaimable pageblock
759 	 * and vice-versa but no more than normal fallback logic which can
760 	 * have trouble finding a high-order free page.
761 	 */
762 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
763 	    capc->cc->migratetype != MIGRATE_MOVABLE)
764 		return false;
765 
766 	if (migratetype != capc->cc->migratetype)
767 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
768 					    capc->cc->migratetype, migratetype);
769 
770 	capc->page = page;
771 	return true;
772 }
773 
774 #else
775 static inline struct capture_control *task_capc(struct zone *zone)
776 {
777 	return NULL;
778 }
779 
780 static inline bool
781 compaction_capture(struct capture_control *capc, struct page *page,
782 		   int order, int migratetype)
783 {
784 	return false;
785 }
786 #endif /* CONFIG_COMPACTION */
787 
788 static inline void account_freepages(struct zone *zone, int nr_pages,
789 				     int migratetype)
790 {
791 	lockdep_assert_held(&zone->lock);
792 
793 	if (is_migrate_isolate(migratetype))
794 		return;
795 
796 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
797 
798 	if (is_migrate_cma(migratetype))
799 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
800 	else if (is_migrate_highatomic(migratetype))
801 		WRITE_ONCE(zone->nr_free_highatomic,
802 			   zone->nr_free_highatomic + nr_pages);
803 }
804 
805 /* Used for pages not on another list */
806 static inline void __add_to_free_list(struct page *page, struct zone *zone,
807 				      unsigned int order, int migratetype,
808 				      bool tail)
809 {
810 	struct free_area *area = &zone->free_area[order];
811 	int nr_pages = 1 << order;
812 
813 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
814 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
815 		     get_pageblock_migratetype(page), migratetype, nr_pages);
816 
817 	if (tail)
818 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
819 	else
820 		list_add(&page->buddy_list, &area->free_list[migratetype]);
821 	area->nr_free++;
822 
823 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
824 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
825 }
826 
827 /*
828  * Used for pages which are on another list. Move the pages to the tail
829  * of the list - so the moved pages won't immediately be considered for
830  * allocation again (e.g., optimization for memory onlining).
831  */
832 static inline void move_to_free_list(struct page *page, struct zone *zone,
833 				     unsigned int order, int old_mt, int new_mt)
834 {
835 	struct free_area *area = &zone->free_area[order];
836 	int nr_pages = 1 << order;
837 
838 	/* Free page moving can fail, so it happens before the type update */
839 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
840 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
841 		     get_pageblock_migratetype(page), old_mt, nr_pages);
842 
843 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
844 
845 	account_freepages(zone, -nr_pages, old_mt);
846 	account_freepages(zone, nr_pages, new_mt);
847 
848 	if (order >= pageblock_order &&
849 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
850 		if (!is_migrate_isolate(old_mt))
851 			nr_pages = -nr_pages;
852 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
853 	}
854 }
855 
856 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
857 					     unsigned int order, int migratetype)
858 {
859 	int nr_pages = 1 << order;
860 
861         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
862 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
863 		     get_pageblock_migratetype(page), migratetype, nr_pages);
864 
865 	/* clear reported state and update reported page count */
866 	if (page_reported(page))
867 		__ClearPageReported(page);
868 
869 	list_del(&page->buddy_list);
870 	__ClearPageBuddy(page);
871 	set_page_private(page, 0);
872 	zone->free_area[order].nr_free--;
873 
874 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
875 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
876 }
877 
878 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
879 					   unsigned int order, int migratetype)
880 {
881 	__del_page_from_free_list(page, zone, order, migratetype);
882 	account_freepages(zone, -(1 << order), migratetype);
883 }
884 
885 static inline struct page *get_page_from_free_area(struct free_area *area,
886 					    int migratetype)
887 {
888 	return list_first_entry_or_null(&area->free_list[migratetype],
889 					struct page, buddy_list);
890 }
891 
892 /*
893  * If this is less than the 2nd largest possible page, check if the buddy
894  * of the next-higher order is free. If it is, it's possible
895  * that pages are being freed that will coalesce soon. In case,
896  * that is happening, add the free page to the tail of the list
897  * so it's less likely to be used soon and more likely to be merged
898  * as a 2-level higher order page
899  */
900 static inline bool
901 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
902 		   struct page *page, unsigned int order)
903 {
904 	unsigned long higher_page_pfn;
905 	struct page *higher_page;
906 
907 	if (order >= MAX_PAGE_ORDER - 1)
908 		return false;
909 
910 	higher_page_pfn = buddy_pfn & pfn;
911 	higher_page = page + (higher_page_pfn - pfn);
912 
913 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
914 			NULL) != NULL;
915 }
916 
917 /*
918  * Freeing function for a buddy system allocator.
919  *
920  * The concept of a buddy system is to maintain direct-mapped table
921  * (containing bit values) for memory blocks of various "orders".
922  * The bottom level table contains the map for the smallest allocatable
923  * units of memory (here, pages), and each level above it describes
924  * pairs of units from the levels below, hence, "buddies".
925  * At a high level, all that happens here is marking the table entry
926  * at the bottom level available, and propagating the changes upward
927  * as necessary, plus some accounting needed to play nicely with other
928  * parts of the VM system.
929  * At each level, we keep a list of pages, which are heads of continuous
930  * free pages of length of (1 << order) and marked with PageBuddy.
931  * Page's order is recorded in page_private(page) field.
932  * So when we are allocating or freeing one, we can derive the state of the
933  * other.  That is, if we allocate a small block, and both were
934  * free, the remainder of the region must be split into blocks.
935  * If a block is freed, and its buddy is also free, then this
936  * triggers coalescing into a block of larger size.
937  *
938  * -- nyc
939  */
940 
941 static inline void __free_one_page(struct page *page,
942 		unsigned long pfn,
943 		struct zone *zone, unsigned int order,
944 		int migratetype, fpi_t fpi_flags)
945 {
946 	struct capture_control *capc = task_capc(zone);
947 	unsigned long buddy_pfn = 0;
948 	unsigned long combined_pfn;
949 	struct page *buddy;
950 	bool to_tail;
951 
952 	VM_BUG_ON(!zone_is_initialized(zone));
953 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
954 
955 	VM_BUG_ON(migratetype == -1);
956 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
957 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
958 
959 	account_freepages(zone, 1 << order, migratetype);
960 
961 	while (order < MAX_PAGE_ORDER) {
962 		int buddy_mt = migratetype;
963 
964 		if (compaction_capture(capc, page, order, migratetype)) {
965 			account_freepages(zone, -(1 << order), migratetype);
966 			return;
967 		}
968 
969 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
970 		if (!buddy)
971 			goto done_merging;
972 
973 		if (unlikely(order >= pageblock_order)) {
974 			/*
975 			 * We want to prevent merge between freepages on pageblock
976 			 * without fallbacks and normal pageblock. Without this,
977 			 * pageblock isolation could cause incorrect freepage or CMA
978 			 * accounting or HIGHATOMIC accounting.
979 			 */
980 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
981 
982 			if (migratetype != buddy_mt &&
983 			    (!migratetype_is_mergeable(migratetype) ||
984 			     !migratetype_is_mergeable(buddy_mt)))
985 				goto done_merging;
986 		}
987 
988 		/*
989 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
990 		 * merge with it and move up one order.
991 		 */
992 		if (page_is_guard(buddy))
993 			clear_page_guard(zone, buddy, order);
994 		else
995 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
996 
997 		if (unlikely(buddy_mt != migratetype)) {
998 			/*
999 			 * Match buddy type. This ensures that an
1000 			 * expand() down the line puts the sub-blocks
1001 			 * on the right freelists.
1002 			 */
1003 			set_pageblock_migratetype(buddy, migratetype);
1004 		}
1005 
1006 		combined_pfn = buddy_pfn & pfn;
1007 		page = page + (combined_pfn - pfn);
1008 		pfn = combined_pfn;
1009 		order++;
1010 	}
1011 
1012 done_merging:
1013 	set_buddy_order(page, order);
1014 
1015 	if (fpi_flags & FPI_TO_TAIL)
1016 		to_tail = true;
1017 	else if (is_shuffle_order(order))
1018 		to_tail = shuffle_pick_tail();
1019 	else
1020 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1021 
1022 	__add_to_free_list(page, zone, order, migratetype, to_tail);
1023 
1024 	/* Notify page reporting subsystem of freed page */
1025 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1026 		page_reporting_notify_free(order);
1027 }
1028 
1029 /*
1030  * A bad page could be due to a number of fields. Instead of multiple branches,
1031  * try and check multiple fields with one check. The caller must do a detailed
1032  * check if necessary.
1033  */
1034 static inline bool page_expected_state(struct page *page,
1035 					unsigned long check_flags)
1036 {
1037 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1038 		return false;
1039 
1040 	if (unlikely((unsigned long)page->mapping |
1041 			page_ref_count(page) |
1042 #ifdef CONFIG_MEMCG
1043 			page->memcg_data |
1044 #endif
1045 			page_pool_page_is_pp(page) |
1046 			(page->flags & check_flags)))
1047 		return false;
1048 
1049 	return true;
1050 }
1051 
1052 static const char *page_bad_reason(struct page *page, unsigned long flags)
1053 {
1054 	const char *bad_reason = NULL;
1055 
1056 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1057 		bad_reason = "nonzero mapcount";
1058 	if (unlikely(page->mapping != NULL))
1059 		bad_reason = "non-NULL mapping";
1060 	if (unlikely(page_ref_count(page) != 0))
1061 		bad_reason = "nonzero _refcount";
1062 	if (unlikely(page->flags & flags)) {
1063 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1064 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1065 		else
1066 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1067 	}
1068 #ifdef CONFIG_MEMCG
1069 	if (unlikely(page->memcg_data))
1070 		bad_reason = "page still charged to cgroup";
1071 #endif
1072 	if (unlikely(page_pool_page_is_pp(page)))
1073 		bad_reason = "page_pool leak";
1074 	return bad_reason;
1075 }
1076 
1077 static inline bool free_page_is_bad(struct page *page)
1078 {
1079 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1080 		return false;
1081 
1082 	/* Something has gone sideways, find it */
1083 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1084 	return true;
1085 }
1086 
1087 static inline bool is_check_pages_enabled(void)
1088 {
1089 	return static_branch_unlikely(&check_pages_enabled);
1090 }
1091 
1092 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1093 {
1094 	struct folio *folio = (struct folio *)head_page;
1095 	int ret = 1;
1096 
1097 	/*
1098 	 * We rely page->lru.next never has bit 0 set, unless the page
1099 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1100 	 */
1101 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1102 
1103 	if (!is_check_pages_enabled()) {
1104 		ret = 0;
1105 		goto out;
1106 	}
1107 	switch (page - head_page) {
1108 	case 1:
1109 		/* the first tail page: these may be in place of ->mapping */
1110 		if (unlikely(folio_large_mapcount(folio))) {
1111 			bad_page(page, "nonzero large_mapcount");
1112 			goto out;
1113 		}
1114 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
1115 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1116 			bad_page(page, "nonzero nr_pages_mapped");
1117 			goto out;
1118 		}
1119 		if (IS_ENABLED(CONFIG_MM_ID)) {
1120 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
1121 				bad_page(page, "nonzero mm mapcount 0");
1122 				goto out;
1123 			}
1124 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
1125 				bad_page(page, "nonzero mm mapcount 1");
1126 				goto out;
1127 			}
1128 		}
1129 		if (IS_ENABLED(CONFIG_64BIT)) {
1130 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1131 				bad_page(page, "nonzero entire_mapcount");
1132 				goto out;
1133 			}
1134 			if (unlikely(atomic_read(&folio->_pincount))) {
1135 				bad_page(page, "nonzero pincount");
1136 				goto out;
1137 			}
1138 		}
1139 		break;
1140 	case 2:
1141 		/* the second tail page: deferred_list overlaps ->mapping */
1142 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1143 			bad_page(page, "on deferred list");
1144 			goto out;
1145 		}
1146 		if (!IS_ENABLED(CONFIG_64BIT)) {
1147 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1148 				bad_page(page, "nonzero entire_mapcount");
1149 				goto out;
1150 			}
1151 			if (unlikely(atomic_read(&folio->_pincount))) {
1152 				bad_page(page, "nonzero pincount");
1153 				goto out;
1154 			}
1155 		}
1156 		break;
1157 	case 3:
1158 		/* the third tail page: hugetlb specifics overlap ->mappings */
1159 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1160 			break;
1161 		fallthrough;
1162 	default:
1163 		if (page->mapping != TAIL_MAPPING) {
1164 			bad_page(page, "corrupted mapping in tail page");
1165 			goto out;
1166 		}
1167 		break;
1168 	}
1169 	if (unlikely(!PageTail(page))) {
1170 		bad_page(page, "PageTail not set");
1171 		goto out;
1172 	}
1173 	if (unlikely(compound_head(page) != head_page)) {
1174 		bad_page(page, "compound_head not consistent");
1175 		goto out;
1176 	}
1177 	ret = 0;
1178 out:
1179 	page->mapping = NULL;
1180 	clear_compound_head(page);
1181 	return ret;
1182 }
1183 
1184 /*
1185  * Skip KASAN memory poisoning when either:
1186  *
1187  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1188  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1189  *    using page tags instead (see below).
1190  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1191  *    that error detection is disabled for accesses via the page address.
1192  *
1193  * Pages will have match-all tags in the following circumstances:
1194  *
1195  * 1. Pages are being initialized for the first time, including during deferred
1196  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1197  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1198  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1199  * 3. The allocation was excluded from being checked due to sampling,
1200  *    see the call to kasan_unpoison_pages.
1201  *
1202  * Poisoning pages during deferred memory init will greatly lengthen the
1203  * process and cause problem in large memory systems as the deferred pages
1204  * initialization is done with interrupt disabled.
1205  *
1206  * Assuming that there will be no reference to those newly initialized
1207  * pages before they are ever allocated, this should have no effect on
1208  * KASAN memory tracking as the poison will be properly inserted at page
1209  * allocation time. The only corner case is when pages are allocated by
1210  * on-demand allocation and then freed again before the deferred pages
1211  * initialization is done, but this is not likely to happen.
1212  */
1213 static inline bool should_skip_kasan_poison(struct page *page)
1214 {
1215 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1216 		return deferred_pages_enabled();
1217 
1218 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1219 }
1220 
1221 static void kernel_init_pages(struct page *page, int numpages)
1222 {
1223 	int i;
1224 
1225 	/* s390's use of memset() could override KASAN redzones. */
1226 	kasan_disable_current();
1227 	for (i = 0; i < numpages; i++)
1228 		clear_highpage_kasan_tagged(page + i);
1229 	kasan_enable_current();
1230 }
1231 
1232 #ifdef CONFIG_MEM_ALLOC_PROFILING
1233 
1234 /* Should be called only if mem_alloc_profiling_enabled() */
1235 void __clear_page_tag_ref(struct page *page)
1236 {
1237 	union pgtag_ref_handle handle;
1238 	union codetag_ref ref;
1239 
1240 	if (get_page_tag_ref(page, &ref, &handle)) {
1241 		set_codetag_empty(&ref);
1242 		update_page_tag_ref(handle, &ref);
1243 		put_page_tag_ref(handle);
1244 	}
1245 }
1246 
1247 /* Should be called only if mem_alloc_profiling_enabled() */
1248 static noinline
1249 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1250 		       unsigned int nr)
1251 {
1252 	union pgtag_ref_handle handle;
1253 	union codetag_ref ref;
1254 
1255 	if (get_page_tag_ref(page, &ref, &handle)) {
1256 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1257 		update_page_tag_ref(handle, &ref);
1258 		put_page_tag_ref(handle);
1259 	}
1260 }
1261 
1262 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1263 				   unsigned int nr)
1264 {
1265 	if (mem_alloc_profiling_enabled())
1266 		__pgalloc_tag_add(page, task, nr);
1267 }
1268 
1269 /* Should be called only if mem_alloc_profiling_enabled() */
1270 static noinline
1271 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1272 {
1273 	union pgtag_ref_handle handle;
1274 	union codetag_ref ref;
1275 
1276 	if (get_page_tag_ref(page, &ref, &handle)) {
1277 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1278 		update_page_tag_ref(handle, &ref);
1279 		put_page_tag_ref(handle);
1280 	}
1281 }
1282 
1283 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1284 {
1285 	if (mem_alloc_profiling_enabled())
1286 		__pgalloc_tag_sub(page, nr);
1287 }
1288 
1289 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1290 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1291 {
1292 	if (tag)
1293 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1294 }
1295 
1296 #else /* CONFIG_MEM_ALLOC_PROFILING */
1297 
1298 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1299 				   unsigned int nr) {}
1300 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1301 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1302 
1303 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1304 
1305 __always_inline bool free_pages_prepare(struct page *page,
1306 			unsigned int order)
1307 {
1308 	int bad = 0;
1309 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1310 	bool init = want_init_on_free();
1311 	bool compound = PageCompound(page);
1312 	struct folio *folio = page_folio(page);
1313 
1314 	VM_BUG_ON_PAGE(PageTail(page), page);
1315 
1316 	trace_mm_page_free(page, order);
1317 	kmsan_free_page(page, order);
1318 
1319 	if (memcg_kmem_online() && PageMemcgKmem(page))
1320 		__memcg_kmem_uncharge_page(page, order);
1321 
1322 	/*
1323 	 * In rare cases, when truncation or holepunching raced with
1324 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1325 	 * found set here.  This does not indicate a problem, unless
1326 	 * "unevictable_pgs_cleared" appears worryingly large.
1327 	 */
1328 	if (unlikely(folio_test_mlocked(folio))) {
1329 		long nr_pages = folio_nr_pages(folio);
1330 
1331 		__folio_clear_mlocked(folio);
1332 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1333 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1334 	}
1335 
1336 	if (unlikely(PageHWPoison(page)) && !order) {
1337 		/* Do not let hwpoison pages hit pcplists/buddy */
1338 		reset_page_owner(page, order);
1339 		page_table_check_free(page, order);
1340 		pgalloc_tag_sub(page, 1 << order);
1341 
1342 		/*
1343 		 * The page is isolated and accounted for.
1344 		 * Mark the codetag as empty to avoid accounting error
1345 		 * when the page is freed by unpoison_memory().
1346 		 */
1347 		clear_page_tag_ref(page);
1348 		return false;
1349 	}
1350 
1351 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1352 
1353 	/*
1354 	 * Check tail pages before head page information is cleared to
1355 	 * avoid checking PageCompound for order-0 pages.
1356 	 */
1357 	if (unlikely(order)) {
1358 		int i;
1359 
1360 		if (compound) {
1361 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1362 #ifdef NR_PAGES_IN_LARGE_FOLIO
1363 			folio->_nr_pages = 0;
1364 #endif
1365 		}
1366 		for (i = 1; i < (1 << order); i++) {
1367 			if (compound)
1368 				bad += free_tail_page_prepare(page, page + i);
1369 			if (is_check_pages_enabled()) {
1370 				if (free_page_is_bad(page + i)) {
1371 					bad++;
1372 					continue;
1373 				}
1374 			}
1375 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1376 		}
1377 	}
1378 	if (folio_test_anon(folio)) {
1379 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1380 		folio->mapping = NULL;
1381 	}
1382 	if (unlikely(page_has_type(page)))
1383 		/* Reset the page_type (which overlays _mapcount) */
1384 		page->page_type = UINT_MAX;
1385 
1386 	if (is_check_pages_enabled()) {
1387 		if (free_page_is_bad(page))
1388 			bad++;
1389 		if (bad)
1390 			return false;
1391 	}
1392 
1393 	page_cpupid_reset_last(page);
1394 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1395 	reset_page_owner(page, order);
1396 	page_table_check_free(page, order);
1397 	pgalloc_tag_sub(page, 1 << order);
1398 
1399 	if (!PageHighMem(page)) {
1400 		debug_check_no_locks_freed(page_address(page),
1401 					   PAGE_SIZE << order);
1402 		debug_check_no_obj_freed(page_address(page),
1403 					   PAGE_SIZE << order);
1404 	}
1405 
1406 	kernel_poison_pages(page, 1 << order);
1407 
1408 	/*
1409 	 * As memory initialization might be integrated into KASAN,
1410 	 * KASAN poisoning and memory initialization code must be
1411 	 * kept together to avoid discrepancies in behavior.
1412 	 *
1413 	 * With hardware tag-based KASAN, memory tags must be set before the
1414 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1415 	 */
1416 	if (!skip_kasan_poison) {
1417 		kasan_poison_pages(page, order, init);
1418 
1419 		/* Memory is already initialized if KASAN did it internally. */
1420 		if (kasan_has_integrated_init())
1421 			init = false;
1422 	}
1423 	if (init)
1424 		kernel_init_pages(page, 1 << order);
1425 
1426 	/*
1427 	 * arch_free_page() can make the page's contents inaccessible.  s390
1428 	 * does this.  So nothing which can access the page's contents should
1429 	 * happen after this.
1430 	 */
1431 	arch_free_page(page, order);
1432 
1433 	debug_pagealloc_unmap_pages(page, 1 << order);
1434 
1435 	return true;
1436 }
1437 
1438 /*
1439  * Frees a number of pages from the PCP lists
1440  * Assumes all pages on list are in same zone.
1441  * count is the number of pages to free.
1442  */
1443 static void free_pcppages_bulk(struct zone *zone, int count,
1444 					struct per_cpu_pages *pcp,
1445 					int pindex)
1446 {
1447 	unsigned long flags;
1448 	unsigned int order;
1449 	struct page *page;
1450 
1451 	/*
1452 	 * Ensure proper count is passed which otherwise would stuck in the
1453 	 * below while (list_empty(list)) loop.
1454 	 */
1455 	count = min(pcp->count, count);
1456 
1457 	/* Ensure requested pindex is drained first. */
1458 	pindex = pindex - 1;
1459 
1460 	spin_lock_irqsave(&zone->lock, flags);
1461 
1462 	while (count > 0) {
1463 		struct list_head *list;
1464 		int nr_pages;
1465 
1466 		/* Remove pages from lists in a round-robin fashion. */
1467 		do {
1468 			if (++pindex > NR_PCP_LISTS - 1)
1469 				pindex = 0;
1470 			list = &pcp->lists[pindex];
1471 		} while (list_empty(list));
1472 
1473 		order = pindex_to_order(pindex);
1474 		nr_pages = 1 << order;
1475 		do {
1476 			unsigned long pfn;
1477 			int mt;
1478 
1479 			page = list_last_entry(list, struct page, pcp_list);
1480 			pfn = page_to_pfn(page);
1481 			mt = get_pfnblock_migratetype(page, pfn);
1482 
1483 			/* must delete to avoid corrupting pcp list */
1484 			list_del(&page->pcp_list);
1485 			count -= nr_pages;
1486 			pcp->count -= nr_pages;
1487 
1488 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1489 			trace_mm_page_pcpu_drain(page, order, mt);
1490 		} while (count > 0 && !list_empty(list));
1491 	}
1492 
1493 	spin_unlock_irqrestore(&zone->lock, flags);
1494 }
1495 
1496 /* Split a multi-block free page into its individual pageblocks. */
1497 static void split_large_buddy(struct zone *zone, struct page *page,
1498 			      unsigned long pfn, int order, fpi_t fpi)
1499 {
1500 	unsigned long end = pfn + (1 << order);
1501 
1502 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1503 	/* Caller removed page from freelist, buddy info cleared! */
1504 	VM_WARN_ON_ONCE(PageBuddy(page));
1505 
1506 	if (order > pageblock_order)
1507 		order = pageblock_order;
1508 
1509 	do {
1510 		int mt = get_pfnblock_migratetype(page, pfn);
1511 
1512 		__free_one_page(page, pfn, zone, order, mt, fpi);
1513 		pfn += 1 << order;
1514 		if (pfn == end)
1515 			break;
1516 		page = pfn_to_page(pfn);
1517 	} while (1);
1518 }
1519 
1520 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1521 				   unsigned int order)
1522 {
1523 	/* Remember the order */
1524 	page->order = order;
1525 	/* Add the page to the free list */
1526 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1527 }
1528 
1529 static void free_one_page(struct zone *zone, struct page *page,
1530 			  unsigned long pfn, unsigned int order,
1531 			  fpi_t fpi_flags)
1532 {
1533 	struct llist_head *llhead;
1534 	unsigned long flags;
1535 
1536 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1537 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1538 			add_page_to_zone_llist(zone, page, order);
1539 			return;
1540 		}
1541 	} else {
1542 		spin_lock_irqsave(&zone->lock, flags);
1543 	}
1544 
1545 	/* The lock succeeded. Process deferred pages. */
1546 	llhead = &zone->trylock_free_pages;
1547 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1548 		struct llist_node *llnode;
1549 		struct page *p, *tmp;
1550 
1551 		llnode = llist_del_all(llhead);
1552 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1553 			unsigned int p_order = p->order;
1554 
1555 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1556 			__count_vm_events(PGFREE, 1 << p_order);
1557 		}
1558 	}
1559 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1560 	spin_unlock_irqrestore(&zone->lock, flags);
1561 
1562 	__count_vm_events(PGFREE, 1 << order);
1563 }
1564 
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 			    fpi_t fpi_flags)
1567 {
1568 	unsigned long pfn = page_to_pfn(page);
1569 	struct zone *zone = page_zone(page);
1570 
1571 	if (free_pages_prepare(page, order))
1572 		free_one_page(zone, page, pfn, order, fpi_flags);
1573 }
1574 
1575 void __meminit __free_pages_core(struct page *page, unsigned int order,
1576 		enum meminit_context context)
1577 {
1578 	unsigned int nr_pages = 1 << order;
1579 	struct page *p = page;
1580 	unsigned int loop;
1581 
1582 	/*
1583 	 * When initializing the memmap, __init_single_page() sets the refcount
1584 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1585 	 * refcount of all involved pages to 0.
1586 	 *
1587 	 * Note that hotplugged memory pages are initialized to PageOffline().
1588 	 * Pages freed from memblock might be marked as reserved.
1589 	 */
1590 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1591 	    unlikely(context == MEMINIT_HOTPLUG)) {
1592 		for (loop = 0; loop < nr_pages; loop++, p++) {
1593 			VM_WARN_ON_ONCE(PageReserved(p));
1594 			__ClearPageOffline(p);
1595 			set_page_count(p, 0);
1596 		}
1597 
1598 		adjust_managed_page_count(page, nr_pages);
1599 	} else {
1600 		for (loop = 0; loop < nr_pages; loop++, p++) {
1601 			__ClearPageReserved(p);
1602 			set_page_count(p, 0);
1603 		}
1604 
1605 		/* memblock adjusts totalram_pages() manually. */
1606 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1607 	}
1608 
1609 	if (page_contains_unaccepted(page, order)) {
1610 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1611 			return;
1612 
1613 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1614 	}
1615 
1616 	/*
1617 	 * Bypass PCP and place fresh pages right to the tail, primarily
1618 	 * relevant for memory onlining.
