1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 EXPORT_SYMBOL_GPL(tdp_mmu_enabled); 114 #endif 115 116 static int max_huge_page_level __read_mostly; 117 static int tdp_root_level __read_mostly; 118 static int max_tdp_level __read_mostly; 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * struct pte_list_desc is the core data structure used to implement a custom 129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 130 * given GFN when used in the context of rmaps. Using a custom list allows KVM 131 * to optimize for the common case where many GFNs will have at most a handful 132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 133 * memory footprint, which in turn improves runtime performance by exploiting 134 * cache locality. 135 * 136 * A list is comprised of one or more pte_list_desc objects (descriptors). 137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 139 * becomes the head of the list. This means that by definitions, all tail 140 * descriptors are full. 141 * 142 * Note, the meta data fields are deliberately placed at the start of the 143 * structure to optimize the cacheline layout; accessing the descriptor will 144 * touch only a single cacheline so long as @spte_count<=6 (or if only the 145 * descriptors metadata is accessed). 146 */ 147 struct pte_list_desc { 148 struct pte_list_desc *more; 149 /* The number of PTEs stored in _this_ descriptor. */ 150 u32 spte_count; 151 /* The number of PTEs stored in all tails of this descriptor. */ 152 u32 tail_count; 153 u64 *sptes[PTE_LIST_EXT]; 154 }; 155 156 struct kvm_shadow_walk_iterator { 157 u64 addr; 158 hpa_t shadow_addr; 159 u64 *sptep; 160 int level; 161 unsigned index; 162 }; 163 164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 166 (_root), (_addr)); \ 167 shadow_walk_okay(&(_walker)); \ 168 shadow_walk_next(&(_walker))) 169 170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 172 shadow_walk_okay(&(_walker)); \ 173 shadow_walk_next(&(_walker))) 174 175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 177 shadow_walk_okay(&(_walker)) && \ 178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 179 __shadow_walk_next(&(_walker), spte)) 180 181 static struct kmem_cache *pte_list_desc_cache; 182 struct kmem_cache *mmu_page_header_cache; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* Rules for using mmu_spte_update: 489 * Update the state bits, it means the mapped pfn is not changed. 490 * 491 * Returns true if the TLB needs to be flushed 492 */ 493 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return false; 503 } 504 505 if (!spte_needs_atomic_update(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 511 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 512 513 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 514 } 515 516 /* 517 * Rules for using mmu_spte_clear_track_bits: 518 * It sets the sptep from present to nonpresent, and track the 519 * state bits, it is used to clear the last level sptep. 520 * Returns the old PTE. 521 */ 522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 523 { 524 u64 old_spte = *sptep; 525 int level = sptep_to_sp(sptep)->role.level; 526 527 if (!is_shadow_present_pte(old_spte) || 528 !spte_needs_atomic_update(old_spte)) 529 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 530 else 531 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 532 533 if (!is_shadow_present_pte(old_spte)) 534 return old_spte; 535 536 kvm_update_page_stats(kvm, level, -1); 537 return old_spte; 538 } 539 540 /* 541 * Rules for using mmu_spte_clear_no_track: 542 * Directly clear spte without caring the state bits of sptep, 543 * it is used to set the upper level spte. 544 */ 545 static void mmu_spte_clear_no_track(u64 *sptep) 546 { 547 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 548 } 549 550 static u64 mmu_spte_get_lockless(u64 *sptep) 551 { 552 return __get_spte_lockless(sptep); 553 } 554 555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 556 { 557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 558 } 559 560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 561 { 562 if (is_tdp_mmu_active(vcpu)) { 563 kvm_tdp_mmu_walk_lockless_begin(); 564 } else { 565 /* 566 * Prevent page table teardown by making any free-er wait during 567 * kvm_flush_remote_tlbs() IPI to all active vcpus. 568 */ 569 local_irq_disable(); 570 571 /* 572 * Make sure a following spte read is not reordered ahead of the write 573 * to vcpu->mode. 574 */ 575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 576 } 577 } 578 579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 580 { 581 if (is_tdp_mmu_active(vcpu)) { 582 kvm_tdp_mmu_walk_lockless_end(); 583 } else { 584 /* 585 * Make sure the write to vcpu->mode is not reordered in front of 586 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 587 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 588 */ 589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 590 local_irq_enable(); 591 } 592 } 593 594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 595 { 596 int r; 597 598 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 600 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 601 if (r) 602 return r; 603 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 605 PT64_ROOT_MAX_LEVEL); 606 if (r) 607 return r; 608 } 609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 610 PT64_ROOT_MAX_LEVEL); 611 if (r) 612 return r; 613 if (maybe_indirect) { 614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 615 PT64_ROOT_MAX_LEVEL); 616 if (r) 617 return r; 618 } 619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 620 PT64_ROOT_MAX_LEVEL); 621 } 622 623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 624 { 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 630 } 631 632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 633 { 634 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 635 } 636 637 static bool sp_has_gptes(struct kvm_mmu_page *sp); 638 639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 640 { 641 if (sp->role.passthrough) 642 return sp->gfn; 643 644 if (sp->shadowed_translation) 645 return sp->shadowed_translation[index] >> PAGE_SHIFT; 646 647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 648 } 649 650 /* 651 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 652 * that the SPTE itself may have a more constrained access permissions that 653 * what the guest enforces. For example, a guest may create an executable 654 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 655 */ 656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 657 { 658 if (sp->shadowed_translation) 659 return sp->shadowed_translation[index] & ACC_ALL; 660 661 /* 662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 663 * KVM is not shadowing any guest page tables, so the "guest access 664 * permissions" are just ACC_ALL. 665 * 666 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 667 * is shadowing a guest huge page with small pages, the guest access 668 * permissions being shadowed are the access permissions of the huge 669 * page. 670 * 671 * In both cases, sp->role.access contains the correct access bits. 672 */ 673 return sp->role.access; 674 } 675 676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 677 gfn_t gfn, unsigned int access) 678 { 679 if (sp->shadowed_translation) { 680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 681 return; 682 } 683 684 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 685 "access mismatch under %s page %llx (expected %u, got %u)\n", 686 sp->role.passthrough ? "passthrough" : "direct", 687 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 688 689 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 690 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 691 sp->role.passthrough ? "passthrough" : "direct", 692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 693 } 694 695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 696 unsigned int access) 697 { 698 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 699 700 kvm_mmu_page_set_translation(sp, index, gfn, access); 701 } 702 703 /* 704 * Return the pointer to the large page information for a given gfn, 705 * handling slots that are not large page aligned. 