1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 #include "internals.h"
23
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26 #define FLAG_COMPAT BIT(0)
27 struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39 };
40
41 struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45 };
46
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
60 {
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64 return -EINVAL;
65 }
66
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
69 {
70 int ret;
71
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
77 }
78
79 return -EINVAL;
80 }
81
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
85 {
86
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
92
93 /*
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
96 */
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
99
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110 if (rc)
111 return rc;
112
113 offset += ksize;
114 val += ksize;
115 }
116
117 /*
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
120 */
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
125
126 val += ksize;
127 offset += ksize;
128 keepout++;
129 }
130
131 /*
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
134 */
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
141 }
142
143 return 0;
144 }
145
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
148 {
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
157 {
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
171 };
172
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179 {
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184
185 static DEVICE_ATTR_RO(type);
186
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 char *buf)
189 {
190 struct nvmem_device *nvmem = to_nvmem_device(dev);
191
192 return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t count)
197 {
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199 int ret = kstrtobool(buf, &nvmem->read_only);
200
201 if (ret < 0)
202 return ret;
203
204 return count;
205 }
206
207 static DEVICE_ATTR_RW(force_ro);
208
209 static struct attribute *nvmem_attrs[] = {
210 &dev_attr_force_ro.attr,
211 &dev_attr_type.attr,
212 NULL,
213 };
214
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 struct bin_attribute *attr, char *buf,
217 loff_t pos, size_t count)
218 {
219 struct device *dev;
220 struct nvmem_device *nvmem;
221 int rc;
222
223 if (attr->private)
224 dev = attr->private;
225 else
226 dev = kobj_to_dev(kobj);
227 nvmem = to_nvmem_device(dev);
228
229 if (!IS_ALIGNED(pos, nvmem->stride))
230 return -EINVAL;
231
232 if (count < nvmem->word_size)
233 return -EINVAL;
234
235 count = round_down(count, nvmem->word_size);
236
237 if (!nvmem->reg_read)
238 return -EPERM;
239
240 rc = nvmem_reg_read(nvmem, pos, buf, count);
241
242 if (rc)
243 return rc;
244
245 return count;
246 }
247
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 struct bin_attribute *attr, char *buf,
250 loff_t pos, size_t count)
251 {
252 struct device *dev;
253 struct nvmem_device *nvmem;
254 int rc;
255
256 if (attr->private)
257 dev = attr->private;
258 else
259 dev = kobj_to_dev(kobj);
260 nvmem = to_nvmem_device(dev);
261
262 if (!IS_ALIGNED(pos, nvmem->stride))
263 return -EINVAL;
264
265 if (count < nvmem->word_size)
266 return -EINVAL;
267
268 count = round_down(count, nvmem->word_size);
269
270 if (!nvmem->reg_write)
271 return -EPERM;
272
273 rc = nvmem_reg_write(nvmem, pos, buf, count);
274
275 if (rc)
276 return rc;
277
278 return count;
279 }
280
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 umode_t mode = 0400;
284
285 if (!nvmem->root_only)
286 mode |= 0044;
287
288 if (!nvmem->read_only)
289 mode |= 0200;
290
291 if (!nvmem->reg_write)
292 mode &= ~0200;
293
294 if (!nvmem->reg_read)
295 mode &= ~0444;
296
297 return mode;
298 }
299
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 struct bin_attribute *attr, int i)
302 {
303 struct device *dev = kobj_to_dev(kobj);
304 struct nvmem_device *nvmem = to_nvmem_device(dev);
305
306 attr->size = nvmem->size;
307
308 return nvmem_bin_attr_get_umode(nvmem);
309 }
310
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)311 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
312 struct attribute *attr, int i)
313 {
314 struct device *dev = kobj_to_dev(kobj);
315 struct nvmem_device *nvmem = to_nvmem_device(dev);
316
317 /*
318 * If the device has no .reg_write operation, do not allow
319 * configuration as read-write.
320 * If the device is set as read-only by configuration, it
321 * can be forced into read-write mode using the 'force_ro'
322 * attribute.
323 */
324 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
325 return 0; /* Attribute not visible */
326
327 return attr->mode;
328 }
329
330 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
331 const char *id, int index);
332
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)333 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
334 struct bin_attribute *attr, char *buf,
335 loff_t pos, size_t count)
336 {
337 struct nvmem_cell_entry *entry;
338 struct nvmem_cell *cell = NULL;
339 size_t cell_sz, read_len;
340 void *content;
341
342 entry = attr->private;
343 cell = nvmem_create_cell(entry, entry->name, 0);
344 if (IS_ERR(cell))
345 return PTR_ERR(cell);
346
347 if (!cell)
348 return -EINVAL;
349
350 content = nvmem_cell_read(cell, &cell_sz);
351 if (IS_ERR(content)) {
352 read_len = PTR_ERR(content);
353 goto destroy_cell;
354 }
355
356 read_len = min_t(unsigned int, cell_sz - pos, count);
357 memcpy(buf, content + pos, read_len);
358 kfree(content);
359
360 destroy_cell:
361 kfree_const(cell->id);
362 kfree(cell);
363
364 return read_len;
365 }
366
367 /* default read/write permissions */
368 static struct bin_attribute bin_attr_rw_nvmem = {
369 .attr = {
370 .name = "nvmem",
371 .mode = 0644,
372 },
373 .read = bin_attr_nvmem_read,
374 .write = bin_attr_nvmem_write,
375 };
376
377 static struct bin_attribute *nvmem_bin_attributes[] = {
378 &bin_attr_rw_nvmem,
379 NULL,
380 };
381
382 static const struct attribute_group nvmem_bin_group = {
383 .bin_attrs = nvmem_bin_attributes,
384 .attrs = nvmem_attrs,
385 .is_bin_visible = nvmem_bin_attr_is_visible,
386 .is_visible = nvmem_attr_is_visible,
387 };
388
389 static const struct attribute_group *nvmem_dev_groups[] = {
390 &nvmem_bin_group,
391 NULL,
392 };
393
394 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
395 .attr = {
396 .name = "eeprom",
397 },
398 .read = bin_attr_nvmem_read,
399 .write = bin_attr_nvmem_write,
400 };
401
402 /*
403 * nvmem_setup_compat() - Create an additional binary entry in
404 * drivers sys directory, to be backwards compatible with the older
405 * drivers/misc/eeprom drivers.
