xref: /linux/arch/arm64/kernel/mte.c (revision 537d196186e0a0ce28e494ca1881885accc35a12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
mte_sync_tags(pte_t pte,unsigned int nr_pages)38 void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39 {
40 	struct page *page = pte_page(pte);
41 	struct folio *folio = page_folio(page);
42 	unsigned long i;
43 
44 	if (folio_test_hugetlb(folio)) {
45 		unsigned long nr = folio_nr_pages(folio);
46 
47 		/* Hugetlb MTE flags are set for head page only */
48 		if (folio_try_hugetlb_mte_tagging(folio)) {
49 			for (i = 0; i < nr; i++, page++)
50 				mte_clear_page_tags(page_address(page));
51 			folio_set_hugetlb_mte_tagged(folio);
52 		}
53 
54 		/* ensure the tags are visible before the PTE is set */
55 		smp_wmb();
56 
57 		return;
58 	}
59 
60 	/* if PG_mte_tagged is set, tags have already been initialised */
61 	for (i = 0; i < nr_pages; i++, page++) {
62 		if (try_page_mte_tagging(page)) {
63 			mte_clear_page_tags(page_address(page));
64 			set_page_mte_tagged(page);
65 		}
66 	}
67 
68 	/* ensure the tags are visible before the PTE is set */
69 	smp_wmb();
70 }
71 
memcmp_pages(struct page * page1,struct page * page2)72 int memcmp_pages(struct page *page1, struct page *page2)
73 {
74 	char *addr1, *addr2;
75 	int ret;
76 
77 	addr1 = page_address(page1);
78 	addr2 = page_address(page2);
79 	ret = memcmp(addr1, addr2, PAGE_SIZE);
80 
81 	if (!system_supports_mte() || ret)
82 		return ret;
83 
84 	/*
85 	 * If the page content is identical but at least one of the pages is
86 	 * tagged, return non-zero to avoid KSM merging. If only one of the
87 	 * pages is tagged, __set_ptes() may zero or change the tags of the
88 	 * other page via mte_sync_tags().
89 	 */
90 	if (page_mte_tagged(page1) || page_mte_tagged(page2))
91 		return addr1 != addr2;
92 
93 	return ret;
94 }
95 
__mte_enable_kernel(const char * mode,unsigned long tcf)96 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
97 {
98 	/* Enable MTE Sync Mode for EL1. */
99 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
100 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
101 	isb();
102 
103 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
104 }
105 
106 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)107 void mte_enable_kernel_sync(void)
108 {
109 	/*
110 	 * Make sure we enter this function when no PE has set
111 	 * async mode previously.
112 	 */
113 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
114 			"MTE async mode enabled system wide!");
115 
116 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
117 }
118 
mte_enable_kernel_async(void)119 void mte_enable_kernel_async(void)
120 {
121 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
122 
123 	/*
124 	 * MTE async mode is set system wide by the first PE that
125 	 * executes this function.
126 	 *
127 	 * Note: If in future KASAN acquires a runtime switching
128 	 * mode in between sync and async, this strategy needs
129 	 * to be reviewed.
130 	 */
131 	if (!system_uses_mte_async_or_asymm_mode())
132 		static_branch_enable(&mte_async_or_asymm_mode);
133 }
134 
mte_enable_kernel_asymm(void)135 void mte_enable_kernel_asymm(void)
136 {
137 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
138 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
139 
140 		/*
141 		 * MTE asymm mode behaves as async mode for store
142 		 * operations. The mode is set system wide by the
143 		 * first PE that executes this function.
144 		 *
145 		 * Note: If in future KASAN acquires a runtime switching
146 		 * mode in between sync and async, this strategy needs
147 		 * to be reviewed.
148 		 */
149 		if (!system_uses_mte_async_or_asymm_mode())
150 			static_branch_enable(&mte_async_or_asymm_mode);
151 	} else {
152 		/*
153 		 * If the CPU does not support MTE asymmetric mode the
154 		 * kernel falls back on synchronous mode which is the
155 		 * default for kasan=on.
156 		 */
157 		mte_enable_kernel_sync();
158 	}
159 }
160 
mte_enable_kernel_store_only(void)161 int mte_enable_kernel_store_only(void)
162 {
163 	/*
164 	 * If the CPU does not support MTE store only,
165 	 * the kernel checks all operations.
166 	 */
167 	if (!cpus_have_cap(ARM64_MTE_STORE_ONLY))
168 		return -EINVAL;
169 
170 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCSO_MASK,
171 			 SYS_FIELD_PREP(SCTLR_EL1, TCSO, 1));
172 	isb();
173 
174 	pr_info_once("MTE: enabled store only mode at EL1\n");
175 
176 	return 0;
177 }
178 #endif
179 
180 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)181 void mte_check_tfsr_el1(void)
182 {
183 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
184 
185 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
186 		/*
187 		 * Note: isb() is not required after this direct write
188 		 * because there is no indirect read subsequent to it
189 		 * (per ARM DDI 0487F.c table D13-1).