1619 	 */
1620 	__free_pages_ok(page, order, FPI_TO_TAIL);
1621 }
1622 
1623 /*
1624  * Check that the whole (or subset of) a pageblock given by the interval of
1625  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1626  * with the migration of free compaction scanner.
1627  *
1628  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1629  *
1630  * It's possible on some configurations to have a setup like node0 node1 node0
1631  * i.e. it's possible that all pages within a zones range of pages do not
1632  * belong to a single zone. We assume that a border between node0 and node1
1633  * can occur within a single pageblock, but not a node0 node1 node0
1634  * interleaving within a single pageblock. It is therefore sufficient to check
1635  * the first and last page of a pageblock and avoid checking each individual
1636  * page in a pageblock.
1637  *
1638  * Note: the function may return non-NULL struct page even for a page block
1639  * which contains a memory hole (i.e. there is no physical memory for a subset
1640  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1641  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1642  * even though the start pfn is online and valid. This should be safe most of
1643  * the time because struct pages are still initialized via init_unavailable_range()
1644  * and pfn walkers shouldn't touch any physical memory range for which they do
1645  * not recognize any specific metadata in struct pages.
1646  */
1647 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1648 				     unsigned long end_pfn, struct zone *zone)
1649 {
1650 	struct page *start_page;
1651 	struct page *end_page;
1652 
1653 	/* end_pfn is one past the range we are checking */
1654 	end_pfn--;
1655 
1656 	if (!pfn_valid(end_pfn))
1657 		return NULL;
1658 
1659 	start_page = pfn_to_online_page(start_pfn);
1660 	if (!start_page)
1661 		return NULL;
1662 
1663 	if (page_zone(start_page) != zone)
1664 		return NULL;
1665 
1666 	end_page = pfn_to_page(end_pfn);
1667 
1668 	/* This gives a shorter code than deriving page_zone(end_page) */
1669 	if (page_zone_id(start_page) != page_zone_id(end_page))
1670 		return NULL;
1671 
1672 	return start_page;
1673 }
1674 
1675 /*
1676  * The order of subdivision here is critical for the IO subsystem.
1677  * Please do not alter this order without good reasons and regression
1678  * testing. Specifically, as large blocks of memory are subdivided,
1679  * the order in which smaller blocks are delivered depends on the order
1680  * they're subdivided in this function. This is the primary factor
1681  * influencing the order in which pages are delivered to the IO
1682  * subsystem according to empirical testing, and this is also justified
1683  * by considering the behavior of a buddy system containing a single
1684  * large block of memory acted on by a series of small allocations.
1685  * This behavior is a critical factor in sglist merging's success.
1686  *
1687  * -- nyc
1688  */
1689 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1690 				  int high, int migratetype)
1691 {
1692 	unsigned int size = 1 << high;
1693 	unsigned int nr_added = 0;
1694 
1695 	while (high > low) {
1696 		high--;
1697 		size >>= 1;
1698 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1699 
1700 		/*
1701 		 * Mark as guard pages (or page), that will allow to
1702 		 * merge back to allocator when buddy will be freed.
1703 		 * Corresponding page table entries will not be touched,
1704 		 * pages will stay not present in virtual address space
1705 		 */
1706 		if (set_page_guard(zone, &page[size], high))
1707 			continue;
1708 
1709 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1710 		set_buddy_order(&page[size], high);
1711 		nr_added += size;
1712 	}
1713 
1714 	return nr_added;
1715 }
1716 
1717 static __always_inline void page_del_and_expand(struct zone *zone,
1718 						struct page *page, int low,
1719 						int high, int migratetype)
1720 {
1721 	int nr_pages = 1 << high;
1722 
1723 	__del_page_from_free_list(page, zone, high, migratetype);
1724 	nr_pages -= expand(zone, page, low, high, migratetype);
1725 	account_freepages(zone, -nr_pages, migratetype);
1726 }
1727 
1728 static void check_new_page_bad(struct page *page)
1729 {
1730 	if (unlikely(PageHWPoison(page))) {
1731 		/* Don't complain about hwpoisoned pages */
1732 		if (PageBuddy(page))
1733 			__ClearPageBuddy(page);
1734 		return;
1735 	}
1736 
1737 	bad_page(page,
1738 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1739 }
1740 
1741 /*
1742  * This page is about to be returned from the page allocator
1743  */
1744 static bool check_new_page(struct page *page)
1745 {
1746 	if (likely(page_expected_state(page,
1747 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1748 		return false;
1749 
1750 	check_new_page_bad(page);
1751 	return true;
1752 }
1753 
1754 static inline bool check_new_pages(struct page *page, unsigned int order)
1755 {
1756 	if (is_check_pages_enabled()) {
1757 		for (int i = 0; i < (1 << order); i++) {
1758 			struct page *p = page + i;
1759 
1760 			if (check_new_page(p))
1761 				return true;
1762 		}
1763 	}
1764 
1765 	return false;
1766 }
1767 
1768 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1769 {
1770 	/* Don't skip if a software KASAN mode is enabled. */
1771 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1772 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1773 		return false;
1774 
1775 	/* Skip, if hardware tag-based KASAN is not enabled. */
1776 	if (!kasan_hw_tags_enabled())
1777 		return true;
1778 
1779 	/*
1780 	 * With hardware tag-based KASAN enabled, skip if this has been
1781 	 * requested via __GFP_SKIP_KASAN.
1782 	 */
1783 	return flags & __GFP_SKIP_KASAN;
1784 }
1785 
1786 static inline bool should_skip_init(gfp_t flags)
1787 {
1788 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1789 	if (!kasan_hw_tags_enabled())
1790 		return false;
1791 
1792 	/* For hardware tag-based KASAN, skip if requested. */
1793 	return (flags & __GFP_SKIP_ZERO);
1794 }
1795 
1796 inline void post_alloc_hook(struct page *page, unsigned int order,
1797 				gfp_t gfp_flags)
1798 {
1799 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1800 			!should_skip_init(gfp_flags);
1801 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1802 	int i;
1803 
1804 	set_page_private(page, 0);
1805 
1806 	arch_alloc_page(page, order);
1807 	debug_pagealloc_map_pages(page, 1 << order);
1808 
1809 	/*
1810 	 * Page unpoisoning must happen before memory initialization.
1811 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1812 	 * allocations and the page unpoisoning code will complain.
1813 	 */
1814 	kernel_unpoison_pages(page, 1 << order);
1815 
1816 	/*
1817 	 * As memory initialization might be integrated into KASAN,
1818 	 * KASAN unpoisoning and memory initializion code must be
1819 	 * kept together to avoid discrepancies in behavior.
1820 	 */
1821 
1822 	/*
1823 	 * If memory tags should be zeroed
1824 	 * (which happens only when memory should be initialized as well).
1825 	 */
1826 	if (zero_tags) {
1827 		/* Initialize both memory and memory tags. */
1828 		for (i = 0; i != 1 << order; ++i)
1829 			tag_clear_highpage(page + i);
1830 
1831 		/* Take note that memory was initialized by the loop above. */
1832 		init = false;
1833 	}
1834 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1835 	    kasan_unpoison_pages(page, order, init)) {
1836 		/* Take note that memory was initialized by KASAN. */
1837 		if (kasan_has_integrated_init())
1838 			init = false;
1839 	} else {
1840 		/*
1841 		 * If memory tags have not been set by KASAN, reset the page
1842 		 * tags to ensure page_address() dereferencing does not fault.
1843 		 */
1844 		for (i = 0; i != 1 << order; ++i)
1845 			page_kasan_tag_reset(page + i);
1846 	}
1847 	/* If memory is still not initialized, initialize it now. */
1848 	if (init)
1849 		kernel_init_pages(page, 1 << order);
1850 
1851 	set_page_owner(page, order, gfp_flags);
1852 	page_table_check_alloc(page, order);
1853 	pgalloc_tag_add(page, current, 1 << order);
1854 }
1855 
1856 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1857 							unsigned int alloc_flags)
1858 {
1859 	post_alloc_hook(page, order, gfp_flags);
1860 
1861 	if (order && (gfp_flags & __GFP_COMP))
1862 		prep_compound_page(page, order);
1863 
1864 	/*
1865 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1866 	 * allocate the page. The expectation is that the caller is taking
1867 	 * steps that will free more memory. The caller should avoid the page
1868 	 * being used for !PFMEMALLOC purposes.
1869 	 */
1870 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1871 		set_page_pfmemalloc(page);
1872 	else
1873 		clear_page_pfmemalloc(page);
1874 }
1875 
1876 /*
1877  * Go through the free lists for the given migratetype and remove
1878  * the smallest available page from the freelists
1879  */
1880 static __always_inline
1881 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1882 						int migratetype)
1883 {
1884 	unsigned int current_order;
1885 	struct free_area *area;
1886 	struct page *page;
1887 
1888 	/* Find a page of the appropriate size in the preferred list */
1889 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1890 		area = &(zone->free_area[current_order]);
1891 		page = get_page_from_free_area(area, migratetype);
1892 		if (!page)
1893 			continue;
1894 
1895 		page_del_and_expand(zone, page, order, current_order,
1896 				    migratetype);
1897 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1898 				pcp_allowed_order(order) &&
1899 				migratetype < MIGRATE_PCPTYPES);
1900 		return page;
1901 	}
1902 
1903 	return NULL;
1904 }
1905 
1906 
1907 /*
1908  * This array describes the order lists are fallen back to when
1909  * the free lists for the desirable migrate type are depleted
1910  *
1911  * The other migratetypes do not have fallbacks.
1912  */
1913 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1914 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1915 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1916 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1917 };
1918 
1919 #ifdef CONFIG_CMA
1920 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1921 					unsigned int order)
1922 {
1923 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1924 }
1925 #else
1926 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1927 					unsigned int order) { return NULL; }
1928 #endif
1929 
1930 /*
1931  * Move all free pages of a block to new type's freelist. Caller needs to
1932  * change the block type.
1933  */
1934 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1935 				  int old_mt, int new_mt)
1936 {
1937 	struct page *page;
1938 	unsigned long pfn, end_pfn;
1939 	unsigned int order;
1940 	int pages_moved = 0;
1941 
1942 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1943 	end_pfn = pageblock_end_pfn(start_pfn);
1944 
1945 	for (pfn = start_pfn; pfn < end_pfn;) {
1946 		page = pfn_to_page(pfn);
1947 		if (!PageBuddy(page)) {
1948 			pfn++;
1949 			continue;
1950 		}
1951 
1952 		/* Make sure we are not inadvertently changing nodes */
1953 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1954 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1955 
1956 		order = buddy_order(page);
1957 
1958 		move_to_free_list(page, zone, order, old_mt, new_mt);
1959 
1960 		pfn += 1 << order;
1961 		pages_moved += 1 << order;
1962 	}
1963 
1964 	return pages_moved;
1965 }
1966 
1967 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1968 				      unsigned long *start_pfn,
1969 				      int *num_free, int *num_movable)
1970 {
1971 	unsigned long pfn, start, end;
1972 
1973 	pfn = page_to_pfn(page);
1974 	start = pageblock_start_pfn(pfn);
1975 	end = pageblock_end_pfn(pfn);
1976 
1977 	/*
1978 	 * The caller only has the lock for @zone, don't touch ranges
1979 	 * that straddle into other zones. While we could move part of
1980 	 * the range that's inside the zone, this call is usually
1981 	 * accompanied by other operations such as migratetype updates
1982 	 * which also should be locked.
1983 	 */
1984 	if (!zone_spans_pfn(zone, start))
1985 		return false;
1986 	if (!zone_spans_pfn(zone, end - 1))
1987 		return false;
1988 
1989 	*start_pfn = start;
1990 
1991 	if (num_free) {
1992 		*num_free = 0;
1993 		*num_movable = 0;
1994 		for (pfn = start; pfn < end;) {
1995 			page = pfn_to_page(pfn);
1996 			if (PageBuddy(page)) {
1997 				int nr = 1 << buddy_order(page);
1998 
1999 				*num_free += nr;
2000 				pfn += nr;
2001 				continue;
2002 			}
2003 			/*
2004 			 * We assume that pages that could be isolated for
2005 			 * migration are movable. But we don't actually try
2006 			 * isolating, as that would be expensive.
2007 			 */
2008 			if (PageLRU(page) || page_has_movable_ops(page))
2009 				(*num_movable)++;
2010 			pfn++;
2011 		}
2012 	}
2013 
2014 	return true;
2015 }
2016 
2017 static int move_freepages_block(struct zone *zone, struct page *page,
2018 				int old_mt, int new_mt)
2019 {
2020 	unsigned long start_pfn;
2021 	int res;
2022 
2023 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2024 		return -1;
2025 
2026 	res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2027 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
2028 
2029 	return res;
2030 
2031 }
2032 
2033 #ifdef CONFIG_MEMORY_ISOLATION
2034 /* Look for a buddy that straddles start_pfn */
2035 static unsigned long find_large_buddy(unsigned long start_pfn)
2036 {
2037 	int order = 0;
2038 	struct page *page;
2039 	unsigned long pfn = start_pfn;
2040 
2041 	while (!PageBuddy(page = pfn_to_page(pfn))) {
2042 		/* Nothing found */
2043 		if (++order > MAX_PAGE_ORDER)
2044 			return start_pfn;
2045 		pfn &= ~0UL << order;
2046 	}
2047 
2048 	/*
2049 	 * Found a preceding buddy, but does it straddle?
2050 	 */
2051 	if (pfn + (1 << buddy_order(page)) > start_pfn)
2052 		return pfn;
2053 
2054 	/* Nothing found */
2055 	return start_pfn;
2056 }
2057 
2058 static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
2059 {
2060 	if (isolate)
2061 		set_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate);
2062 	else
2063 		clear_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate);
2064 }
2065 
2066 /**
2067  * __move_freepages_block_isolate - move free pages in block for page isolation
2068  * @zone: the zone
2069  * @page: the pageblock page
2070  * @isolate: to isolate the given pageblock or unisolate it
2071  *
2072  * This is similar to move_freepages_block(), but handles the special
2073  * case encountered in page isolation, where the block of interest
2074  * might be part of a larger buddy spanning multiple pageblocks.
2075  *
2076  * Unlike the regular page allocator path, which moves pages while
2077  * stealing buddies off the freelist, page isolation is interested in
2078  * arbitrary pfn ranges that may have overlapping buddies on both ends.
2079  *
2080  * This function handles that. Straddling buddies are split into
2081  * individual pageblocks. Only the block of interest is moved.
2082  *
2083  * Returns %true if pages could be moved, %false otherwise.
2084  */
2085 static bool __move_freepages_block_isolate(struct zone *zone,
2086 		struct page *page, bool isolate)
2087 {
2088 	unsigned long start_pfn, pfn;
2089 	int from_mt;
2090 	int to_mt;
2091 
2092 	if (isolate == get_pageblock_isolate(page)) {
2093 		VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
2094 			     isolate ? "Isolate" : "Unisolate");
2095 		return false;
2096 	}
2097 
2098 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2099 		return false;
2100 
2101 	/* No splits needed if buddies can't span multiple blocks */
2102 	if (pageblock_order == MAX_PAGE_ORDER)
2103 		goto move;
2104 
2105 	/* We're a tail block in a larger buddy */
2106 	pfn = find_large_buddy(start_pfn);
2107 	if (pfn != start_pfn) {
2108 		struct page *buddy = pfn_to_page(pfn);
2109 		int order = buddy_order(buddy);
2110 
2111 		del_page_from_free_list(buddy, zone, order,
2112 					get_pfnblock_migratetype(buddy, pfn));
2113 		toggle_pageblock_isolate(page, isolate);
2114 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
2115 		return true;
2116 	}
2117 
2118 	/* We're the starting block of a larger buddy */
2119 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
2120 		int order = buddy_order(page);
2121 
2122 		del_page_from_free_list(page, zone, order,
2123 					get_pfnblock_migratetype(page, pfn));
2124 		toggle_pageblock_isolate(page, isolate);
2125 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
2126 		return true;
2127 	}
2128 move:
2129 	/* Use MIGRATETYPE_MASK to get non-isolate migratetype */
2130 	if (isolate) {
2131 		from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2132 						    MIGRATETYPE_MASK);
2133 		to_mt = MIGRATE_ISOLATE;
2134 	} else {
2135 		from_mt = MIGRATE_ISOLATE;
2136 		to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2137 						  MIGRATETYPE_MASK);
2138 	}
2139 
2140 	__move_freepages_block(zone, start_pfn, from_mt, to_mt);
2141 	toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
2142 
2143 	return true;
2144 }
2145 
2146 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
2147 {
2148 	return __move_freepages_block_isolate(zone, page, true);
2149 }
2150 
2151 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
2152 {
2153 	return __move_freepages_block_isolate(zone, page, false);
2154 }
2155 
2156 #endif /* CONFIG_MEMORY_ISOLATION */
2157 
2158 static void change_pageblock_range(struct page *pageblock_page,
2159 					int start_order, int migratetype)
2160 {
2161 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2162 
2163 	while (nr_pageblocks--) {
2164 		set_pageblock_migratetype(pageblock_page, migratetype);
2165 		pageblock_page += pageblock_nr_pages;
2166 	}
2167 }
2168 
2169 static inline bool boost_watermark(struct zone *zone)
2170 {
2171 	unsigned long max_boost;
2172 
2173 	if (!watermark_boost_factor)
2174 		return false;
2175 	/*
2176 	 * Don't bother in zones that are unlikely to produce results.
2177 	 * On small machines, including kdump capture kernels running
2178 	 * in a small area, boosting the watermark can cause an out of
2179 	 * memory situation immediately.
2180 	 */
2181 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2182 		return false;
2183 
2184 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2185 			watermark_boost_factor, 10000);
2186 
2187 	/*
2188 	 * high watermark may be uninitialised if fragmentation occurs
2189 	 * very early in boot so do not boost. We do not fall
2190 	 * through and boost by pageblock_nr_pages as failing
2191 	 * allocations that early means that reclaim is not going
2192 	 * to help and it may even be impossible to reclaim the
2193 	 * boosted watermark resulting in a hang.
2194 	 */
2195 	if (!max_boost)
2196 		return false;
2197 
2198 	max_boost = max(pageblock_nr_pages, max_boost);
2199 
2200 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2201 		max_boost);
2202 
2203 	return true;
2204 }
2205 
2206 /*
2207  * When we are falling back to another migratetype during allocation, should we
2208  * try to claim an entire block to satisfy further allocations, instead of
2209  * polluting multiple pageblocks?
2210  */
2211 static bool should_try_claim_block(unsigned int order, int start_mt)
2212 {
2213 	/*
2214 	 * Leaving this order check is intended, although there is
2215 	 * relaxed order check in next check. The reason is that
2216 	 * we can actually claim the whole pageblock if this condition met,
2217 	 * but, below check doesn't guarantee it and that is just heuristic
2218 	 * so could be changed anytime.
2219 	 */
2220 	if (order >= pageblock_order)
2221 		return true;
2222 
2223 	/*
2224 	 * Above a certain threshold, always try to claim, as it's likely there
2225 	 * will be more free pages in the pageblock.
2226 	 */
2227 	if (order >= pageblock_order / 2)
2228 		return true;
2229 
2230 	/*
2231 	 * Unmovable/reclaimable allocations would cause permanent
2232 	 * fragmentations if they fell back to allocating from a movable block
2233 	 * (polluting it), so we try to claim the whole block regardless of the
2234 	 * allocation size. Later movable allocations can always steal from this
2235 	 * block, which is less problematic.
2236 	 */
2237 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2238 		return true;
2239 
2240 	if (page_group_by_mobility_disabled)
2241 		return true;
2242 
2243 	/*
2244 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2245 	 * small pages, we just need to temporarily steal unmovable or
2246 	 * reclaimable pages that are closest to the request size. After a
2247 	 * while, memory compaction may occur to form large contiguous pages,
2248 	 * and the next movable allocation may not need to steal.
2249 	 */
2250 	return false;
2251 }
2252 
2253 /*
2254  * Check whether there is a suitable fallback freepage with requested order.
2255  * If claimable is true, this function returns fallback_mt only if
2256  * we would do this whole-block claiming. This would help to reduce
2257  * fragmentation due to mixed migratetype pages in one pageblock.
2258  */
2259 int find_suitable_fallback(struct free_area *area, unsigned int order,
2260 			   int migratetype, bool claimable)
2261 {
2262 	int i;
2263 
2264 	if (claimable && !should_try_claim_block(order, migratetype))
2265 		return -2;
2266 
2267 	if (area->nr_free == 0)
2268 		return -1;
2269 
2270 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2271 		int fallback_mt = fallbacks[migratetype][i];
2272 
2273 		if (!free_area_empty(area, fallback_mt))
2274 			return fallback_mt;
2275 	}
2276 
2277 	return -1;
2278 }
2279 
2280 /*
2281  * This function implements actual block claiming behaviour. If order is large
2282  * enough, we can claim the whole pageblock for the requested migratetype. If
2283  * not, we check the pageblock for constituent pages; if at least half of the
2284  * pages are free or compatible, we can still claim the whole block, so pages
2285  * freed in the future will be put on the correct free list.
2286  */
2287 static struct page *
2288 try_to_claim_block(struct zone *zone, struct page *page,
2289 		   int current_order, int order, int start_type,
2290 		   int block_type, unsigned int alloc_flags)
2291 {
2292 	int free_pages, movable_pages, alike_pages;
2293 	unsigned long start_pfn;
2294 
2295 	/* Take ownership for orders >= pageblock_order */
2296 	if (current_order >= pageblock_order) {
2297 		unsigned int nr_added;
2298 
2299 		del_page_from_free_list(page, zone, current_order, block_type);
2300 		change_pageblock_range(page, current_order, start_type);
2301 		nr_added = expand(zone, page, order, current_order, start_type);
2302 		account_freepages(zone, nr_added, start_type);
2303 		return page;
2304 	}
2305 
2306 	/*
2307 	 * Boost watermarks to increase reclaim pressure to reduce the
2308 	 * likelihood of future fallbacks. Wake kswapd now as the node
2309 	 * may be balanced overall and kswapd will not wake naturally.
2310 	 */
2311 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2312 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2313 
2314 	/* moving whole block can fail due to zone boundary conditions */
2315 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2316 				       &movable_pages))
2317 		return NULL;
2318 
2319 	/*
2320 	 * Determine how many pages are compatible with our allocation.
2321 	 * For movable allocation, it's the number of movable pages which
2322 	 * we just obtained. For other types it's a bit more tricky.
2323 	 */
2324 	if (start_type == MIGRATE_MOVABLE) {
2325 		alike_pages = movable_pages;
2326 	} else {
2327 		/*
2328 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2329 		 * to MOVABLE pageblock, consider all non-movable pages as
2330 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2331 		 * vice versa, be conservative since we can't distinguish the
2332 		 * exact migratetype of non-movable pages.
2333 		 */
2334 		if (block_type == MIGRATE_MOVABLE)
2335 			alike_pages = pageblock_nr_pages
2336 						- (free_pages + movable_pages);
2337 		else
2338 			alike_pages = 0;
2339 	}
2340 	/*
2341 	 * If a sufficient number of pages in the block are either free or of
2342 	 * compatible migratability as our allocation, claim the whole block.
2343 	 */
2344 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2345 			page_group_by_mobility_disabled) {
2346 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2347 		set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
2348 		return __rmqueue_smallest(zone, order, start_type);
2349 	}
2350 
2351 	return NULL;
2352 }
2353 
2354 /*
2355  * Try to allocate from some fallback migratetype by claiming the entire block,
2356  * i.e. converting it to the allocation's start migratetype.
2357  *
2358  * The use of signed ints for order and current_order is a deliberate
2359  * deviation from the rest of this file, to make the for loop
2360  * condition simpler.
2361  */
2362 static __always_inline struct page *
2363 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2364 						unsigned int alloc_flags)
2365 {
2366 	struct free_area *area;
2367 	int current_order;
2368 	int min_order = order;
2369 	struct page *page;
2370 	int fallback_mt;
2371 
2372 	/*
2373 	 * Do not steal pages from freelists belonging to other pageblocks
2374 	 * i.e. orders < pageblock_order. If there are no local zones free,
2375 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2376 	 */
2377 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2378 		min_order = pageblock_order;
2379 
2380 	/*
2381 	 * Find the largest available free page in the other list. This roughly
2382 	 * approximates finding the pageblock with the most free pages, which
2383 	 * would be too costly to do exactly.
2384 	 */
2385 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2386 				--current_order) {
2387 		area = &(zone->free_area[current_order]);
2388 		fallback_mt = find_suitable_fallback(area, current_order,
2389 						     start_migratetype, true);
2390 
2391 		/* No block in that order */
2392 		if (fallback_mt == -1)
2393 			continue;
2394 
2395 		/* Advanced into orders too low to claim, abort */
2396 		if (fallback_mt == -2)
2397 			break;
2398 
2399 		page = get_page_from_free_area(area, fallback_mt);
2400 		page = try_to_claim_block(zone, page, current_order, order,
2401 					  start_migratetype, fallback_mt,
2402 					  alloc_flags);
2403 		if (page) {
2404 			trace_mm_page_alloc_extfrag(page, order, current_order,
2405 						    start_migratetype, fallback_mt);
2406 			return page;
2407 		}
2408 	}
2409 
2410 	return NULL;
2411 }
2412 
2413 /*
2414  * Try to steal a single page from some fallback migratetype. Leave the rest of
2415  * the block as its current migratetype, potentially causing fragmentation.
2416  */
2417 static __always_inline struct page *
2418 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2419 {
2420 	struct free_area *area;
2421 	int current_order;
2422 	struct page *page;
2423 	int fallback_mt;
2424 
2425 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2426 		area = &(zone->free_area[current_order]);
2427 		fallback_mt = find_suitable_fallback(area, current_order,
2428 						     start_migratetype, false);
2429 		if (fallback_mt == -1)
2430 			continue;
2431 
2432 		page = get_page_from_free_area(area, fallback_mt);
2433 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2434 		trace_mm_page_alloc_extfrag(page, order, current_order,
2435 					    start_migratetype, fallback_mt);
2436 		return page;
2437 	}
2438 
2439 	return NULL;
2440 }
2441 
2442 enum rmqueue_mode {
2443 	RMQUEUE_NORMAL,
2444 	RMQUEUE_CMA,
2445 	RMQUEUE_CLAIM,
2446 	RMQUEUE_STEAL,
2447 };
2448 
2449 /*
2450  * Do the hard work of removing an element from the buddy allocator.