406 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)407 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
408 const struct nvmem_config *config)
409 {
410 int rval;
411
412 if (!config->compat)
413 return 0;
414
415 if (!config->base_dev)
416 return -EINVAL;
417
418 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
419 if (config->type == NVMEM_TYPE_FRAM)
420 nvmem->eeprom.attr.name = "fram";
421 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
422 nvmem->eeprom.size = nvmem->size;
423 #ifdef CONFIG_DEBUG_LOCK_ALLOC
424 nvmem->eeprom.attr.key = &eeprom_lock_key;
425 #endif
426 nvmem->eeprom.private = &nvmem->dev;
427 nvmem->base_dev = config->base_dev;
428
429 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
430 if (rval) {
431 dev_err(&nvmem->dev,
432 "Failed to create eeprom binary file %d\n", rval);
433 return rval;
434 }
435
436 nvmem->flags |= FLAG_COMPAT;
437
438 return 0;
439 }
440
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)441 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
442 const struct nvmem_config *config)
443 {
444 if (config->compat)
445 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
446 }
447
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)448 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
449 {
450 struct attribute_group group = {
451 .name = "cells",
452 };
453 struct nvmem_cell_entry *entry;
454 struct bin_attribute *attrs;
455 unsigned int ncells = 0, i = 0;
456 int ret = 0;
457
458 mutex_lock(&nvmem_mutex);
459
460 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
461 goto unlock_mutex;
462
463 /* Allocate an array of attributes with a sentinel */
464 ncells = list_count_nodes(&nvmem->cells);
465 group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
466 sizeof(struct bin_attribute *), GFP_KERNEL);
467 if (!group.bin_attrs) {
468 ret = -ENOMEM;
469 goto unlock_mutex;
470 }
471
472 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
473 if (!attrs) {
474 ret = -ENOMEM;
475 goto unlock_mutex;
476 }
477
478 /* Initialize each attribute to take the name and size of the cell */
479 list_for_each_entry(entry, &nvmem->cells, node) {
480 sysfs_bin_attr_init(&attrs[i]);
481 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
482 "%s@%x,%x", entry->name,
483 entry->offset,
484 entry->bit_offset);
485 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
486 attrs[i].size = entry->bytes;
487 attrs[i].read = &nvmem_cell_attr_read;
488 attrs[i].private = entry;
489 if (!attrs[i].attr.name) {
490 ret = -ENOMEM;
491 goto unlock_mutex;
492 }
493
494 group.bin_attrs[i] = &attrs[i];
495 i++;
496 }
497
498 ret = device_add_group(&nvmem->dev, &group);
499 if (ret)
500 goto unlock_mutex;
501
502 nvmem->sysfs_cells_populated = true;
503
504 unlock_mutex:
505 mutex_unlock(&nvmem_mutex);
506
507 return ret;
508 }
509
510 #else /* CONFIG_NVMEM_SYSFS */
511
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)512 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
513 const struct nvmem_config *config)
514 {
515 return -ENOSYS;
516 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)517 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
518 const struct nvmem_config *config)
519 {
520 }
521
522 #endif /* CONFIG_NVMEM_SYSFS */
523
nvmem_release(struct device * dev)524 static void nvmem_release(struct device *dev)
525 {
526 struct nvmem_device *nvmem = to_nvmem_device(dev);
527
528 ida_free(&nvmem_ida, nvmem->id);
529 gpiod_put(nvmem->wp_gpio);
530 kfree(nvmem);
531 }
532
533 static const struct device_type nvmem_provider_type = {
534 .release = nvmem_release,
535 };
536
537 static struct bus_type nvmem_bus_type = {
538 .name = "nvmem",
539 };
540
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)541 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
542 {
543 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
544 mutex_lock(&nvmem_mutex);
545 list_del(&cell->node);
546 mutex_unlock(&nvmem_mutex);
547 of_node_put(cell->np);
548 kfree_const(cell->name);
549 kfree(cell);
550 }
551
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)552 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
553 {
554 struct nvmem_cell_entry *cell, *p;
555
556 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
557 nvmem_cell_entry_drop(cell);
558 }
559
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)560 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
561 {
562 mutex_lock(&nvmem_mutex);
563 list_add_tail(&cell->node, &cell->nvmem->cells);
564 mutex_unlock(&nvmem_mutex);
565 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
566 }
567
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)568 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
569 const struct nvmem_cell_info *info,
570 struct nvmem_cell_entry *cell)
571 {
572 cell->nvmem = nvmem;
573 cell->offset = info->offset;
574 cell->raw_len = info->raw_len ?: info->bytes;
575 cell->bytes = info->bytes;
576 cell->name = info->name;
577 cell->read_post_process = info->read_post_process;
578 cell->priv = info->priv;
579
580 cell->bit_offset = info->bit_offset;
581 cell->nbits = info->nbits;
582 cell->np = info->np;
583
584 if (cell->nbits)
585 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
586 BITS_PER_BYTE);
587
588 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
589 dev_err(&nvmem->dev,
590 "cell %s unaligned to nvmem stride %d\n",
591 cell->name ?: "<unknown>", nvmem->stride);
592 return -EINVAL;
593 }
594
595 return 0;
596 }
597
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)598 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
599 const struct nvmem_cell_info *info,
600 struct nvmem_cell_entry *cell)
601 {
602 int err;
603
604 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
605 if (err)
606 return err;
607
608 cell->name = kstrdup_const(info->name, GFP_KERNEL);
609 if (!cell->name)
610 return -ENOMEM;
611
612 return 0;
613 }
614
615 /**
616 * nvmem_add_one_cell() - Add one cell information to an nvmem device
617 *
618 * @nvmem: nvmem device to add cells to.
619 * @info: nvmem cell info to add to the device
620 *
621 * Return: 0 or negative error code on failure.
622 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)623 int nvmem_add_one_cell(struct nvmem_device *nvmem,
624 const struct nvmem_cell_info *info)
625 {
626 struct nvmem_cell_entry *cell;
627 int rval;
628
629 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
630 if (!cell)
631 return -ENOMEM;
632
633 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
634 if (rval) {
635 kfree(cell);
636 return rval;
637 }
638
639 nvmem_cell_entry_add(cell);
640
641 return 0;
642 }
643 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
644
645 /**
646 * nvmem_add_cells() - Add cell information to an nvmem device
647 *
648 * @nvmem: nvmem device to add cells to.
649 * @info: nvmem cell info to add to the device
650 * @ncells: number of cells in info
651 *
652 * Return: 0 or negative error code on failure.
653 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)654 static int nvmem_add_cells(struct nvmem_device *nvmem,
655 const struct nvmem_cell_info *info,
656 int ncells)
657 {
658 int i, rval;
659
660 for (i = 0; i < ncells; i++) {
661 rval = nvmem_add_one_cell(nvmem, &info[i]);
662 if (rval)
663 return rval;
664 }
665
666 return 0;
667 }
668
669 /**
670 * nvmem_register_notifier() - Register a notifier block for nvmem events.
671 *
672 * @nb: notifier block to be called on nvmem events.
673 *
674 * Return: 0 on success, negative error number on failure.
675 */
nvmem_register_notifier(struct notifier_block * nb)676 int nvmem_register_notifier(struct notifier_block *nb)
677 {
678 return blocking_notifier_chain_register(&nvmem_notifier, nb);
679 }
680 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
681
682 /**
683 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
684 *
685 * @nb: notifier block to be unregistered.
686 *
687 * Return: 0 on success, negative error number on failure.