190 		 */
191 		write_sysreg_s(0, SYS_TFSR_EL1);
192 
193 		kasan_report_async();
194 	}
195 }
196 #endif
197 
198 /*
199  * This is where we actually resolve the system and process MTE mode
200  * configuration into an actual value in SCTLR_EL1 that affects
201  * userspace.
202  */
mte_update_sctlr_user(struct task_struct * task)203 static void mte_update_sctlr_user(struct task_struct *task)
204 {
205 	/*
206 	 * This must be called with preemption disabled and can only be called
207 	 * on the current or next task since the CPU must match where the thread
208 	 * is going to run. The caller is responsible for calling
209 	 * update_sctlr_el1() later in the same preemption disabled block.
210 	 */
211 	unsigned long sctlr = task->thread.sctlr_user;
212 	unsigned long mte_ctrl = task->thread.mte_ctrl;
213 	unsigned long pref, resolved_mte_tcf;
214 
215 	pref = __this_cpu_read(mte_tcf_preferred);
216 	/*
217 	 * If there is no overlap between the system preferred and
218 	 * program requested values go with what was requested.
219 	 */
220 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
221 	sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK);
222 	/*
223 	 * Pick an actual setting. The order in which we check for
224 	 * set bits and map into register values determines our
225 	 * default order.
226 	 */
227 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
228 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
229 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
230 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
231 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
232 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
233 
234 	if (mte_ctrl & MTE_CTRL_STORE_ONLY)
235 		sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1);
236 
237 	task->thread.sctlr_user = sctlr;
238 }
239 
mte_update_gcr_excl(struct task_struct * task)240 static void mte_update_gcr_excl(struct task_struct *task)
241 {
242 	/*
243 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
244 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
245 	 */
246 	if (kasan_hw_tags_enabled())
247 		return;
248 
249 	write_sysreg_s(
250 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
251 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
252 		SYS_GCR_EL1);
253 }
254 
255 #ifdef CONFIG_KASAN_HW_TAGS
256 /* Only called from assembly, silence sparse */
257 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
258 				 __le32 *updptr, int nr_inst);
259 
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)260 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
261 				 __le32 *updptr, int nr_inst)
262 {
263 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
264 
265 	if (kasan_hw_tags_enabled())
266 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
267 }
268 #endif
269 
mte_thread_init_user(void)270 void mte_thread_init_user(void)
271 {
272 	if (!system_supports_mte())
273 		return;
274 
275 	/* clear any pending asynchronous tag fault */
276 	dsb(ish);
277 	write_sysreg_s(0, SYS_TFSRE0_EL1);
278 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
279 	/* disable tag checking and reset tag generation mask */
280 	set_mte_ctrl(current, 0);
281 }
282 
mte_thread_switch(struct task_struct * next)283 void mte_thread_switch(struct task_struct *next)
284 {
285 	if (!system_supports_mte())
286 		return;
287 
288 	mte_update_sctlr_user(next);
289 	mte_update_gcr_excl(next);
290 
291 	/* TCO may not have been disabled on exception entry for the current task. */
292 	mte_disable_tco_entry(next);
293 
294 	/*
295 	 * Check if an async tag exception occurred at EL1.
296 	 *
297 	 * Note: On the context switch path we rely on the dsb() present
298 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
299 	 * are synchronized before this point.
300 	 */
301 	isb();
302 	mte_check_tfsr_el1();
303 }
304 
mte_cpu_setup(void)305 void mte_cpu_setup(void)
306 {
307 	u64 rgsr;
308 
309 	/*
310 	 * CnP must be enabled only after the MAIR_EL1 register has been set
311 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
312 	 * lead to the wrong memory type being used for a brief window during
313 	 * CPU power-up.
314 	 *
315 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
316 	 * make sure that is the case.
317 	 */
318 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
319 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
320 
321 	/* Normal Tagged memory type at the corresponding MAIR index */
322 	sysreg_clear_set(mair_el1,
323 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
324 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
325 				      MT_NORMAL_TAGGED));
326 
327 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
328 
329 	/*
330 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
331 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
332 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
333 	 * must initialize it.
334 	 */
335 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
336 	       SYS_RGSR_EL1_SEED_SHIFT;
337 	if (rgsr == 0)
338 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
339 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
340 
341 	/* clear any pending tag check faults in TFSR*_EL1 */
342 	write_sysreg_s(0, SYS_TFSR_EL1);
343 	write_sysreg_s(0, SYS_TFSRE0_EL1);
344 
345 	local_flush_tlb_all();
346 }
347 
mte_suspend_enter(void)348 void mte_suspend_enter(void)
349 {
350 	if (!system_supports_mte())
351 		return;
352 
353 	/*
354 	 * The barriers are required to guarantee that the indirect writes
355 	 * to TFSR_EL1 are synchronized before we report the state.
