xref: /linux/fs/netfs/buffered_write.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level buffered write support.
3  *
4  * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
__netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)16 static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
17 {
18 	if (netfs_group)
19 		folio_attach_private(folio, netfs_get_group(netfs_group));
20 }
21 
netfs_set_group(struct folio * folio,struct netfs_group * netfs_group)22 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
23 {
24 	void *priv = folio_get_private(folio);
25 
26 	if (unlikely(priv != netfs_group)) {
27 		if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
28 			folio_attach_private(folio, netfs_get_group(netfs_group));
29 		else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
30 			folio_detach_private(folio);
31 	}
32 }
33 
34 /*
35  * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
36  * as possible to hold as much of the remaining length as possible in one go.
37  */
netfs_grab_folio_for_write(struct address_space * mapping,loff_t pos,size_t part)38 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
39 						loff_t pos, size_t part)
40 {
41 	pgoff_t index = pos / PAGE_SIZE;
42 	fgf_t fgp_flags = FGP_WRITEBEGIN;
43 
44 	if (mapping_large_folio_support(mapping))
45 		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
46 
47 	return __filemap_get_folio(mapping, index, fgp_flags,
48 				   mapping_gfp_mask(mapping));
49 }
50 
51 /*
52  * Update i_size and estimate the update to i_blocks to reflect the additional
53  * data written into the pagecache until we can find out from the server what
54  * the values actually are.
55  */
netfs_update_i_size(struct netfs_inode * ctx,struct inode * inode,loff_t i_size,loff_t pos,size_t copied)56 static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
57 				loff_t i_size, loff_t pos, size_t copied)
58 {
59 	blkcnt_t add;
60 	size_t gap;
61 
62 	if (ctx->ops->update_i_size) {
63 		ctx->ops->update_i_size(inode, pos);
64 		return;
65 	}
66 
67 	i_size_write(inode, pos);
68 #if IS_ENABLED(CONFIG_FSCACHE)
69 	fscache_update_cookie(ctx->cache, NULL, &pos);
70 #endif
71 
72 	gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
73 	if (copied > gap) {
74 		add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);
75 
76 		inode->i_blocks = min_t(blkcnt_t,
77 					DIV_ROUND_UP(pos, SECTOR_SIZE),
78 					inode->i_blocks + add);
79 	}
80 }
81 
82 /**
83  * netfs_perform_write - Copy data into the pagecache.
84  * @iocb: The operation parameters
85  * @iter: The source buffer
86  * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
87  *
88  * Copy data into pagecache folios attached to the inode specified by @iocb.
89  * The caller must hold appropriate inode locks.
90  *
91  * Dirty folios are tagged with a netfs_folio struct if they're not up to date
92  * to indicate the range modified.  Dirty folios may also be tagged with a
93  * netfs-specific grouping such that data from an old group gets flushed before
94  * a new one is started.