688 */
nvmem_unregister_notifier(struct notifier_block * nb)689 int nvmem_unregister_notifier(struct notifier_block *nb)
690 {
691 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
692 }
693 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
694
nvmem_add_cells_from_table(struct nvmem_device * nvmem)695 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
696 {
697 const struct nvmem_cell_info *info;
698 struct nvmem_cell_table *table;
699 struct nvmem_cell_entry *cell;
700 int rval = 0, i;
701
702 mutex_lock(&nvmem_cell_mutex);
703 list_for_each_entry(table, &nvmem_cell_tables, node) {
704 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
705 for (i = 0; i < table->ncells; i++) {
706 info = &table->cells[i];
707
708 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
709 if (!cell) {
710 rval = -ENOMEM;
711 goto out;
712 }
713
714 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
715 if (rval) {
716 kfree(cell);
717 goto out;
718 }
719
720 nvmem_cell_entry_add(cell);
721 }
722 }
723 }
724
725 out:
726 mutex_unlock(&nvmem_cell_mutex);
727 return rval;
728 }
729
730 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)731 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
732 {
733 struct nvmem_cell_entry *iter, *cell = NULL;
734
735 mutex_lock(&nvmem_mutex);
736 list_for_each_entry(iter, &nvmem->cells, node) {
737 if (strcmp(cell_id, iter->name) == 0) {
738 cell = iter;
739 break;
740 }
741 }
742 mutex_unlock(&nvmem_mutex);
743
744 return cell;
745 }
746
nvmem_validate_keepouts(struct nvmem_device * nvmem)747 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
748 {
749 unsigned int cur = 0;
750 const struct nvmem_keepout *keepout = nvmem->keepout;
751 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
752
753 while (keepout < keepoutend) {
754 /* Ensure keepouts are sorted and don't overlap. */
755 if (keepout->start < cur) {
756 dev_err(&nvmem->dev,
757 "Keepout regions aren't sorted or overlap.\n");
758
759 return -ERANGE;
760 }
761
762 if (keepout->end < keepout->start) {
763 dev_err(&nvmem->dev,
764 "Invalid keepout region.\n");
765
766 return -EINVAL;
767 }
768
769 /*
770 * Validate keepouts (and holes between) don't violate
771 * word_size constraints.
772 */
773 if ((keepout->end - keepout->start < nvmem->word_size) ||
774 ((keepout->start != cur) &&
775 (keepout->start - cur < nvmem->word_size))) {
776
777 dev_err(&nvmem->dev,
778 "Keepout regions violate word_size constraints.\n");
779
780 return -ERANGE;
781 }
782
783 /* Validate keepouts don't violate stride (alignment). */
784 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
785 !IS_ALIGNED(keepout->end, nvmem->stride)) {
786
787 dev_err(&nvmem->dev,
788 "Keepout regions violate stride.\n");
789
790 return -EINVAL;
791 }
792
793 cur = keepout->end;
794 keepout++;
795 }
796
797 return 0;
798 }
799
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)800 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
801 {
802 struct device *dev = &nvmem->dev;
803 struct device_node *child;
804 const __be32 *addr;
805 int len, ret;
806
807 for_each_child_of_node(np, child) {
808 struct nvmem_cell_info info = {0};
809
810 addr = of_get_property(child, "reg", &len);
811 if (!addr)
812 continue;
813 if (len < 2 * sizeof(u32)) {
814 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
815 of_node_put(child);
816 return -EINVAL;
817 }
818
819 info.offset = be32_to_cpup(addr++);
820 info.bytes = be32_to_cpup(addr);
821 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
822
823 addr = of_get_property(child, "bits", &len);
824 if (addr && len == (2 * sizeof(u32))) {
825 info.bit_offset = be32_to_cpup(addr++);
826 info.nbits = be32_to_cpup(addr);
827 if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
828 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
829 of_node_put(child);
830 return -EINVAL;
831 }
832 }
833
834 info.np = of_node_get(child);
835
836 if (nvmem->fixup_dt_cell_info)
837 nvmem->fixup_dt_cell_info(nvmem, &info);
838
839 ret = nvmem_add_one_cell(nvmem, &info);
840 kfree(info.name);
841 if (ret) {
842 of_node_put(child);
843 return ret;
844 }
845 }
846
847 return 0;
848 }
849
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)850 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
851 {
852 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
853 }
854
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)855 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
856 {
857 struct device_node *layout_np;
858 int err = 0;
859
860 layout_np = of_nvmem_layout_get_container(nvmem);
861 if (!layout_np)
862 return 0;
863
864 if (of_device_is_compatible(layout_np, "fixed-layout"))
865 err = nvmem_add_cells_from_dt(nvmem, layout_np);
866
867 of_node_put(layout_np);
868
869 return err;
870 }
871
nvmem_layout_register(struct nvmem_layout * layout)872 int nvmem_layout_register(struct nvmem_layout *layout)
873 {
874 int ret;
875
876 if (!layout->add_cells)
877 return -EINVAL;
878
879 /* Populate the cells */
880 ret = layout->add_cells(layout);
881 if (ret)
882 return ret;
883
884 #ifdef CONFIG_NVMEM_SYSFS
885 ret = nvmem_populate_sysfs_cells(layout->nvmem);
886 if (ret) {
887 nvmem_device_remove_all_cells(layout->nvmem);
888 return ret;
889 }
890 #endif
891
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(nvmem_layout_register);
895
nvmem_layout_unregister(struct nvmem_layout * layout)896 void nvmem_layout_unregister(struct nvmem_layout *layout)
897 {
898 /* Keep the API even with an empty stub in case we need it later */
899 }
900 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
901
902 /**
903 * nvmem_register() - Register a nvmem device for given nvmem_config.
904 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
905 *
906 * @config: nvmem device configuration with which nvmem device is created.
907 *
908 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
909 * on success.