2451  * Call me with the zone->lock already held.
2452  */
2453 static __always_inline struct page *
2454 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2455 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2456 {
2457 	struct page *page;
2458 
2459 	if (IS_ENABLED(CONFIG_CMA)) {
2460 		/*
2461 		 * Balance movable allocations between regular and CMA areas by
2462 		 * allocating from CMA when over half of the zone's free memory
2463 		 * is in the CMA area.
2464 		 */
2465 		if (alloc_flags & ALLOC_CMA &&
2466 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2467 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2468 			page = __rmqueue_cma_fallback(zone, order);
2469 			if (page)
2470 				return page;
2471 		}
2472 	}
2473 
2474 	/*
2475 	 * First try the freelists of the requested migratetype, then try
2476 	 * fallbacks modes with increasing levels of fragmentation risk.
2477 	 *
2478 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2479 	 * a loop with the zone->lock held, meaning the freelists are
2480 	 * not subject to any outside changes. Remember in *mode where
2481 	 * we found pay dirt, to save us the search on the next call.
2482 	 */
2483 	switch (*mode) {
2484 	case RMQUEUE_NORMAL:
2485 		page = __rmqueue_smallest(zone, order, migratetype);
2486 		if (page)
2487 			return page;
2488 		fallthrough;
2489 	case RMQUEUE_CMA:
2490 		if (alloc_flags & ALLOC_CMA) {
2491 			page = __rmqueue_cma_fallback(zone, order);
2492 			if (page) {
2493 				*mode = RMQUEUE_CMA;
2494 				return page;
2495 			}
2496 		}
2497 		fallthrough;
2498 	case RMQUEUE_CLAIM:
2499 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2500 		if (page) {
2501 			/* Replenished preferred freelist, back to normal mode. */
2502 			*mode = RMQUEUE_NORMAL;
2503 			return page;
2504 		}
2505 		fallthrough;
2506 	case RMQUEUE_STEAL:
2507 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2508 			page = __rmqueue_steal(zone, order, migratetype);
2509 			if (page) {
2510 				*mode = RMQUEUE_STEAL;
2511 				return page;
2512 			}
2513 		}
2514 	}
2515 	return NULL;
2516 }
2517 
2518 /*
2519  * Obtain a specified number of elements from the buddy allocator, all under
2520  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2521  * Returns the number of new pages which were placed at *list.
2522  */
2523 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2524 			unsigned long count, struct list_head *list,
2525 			int migratetype, unsigned int alloc_flags)
2526 {
2527 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2528 	unsigned long flags;
2529 	int i;
2530 
2531 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2532 		if (!spin_trylock_irqsave(&zone->lock, flags))
2533 			return 0;
2534 	} else {
2535 		spin_lock_irqsave(&zone->lock, flags);
2536 	}
2537 	for (i = 0; i < count; ++i) {
2538 		struct page *page = __rmqueue(zone, order, migratetype,
2539 					      alloc_flags, &rmqm);
2540 		if (unlikely(page == NULL))
2541 			break;
2542 
2543 		/*
2544 		 * Split buddy pages returned by expand() are received here in
2545 		 * physical page order. The page is added to the tail of
2546 		 * caller's list. From the callers perspective, the linked list
2547 		 * is ordered by page number under some conditions. This is
2548 		 * useful for IO devices that can forward direction from the
2549 		 * head, thus also in the physical page order. This is useful
2550 		 * for IO devices that can merge IO requests if the physical
2551 		 * pages are ordered properly.
2552 		 */
2553 		list_add_tail(&page->pcp_list, list);
2554 	}
2555 	spin_unlock_irqrestore(&zone->lock, flags);
2556 
2557 	return i;
2558 }
2559 
2560 /*
2561  * Called from the vmstat counter updater to decay the PCP high.
2562  * Return whether there are addition works to do.
2563  */
2564 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2565 {
2566 	int high_min, to_drain, batch;
2567 	int todo = 0;
2568 
2569 	high_min = READ_ONCE(pcp->high_min);
2570 	batch = READ_ONCE(pcp->batch);
2571 	/*
2572 	 * Decrease pcp->high periodically to try to free possible
2573 	 * idle PCP pages.  And, avoid to free too many pages to
2574 	 * control latency.  This caps pcp->high decrement too.
2575 	 */
2576 	if (pcp->high > high_min) {
2577 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2578 				 pcp->high - (pcp->high >> 3), high_min);
2579 		if (pcp->high > high_min)
2580 			todo++;
2581 	}
2582 
2583 	to_drain = pcp->count - pcp->high;
2584 	if (to_drain > 0) {
2585 		spin_lock(&pcp->lock);
2586 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2587 		spin_unlock(&pcp->lock);
2588 		todo++;
2589 	}
2590 
2591 	return todo;
2592 }
2593 
2594 #ifdef CONFIG_NUMA
2595 /*
2596  * Called from the vmstat counter updater to drain pagesets of this
2597  * currently executing processor on remote nodes after they have
2598  * expired.
2599  */
2600 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2601 {
2602 	int to_drain, batch;
2603 
2604 	batch = READ_ONCE(pcp->batch);
2605 	to_drain = min(pcp->count, batch);
2606 	if (to_drain > 0) {
2607 		spin_lock(&pcp->lock);
2608 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2609 		spin_unlock(&pcp->lock);
2610 	}
2611 }
2612 #endif
2613 
2614 /*
2615  * Drain pcplists of the indicated processor and zone.
2616  */
2617 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2618 {
2619 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2620 	int count;
2621 
2622 	do {
2623 		spin_lock(&pcp->lock);
2624 		count = pcp->count;
2625 		if (count) {
2626 			int to_drain = min(count,
2627 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2628 
2629 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2630 			count -= to_drain;
2631 		}
2632 		spin_unlock(&pcp->lock);
2633 	} while (count);
2634 }
2635 
2636 /*
2637  * Drain pcplists of all zones on the indicated processor.
2638  */
2639 static void drain_pages(unsigned int cpu)
2640 {
2641 	struct zone *zone;
2642 
2643 	for_each_populated_zone(zone) {
2644 		drain_pages_zone(cpu, zone);
2645 	}
2646 }
2647 
2648 /*
2649  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2650  */
2651 void drain_local_pages(struct zone *zone)
2652 {
2653 	int cpu = smp_processor_id();
2654 
2655 	if (zone)
2656 		drain_pages_zone(cpu, zone);
2657 	else
2658 		drain_pages(cpu);
2659 }
2660 
2661 /*
2662  * The implementation of drain_all_pages(), exposing an extra parameter to
2663  * drain on all cpus.
2664  *
2665  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2666  * not empty. The check for non-emptiness can however race with a free to
2667  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2668  * that need the guarantee that every CPU has drained can disable the
2669  * optimizing racy check.
2670  */
2671 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2672 {
2673 	int cpu;
2674 
2675 	/*
2676 	 * Allocate in the BSS so we won't require allocation in
2677 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2678 	 */
2679 	static cpumask_t cpus_with_pcps;
2680 
2681 	/*
2682 	 * Do not drain if one is already in progress unless it's specific to
2683 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2684 	 * the drain to be complete when the call returns.
2685 	 */
2686 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2687 		if (!zone)
2688 			return;
2689 		mutex_lock(&pcpu_drain_mutex);
2690 	}
2691 
2692 	/*
2693 	 * We don't care about racing with CPU hotplug event
2694 	 * as offline notification will cause the notified
2695 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2696 	 * disables preemption as part of its processing
2697 	 */
2698 	for_each_online_cpu(cpu) {
2699 		struct per_cpu_pages *pcp;
2700 		struct zone *z;
2701 		bool has_pcps = false;
2702 
2703 		if (force_all_cpus) {
2704 			/*
2705 			 * The pcp.count check is racy, some callers need a
2706 			 * guarantee that no cpu is missed.
2707 			 */
2708 			has_pcps = true;
2709 		} else if (zone) {
2710 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2711 			if (pcp->count)
2712 				has_pcps = true;
2713 		} else {
2714 			for_each_populated_zone(z) {
2715 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2716 				if (pcp->count) {
2717 					has_pcps = true;
2718 					break;
2719 				}
2720 			}
2721 		}
2722 
2723 		if (has_pcps)
2724 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2725 		else
2726 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2727 	}
2728 
2729 	for_each_cpu(cpu, &cpus_with_pcps) {
2730 		if (zone)
2731 			drain_pages_zone(cpu, zone);
2732 		else
2733 			drain_pages(cpu);
2734 	}
2735 
2736 	mutex_unlock(&pcpu_drain_mutex);
2737 }
2738 
2739 /*
2740  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2741  *
2742  * When zone parameter is non-NULL, spill just the single zone's pages.
2743  */
2744 void drain_all_pages(struct zone *zone)
2745 {
2746 	__drain_all_pages(zone, false);
2747 }
2748 
2749 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2750 {
2751 	int min_nr_free, max_nr_free;
2752 
2753 	/* Free as much as possible if batch freeing high-order pages. */
2754 	if (unlikely(free_high))
2755 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2756 
2757 	/* Check for PCP disabled or boot pageset */
2758 	if (unlikely(high < batch))
2759 		return 1;
2760 
2761 	/* Leave at least pcp->batch pages on the list */
2762 	min_nr_free = batch;
2763 	max_nr_free = high - batch;
2764 
2765 	/*
2766 	 * Increase the batch number to the number of the consecutive
2767 	 * freed pages to reduce zone lock contention.
2768 	 */
2769 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2770 
2771 	return batch;
2772 }
2773 
2774 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2775 		       int batch, bool free_high)
2776 {
2777 	int high, high_min, high_max;
2778 
2779 	high_min = READ_ONCE(pcp->high_min);
2780 	high_max = READ_ONCE(pcp->high_max);
2781 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2782 
2783 	if (unlikely(!high))
2784 		return 0;
2785 
2786 	if (unlikely(free_high)) {
2787 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2788 				high_min);
2789 		return 0;
2790 	}
2791 
2792 	/*
2793 	 * If reclaim is active, limit the number of pages that can be
2794 	 * stored on pcp lists
2795 	 */
2796 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2797 		int free_count = max_t(int, pcp->free_count, batch);
2798 
2799 		pcp->high = max(high - free_count, high_min);
2800 		return min(batch << 2, pcp->high);
2801 	}
2802 
2803 	if (high_min == high_max)
2804 		return high;
2805 
2806 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2807 		int free_count = max_t(int, pcp->free_count, batch);
2808 
2809 		pcp->high = max(high - free_count, high_min);
2810 		high = max(pcp->count, high_min);
2811 	} else if (pcp->count >= high) {
2812 		int need_high = pcp->free_count + batch;
2813 
2814 		/* pcp->high should be large enough to hold batch freed pages */
2815 		if (pcp->high < need_high)
2816 			pcp->high = clamp(need_high, high_min, high_max);
2817 	}
2818 
2819 	return high;
2820 }
2821 
2822 static void free_frozen_page_commit(struct zone *zone,
2823 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2824 		unsigned int order, fpi_t fpi_flags)
2825 {
2826 	int high, batch;
2827 	int pindex;
2828 	bool free_high = false;
2829 
2830 	/*
2831 	 * On freeing, reduce the number of pages that are batch allocated.
2832 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2833 	 * allocations.
2834 	 */
2835 	pcp->alloc_factor >>= 1;
2836 	__count_vm_events(PGFREE, 1 << order);
2837 	pindex = order_to_pindex(migratetype, order);
2838 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2839 	pcp->count += 1 << order;
2840 
2841 	batch = READ_ONCE(pcp->batch);
2842 	/*
2843 	 * As high-order pages other than THP's stored on PCP can contribute
2844 	 * to fragmentation, limit the number stored when PCP is heavily
2845 	 * freeing without allocation. The remainder after bulk freeing
2846 	 * stops will be drained from vmstat refresh context.
2847 	 */
2848 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2849 		free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2850 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2851 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2852 			      pcp->count >= batch));
2853 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2854 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2855 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2856 	}
2857 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2858 		pcp->free_count += (1 << order);
2859 
2860 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2861 		/*
2862 		 * Do not attempt to take a zone lock. Let pcp->count get
2863 		 * over high mark temporarily.
2864 		 */
2865 		return;
2866 	}
2867 	high = nr_pcp_high(pcp, zone, batch, free_high);
2868 	if (pcp->count >= high) {
2869 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2870 				   pcp, pindex);
2871 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2872 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2873 				      ZONE_MOVABLE, 0))
2874 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2875 	}
2876 }
2877 
2878 /*
2879  * Free a pcp page
2880  */
2881 static void __free_frozen_pages(struct page *page, unsigned int order,
2882 				fpi_t fpi_flags)
2883 {
2884 	unsigned long __maybe_unused UP_flags;
2885 	struct per_cpu_pages *pcp;
2886 	struct zone *zone;
2887 	unsigned long pfn = page_to_pfn(page);
2888 	int migratetype;
2889 
2890 	if (!pcp_allowed_order(order)) {
2891 		__free_pages_ok(page, order, fpi_flags);
2892 		return;
2893 	}
2894 
2895 	if (!free_pages_prepare(page, order))
2896 		return;
2897 
2898 	/*
2899 	 * We only track unmovable, reclaimable and movable on pcp lists.
2900 	 * Place ISOLATE pages on the isolated list because they are being
2901 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2902 	 * get those areas back if necessary. Otherwise, we may have to free
2903 	 * excessively into the page allocator
2904 	 */
2905 	zone = page_zone(page);
2906 	migratetype = get_pfnblock_migratetype(page, pfn);
2907 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2908 		if (unlikely(is_migrate_isolate(migratetype))) {
2909 			free_one_page(zone, page, pfn, order, fpi_flags);
2910 			return;
2911 		}
2912 		migratetype = MIGRATE_MOVABLE;
2913 	}
2914 
2915 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2916 		     && (in_nmi() || in_hardirq()))) {
2917 		add_page_to_zone_llist(zone, page, order);
2918 		return;
2919 	}
2920 	pcp_trylock_prepare(UP_flags);
2921 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2922 	if (pcp) {
2923 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2924 		pcp_spin_unlock(pcp);
2925 	} else {
2926 		free_one_page(zone, page, pfn, order, fpi_flags);
2927 	}
2928 	pcp_trylock_finish(UP_flags);
2929 }
2930 
2931 void free_frozen_pages(struct page *page, unsigned int order)
2932 {
2933 	__free_frozen_pages(page, order, FPI_NONE);
2934 }
2935 
2936 /*
2937  * Free a batch of folios
2938  */
2939 void free_unref_folios(struct folio_batch *folios)
2940 {
2941 	unsigned long __maybe_unused UP_flags;
2942 	struct per_cpu_pages *pcp = NULL;
2943 	struct zone *locked_zone = NULL;
2944 	int i, j;
2945 
2946 	/* Prepare folios for freeing */
2947 	for (i = 0, j = 0; i < folios->nr; i++) {
2948 		struct folio *folio = folios->folios[i];
2949 		unsigned long pfn = folio_pfn(folio);
2950 		unsigned int order = folio_order(folio);
2951 
2952 		if (!free_pages_prepare(&folio->page, order))
2953 			continue;
2954 		/*
2955 		 * Free orders not handled on the PCP directly to the
2956 		 * allocator.
2957 		 */
2958 		if (!pcp_allowed_order(order)) {
2959 			free_one_page(folio_zone(folio), &folio->page,
2960 				      pfn, order, FPI_NONE);
2961 			continue;
2962 		}
2963 		folio->private = (void *)(unsigned long)order;
2964 		if (j != i)
2965 			folios->folios[j] = folio;
2966 		j++;
2967 	}
2968 	folios->nr = j;
2969 
2970 	for (i = 0; i < folios->nr; i++) {
2971 		struct folio *folio = folios->folios[i];
2972 		struct zone *zone = folio_zone(folio);
2973 		unsigned long pfn = folio_pfn(folio);
2974 		unsigned int order = (unsigned long)folio->private;
2975 		int migratetype;
2976 
2977 		folio->private = NULL;
2978 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2979 
2980 		/* Different zone requires a different pcp lock */
2981 		if (zone != locked_zone ||
2982 		    is_migrate_isolate(migratetype)) {
2983 			if (pcp) {
2984 				pcp_spin_unlock(pcp);
2985 				pcp_trylock_finish(UP_flags);
2986 				locked_zone = NULL;
2987 				pcp = NULL;
2988 			}
2989 
2990 			/*
2991 			 * Free isolated pages directly to the
2992 			 * allocator, see comment in free_frozen_pages.
2993 			 */
2994 			if (is_migrate_isolate(migratetype)) {
2995 				free_one_page(zone, &folio->page, pfn,
2996 					      order, FPI_NONE);
2997 				continue;
2998 			}
2999 
3000 			/*
3001 			 * trylock is necessary as folios may be getting freed
3002 			 * from IRQ or SoftIRQ context after an IO completion.
3003 			 */
3004 			pcp_trylock_prepare(UP_flags);
3005 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3006 			if (unlikely(!pcp)) {
3007 				pcp_trylock_finish(UP_flags);
3008 				free_one_page(zone, &folio->page, pfn,
3009 					      order, FPI_NONE);
3010 				continue;
3011 			}
3012 			locked_zone = zone;
3013 		}
3014 
3015 		/*
3016 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3017 		 * to the MIGRATE_MOVABLE pcp list.
3018 		 */
3019 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3020 			migratetype = MIGRATE_MOVABLE;
3021 
3022 		trace_mm_page_free_batched(&folio->page);
3023 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
3024 					order, FPI_NONE);
3025 	}
3026 
3027 	if (pcp) {
3028 		pcp_spin_unlock(pcp);
3029 		pcp_trylock_finish(UP_flags);
3030 	}
3031 	folio_batch_reinit(folios);
3032 }
3033 
3034 /*
3035  * split_page takes a non-compound higher-order page, and splits it into
3036  * n (1<<order) sub-pages: page[0..n]
3037  * Each sub-page must be freed individually.
3038  *
3039  * Note: this is probably too low level an operation for use in drivers.
3040  * Please consult with lkml before using this in your driver.
3041  */
3042 void split_page(struct page *page, unsigned int order)
3043 {
3044 	int i;
3045 
3046 	VM_BUG_ON_PAGE(PageCompound(page), page);
3047 	VM_BUG_ON_PAGE(!page_count(page), page);
3048 
3049 	for (i = 1; i < (1 << order); i++)
3050 		set_page_refcounted(page + i);
3051 	split_page_owner(page, order, 0);
3052 	pgalloc_tag_split(page_folio(page), order, 0);
3053 	split_page_memcg(page, order);
3054 }
3055 EXPORT_SYMBOL_GPL(split_page);
3056 
3057 int __isolate_free_page(struct page *page, unsigned int order)
3058 {
3059 	struct zone *zone = page_zone(page);
3060 	int mt = get_pageblock_migratetype(page);
3061 
3062 	if (!is_migrate_isolate(mt)) {
3063 		unsigned long watermark;
3064 		/*
3065 		 * Obey watermarks as if the page was being allocated. We can
3066 		 * emulate a high-order watermark check with a raised order-0
3067 		 * watermark, because we already know our high-order page
3068 		 * exists.
3069 		 */
3070 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3071 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3072 			return 0;
3073 	}
3074 
3075 	del_page_from_free_list(page, zone, order, mt);
3076 
3077 	/*
3078 	 * Set the pageblock if the isolated page is at least half of a
3079 	 * pageblock
3080 	 */
3081 	if (order >= pageblock_order - 1) {
3082 		struct page *endpage = page + (1 << order) - 1;
3083 		for (; page < endpage; page += pageblock_nr_pages) {
3084 			int mt = get_pageblock_migratetype(page);
3085 			/*
3086 			 * Only change normal pageblocks (i.e., they can merge
3087 			 * with others)
3088 			 */
3089 			if (migratetype_is_mergeable(mt))
3090 				move_freepages_block(zone, page, mt,
3091 						     MIGRATE_MOVABLE);
3092 		}
3093 	}
3094 
3095 	return 1UL << order;
3096 }
3097 
3098 /**
3099  * __putback_isolated_page - Return a now-isolated page back where we got it
3100  * @page: Page that was isolated
3101  * @order: Order of the isolated page
3102  * @mt: The page's pageblock's migratetype
3103  *
3104  * This function is meant to return a page pulled from the free lists via
3105  * __isolate_free_page back to the free lists they were pulled from.
3106  */
3107 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3108 {
3109 	struct zone *zone = page_zone(page);
3110 
3111 	/* zone lock should be held when this function is called */
3112 	lockdep_assert_held(&zone->lock);
3113 
3114 	/* Return isolated page to tail of freelist. */
3115 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3116 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3117 }
3118 
3119 /*
3120  * Update NUMA hit/miss statistics
3121  */
3122 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3123 				   long nr_account)
3124 {
3125 #ifdef CONFIG_NUMA
3126 	enum numa_stat_item local_stat = NUMA_LOCAL;
3127 
3128 	/* skip numa counters update if numa stats is disabled */
3129 	if (!static_branch_likely(&vm_numa_stat_key))
3130 		return;
3131 
3132 	if (zone_to_nid(z) != numa_node_id())
3133 		local_stat = NUMA_OTHER;
3134 
3135 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3136 		__count_numa_events(z, NUMA_HIT, nr_account);
3137 	else {
3138 		__count_numa_events(z, NUMA_MISS, nr_account);
3139 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3140 	}
3141 	__count_numa_events(z, local_stat, nr_account);
3142 #endif
3143 }
3144 
3145 static __always_inline
3146 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3147 			   unsigned int order, unsigned int alloc_flags,
3148 			   int migratetype)
3149 {
3150 	struct page *page;
3151 	unsigned long flags;
3152 
3153 	do {
3154 		page = NULL;
3155 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
3156 			if (!spin_trylock_irqsave(&zone->lock, flags))
3157 				return NULL;
3158 		} else {
3159 			spin_lock_irqsave(&zone->lock, flags);
3160 		}
3161 		if (alloc_flags & ALLOC_HIGHATOMIC)
3162 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3163 		if (!page) {
3164 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3165 
3166 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
3167 
3168 			/*
3169 			 * If the allocation fails, allow OOM handling and
3170 			 * order-0 (atomic) allocs access to HIGHATOMIC
3171 			 * reserves as failing now is worse than failing a
3172 			 * high-order atomic allocation in the future.
3173 			 */
3174 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3175 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3176 
3177 			if (!page) {
3178 				spin_unlock_irqrestore(&zone->lock, flags);
3179 				return NULL;
3180 			}
3181 		}
3182 		spin_unlock_irqrestore(&zone->lock, flags);
3183 	} while (check_new_pages(page, order));
3184 
3185 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3186 	zone_statistics(preferred_zone, zone, 1);
3187 
3188 	return page;
3189 }
3190 
3191 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3192 {
3193 	int high, base_batch, batch, max_nr_alloc;
3194 	int high_max, high_min;
3195 
3196 	base_batch = READ_ONCE(pcp->batch);
3197 	high_min = READ_ONCE(pcp->high_min);
3198 	high_max = READ_ONCE(pcp->high_max);
3199 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3200 
3201 	/* Check for PCP disabled or boot pageset */
3202 	if (unlikely(high < base_batch))
3203 		return 1;
3204 
3205 	if (order)
3206 		batch = base_batch;
3207 	else
3208 		batch = (base_batch << pcp->alloc_factor);
3209 
3210 	/*
3211 	 * If we had larger pcp->high, we could avoid to allocate from
3212 	 * zone.
3213 	 */
3214 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3215 		high = pcp->high = min(high + batch, high_max);
3216 
3217 	if (!order) {
3218 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3219 		/*
3220 		 * Double the number of pages allocated each time there is
3221 		 * subsequent allocation of order-0 pages without any freeing.
3222 		 */
3223 		if (batch <= max_nr_alloc &&
3224 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3225 			pcp->alloc_factor++;
3226 		batch = min(batch, max_nr_alloc);
3227 	}
3228 
3229 	/*
3230 	 * Scale batch relative to order if batch implies free pages
3231 	 * can be stored on the PCP. Batch can be 1 for small zones or
3232 	 * for boot pagesets which should never store free pages as
3233 	 * the pages may belong to arbitrary zones.
3234 	 */
3235 	if (batch > 1)
3236 		batch = max(batch >> order, 2);
3237 
3238 	return batch;
3239 }
3240 
3241 /* Remove page from the per-cpu list, caller must protect the list */
3242 static inline
3243 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3244 			int migratetype,
3245 			unsigned int alloc_flags,
3246 			struct per_cpu_pages *pcp,
3247 			struct list_head *list)
3248 {
3249 	struct page *page;
3250 
3251 	do {
3252 		if (list_empty(list)) {
3253 			int batch = nr_pcp_alloc(pcp, zone, order);
3254 			int alloced;
3255 
3256 			alloced = rmqueue_bulk(zone, order,
3257 					batch, list,
3258 					migratetype, alloc_flags);
3259 
3260 			pcp->count += alloced << order;
3261 			if (unlikely(list_empty(list)))
3262 				return NULL;
3263 		}
3264 
3265 		page = list_first_entry(list, struct page, pcp_list);
3266 		list_del(&page->pcp_list);
3267 		pcp->count -= 1 << order;
3268 	} while (check_new_pages(page, order));
3269 
3270 	return page;
3271 }
3272 
3273 /* Lock and remove page from the per-cpu list */
3274 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3275 			struct zone *zone, unsigned int order,
3276 			int migratetype, unsigned int alloc_flags)
3277 {
3278 	struct per_cpu_pages *pcp;
3279 	struct list_head *list;
3280 	struct page *page;
3281 	unsigned long __maybe_unused UP_flags;
3282 
3283 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3284 	pcp_trylock_prepare(UP_flags);
3285 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3286 	if (!pcp) {
3287 		pcp_trylock_finish(UP_flags);
3288 		return NULL;
3289 	}
3290 
3291 	/*
3292 	 * On allocation, reduce the number of pages that are batch freed.
3293 	 * See nr_pcp_free() where free_factor is increased for subsequent
3294 	 * frees.
3295 	 */
3296 	pcp->free_count >>= 1;
3297 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3298 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3299 	pcp_spin_unlock(pcp);
3300 	pcp_trylock_finish(UP_flags);
3301 	if (page) {
3302 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 		zone_statistics(preferred_zone, zone, 1);
3304 	}
3305 	return page;
3306 }
3307 
3308 /*
3309  * Allocate a page from the given zone.