706 */ 707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 708 const struct kvm_memory_slot *slot, int level) 709 { 710 unsigned long idx; 711 712 idx = gfn_to_index(gfn, slot->base_gfn, level); 713 return &slot->arch.lpage_info[level - 2][idx]; 714 } 715 716 /* 717 * The most significant bit in disallow_lpage tracks whether or not memory 718 * attributes are mixed, i.e. not identical for all gfns at the current level. 719 * The lower order bits are used to refcount other cases where a hugepage is 720 * disallowed, e.g. if KVM has shadow a page table at the gfn. 721 */ 722 #define KVM_LPAGE_MIXED_FLAG BIT(31) 723 724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 725 gfn_t gfn, int count) 726 { 727 struct kvm_lpage_info *linfo; 728 int old, i; 729 730 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 731 linfo = lpage_info_slot(gfn, slot, i); 732 733 old = linfo->disallow_lpage; 734 linfo->disallow_lpage += count; 735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 736 } 737 } 738 739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 740 { 741 update_gfn_disallow_lpage_count(slot, gfn, 1); 742 } 743 744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 745 { 746 update_gfn_disallow_lpage_count(slot, gfn, -1); 747 } 748 749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 750 { 751 struct kvm_memslots *slots; 752 struct kvm_memory_slot *slot; 753 gfn_t gfn; 754 755 kvm->arch.indirect_shadow_pages++; 756 /* 757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 759 * emulated writes are visible before re-reading guest PTEs, or that 760 * an emulated write will see the elevated count and acquire mmu_lock 761 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 762 */ 763 smp_mb(); 764 765 gfn = sp->gfn; 766 slots = kvm_memslots_for_spte_role(kvm, sp->role); 767 slot = __gfn_to_memslot(slots, gfn); 768 769 /* the non-leaf shadow pages are keeping readonly. */ 770 if (sp->role.level > PG_LEVEL_4K) 771 return __kvm_write_track_add_gfn(kvm, slot, gfn); 772 773 kvm_mmu_gfn_disallow_lpage(slot, gfn); 774 775 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 776 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 777 } 778 779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 /* 782 * If it's possible to replace the shadow page with an NX huge page, 783 * i.e. if the shadow page is the only thing currently preventing KVM 784 * from using a huge page, add the shadow page to the list of "to be 785 * zapped for NX recovery" pages. Note, the shadow page can already be 786 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 787 * links a shadow page at multiple points. 788 */ 789 if (!list_empty(&sp->possible_nx_huge_page_link)) 790 return; 791 792 ++kvm->stat.nx_lpage_splits; 793 list_add_tail(&sp->possible_nx_huge_page_link, 794 &kvm->arch.possible_nx_huge_pages); 795 } 796 797 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 798 bool nx_huge_page_possible) 799 { 800 sp->nx_huge_page_disallowed = true; 801 802 if (nx_huge_page_possible) 803 track_possible_nx_huge_page(kvm, sp); 804 } 805 806 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 807 { 808 struct kvm_memslots *slots; 809 struct kvm_memory_slot *slot; 810 gfn_t gfn; 811 812 kvm->arch.indirect_shadow_pages--; 813 gfn = sp->gfn; 814 slots = kvm_memslots_for_spte_role(kvm, sp->role); 815 slot = __gfn_to_memslot(slots, gfn); 816 if (sp->role.level > PG_LEVEL_4K) 817 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 818 819 kvm_mmu_gfn_allow_lpage(slot, gfn); 820 } 821 822 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 823 { 824 if (list_empty(&sp->possible_nx_huge_page_link)) 825 return; 826 827 --kvm->stat.nx_lpage_splits; 828 list_del_init(&sp->possible_nx_huge_page_link); 829 } 830 831 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 832 { 833 sp->nx_huge_page_disallowed = false; 834 835 untrack_possible_nx_huge_page(kvm, sp); 836 } 837 838 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 839 gfn_t gfn, 840 bool no_dirty_log) 841 { 842 struct kvm_memory_slot *slot; 843 844 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 845 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 846 return NULL; 847 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 848 return NULL; 849 850 return slot; 851 } 852 853 /* 854 * About rmap_head encoding: 855 * 856 * If the bit zero of rmap_head->val is clear, then it points to the only spte 857 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct 858 * pte_list_desc containing more mappings. 859 */ 860 #define KVM_RMAP_MANY BIT(0) 861 862 /* 863 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always 864 * operates with mmu_lock held for write), but rmaps can be walked without 865 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain 866 * being zapped/dropped _while the rmap is locked_. 867 * 868 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be 869 * done while holding mmu_lock for write. This allows a task walking rmaps 870 * without holding mmu_lock to concurrently walk the same entries as a task 871 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify 872 * the rmaps, thus the walks are stable. 873 * 874 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, 875 * only the rmap chains themselves are protected. E.g. holding an rmap's lock 876 * ensures all "struct pte_list_desc" fields are stable. 877 */ 878 #define KVM_RMAP_LOCKED BIT(1) 879 880 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) 881 { 882 unsigned long old_val, new_val; 883 884 lockdep_assert_preemption_disabled(); 885 886 /* 887 * Elide the lock if the rmap is empty, as lockless walkers (read-only 888 * mode) don't need to (and can't) walk an empty rmap, nor can they add 889 * entries to the rmap. I.e. the only paths that process empty rmaps 890 * do so while holding mmu_lock for write, and are mutually exclusive. 891 */ 892 old_val = atomic_long_read(&rmap_head->val); 893 if (!old_val) 894 return 0; 895 896 do { 897 /* 898 * If the rmap is locked, wait for it to be unlocked before 899 * trying acquire the lock, e.g. to avoid bouncing the cache 900 * line. 901 */ 902 while (old_val & KVM_RMAP_LOCKED) { 903 cpu_relax(); 904 old_val = atomic_long_read(&rmap_head->val); 905 } 906 907 /* 908 * Recheck for an empty rmap, it may have been purged by the 909 * task that held the lock. 910 */ 911 if (!old_val) 912 return 0; 913 914 new_val = old_val | KVM_RMAP_LOCKED; 915 /* 916 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap 917 * from being reordered outside of the critical section created by 918 * __kvm_rmap_lock(). 919 * 920 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). 921 * 922 * For the !old_val case, no ordering is needed, as there is no rmap 923 * to walk. 924 */ 925 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); 926 927 /* 928 * Return the old value, i.e. _without_ the LOCKED bit set. It's 929 * impossible for the return value to be 0 (see above), i.e. the read- 930 * only unlock flow can't get a false positive and fail to unlock. 931 */ 932 return old_val; 933 } 934 935 static unsigned long kvm_rmap_lock(struct kvm *kvm, 936 struct kvm_rmap_head *rmap_head) 937 { 938 lockdep_assert_held_write(&kvm->mmu_lock); 939 940 return __kvm_rmap_lock(rmap_head); 941 } 942 943 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, 944 unsigned long val) 945 { 946 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); 947 /* 948 * Ensure that all accesses to the rmap have completed before unlocking 949 * the rmap. 950 * 951 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). 952 */ 953 atomic_long_set_release(&rmap_head->val, val); 954 } 955 956 static void kvm_rmap_unlock(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 unsigned long new_val) 959 { 960 lockdep_assert_held_write(&kvm->mmu_lock); 961 962 __kvm_rmap_unlock(rmap_head, new_val); 963 } 964 965 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) 966 { 967 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; 968 } 969 970 /* 971 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The 972 * actual locking is the same, but the caller is disallowed from modifying the 973 * rmap, and so the unlock flow is a nop if the rmap is/was empty. 