910 */
911
nvmem_register(const struct nvmem_config * config)912 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
913 {
914 struct nvmem_device *nvmem;
915 int rval;
916
917 if (!config->dev)
918 return ERR_PTR(-EINVAL);
919
920 if (!config->reg_read && !config->reg_write)
921 return ERR_PTR(-EINVAL);
922
923 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
924 if (!nvmem)
925 return ERR_PTR(-ENOMEM);
926
927 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
928 if (rval < 0) {
929 kfree(nvmem);
930 return ERR_PTR(rval);
931 }
932
933 nvmem->id = rval;
934
935 nvmem->dev.type = &nvmem_provider_type;
936 nvmem->dev.bus = &nvmem_bus_type;
937 nvmem->dev.parent = config->dev;
938
939 device_initialize(&nvmem->dev);
940
941 if (!config->ignore_wp)
942 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
943 GPIOD_OUT_HIGH);
944 if (IS_ERR(nvmem->wp_gpio)) {
945 rval = PTR_ERR(nvmem->wp_gpio);
946 nvmem->wp_gpio = NULL;
947 goto err_put_device;
948 }
949
950 kref_init(&nvmem->refcnt);
951 INIT_LIST_HEAD(&nvmem->cells);
952 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
953
954 nvmem->owner = config->owner;
955 if (!nvmem->owner && config->dev->driver)
956 nvmem->owner = config->dev->driver->owner;
957 nvmem->stride = config->stride ?: 1;
958 nvmem->word_size = config->word_size ?: 1;
959 nvmem->size = config->size;
960 nvmem->root_only = config->root_only;
961 nvmem->priv = config->priv;
962 nvmem->type = config->type;
963 nvmem->reg_read = config->reg_read;
964 nvmem->reg_write = config->reg_write;
965 nvmem->keepout = config->keepout;
966 nvmem->nkeepout = config->nkeepout;
967 if (config->of_node)
968 nvmem->dev.of_node = config->of_node;
969 else
970 nvmem->dev.of_node = config->dev->of_node;
971
972 switch (config->id) {
973 case NVMEM_DEVID_NONE:
974 rval = dev_set_name(&nvmem->dev, "%s", config->name);
975 break;
976 case NVMEM_DEVID_AUTO:
977 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
978 break;
979 default:
980 rval = dev_set_name(&nvmem->dev, "%s%d",
981 config->name ? : "nvmem",
982 config->name ? config->id : nvmem->id);
983 break;
984 }
985
986 if (rval)
987 goto err_put_device;
988
989 nvmem->read_only = device_property_present(config->dev, "read-only") ||
990 config->read_only || !nvmem->reg_write;
991
992 #ifdef CONFIG_NVMEM_SYSFS
993 nvmem->dev.groups = nvmem_dev_groups;
994 #endif
995
996 if (nvmem->nkeepout) {
997 rval = nvmem_validate_keepouts(nvmem);
998 if (rval)
999 goto err_put_device;
1000 }
1001
1002 if (config->compat) {
1003 rval = nvmem_sysfs_setup_compat(nvmem, config);
1004 if (rval)
1005 goto err_put_device;
1006 }
1007
1008 if (config->cells) {
1009 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1010 if (rval)
1011 goto err_remove_cells;
1012 }
1013
1014 rval = nvmem_add_cells_from_table(nvmem);
1015 if (rval)
1016 goto err_remove_cells;
1017
1018 if (config->add_legacy_fixed_of_cells) {
1019 rval = nvmem_add_cells_from_legacy_of(nvmem);
1020 if (rval)
1021 goto err_remove_cells;
1022 }
1023
1024 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1025 if (rval)
1026 goto err_remove_cells;
1027
1028 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1029
1030 rval = device_add(&nvmem->dev);
1031 if (rval)
1032 goto err_remove_cells;
1033
1034 rval = nvmem_populate_layout(nvmem);
1035 if (rval)
1036 goto err_remove_dev;
1037
1038 #ifdef CONFIG_NVMEM_SYSFS
1039 rval = nvmem_populate_sysfs_cells(nvmem);
1040 if (rval)
1041 goto err_destroy_layout;
1042 #endif
1043
1044 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1045
1046 return nvmem;
1047
1048 #ifdef CONFIG_NVMEM_SYSFS
1049 err_destroy_layout:
1050 nvmem_destroy_layout(nvmem);
1051 #endif
1052 err_remove_dev:
1053 device_del(&nvmem->dev);
1054 err_remove_cells:
1055 nvmem_device_remove_all_cells(nvmem);
1056 if (config->compat)
1057 nvmem_sysfs_remove_compat(nvmem, config);
1058 err_put_device:
1059 put_device(&nvmem->dev);
1060
1061 return ERR_PTR(rval);
1062 }
1063 EXPORT_SYMBOL_GPL(nvmem_register);
1064
nvmem_device_release(struct kref * kref)1065 static void nvmem_device_release(struct kref *kref)
1066 {
1067 struct nvmem_device *nvmem;
1068
1069 nvmem = container_of(kref, struct nvmem_device, refcnt);
1070
1071 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1072
1073 if (nvmem->flags & FLAG_COMPAT)
1074 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1075
1076 nvmem_device_remove_all_cells(nvmem);
1077 nvmem_destroy_layout(nvmem);
1078 device_unregister(&nvmem->dev);
1079 }
1080
1081 /**
1082 * nvmem_unregister() - Unregister previously registered nvmem device
1083 *
1084 * @nvmem: Pointer to previously registered nvmem device.
1085 */
nvmem_unregister(struct nvmem_device * nvmem)1086 void nvmem_unregister(struct nvmem_device *nvmem)
1087 {
1088 if (nvmem)
1089 kref_put(&nvmem->refcnt, nvmem_device_release);
1090 }
1091 EXPORT_SYMBOL_GPL(nvmem_unregister);
1092
devm_nvmem_unregister(void * nvmem)1093 static void devm_nvmem_unregister(void *nvmem)
1094 {
1095 nvmem_unregister(nvmem);
1096 }
1097
1098 /**
1099 * devm_nvmem_register() - Register a managed nvmem device for given
1100 * nvmem_config.
1101 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1102 *
1103 * @dev: Device that uses the nvmem device.
1104 * @config: nvmem device configuration with which nvmem device is created.
1105 *
1106 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1107 * on success.
1108 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1109 struct nvmem_device *devm_nvmem_register(struct device *dev,
1110 const struct nvmem_config *config)
1111 {
1112 struct nvmem_device *nvmem;
1113 int ret;
1114
1115 nvmem = nvmem_register(config);
1116 if (IS_ERR(nvmem))
1117 return nvmem;
1118
1119 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1120 if (ret)
1121 return ERR_PTR(ret);
1122
1123 return nvmem;
1124 }
1125 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1126
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1127 static struct nvmem_device *__nvmem_device_get(void *data,
1128 int (*match)(struct device *dev, const void *data))
1129 {
1130 struct nvmem_device *nvmem = NULL;
1131 struct device *dev;
1132
1133 mutex_lock(&nvmem_mutex);
1134 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1135 if (dev)
1136 nvmem = to_nvmem_device(dev);
1137 mutex_unlock(&nvmem_mutex);
1138 if (!nvmem)
1139 return ERR_PTR(-EPROBE_DEFER);
1140
1141 if (!try_module_get(nvmem->owner)) {
1142 dev_err(&nvmem->dev,
1143 "could not increase module refcount for cell %s\n",
1144 nvmem_dev_name(nvmem));
1145
1146 put_device(&nvmem->dev);
1147 return ERR_PTR(-EINVAL);
1148 }
1149
1150 kref_get(&nvmem->refcnt);
1151
1152 return nvmem;
1153 }
1154
__nvmem_device_put(struct nvmem_device * nvmem)1155 static void __nvmem_device_put(struct nvmem_device *nvmem)
1156 {
1157 put_device(&nvmem->dev);
1158 module_put(nvmem->owner);
1159 kref_put(&nvmem->refcnt, nvmem_device_release);
1160 }
1161
1162 #if IS_ENABLED(CONFIG_OF)
1163 /**
1164 * of_nvmem_device_get() - Get nvmem device from a given id
1165 *
1166 * @np: Device tree node that uses the nvmem device.
1167 * @id: nvmem name from nvmem-names property.
1168 *
1169 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1170 * on success.
1171 */
of_nvmem_device_get(struct device_node * np,const char * id)1172 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1173 {
1174
1175 struct device_node *nvmem_np;
1176 struct nvmem_device *nvmem;
1177 int index = 0;
1178
1179 if (id)
1180 index = of_property_match_string(np, "nvmem-names", id);
1181
1182 nvmem_np = of_parse_phandle(np, "nvmem", index);
1183 if (!nvmem_np)
1184 return ERR_PTR(-ENOENT);
1185
1186 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1187 of_node_put(nvmem_np);
1188 return nvmem;
1189 }
1190 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1191 #endif
1192
1193 /**
1194 * nvmem_device_get() - Get nvmem device from a given id
1195 *
1196 * @dev: Device that uses the nvmem device.