95  */
netfs_perform_write(struct kiocb * iocb,struct iov_iter * iter,struct netfs_group * netfs_group)96 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
97 			    struct netfs_group *netfs_group)
98 {
99 	struct file *file = iocb->ki_filp;
100 	struct inode *inode = file_inode(file);
101 	struct address_space *mapping = inode->i_mapping;
102 	struct netfs_inode *ctx = netfs_inode(inode);
103 	struct writeback_control wbc = {
104 		.sync_mode	= WB_SYNC_NONE,
105 		.for_sync	= true,
106 		.nr_to_write	= LONG_MAX,
107 		.range_start	= iocb->ki_pos,
108 		.range_end	= iocb->ki_pos + iter->count,
109 	};
110 	struct netfs_io_request *wreq = NULL;
111 	struct folio *folio = NULL, *writethrough = NULL;
112 	unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
113 	ssize_t written = 0, ret, ret2;
114 	loff_t i_size, pos = iocb->ki_pos;
115 	size_t max_chunk = mapping_max_folio_size(mapping);
116 	bool maybe_trouble = false;
117 
118 	if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
119 		     iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
120 	    ) {
121 		wbc_attach_fdatawrite_inode(&wbc, mapping->host);
122 
123 		ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
124 		if (ret < 0) {
125 			wbc_detach_inode(&wbc);
126 			goto out;
127 		}
128 
129 		wreq = netfs_begin_writethrough(iocb, iter->count);
130 		if (IS_ERR(wreq)) {
131 			wbc_detach_inode(&wbc);
132 			ret = PTR_ERR(wreq);
133 			wreq = NULL;
134 			goto out;
135 		}
136 		if (!is_sync_kiocb(iocb))
137 			wreq->iocb = iocb;
138 		netfs_stat(&netfs_n_wh_writethrough);
139 	} else {
140 		netfs_stat(&netfs_n_wh_buffered_write);
141 	}
142 
143 	do {
144 		struct netfs_folio *finfo;
145 		struct netfs_group *group;
146 		unsigned long long fpos;
147 		size_t flen;
148 		size_t offset;	/* Offset into pagecache folio */
149 		size_t part;	/* Bytes to write to folio */
150 		size_t copied;	/* Bytes copied from user */
151 
152 		offset = pos & (max_chunk - 1);
153 		part = min(max_chunk - offset, iov_iter_count(iter));
154 
155 		/* Bring in the user pages that we will copy from _first_ lest
156 		 * we hit a nasty deadlock on copying from the same page as
157 		 * we're writing to, without it being marked uptodate.
158 		 *
159 		 * Not only is this an optimisation, but it is also required to
160 		 * check that the address is actually valid, when atomic
161 		 * usercopies are used below.
162 		 *
163 		 * We rely on the page being held onto long enough by the LRU
164 		 * that we can grab it below if this causes it to be read.
165 		 */
166 		ret = -EFAULT;
167 		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
168 			break;
169 
170 		folio = netfs_grab_folio_for_write(mapping, pos, part);
171 		if (IS_ERR(folio)) {
172 			ret = PTR_ERR(folio);
173 			break;
174 		}
175 
176 		flen = folio_size(folio);
177 		fpos = folio_pos(folio);
178 		offset = pos - fpos;
179 		part = min_t(size_t, flen - offset, part);
180 
181 		/* Wait for writeback to complete.  The writeback engine owns
182 		 * the info in folio->private and may change it until it
183 		 * removes the WB mark.
184 		 */
185 		if (folio_get_private(folio) &&
186 		    folio_wait_writeback_killable(folio)) {
187 			ret = written ? -EINTR : -ERESTARTSYS;
188 			goto error_folio_unlock;
189 		}
190 
191 		if (signal_pending(current)) {
192 			ret = written ? -EINTR : -ERESTARTSYS;
193 			goto error_folio_unlock;
194 		}
195 
196 		/* Decide how we should modify a folio.  We might be attempting
197 		 * to do write-streaming, in which case we don't want to a
198 		 * local RMW cycle if we can avoid it.  If we're doing local
199 		 * caching or content crypto, we award that priority over
200 		 * avoiding RMW.  If the file is open readably, then we also
201 		 * assume that we may want to read what we wrote.
202 		 */
203 		finfo = netfs_folio_info(folio);
204 		group = netfs_folio_group(folio);
205 
206 		if (unlikely(group != netfs_group) &&
207 		    group != NETFS_FOLIO_COPY_TO_CACHE)
208 			goto flush_content;
209 
210 		if (folio_test_uptodate(folio)) {
211 			if (mapping_writably_mapped(mapping))
212 				flush_dcache_folio(folio);
213 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
214 			if (unlikely(copied == 0))
215 				goto copy_failed;
216 			netfs_set_group(folio, netfs_group);
217 			trace_netfs_folio(folio, netfs_folio_is_uptodate);
218 			goto copied;
219 		}
220 
221 		/* If the page is above the zero-point then we assume that the
222 		 * server would just return a block of zeros or a short read if
223 		 * we try to read it.