3310  * Use pcplists for THP or "cheap" high-order allocations.
3311  */
3312 
3313 /*
3314  * Do not instrument rmqueue() with KMSAN. This function may call
3315  * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
3316  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3317  * may call rmqueue() again, which will result in a deadlock.
3318  */
3319 __no_sanitize_memory
3320 static inline
3321 struct page *rmqueue(struct zone *preferred_zone,
3322 			struct zone *zone, unsigned int order,
3323 			gfp_t gfp_flags, unsigned int alloc_flags,
3324 			int migratetype)
3325 {
3326 	struct page *page;
3327 
3328 	if (likely(pcp_allowed_order(order))) {
3329 		page = rmqueue_pcplist(preferred_zone, zone, order,
3330 				       migratetype, alloc_flags);
3331 		if (likely(page))
3332 			goto out;
3333 	}
3334 
3335 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3336 							migratetype);
3337 
3338 out:
3339 	/* Separate test+clear to avoid unnecessary atomics */
3340 	if ((alloc_flags & ALLOC_KSWAPD) &&
3341 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3342 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3343 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3344 	}
3345 
3346 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3347 	return page;
3348 }
3349 
3350 /*
3351  * Reserve the pageblock(s) surrounding an allocation request for
3352  * exclusive use of high-order atomic allocations if there are no
3353  * empty page blocks that contain a page with a suitable order
3354  */
3355 static void reserve_highatomic_pageblock(struct page *page, int order,
3356 					 struct zone *zone)
3357 {
3358 	int mt;
3359 	unsigned long max_managed, flags;
3360 
3361 	/*
3362 	 * The number reserved as: minimum is 1 pageblock, maximum is
3363 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3364 	 * pageblock size, then don't reserve any pageblocks.
3365 	 * Check is race-prone but harmless.
3366 	 */
3367 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3368 		return;
3369 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3370 	if (zone->nr_reserved_highatomic >= max_managed)
3371 		return;
3372 
3373 	spin_lock_irqsave(&zone->lock, flags);
3374 
3375 	/* Recheck the nr_reserved_highatomic limit under the lock */
3376 	if (zone->nr_reserved_highatomic >= max_managed)
3377 		goto out_unlock;
3378 
3379 	/* Yoink! */
3380 	mt = get_pageblock_migratetype(page);
3381 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3382 	if (!migratetype_is_mergeable(mt))
3383 		goto out_unlock;
3384 
3385 	if (order < pageblock_order) {
3386 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3387 			goto out_unlock;
3388 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3389 	} else {
3390 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3391 		zone->nr_reserved_highatomic += 1 << order;
3392 	}
3393 
3394 out_unlock:
3395 	spin_unlock_irqrestore(&zone->lock, flags);
3396 }
3397 
3398 /*
3399  * Used when an allocation is about to fail under memory pressure. This
3400  * potentially hurts the reliability of high-order allocations when under
3401  * intense memory pressure but failed atomic allocations should be easier
3402  * to recover from than an OOM.
3403  *
3404  * If @force is true, try to unreserve pageblocks even though highatomic
3405  * pageblock is exhausted.
3406  */
3407 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3408 						bool force)
3409 {
3410 	struct zonelist *zonelist = ac->zonelist;
3411 	unsigned long flags;
3412 	struct zoneref *z;
3413 	struct zone *zone;
3414 	struct page *page;
3415 	int order;
3416 	int ret;
3417 
3418 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3419 								ac->nodemask) {
3420 		/*
3421 		 * Preserve at least one pageblock unless memory pressure
3422 		 * is really high.
3423 		 */
3424 		if (!force && zone->nr_reserved_highatomic <=
3425 					pageblock_nr_pages)
3426 			continue;
3427 
3428 		spin_lock_irqsave(&zone->lock, flags);
3429 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3430 			struct free_area *area = &(zone->free_area[order]);
3431 			unsigned long size;
3432 
3433 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3434 			if (!page)
3435 				continue;
3436 
3437 			size = max(pageblock_nr_pages, 1UL << order);
3438 			/*
3439 			 * It should never happen but changes to
3440 			 * locking could inadvertently allow a per-cpu
3441 			 * drain to add pages to MIGRATE_HIGHATOMIC
3442 			 * while unreserving so be safe and watch for
3443 			 * underflows.
3444 			 */
3445 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3446 				size = zone->nr_reserved_highatomic;
3447 			zone->nr_reserved_highatomic -= size;
3448 
3449 			/*
3450 			 * Convert to ac->migratetype and avoid the normal
3451 			 * pageblock stealing heuristics. Minimally, the caller
3452 			 * is doing the work and needs the pages. More
3453 			 * importantly, if the block was always converted to
3454 			 * MIGRATE_UNMOVABLE or another type then the number
3455 			 * of pageblocks that cannot be completely freed
3456 			 * may increase.
3457 			 */
3458 			if (order < pageblock_order)
3459 				ret = move_freepages_block(zone, page,
3460 							   MIGRATE_HIGHATOMIC,
3461 							   ac->migratetype);
3462 			else {
3463 				move_to_free_list(page, zone, order,
3464 						  MIGRATE_HIGHATOMIC,
3465 						  ac->migratetype);
3466 				change_pageblock_range(page, order,
3467 						       ac->migratetype);
3468 				ret = 1;
3469 			}
3470 			/*
3471 			 * Reserving the block(s) already succeeded,
3472 			 * so this should not fail on zone boundaries.
3473 			 */
3474 			WARN_ON_ONCE(ret == -1);
3475 			if (ret > 0) {
3476 				spin_unlock_irqrestore(&zone->lock, flags);
3477 				return ret;
3478 			}
3479 		}
3480 		spin_unlock_irqrestore(&zone->lock, flags);
3481 	}
3482 
3483 	return false;
3484 }
3485 
3486 static inline long __zone_watermark_unusable_free(struct zone *z,
3487 				unsigned int order, unsigned int alloc_flags)
3488 {
3489 	long unusable_free = (1 << order) - 1;
3490 
3491 	/*
3492 	 * If the caller does not have rights to reserves below the min
3493 	 * watermark then subtract the free pages reserved for highatomic.
3494 	 */
3495 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3496 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3497 
3498 #ifdef CONFIG_CMA
3499 	/* If allocation can't use CMA areas don't use free CMA pages */
3500 	if (!(alloc_flags & ALLOC_CMA))
3501 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3502 #endif
3503 
3504 	return unusable_free;
3505 }
3506 
3507 /*
3508  * Return true if free base pages are above 'mark'. For high-order checks it
3509  * will return true of the order-0 watermark is reached and there is at least
3510  * one free page of a suitable size. Checking now avoids taking the zone lock
3511  * to check in the allocation paths if no pages are free.
3512  */
3513 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3514 			 int highest_zoneidx, unsigned int alloc_flags,
3515 			 long free_pages)
3516 {
3517 	long min = mark;
3518 	int o;
3519 
3520 	/* free_pages may go negative - that's OK */
3521 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3522 
3523 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3524 		/*
3525 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3526 		 * as OOM.
3527 		 */
3528 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3529 			min -= min / 2;
3530 
3531 			/*
3532 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3533 			 * access more reserves than just __GFP_HIGH. Other
3534 			 * non-blocking allocations requests such as GFP_NOWAIT
3535 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3536 			 * access to the min reserve.
3537 			 */
3538 			if (alloc_flags & ALLOC_NON_BLOCK)
3539 				min -= min / 4;
3540 		}
3541 
3542 		/*
3543 		 * OOM victims can try even harder than the normal reserve
3544 		 * users on the grounds that it's definitely going to be in
3545 		 * the exit path shortly and free memory. Any allocation it
3546 		 * makes during the free path will be small and short-lived.
3547 		 */
3548 		if (alloc_flags & ALLOC_OOM)
3549 			min -= min / 2;
3550 	}
3551 
3552 	/*
3553 	 * Check watermarks for an order-0 allocation request. If these
3554 	 * are not met, then a high-order request also cannot go ahead
3555 	 * even if a suitable page happened to be free.
3556 	 */
3557 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3558 		return false;
3559 
3560 	/* If this is an order-0 request then the watermark is fine */
3561 	if (!order)
3562 		return true;
3563 
3564 	/* For a high-order request, check at least one suitable page is free */
3565 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3566 		struct free_area *area = &z->free_area[o];
3567 		int mt;
3568 
3569 		if (!area->nr_free)
3570 			continue;
3571 
3572 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3573 			if (!free_area_empty(area, mt))
3574 				return true;
3575 		}
3576 
3577 #ifdef CONFIG_CMA
3578 		if ((alloc_flags & ALLOC_CMA) &&
3579 		    !free_area_empty(area, MIGRATE_CMA)) {
3580 			return true;
3581 		}
3582 #endif
3583 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3584 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3585 			return true;
3586 		}
3587 	}
3588 	return false;
3589 }
3590 
3591 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3592 		      int highest_zoneidx, unsigned int alloc_flags)
3593 {
3594 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3595 					zone_page_state(z, NR_FREE_PAGES));
3596 }
3597 
3598 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3599 				unsigned long mark, int highest_zoneidx,
3600 				unsigned int alloc_flags, gfp_t gfp_mask)
3601 {
3602 	long free_pages;
3603 
3604 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3605 
3606 	/*
3607 	 * Fast check for order-0 only. If this fails then the reserves
3608 	 * need to be calculated.
3609 	 */
3610 	if (!order) {
3611 		long usable_free;
3612 		long reserved;
3613 
3614 		usable_free = free_pages;
3615 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3616 
3617 		/* reserved may over estimate high-atomic reserves. */
3618 		usable_free -= min(usable_free, reserved);
3619 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3620 			return true;
3621 	}
3622 
3623 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3624 					free_pages))
3625 		return true;
3626 
3627 	/*
3628 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3629 	 * when checking the min watermark. The min watermark is the
3630 	 * point where boosting is ignored so that kswapd is woken up
3631 	 * when below the low watermark.
3632 	 */
3633 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3634 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3635 		mark = z->_watermark[WMARK_MIN];
3636 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3637 					alloc_flags, free_pages);
3638 	}
3639 
3640 	return false;
3641 }
3642 
3643 #ifdef CONFIG_NUMA
3644 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3645 
3646 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3647 {
3648 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3649 				node_reclaim_distance;
3650 }
3651 #else	/* CONFIG_NUMA */
3652 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3653 {
3654 	return true;
3655 }
3656 #endif	/* CONFIG_NUMA */
3657 
3658 /*
3659  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3660  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3661  * premature use of a lower zone may cause lowmem pressure problems that
3662  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3663  * probably too small. It only makes sense to spread allocations to avoid
3664  * fragmentation between the Normal and DMA32 zones.
3665  */
3666 static inline unsigned int
3667 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3668 {
3669 	unsigned int alloc_flags;
3670 
3671 	/*
3672 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3673 	 * to save a branch.
3674 	 */
3675 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3676 
3677 	if (defrag_mode) {
3678 		alloc_flags |= ALLOC_NOFRAGMENT;
3679 		return alloc_flags;
3680 	}
3681 
3682 #ifdef CONFIG_ZONE_DMA32
3683 	if (!zone)
3684 		return alloc_flags;
3685 
3686 	if (zone_idx(zone) != ZONE_NORMAL)
3687 		return alloc_flags;
3688 
3689 	/*
3690 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3691 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3692 	 * on UMA that if Normal is populated then so is DMA32.
3693 	 */
3694 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3695 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3696 		return alloc_flags;
3697 
3698 	alloc_flags |= ALLOC_NOFRAGMENT;
3699 #endif /* CONFIG_ZONE_DMA32 */
3700 	return alloc_flags;
3701 }
3702 
3703 /* Must be called after current_gfp_context() which can change gfp_mask */
3704 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3705 						  unsigned int alloc_flags)
3706 {
3707 #ifdef CONFIG_CMA
3708 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3709 		alloc_flags |= ALLOC_CMA;
3710 #endif
3711 	return alloc_flags;
3712 }
3713 
3714 /*
3715  * get_page_from_freelist goes through the zonelist trying to allocate
3716  * a page.
3717  */
3718 static struct page *
3719 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3720 						const struct alloc_context *ac)
3721 {
3722 	struct zoneref *z;
3723 	struct zone *zone;
3724 	struct pglist_data *last_pgdat = NULL;
3725 	bool last_pgdat_dirty_ok = false;
3726 	bool no_fallback;
3727 
3728 retry:
3729 	/*
3730 	 * Scan zonelist, looking for a zone with enough free.
3731 	 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3732 	 */
3733 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3734 	z = ac->preferred_zoneref;
3735 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3736 					ac->nodemask) {
3737 		struct page *page;
3738 		unsigned long mark;
3739 
3740 		if (cpusets_enabled() &&
3741 			(alloc_flags & ALLOC_CPUSET) &&
3742 			!__cpuset_zone_allowed(zone, gfp_mask))
3743 				continue;
3744 		/*
3745 		 * When allocating a page cache page for writing, we
3746 		 * want to get it from a node that is within its dirty
3747 		 * limit, such that no single node holds more than its
3748 		 * proportional share of globally allowed dirty pages.
3749 		 * The dirty limits take into account the node's
3750 		 * lowmem reserves and high watermark so that kswapd
3751 		 * should be able to balance it without having to
3752 		 * write pages from its LRU list.
3753 		 *
3754 		 * XXX: For now, allow allocations to potentially
3755 		 * exceed the per-node dirty limit in the slowpath
3756 		 * (spread_dirty_pages unset) before going into reclaim,
3757 		 * which is important when on a NUMA setup the allowed
3758 		 * nodes are together not big enough to reach the
3759 		 * global limit.  The proper fix for these situations
3760 		 * will require awareness of nodes in the
3761 		 * dirty-throttling and the flusher threads.
3762 		 */
3763 		if (ac->spread_dirty_pages) {
3764 			if (last_pgdat != zone->zone_pgdat) {
3765 				last_pgdat = zone->zone_pgdat;
3766 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3767 			}
3768 
3769 			if (!last_pgdat_dirty_ok)
3770 				continue;
3771 		}
3772 
3773 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3774 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3775 			int local_nid;
3776 
3777 			/*
3778 			 * If moving to a remote node, retry but allow
3779 			 * fragmenting fallbacks. Locality is more important
3780 			 * than fragmentation avoidance.
3781 			 */
3782 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3783 			if (zone_to_nid(zone) != local_nid) {
3784 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3785 				goto retry;
3786 			}
3787 		}
3788 
3789 		cond_accept_memory(zone, order, alloc_flags);
3790 
3791 		/*
3792 		 * Detect whether the number of free pages is below high
3793 		 * watermark.  If so, we will decrease pcp->high and free
3794 		 * PCP pages in free path to reduce the possibility of
3795 		 * premature page reclaiming.  Detection is done here to
3796 		 * avoid to do that in hotter free path.
3797 		 */
3798 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3799 			goto check_alloc_wmark;
3800 
3801 		mark = high_wmark_pages(zone);
3802 		if (zone_watermark_fast(zone, order, mark,
3803 					ac->highest_zoneidx, alloc_flags,
3804 					gfp_mask))
3805 			goto try_this_zone;
3806 		else
3807 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3808 
3809 check_alloc_wmark:
3810 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3811 		if (!zone_watermark_fast(zone, order, mark,
3812 				       ac->highest_zoneidx, alloc_flags,
3813 				       gfp_mask)) {
3814 			int ret;
3815 
3816 			if (cond_accept_memory(zone, order, alloc_flags))
3817 				goto try_this_zone;
3818 
3819 			/*
3820 			 * Watermark failed for this zone, but see if we can
3821 			 * grow this zone if it contains deferred pages.
3822 			 */
3823 			if (deferred_pages_enabled()) {
3824 				if (_deferred_grow_zone(zone, order))
3825 					goto try_this_zone;
3826 			}
3827 			/* Checked here to keep the fast path fast */
3828 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3829 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3830 				goto try_this_zone;
3831 
3832 			if (!node_reclaim_enabled() ||
3833 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3834 				continue;
3835 
3836 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3837 			switch (ret) {
3838 			case NODE_RECLAIM_NOSCAN:
3839 				/* did not scan */
3840 				continue;
3841 			case NODE_RECLAIM_FULL:
3842 				/* scanned but unreclaimable */
3843 				continue;
3844 			default:
3845 				/* did we reclaim enough */
3846 				if (zone_watermark_ok(zone, order, mark,
3847 					ac->highest_zoneidx, alloc_flags))
3848 					goto try_this_zone;
3849 
3850 				continue;
3851 			}
3852 		}
3853 
3854 try_this_zone:
3855 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3856 				gfp_mask, alloc_flags, ac->migratetype);
3857 		if (page) {
3858 			prep_new_page(page, order, gfp_mask, alloc_flags);
3859 
3860 			/*
3861 			 * If this is a high-order atomic allocation then check
3862 			 * if the pageblock should be reserved for the future
3863 			 */
3864 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3865 				reserve_highatomic_pageblock(page, order, zone);
3866 
3867 			return page;
3868 		} else {
3869 			if (cond_accept_memory(zone, order, alloc_flags))
3870 				goto try_this_zone;
3871 
3872 			/* Try again if zone has deferred pages */
3873 			if (deferred_pages_enabled()) {
3874 				if (_deferred_grow_zone(zone, order))
3875 					goto try_this_zone;
3876 			}
3877 		}
3878 	}
3879 
3880 	/*
3881 	 * It's possible on a UMA machine to get through all zones that are
3882 	 * fragmented. If avoiding fragmentation, reset and try again.
3883 	 */
3884 	if (no_fallback && !defrag_mode) {
3885 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3886 		goto retry;
3887 	}
3888 
3889 	return NULL;
3890 }
3891 
3892 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3893 {
3894 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3895 
3896 	/*
3897 	 * This documents exceptions given to allocations in certain
3898 	 * contexts that are allowed to allocate outside current's set
3899 	 * of allowed nodes.
3900 	 */
3901 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3902 		if (tsk_is_oom_victim(current) ||
3903 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3904 			filter &= ~SHOW_MEM_FILTER_NODES;
3905 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3906 		filter &= ~SHOW_MEM_FILTER_NODES;
3907 
3908 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3909 }
3910 
3911 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3912 {
3913 	struct va_format vaf;
3914 	va_list args;
3915 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3916 
3917 	if ((gfp_mask & __GFP_NOWARN) ||
3918 	     !__ratelimit(&nopage_rs) ||
3919 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3920 		return;
3921 
3922 	va_start(args, fmt);
3923 	vaf.fmt = fmt;
3924 	vaf.va = &args;
3925 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3926 			current->comm, &vaf, gfp_mask, &gfp_mask,
3927 			nodemask_pr_args(nodemask));
3928 	va_end(args);
3929 
3930 	cpuset_print_current_mems_allowed();
3931 	pr_cont("\n");
3932 	dump_stack();
3933 	warn_alloc_show_mem(gfp_mask, nodemask);
3934 }
3935 
3936 static inline struct page *
3937 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3938 			      unsigned int alloc_flags,
3939 			      const struct alloc_context *ac)
3940 {
3941 	struct page *page;
3942 
3943 	page = get_page_from_freelist(gfp_mask, order,
3944 			alloc_flags|ALLOC_CPUSET, ac);
3945 	/*
3946 	 * fallback to ignore cpuset restriction if our nodes
3947 	 * are depleted
3948 	 */
3949 	if (!page)
3950 		page = get_page_from_freelist(gfp_mask, order,
3951 				alloc_flags, ac);
3952 	return page;
3953 }
3954 
3955 static inline struct page *
3956 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3957 	const struct alloc_context *ac, unsigned long *did_some_progress)
3958 {
3959 	struct oom_control oc = {
3960 		.zonelist = ac->zonelist,
3961 		.nodemask = ac->nodemask,
3962 		.memcg = NULL,
3963 		.gfp_mask = gfp_mask,
3964 		.order = order,
3965 	};
3966 	struct page *page;
3967 
3968 	*did_some_progress = 0;
3969 
3970 	/*
3971 	 * Acquire the oom lock.  If that fails, somebody else is
3972 	 * making progress for us.
3973 	 */
3974 	if (!mutex_trylock(&oom_lock)) {
3975 		*did_some_progress = 1;
3976 		schedule_timeout_uninterruptible(1);
3977 		return NULL;
3978 	}
3979 
3980 	/*
3981 	 * Go through the zonelist yet one more time, keep very high watermark
3982 	 * here, this is only to catch a parallel oom killing, we must fail if
3983 	 * we're still under heavy pressure. But make sure that this reclaim
3984 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3985 	 * allocation which will never fail due to oom_lock already held.
3986 	 */
3987 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3988 				      ~__GFP_DIRECT_RECLAIM, order,
3989 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3990 	if (page)
3991 		goto out;
3992 
3993 	/* Coredumps can quickly deplete all memory reserves */
3994 	if (current->flags & PF_DUMPCORE)
3995 		goto out;
3996 	/* The OOM killer will not help higher order allocs */
3997 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3998 		goto out;
3999 	/*
4000 	 * We have already exhausted all our reclaim opportunities without any
4001 	 * success so it is time to admit defeat. We will skip the OOM killer
4002 	 * because it is very likely that the caller has a more reasonable
4003 	 * fallback than shooting a random task.
4004 	 *
4005 	 * The OOM killer may not free memory on a specific node.
4006 	 */
4007 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4008 		goto out;
4009 	/* The OOM killer does not needlessly kill tasks for lowmem */
4010 	if (ac->highest_zoneidx < ZONE_NORMAL)
4011 		goto out;
4012 	if (pm_suspended_storage())
4013 		goto out;
4014 	/*
4015 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4016 	 * other request to make a forward progress.
4017 	 * We are in an unfortunate situation where out_of_memory cannot
4018 	 * do much for this context but let's try it to at least get
4019 	 * access to memory reserved if the current task is killed (see
4020 	 * out_of_memory). Once filesystems are ready to handle allocation
4021 	 * failures more gracefully we should just bail out here.
4022 	 */
4023 
4024 	/* Exhausted what can be done so it's blame time */
4025 	if (out_of_memory(&oc) ||
4026 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4027 		*did_some_progress = 1;
4028 
4029 		/*
4030 		 * Help non-failing allocations by giving them access to memory
4031 		 * reserves
4032 		 */
4033 		if (gfp_mask & __GFP_NOFAIL)
4034 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4035 					ALLOC_NO_WATERMARKS, ac);
4036 	}
4037 out:
4038 	mutex_unlock(&oom_lock);
4039 	return page;
4040 }
4041 
4042 /*
4043  * Maximum number of compaction retries with a progress before OOM
4044  * killer is consider as the only way to move forward.
4045  */
4046 #define MAX_COMPACT_RETRIES 16
4047 
4048 #ifdef CONFIG_COMPACTION
4049 /* Try memory compaction for high-order allocations before reclaim */
4050 static struct page *
4051 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4052 		unsigned int alloc_flags, const struct alloc_context *ac,
4053 		enum compact_priority prio, enum compact_result *compact_result)
4054 {
4055 	struct page *page = NULL;
4056 	unsigned long pflags;
4057 	unsigned int noreclaim_flag;
4058 
4059 	if (!order)
4060 		return NULL;
4061 
4062 	psi_memstall_enter(&pflags);
4063 	delayacct_compact_start();
4064 	noreclaim_flag = memalloc_noreclaim_save();
4065 
4066 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4067 								prio, &page);
4068 
4069 	memalloc_noreclaim_restore(noreclaim_flag);
4070 	psi_memstall_leave(&pflags);
4071 	delayacct_compact_end();
4072 
4073 	if (*compact_result == COMPACT_SKIPPED)
4074 		return NULL;
4075 	/*
4076 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4077 	 * count a compaction stall
4078 	 */
4079 	count_vm_event(COMPACTSTALL);
4080 
4081 	/* Prep a captured page if available */
4082 	if (page)
4083 		prep_new_page(page, order, gfp_mask, alloc_flags);
4084 
4085 	/* Try get a page from the freelist if available */
4086 	if (!page)
4087 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4088 
4089 	if (page) {
4090 		struct zone *zone = page_zone(page);
4091 
4092 		zone->compact_blockskip_flush = false;
4093 		compaction_defer_reset(zone, order, true);
4094 		count_vm_event(COMPACTSUCCESS);
4095 		return page;
4096 	}
4097 
4098 	/*
4099 	 * It's bad if compaction run occurs and fails. The most likely reason
4100 	 * is that pages exist, but not enough to satisfy watermarks.
4101 	 */
4102 	count_vm_event(COMPACTFAIL);
4103 
4104 	cond_resched();
4105 
4106 	return NULL;
4107 }
4108 
4109 static inline bool
4110 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4111 		     enum compact_result compact_result,
4112 		     enum compact_priority *compact_priority,
4113 		     int *compaction_retries)
4114 {
4115 	int max_retries = MAX_COMPACT_RETRIES;
4116 	int min_priority;
4117 	bool ret = false;
4118 	int retries = *compaction_retries;
4119 	enum compact_priority priority = *compact_priority;
4120 
4121 	if (!order)
4122 		return false;
4123 
4124 	if (fatal_signal_pending(current))
4125 		return false;
4126 
4127 	/*
4128 	 * Compaction was skipped due to a lack of free order-0
4129 	 * migration targets. Continue if reclaim can help.
4130 	 */
4131 	if (compact_result == COMPACT_SKIPPED) {
4132 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4133 		goto out;
4134 	}
4135 
4136 	/*
4137 	 * Compaction managed to coalesce some page blocks, but the
4138 	 * allocation failed presumably due to a race. Retry some.
4139 	 */
4140 	if (compact_result == COMPACT_SUCCESS) {
4141 		/*
4142 		 * !costly requests are much more important than
4143 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
4144 		 * facto nofail and invoke OOM killer to move on while
4145 		 * costly can fail and users are ready to cope with
4146 		 * that. 1/4 retries is rather arbitrary but we would
4147 		 * need much more detailed feedback from compaction to
4148 		 * make a better decision.
4149 		 */
4150 		if (order > PAGE_ALLOC_COSTLY_ORDER)
4151 			max_retries /= 4;
4152 
4153 		if (++(*compaction_retries) <= max_retries) {
4154 			ret = true;
4155 			goto out;
4156 		}
4157 	}
4158 
4159 	/*
4160 	 * Compaction failed. Retry with increasing priority.