1197 * @dev_name: name of the requested nvmem device.
1198 *
1199 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1200 * on success.
1201 */
nvmem_device_get(struct device * dev,const char * dev_name)1202 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1203 {
1204 if (dev->of_node) { /* try dt first */
1205 struct nvmem_device *nvmem;
1206
1207 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1208
1209 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1210 return nvmem;
1211
1212 }
1213
1214 return __nvmem_device_get((void *)dev_name, device_match_name);
1215 }
1216 EXPORT_SYMBOL_GPL(nvmem_device_get);
1217
1218 /**
1219 * nvmem_device_find() - Find nvmem device with matching function
1220 *
1221 * @data: Data to pass to match function
1222 * @match: Callback function to check device
1223 *
1224 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1225 * on success.
1226 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1227 struct nvmem_device *nvmem_device_find(void *data,
1228 int (*match)(struct device *dev, const void *data))
1229 {
1230 return __nvmem_device_get(data, match);
1231 }
1232 EXPORT_SYMBOL_GPL(nvmem_device_find);
1233
devm_nvmem_device_match(struct device * dev,void * res,void * data)1234 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1235 {
1236 struct nvmem_device **nvmem = res;
1237
1238 if (WARN_ON(!nvmem || !*nvmem))
1239 return 0;
1240
1241 return *nvmem == data;
1242 }
1243
devm_nvmem_device_release(struct device * dev,void * res)1244 static void devm_nvmem_device_release(struct device *dev, void *res)
1245 {
1246 nvmem_device_put(*(struct nvmem_device **)res);
1247 }
1248
1249 /**
1250 * devm_nvmem_device_put() - put alredy got nvmem device
1251 *
1252 * @dev: Device that uses the nvmem device.
1253 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1254 * that needs to be released.
1255 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1256 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1257 {
1258 int ret;
1259
1260 ret = devres_release(dev, devm_nvmem_device_release,
1261 devm_nvmem_device_match, nvmem);
1262
1263 WARN_ON(ret);
1264 }
1265 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1266
1267 /**
1268 * nvmem_device_put() - put alredy got nvmem device
1269 *
1270 * @nvmem: pointer to nvmem device that needs to be released.
1271 */
nvmem_device_put(struct nvmem_device * nvmem)1272 void nvmem_device_put(struct nvmem_device *nvmem)
1273 {
1274 __nvmem_device_put(nvmem);
1275 }
1276 EXPORT_SYMBOL_GPL(nvmem_device_put);
1277
1278 /**
1279 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1280 *
1281 * @dev: Device that requests the nvmem device.
1282 * @id: name id for the requested nvmem device.
1283 *
1284 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1285 * on success. The nvmem_device will be freed by the automatically once the
1286 * device is freed.
1287 */
devm_nvmem_device_get(struct device * dev,const char * id)1288 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1289 {
1290 struct nvmem_device **ptr, *nvmem;
1291
1292 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1293 if (!ptr)
1294 return ERR_PTR(-ENOMEM);
1295
1296 nvmem = nvmem_device_get(dev, id);
1297 if (!IS_ERR(nvmem)) {
1298 *ptr = nvmem;
1299 devres_add(dev, ptr);
1300 } else {
1301 devres_free(ptr);
1302 }
1303
1304 return nvmem;
1305 }
1306 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1307
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1308 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1309 const char *id, int index)
1310 {
1311 struct nvmem_cell *cell;
1312 const char *name = NULL;
1313
1314 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1315 if (!cell)
1316 return ERR_PTR(-ENOMEM);
1317
1318 if (id) {
1319 name = kstrdup_const(id, GFP_KERNEL);
1320 if (!name) {
1321 kfree(cell);
1322 return ERR_PTR(-ENOMEM);
1323 }
1324 }
1325
1326 cell->id = name;
1327 cell->entry = entry;
1328 cell->index = index;
1329
1330 return cell;
1331 }
1332
1333 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1334 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1335 {
1336 struct nvmem_cell_entry *cell_entry;
1337 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1338 struct nvmem_cell_lookup *lookup;
1339 struct nvmem_device *nvmem;
1340 const char *dev_id;
1341
1342 if (!dev)
1343 return ERR_PTR(-EINVAL);
1344
1345 dev_id = dev_name(dev);
1346
1347 mutex_lock(&nvmem_lookup_mutex);
1348
1349 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1350 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1351 (strcmp(lookup->con_id, con_id) == 0)) {
1352 /* This is the right entry. */
1353 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1354 device_match_name);
1355 if (IS_ERR(nvmem)) {
1356 /* Provider may not be registered yet. */
1357 cell = ERR_CAST(nvmem);
1358 break;
1359 }
1360
1361 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1362 lookup->cell_name);
1363 if (!cell_entry) {
1364 __nvmem_device_put(nvmem);
1365 cell = ERR_PTR(-ENOENT);
1366 } else {
1367 cell = nvmem_create_cell(cell_entry, con_id, 0);
1368 if (IS_ERR(cell))
1369 __nvmem_device_put(nvmem);
1370 }
1371 break;
1372 }
1373 }
1374
1375 mutex_unlock(&nvmem_lookup_mutex);
1376 return cell;
1377 }
1378
nvmem_layout_module_put(struct nvmem_device * nvmem)1379 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1380 {
1381 if (nvmem->layout && nvmem->layout->dev.driver)
1382 module_put(nvmem->layout->dev.driver->owner);
1383 }
1384
1385 #if IS_ENABLED(CONFIG_OF)
1386 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1387 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1388 {
1389 struct nvmem_cell_entry *iter, *cell = NULL;
1390
1391 mutex_lock(&nvmem_mutex);
1392 list_for_each_entry(iter, &nvmem->cells, node) {
1393 if (np == iter->np) {
1394 cell = iter;
1395 break;
1396 }
1397 }
1398 mutex_unlock(&nvmem_mutex);
1399
1400 return cell;
1401 }
1402
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1403 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1404 {
1405 if (!nvmem->layout)
1406 return 0;
1407
1408 if (!nvmem->layout->dev.driver ||
1409 !try_module_get(nvmem->layout->dev.driver->owner))
1410 return -EPROBE_DEFER;
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1417 *
1418 * @np: Device tree node that uses the nvmem cell.
1419 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1420 * for the cell at index 0 (the lone cell with no accompanying
1421 * nvmem-cell-names property).
1422 *
1423 * Return: Will be an ERR_PTR() on error or a valid pointer
1424 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1425 * nvmem_cell_put().