224 		 */
225 		if (fpos >= ctx->zero_point) {
226 			folio_zero_segment(folio, 0, offset);
227 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
228 			if (unlikely(copied == 0))
229 				goto copy_failed;
230 			folio_zero_segment(folio, offset + copied, flen);
231 			__netfs_set_group(folio, netfs_group);
232 			folio_mark_uptodate(folio);
233 			trace_netfs_folio(folio, netfs_modify_and_clear);
234 			goto copied;
235 		}
236 
237 		/* See if we can write a whole folio in one go. */
238 		if (!maybe_trouble && offset == 0 && part >= flen) {
239 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
240 			if (unlikely(copied == 0))
241 				goto copy_failed;
242 			if (unlikely(copied < part)) {
243 				maybe_trouble = true;
244 				iov_iter_revert(iter, copied);
245 				copied = 0;
246 				folio_unlock(folio);
247 				goto retry;
248 			}
249 			__netfs_set_group(folio, netfs_group);
250 			folio_mark_uptodate(folio);
251 			trace_netfs_folio(folio, netfs_whole_folio_modify);
252 			goto copied;
253 		}
254 
255 		/* We don't want to do a streaming write on a file that loses
256 		 * caching service temporarily because the backing store got
257 		 * culled and we don't really want to get a streaming write on
258 		 * a file that's open for reading as ->read_folio() then has to
259 		 * be able to flush it.
260 		 */
261 		if ((file->f_mode & FMODE_READ) ||
262 		    netfs_is_cache_enabled(ctx)) {
263 			if (finfo) {
264 				netfs_stat(&netfs_n_wh_wstream_conflict);
265 				goto flush_content;
266 			}
267 			ret = netfs_prefetch_for_write(file, folio, offset, part);
268 			if (ret < 0) {
269 				_debug("prefetch = %zd", ret);
270 				goto error_folio_unlock;
271 			}
272 			/* Note that copy-to-cache may have been set. */
273 
274 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
275 			if (unlikely(copied == 0))
276 				goto copy_failed;
277 			netfs_set_group(folio, netfs_group);
278 			trace_netfs_folio(folio, netfs_just_prefetch);
279 			goto copied;
280 		}
281 
282 		if (!finfo) {
283 			ret = -EIO;
284 			if (WARN_ON(folio_get_private(folio)))
285 				goto error_folio_unlock;
286 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
287 			if (unlikely(copied == 0))
288 				goto copy_failed;
289 			if (offset == 0 && copied == flen) {
290 				__netfs_set_group(folio, netfs_group);
291 				folio_mark_uptodate(folio);
292 				trace_netfs_folio(folio, netfs_streaming_filled_page);
293 				goto copied;
294 			}
295 
296 			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
297 			if (!finfo) {
298 				iov_iter_revert(iter, copied);
299 				ret = -ENOMEM;
300 				goto error_folio_unlock;
301 			}
302 			finfo->netfs_group = netfs_get_group(netfs_group);
303 			finfo->dirty_offset = offset;
304 			finfo->dirty_len = copied;
305 			folio_attach_private(folio, (void *)((unsigned long)finfo |
306 							     NETFS_FOLIO_INFO));
307 			trace_netfs_folio(folio, netfs_streaming_write);
308 			goto copied;
309 		}
310 
311 		/* We can continue a streaming write only if it continues on
312 		 * from the previous.  If it overlaps, we must flush lest we
313 		 * suffer a partial copy and disjoint dirty regions.