4161 	 */
4162 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4163 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4164 
4165 	if (*compact_priority > min_priority) {
4166 		(*compact_priority)--;
4167 		*compaction_retries = 0;
4168 		ret = true;
4169 	}
4170 out:
4171 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4172 	return ret;
4173 }
4174 #else
4175 static inline struct page *
4176 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4177 		unsigned int alloc_flags, const struct alloc_context *ac,
4178 		enum compact_priority prio, enum compact_result *compact_result)
4179 {
4180 	*compact_result = COMPACT_SKIPPED;
4181 	return NULL;
4182 }
4183 
4184 static inline bool
4185 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4186 		     enum compact_result compact_result,
4187 		     enum compact_priority *compact_priority,
4188 		     int *compaction_retries)
4189 {
4190 	struct zone *zone;
4191 	struct zoneref *z;
4192 
4193 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4194 		return false;
4195 
4196 	/*
4197 	 * There are setups with compaction disabled which would prefer to loop
4198 	 * inside the allocator rather than hit the oom killer prematurely.
4199 	 * Let's give them a good hope and keep retrying while the order-0
4200 	 * watermarks are OK.
4201 	 */
4202 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4203 				ac->highest_zoneidx, ac->nodemask) {
4204 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4205 					ac->highest_zoneidx, alloc_flags))
4206 			return true;
4207 	}
4208 	return false;
4209 }
4210 #endif /* CONFIG_COMPACTION */
4211 
4212 #ifdef CONFIG_LOCKDEP
4213 static struct lockdep_map __fs_reclaim_map =
4214 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4215 
4216 static bool __need_reclaim(gfp_t gfp_mask)
4217 {
4218 	/* no reclaim without waiting on it */
4219 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4220 		return false;
4221 
4222 	/* this guy won't enter reclaim */
4223 	if (current->flags & PF_MEMALLOC)
4224 		return false;
4225 
4226 	if (gfp_mask & __GFP_NOLOCKDEP)
4227 		return false;
4228 
4229 	return true;
4230 }
4231 
4232 void __fs_reclaim_acquire(unsigned long ip)
4233 {
4234 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4235 }
4236 
4237 void __fs_reclaim_release(unsigned long ip)
4238 {
4239 	lock_release(&__fs_reclaim_map, ip);
4240 }
4241 
4242 void fs_reclaim_acquire(gfp_t gfp_mask)
4243 {
4244 	gfp_mask = current_gfp_context(gfp_mask);
4245 
4246 	if (__need_reclaim(gfp_mask)) {
4247 		if (gfp_mask & __GFP_FS)
4248 			__fs_reclaim_acquire(_RET_IP_);
4249 
4250 #ifdef CONFIG_MMU_NOTIFIER
4251 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4252 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4253 #endif
4254 
4255 	}
4256 }
4257 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4258 
4259 void fs_reclaim_release(gfp_t gfp_mask)
4260 {
4261 	gfp_mask = current_gfp_context(gfp_mask);
4262 
4263 	if (__need_reclaim(gfp_mask)) {
4264 		if (gfp_mask & __GFP_FS)
4265 			__fs_reclaim_release(_RET_IP_);
4266 	}
4267 }
4268 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4269 #endif
4270 
4271 /*
4272  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4273  * have been rebuilt so allocation retries. Reader side does not lock and
4274  * retries the allocation if zonelist changes. Writer side is protected by the
4275  * embedded spin_lock.
4276  */
4277 static DEFINE_SEQLOCK(zonelist_update_seq);
4278 
4279 static unsigned int zonelist_iter_begin(void)
4280 {
4281 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4282 		return read_seqbegin(&zonelist_update_seq);
4283 
4284 	return 0;
4285 }
4286 
4287 static unsigned int check_retry_zonelist(unsigned int seq)
4288 {
4289 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4290 		return read_seqretry(&zonelist_update_seq, seq);
4291 
4292 	return seq;
4293 }
4294 
4295 /* Perform direct synchronous page reclaim */
4296 static unsigned long
4297 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4298 					const struct alloc_context *ac)
4299 {
4300 	unsigned int noreclaim_flag;
4301 	unsigned long progress;
4302 
4303 	cond_resched();
4304 
4305 	/* We now go into synchronous reclaim */
4306 	cpuset_memory_pressure_bump();
4307 	fs_reclaim_acquire(gfp_mask);
4308 	noreclaim_flag = memalloc_noreclaim_save();
4309 
4310 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4311 								ac->nodemask);
4312 
4313 	memalloc_noreclaim_restore(noreclaim_flag);
4314 	fs_reclaim_release(gfp_mask);
4315 
4316 	cond_resched();
4317 
4318 	return progress;
4319 }
4320 
4321 /* The really slow allocator path where we enter direct reclaim */
4322 static inline struct page *
4323 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4324 		unsigned int alloc_flags, const struct alloc_context *ac,
4325 		unsigned long *did_some_progress)
4326 {
4327 	struct page *page = NULL;
4328 	unsigned long pflags;
4329 	bool drained = false;
4330 
4331 	psi_memstall_enter(&pflags);
4332 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4333 	if (unlikely(!(*did_some_progress)))
4334 		goto out;
4335 
4336 retry:
4337 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4338 
4339 	/*
4340 	 * If an allocation failed after direct reclaim, it could be because
4341 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4342 	 * Shrink them and try again
4343 	 */
4344 	if (!page && !drained) {
4345 		unreserve_highatomic_pageblock(ac, false);
4346 		drain_all_pages(NULL);
4347 		drained = true;
4348 		goto retry;
4349 	}
4350 out:
4351 	psi_memstall_leave(&pflags);
4352 
4353 	return page;
4354 }
4355 
4356 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4357 			     const struct alloc_context *ac)
4358 {
4359 	struct zoneref *z;
4360 	struct zone *zone;
4361 	pg_data_t *last_pgdat = NULL;
4362 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4363 	unsigned int reclaim_order;
4364 
4365 	if (defrag_mode)
4366 		reclaim_order = max(order, pageblock_order);
4367 	else
4368 		reclaim_order = order;
4369 
4370 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4371 					ac->nodemask) {
4372 		if (!managed_zone(zone))
4373 			continue;
4374 		if (last_pgdat == zone->zone_pgdat)
4375 			continue;
4376 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4377 		last_pgdat = zone->zone_pgdat;
4378 	}
4379 }
4380 
4381 static inline unsigned int
4382 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4383 {
4384 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4385 
4386 	/*
4387 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4388 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4389 	 * to save two branches.
4390 	 */
4391 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4392 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4393 
4394 	/*
4395 	 * The caller may dip into page reserves a bit more if the caller
4396 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4397 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4398 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4399 	 */
4400 	alloc_flags |= (__force int)
4401 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4402 
4403 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4404 		/*
4405 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4406 		 * if it can't schedule.
4407 		 */
4408 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4409 			alloc_flags |= ALLOC_NON_BLOCK;
4410 
4411 			if (order > 0)
4412 				alloc_flags |= ALLOC_HIGHATOMIC;
4413 		}
4414 
4415 		/*
4416 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4417 		 * GFP_ATOMIC) rather than fail, see the comment for
4418 		 * cpuset_current_node_allowed().
4419 		 */
4420 		if (alloc_flags & ALLOC_MIN_RESERVE)
4421 			alloc_flags &= ~ALLOC_CPUSET;
4422 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4423 		alloc_flags |= ALLOC_MIN_RESERVE;
4424 
4425 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4426 
4427 	if (defrag_mode)
4428 		alloc_flags |= ALLOC_NOFRAGMENT;
4429 
4430 	return alloc_flags;
4431 }
4432 
4433 static bool oom_reserves_allowed(struct task_struct *tsk)
4434 {
4435 	if (!tsk_is_oom_victim(tsk))
4436 		return false;
4437 
4438 	/*
4439 	 * !MMU doesn't have oom reaper so give access to memory reserves
4440 	 * only to the thread with TIF_MEMDIE set
4441 	 */
4442 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4443 		return false;
4444 
4445 	return true;
4446 }
4447 
4448 /*
4449  * Distinguish requests which really need access to full memory
4450  * reserves from oom victims which can live with a portion of it
4451  */
4452 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4453 {
4454 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4455 		return 0;
4456 	if (gfp_mask & __GFP_MEMALLOC)
4457 		return ALLOC_NO_WATERMARKS;
4458 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4459 		return ALLOC_NO_WATERMARKS;
4460 	if (!in_interrupt()) {
4461 		if (current->flags & PF_MEMALLOC)
4462 			return ALLOC_NO_WATERMARKS;
4463 		else if (oom_reserves_allowed(current))
4464 			return ALLOC_OOM;
4465 	}
4466 
4467 	return 0;
4468 }
4469 
4470 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4471 {
4472 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4473 }
4474 
4475 /*
4476  * Checks whether it makes sense to retry the reclaim to make a forward progress
4477  * for the given allocation request.
4478  *
4479  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4480  * without success, or when we couldn't even meet the watermark if we
4481  * reclaimed all remaining pages on the LRU lists.
4482  *
4483  * Returns true if a retry is viable or false to enter the oom path.
4484  */
4485 static inline bool
4486 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4487 		     struct alloc_context *ac, int alloc_flags,
4488 		     bool did_some_progress, int *no_progress_loops)
4489 {
4490 	struct zone *zone;
4491 	struct zoneref *z;
4492 	bool ret = false;
4493 
4494 	/*
4495 	 * Costly allocations might have made a progress but this doesn't mean
4496 	 * their order will become available due to high fragmentation so
4497 	 * always increment the no progress counter for them
4498 	 */
4499 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4500 		*no_progress_loops = 0;
4501 	else
4502 		(*no_progress_loops)++;
4503 
4504 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4505 		goto out;
4506 
4507 
4508 	/*
4509 	 * Keep reclaiming pages while there is a chance this will lead
4510 	 * somewhere.  If none of the target zones can satisfy our allocation
4511 	 * request even if all reclaimable pages are considered then we are
4512 	 * screwed and have to go OOM.
4513 	 */
4514 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4515 				ac->highest_zoneidx, ac->nodemask) {
4516 		unsigned long available;
4517 		unsigned long reclaimable;
4518 		unsigned long min_wmark = min_wmark_pages(zone);
4519 		bool wmark;
4520 
4521 		if (cpusets_enabled() &&
4522 			(alloc_flags & ALLOC_CPUSET) &&
4523 			!__cpuset_zone_allowed(zone, gfp_mask))
4524 				continue;
4525 
4526 		available = reclaimable = zone_reclaimable_pages(zone);
4527 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4528 
4529 		/*
4530 		 * Would the allocation succeed if we reclaimed all
4531 		 * reclaimable pages?
4532 		 */
4533 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4534 				ac->highest_zoneidx, alloc_flags, available);
4535 		trace_reclaim_retry_zone(z, order, reclaimable,
4536 				available, min_wmark, *no_progress_loops, wmark);
4537 		if (wmark) {
4538 			ret = true;
4539 			break;
4540 		}
4541 	}
4542 
4543 	/*
4544 	 * Memory allocation/reclaim might be called from a WQ context and the
4545 	 * current implementation of the WQ concurrency control doesn't
4546 	 * recognize that a particular WQ is congested if the worker thread is
4547 	 * looping without ever sleeping. Therefore we have to do a short sleep
4548 	 * here rather than calling cond_resched().
4549 	 */
4550 	if (current->flags & PF_WQ_WORKER)
4551 		schedule_timeout_uninterruptible(1);
4552 	else
4553 		cond_resched();
4554 out:
4555 	/* Before OOM, exhaust highatomic_reserve */
4556 	if (!ret)
4557 		return unreserve_highatomic_pageblock(ac, true);
4558 
4559 	return ret;
4560 }
4561 
4562 static inline bool
4563 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4564 {
4565 	/*
4566 	 * It's possible that cpuset's mems_allowed and the nodemask from
4567 	 * mempolicy don't intersect. This should be normally dealt with by
4568 	 * policy_nodemask(), but it's possible to race with cpuset update in
4569 	 * such a way the check therein was true, and then it became false
4570 	 * before we got our cpuset_mems_cookie here.
4571 	 * This assumes that for all allocations, ac->nodemask can come only
4572 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4573 	 * when it does not intersect with the cpuset restrictions) or the
4574 	 * caller can deal with a violated nodemask.
4575 	 */
4576 	if (cpusets_enabled() && ac->nodemask &&
4577 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4578 		ac->nodemask = NULL;
4579 		return true;
4580 	}
4581 
4582 	/*
4583 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4584 	 * possible to race with parallel threads in such a way that our
4585 	 * allocation can fail while the mask is being updated. If we are about
4586 	 * to fail, check if the cpuset changed during allocation and if so,
4587 	 * retry.
4588 	 */
4589 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4590 		return true;
4591 
4592 	return false;
4593 }
4594 
4595 static inline struct page *
4596 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4597 						struct alloc_context *ac)
4598 {
4599 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4600 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4601 	bool nofail = gfp_mask & __GFP_NOFAIL;
4602 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4603 	struct page *page = NULL;
4604 	unsigned int alloc_flags;
4605 	unsigned long did_some_progress;
4606 	enum compact_priority compact_priority;
4607 	enum compact_result compact_result;
4608 	int compaction_retries;
4609 	int no_progress_loops;
4610 	unsigned int cpuset_mems_cookie;
4611 	unsigned int zonelist_iter_cookie;
4612 	int reserve_flags;
4613 
4614 	if (unlikely(nofail)) {
4615 		/*
4616 		 * We most definitely don't want callers attempting to
4617 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4618 		 */
4619 		WARN_ON_ONCE(order > 1);
4620 		/*
4621 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4622 		 * otherwise, we may result in lockup.
4623 		 */
4624 		WARN_ON_ONCE(!can_direct_reclaim);
4625 		/*
4626 		 * PF_MEMALLOC request from this context is rather bizarre
4627 		 * because we cannot reclaim anything and only can loop waiting
4628 		 * for somebody to do a work for us.
4629 		 */
4630 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4631 	}
4632 
4633 restart:
4634 	compaction_retries = 0;
4635 	no_progress_loops = 0;
4636 	compact_result = COMPACT_SKIPPED;
4637 	compact_priority = DEF_COMPACT_PRIORITY;
4638 	cpuset_mems_cookie = read_mems_allowed_begin();
4639 	zonelist_iter_cookie = zonelist_iter_begin();
4640 
4641 	/*
4642 	 * The fast path uses conservative alloc_flags to succeed only until
4643 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4644 	 * alloc_flags precisely. So we do that now.
4645 	 */
4646 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4647 
4648 	/*
4649 	 * We need to recalculate the starting point for the zonelist iterator
4650 	 * because we might have used different nodemask in the fast path, or
4651 	 * there was a cpuset modification and we are retrying - otherwise we
4652 	 * could end up iterating over non-eligible zones endlessly.
4653 	 */
4654 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4655 					ac->highest_zoneidx, ac->nodemask);
4656 	if (!zonelist_zone(ac->preferred_zoneref))
4657 		goto nopage;
4658 
4659 	/*
4660 	 * Check for insane configurations where the cpuset doesn't contain
4661 	 * any suitable zone to satisfy the request - e.g. non-movable
4662 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4663 	 */
4664 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4665 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4666 					ac->highest_zoneidx,
4667 					&cpuset_current_mems_allowed);
4668 		if (!zonelist_zone(z))
4669 			goto nopage;
4670 	}
4671 
4672 	if (alloc_flags & ALLOC_KSWAPD)
4673 		wake_all_kswapds(order, gfp_mask, ac);
4674 
4675 	/*
4676 	 * The adjusted alloc_flags might result in immediate success, so try
4677 	 * that first
4678 	 */
4679 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4680 	if (page)
4681 		goto got_pg;
4682 
4683 	/*
4684 	 * For costly allocations, try direct compaction first, as it's likely
4685 	 * that we have enough base pages and don't need to reclaim. For non-
4686 	 * movable high-order allocations, do that as well, as compaction will
4687 	 * try prevent permanent fragmentation by migrating from blocks of the
4688 	 * same migratetype.
4689 	 * Don't try this for allocations that are allowed to ignore
4690 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4691 	 */
4692 	if (can_direct_reclaim && can_compact &&
4693 			(costly_order ||
4694 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4695 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4696 		page = __alloc_pages_direct_compact(gfp_mask, order,
4697 						alloc_flags, ac,
4698 						INIT_COMPACT_PRIORITY,
4699 						&compact_result);
4700 		if (page)
4701 			goto got_pg;
4702 
4703 		/*
4704 		 * Checks for costly allocations with __GFP_NORETRY, which
4705 		 * includes some THP page fault allocations
4706 		 */
4707 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4708 			/*
4709 			 * If allocating entire pageblock(s) and compaction
4710 			 * failed because all zones are below low watermarks
4711 			 * or is prohibited because it recently failed at this
4712 			 * order, fail immediately unless the allocator has
4713 			 * requested compaction and reclaim retry.
4714 			 *
4715 			 * Reclaim is
4716 			 *  - potentially very expensive because zones are far
4717 			 *    below their low watermarks or this is part of very
4718 			 *    bursty high order allocations,
4719 			 *  - not guaranteed to help because isolate_freepages()
4720 			 *    may not iterate over freed pages as part of its
4721 			 *    linear scan, and
4722 			 *  - unlikely to make entire pageblocks free on its
4723 			 *    own.
4724 			 */
4725 			if (compact_result == COMPACT_SKIPPED ||
4726 			    compact_result == COMPACT_DEFERRED)
4727 				goto nopage;
4728 
4729 			/*
4730 			 * Looks like reclaim/compaction is worth trying, but
4731 			 * sync compaction could be very expensive, so keep
4732 			 * using async compaction.
4733 			 */
4734 			compact_priority = INIT_COMPACT_PRIORITY;
4735 		}
4736 	}
4737 
4738 retry:
4739 	/*
4740 	 * Deal with possible cpuset update races or zonelist updates to avoid
4741 	 * infinite retries.
4742 	 */
4743 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4744 	    check_retry_zonelist(zonelist_iter_cookie))
4745 		goto restart;
4746 
4747 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4748 	if (alloc_flags & ALLOC_KSWAPD)
4749 		wake_all_kswapds(order, gfp_mask, ac);
4750 
4751 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4752 	if (reserve_flags)
4753 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4754 					  (alloc_flags & ALLOC_KSWAPD);
4755 
4756 	/*
4757 	 * Reset the nodemask and zonelist iterators if memory policies can be
4758 	 * ignored. These allocations are high priority and system rather than
4759 	 * user oriented.
4760 	 */
4761 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4762 		ac->nodemask = NULL;
4763 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4764 					ac->highest_zoneidx, ac->nodemask);
4765 	}
4766 
4767 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4768 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4769 	if (page)
4770 		goto got_pg;
4771 
4772 	/* Caller is not willing to reclaim, we can't balance anything */
4773 	if (!can_direct_reclaim)
4774 		goto nopage;
4775 
4776 	/* Avoid recursion of direct reclaim */
4777 	if (current->flags & PF_MEMALLOC)
4778 		goto nopage;
4779 
4780 	/* Try direct reclaim and then allocating */
4781 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4782 							&did_some_progress);
4783 	if (page)
4784 		goto got_pg;
4785 
4786 	/* Try direct compaction and then allocating */
4787 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4788 					compact_priority, &compact_result);
4789 	if (page)
4790 		goto got_pg;
4791 
4792 	/* Do not loop if specifically requested */
4793 	if (gfp_mask & __GFP_NORETRY)
4794 		goto nopage;
4795 
4796 	/*
4797 	 * Do not retry costly high order allocations unless they are
4798 	 * __GFP_RETRY_MAYFAIL and we can compact
4799 	 */
4800 	if (costly_order && (!can_compact ||
4801 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4802 		goto nopage;
4803 
4804 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4805 				 did_some_progress > 0, &no_progress_loops))
4806 		goto retry;
4807 
4808 	/*
4809 	 * It doesn't make any sense to retry for the compaction if the order-0
4810 	 * reclaim is not able to make any progress because the current
4811 	 * implementation of the compaction depends on the sufficient amount
4812 	 * of free memory (see __compaction_suitable)
4813 	 */
4814 	if (did_some_progress > 0 && can_compact &&
4815 			should_compact_retry(ac, order, alloc_flags,
4816 				compact_result, &compact_priority,
4817 				&compaction_retries))
4818 		goto retry;
4819 
4820 	/* Reclaim/compaction failed to prevent the fallback */
4821 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4822 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4823 		goto retry;
4824 	}
4825 
4826 	/*
4827 	 * Deal with possible cpuset update races or zonelist updates to avoid
4828 	 * a unnecessary OOM kill.
4829 	 */
4830 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4831 	    check_retry_zonelist(zonelist_iter_cookie))
4832 		goto restart;
4833 
4834 	/* Reclaim has failed us, start killing things */
4835 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4836 	if (page)
4837 		goto got_pg;
4838 
4839 	/* Avoid allocations with no watermarks from looping endlessly */
4840 	if (tsk_is_oom_victim(current) &&
4841 	    (alloc_flags & ALLOC_OOM ||
4842 	     (gfp_mask & __GFP_NOMEMALLOC)))
4843 		goto nopage;
4844 
4845 	/* Retry as long as the OOM killer is making progress */
4846 	if (did_some_progress) {
4847 		no_progress_loops = 0;
4848 		goto retry;
4849 	}
4850 
4851 nopage:
4852 	/*
4853 	 * Deal with possible cpuset update races or zonelist updates to avoid
4854 	 * a unnecessary OOM kill.
4855 	 */
4856 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4857 	    check_retry_zonelist(zonelist_iter_cookie))
4858 		goto restart;
4859 
4860 	/*
4861 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4862 	 * we always retry
4863 	 */
4864 	if (unlikely(nofail)) {
4865 		/*
4866 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4867 		 * we disregard these unreasonable nofail requests and still
4868 		 * return NULL
4869 		 */
4870 		if (!can_direct_reclaim)
4871 			goto fail;
4872 
4873 		/*
4874 		 * Help non-failing allocations by giving some access to memory
4875 		 * reserves normally used for high priority non-blocking
4876 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4877 		 * could deplete whole memory reserves which would just make
4878 		 * the situation worse.
4879 		 */
4880 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4881 		if (page)
4882 			goto got_pg;
4883 
4884 		cond_resched();
4885 		goto retry;
4886 	}
4887 fail:
4888 	warn_alloc(gfp_mask, ac->nodemask,
4889 			"page allocation failure: order:%u", order);
4890 got_pg:
4891 	return page;
4892 }
4893 
4894 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4895 		int preferred_nid, nodemask_t *nodemask,
4896 		struct alloc_context *ac, gfp_t *alloc_gfp,
4897 		unsigned int *alloc_flags)
4898 {
4899 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4900 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4901 	ac->nodemask = nodemask;
4902 	ac->migratetype = gfp_migratetype(gfp_mask);
4903 
4904 	if (cpusets_enabled()) {
4905 		*alloc_gfp |= __GFP_HARDWALL;
4906 		/*
4907 		 * When we are in the interrupt context, it is irrelevant
4908 		 * to the current task context. It means that any node ok.
4909 		 */
4910 		if (in_task() && !ac->nodemask)
4911 			ac->nodemask = &cpuset_current_mems_allowed;
4912 		else
4913 			*alloc_flags |= ALLOC_CPUSET;
4914 	}
4915 
4916 	might_alloc(gfp_mask);
4917 
4918 	/*
4919 	 * Don't invoke should_fail logic, since it may call
4920 	 * get_random_u32() and printk() which need to spin_lock.
4921 	 */
4922 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4923 	    should_fail_alloc_page(gfp_mask, order))
4924 		return false;
4925 
4926 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4927 
4928 	/* Dirty zone balancing only done in the fast path */
4929 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4930 
4931 	/*
4932 	 * The preferred zone is used for statistics but crucially it is
4933 	 * also used as the starting point for the zonelist iterator. It
4934 	 * may get reset for allocations that ignore memory policies.
4935 	 */
4936 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4937 					ac->highest_zoneidx, ac->nodemask);
4938 
4939 	return true;
4940 }
4941 
4942 /*
4943  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4944  * @gfp: GFP flags for the allocation
4945  * @preferred_nid: The preferred NUMA node ID to allocate from
4946  * @nodemask: Set of nodes to allocate from, may be NULL
4947  * @nr_pages: The number of pages desired in the array
4948  * @page_array: Array to store the pages
4949  *
4950  * This is a batched version of the page allocator that attempts to
4951  * allocate nr_pages quickly. Pages are added to the page_array.
4952  *
4953  * Note that only NULL elements are populated with pages and nr_pages
4954  * is the maximum number of pages that will be stored in the array.
4955  *
4956  * Returns the number of pages in the array.
4957  */
4958 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4959 			nodemask_t *nodemask, int nr_pages,
4960 			struct page **page_array)
4961 {
4962 	struct page *page;
4963 	unsigned long __maybe_unused UP_flags;
4964 	struct zone *zone;
4965 	struct zoneref *z;
4966 	struct per_cpu_pages *pcp;
4967 	struct list_head *pcp_list;
4968 	struct alloc_context ac;
4969 	gfp_t alloc_gfp;
4970 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4971 	int nr_populated = 0, nr_account = 0;
4972 
4973 	/*
4974 	 * Skip populated array elements to determine if any pages need
4975 	 * to be allocated before disabling IRQs.
4976 	 */
4977 	while (nr_populated < nr_pages && page_array[nr_populated])
4978 		nr_populated++;
4979 
4980 	/* No pages requested? */
4981 	if (unlikely(nr_pages <= 0))
4982 		goto out;
4983 
4984 	/* Already populated array? */
4985 	if (unlikely(nr_pages - nr_populated == 0))
4986 		goto out;
4987 
4988 	/* Bulk allocator does not support memcg accounting. */
4989 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4990 		goto failed;
4991 
4992 	/* Use the single page allocator for one page. */
4993 	if (nr_pages - nr_populated == 1)
4994 		goto failed;
4995 
4996 #ifdef CONFIG_PAGE_OWNER
4997 	/*
4998 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4999 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5000 	 * removes much of the performance benefit of bulk allocation so
5001 	 * force the caller to allocate one page at a time as it'll have
5002 	 * similar performance to added complexity to the bulk allocator.