974 */ 975 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) 976 { 977 unsigned long rmap_val; 978 979 preempt_disable(); 980 rmap_val = __kvm_rmap_lock(rmap_head); 981 982 if (!rmap_val) 983 preempt_enable(); 984 985 return rmap_val; 986 } 987 988 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, 989 unsigned long old_val) 990 { 991 if (!old_val) 992 return; 993 994 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); 995 996 __kvm_rmap_unlock(rmap_head, old_val); 997 preempt_enable(); 998 } 999 1000 /* 1001 * Returns the number of pointers in the rmap chain, not counting the new one. 1002 */ 1003 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1004 u64 *spte, struct kvm_rmap_head *rmap_head) 1005 { 1006 unsigned long old_val, new_val; 1007 struct pte_list_desc *desc; 1008 int count = 0; 1009 1010 old_val = kvm_rmap_lock(kvm, rmap_head); 1011 1012 if (!old_val) { 1013 new_val = (unsigned long)spte; 1014 } else if (!(old_val & KVM_RMAP_MANY)) { 1015 desc = kvm_mmu_memory_cache_alloc(cache); 1016 desc->sptes[0] = (u64 *)old_val; 1017 desc->sptes[1] = spte; 1018 desc->spte_count = 2; 1019 desc->tail_count = 0; 1020 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1021 ++count; 1022 } else { 1023 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1024 count = desc->tail_count + desc->spte_count; 1025 1026 /* 1027 * If the previous head is full, allocate a new head descriptor 1028 * as tail descriptors are always kept full. 1029 */ 1030 if (desc->spte_count == PTE_LIST_EXT) { 1031 desc = kvm_mmu_memory_cache_alloc(cache); 1032 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1033 desc->spte_count = 0; 1034 desc->tail_count = count; 1035 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1036 } else { 1037 new_val = old_val; 1038 } 1039 desc->sptes[desc->spte_count++] = spte; 1040 } 1041 1042 kvm_rmap_unlock(kvm, rmap_head, new_val); 1043 1044 return count; 1045 } 1046 1047 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, 1048 struct pte_list_desc *desc, int i) 1049 { 1050 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); 1051 int j = head_desc->spte_count - 1; 1052 1053 /* 1054 * The head descriptor should never be empty. A new head is added only 1055 * when adding an entry and the previous head is full, and heads are 1056 * removed (this flow) when they become empty. 1057 */ 1058 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 1059 1060 /* 1061 * Replace the to-be-freed SPTE with the last valid entry from the head 1062 * descriptor to ensure that tail descriptors are full at all times. 1063 * Note, this also means that tail_count is stable for each descriptor. 1064 */ 1065 desc->sptes[i] = head_desc->sptes[j]; 1066 head_desc->sptes[j] = NULL; 1067 head_desc->spte_count--; 1068 if (head_desc->spte_count) 1069 return; 1070 1071 /* 1072 * The head descriptor is empty. If there are no tail descriptors, 1073 * nullify the rmap head to mark the list as empty, else point the rmap 1074 * head at the next descriptor, i.e. the new head. 1075 */ 1076 if (!head_desc->more) 1077 *rmap_val = 0; 1078 else 1079 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 1080 mmu_free_pte_list_desc(head_desc); 1081 } 1082 1083 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1084 struct kvm_rmap_head *rmap_head) 1085 { 1086 struct pte_list_desc *desc; 1087 unsigned long rmap_val; 1088 int i; 1089 1090 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1091 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) 1092 goto out; 1093 1094 if (!(rmap_val & KVM_RMAP_MANY)) { 1095 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) 1096 goto out; 1097 1098 rmap_val = 0; 1099 } else { 1100 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1101 while (desc) { 1102 for (i = 0; i < desc->spte_count; ++i) { 1103 if (desc->sptes[i] == spte) { 1104 pte_list_desc_remove_entry(kvm, &rmap_val, 1105 desc, i); 1106 goto out; 1107 } 1108 } 1109 desc = desc->more; 1110 } 1111 1112 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1113 } 1114 1115 out: 1116 kvm_rmap_unlock(kvm, rmap_head, rmap_val); 1117 } 1118 1119 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1120 struct kvm_rmap_head *rmap_head, u64 *sptep) 1121 { 1122 mmu_spte_clear_track_bits(kvm, sptep); 1123 pte_list_remove(kvm, sptep, rmap_head); 1124 } 1125 1126 /* Return true if at least one SPTE was zapped, false otherwise */ 1127 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head) 1129 { 1130 struct pte_list_desc *desc, *next; 1131 unsigned long rmap_val; 1132 int i; 1133 1134 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1135 if (!rmap_val) 1136 return false; 1137 1138 if (!(rmap_val & KVM_RMAP_MANY)) { 1139 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); 1140 goto out; 1141 } 1142 1143 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1144 1145 for (; desc; desc = next) { 1146 for (i = 0; i < desc->spte_count; i++) 1147 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1148 next = desc->more; 1149 mmu_free_pte_list_desc(desc); 1150 } 1151 out: 1152 /* rmap_head is meaningless now, remember to reset it */ 1153 kvm_rmap_unlock(kvm, rmap_head, 0); 1154 return true; 1155 } 1156 1157 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1158 { 1159 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1160 struct pte_list_desc *desc; 1161 1162 if (!rmap_val) 1163 return 0; 1164 else if (!(rmap_val & KVM_RMAP_MANY)) 1165 return 1; 1166 1167 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1168 return desc->tail_count + desc->spte_count; 1169 } 1170 1171 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1172 const struct kvm_memory_slot *slot) 1173 { 1174 unsigned long idx; 1175 1176 idx = gfn_to_index(gfn, slot->base_gfn, level); 1177 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1178 } 1179 1180 static void rmap_remove(struct kvm *kvm, u64 *spte) 1181 { 1182 struct kvm_memslots *slots; 1183 struct kvm_memory_slot *slot; 1184 struct kvm_mmu_page *sp; 1185 gfn_t gfn; 1186 struct kvm_rmap_head *rmap_head; 1187 1188 sp = sptep_to_sp(spte); 1189 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1190 1191 /* 1192 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1193 * so we have to determine which memslots to use based on context 1194 * information in sp->role. 1195 */ 1196 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1197 1198 slot = __gfn_to_memslot(slots, gfn); 1199 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1200 1201 pte_list_remove(kvm, spte, rmap_head); 1202 } 1203 1204 /* 1205 * Used by the following functions to iterate through the sptes linked by a 1206 * rmap. All fields are private and not assumed to be used outside. 1207 */ 1208 struct rmap_iterator { 1209 /* private fields */ 1210 struct rmap_head *head; 1211 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1212 int pos; /* index of the sptep */ 1213 }; 1214 1215 /* 1216 * Iteration must be started by this function. This should also be used after 1217 * removing/dropping sptes from the rmap link because in such cases the 1218 * information in the iterator may not be valid. 1219 * 1220 * Returns sptep if found, NULL otherwise. 1221 */ 1222 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1223 struct rmap_iterator *iter) 1224 { 1225 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1226 1227 if (!rmap_val) 1228 return NULL; 1229 1230 if (!(rmap_val & KVM_RMAP_MANY)) { 1231 iter->desc = NULL; 1232 return (u64 *)rmap_val; 1233 } 1234 1235 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1236 iter->pos = 0; 1237 return iter->desc->sptes[iter->pos]; 1238 } 1239 1240 /* 1241 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1242 * 1243 * Returns sptep if found, NULL otherwise. 1244 */ 1245 static u64 *rmap_get_next(struct rmap_iterator *iter) 1246 { 1247 if (iter->desc) { 1248 if (iter->pos < PTE_LIST_EXT - 1) { 1249 ++iter->pos; 1250 if (iter->desc->sptes[iter->pos]) 1251 return iter->desc->sptes[iter->pos]; 1252 } 1253 1254 iter->desc = iter->desc->more; 1255 1256 if (iter->desc) { 1257 iter->pos = 0; 1258 /* desc->sptes[0] cannot be NULL */ 1259 return iter->desc->sptes[iter->pos]; 1260 } 1261 } 1262 1263 return NULL; 1264 } 1265 1266 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1267 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ 1268 _sptep_; _sptep_ = rmap_get_next(_iter_)) 1269 1270 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1271 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1272 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ 1273 1274 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ 1275 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1276 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) 1277 1278 static void drop_spte(struct kvm *kvm, u64 *sptep) 1279 { 1280 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1281 1282 if (is_shadow_present_pte(old_spte)) 1283 rmap_remove(kvm, sptep); 1284 } 1285 1286 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1287 { 1288 struct kvm_mmu_page *sp; 1289 1290 sp = sptep_to_sp(sptep); 1291 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1292 1293 drop_spte(kvm, sptep); 1294 1295 if (flush) 1296 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1297 } 1298 1299 /* 1300 * Write-protect on the specified @sptep, @pt_protect indicates whether 1301 * spte write-protection is caused by protecting shadow page table. 