314 		 */
315 		if (offset == finfo->dirty_offset + finfo->dirty_len) {
316 			copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
317 			if (unlikely(copied == 0))
318 				goto copy_failed;
319 			finfo->dirty_len += copied;
320 			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
321 				if (finfo->netfs_group)
322 					folio_change_private(folio, finfo->netfs_group);
323 				else
324 					folio_detach_private(folio);
325 				folio_mark_uptodate(folio);
326 				kfree(finfo);
327 				trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
328 			} else {
329 				trace_netfs_folio(folio, netfs_streaming_write_cont);
330 			}
331 			goto copied;
332 		}
333 
334 		/* Incompatible write; flush the folio and try again. */
335 	flush_content:
336 		trace_netfs_folio(folio, netfs_flush_content);
337 		folio_unlock(folio);
338 		folio_put(folio);
339 		ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
340 		if (ret < 0)
341 			goto error_folio_unlock;
342 		continue;
343 
344 	copied:
345 		flush_dcache_folio(folio);
346 
347 		/* Update the inode size if we moved the EOF marker */
348 		pos += copied;
349 		i_size = i_size_read(inode);
350 		if (pos > i_size)
351 			netfs_update_i_size(ctx, inode, i_size, pos, copied);
352 		written += copied;
353 
354 		if (likely(!wreq)) {
355 			folio_mark_dirty(folio);
356 			folio_unlock(folio);
357 		} else {
358 			netfs_advance_writethrough(wreq, &wbc, folio, copied,
359 						   offset + copied == flen,
360 						   &writethrough);
361 			/* Folio unlocked */
362 		}
363 	retry:
364 		folio_put(folio);
365 		folio = NULL;
366 
367 		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
368 		if (unlikely(ret < 0))
369 			break;
370 
371 		cond_resched();
372 	} while (iov_iter_count(iter));
373 
374 out:
375 	if (likely(written)) {
376 		/* Set indication that ctime and mtime got updated in case
377 		 * close is deferred.
378 		 */
379 		set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
380 		if (unlikely(ctx->ops->post_modify))
381 			ctx->ops->post_modify(inode);
382 	}
383 
384 	if (unlikely(wreq)) {
385 		ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
386 		wbc_detach_inode(&wbc);
387 		if (ret2 == -EIOCBQUEUED)
388 			return ret2;
389 		if (ret == 0)
390 			ret = ret2;
391 	}
392 
393 	iocb->ki_pos += written;
394 	_leave(" = %zd [%zd]", written, ret);
395 	return written ? written : ret;
396 
397 copy_failed:
398 	ret = -EFAULT;
399 error_folio_unlock:
400 	folio_unlock(folio);
401 	folio_put(folio);
402 	goto out;
403 }
404 EXPORT_SYMBOL(netfs_perform_write);
405 
406 /**
407  * netfs_buffered_write_iter_locked - write data to a file
408  * @iocb:	IO state structure (file, offset, etc.)
409  * @from:	iov_iter with data to write
410  * @netfs_group: Grouping for dirty folios (eg. ceph snaps).
411  *
412  * This function does all the work needed for actually writing data to a
413  * file. It does all basic checks, removes SUID from the file, updates
414  * modification times and calls proper subroutines depending on whether we
415  * do direct IO or a standard buffered write.
416  *
417  * The caller must hold appropriate locks around this function and have called
418  * generic_write_checks() already.  The caller is also responsible for doing
419  * any necessary syncing afterwards.
420  *
421  * This function does *not* take care of syncing data in case of O_SYNC write.
422  * A caller has to handle it. This is mainly due to the fact that we want to
423  * avoid syncing under i_rwsem.
424  *
425  * Return:
426  * * number of bytes written, even for truncated writes
427  * * negative error code if no data has been written at all
428  */
netfs_buffered_write_iter_locked(struct kiocb * iocb,struct iov_iter * from,struct netfs_group * netfs_group)429 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
430 					 struct netfs_group *netfs_group)
431 {
432 	struct file *file = iocb->ki_filp;
433 	ssize_t ret;
434 
435 	trace_netfs_write_iter(iocb, from);
436 
437 	ret = file_remove_privs(file);
438 	if (ret)
439 		return ret;
440 
441 	ret = file_update_time(file);
442 	if (ret)
443 		return ret;
444 
445 	return netfs_perform_write(iocb, from, netfs_group);
446 }
447 EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
448 
449 /**
450  * netfs_file_write_iter - write data to a file
451  * @iocb: IO state structure
452  * @from: iov_iter with data to write
453  *
454  * Perform a write to a file, writing into the pagecache if possible and doing
455  * an unbuffered write instead if not.