5003 	 */
5004 	if (static_branch_unlikely(&page_owner_inited))
5005 		goto failed;
5006 #endif
5007 
5008 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5009 	gfp &= gfp_allowed_mask;
5010 	alloc_gfp = gfp;
5011 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5012 		goto out;
5013 	gfp = alloc_gfp;
5014 
5015 	/* Find an allowed local zone that meets the low watermark. */
5016 	z = ac.preferred_zoneref;
5017 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5018 		unsigned long mark;
5019 
5020 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5021 		    !__cpuset_zone_allowed(zone, gfp)) {
5022 			continue;
5023 		}
5024 
5025 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5026 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5027 			goto failed;
5028 		}
5029 
5030 		cond_accept_memory(zone, 0, alloc_flags);
5031 retry_this_zone:
5032 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5033 		if (zone_watermark_fast(zone, 0,  mark,
5034 				zonelist_zone_idx(ac.preferred_zoneref),
5035 				alloc_flags, gfp)) {
5036 			break;
5037 		}
5038 
5039 		if (cond_accept_memory(zone, 0, alloc_flags))
5040 			goto retry_this_zone;
5041 
5042 		/* Try again if zone has deferred pages */
5043 		if (deferred_pages_enabled()) {
5044 			if (_deferred_grow_zone(zone, 0))
5045 				goto retry_this_zone;
5046 		}
5047 	}
5048 
5049 	/*
5050 	 * If there are no allowed local zones that meets the watermarks then
5051 	 * try to allocate a single page and reclaim if necessary.
5052 	 */
5053 	if (unlikely(!zone))
5054 		goto failed;
5055 
5056 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5057 	pcp_trylock_prepare(UP_flags);
5058 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5059 	if (!pcp)
5060 		goto failed_irq;
5061 
5062 	/* Attempt the batch allocation */
5063 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5064 	while (nr_populated < nr_pages) {
5065 
5066 		/* Skip existing pages */
5067 		if (page_array[nr_populated]) {
5068 			nr_populated++;
5069 			continue;
5070 		}
5071 
5072 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5073 								pcp, pcp_list);
5074 		if (unlikely(!page)) {
5075 			/* Try and allocate at least one page */
5076 			if (!nr_account) {
5077 				pcp_spin_unlock(pcp);
5078 				goto failed_irq;
5079 			}
5080 			break;
5081 		}
5082 		nr_account++;
5083 
5084 		prep_new_page(page, 0, gfp, 0);
5085 		set_page_refcounted(page);
5086 		page_array[nr_populated++] = page;
5087 	}
5088 
5089 	pcp_spin_unlock(pcp);
5090 	pcp_trylock_finish(UP_flags);
5091 
5092 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5093 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5094 
5095 out:
5096 	return nr_populated;
5097 
5098 failed_irq:
5099 	pcp_trylock_finish(UP_flags);
5100 
5101 failed:
5102 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5103 	if (page)
5104 		page_array[nr_populated++] = page;
5105 	goto out;
5106 }
5107 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5108 
5109 /*
5110  * This is the 'heart' of the zoned buddy allocator.
5111  */
5112 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
5113 		int preferred_nid, nodemask_t *nodemask)
5114 {
5115 	struct page *page;
5116 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5117 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5118 	struct alloc_context ac = { };
5119 
5120 	/*
5121 	 * There are several places where we assume that the order value is sane
5122 	 * so bail out early if the request is out of bound.
5123 	 */
5124 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5125 		return NULL;
5126 
5127 	gfp &= gfp_allowed_mask;
5128 	/*
5129 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5130 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5131 	 * from a particular context which has been marked by
5132 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5133 	 * movable zones are not used during allocation.
5134 	 */
5135 	gfp = current_gfp_context(gfp);
5136 	alloc_gfp = gfp;
5137 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5138 			&alloc_gfp, &alloc_flags))
5139 		return NULL;
5140 
5141 	/*
5142 	 * Forbid the first pass from falling back to types that fragment
5143 	 * memory until all local zones are considered.
5144 	 */
5145 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5146 
5147 	/* First allocation attempt */
5148 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5149 	if (likely(page))
5150 		goto out;
5151 
5152 	alloc_gfp = gfp;
5153 	ac.spread_dirty_pages = false;
5154 
5155 	/*
5156 	 * Restore the original nodemask if it was potentially replaced with
5157 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5158 	 */
5159 	ac.nodemask = nodemask;
5160 
5161 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5162 
5163 out:
5164 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5165 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5166 		free_frozen_pages(page, order);
5167 		page = NULL;
5168 	}
5169 
5170 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5171 	kmsan_alloc_page(page, order, alloc_gfp);
5172 
5173 	return page;
5174 }
5175 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5176 
5177 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5178 		int preferred_nid, nodemask_t *nodemask)
5179 {
5180 	struct page *page;
5181 
5182 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5183 	if (page)
5184 		set_page_refcounted(page);
5185 	return page;
5186 }
5187 EXPORT_SYMBOL(__alloc_pages_noprof);
5188 
5189 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5190 		nodemask_t *nodemask)
5191 {
5192 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5193 					preferred_nid, nodemask);
5194 	return page_rmappable_folio(page);
5195 }
5196 EXPORT_SYMBOL(__folio_alloc_noprof);
5197 
5198 /*
5199  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5200  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5201  * you need to access high mem.
5202  */
5203 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5204 {
5205 	struct page *page;
5206 
5207 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5208 	if (!page)
5209 		return 0;
5210 	return (unsigned long) page_address(page);
5211 }
5212 EXPORT_SYMBOL(get_free_pages_noprof);
5213 
5214 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5215 {
5216 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5217 }
5218 EXPORT_SYMBOL(get_zeroed_page_noprof);
5219 
5220 static void ___free_pages(struct page *page, unsigned int order,
5221 			  fpi_t fpi_flags)
5222 {
5223 	/* get PageHead before we drop reference */
5224 	int head = PageHead(page);
5225 	/* get alloc tag in case the page is released by others */
5226 	struct alloc_tag *tag = pgalloc_tag_get(page);
5227 
5228 	if (put_page_testzero(page))
5229 		__free_frozen_pages(page, order, fpi_flags);
5230 	else if (!head) {
5231 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5232 		while (order-- > 0)
5233 			__free_frozen_pages(page + (1 << order), order,
5234 					    fpi_flags);
5235 	}
5236 }
5237 
5238 /**
5239  * __free_pages - Free pages allocated with alloc_pages().
5240  * @page: The page pointer returned from alloc_pages().
5241  * @order: The order of the allocation.
5242  *
5243  * This function can free multi-page allocations that are not compound
5244  * pages.  It does not check that the @order passed in matches that of
5245  * the allocation, so it is easy to leak memory.  Freeing more memory
5246  * than was allocated will probably emit a warning.
5247  *
5248  * If the last reference to this page is speculative, it will be released
5249  * by put_page() which only frees the first page of a non-compound
5250  * allocation.  To prevent the remaining pages from being leaked, we free
5251  * the subsequent pages here.  If you want to use the page's reference
5252  * count to decide when to free the allocation, you should allocate a
5253  * compound page, and use put_page() instead of __free_pages().
5254  *
5255  * Context: May be called in interrupt context or while holding a normal
5256  * spinlock, but not in NMI context or while holding a raw spinlock.
5257  */
5258 void __free_pages(struct page *page, unsigned int order)
5259 {
5260 	___free_pages(page, order, FPI_NONE);
5261 }
5262 EXPORT_SYMBOL(__free_pages);
5263 
5264 /*
5265  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5266  * page type (not only those that came from alloc_pages_nolock)
5267  */
5268 void free_pages_nolock(struct page *page, unsigned int order)
5269 {
5270 	___free_pages(page, order, FPI_TRYLOCK);
5271 }
5272 
5273 void free_pages(unsigned long addr, unsigned int order)
5274 {
5275 	if (addr != 0) {
5276 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5277 		__free_pages(virt_to_page((void *)addr), order);
5278 	}
5279 }
5280 
5281 EXPORT_SYMBOL(free_pages);
5282 
5283 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5284 		size_t size)
5285 {
5286 	if (addr) {
5287 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5288 		struct page *page = virt_to_page((void *)addr);
5289 		struct page *last = page + nr;
5290 
5291 		split_page_owner(page, order, 0);
5292 		pgalloc_tag_split(page_folio(page), order, 0);
5293 		split_page_memcg(page, order);
5294 		while (page < --last)
5295 			set_page_refcounted(last);
5296 
5297 		last = page + (1UL << order);
5298 		for (page += nr; page < last; page++)
5299 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5300 	}
5301 	return (void *)addr;
5302 }
5303 
5304 /**
5305  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5306  * @size: the number of bytes to allocate
5307  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5308  *
5309  * This function is similar to alloc_pages(), except that it allocates the
5310  * minimum number of pages to satisfy the request.  alloc_pages() can only
5311  * allocate memory in power-of-two pages.
5312  *
5313  * This function is also limited by MAX_PAGE_ORDER.
5314  *
5315  * Memory allocated by this function must be released by free_pages_exact().
5316  *
5317  * Return: pointer to the allocated area or %NULL in case of error.
5318  */
5319 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5320 {
5321 	unsigned int order = get_order(size);
5322 	unsigned long addr;
5323 
5324 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5325 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5326 
5327 	addr = get_free_pages_noprof(gfp_mask, order);
5328 	return make_alloc_exact(addr, order, size);
5329 }
5330 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5331 
5332 /**
5333  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5334  *			   pages on a node.
5335  * @nid: the preferred node ID where memory should be allocated
5336  * @size: the number of bytes to allocate
5337  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5338  *
5339  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5340  * back.
5341  *
5342  * Return: pointer to the allocated area or %NULL in case of error.
5343  */
5344 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5345 {
5346 	unsigned int order = get_order(size);
5347 	struct page *p;
5348 
5349 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5350 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5351 
5352 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5353 	if (!p)
5354 		return NULL;
5355 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5356 }
5357 
5358 /**
5359  * free_pages_exact - release memory allocated via alloc_pages_exact()
5360  * @virt: the value returned by alloc_pages_exact.
5361  * @size: size of allocation, same value as passed to alloc_pages_exact().
5362  *
5363  * Release the memory allocated by a previous call to alloc_pages_exact.
5364  */
5365 void free_pages_exact(void *virt, size_t size)
5366 {
5367 	unsigned long addr = (unsigned long)virt;
5368 	unsigned long end = addr + PAGE_ALIGN(size);
5369 
5370 	while (addr < end) {
5371 		free_page(addr);
5372 		addr += PAGE_SIZE;
5373 	}
5374 }
5375 EXPORT_SYMBOL(free_pages_exact);
5376 
5377 /**
5378  * nr_free_zone_pages - count number of pages beyond high watermark
5379  * @offset: The zone index of the highest zone
5380  *
5381  * nr_free_zone_pages() counts the number of pages which are beyond the
5382  * high watermark within all zones at or below a given zone index.  For each
5383  * zone, the number of pages is calculated as:
5384  *
5385  *     nr_free_zone_pages = managed_pages - high_pages
5386  *
5387  * Return: number of pages beyond high watermark.
5388  */
5389 static unsigned long nr_free_zone_pages(int offset)
5390 {
5391 	struct zoneref *z;
5392 	struct zone *zone;
5393 
5394 	/* Just pick one node, since fallback list is circular */
5395 	unsigned long sum = 0;
5396 
5397 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5398 
5399 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5400 		unsigned long size = zone_managed_pages(zone);
5401 		unsigned long high = high_wmark_pages(zone);
5402 		if (size > high)
5403 			sum += size - high;
5404 	}
5405 
5406 	return sum;
5407 }
5408 
5409 /**
5410  * nr_free_buffer_pages - count number of pages beyond high watermark
5411  *
5412  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5413  * watermark within ZONE_DMA and ZONE_NORMAL.
5414  *
5415  * Return: number of pages beyond high watermark within ZONE_DMA and
5416  * ZONE_NORMAL.
5417  */
5418 unsigned long nr_free_buffer_pages(void)
5419 {
5420 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5421 }
5422 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5423 
5424 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5425 {
5426 	zoneref->zone = zone;
5427 	zoneref->zone_idx = zone_idx(zone);
5428 }
5429 
5430 /*
5431  * Builds allocation fallback zone lists.
5432  *
5433  * Add all populated zones of a node to the zonelist.
5434  */
5435 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5436 {
5437 	struct zone *zone;
5438 	enum zone_type zone_type = MAX_NR_ZONES;
5439 	int nr_zones = 0;
5440 
5441 	do {
5442 		zone_type--;
5443 		zone = pgdat->node_zones + zone_type;
5444 		if (populated_zone(zone)) {
5445 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5446 			check_highest_zone(zone_type);
5447 		}
5448 	} while (zone_type);
5449 
5450 	return nr_zones;
5451 }
5452 
5453 #ifdef CONFIG_NUMA
5454 
5455 static int __parse_numa_zonelist_order(char *s)
5456 {
5457 	/*
5458 	 * We used to support different zonelists modes but they turned
5459 	 * out to be just not useful. Let's keep the warning in place
5460 	 * if somebody still use the cmd line parameter so that we do
5461 	 * not fail it silently
5462 	 */
5463 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5464 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5465 		return -EINVAL;
5466 	}
5467 	return 0;
5468 }
5469 
5470 static char numa_zonelist_order[] = "Node";
5471 #define NUMA_ZONELIST_ORDER_LEN	16
5472 /*
5473  * sysctl handler for numa_zonelist_order
5474  */
5475 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5476 		void *buffer, size_t *length, loff_t *ppos)
5477 {
5478 	if (write)
5479 		return __parse_numa_zonelist_order(buffer);
5480 	return proc_dostring(table, write, buffer, length, ppos);
5481 }
5482 
5483 static int node_load[MAX_NUMNODES];
5484 
5485 /**
5486  * find_next_best_node - find the next node that should appear in a given node's fallback list
5487  * @node: node whose fallback list we're appending
5488  * @used_node_mask: nodemask_t of already used nodes
5489  *
5490  * We use a number of factors to determine which is the next node that should
5491  * appear on a given node's fallback list.  The node should not have appeared
5492  * already in @node's fallback list, and it should be the next closest node
5493  * according to the distance array (which contains arbitrary distance values
5494  * from each node to each node in the system), and should also prefer nodes
5495  * with no CPUs, since presumably they'll have very little allocation pressure
5496  * on them otherwise.
5497  *
5498  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5499  */
5500 int find_next_best_node(int node, nodemask_t *used_node_mask)
5501 {
5502 	int n, val;
5503 	int min_val = INT_MAX;
5504 	int best_node = NUMA_NO_NODE;
5505 
5506 	/*
5507 	 * Use the local node if we haven't already, but for memoryless local
5508 	 * node, we should skip it and fall back to other nodes.
5509 	 */
5510 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5511 		node_set(node, *used_node_mask);
5512 		return node;
5513 	}
5514 
5515 	for_each_node_state(n, N_MEMORY) {
5516 
5517 		/* Don't want a node to appear more than once */
5518 		if (node_isset(n, *used_node_mask))
5519 			continue;
5520 
5521 		/* Use the distance array to find the distance */
5522 		val = node_distance(node, n);
5523 
5524 		/* Penalize nodes under us ("prefer the next node") */
5525 		val += (n < node);
5526 
5527 		/* Give preference to headless and unused nodes */
5528 		if (!cpumask_empty(cpumask_of_node(n)))
5529 			val += PENALTY_FOR_NODE_WITH_CPUS;
5530 
5531 		/* Slight preference for less loaded node */
5532 		val *= MAX_NUMNODES;
5533 		val += node_load[n];
5534 
5535 		if (val < min_val) {
5536 			min_val = val;
5537 			best_node = n;
5538 		}
5539 	}
5540 
5541 	if (best_node >= 0)
5542 		node_set(best_node, *used_node_mask);
5543 
5544 	return best_node;
5545 }
5546 
5547 
5548 /*
5549  * Build zonelists ordered by node and zones within node.
5550  * This results in maximum locality--normal zone overflows into local
5551  * DMA zone, if any--but risks exhausting DMA zone.
5552  */
5553 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5554 		unsigned nr_nodes)
5555 {
5556 	struct zoneref *zonerefs;
5557 	int i;
5558 
5559 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5560 
5561 	for (i = 0; i < nr_nodes; i++) {
5562 		int nr_zones;
5563 
5564 		pg_data_t *node = NODE_DATA(node_order[i]);
5565 
5566 		nr_zones = build_zonerefs_node(node, zonerefs);
5567 		zonerefs += nr_zones;
5568 	}
5569 	zonerefs->zone = NULL;
5570 	zonerefs->zone_idx = 0;
5571 }
5572 
5573 /*
5574  * Build __GFP_THISNODE zonelists
5575  */
5576 static void build_thisnode_zonelists(pg_data_t *pgdat)
5577 {
5578 	struct zoneref *zonerefs;
5579 	int nr_zones;
5580 
5581 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5582 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5583 	zonerefs += nr_zones;
5584 	zonerefs->zone = NULL;
5585 	zonerefs->zone_idx = 0;
5586 }
5587 
5588 static void build_zonelists(pg_data_t *pgdat)
5589 {
5590 	static int node_order[MAX_NUMNODES];
5591 	int node, nr_nodes = 0;
5592 	nodemask_t used_mask = NODE_MASK_NONE;
5593 	int local_node, prev_node;
5594 
5595 	/* NUMA-aware ordering of nodes */
5596 	local_node = pgdat->node_id;
5597 	prev_node = local_node;
5598 
5599 	memset(node_order, 0, sizeof(node_order));
5600 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5601 		/*
5602 		 * We don't want to pressure a particular node.
5603 		 * So adding penalty to the first node in same
5604 		 * distance group to make it round-robin.
5605 		 */
5606 		if (node_distance(local_node, node) !=
5607 		    node_distance(local_node, prev_node))
5608 			node_load[node] += 1;
5609 
5610 		node_order[nr_nodes++] = node;
5611 		prev_node = node;
5612 	}
5613 
5614 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5615 	build_thisnode_zonelists(pgdat);
5616 	pr_info("Fallback order for Node %d: ", local_node);
5617 	for (node = 0; node < nr_nodes; node++)
5618 		pr_cont("%d ", node_order[node]);
5619 	pr_cont("\n");
5620 }
5621 
5622 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5623 /*
5624  * Return node id of node used for "local" allocations.
5625  * I.e., first node id of first zone in arg node's generic zonelist.
5626  * Used for initializing percpu 'numa_mem', which is used primarily
5627  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5628  */
5629 int local_memory_node(int node)
5630 {
5631 	struct zoneref *z;
5632 
5633 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5634 				   gfp_zone(GFP_KERNEL),
5635 				   NULL);
5636 	return zonelist_node_idx(z);
5637 }
5638 #endif
5639 
5640 static void setup_min_unmapped_ratio(void);
5641 static void setup_min_slab_ratio(void);
5642 #else	/* CONFIG_NUMA */
5643 
5644 static void build_zonelists(pg_data_t *pgdat)
5645 {
5646 	struct zoneref *zonerefs;
5647 	int nr_zones;
5648 
5649 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5650 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5651 	zonerefs += nr_zones;
5652 
5653 	zonerefs->zone = NULL;
5654 	zonerefs->zone_idx = 0;
5655 }
5656 
5657 #endif	/* CONFIG_NUMA */
5658 
5659 /*
5660  * Boot pageset table. One per cpu which is going to be used for all
5661  * zones and all nodes. The parameters will be set in such a way
5662  * that an item put on a list will immediately be handed over to
5663  * the buddy list. This is safe since pageset manipulation is done
5664  * with interrupts disabled.
5665  *
5666  * The boot_pagesets must be kept even after bootup is complete for
5667  * unused processors and/or zones. They do play a role for bootstrapping
5668  * hotplugged processors.
5669  *
5670  * zoneinfo_show() and maybe other functions do
5671  * not check if the processor is online before following the pageset pointer.
5672  * Other parts of the kernel may not check if the zone is available.
5673  */
5674 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5675 /* These effectively disable the pcplists in the boot pageset completely */
5676 #define BOOT_PAGESET_HIGH	0
5677 #define BOOT_PAGESET_BATCH	1
5678 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5679 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5680 
5681 static void __build_all_zonelists(void *data)
5682 {
5683 	int nid;
5684 	int __maybe_unused cpu;
5685 	pg_data_t *self = data;
5686 	unsigned long flags;
5687 
5688 	/*
5689 	 * The zonelist_update_seq must be acquired with irqsave because the
5690 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5691 	 */
5692 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5693 	/*
5694 	 * Also disable synchronous printk() to prevent any printk() from
5695 	 * trying to hold port->lock, for
5696 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5697 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5698 	 */
5699 	printk_deferred_enter();
5700 
5701 #ifdef CONFIG_NUMA
5702 	memset(node_load, 0, sizeof(node_load));
5703 #endif
5704 
5705 	/*
5706 	 * This node is hotadded and no memory is yet present.   So just
5707 	 * building zonelists is fine - no need to touch other nodes.
5708 	 */
5709 	if (self && !node_online(self->node_id)) {
5710 		build_zonelists(self);
5711 	} else {
5712 		/*
5713 		 * All possible nodes have pgdat preallocated
5714 		 * in free_area_init
5715 		 */
5716 		for_each_node(nid) {
5717 			pg_data_t *pgdat = NODE_DATA(nid);
5718 
5719 			build_zonelists(pgdat);
5720 		}
5721 
5722 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5723 		/*
5724 		 * We now know the "local memory node" for each node--
5725 		 * i.e., the node of the first zone in the generic zonelist.
5726 		 * Set up numa_mem percpu variable for on-line cpus.  During
5727 		 * boot, only the boot cpu should be on-line;  we'll init the
5728 		 * secondary cpus' numa_mem as they come on-line.  During
5729 		 * node/memory hotplug, we'll fixup all on-line cpus.
5730 		 */
5731 		for_each_online_cpu(cpu)
5732 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5733 #endif
5734 	}
5735 
5736 	printk_deferred_exit();
5737 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5738 }
5739 
5740 static noinline void __init
5741 build_all_zonelists_init(void)
5742 {
5743 	int cpu;
5744 
5745 	__build_all_zonelists(NULL);
5746 
5747 	/*
5748 	 * Initialize the boot_pagesets that are going to be used
5749 	 * for bootstrapping processors. The real pagesets for
5750 	 * each zone will be allocated later when the per cpu
5751 	 * allocator is available.
5752 	 *
5753 	 * boot_pagesets are used also for bootstrapping offline
5754 	 * cpus if the system is already booted because the pagesets
5755 	 * are needed to initialize allocators on a specific cpu too.
5756 	 * F.e. the percpu allocator needs the page allocator which
5757 	 * needs the percpu allocator in order to allocate its pagesets
5758 	 * (a chicken-egg dilemma).
5759 	 */
5760 	for_each_possible_cpu(cpu)
5761 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5762 
5763 	mminit_verify_zonelist();
5764 	cpuset_init_current_mems_allowed();
5765 }
5766 
5767 /*
5768  * unless system_state == SYSTEM_BOOTING.
5769  *
5770  * __ref due to call of __init annotated helper build_all_zonelists_init
5771  * [protected by SYSTEM_BOOTING].
5772  */
5773 void __ref build_all_zonelists(pg_data_t *pgdat)
5774 {
5775 	unsigned long vm_total_pages;
5776 
5777 	if (system_state == SYSTEM_BOOTING) {
5778 		build_all_zonelists_init();
5779 	} else {
5780 		__build_all_zonelists(pgdat);
5781 		/* cpuset refresh routine should be here */
5782 	}
5783 	/* Get the number of free pages beyond high watermark in all zones. */
5784 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5785 	/*
5786 	 * Disable grouping by mobility if the number of pages in the
5787 	 * system is too low to allow the mechanism to work. It would be
5788 	 * more accurate, but expensive to check per-zone. This check is
5789 	 * made on memory-hotadd so a system can start with mobility
5790 	 * disabled and enable it later
5791 	 */
5792 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5793 		page_group_by_mobility_disabled = 1;
5794 	else
5795 		page_group_by_mobility_disabled = 0;
5796 
5797 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5798 		nr_online_nodes,
5799 		str_off_on(page_group_by_mobility_disabled),
5800 		vm_total_pages);
5801 #ifdef CONFIG_NUMA
5802 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5803 #endif
5804 }
5805 
5806 static int zone_batchsize(struct zone *zone)
5807 {
5808 #ifdef CONFIG_MMU
5809 	int batch;
5810 
5811 	/*
5812 	 * The number of pages to batch allocate is either ~0.1%
5813 	 * of the zone or 1MB, whichever is smaller. The batch
5814 	 * size is striking a balance between allocation latency
5815 	 * and zone lock contention.
5816 	 */
5817 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5818 	batch /= 4;		/* We effectively *= 4 below */
5819 	if (batch < 1)
5820 		batch = 1;
5821 
5822 	/*
5823 	 * Clamp the batch to a 2^n - 1 value. Having a power
5824 	 * of 2 value was found to be more likely to have
5825 	 * suboptimal cache aliasing properties in some cases.
5826 	 *
5827 	 * For example if 2 tasks are alternately allocating
5828 	 * batches of pages, one task can end up with a lot
5829 	 * of pages of one half of the possible page colors
5830 	 * and the other with pages of the other colors.
5831 	 */
5832 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5833 
5834 	return batch;
5835 
5836 #else
5837 	/* The deferral and batching of frees should be suppressed under NOMMU
5838 	 * conditions.
5839 	 *
5840 	 * The problem is that NOMMU needs to be able to allocate large chunks
5841 	 * of contiguous memory as there's no hardware page translation to
5842 	 * assemble apparent contiguous memory from discontiguous pages.
5843 	 *
5844 	 * Queueing large contiguous runs of pages for batching, however,
5845 	 * causes the pages to actually be freed in smaller chunks.  As there
5846 	 * can be a significant delay between the individual batches being
5847 	 * recycled, this leads to the once large chunks of space being
5848 	 * fragmented and becoming unavailable for high-order allocations.
5849 	 */
5850 	return 0;
5851 #endif
5852 }
5853 
5854 static int percpu_pagelist_high_fraction;
5855 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5856 			 int high_fraction)
5857 {
5858 #ifdef CONFIG_MMU
5859 	int high;
5860 	int nr_split_cpus;
5861 	unsigned long total_pages;
5862 
5863 	if (!high_fraction) {
5864 		/*
5865 		 * By default, the high value of the pcp is based on the zone
5866 		 * low watermark so that if they are full then background
5867 		 * reclaim will not be started prematurely.
5868 		 */
5869 		total_pages = low_wmark_pages(zone);
5870 	} else {
5871 		/*
5872 		 * If percpu_pagelist_high_fraction is configured, the high
5873 		 * value is based on a fraction of the managed pages in the
5874 		 * zone.
5875 		 */
5876 		total_pages = zone_managed_pages(zone) / high_fraction;
5877 	}
5878 
5879 	/*
5880 	 * Split the high value across all online CPUs local to the zone. Note
5881 	 * that early in boot that CPUs may not be online yet and that during
5882 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5883 	 * onlined. For memory nodes that have no CPUs, split the high value
5884 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5885 	 * prematurely due to pages stored on pcp lists.