1302 * 1303 * Note: write protection is difference between dirty logging and spte 1304 * protection: 1305 * - for dirty logging, the spte can be set to writable at anytime if 1306 * its dirty bitmap is properly set. 1307 * - for spte protection, the spte can be writable only after unsync-ing 1308 * shadow page. 1309 * 1310 * Return true if tlb need be flushed. 1311 */ 1312 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1313 { 1314 u64 spte = *sptep; 1315 1316 if (!is_writable_pte(spte) && 1317 !(pt_protect && is_mmu_writable_spte(spte))) 1318 return false; 1319 1320 if (pt_protect) 1321 spte &= ~shadow_mmu_writable_mask; 1322 spte = spte & ~PT_WRITABLE_MASK; 1323 1324 return mmu_spte_update(sptep, spte); 1325 } 1326 1327 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1328 bool pt_protect) 1329 { 1330 u64 *sptep; 1331 struct rmap_iterator iter; 1332 bool flush = false; 1333 1334 for_each_rmap_spte(rmap_head, &iter, sptep) 1335 flush |= spte_write_protect(sptep, pt_protect); 1336 1337 return flush; 1338 } 1339 1340 static bool spte_clear_dirty(u64 *sptep) 1341 { 1342 u64 spte = *sptep; 1343 1344 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1345 spte &= ~shadow_dirty_mask; 1346 return mmu_spte_update(sptep, spte); 1347 } 1348 1349 /* 1350 * Gets the GFN ready for another round of dirty logging by clearing the 1351 * - D bit on ad-enabled SPTEs, and 1352 * - W bit on ad-disabled SPTEs. 1353 * Returns true iff any D or W bits were cleared. 1354 */ 1355 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1356 const struct kvm_memory_slot *slot) 1357 { 1358 u64 *sptep; 1359 struct rmap_iterator iter; 1360 bool flush = false; 1361 1362 for_each_rmap_spte(rmap_head, &iter, sptep) { 1363 if (spte_ad_need_write_protect(*sptep)) 1364 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1365 (unsigned long *)sptep); 1366 else 1367 flush |= spte_clear_dirty(sptep); 1368 } 1369 1370 return flush; 1371 } 1372 1373 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1374 struct kvm_memory_slot *slot, 1375 gfn_t gfn_offset, unsigned long mask) 1376 { 1377 struct kvm_rmap_head *rmap_head; 1378 1379 if (tdp_mmu_enabled) 1380 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1381 slot->base_gfn + gfn_offset, mask, true); 1382 1383 if (!kvm_memslots_have_rmaps(kvm)) 1384 return; 1385 1386 while (mask) { 1387 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1388 PG_LEVEL_4K, slot); 1389 rmap_write_protect(rmap_head, false); 1390 1391 /* clear the first set bit */ 1392 mask &= mask - 1; 1393 } 1394 } 1395 1396 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1397 struct kvm_memory_slot *slot, 1398 gfn_t gfn_offset, unsigned long mask) 1399 { 1400 struct kvm_rmap_head *rmap_head; 1401 1402 if (tdp_mmu_enabled) 1403 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1404 slot->base_gfn + gfn_offset, mask, false); 1405 1406 if (!kvm_memslots_have_rmaps(kvm)) 1407 return; 1408 1409 while (mask) { 1410 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1411 PG_LEVEL_4K, slot); 1412 __rmap_clear_dirty(kvm, rmap_head, slot); 1413 1414 /* clear the first set bit */ 1415 mask &= mask - 1; 1416 } 1417 } 1418 1419 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1420 struct kvm_memory_slot *slot, 1421 gfn_t gfn_offset, unsigned long mask) 1422 { 1423 /* 1424 * If the slot was assumed to be "initially all dirty", write-protect 1425 * huge pages to ensure they are split to 4KiB on the first write (KVM 1426 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1427 * immediately try to split huge pages, e.g. so that vCPUs don't get 1428 * saddled with the cost of splitting. 1429 * 1430 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1431 * of memslot has no such restriction, so the range can cross two large 1432 * pages. 1433 */ 1434 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1435 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1436 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1437 1438 if (READ_ONCE(eager_page_split)) 1439 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1440 1441 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1442 1443 /* Cross two large pages? */ 1444 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1445 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1446 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1447 PG_LEVEL_2M); 1448 } 1449 1450 /* 1451 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1452 * mask. If PML is enabled and the GFN doesn't need to be write- 1453 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1454 * Otherwise clear the Writable bit. 1455 * 1456 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1457 * enabled but it chooses between clearing the Dirty bit and Writeable 1458 * bit based on the context. 1459 */ 1460 if (kvm->arch.cpu_dirty_log_size) 1461 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1462 else 1463 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1464 } 1465 1466 int kvm_cpu_dirty_log_size(struct kvm *kvm) 1467 { 1468 return kvm->arch.cpu_dirty_log_size; 1469 } 1470 1471 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1472 struct kvm_memory_slot *slot, u64 gfn, 1473 int min_level) 1474 { 1475 struct kvm_rmap_head *rmap_head; 1476 int i; 1477 bool write_protected = false; 1478 1479 if (kvm_memslots_have_rmaps(kvm)) { 1480 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1481 rmap_head = gfn_to_rmap(gfn, i, slot); 1482 write_protected |= rmap_write_protect(rmap_head, true); 1483 } 1484 } 1485 1486 if (tdp_mmu_enabled) 1487 write_protected |= 1488 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1489 1490 return write_protected; 1491 } 1492 1493 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1494 { 1495 struct kvm_memory_slot *slot; 1496 1497 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1498 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1499 } 1500 1501 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1502 const struct kvm_memory_slot *slot) 1503 { 1504 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1505 } 1506 1507 struct slot_rmap_walk_iterator { 1508 /* input fields. */ 1509 const struct kvm_memory_slot *slot; 1510 gfn_t start_gfn; 1511 gfn_t end_gfn; 1512 int start_level; 1513 int end_level; 1514 1515 /* output fields. */ 1516 gfn_t gfn; 1517 struct kvm_rmap_head *rmap; 1518 int level; 1519 1520 /* private field. */ 1521 struct kvm_rmap_head *end_rmap; 1522 }; 1523 1524 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1525 int level) 1526 { 1527 iterator->level = level; 1528 iterator->gfn = iterator->start_gfn; 1529 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1530 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1531 } 1532 1533 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1534 const struct kvm_memory_slot *slot, 1535 int start_level, int end_level, 1536 gfn_t start_gfn, gfn_t end_gfn) 1537 { 1538 iterator->slot = slot; 1539 iterator->start_level = start_level; 1540 iterator->end_level = end_level; 1541 iterator->start_gfn = start_gfn; 1542 iterator->end_gfn = end_gfn; 1543 1544 rmap_walk_init_level(iterator, iterator->start_level); 1545 } 1546 1547 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1548 { 1549 return !!iterator->rmap; 1550 } 1551 1552 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1553 { 1554 while (++iterator->rmap <= iterator->end_rmap) { 1555 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1556 1557 if (atomic_long_read(&iterator->rmap->val)) 1558 return; 1559 } 1560 1561 if (++iterator->level > iterator->end_level) { 1562 iterator->rmap = NULL; 1563 return; 1564 } 1565 1566 rmap_walk_init_level(iterator, iterator->level); 1567 } 1568 1569 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1570 _start_gfn, _end_gfn, _iter_) \ 1571 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1572 _end_level_, _start_gfn, _end_gfn); \ 1573 