456  *
457  * Return:
458  * * Negative error code if no data has been written at all of
459  *   vfs_fsync_range() failed for a synchronous write
460  * * Number of bytes written, even for truncated writes
461  */
netfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)462 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
463 {
464 	struct file *file = iocb->ki_filp;
465 	struct inode *inode = file->f_mapping->host;
466 	struct netfs_inode *ictx = netfs_inode(inode);
467 	ssize_t ret;
468 
469 	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
470 
471 	if (!iov_iter_count(from))
472 		return 0;
473 
474 	if ((iocb->ki_flags & IOCB_DIRECT) ||
475 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
476 		return netfs_unbuffered_write_iter(iocb, from);
477 
478 	ret = netfs_start_io_write(inode);
479 	if (ret < 0)
480 		return ret;
481 
482 	ret = generic_write_checks(iocb, from);
483 	if (ret > 0)
484 		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
485 	netfs_end_io_write(inode);
486 	if (ret > 0)
487 		ret = generic_write_sync(iocb, ret);
488 	return ret;
489 }
490 EXPORT_SYMBOL(netfs_file_write_iter);
491 
492 /*
493  * Notification that a previously read-only page is about to become writable.
494  * The caller indicates the precise page that needs to be written to, but
495  * we only track group on a per-folio basis, so we block more often than
496  * we might otherwise.
497  */
netfs_page_mkwrite(struct vm_fault * vmf,struct netfs_group * netfs_group)498 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
499 {
500 	struct netfs_group *group;
501 	struct folio *folio = page_folio(vmf->page);
502 	struct file *file = vmf->vma->vm_file;
503 	struct address_space *mapping = file->f_mapping;
504 	struct inode *inode = file_inode(file);
505 	struct netfs_inode *ictx = netfs_inode(inode);
506 	vm_fault_t ret = VM_FAULT_NOPAGE;
507 	int err;
508 
509 	_enter("%lx", folio->index);
510 
511 	sb_start_pagefault(inode->i_sb);
512 
513 	if (folio_lock_killable(folio) < 0)
514 		goto out;
515 	if (folio->mapping != mapping)
516 		goto unlock;
517 	if (folio_wait_writeback_killable(folio) < 0)
518 		goto unlock;
519 
520 	/* Can we see a streaming write here? */
521 	if (WARN_ON(!folio_test_uptodate(folio))) {
522 		ret = VM_FAULT_SIGBUS;
523 		goto unlock;
524 	}
525 
526 	group = netfs_folio_group(folio);
527 	if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
528 		folio_unlock(folio);
529 		err = filemap_fdatawrite_range(mapping,
530 					       folio_pos(folio),
531 					       folio_pos(folio) + folio_size(folio));
532 		switch (err) {
533 		case 0:
534 			ret = VM_FAULT_RETRY;
535 			goto out;
536 		case -ENOMEM:
537 			ret = VM_FAULT_OOM;
538 			goto out;
539 		default:
540 			ret = VM_FAULT_SIGBUS;
541 			goto out;
542 		}
543 	}
544 
545 	if (folio_test_dirty(folio))
546 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
547 	else
548 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
549 	netfs_set_group(folio, netfs_group);
550 	file_update_time(file);
551 	set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
552 	if (ictx->ops->post_modify)
553 		ictx->ops->post_modify(inode);
554 	ret = VM_FAULT_LOCKED;
555 out:
556 	sb_end_pagefault(inode->i_sb);
557 	return ret;
558 unlock:
559 	folio_unlock(folio);
560 	goto out;
561 }
562 EXPORT_SYMBOL(netfs_page_mkwrite);
563