1426 */
of_nvmem_cell_get(struct device_node * np,const char * id)1427 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1428 {
1429 struct device_node *cell_np, *nvmem_np;
1430 struct nvmem_device *nvmem;
1431 struct nvmem_cell_entry *cell_entry;
1432 struct nvmem_cell *cell;
1433 struct of_phandle_args cell_spec;
1434 int index = 0;
1435 int cell_index = 0;
1436 int ret;
1437
1438 /* if cell name exists, find index to the name */
1439 if (id)
1440 index = of_property_match_string(np, "nvmem-cell-names", id);
1441
1442 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1443 "#nvmem-cell-cells",
1444 index, &cell_spec);
1445 if (ret)
1446 return ERR_PTR(-ENOENT);
1447
1448 if (cell_spec.args_count > 1)
1449 return ERR_PTR(-EINVAL);
1450
1451 cell_np = cell_spec.np;
1452 if (cell_spec.args_count)
1453 cell_index = cell_spec.args[0];
1454
1455 nvmem_np = of_get_parent(cell_np);
1456 if (!nvmem_np) {
1457 of_node_put(cell_np);
1458 return ERR_PTR(-EINVAL);
1459 }
1460
1461 /* nvmem layouts produce cells within the nvmem-layout container */
1462 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1463 nvmem_np = of_get_next_parent(nvmem_np);
1464 if (!nvmem_np) {
1465 of_node_put(cell_np);
1466 return ERR_PTR(-EINVAL);
1467 }
1468 }
1469
1470 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1471 of_node_put(nvmem_np);
1472 if (IS_ERR(nvmem)) {
1473 of_node_put(cell_np);
1474 return ERR_CAST(nvmem);
1475 }
1476
1477 ret = nvmem_layout_module_get_optional(nvmem);
1478 if (ret) {
1479 of_node_put(cell_np);
1480 __nvmem_device_put(nvmem);
1481 return ERR_PTR(ret);
1482 }
1483
1484 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1485 of_node_put(cell_np);
1486 if (!cell_entry) {
1487 __nvmem_device_put(nvmem);
1488 nvmem_layout_module_put(nvmem);
1489 if (nvmem->layout)
1490 return ERR_PTR(-EPROBE_DEFER);
1491 else
1492 return ERR_PTR(-ENOENT);
1493 }
1494
1495 cell = nvmem_create_cell(cell_entry, id, cell_index);
1496 if (IS_ERR(cell)) {
1497 __nvmem_device_put(nvmem);
1498 nvmem_layout_module_put(nvmem);
1499 }
1500
1501 return cell;
1502 }
1503 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1504 #endif
1505
1506 /**
1507 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1508 *
1509 * @dev: Device that requests the nvmem cell.
1510 * @id: nvmem cell name to get (this corresponds with the name from the
1511 * nvmem-cell-names property for DT systems and with the con_id from
1512 * the lookup entry for non-DT systems).
1513 *
1514 * Return: Will be an ERR_PTR() on error or a valid pointer
1515 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1516 * nvmem_cell_put().
1517 */
nvmem_cell_get(struct device * dev,const char * id)1518 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1519 {
1520 struct nvmem_cell *cell;
1521
1522 if (dev->of_node) { /* try dt first */
1523 cell = of_nvmem_cell_get(dev->of_node, id);
1524 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1525 return cell;
1526 }
1527
1528 /* NULL cell id only allowed for device tree; invalid otherwise */
1529 if (!id)
1530 return ERR_PTR(-EINVAL);
1531
1532 return nvmem_cell_get_from_lookup(dev, id);
1533 }
1534 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1535
devm_nvmem_cell_release(struct device * dev,void * res)1536 static void devm_nvmem_cell_release(struct device *dev, void *res)
1537 {
1538 nvmem_cell_put(*(struct nvmem_cell **)res);
1539 }
1540
1541 /**
1542 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1543 *
1544 * @dev: Device that requests the nvmem cell.
1545 * @id: nvmem cell name id to get.
1546 *
1547 * Return: Will be an ERR_PTR() on error or a valid pointer
1548 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1549 * automatically once the device is freed.
1550 */
devm_nvmem_cell_get(struct device * dev,const char * id)1551 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1552 {
1553 struct nvmem_cell **ptr, *cell;
1554
1555 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1556 if (!ptr)
1557 return ERR_PTR(-ENOMEM);
1558
1559 cell = nvmem_cell_get(dev, id);
1560 if (!IS_ERR(cell)) {
1561 *ptr = cell;
1562 devres_add(dev, ptr);
1563 } else {
1564 devres_free(ptr);
1565 }
1566
1567 return cell;
1568 }
1569 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1570
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1571 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1572 {
1573 struct nvmem_cell **c = res;
1574
1575 if (WARN_ON(!c || !*c))
1576 return 0;
1577
1578 return *c == data;
1579 }
1580
1581 /**
1582 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1583 * from devm_nvmem_cell_get.
1584 *
1585 * @dev: Device that requests the nvmem cell.
1586 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1587 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1588 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1589 {
1590 int ret;
1591
1592 ret = devres_release(dev, devm_nvmem_cell_release,
1593 devm_nvmem_cell_match, cell);
1594
1595 WARN_ON(ret);
1596 }
1597 EXPORT_SYMBOL(devm_nvmem_cell_put);
1598
1599 /**
1600 * nvmem_cell_put() - Release previously allocated nvmem cell.
1601 *
1602 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1603 */
nvmem_cell_put(struct nvmem_cell * cell)1604 void nvmem_cell_put(struct nvmem_cell *cell)
1605 {
1606 struct nvmem_device *nvmem = cell->entry->nvmem;
1607
1608 if (cell->id)
1609 kfree_const(cell->id);
1610
1611 kfree(cell);
1612 __nvmem_device_put(nvmem);
1613 nvmem_layout_module_put(nvmem);
1614 }
1615 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1616
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1617 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1618 {
1619 u8 *p, *b;
1620 int i, extra, bit_offset = cell->bit_offset;
1621
1622 p = b = buf;
1623 if (bit_offset) {
1624 /* First shift */
1625 *b++ >>= bit_offset;
1626
1627 /* setup rest of the bytes if any */
1628 for (i = 1; i < cell->bytes; i++) {
1629 /* Get bits from next byte and shift them towards msb */
1630 *p |= *b << (BITS_PER_BYTE - bit_offset);
1631
1632 p = b;
1633 *b++ >>= bit_offset;
1634 }
1635 } else {
1636 /* point to the msb */
1637 p += cell->bytes - 1;
1638 }
1639
1640 /* result fits in less bytes */
1641 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1642 while (--extra >= 0)
1643 *p-- = 0;
1644
1645 /* clear msb bits if any leftover in the last byte */
1646 if (cell->nbits % BITS_PER_BYTE)
1647 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1648 }
1649
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1650 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1651 struct nvmem_cell_entry *cell,
1652 void *buf, size_t *len, const char *id, int index)
1653 {
1654 int rc;
1655
1656 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1657
1658 if (rc)
1659 return rc;
1660
1661 /* shift bits in-place */
1662 if (cell->bit_offset || cell->nbits)
1663 nvmem_shift_read_buffer_in_place(cell, buf);
1664
1665 if (cell->read_post_process) {
1666 rc = cell->read_post_process(cell->priv, id, index,
1667 cell->offset, buf, cell->raw_len);
1668 if (rc)
1669 return rc;
1670 }
1671
1672 if (len)
1673 *len = cell->bytes;
1674
1675 return 0;
1676 }
1677
1678 /**
1679 * nvmem_cell_read() - Read a given nvmem cell
1680 *
1681 * @cell: nvmem cell to be read.
1682 * @len: pointer to length of cell which will be populated on successful read;
1683 * can be NULL.
1684 *
1685 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1686 * buffer should be freed by the consumer with a kfree().