slot_rmap_walk_okay(_iter_); \ 1574 slot_rmap_walk_next(_iter_)) 1575 1576 /* The return value indicates if tlb flush on all vcpus is needed. */ 1577 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1578 struct kvm_rmap_head *rmap_head, 1579 const struct kvm_memory_slot *slot); 1580 1581 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1582 const struct kvm_memory_slot *slot, 1583 slot_rmaps_handler fn, 1584 int start_level, int end_level, 1585 gfn_t start_gfn, gfn_t end_gfn, 1586 bool can_yield, bool flush_on_yield, 1587 bool flush) 1588 { 1589 struct slot_rmap_walk_iterator iterator; 1590 1591 lockdep_assert_held_write(&kvm->mmu_lock); 1592 1593 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1594 end_gfn, &iterator) { 1595 if (iterator.rmap) 1596 flush |= fn(kvm, iterator.rmap, slot); 1597 1598 if (!can_yield) 1599 continue; 1600 1601 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1602 if (flush && flush_on_yield) { 1603 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1604 iterator.gfn - start_gfn + 1); 1605 flush = false; 1606 } 1607 cond_resched_rwlock_write(&kvm->mmu_lock); 1608 } 1609 } 1610 1611 return flush; 1612 } 1613 1614 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1615 const struct kvm_memory_slot *slot, 1616 slot_rmaps_handler fn, 1617 int start_level, int end_level, 1618 bool flush_on_yield) 1619 { 1620 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1621 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1622 true, flush_on_yield, false); 1623 } 1624 1625 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1626 const struct kvm_memory_slot *slot, 1627 slot_rmaps_handler fn, 1628 bool flush_on_yield) 1629 { 1630 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1631 } 1632 1633 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1634 const struct kvm_memory_slot *slot, 1635 gfn_t start, gfn_t end, bool can_yield, 1636 bool flush) 1637 { 1638 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1639 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1640 start, end - 1, can_yield, true, flush); 1641 } 1642 1643 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1644 { 1645 bool flush = false; 1646 1647 /* 1648 * To prevent races with vCPUs faulting in a gfn using stale data, 1649 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1650 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1651 * in that case, SRCU synchronization ensures that SPTEs are zapped 1652 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1653 * invalid slot. 1654 */ 1655 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1656 lockdep_is_held(&kvm->slots_lock)); 1657 1658 if (kvm_memslots_have_rmaps(kvm)) 1659 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1660 range->start, range->end, 1661 range->may_block, flush); 1662 1663 if (tdp_mmu_enabled) 1664 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1665 1666 if (kvm_x86_ops.set_apic_access_page_addr && 1667 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1668 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1669 1670 return flush; 1671 } 1672 1673 #define RMAP_RECYCLE_THRESHOLD 1000 1674 1675 static void __rmap_add(struct kvm *kvm, 1676 struct kvm_mmu_memory_cache *cache, 1677 const struct kvm_memory_slot *slot, 1678 u64 *spte, gfn_t gfn, unsigned int access) 1679 { 1680 struct kvm_mmu_page *sp; 1681 struct kvm_rmap_head *rmap_head; 1682 int rmap_count; 1683 1684 sp = sptep_to_sp(spte); 1685 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1686 kvm_update_page_stats(kvm, sp->role.level, 1); 1687 1688 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1689 rmap_count = pte_list_add(kvm, cache, spte, rmap_head); 1690 1691 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1692 kvm->stat.max_mmu_rmap_size = rmap_count; 1693 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1694 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1695 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1696 } 1697 } 1698 1699 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1700 u64 *spte, gfn_t gfn, unsigned int access) 1701 { 1702 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1703 1704 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1705 } 1706 1707 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1708 struct kvm_gfn_range *range, 1709 bool test_only) 1710 { 1711 struct kvm_rmap_head *rmap_head; 1712 struct rmap_iterator iter; 1713 unsigned long rmap_val; 1714 bool young = false; 1715 u64 *sptep; 1716 gfn_t gfn; 1717 int level; 1718 u64 spte; 1719 1720 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 1721 for (gfn = range->start; gfn < range->end; 1722 gfn += KVM_PAGES_PER_HPAGE(level)) { 1723 rmap_head = gfn_to_rmap(gfn, level, range->slot); 1724 rmap_val = kvm_rmap_lock_readonly(rmap_head); 1725 1726 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { 1727 if (!is_accessed_spte(spte)) 1728 continue; 1729 1730 if (test_only) { 1731 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1732 return true; 1733 } 1734 1735 if (spte_ad_enabled(spte)) 1736 clear_bit((ffs(shadow_accessed_mask) - 1), 1737 (unsigned long *)sptep); 1738 else 1739 /* 1740 * If the following cmpxchg fails, the 1741 * spte is being concurrently modified 1742 * and should most likely stay young. 1743 */ 1744 cmpxchg64(sptep, spte, 1745 mark_spte_for_access_track(spte)); 1746 young = true; 1747 } 1748 1749 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1750 } 1751 } 1752 return young; 1753 } 1754 1755 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) 1756 { 1757 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); 1758 } 1759 1760 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1761 { 1762 bool young = false; 1763 1764 if (tdp_mmu_enabled) 1765 young = kvm_tdp_mmu_age_gfn_range(kvm, range); 1766 1767 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1768 young |= kvm_rmap_age_gfn_range(kvm, range, false); 1769 1770 return young; 1771 } 1772 1773 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1774 { 1775 bool young = false; 1776 1777 if (tdp_mmu_enabled) 1778 young = kvm_tdp_mmu_test_age_gfn(kvm, range); 1779 1780 if (young) 1781 return young; 1782 1783 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1784 young |= kvm_rmap_age_gfn_range(kvm, range, true); 1785 1786 return young; 1787 } 1788 1789 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1790 { 1791 #ifdef CONFIG_KVM_PROVE_MMU 1792 int i; 1793 1794 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1795 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1796 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1797 sp->spt[i], &sp->spt[i], 1798 kvm_mmu_page_get_gfn(sp, i)); 1799 } 1800 #endif 1801 } 1802 1803 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1804 { 1805 kvm->arch.n_used_mmu_pages++; 1806 kvm_account_pgtable_pages((void *)sp->spt, +1); 1807 } 1808 1809 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1810 { 1811 kvm->arch.n_used_mmu_pages--; 1812 kvm_account_pgtable_pages((void *)sp->spt, -1); 1813 } 1814 1815 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1816 { 1817 kvm_mmu_check_sptes_at_free(sp); 1818 1819 hlist_del(&sp->hash_link); 1820 list_del(&sp->link); 1821 free_page((unsigned long)sp->spt); 1822 free_page((unsigned long)sp->shadowed_translation); 1823 kmem_cache_free(mmu_page_header_cache, sp); 1824 } 1825 1826 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1827 { 1828 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1829 } 1830 1831 static void mmu_page_add_parent_pte(struct kvm *kvm, 1832 struct kvm_mmu_memory_cache *cache, 1833 struct kvm_mmu_page *sp, u64 *parent_pte) 1834 { 1835 if (!parent_pte) 1836 return; 1837 1838 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); 1839 } 1840 1841 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1842 u64 *parent_pte) 1843 { 1844 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1845 } 1846 1847 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1848 u64 *parent_pte) 1849 { 1850 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1851 mmu_spte_clear_no_track(parent_pte); 1852 } 1853 1854 static void mark_unsync(u64 *spte); 1855 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1856 { 1857 u64 *sptep; 1858 struct rmap_iterator iter; 1859 1860 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1861 mark_unsync(sptep); 1862 } 1863 } 1864 1865 static void mark_unsync(u64 *spte) 1866 { 