356 	 */
357 	dsb(nsh);
358 	isb();
359 
360 	/* Report SYS_TFSR_EL1 before suspend entry */
361 	mte_check_tfsr_el1();
362 }
363 
mte_suspend_exit(void)364 void mte_suspend_exit(void)
365 {
366 	if (!system_supports_mte())
367 		return;
368 
369 	mte_cpu_setup();
370 }
371 
set_mte_ctrl(struct task_struct * task,unsigned long arg)372 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
373 {
374 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
375 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
376 
377 	if (!system_supports_mte())
378 		return 0;
379 
380 	if (arg & PR_MTE_TCF_ASYNC)
381 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
382 	if (arg & PR_MTE_TCF_SYNC)
383 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
384 
385 	/*
386 	 * If the system supports it and both sync and async modes are
387 	 * specified then implicitly enable asymmetric mode.
388 	 * Userspace could see a mix of both sync and async anyway due
389 	 * to differing or changing defaults on CPUs.
390 	 */
391 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
392 	    (arg & PR_MTE_TCF_ASYNC) &&
393 	    (arg & PR_MTE_TCF_SYNC))
394 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
395 
396 	if (arg & PR_MTE_STORE_ONLY)
397 		mte_ctrl |= MTE_CTRL_STORE_ONLY;
398 
399 	task->thread.mte_ctrl = mte_ctrl;
400 	if (task == current) {
401 		preempt_disable();
402 		mte_update_sctlr_user(task);
403 		mte_update_gcr_excl(task);
404 		update_sctlr_el1(task->thread.sctlr_user);
405 		preempt_enable();
406 	}
407 
408 	return 0;
409 }
410 
get_mte_ctrl(struct task_struct * task)411 long get_mte_ctrl(struct task_struct *task)
412 {
413 	unsigned long ret;
414 	u64 mte_ctrl = task->thread.mte_ctrl;
415 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
416 		   SYS_GCR_EL1_EXCL_MASK;
417 
418 	if (!system_supports_mte())
419 		return 0;
420 
421 	ret = incl << PR_MTE_TAG_SHIFT;
422 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
423 		ret |= PR_MTE_TCF_ASYNC;
424 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
425 		ret |= PR_MTE_TCF_SYNC;
426 	if (mte_ctrl & MTE_CTRL_STORE_ONLY)
427 		ret |= PR_MTE_STORE_ONLY;
428 
429 	return ret;
430 }
431 
432 /*
433  * Access MTE tags in another process' address space as given in mm. Update
434  * the number of tags copied. Return 0 if any tags copied, error otherwise.
435  * Inspired by __access_remote_vm().
436  */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)437 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
438 				struct iovec *kiov, unsigned int gup_flags)
439 {
440 	void __user *buf = kiov->iov_base;
441 	size_t len = kiov->iov_len;
442 	int err = 0;
443 	int write = gup_flags & FOLL_WRITE;
444 
445 	if (!access_ok(buf, len))
446 		return -EFAULT;
447 
448 	if (mmap_read_lock_killable(mm))
449 		return -EIO;
450 
451 	while (len) {
452 		struct vm_area_struct *vma;
453 		unsigned long tags, offset;
454 		void *maddr;
455 		struct page *page = get_user_page_vma_remote(mm, addr,
456 							     gup_flags, &vma);
457 		struct folio *folio;
458 
459 		if (IS_ERR(page)) {
460 			err = PTR_ERR(page);
461 			break;
462 		}
463 
464 		/*
465 		 * Only copy tags if the page has been mapped as PROT_MTE
466 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
467 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
468 		 * would cause the existing tags to be cleared if the page
469 		 * was never mapped with PROT_MTE.