1687 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1688 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1689 {
1690 struct nvmem_cell_entry *entry = cell->entry;
1691 struct nvmem_device *nvmem = entry->nvmem;
1692 u8 *buf;
1693 int rc;
1694
1695 if (!nvmem)
1696 return ERR_PTR(-EINVAL);
1697
1698 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1699 if (!buf)
1700 return ERR_PTR(-ENOMEM);
1701
1702 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1703 if (rc) {
1704 kfree(buf);
1705 return ERR_PTR(rc);
1706 }
1707
1708 return buf;
1709 }
1710 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1711
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1712 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1713 u8 *_buf, int len)
1714 {
1715 struct nvmem_device *nvmem = cell->nvmem;
1716 int i, rc, nbits, bit_offset = cell->bit_offset;
1717 u8 v, *p, *buf, *b, pbyte, pbits;
1718
1719 nbits = cell->nbits;
1720 buf = kzalloc(cell->bytes, GFP_KERNEL);
1721 if (!buf)
1722 return ERR_PTR(-ENOMEM);
1723
1724 memcpy(buf, _buf, len);
1725 p = b = buf;
1726
1727 if (bit_offset) {
1728 pbyte = *b;
1729 *b <<= bit_offset;
1730
1731 /* setup the first byte with lsb bits from nvmem */
1732 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1733 if (rc)
1734 goto err;
1735 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1736
1737 /* setup rest of the byte if any */
1738 for (i = 1; i < cell->bytes; i++) {
1739 /* Get last byte bits and shift them towards lsb */
1740 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1741 pbyte = *b;
1742 p = b;
1743 *b <<= bit_offset;
1744 *b++ |= pbits;
1745 }
1746 }
1747
1748 /* if it's not end on byte boundary */
1749 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1750 /* setup the last byte with msb bits from nvmem */
1751 rc = nvmem_reg_read(nvmem,
1752 cell->offset + cell->bytes - 1, &v, 1);
1753 if (rc)
1754 goto err;
1755 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1756
1757 }
1758
1759 return buf;
1760 err:
1761 kfree(buf);
1762 return ERR_PTR(rc);
1763 }
1764
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1765 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1766 {
1767 struct nvmem_device *nvmem = cell->nvmem;
1768 int rc;
1769
1770 if (!nvmem || nvmem->read_only ||
1771 (cell->bit_offset == 0 && len != cell->bytes))
1772 return -EINVAL;
1773
1774 /*
1775 * Any cells which have a read_post_process hook are read-only because
1776 * we cannot reverse the operation and it might affect other cells,
1777 * too.
1778 */
1779 if (cell->read_post_process)
1780 return -EINVAL;
1781
1782 if (cell->bit_offset || cell->nbits) {
1783 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1784 if (IS_ERR(buf))
1785 return PTR_ERR(buf);
1786 }
1787
1788 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1789
1790 /* free the tmp buffer */
1791 if (cell->bit_offset || cell->nbits)
1792 kfree(buf);
1793
1794 if (rc)
1795 return rc;
1796
1797 return len;
1798 }
1799
1800 /**
1801 * nvmem_cell_write() - Write to a given nvmem cell
1802 *
1803 * @cell: nvmem cell to be written.
1804 * @buf: Buffer to be written.
1805 * @len: length of buffer to be written to nvmem cell.
1806 *
1807 * Return: length of bytes written or negative on failure.
1808 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1809 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1810 {
1811 return __nvmem_cell_entry_write(cell->entry, buf, len);
1812 }
1813
1814 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1815
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1816 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1817 void *val, size_t count)
1818 {
1819 struct nvmem_cell *cell;
1820 void *buf;
1821 size_t len;
1822
1823 cell = nvmem_cell_get(dev, cell_id);
1824 if (IS_ERR(cell))
1825 return PTR_ERR(cell);
1826
1827 buf = nvmem_cell_read(cell, &len);
1828 if (IS_ERR(buf)) {
1829 nvmem_cell_put(cell);
1830 return PTR_ERR(buf);
1831 }
1832 if (len != count) {
1833 kfree(buf);
1834 nvmem_cell_put(cell);
1835 return -EINVAL;
1836 }
1837 memcpy(val, buf, count);
1838 kfree(buf);
1839 nvmem_cell_put(cell);
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * nvmem_cell_read_u8() - Read a cell value as a u8
1846 *
1847 * @dev: Device that requests the nvmem cell.
1848 * @cell_id: Name of nvmem cell to read.
1849 * @val: pointer to output value.
1850 *
1851 * Return: 0 on success or negative errno.
1852 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1853 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1854 {
1855 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1856 }
1857 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1858
1859 /**
1860 * nvmem_cell_read_u16() - Read a cell value as a u16
1861 *
1862 * @dev: Device that requests the nvmem cell.
1863 * @cell_id: Name of nvmem cell to read.
1864 * @val: pointer to output value.
1865 *
1866 * Return: 0 on success or negative errno.
1867 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1868 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1869 {
1870 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1871 }
1872 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1873
1874 /**
1875 * nvmem_cell_read_u32() - Read a cell value as a u32
1876 *
1877 * @dev: Device that requests the nvmem cell.
1878 * @cell_id: Name of nvmem cell to read.
1879 * @val: pointer to output value.
1880 *
1881 * Return: 0 on success or negative errno.
1882 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1883 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1884 {
1885 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1886 }
1887 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1888
1889 /**
1890 * nvmem_cell_read_u64() - Read a cell value as a u64
1891 *
1892 * @dev: Device that requests the nvmem cell.
1893 * @cell_id: Name of nvmem cell to read.
1894 * @val: pointer to output value.
1895 *
1896 * Return: 0 on success or negative errno.
1897 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1898 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1899 {
1900 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1901 }
1902 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1903
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1904 static const void *nvmem_cell_read_variable_common(struct device *dev,
1905 const char *cell_id,
1906 size_t max_len, size_t *len)
1907 {
1908 struct nvmem_cell *cell;
1909 int nbits;
1910 void *buf;
1911
1912 cell = nvmem_cell_get(dev, cell_id);
1913 if (IS_ERR(cell))
1914 return cell;
1915
1916 nbits = cell->entry->nbits;
1917 buf = nvmem_cell_read(cell, len);
1918 nvmem_cell_put(cell);
1919 if (IS_ERR(buf))
1920 return buf;
1921
1922 /*
1923 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1924 * the length of the real data. Throw away the extra junk.
1925 */
1926 if (nbits)
1927 *len = DIV_ROUND_UP(nbits, 8);
1928
1929 if (*len > max_len) {
1930 kfree(buf);
1931 return ERR_PTR(-ERANGE);
1932 }
1933
1934 return buf;
1935 }
1936
1937 /**
1938 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1939 *
1940 * @dev: Device that requests the nvmem cell.
1941 * @cell_id: Name of nvmem cell to read.
1942 * @val: pointer to output value.
1943 *
1944 * Return: 0 on success or negative errno.
1945 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1946 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1947 u32 *val)
1948 {
1949 size_t len;
1950 const u8 *buf;
1951 int i;
1952
1953 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1954 if (IS_ERR(buf))
1955 return PTR_ERR(buf);
1956
1957 /* Copy w/ implicit endian conversion */
1958 *val = 0;
1959 for (i = 0; i < len; i++)
1960 *val |= buf[i] << (8 * i);
1961
1962 kfree(buf);
1963
1964 return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1967
1968 /**
1969 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1970 *
1971 * @dev: Device that requests the nvmem cell.