1867 struct kvm_mmu_page *sp; 1868 1869 sp = sptep_to_sp(spte); 1870 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1871 return; 1872 if (sp->unsync_children++) 1873 return; 1874 kvm_mmu_mark_parents_unsync(sp); 1875 } 1876 1877 #define KVM_PAGE_ARRAY_NR 16 1878 1879 struct kvm_mmu_pages { 1880 struct mmu_page_and_offset { 1881 struct kvm_mmu_page *sp; 1882 unsigned int idx; 1883 } page[KVM_PAGE_ARRAY_NR]; 1884 unsigned int nr; 1885 }; 1886 1887 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1888 int idx) 1889 { 1890 int i; 1891 1892 if (sp->unsync) 1893 for (i=0; i < pvec->nr; i++) 1894 if (pvec->page[i].sp == sp) 1895 return 0; 1896 1897 pvec->page[pvec->nr].sp = sp; 1898 pvec->page[pvec->nr].idx = idx; 1899 pvec->nr++; 1900 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1901 } 1902 1903 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1904 { 1905 --sp->unsync_children; 1906 WARN_ON_ONCE((int)sp->unsync_children < 0); 1907 __clear_bit(idx, sp->unsync_child_bitmap); 1908 } 1909 1910 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1911 struct kvm_mmu_pages *pvec) 1912 { 1913 int i, ret, nr_unsync_leaf = 0; 1914 1915 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1916 struct kvm_mmu_page *child; 1917 u64 ent = sp->spt[i]; 1918 1919 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1920 clear_unsync_child_bit(sp, i); 1921 continue; 1922 } 1923 1924 child = spte_to_child_sp(ent); 1925 1926 if (child->unsync_children) { 1927 if (mmu_pages_add(pvec, child, i)) 1928 return -ENOSPC; 1929 1930 ret = __mmu_unsync_walk(child, pvec); 1931 if (!ret) { 1932 clear_unsync_child_bit(sp, i); 1933 continue; 1934 } else if (ret > 0) { 1935 nr_unsync_leaf += ret; 1936 } else 1937 return ret; 1938 } else if (child->unsync) { 1939 nr_unsync_leaf++; 1940 if (mmu_pages_add(pvec, child, i)) 1941 return -ENOSPC; 1942 } else 1943 clear_unsync_child_bit(sp, i); 1944 } 1945 1946 return nr_unsync_leaf; 1947 } 1948 1949 #define INVALID_INDEX (-1) 1950 1951 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1952 struct kvm_mmu_pages *pvec) 1953 { 1954 pvec->nr = 0; 1955 if (!sp->unsync_children) 1956 return 0; 1957 1958 mmu_pages_add(pvec, sp, INVALID_INDEX); 1959 return __mmu_unsync_walk(sp, pvec); 1960 } 1961 1962 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1963 { 1964 WARN_ON_ONCE(!sp->unsync); 1965 trace_kvm_mmu_sync_page(sp); 1966 sp->unsync = 0; 1967 --kvm->stat.mmu_unsync; 1968 } 1969 1970 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1971 struct list_head *invalid_list); 1972 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1973 struct list_head *invalid_list); 1974 1975 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1976 { 1977 if (sp->role.direct) 1978 return false; 1979 1980 if (sp->role.passthrough) 1981 return false; 1982 1983 return true; 1984 } 1985 1986 static __ro_after_init HLIST_HEAD(empty_page_hash); 1987 1988 static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn) 1989 { 1990 /* 1991 * Ensure the load of the hash table pointer itself is ordered before 1992 * loads to walk the table. The pointer is set at runtime outside of 1993 * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of 1994 * shadow pages becomes necessary only when KVM needs to shadow L1's 1995 * TDP for an L2 guest. Pairs with the smp_store_release() in 1996 * kvm_mmu_alloc_page_hash(). 1997 */ 1998 struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash); 1999 2000 lockdep_assert_held(&kvm->mmu_lock); 2001 2002 if (!page_hash) 2003 return &empty_page_hash; 2004 2005 return &page_hash[kvm_page_table_hashfn(gfn)]; 2006 } 2007 2008 #define for_each_valid_sp(_kvm, _sp, _list) \ 2009 hlist_for_each_entry(_sp, _list, hash_link) \ 2010 if (is_obsolete_sp((_kvm), (_sp))) { \ 2011 } else 2012 2013 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 2014 for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \ 2015 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 2016 2017 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2018 { 2019 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 2020 2021 /* 2022 * Ignore various flags when verifying that it's safe to sync a shadow 2023 * page using the current MMU context. 2024 * 2025 * - level: not part of the overall MMU role and will never match as the MMU's 2026 * level tracks the root level 2027 * - access: updated based on the new guest PTE 2028 * - quadrant: not part of the overall MMU role (similar to level) 2029 */ 2030 const union kvm_mmu_page_role sync_role_ign = { 2031 .level = 0xf, 2032 .access = 0x7, 2033 .quadrant = 0x3, 2034 .passthrough = 0x1, 2035 }; 2036 2037 /* 2038 * Direct pages can never be unsync, and KVM should never attempt to 2039 * sync a shadow page for a different MMU context, e.g. if the role 2040 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 2041 * reserved bits checks will be wrong, etc... 2042 */ 2043 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 2044 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 2045 return false; 2046 2047 return true; 2048 } 2049 2050 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 2051 { 2052 /* sp->spt[i] has initial value of shadow page table allocation */ 2053 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 2054 return 0; 2055 2056 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 2057 } 2058 2059 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2060 { 2061 int flush = 0; 2062 int i; 2063 2064 if (!kvm_sync_page_check(vcpu, sp)) 2065 return -1; 2066 2067 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 2068 int ret = kvm_sync_spte(vcpu, sp, i); 2069 2070 if (ret < -1) 2071 return -1; 2072 flush |= ret; 2073 } 2074 2075 /* 2076 * Note, any flush is purely for KVM's correctness, e.g. when dropping 2077 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 2078 * unmap or dirty logging event doesn't fail to flush. The guest is 2079 * responsible for flushing the TLB to ensure any changes in protection 2080 * bits are recognized, i.e. until the guest flushes or page faults on 2081 * a relevant address, KVM is architecturally allowed to let vCPUs use 2082 * cached translations with the old protection bits. 2083 */ 2084 return flush; 2085 } 2086 2087 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2088 struct list_head *invalid_list) 2089 { 2090 int ret = __kvm_sync_page(vcpu, sp); 2091 2092 if (ret < 0) 2093 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2094 return ret; 2095 } 2096 2097 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2098 struct list_head *invalid_list, 2099 bool remote_flush) 2100 { 2101 if (!remote_flush && list_empty(invalid_list)) 2102 return false; 2103 2104 if (!list_empty(invalid_list)) 2105 kvm_mmu_commit_zap_page(kvm, invalid_list); 2106 else 2107 kvm_flush_remote_tlbs(kvm); 2108 return true; 2109 } 2110 2111 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2112 { 2113 if (sp->role.invalid) 2114 return true; 2115 2116 /* TDP MMU pages do not use the MMU generation. */ 2117 return !is_tdp_mmu_page(sp) && 2118 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2119 } 2120 2121 struct mmu_page_path { 2122 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2123 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2124 }; 2125 2126 #define for_each_sp(pvec, sp, parents, i) \ 2127 for (i = mmu_pages_first(&pvec, &parents); \ 2128 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2129 i = mmu_pages_next(&pvec, &parents, i)) 2130 2131 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2132 struct mmu_page_path *parents, 2133 int i) 2134 { 2135 int n; 2136 2137 for (n = i+1; n < pvec->nr; n++) { 2138 struct kvm_mmu_page *sp = pvec->page[n].sp; 2139 unsigned idx = pvec->page[n].idx; 2140 int level = sp->role.level; 2141 2142 parents->idx[level-1] = idx; 2143 if (level == PG_LEVEL_4K) 2144 break; 2145 2146 parents->parent[level-2] = sp; 2147 } 2148 2149 return n; 2150 } 2151 2152 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2153 struct mmu_page_path *parents) 2154 { 2155 struct kvm_mmu_page *sp; 2156 int level; 2157 2158 if (pvec->nr == 0) 2159 return 0; 2160 2161 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2162 2163 sp = pvec->page[0].sp; 2164 level = sp->role.level; 2165 WARN_ON_ONCE(level == PG_LEVEL_4K); 2166 2167 parents->parent[level-2] = sp; 2168 2169 /* Also set up a sentinel. Further entries in pvec are all 2170 * children of sp, so this element is never overwritten. 