5886 	 */
5887 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5888 	if (!nr_split_cpus)
5889 		nr_split_cpus = num_online_cpus();
5890 	high = total_pages / nr_split_cpus;
5891 
5892 	/*
5893 	 * Ensure high is at least batch*4. The multiple is based on the
5894 	 * historical relationship between high and batch.
5895 	 */
5896 	high = max(high, batch << 2);
5897 
5898 	return high;
5899 #else
5900 	return 0;
5901 #endif
5902 }
5903 
5904 /*
5905  * pcp->high and pcp->batch values are related and generally batch is lower
5906  * than high. They are also related to pcp->count such that count is lower
5907  * than high, and as soon as it reaches high, the pcplist is flushed.
5908  *
5909  * However, guaranteeing these relations at all times would require e.g. write
5910  * barriers here but also careful usage of read barriers at the read side, and
5911  * thus be prone to error and bad for performance. Thus the update only prevents
5912  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5913  * should ensure they can cope with those fields changing asynchronously, and
5914  * fully trust only the pcp->count field on the local CPU with interrupts
5915  * disabled.
5916  *
5917  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5918  * outside of boot time (or some other assurance that no concurrent updaters
5919  * exist).
5920  */
5921 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5922 			   unsigned long high_max, unsigned long batch)
5923 {
5924 	WRITE_ONCE(pcp->batch, batch);
5925 	WRITE_ONCE(pcp->high_min, high_min);
5926 	WRITE_ONCE(pcp->high_max, high_max);
5927 }
5928 
5929 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5930 {
5931 	int pindex;
5932 
5933 	memset(pcp, 0, sizeof(*pcp));
5934 	memset(pzstats, 0, sizeof(*pzstats));
5935 
5936 	spin_lock_init(&pcp->lock);
5937 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5938 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5939 
5940 	/*
5941 	 * Set batch and high values safe for a boot pageset. A true percpu
5942 	 * pageset's initialization will update them subsequently. Here we don't
5943 	 * need to be as careful as pageset_update() as nobody can access the
5944 	 * pageset yet.
5945 	 */
5946 	pcp->high_min = BOOT_PAGESET_HIGH;
5947 	pcp->high_max = BOOT_PAGESET_HIGH;
5948 	pcp->batch = BOOT_PAGESET_BATCH;
5949 	pcp->free_count = 0;
5950 }
5951 
5952 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5953 					      unsigned long high_max, unsigned long batch)
5954 {
5955 	struct per_cpu_pages *pcp;
5956 	int cpu;
5957 
5958 	for_each_possible_cpu(cpu) {
5959 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5960 		pageset_update(pcp, high_min, high_max, batch);
5961 	}
5962 }
5963 
5964 /*
5965  * Calculate and set new high and batch values for all per-cpu pagesets of a
5966  * zone based on the zone's size.
5967  */
5968 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5969 {
5970 	int new_high_min, new_high_max, new_batch;
5971 
5972 	new_batch = max(1, zone_batchsize(zone));
5973 	if (percpu_pagelist_high_fraction) {
5974 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5975 					     percpu_pagelist_high_fraction);
5976 		/*
5977 		 * PCP high is tuned manually, disable auto-tuning via
5978 		 * setting high_min and high_max to the manual value.
5979 		 */
5980 		new_high_max = new_high_min;
5981 	} else {
5982 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5983 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5984 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5985 	}
5986 
5987 	if (zone->pageset_high_min == new_high_min &&
5988 	    zone->pageset_high_max == new_high_max &&
5989 	    zone->pageset_batch == new_batch)
5990 		return;
5991 
5992 	zone->pageset_high_min = new_high_min;
5993 	zone->pageset_high_max = new_high_max;
5994 	zone->pageset_batch = new_batch;
5995 
5996 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5997 					  new_batch);
5998 }
5999 
6000 void __meminit setup_zone_pageset(struct zone *zone)
6001 {
6002 	int cpu;
6003 
6004 	/* Size may be 0 on !SMP && !NUMA */
6005 	if (sizeof(struct per_cpu_zonestat) > 0)
6006 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6007 
6008 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6009 	for_each_possible_cpu(cpu) {
6010 		struct per_cpu_pages *pcp;
6011 		struct per_cpu_zonestat *pzstats;
6012 
6013 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6014 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6015 		per_cpu_pages_init(pcp, pzstats);
6016 	}
6017 
6018 	zone_set_pageset_high_and_batch(zone, 0);
6019 }
6020 
6021 /*
6022  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6023  * page high values need to be recalculated.
6024  */
6025 static void zone_pcp_update(struct zone *zone, int cpu_online)
6026 {
6027 	mutex_lock(&pcp_batch_high_lock);
6028 	zone_set_pageset_high_and_batch(zone, cpu_online);
6029 	mutex_unlock(&pcp_batch_high_lock);
6030 }
6031 
6032 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6033 {
6034 	struct per_cpu_pages *pcp;
6035 	struct cpu_cacheinfo *cci;
6036 
6037 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6038 	cci = get_cpu_cacheinfo(cpu);
6039 	/*
6040 	 * If data cache slice of CPU is large enough, "pcp->batch"
6041 	 * pages can be preserved in PCP before draining PCP for
6042 	 * consecutive high-order pages freeing without allocation.
6043 	 * This can reduce zone lock contention without hurting
6044 	 * cache-hot pages sharing.
6045 	 */
6046 	spin_lock(&pcp->lock);
6047 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6048 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
6049 	else
6050 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6051 	spin_unlock(&pcp->lock);
6052 }
6053 
6054 void setup_pcp_cacheinfo(unsigned int cpu)
6055 {
6056 	struct zone *zone;
6057 
6058 	for_each_populated_zone(zone)
6059 		zone_pcp_update_cacheinfo(zone, cpu);
6060 }
6061 
6062 /*
6063  * Allocate per cpu pagesets and initialize them.
6064  * Before this call only boot pagesets were available.
6065  */
6066 void __init setup_per_cpu_pageset(void)
6067 {
6068 	struct pglist_data *pgdat;
6069 	struct zone *zone;
6070 	int __maybe_unused cpu;
6071 
6072 	for_each_populated_zone(zone)
6073 		setup_zone_pageset(zone);
6074 
6075 #ifdef CONFIG_NUMA
6076 	/*
6077 	 * Unpopulated zones continue using the boot pagesets.
6078 	 * The numa stats for these pagesets need to be reset.
6079 	 * Otherwise, they will end up skewing the stats of
6080 	 * the nodes these zones are associated with.
6081 	 */
6082 	for_each_possible_cpu(cpu) {
6083 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6084 		memset(pzstats->vm_numa_event, 0,
6085 		       sizeof(pzstats->vm_numa_event));
6086 	}
6087 #endif
6088 
6089 	for_each_online_pgdat(pgdat)
6090 		pgdat->per_cpu_nodestats =
6091 			alloc_percpu(struct per_cpu_nodestat);
6092 }
6093 
6094 __meminit void zone_pcp_init(struct zone *zone)
6095 {
6096 	/*
6097 	 * per cpu subsystem is not up at this point. The following code
6098 	 * relies on the ability of the linker to provide the
6099 	 * offset of a (static) per cpu variable into the per cpu area.
6100 	 */
6101 	zone->per_cpu_pageset = &boot_pageset;
6102 	zone->per_cpu_zonestats = &boot_zonestats;
6103 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
6104 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
6105 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6106 
6107 	if (populated_zone(zone))
6108 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6109 			 zone->present_pages, zone_batchsize(zone));
6110 }
6111 
6112 static void setup_per_zone_lowmem_reserve(void);
6113 
6114 void adjust_managed_page_count(struct page *page, long count)
6115 {
6116 	atomic_long_add(count, &page_zone(page)->managed_pages);
6117 	totalram_pages_add(count);
6118 	setup_per_zone_lowmem_reserve();
6119 }
6120 EXPORT_SYMBOL(adjust_managed_page_count);
6121 
6122 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6123 {
6124 	void *pos;
6125 	unsigned long pages = 0;
6126 
6127 	start = (void *)PAGE_ALIGN((unsigned long)start);
6128 	end = (void *)((unsigned long)end & PAGE_MASK);
6129 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6130 		struct page *page = virt_to_page(pos);
6131 		void *direct_map_addr;
6132 
6133 		/*
6134 		 * 'direct_map_addr' might be different from 'pos'
6135 		 * because some architectures' virt_to_page()
6136 		 * work with aliases.  Getting the direct map
6137 		 * address ensures that we get a _writeable_
6138 		 * alias for the memset().
6139 		 */
6140 		direct_map_addr = page_address(page);
6141 		/*
6142 		 * Perform a kasan-unchecked memset() since this memory
6143 		 * has not been initialized.
6144 		 */
6145 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6146 		if ((unsigned int)poison <= 0xFF)
6147 			memset(direct_map_addr, poison, PAGE_SIZE);
6148 
6149 		free_reserved_page(page);
6150 	}
6151 
6152 	if (pages && s)
6153 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6154 
6155 	return pages;
6156 }
6157 
6158 void free_reserved_page(struct page *page)
6159 {
6160 	clear_page_tag_ref(page);
6161 	ClearPageReserved(page);
6162 	init_page_count(page);
6163 	__free_page(page);
6164 	adjust_managed_page_count(page, 1);
6165 }
6166 EXPORT_SYMBOL(free_reserved_page);
6167 
6168 static int page_alloc_cpu_dead(unsigned int cpu)
6169 {
6170 	struct zone *zone;
6171 
6172 	lru_add_drain_cpu(cpu);
6173 	mlock_drain_remote(cpu);
6174 	drain_pages(cpu);
6175 
6176 	/*
6177 	 * Spill the event counters of the dead processor
6178 	 * into the current processors event counters.
6179 	 * This artificially elevates the count of the current
6180 	 * processor.
6181 	 */
6182 	vm_events_fold_cpu(cpu);
6183 
6184 	/*
6185 	 * Zero the differential counters of the dead processor
6186 	 * so that the vm statistics are consistent.
6187 	 *
6188 	 * This is only okay since the processor is dead and cannot
6189 	 * race with what we are doing.
6190 	 */
6191 	cpu_vm_stats_fold(cpu);
6192 
6193 	for_each_populated_zone(zone)
6194 		zone_pcp_update(zone, 0);
6195 
6196 	return 0;
6197 }
6198 
6199 static int page_alloc_cpu_online(unsigned int cpu)
6200 {
6201 	struct zone *zone;
6202 
6203 	for_each_populated_zone(zone)
6204 		zone_pcp_update(zone, 1);
6205 	return 0;
6206 }
6207 
6208 void __init page_alloc_init_cpuhp(void)
6209 {
6210 	int ret;
6211 
6212 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6213 					"mm/page_alloc:pcp",
6214 					page_alloc_cpu_online,
6215 					page_alloc_cpu_dead);
6216 	WARN_ON(ret < 0);
6217 }
6218 
6219 /*
6220  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6221  *	or min_free_kbytes changes.
6222  */
6223 static void calculate_totalreserve_pages(void)
6224 {
6225 	struct pglist_data *pgdat;
6226 	unsigned long reserve_pages = 0;
6227 	enum zone_type i, j;
6228 
6229 	for_each_online_pgdat(pgdat) {
6230 
6231 		pgdat->totalreserve_pages = 0;
6232 
6233 		for (i = 0; i < MAX_NR_ZONES; i++) {
6234 			struct zone *zone = pgdat->node_zones + i;
6235 			long max = 0;
6236 			unsigned long managed_pages = zone_managed_pages(zone);
6237 
6238 			/* Find valid and maximum lowmem_reserve in the zone */
6239 			for (j = i; j < MAX_NR_ZONES; j++) {
6240 				if (zone->lowmem_reserve[j] > max)
6241 					max = zone->lowmem_reserve[j];
6242 			}
6243 
6244 			/* we treat the high watermark as reserved pages. */
6245 			max += high_wmark_pages(zone);
6246 
6247 			if (max > managed_pages)
6248 				max = managed_pages;
6249 
6250 			pgdat->totalreserve_pages += max;
6251 
6252 			reserve_pages += max;
6253 		}
6254 	}
6255 	totalreserve_pages = reserve_pages;
6256 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6257 }
6258 
6259 /*
6260  * setup_per_zone_lowmem_reserve - called whenever
6261  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6262  *	has a correct pages reserved value, so an adequate number of
6263  *	pages are left in the zone after a successful __alloc_pages().
6264  */
6265 static void setup_per_zone_lowmem_reserve(void)
6266 {
6267 	struct pglist_data *pgdat;
6268 	enum zone_type i, j;
6269 
6270 	for_each_online_pgdat(pgdat) {
6271 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6272 			struct zone *zone = &pgdat->node_zones[i];
6273 			int ratio = sysctl_lowmem_reserve_ratio[i];
6274 			bool clear = !ratio || !zone_managed_pages(zone);
6275 			unsigned long managed_pages = 0;
6276 
6277 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6278 				struct zone *upper_zone = &pgdat->node_zones[j];
6279 
6280 				managed_pages += zone_managed_pages(upper_zone);
6281 
6282 				if (clear)
6283 					zone->lowmem_reserve[j] = 0;
6284 				else
6285 					zone->lowmem_reserve[j] = managed_pages / ratio;
6286 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6287 								       zone->lowmem_reserve[j]);
6288 			}
6289 		}
6290 	}
6291 
6292 	/* update totalreserve_pages */
6293 	calculate_totalreserve_pages();
6294 }
6295 
6296 static void __setup_per_zone_wmarks(void)
6297 {
6298 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6299 	unsigned long lowmem_pages = 0;
6300 	struct zone *zone;
6301 	unsigned long flags;
6302 
6303 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6304 	for_each_zone(zone) {
6305 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6306 			lowmem_pages += zone_managed_pages(zone);
6307 	}
6308 
6309 	for_each_zone(zone) {
6310 		u64 tmp;
6311 
6312 		spin_lock_irqsave(&zone->lock, flags);
6313 		tmp = (u64)pages_min * zone_managed_pages(zone);
6314 		tmp = div64_ul(tmp, lowmem_pages);
6315 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6316 			/*
6317 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6318 			 * need highmem and movable zones pages, so cap pages_min
6319 			 * to a small  value here.
6320 			 *
6321 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6322 			 * deltas control async page reclaim, and so should
6323 			 * not be capped for highmem and movable zones.
6324 			 */
6325 			unsigned long min_pages;
6326 
6327 			min_pages = zone_managed_pages(zone) / 1024;
6328 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6329 			zone->_watermark[WMARK_MIN] = min_pages;
6330 		} else {
6331 			/*
6332 			 * If it's a lowmem zone, reserve a number of pages
6333 			 * proportionate to the zone's size.
6334 			 */
6335 			zone->_watermark[WMARK_MIN] = tmp;
6336 		}
6337 
6338 		/*
6339 		 * Set the kswapd watermarks distance according to the
6340 		 * scale factor in proportion to available memory, but
6341 		 * ensure a minimum size on small systems.
6342 		 */
6343 		tmp = max_t(u64, tmp >> 2,
6344 			    mult_frac(zone_managed_pages(zone),
6345 				      watermark_scale_factor, 10000));
6346 
6347 		zone->watermark_boost = 0;
6348 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6349 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6350 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6351 		trace_mm_setup_per_zone_wmarks(zone);
6352 
6353 		spin_unlock_irqrestore(&zone->lock, flags);
6354 	}
6355 
6356 	/* update totalreserve_pages */
6357 	calculate_totalreserve_pages();
6358 }
6359 
6360 /**
6361  * setup_per_zone_wmarks - called when min_free_kbytes changes
6362  * or when memory is hot-{added|removed}
6363  *
6364  * Ensures that the watermark[min,low,high] values for each zone are set
6365  * correctly with respect to min_free_kbytes.
6366  */
6367 void setup_per_zone_wmarks(void)
6368 {
6369 	struct zone *zone;
6370 	static DEFINE_SPINLOCK(lock);
6371 
6372 	spin_lock(&lock);
6373 	__setup_per_zone_wmarks();
6374 	spin_unlock(&lock);
6375 
6376 	/*
6377 	 * The watermark size have changed so update the pcpu batch
6378 	 * and high limits or the limits may be inappropriate.
6379 	 */
6380 	for_each_zone(zone)
6381 		zone_pcp_update(zone, 0);
6382 }
6383 
6384 /*
6385  * Initialise min_free_kbytes.
6386  *
6387  * For small machines we want it small (128k min).  For large machines
6388  * we want it large (256MB max).  But it is not linear, because network
6389  * bandwidth does not increase linearly with machine size.  We use
6390  *
6391  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6392  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6393  *
6394  * which yields
6395  *
6396  * 16MB:	512k
6397  * 32MB:	724k
6398  * 64MB:	1024k
6399  * 128MB:	1448k
6400  * 256MB:	2048k
6401  * 512MB:	2896k
6402  * 1024MB:	4096k
6403  * 2048MB:	5792k
6404  * 4096MB:	8192k
6405  * 8192MB:	11584k
6406  * 16384MB:	16384k
6407  */
6408 void calculate_min_free_kbytes(void)
6409 {
6410 	unsigned long lowmem_kbytes;
6411 	int new_min_free_kbytes;
6412 
6413 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6414 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6415 
6416 	if (new_min_free_kbytes > user_min_free_kbytes)
6417 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6418 	else
6419 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6420 				new_min_free_kbytes, user_min_free_kbytes);
6421 
6422 }
6423 
6424 int __meminit init_per_zone_wmark_min(void)
6425 {
6426 	calculate_min_free_kbytes();
6427 	setup_per_zone_wmarks();
6428 	refresh_zone_stat_thresholds();
6429 	setup_per_zone_lowmem_reserve();
6430 
6431 #ifdef CONFIG_NUMA
6432 	setup_min_unmapped_ratio();
6433 	setup_min_slab_ratio();
6434 #endif
6435 
6436 	khugepaged_min_free_kbytes_update();
6437 
6438 	return 0;
6439 }
6440 postcore_initcall(init_per_zone_wmark_min)
6441 
6442 /*
6443  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6444  *	that we can call two helper functions whenever min_free_kbytes
6445  *	changes.
6446  */
6447 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6448 		void *buffer, size_t *length, loff_t *ppos)
6449 {
6450 	int rc;
6451 
6452 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6453 	if (rc)
6454 		return rc;
6455 
6456 	if (write) {
6457 		user_min_free_kbytes = min_free_kbytes;
6458 		setup_per_zone_wmarks();
6459 	}
6460 	return 0;
6461 }
6462 
6463 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6464 		void *buffer, size_t *length, loff_t *ppos)
6465 {
6466 	int rc;
6467 
6468 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6469 	if (rc)
6470 		return rc;
6471 
6472 	if (write)
6473 		setup_per_zone_wmarks();
6474 
6475 	return 0;
6476 }
6477 
6478 #ifdef CONFIG_NUMA
6479 static void setup_min_unmapped_ratio(void)
6480 {
6481 	pg_data_t *pgdat;
6482 	struct zone *zone;
6483 
6484 	for_each_online_pgdat(pgdat)
6485 		pgdat->min_unmapped_pages = 0;
6486 
6487 	for_each_zone(zone)
6488 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6489 						         sysctl_min_unmapped_ratio) / 100;
6490 }
6491 
6492 
6493 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6494 		void *buffer, size_t *length, loff_t *ppos)
6495 {
6496 	int rc;
6497 
6498 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6499 	if (rc)
6500 		return rc;
6501 
6502 	setup_min_unmapped_ratio();
6503 
6504 	return 0;
6505 }
6506 
6507 static void setup_min_slab_ratio(void)
6508 {
6509 	pg_data_t *pgdat;
6510 	struct zone *zone;
6511 
6512 	for_each_online_pgdat(pgdat)
6513 		pgdat->min_slab_pages = 0;
6514 
6515 	for_each_zone(zone)
6516 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6517 						     sysctl_min_slab_ratio) / 100;
6518 }
6519 
6520 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6521 		void *buffer, size_t *length, loff_t *ppos)
6522 {
6523 	int rc;
6524 
6525 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6526 	if (rc)
6527 		return rc;
6528 
6529 	setup_min_slab_ratio();
6530 
6531 	return 0;
6532 }
6533 #endif
6534 
6535 /*
6536  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6537  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6538  *	whenever sysctl_lowmem_reserve_ratio changes.
6539  *
6540  * The reserve ratio obviously has absolutely no relation with the
6541  * minimum watermarks. The lowmem reserve ratio can only make sense
6542  * if in function of the boot time zone sizes.
6543  */
6544 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6545 		int write, void *buffer, size_t *length, loff_t *ppos)
6546 {
6547 	int i;
6548 
6549 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6550 
6551 	for (i = 0; i < MAX_NR_ZONES; i++) {
6552 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6553 			sysctl_lowmem_reserve_ratio[i] = 0;
6554 	}
6555 
6556 	setup_per_zone_lowmem_reserve();
6557 	return 0;
6558 }
6559 
6560 /*
6561  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6562  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6563  * pagelist can have before it gets flushed back to buddy allocator.
6564  */
6565 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6566 		int write, void *buffer, size_t *length, loff_t *ppos)
6567 {
6568 	struct zone *zone;
6569 	int old_percpu_pagelist_high_fraction;
6570 	int ret;
6571 
6572 	mutex_lock(&pcp_batch_high_lock);
6573 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6574 
6575 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6576 	if (!write || ret < 0)
6577 		goto out;
6578 
6579 	/* Sanity checking to avoid pcp imbalance */
6580 	if (percpu_pagelist_high_fraction &&
6581 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6582 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6583 		ret = -EINVAL;
6584 		goto out;
6585 	}
6586 
6587 	/* No change? */
6588 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6589 		goto out;
6590 
6591 	for_each_populated_zone(zone)
6592 		zone_set_pageset_high_and_batch(zone, 0);
6593 out:
6594 	mutex_unlock(&pcp_batch_high_lock);
6595 	return ret;
6596 }
6597 
6598 static const struct ctl_table page_alloc_sysctl_table[] = {
6599 	{
6600 		.procname	= "min_free_kbytes",
6601 		.data		= &min_free_kbytes,
6602 		.maxlen		= sizeof(min_free_kbytes),
6603 		.mode		= 0644,
6604 		.proc_handler	= min_free_kbytes_sysctl_handler,
6605 		.extra1		= SYSCTL_ZERO,
6606 	},
6607 	{
6608 		.procname	= "watermark_boost_factor",
6609 		.data		= &watermark_boost_factor,
6610 		.maxlen		= sizeof(watermark_boost_factor),
6611 		.mode		= 0644,
6612 		.proc_handler	= proc_dointvec_minmax,
6613 		.extra1		= SYSCTL_ZERO,
6614 	},
6615 	{
6616 		.procname	= "watermark_scale_factor",
6617 		.data		= &watermark_scale_factor,
6618 		.maxlen		= sizeof(watermark_scale_factor),
6619 		.mode		= 0644,
6620 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6621 		.extra1		= SYSCTL_ONE,
6622 		.extra2		= SYSCTL_THREE_THOUSAND,
6623 	},
6624 	{
6625 		.procname	= "defrag_mode",
6626 		.data		= &defrag_mode,
6627 		.maxlen		= sizeof(defrag_mode),
6628 		.mode		= 0644,
6629 		.proc_handler	= proc_dointvec_minmax,
6630 		.extra1		= SYSCTL_ZERO,
6631 		.extra2		= SYSCTL_ONE,
6632 	},
6633 	{
6634 		.procname	= "percpu_pagelist_high_fraction",
6635 		.data		= &percpu_pagelist_high_fraction,
6636 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6637 		.mode		= 0644,
6638 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6639 		.extra1		= SYSCTL_ZERO,
6640 	},
6641 	{
6642 		.procname	= "lowmem_reserve_ratio",
6643 		.data		= &sysctl_lowmem_reserve_ratio,
6644 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6645 		.mode		= 0644,
6646 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6647 	},
6648 #ifdef CONFIG_NUMA
6649 	{
6650 		.procname	= "numa_zonelist_order",
6651 		.data		= &numa_zonelist_order,
6652 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6653 		.mode		= 0644,
6654 		.proc_handler	= numa_zonelist_order_handler,
6655 	},
6656 	{
6657 		.procname	= "min_unmapped_ratio",
6658 		.data		= &sysctl_min_unmapped_ratio,
6659 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6660 		.mode		= 0644,
6661 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6662 		.extra1		= SYSCTL_ZERO,
6663 		.extra2		= SYSCTL_ONE_HUNDRED,
6664 	},
6665 	{
6666 		.procname	= "min_slab_ratio",
6667 		.data		= &sysctl_min_slab_ratio,
6668 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6669 		.mode		= 0644,
6670 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6671 		.extra1		= SYSCTL_ZERO,
6672 		.extra2		= SYSCTL_ONE_HUNDRED,
6673 	},
6674 #endif
6675 };
6676 
6677 void __init page_alloc_sysctl_init(void)
6678 {
6679 	register_sysctl_init("vm", page_alloc_sysctl_table);
6680 }
6681 
6682 #ifdef CONFIG_CONTIG_ALLOC
6683 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6684 static void alloc_contig_dump_pages(struct list_head *page_list)
6685 {
6686 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6687 
6688 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6689 		struct page *page;
6690 
6691 		dump_stack();
6692 		list_for_each_entry(page, page_list, lru)
6693 			dump_page(page, "migration failure");
6694 	}
6695 }
6696 
6697 /* [start, end) must belong to a single zone. */
6698 static int __alloc_contig_migrate_range(struct compact_control *cc,
6699 					unsigned long start, unsigned long end)
6700 {
6701 	/* This function is based on compact_zone() from compaction.c. */
6702 	unsigned int nr_reclaimed;
6703 	unsigned long pfn = start;
6704 	unsigned int tries = 0;
6705 	int ret = 0;
6706 	struct migration_target_control mtc = {
6707 		.nid = zone_to_nid(cc->zone),
6708 		.gfp_mask = cc->gfp_mask,
6709 		.reason = MR_CONTIG_RANGE,
6710 	};
6711 
6712 	lru_cache_disable();
6713 
6714 	while (pfn < end || !list_empty(&cc->migratepages)) {
6715 		if (fatal_signal_pending(current)) {
6716 			ret = -EINTR;
6717 			break;
6718 		}
6719 
6720 		if (list_empty(&cc->migratepages)) {
6721 			cc->nr_migratepages = 0;
6722 			ret = isolate_migratepages_range(cc, pfn, end);
6723 			if (ret && ret != -EAGAIN)
6724 				break;
6725 			pfn = cc->migrate_pfn;
6726 			tries = 0;
6727 		} else if (++tries == 5) {
6728 			ret = -EBUSY;
6729 			break;
6730 		}
6731 
6732 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6733 							&cc->migratepages);
6734 		cc->nr_migratepages -= nr_reclaimed;
6735 
6736 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6737 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6738 
6739 		/*
6740 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6741 		 * to retry again over this error, so do the same here.