470 		 */
471 		if (!(vma->vm_flags & VM_MTE)) {
472 			err = -EOPNOTSUPP;
473 			put_page(page);
474 			break;
475 		}
476 
477 		folio = page_folio(page);
478 		if (folio_test_hugetlb(folio))
479 			WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio) &&
480 				     !is_huge_zero_folio(folio));
481 		else
482 			WARN_ON_ONCE(!page_mte_tagged(page) && !is_zero_page(page));
483 
484 		/* limit access to the end of the page */
485 		offset = offset_in_page(addr);
486 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
487 
488 		maddr = page_address(page);
489 		if (write) {
490 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
491 			set_page_dirty_lock(page);
492 		} else {
493 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
494 		}
495 		put_page(page);
496 
497 		/* error accessing the tracer's buffer */
498 		if (!tags)
499 			break;
500 
501 		len -= tags;
502 		buf += tags;
503 		addr += tags * MTE_GRANULE_SIZE;
504 	}
505 	mmap_read_unlock(mm);
506 
507 	/* return an error if no tags copied */
508 	kiov->iov_len = buf - kiov->iov_base;
509 	if (!kiov->iov_len) {
510 		/* check for error accessing the tracee's address space */
511 		if (err)
512 			return -EIO;
513 		else
514 			return -EFAULT;
515 	}
516 
517 	return 0;
518 }
519 
520 /*
521  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
522  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
523  */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)524 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
525 			      struct iovec *kiov, unsigned int gup_flags)
526 {
527 	struct mm_struct *mm;
528 	int ret;
529 
530 	mm = get_task_mm(tsk);
531 	if (!mm)
532 		return -EPERM;
533 
534 	if (!tsk->ptrace || (current != tsk->parent) ||
535 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
536 	     !ptracer_capable(tsk, mm->user_ns))) {
537 		mmput(mm);
538 		return -EPERM;
539 	}
540 
541 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
542 	mmput(mm);
543 
544 	return ret;
545 }
546 
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)547 int mte_ptrace_copy_tags(struct task_struct *child, long request,
548 			 unsigned long addr, unsigned long data)
549 {
550 	int ret;
551 	struct iovec kiov;
552 	struct iovec __user *uiov = (void __user *)data;
553 	unsigned int gup_flags = FOLL_FORCE;
554 
555 	if (!system_supports_mte())
556 		return -EIO;
557 
558 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
559 	    get_user(kiov.iov_len, &uiov->iov_len))
560 		return -EFAULT;
561 
562 	if (request == PTRACE_POKEMTETAGS)
563 		gup_flags |= FOLL_WRITE;
564 
565 	/* align addr to the MTE tag granule */
566 	addr &= MTE_GRANULE_MASK;
567 
568 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
569 	if (!ret)
570 		ret = put_user(kiov.iov_len, &uiov->iov_len);
571 
572 	return ret;
573 }
574 
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)575 static ssize_t mte_tcf_preferred_show(struct device *dev,
576 				      struct device_attribute *attr, char *buf)
577 {
578 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
579 	case MTE_CTRL_TCF_ASYNC:
580 		return sysfs_emit(buf, "async\n");
581 	case MTE_CTRL_TCF_SYNC:
582 		return sysfs_emit(buf, "sync\n");
583 	case MTE_CTRL_TCF_ASYMM:
584 		return sysfs_emit(buf, "asymm\n");
585 	default:
586 		return sysfs_emit(buf, "???\n");
587 	}
588 }
589 
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)590 static ssize_t mte_tcf_preferred_store(struct device *dev,
591 				       struct device_attribute *attr,
592 				       const char *buf, size_t count)
593 {
594 	u64 tcf;
595 
596 	if (sysfs_streq(buf, "async"))
597 		tcf = MTE_CTRL_TCF_ASYNC;
598 	else if (sysfs_streq(buf, "sync"))
599 		tcf = MTE_CTRL_TCF_SYNC;
600 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
601 		tcf = MTE_CTRL_TCF_ASYMM;
602 	else
603 		return -EINVAL;
604 
605 	device_lock(dev);
606 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
607 	device_unlock(dev);
608 
609 	return count;
610 }
611 static DEVICE_ATTR_RW(mte_tcf_preferred);
612 
register_mte_tcf_preferred_sysctl(void)613 static int register_mte_tcf_preferred_sysctl(void)
614 {
615 	unsigned int cpu;
616 
617 	if (!system_supports_mte())
618 		return 0;
619 
620 	for_each_possible_cpu(cpu) {
621 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
622 		device_create_file(get_cpu_device(cpu),
623 				   &dev_attr_mte_tcf_preferred);
624 	}
625 
626 	return 0;
627 }
628 subsys_initcall(register_mte_tcf_preferred_sysctl);
629 
630 /*
631  * Return 0 on success, the number of bytes not probed otherwise.
632  */
mte_probe_user_range(const char __user * uaddr,size_t size)633 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
634 {
635 	const char __user *end = uaddr + size;
636 	char val;
637 
638 	__raw_get_user(val, uaddr, efault);
639 
640 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
641 	while (uaddr < end) {
642 		/*
643 		 * A read is sufficient for mte, the caller should have probed
644 		 * for the pte write permission if required.
645 		 */
646 		__raw_get_user(val, uaddr, efault);
647 		uaddr += MTE_GRANULE_SIZE;
648 	}
649 	(void)val;
650 
651 	return 0;
652 
653 efault:
654 	return end - uaddr;
655 }
656