2171 */ 2172 parents->parent[level-1] = NULL; 2173 return mmu_pages_next(pvec, parents, 0); 2174 } 2175 2176 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2177 { 2178 struct kvm_mmu_page *sp; 2179 unsigned int level = 0; 2180 2181 do { 2182 unsigned int idx = parents->idx[level]; 2183 sp = parents->parent[level]; 2184 if (!sp) 2185 return; 2186 2187 WARN_ON_ONCE(idx == INVALID_INDEX); 2188 clear_unsync_child_bit(sp, idx); 2189 level++; 2190 } while (!sp->unsync_children); 2191 } 2192 2193 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2194 struct kvm_mmu_page *parent, bool can_yield) 2195 { 2196 int i; 2197 struct kvm_mmu_page *sp; 2198 struct mmu_page_path parents; 2199 struct kvm_mmu_pages pages; 2200 LIST_HEAD(invalid_list); 2201 bool flush = false; 2202 2203 while (mmu_unsync_walk(parent, &pages)) { 2204 bool protected = false; 2205 2206 for_each_sp(pages, sp, parents, i) 2207 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2208 2209 if (protected) { 2210 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2211 flush = false; 2212 } 2213 2214 for_each_sp(pages, sp, parents, i) { 2215 kvm_unlink_unsync_page(vcpu->kvm, sp); 2216 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2217 mmu_pages_clear_parents(&parents); 2218 } 2219 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2220 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2221 if (!can_yield) { 2222 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2223 return -EINTR; 2224 } 2225 2226 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2227 flush = false; 2228 } 2229 } 2230 2231 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2232 return 0; 2233 } 2234 2235 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2236 { 2237 atomic_set(&sp->write_flooding_count, 0); 2238 } 2239 2240 static void clear_sp_write_flooding_count(u64 *spte) 2241 { 2242 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2243 } 2244 2245 /* 2246 * The vCPU is required when finding indirect shadow pages; the shadow 2247 * page may already exist and syncing it needs the vCPU pointer in 2248 * order to read guest page tables. Direct shadow pages are never 2249 * unsync, thus @vcpu can be NULL if @role.direct is true. 2250 */ 2251 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2252 struct kvm_vcpu *vcpu, 2253 gfn_t gfn, 2254 struct hlist_head *sp_list, 2255 union kvm_mmu_page_role role) 2256 { 2257 struct kvm_mmu_page *sp; 2258 int ret; 2259 int collisions = 0; 2260 LIST_HEAD(invalid_list); 2261 2262 for_each_valid_sp(kvm, sp, sp_list) { 2263 if (sp->gfn != gfn) { 2264 collisions++; 2265 continue; 2266 } 2267 2268 if (sp->role.word != role.word) { 2269 /* 2270 * If the guest is creating an upper-level page, zap 2271 * unsync pages for the same gfn. While it's possible 2272 * the guest is using recursive page tables, in all 2273 * likelihood the guest has stopped using the unsync 2274 * page and is installing a completely unrelated page. 2275 * Unsync pages must not be left as is, because the new 2276 * upper-level page will be write-protected. 2277 */ 2278 if (role.level > PG_LEVEL_4K && sp->unsync) 2279 kvm_mmu_prepare_zap_page(kvm, sp, 2280 &invalid_list); 2281 continue; 2282 } 2283 2284 /* unsync and write-flooding only apply to indirect SPs. */ 2285 if (sp->role.direct) 2286 goto out; 2287 2288 if (sp->unsync) { 2289 if (KVM_BUG_ON(!vcpu, kvm)) 2290 break; 2291 2292 /* 2293 * The page is good, but is stale. kvm_sync_page does 2294 * get the latest guest state, but (unlike mmu_unsync_children) 2295 * it doesn't write-protect the page or mark it synchronized! 2296 * This way the validity of the mapping is ensured, but the 2297 * overhead of write protection is not incurred until the 2298 * guest invalidates the TLB mapping. This allows multiple 2299 * SPs for a single gfn to be unsync. 2300 * 2301 * If the sync fails, the page is zapped. If so, break 2302 * in order to rebuild it. 2303 */ 2304 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2305 if (ret < 0) 2306 break; 2307 2308 WARN_ON_ONCE(!list_empty(&invalid_list)); 2309 if (ret > 0) 2310 kvm_flush_remote_tlbs(kvm); 2311 } 2312 2313 __clear_sp_write_flooding_count(sp); 2314 2315 goto out; 2316 } 2317 2318 sp = NULL; 2319 ++kvm->stat.mmu_cache_miss; 2320 2321 out: 2322 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2323 2324 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2325 kvm->stat.max_mmu_page_hash_collisions = collisions; 2326 return sp; 2327 } 2328 2329 /* Caches used when allocating a new shadow page. */ 2330 struct shadow_page_caches { 2331 struct kvm_mmu_memory_cache *page_header_cache; 2332 struct kvm_mmu_memory_cache *shadow_page_cache; 2333 struct kvm_mmu_memory_cache *shadowed_info_cache; 2334 }; 2335 2336 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2337 struct shadow_page_caches *caches, 2338 gfn_t gfn, 2339 struct hlist_head *sp_list, 2340 union kvm_mmu_page_role role) 2341 { 2342 struct kvm_mmu_page *sp; 2343 2344 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2345 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2346 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2347 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2348 2349 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2350 2351 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2352 2353 /* 2354 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2355 * depends on valid pages being added to the head of the list. See 2356 * comments in kvm_zap_obsolete_pages(). 2357 */ 2358 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2359 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2360 kvm_account_mmu_page(kvm, sp); 2361 2362 sp->gfn = gfn; 2363 sp->role = role; 2364 hlist_add_head(&sp->hash_link, sp_list); 2365 if (sp_has_gptes(sp)) 2366 account_shadowed(kvm, sp); 2367 2368 return sp; 2369 } 2370 2371 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2372 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2373 struct kvm_vcpu *vcpu, 2374 struct shadow_page_caches *caches, 2375 gfn_t gfn, 2376 union kvm_mmu_page_role role) 2377 { 2378 struct hlist_head *sp_list; 2379 struct kvm_mmu_page *sp; 2380 bool created = false; 2381 2382 /* 2383 * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as 2384 * mmu_page_hash must be set prior to creating the first shadow root, 2385 * i.e. reaching this point is fully serialized by slots_arch_lock. 2386 */ 2387 BUG_ON(!kvm->arch.mmu_page_hash); 2388 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2389 2390 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2391 if (!sp) { 2392 created = true; 2393 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2394 } 2395 2396 trace_kvm_mmu_get_page(sp, created); 2397 return sp; 2398 } 2399 2400 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2401 gfn_t gfn, 2402 union kvm_mmu_page_role role) 2403 { 2404 struct shadow_page_caches caches = { 2405 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2406 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2407 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2408 }; 2409 2410 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2411 } 2412 2413 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2414 unsigned int access) 2415 { 2416 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2417 union kvm_mmu_page_role role; 2418 2419 role = parent_sp->role; 2420 role.level--; 2421 role.access = access; 2422 role.direct = direct; 2423 role.passthrough = 0; 2424 2425 /* 2426 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2427 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2428 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2429 * shadow each guest page table with multiple shadow page tables, which 2430 * requires extra bookkeeping in the role. 2431 * 2432 * Specifically, to shadow the guest's page directory (which covers a 2433 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2434 * 1GiB of the address space. @role.quadrant encodes which quarter of 2435 * the address space each maps. 2436 * 2437 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2438 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2439 * @role.quadrant encodes which half of the region they map. 2440 * 2441 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2442 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2443 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2444 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2445 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2446 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2447 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2448 * covers bit 21 (see above), thus the quadrant is calculated from the 2449 * _least_ significant bit of the PDE index. 