6742 		 */
6743 		if (ret == -ENOMEM)
6744 			break;
6745 	}
6746 
6747 	lru_cache_enable();
6748 	if (ret < 0) {
6749 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6750 			alloc_contig_dump_pages(&cc->migratepages);
6751 		putback_movable_pages(&cc->migratepages);
6752 	}
6753 
6754 	return (ret < 0) ? ret : 0;
6755 }
6756 
6757 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6758 {
6759 	int order;
6760 
6761 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6762 		struct page *page, *next;
6763 		int nr_pages = 1 << order;
6764 
6765 		list_for_each_entry_safe(page, next, &list[order], lru) {
6766 			int i;
6767 
6768 			post_alloc_hook(page, order, gfp_mask);
6769 			set_page_refcounted(page);
6770 			if (!order)
6771 				continue;
6772 
6773 			split_page(page, order);
6774 
6775 			/* Add all subpages to the order-0 head, in sequence. */
6776 			list_del(&page->lru);
6777 			for (i = 0; i < nr_pages; i++)
6778 				list_add_tail(&page[i].lru, &list[0]);
6779 		}
6780 	}
6781 }
6782 
6783 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6784 {
6785 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6786 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6787 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6788 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6789 
6790 	/*
6791 	 * We are given the range to allocate; node, mobility and placement
6792 	 * hints are irrelevant at this point. We'll simply ignore them.
6793 	 */
6794 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6795 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6796 
6797 	/*
6798 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6799 	 * selected action flags.
6800 	 */
6801 	if (gfp_mask & ~(reclaim_mask | action_mask))
6802 		return -EINVAL;
6803 
6804 	/*
6805 	 * Flags to control page compaction/migration/reclaim, to free up our
6806 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6807 	 * for them.
6808 	 *
6809 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6810 	 * to not degrade callers.
6811 	 */
6812 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6813 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6814 	return 0;
6815 }
6816 
6817 /**
6818  * alloc_contig_range() -- tries to allocate given range of pages
6819  * @start:	start PFN to allocate
6820  * @end:	one-past-the-last PFN to allocate
6821  * @alloc_flags:	allocation information
6822  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6823  *		action and reclaim modifiers are supported. Reclaim modifiers
6824  *		control allocation behavior during compaction/migration/reclaim.
6825  *
6826  * The PFN range does not have to be pageblock aligned. The PFN range must
6827  * belong to a single zone.
6828  *
6829  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6830  * pageblocks in the range.  Once isolated, the pageblocks should not
6831  * be modified by others.
6832  *
6833  * Return: zero on success or negative error code.  On success all
6834  * pages which PFN is in [start, end) are allocated for the caller and
6835  * need to be freed with free_contig_range().
6836  */
6837 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6838 			      acr_flags_t alloc_flags, gfp_t gfp_mask)
6839 {
6840 	unsigned long outer_start, outer_end;
6841 	int ret = 0;
6842 
6843 	struct compact_control cc = {
6844 		.nr_migratepages = 0,
6845 		.order = -1,
6846 		.zone = page_zone(pfn_to_page(start)),
6847 		.mode = MIGRATE_SYNC,
6848 		.ignore_skip_hint = true,
6849 		.no_set_skip_hint = true,
6850 		.alloc_contig = true,
6851 	};
6852 	INIT_LIST_HEAD(&cc.migratepages);
6853 	enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
6854 					    PB_ISOLATE_MODE_CMA_ALLOC :
6855 					    PB_ISOLATE_MODE_OTHER;
6856 
6857 	gfp_mask = current_gfp_context(gfp_mask);
6858 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6859 		return -EINVAL;
6860 
6861 	/*
6862 	 * What we do here is we mark all pageblocks in range as
6863 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6864 	 * have different sizes, and due to the way page allocator
6865 	 * work, start_isolate_page_range() has special handlings for this.
6866 	 *
6867 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6868 	 * migrate the pages from an unaligned range (ie. pages that
6869 	 * we are interested in). This will put all the pages in
6870 	 * range back to page allocator as MIGRATE_ISOLATE.
6871 	 *
6872 	 * When this is done, we take the pages in range from page
6873 	 * allocator removing them from the buddy system.  This way
6874 	 * page allocator will never consider using them.
6875 	 *
6876 	 * This lets us mark the pageblocks back as
6877 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6878 	 * aligned range but not in the unaligned, original range are
6879 	 * put back to page allocator so that buddy can use them.
6880 	 */
6881 
6882 	ret = start_isolate_page_range(start, end, mode);
6883 	if (ret)
6884 		goto done;
6885 
6886 	drain_all_pages(cc.zone);
6887 
6888 	/*
6889 	 * In case of -EBUSY, we'd like to know which page causes problem.
6890 	 * So, just fall through. test_pages_isolated() has a tracepoint
6891 	 * which will report the busy page.
6892 	 *
6893 	 * It is possible that busy pages could become available before
6894 	 * the call to test_pages_isolated, and the range will actually be
6895 	 * allocated.  So, if we fall through be sure to clear ret so that
6896 	 * -EBUSY is not accidentally used or returned to caller.
6897 	 */
6898 	ret = __alloc_contig_migrate_range(&cc, start, end);
6899 	if (ret && ret != -EBUSY)
6900 		goto done;
6901 
6902 	/*
6903 	 * When in-use hugetlb pages are migrated, they may simply be released
6904 	 * back into the free hugepage pool instead of being returned to the
6905 	 * buddy system.  After the migration of in-use huge pages is completed,
6906 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6907 	 * hugepages are properly released to the buddy system.
6908 	 */
6909 	ret = replace_free_hugepage_folios(start, end);
6910 	if (ret)
6911 		goto done;
6912 
6913 	/*
6914 	 * Pages from [start, end) are within a pageblock_nr_pages
6915 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6916 	 * more, all pages in [start, end) are free in page allocator.
6917 	 * What we are going to do is to allocate all pages from
6918 	 * [start, end) (that is remove them from page allocator).
6919 	 *
6920 	 * The only problem is that pages at the beginning and at the
6921 	 * end of interesting range may be not aligned with pages that
6922 	 * page allocator holds, ie. they can be part of higher order
6923 	 * pages.  Because of this, we reserve the bigger range and
6924 	 * once this is done free the pages we are not interested in.
6925 	 *
6926 	 * We don't have to hold zone->lock here because the pages are
6927 	 * isolated thus they won't get removed from buddy.
6928 	 */
6929 	outer_start = find_large_buddy(start);
6930 
6931 	/* Make sure the range is really isolated. */
6932 	if (test_pages_isolated(outer_start, end, mode)) {
6933 		ret = -EBUSY;
6934 		goto done;
6935 	}
6936 
6937 	/* Grab isolated pages from freelists. */
6938 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6939 	if (!outer_end) {
6940 		ret = -EBUSY;
6941 		goto done;
6942 	}
6943 
6944 	if (!(gfp_mask & __GFP_COMP)) {
6945 		split_free_pages(cc.freepages, gfp_mask);
6946 
6947 		/* Free head and tail (if any) */
6948 		if (start != outer_start)
6949 			free_contig_range(outer_start, start - outer_start);
6950 		if (end != outer_end)
6951 			free_contig_range(end, outer_end - end);
6952 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6953 		struct page *head = pfn_to_page(start);
6954 		int order = ilog2(end - start);
6955 
6956 		check_new_pages(head, order);
6957 		prep_new_page(head, order, gfp_mask, 0);
6958 		set_page_refcounted(head);
6959 	} else {
6960 		ret = -EINVAL;
6961 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6962 		     start, end, outer_start, outer_end);
6963 	}
6964 done:
6965 	undo_isolate_page_range(start, end);
6966 	return ret;
6967 }
6968 EXPORT_SYMBOL(alloc_contig_range_noprof);
6969 
6970 static int __alloc_contig_pages(unsigned long start_pfn,
6971 				unsigned long nr_pages, gfp_t gfp_mask)
6972 {
6973 	unsigned long end_pfn = start_pfn + nr_pages;
6974 
6975 	return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE,
6976 					 gfp_mask);
6977 }
6978 
6979 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6980 				   unsigned long nr_pages)
6981 {
6982 	unsigned long i, end_pfn = start_pfn + nr_pages;
6983 	struct page *page;
6984 
6985 	for (i = start_pfn; i < end_pfn; i++) {
6986 		page = pfn_to_online_page(i);
6987 		if (!page)
6988 			return false;
6989 
6990 		if (page_zone(page) != z)
6991 			return false;
6992 
6993 		if (PageReserved(page))
6994 			return false;
6995 
6996 		if (PageHuge(page))
6997 			return false;
6998 	}
6999 	return true;
7000 }
7001 
7002 static bool zone_spans_last_pfn(const struct zone *zone,
7003 				unsigned long start_pfn, unsigned long nr_pages)
7004 {
7005 	unsigned long last_pfn = start_pfn + nr_pages - 1;
7006 
7007 	return zone_spans_pfn(zone, last_pfn);
7008 }
7009 
7010 /**
7011  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7012  * @nr_pages:	Number of contiguous pages to allocate
7013  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
7014  *		action and reclaim modifiers are supported. Reclaim modifiers
7015  *		control allocation behavior during compaction/migration/reclaim.
7016  * @nid:	Target node
7017  * @nodemask:	Mask for other possible nodes
7018  *
7019  * This routine is a wrapper around alloc_contig_range(). It scans over zones
7020  * on an applicable zonelist to find a contiguous pfn range which can then be
7021  * tried for allocation with alloc_contig_range(). This routine is intended
7022  * for allocation requests which can not be fulfilled with the buddy allocator.
7023  *
7024  * The allocated memory is always aligned to a page boundary. If nr_pages is a
7025  * power of two, then allocated range is also guaranteed to be aligned to same
7026  * nr_pages (e.g. 1GB request would be aligned to 1GB).
7027  *
7028  * Allocated pages can be freed with free_contig_range() or by manually calling
7029  * __free_page() on each allocated page.
7030  *
7031  * Return: pointer to contiguous pages on success, or NULL if not successful.
7032  */
7033 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7034 				 int nid, nodemask_t *nodemask)
7035 {
7036 	unsigned long ret, pfn, flags;
7037 	struct zonelist *zonelist;
7038 	struct zone *zone;
7039 	struct zoneref *z;
7040 
7041 	zonelist = node_zonelist(nid, gfp_mask);
7042 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7043 					gfp_zone(gfp_mask), nodemask) {
7044 		spin_lock_irqsave(&zone->lock, flags);
7045 
7046 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7047 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7048 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
7049 				/*
7050 				 * We release the zone lock here because
7051 				 * alloc_contig_range() will also lock the zone
7052 				 * at some point. If there's an allocation
7053 				 * spinning on this lock, it may win the race
7054 				 * and cause alloc_contig_range() to fail...
7055 				 */
7056 				spin_unlock_irqrestore(&zone->lock, flags);
7057 				ret = __alloc_contig_pages(pfn, nr_pages,
7058 							gfp_mask);
7059 				if (!ret)
7060 					return pfn_to_page(pfn);
7061 				spin_lock_irqsave(&zone->lock, flags);
7062 			}
7063 			pfn += nr_pages;
7064 		}
7065 		spin_unlock_irqrestore(&zone->lock, flags);
7066 	}
7067 	return NULL;
7068 }
7069 #endif /* CONFIG_CONTIG_ALLOC */
7070 
7071 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7072 {
7073 	unsigned long count = 0;
7074 	struct folio *folio = pfn_folio(pfn);
7075 
7076 	if (folio_test_large(folio)) {
7077 		int expected = folio_nr_pages(folio);
7078 
7079 		if (nr_pages == expected)
7080 			folio_put(folio);
7081 		else
7082 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
7083 			     pfn, nr_pages, expected);
7084 		return;
7085 	}
7086 
7087 	for (; nr_pages--; pfn++) {
7088 		struct page *page = pfn_to_page(pfn);
7089 
7090 		count += page_count(page) != 1;
7091 		__free_page(page);
7092 	}
7093 	WARN(count != 0, "%lu pages are still in use!\n", count);
7094 }
7095 EXPORT_SYMBOL(free_contig_range);
7096 
7097 /*
7098  * Effectively disable pcplists for the zone by setting the high limit to 0
7099  * and draining all cpus. A concurrent page freeing on another CPU that's about
7100  * to put the page on pcplist will either finish before the drain and the page
7101  * will be drained, or observe the new high limit and skip the pcplist.
7102  *
7103  * Must be paired with a call to zone_pcp_enable().
7104  */
7105 void zone_pcp_disable(struct zone *zone)
7106 {
7107 	mutex_lock(&pcp_batch_high_lock);
7108 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7109 	__drain_all_pages(zone, true);
7110 }
7111 
7112 void zone_pcp_enable(struct zone *zone)
7113 {
7114 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7115 		zone->pageset_high_max, zone->pageset_batch);
7116 	mutex_unlock(&pcp_batch_high_lock);
7117 }
7118 
7119 void zone_pcp_reset(struct zone *zone)
7120 {
7121 	int cpu;
7122 	struct per_cpu_zonestat *pzstats;
7123 
7124 	if (zone->per_cpu_pageset != &boot_pageset) {
7125 		for_each_online_cpu(cpu) {
7126 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7127 			drain_zonestat(zone, pzstats);
7128 		}
7129 		free_percpu(zone->per_cpu_pageset);
7130 		zone->per_cpu_pageset = &boot_pageset;
7131 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7132 			free_percpu(zone->per_cpu_zonestats);
7133 			zone->per_cpu_zonestats = &boot_zonestats;
7134 		}
7135 	}
7136 }
7137 
7138 #ifdef CONFIG_MEMORY_HOTREMOVE
7139 /*
7140  * All pages in the range must be in a single zone, must not contain holes,
7141  * must span full sections, and must be isolated before calling this function.
7142  *
7143  * Returns the number of managed (non-PageOffline()) pages in the range: the
7144  * number of pages for which memory offlining code must adjust managed page
7145  * counters using adjust_managed_page_count().
7146  */
7147 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7148 		unsigned long end_pfn)
7149 {
7150 	unsigned long already_offline = 0, flags;
7151 	unsigned long pfn = start_pfn;
7152 	struct page *page;
7153 	struct zone *zone;
7154 	unsigned int order;
7155 
7156 	offline_mem_sections(pfn, end_pfn);
7157 	zone = page_zone(pfn_to_page(pfn));
7158 	spin_lock_irqsave(&zone->lock, flags);
7159 	while (pfn < end_pfn) {
7160 		page = pfn_to_page(pfn);
7161 		/*
7162 		 * The HWPoisoned page may be not in buddy system, and
7163 		 * page_count() is not 0.
7164 		 */
7165 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7166 			pfn++;
7167 			continue;
7168 		}
7169 		/*
7170 		 * At this point all remaining PageOffline() pages have a
7171 		 * reference count of 0 and can simply be skipped.
7172 		 */
7173 		if (PageOffline(page)) {
7174 			BUG_ON(page_count(page));
7175 			BUG_ON(PageBuddy(page));
7176 			already_offline++;
7177 			pfn++;
7178 			continue;
7179 		}
7180 
7181 		BUG_ON(page_count(page));
7182 		BUG_ON(!PageBuddy(page));
7183 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7184 		order = buddy_order(page);
7185 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7186 		pfn += (1 << order);
7187 	}
7188 	spin_unlock_irqrestore(&zone->lock, flags);
7189 
7190 	return end_pfn - start_pfn - already_offline;
7191 }
7192 #endif
7193 
7194 /*
7195  * This function returns a stable result only if called under zone lock.
7196  */
7197 bool is_free_buddy_page(const struct page *page)
7198 {
7199 	unsigned long pfn = page_to_pfn(page);
7200 	unsigned int order;
7201 
7202 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7203 		const struct page *head = page - (pfn & ((1 << order) - 1));
7204 
7205 		if (PageBuddy(head) &&
7206 		    buddy_order_unsafe(head) >= order)
7207 			break;
7208 	}
7209 
7210 	return order <= MAX_PAGE_ORDER;
7211 }
7212 EXPORT_SYMBOL(is_free_buddy_page);
7213 
7214 #ifdef CONFIG_MEMORY_FAILURE
7215 static inline void add_to_free_list(struct page *page, struct zone *zone,
7216 				    unsigned int order, int migratetype,
7217 				    bool tail)
7218 {
7219 	__add_to_free_list(page, zone, order, migratetype, tail);
7220 	account_freepages(zone, 1 << order, migratetype);
7221 }
7222 
7223 /*
7224  * Break down a higher-order page in sub-pages, and keep our target out of
7225  * buddy allocator.
7226  */
7227 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7228 				   struct page *target, int low, int high,
7229 				   int migratetype)
7230 {
7231 	unsigned long size = 1 << high;
7232 	struct page *current_buddy;
7233 
7234 	while (high > low) {
7235 		high--;
7236 		size >>= 1;
7237 
7238 		if (target >= &page[size]) {
7239 			current_buddy = page;
7240 			page = page + size;
7241 		} else {
7242 			current_buddy = page + size;
7243 		}
7244 
7245 		if (set_page_guard(zone, current_buddy, high))
7246 			continue;
7247 
7248 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7249 		set_buddy_order(current_buddy, high);
7250 	}
7251 }
7252 
7253 /*
7254  * Take a page that will be marked as poisoned off the buddy allocator.
7255  */
7256 bool take_page_off_buddy(struct page *page)
7257 {
7258 	struct zone *zone = page_zone(page);
7259 	unsigned long pfn = page_to_pfn(page);
7260 	unsigned long flags;
7261 	unsigned int order;
7262 	bool ret = false;
7263 
7264 	spin_lock_irqsave(&zone->lock, flags);
7265 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7266 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7267 		int page_order = buddy_order(page_head);
7268 
7269 		if (PageBuddy(page_head) && page_order >= order) {
7270 			unsigned long pfn_head = page_to_pfn(page_head);
7271 			int migratetype = get_pfnblock_migratetype(page_head,
7272 								   pfn_head);
7273 
7274 			del_page_from_free_list(page_head, zone, page_order,
7275 						migratetype);
7276 			break_down_buddy_pages(zone, page_head, page, 0,
7277 						page_order, migratetype);
7278 			SetPageHWPoisonTakenOff(page);
7279 			ret = true;
7280 			break;
7281 		}
7282 		if (page_count(page_head) > 0)
7283 			break;
7284 	}
7285 	spin_unlock_irqrestore(&zone->lock, flags);
7286 	return ret;
7287 }
7288 
7289 /*
7290  * Cancel takeoff done by take_page_off_buddy().
7291  */
7292 bool put_page_back_buddy(struct page *page)
7293 {
7294 	struct zone *zone = page_zone(page);
7295 	unsigned long flags;
7296 	bool ret = false;
7297 
7298 	spin_lock_irqsave(&zone->lock, flags);
7299 	if (put_page_testzero(page)) {
7300 		unsigned long pfn = page_to_pfn(page);
7301 		int migratetype = get_pfnblock_migratetype(page, pfn);
7302 
7303 		ClearPageHWPoisonTakenOff(page);
7304 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7305 		if (TestClearPageHWPoison(page)) {
7306 			ret = true;
7307 		}
7308 	}
7309 	spin_unlock_irqrestore(&zone->lock, flags);
7310 
7311 	return ret;
7312 }
7313 #endif
7314 
7315 #ifdef CONFIG_ZONE_DMA
7316 bool has_managed_dma(void)
7317 {
7318 	struct pglist_data *pgdat;
7319 
7320 	for_each_online_pgdat(pgdat) {
7321 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7322 
7323 		if (managed_zone(zone))
7324 			return true;
7325 	}
7326 	return false;
7327 }
7328 #endif /* CONFIG_ZONE_DMA */
7329 
7330 #ifdef CONFIG_UNACCEPTED_MEMORY
7331 
7332 static bool lazy_accept = true;
7333 
7334 static int __init accept_memory_parse(char *p)
7335 {
7336 	if (!strcmp(p, "lazy")) {
7337 		lazy_accept = true;
7338 		return 0;
7339 	} else if (!strcmp(p, "eager")) {
7340 		lazy_accept = false;
7341 		return 0;
7342 	} else {
7343 		return -EINVAL;
7344 	}
7345 }
7346 early_param("accept_memory", accept_memory_parse);
7347 
7348 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7349 {
7350 	phys_addr_t start = page_to_phys(page);
7351 
7352 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7353 }
7354 
7355 static void __accept_page(struct zone *zone, unsigned long *flags,
7356 			  struct page *page)
7357 {
7358 	list_del(&page->lru);
7359 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7360 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7361 	__ClearPageUnaccepted(page);
7362 	spin_unlock_irqrestore(&zone->lock, *flags);
7363 
7364 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7365 
7366 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7367 }
7368 
7369 void accept_page(struct page *page)
7370 {
7371 	struct zone *zone = page_zone(page);
7372 	unsigned long flags;
7373 
7374 	spin_lock_irqsave(&zone->lock, flags);
7375 	if (!PageUnaccepted(page)) {
7376 		spin_unlock_irqrestore(&zone->lock, flags);
7377 		return;
7378 	}
7379 
7380 	/* Unlocks zone->lock */
7381 	__accept_page(zone, &flags, page);
7382 }
7383 
7384 static bool try_to_accept_memory_one(struct zone *zone)
7385 {
7386 	unsigned long flags;
7387 	struct page *page;
7388 
7389 	spin_lock_irqsave(&zone->lock, flags);
7390 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7391 					struct page, lru);
7392 	if (!page) {
7393 		spin_unlock_irqrestore(&zone->lock, flags);
7394 		return false;
7395 	}
7396 
7397 	/* Unlocks zone->lock */
7398 	__accept_page(zone, &flags, page);
7399 
7400 	return true;
7401 }
7402 
7403 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7404 			       int alloc_flags)
7405 {
7406 	long to_accept, wmark;
7407 	bool ret = false;
7408 
7409 	if (list_empty(&zone->unaccepted_pages))
7410 		return false;
7411 
7412 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7413 	if (alloc_flags & ALLOC_TRYLOCK)
7414 		return false;
7415 
7416 	wmark = promo_wmark_pages(zone);
7417 
7418 	/*
7419 	 * Watermarks have not been initialized yet.
7420 	 *
7421 	 * Accepting one MAX_ORDER page to ensure progress.
7422 	 */
7423 	if (!wmark)
7424 		return try_to_accept_memory_one(zone);
7425 
7426 	/* How much to accept to get to promo watermark? */
7427 	to_accept = wmark -
7428 		    (zone_page_state(zone, NR_FREE_PAGES) -
7429 		    __zone_watermark_unusable_free(zone, order, 0) -
7430 		    zone_page_state(zone, NR_UNACCEPTED));
7431 
7432 	while (to_accept > 0) {
7433 		if (!try_to_accept_memory_one(zone))
7434 			break;
7435 		ret = true;
7436 		to_accept -= MAX_ORDER_NR_PAGES;
7437 	}
7438 
7439 	return ret;
7440 }
7441 
7442 static bool __free_unaccepted(struct page *page)
7443 {
7444 	struct zone *zone = page_zone(page);
7445 	unsigned long flags;
7446 
7447 	if (!lazy_accept)
7448 		return false;
7449 
7450 	spin_lock_irqsave(&zone->lock, flags);
7451 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7452 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7453 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7454 	__SetPageUnaccepted(page);
7455 	spin_unlock_irqrestore(&zone->lock, flags);
7456 
7457 	return true;
7458 }
7459 
7460 #else
7461 
7462 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7463 {
7464 	return false;
7465 }
7466 
7467 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7468 			       int alloc_flags)
7469 {
7470 	return false;
7471 }
7472 
7473 static bool __free_unaccepted(struct page *page)
7474 {
7475 	BUILD_BUG();
7476 	return false;
7477 }
7478 
7479 #endif /* CONFIG_UNACCEPTED_MEMORY */
7480 
7481 /**
7482  * alloc_pages_nolock - opportunistic reentrant allocation from any context
7483  * @nid: node to allocate from
7484  * @order: allocation order size
7485  *
7486  * Allocates pages of a given order from the given node. This is safe to
7487  * call from any context (from atomic, NMI, and also reentrant
7488  * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7489  * Allocation is best effort and to be expected to fail easily so nobody should
7490  * rely on the success. Failures are not reported via warn_alloc().
7491  * See always fail conditions below.
7492  *
7493  * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7494  * It means ENOMEM. There is no reason to call it again and expect !NULL.
7495  */
7496 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
7497 {
7498 	/*
7499 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7500 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7501 	 * is not safe in arbitrary context.
7502 	 *
7503 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7504 	 *
7505 	 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7506 	 * to warn. Also warn would trigger printk() which is unsafe from
7507 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7508 	 * since the running context is unknown.
7509 	 *
7510 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7511 	 * is safe in any context. Also zeroing the page is mandatory for
7512 	 * BPF use cases.
7513 	 *
7514 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7515 	 * specify it here to highlight that alloc_pages_nolock()
7516 	 * doesn't want to deplete reserves.
7517 	 */
7518 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7519 			| __GFP_ACCOUNT;
7520 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7521 	struct alloc_context ac = { };
7522 	struct page *page;
7523 
7524 	/*
7525 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7526 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7527 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7528 	 * mark the task as the owner of another rt_spin_lock which will
7529 	 * confuse PI logic, so return immediately if called form hard IRQ or
7530 	 * NMI.
7531 	 *
7532 	 * Note, irqs_disabled() case is ok. This function can be called
7533 	 * from raw_spin_lock_irqsave region.
7534 	 */
7535 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7536 		return NULL;
7537 	if (!pcp_allowed_order(order))
7538 		return NULL;
7539 
7540 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7541 	if (deferred_pages_enabled())
7542 		return NULL;
7543 
7544 	if (nid == NUMA_NO_NODE)
7545 		nid = numa_node_id();
7546 
7547 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7548 			    &alloc_gfp, &alloc_flags);
7549 
7550 	/*
7551 	 * Best effort allocation from percpu free list.
7552 	 * If it's empty attempt to spin_trylock zone->lock.
7553 	 */
7554 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7555 
7556 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7557 
7558 	if (page)
7559 		set_page_refcounted(page);
7560 
7561 	if (memcg_kmem_online() && page &&
7562 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7563 		free_pages_nolock(page, order);
7564 		page = NULL;
7565 	}
7566 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7567 	kmsan_alloc_page(page, order, alloc_gfp);
7568 	return page;
7569 }
7570