1972 * @cell_id: Name of nvmem cell to read.
1973 * @val: pointer to output value.
1974 *
1975 * Return: 0 on success or negative errno.
1976 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1977 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1978 u64 *val)
1979 {
1980 size_t len;
1981 const u8 *buf;
1982 int i;
1983
1984 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1985 if (IS_ERR(buf))
1986 return PTR_ERR(buf);
1987
1988 /* Copy w/ implicit endian conversion */
1989 *val = 0;
1990 for (i = 0; i < len; i++)
1991 *val |= (uint64_t)buf[i] << (8 * i);
1992
1993 kfree(buf);
1994
1995 return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1998
1999 /**
2000 * nvmem_device_cell_read() - Read a given nvmem device and cell
2001 *
2002 * @nvmem: nvmem device to read from.
2003 * @info: nvmem cell info to be read.
2004 * @buf: buffer pointer which will be populated on successful read.
2005 *
2006 * Return: length of successful bytes read on success and negative
2007 * error code on error.
2008 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2009 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2010 struct nvmem_cell_info *info, void *buf)
2011 {
2012 struct nvmem_cell_entry cell;
2013 int rc;
2014 ssize_t len;
2015
2016 if (!nvmem)
2017 return -EINVAL;
2018
2019 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2020 if (rc)
2021 return rc;
2022
2023 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2024 if (rc)
2025 return rc;
2026
2027 return len;
2028 }
2029 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2030
2031 /**
2032 * nvmem_device_cell_write() - Write cell to a given nvmem device
2033 *
2034 * @nvmem: nvmem device to be written to.
2035 * @info: nvmem cell info to be written.
2036 * @buf: buffer to be written to cell.
2037 *
2038 * Return: length of bytes written or negative error code on failure.
2039 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2040 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2041 struct nvmem_cell_info *info, void *buf)
2042 {
2043 struct nvmem_cell_entry cell;
2044 int rc;
2045
2046 if (!nvmem)
2047 return -EINVAL;
2048
2049 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2050 if (rc)
2051 return rc;
2052
2053 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2054 }
2055 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2056
2057 /**
2058 * nvmem_device_read() - Read from a given nvmem device
2059 *
2060 * @nvmem: nvmem device to read from.
2061 * @offset: offset in nvmem device.
2062 * @bytes: number of bytes to read.
2063 * @buf: buffer pointer which will be populated on successful read.
2064 *
2065 * Return: length of successful bytes read on success and negative
2066 * error code on error.
2067 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2068 int nvmem_device_read(struct nvmem_device *nvmem,
2069 unsigned int offset,
2070 size_t bytes, void *buf)
2071 {
2072 int rc;
2073
2074 if (!nvmem)
2075 return -EINVAL;
2076
2077 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2078
2079 if (rc)
2080 return rc;
2081
2082 return bytes;
2083 }
2084 EXPORT_SYMBOL_GPL(nvmem_device_read);
2085
2086 /**
2087 * nvmem_device_write() - Write cell to a given nvmem device
2088 *
2089 * @nvmem: nvmem device to be written to.
2090 * @offset: offset in nvmem device.
2091 * @bytes: number of bytes to write.
2092 * @buf: buffer to be written.
2093 *
2094 * Return: length of bytes written or negative error code on failure.
2095 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2096 int nvmem_device_write(struct nvmem_device *nvmem,
2097 unsigned int offset,
2098 size_t bytes, void *buf)
2099 {
2100 int rc;
2101
2102 if (!nvmem)
2103 return -EINVAL;
2104
2105 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2106
2107 if (rc)
2108 return rc;
2109
2110
2111 return bytes;
2112 }
2113 EXPORT_SYMBOL_GPL(nvmem_device_write);
2114
2115 /**
2116 * nvmem_add_cell_table() - register a table of cell info entries
2117 *
2118 * @table: table of cell info entries
2119 */
nvmem_add_cell_table(struct nvmem_cell_table * table)2120 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2121 {
2122 mutex_lock(&nvmem_cell_mutex);
2123 list_add_tail(&table->node, &nvmem_cell_tables);
2124 mutex_unlock(&nvmem_cell_mutex);
2125 }
2126 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2127
2128 /**
2129 * nvmem_del_cell_table() - remove a previously registered cell info table
2130 *
2131 * @table: table of cell info entries
2132 */
nvmem_del_cell_table(struct nvmem_cell_table * table)2133 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2134 {
2135 mutex_lock(&nvmem_cell_mutex);
2136 list_del(&table->node);
2137 mutex_unlock(&nvmem_cell_mutex);
2138 }
2139 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2140
2141 /**
2142 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2143 *
2144 * @entries: array of cell lookup entries
2145 * @nentries: number of cell lookup entries in the array
2146 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2147 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2148 {
2149 int i;
2150
2151 mutex_lock(&nvmem_lookup_mutex);
2152 for (i = 0; i < nentries; i++)
2153 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2154 mutex_unlock(&nvmem_lookup_mutex);
2155 }
2156 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2157
2158 /**
2159 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2160 * entries
2161 *
2162 * @entries: array of cell lookup entries
2163 * @nentries: number of cell lookup entries in the array
2164 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2165 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2166 {
2167 int i;
2168
2169 mutex_lock(&nvmem_lookup_mutex);
2170 for (i = 0; i < nentries; i++)
2171 list_del(&entries[i].node);
2172 mutex_unlock(&nvmem_lookup_mutex);
2173 }
2174 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2175
2176 /**
2177 * nvmem_dev_name() - Get the name of a given nvmem device.
2178 *
2179 * @nvmem: nvmem device.
2180 *
2181 * Return: name of the nvmem device.
2182 */
nvmem_dev_name(struct nvmem_device * nvmem)2183 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2184 {
2185 return dev_name(&nvmem->dev);
2186 }
2187 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2188
2189 /**
2190 * nvmem_dev_size() - Get the size of a given nvmem device.
2191 *
2192 * @nvmem: nvmem device.
2193 *
2194 * Return: size of the nvmem device.
2195 */
nvmem_dev_size(struct nvmem_device * nvmem)2196 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2197 {
2198 return nvmem->size;
2199 }
2200 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2201
nvmem_init(void)2202 static int __init nvmem_init(void)
2203 {
2204 int ret;
2205
2206 ret = bus_register(&nvmem_bus_type);
2207 if (ret)
2208 return ret;
2209
2210 ret = nvmem_layout_bus_register();
2211 if (ret)
2212 bus_unregister(&nvmem_bus_type);
2213
2214 return ret;
2215 }
2216
nvmem_exit(void)2217 static void __exit nvmem_exit(void)
2218 {
2219 nvmem_layout_bus_unregister();
2220 bus_unregister(&nvmem_bus_type);
2221 }
2222
2223 subsys_initcall(nvmem_init);
2224 module_exit(nvmem_exit);
2225
2226 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2227 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2228 MODULE_DESCRIPTION("nvmem Driver Core");
2229