2450 */ 2451 if (role.has_4_byte_gpte) { 2452 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2453 role.quadrant = spte_index(sptep) & 1; 2454 } 2455 2456 return role; 2457 } 2458 2459 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2460 u64 *sptep, gfn_t gfn, 2461 bool direct, unsigned int access) 2462 { 2463 union kvm_mmu_page_role role; 2464 2465 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2466 return ERR_PTR(-EEXIST); 2467 2468 role = kvm_mmu_child_role(sptep, direct, access); 2469 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2470 } 2471 2472 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2473 struct kvm_vcpu *vcpu, hpa_t root, 2474 u64 addr) 2475 { 2476 iterator->addr = addr; 2477 iterator->shadow_addr = root; 2478 iterator->level = vcpu->arch.mmu->root_role.level; 2479 2480 if (iterator->level >= PT64_ROOT_4LEVEL && 2481 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2482 !vcpu->arch.mmu->root_role.direct) 2483 iterator->level = PT32E_ROOT_LEVEL; 2484 2485 if (iterator->level == PT32E_ROOT_LEVEL) { 2486 /* 2487 * prev_root is currently only used for 64-bit hosts. So only 2488 * the active root_hpa is valid here. 2489 */ 2490 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2491 2492 iterator->shadow_addr 2493 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2494 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2495 --iterator->level; 2496 if (!iterator->shadow_addr) 2497 iterator->level = 0; 2498 } 2499 } 2500 2501 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2502 struct kvm_vcpu *vcpu, u64 addr) 2503 { 2504 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2505 addr); 2506 } 2507 2508 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2509 { 2510 if (iterator->level < PG_LEVEL_4K) 2511 return false; 2512 2513 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2514 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2515 return true; 2516 } 2517 2518 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2519 u64 spte) 2520 { 2521 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2522 iterator->level = 0; 2523 return; 2524 } 2525 2526 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2527 --iterator->level; 2528 } 2529 2530 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2531 { 2532 __shadow_walk_next(iterator, *iterator->sptep); 2533 } 2534 2535 static void __link_shadow_page(struct kvm *kvm, 2536 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2537 struct kvm_mmu_page *sp, bool flush) 2538 { 2539 u64 spte; 2540 2541 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2542 2543 /* 2544 * If an SPTE is present already, it must be a leaf and therefore 2545 * a large one. Drop it, and flush the TLB if needed, before 2546 * installing sp. 2547 */ 2548 if (is_shadow_present_pte(*sptep)) 2549 drop_large_spte(kvm, sptep, flush); 2550 2551 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2552 2553 mmu_spte_set(sptep, spte); 2554 2555 mmu_page_add_parent_pte(kvm, cache, sp, sptep); 2556 2557 /* 2558 * The non-direct sub-pagetable must be updated before linking. For 2559 * L1 sp, the pagetable is updated via kvm_sync_page() in 2560 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2561 * so sp->unsync can be true or false. For higher level non-direct 2562 * sp, the pagetable is updated/synced via mmu_sync_children() in 2563 * FNAME(fetch)(), so sp->unsync_children can only be false. 2564 * WARN_ON_ONCE() if anything happens unexpectedly. 2565 */ 2566 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2567 mark_unsync(sptep); 2568 } 2569 2570 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2571 struct kvm_mmu_page *sp) 2572 { 2573 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2574 } 2575 2576 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2577 unsigned direct_access) 2578 { 2579 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2580 struct kvm_mmu_page *child; 2581 2582 /* 2583 * For the direct sp, if the guest pte's dirty bit 2584 * changed form clean to dirty, it will corrupt the 2585 * sp's access: allow writable in the read-only sp, 2586 * so we should update the spte at this point to get 2587 * a new sp with the correct access. 2588 */ 2589 child = spte_to_child_sp(*sptep); 2590 if (child->role.access == direct_access) 2591 return; 2592 2593 drop_parent_pte(vcpu->kvm, child, sptep); 2594 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2595 } 2596 } 2597 2598 /* Returns the number of zapped non-leaf child shadow pages. */ 2599 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2600 u64 *spte, struct list_head *invalid_list) 2601 { 2602 u64 pte; 2603 struct kvm_mmu_page *child; 2604 2605 pte = *spte; 2606 if (is_shadow_present_pte(pte)) { 2607 if (is_last_spte(pte, sp->role.level)) { 2608 drop_spte(kvm, spte); 2609 } else { 2610 child = spte_to_child_sp(pte); 2611 drop_parent_pte(kvm, child, spte); 2612 2613 /* 2614 * Recursively zap nested TDP SPs, parentless SPs are 2615 * unlikely to be used again in the near future. This 2616 * avoids retaining a large number of stale nested SPs. 2617 */ 2618 if (tdp_enabled && invalid_list && 2619 child->role.guest_mode && 2620 !atomic_long_read(&child->parent_ptes.val)) 2621 return kvm_mmu_prepare_zap_page(kvm, child, 2622 invalid_list); 2623 } 2624 } else if (is_mmio_spte(kvm, pte)) { 2625 mmu_spte_clear_no_track(spte); 2626 } 2627 return 0; 2628 } 2629 2630 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2631 struct kvm_mmu_page *sp, 2632 struct list_head *invalid_list) 2633 { 2634 int zapped = 0; 2635 unsigned i; 2636 2637 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2638 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2639 2640 return zapped; 2641 } 2642 2643 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2644 { 2645 u64 *sptep; 2646 struct rmap_iterator iter; 2647 2648 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2649 drop_parent_pte(kvm, sp, sptep); 2650 } 2651 2652 static int mmu_zap_unsync_children(struct kvm *kvm, 2653 struct kvm_mmu_page *parent, 2654 struct list_head *invalid_list) 2655 { 2656 int i, zapped = 0; 2657 struct mmu_page_path parents; 2658 struct kvm_mmu_pages pages; 2659 2660 if (parent->role.level == PG_LEVEL_4K) 2661 return 0; 2662 2663 while (mmu_unsync_walk(parent, &pages)) { 2664 struct kvm_mmu_page *sp; 2665 2666 for_each_sp(pages, sp, parents, i) { 2667 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2668 mmu_pages_clear_parents(&parents); 2669 zapped++; 2670 } 2671 } 2672 2673 return zapped; 2674 } 2675 2676 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2677 struct kvm_mmu_page *sp, 2678 struct list_head *invalid_list, 2679 int *nr_zapped) 2680 { 2681 bool list_unstable, zapped_root = false; 2682 2683 lockdep_assert_held_write(&kvm->mmu_lock); 2684 trace_kvm_mmu_prepare_zap_page(sp); 2685 ++kvm->stat.mmu_shadow_zapped; 2686 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2687 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2688 kvm_mmu_unlink_parents(kvm, sp); 2689 2690 /* Zapping children means active_mmu_pages has become unstable. */ 2691 list_unstable = *nr_zapped; 2692 2693 if (!sp->role.invalid && sp_has_gptes(sp)) 2694 unaccount_shadowed(kvm, sp); 2695 2696 if (sp->unsync) 2697 kvm_unlink_unsync_page(kvm, sp); 2698 if (!sp->root_count) { 2699 /* Count self */ 2700 (*nr_zapped)++; 2701 2702 /* 2703 * Already invalid pages (previously active roots) are not on 2704 * the active page list. See list_del() in the "else" case of 2705 * !sp->root_count. 2706 */ 2707 if (sp->role.invalid) 2708 list_add(&sp->link, invalid_list); 2709 else 2710 list_move(&sp->link, invalid_list); 2711 kvm_unaccount_mmu_page(kvm, sp); 2712 } else { 2713 /* 2714 * Remove the active root from the active page list, the root 2715 * will be explicitly freed when the root_count hits zero. 2716 */ 2717 list_del(&sp->link); 2718 2719 /* 2720 * Obsolete pages cannot be used on any vCPUs, see the comment 2721 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2722 * treats invalid shadow pages as being obsolete. 2723 */ 2724 zapped_root = !is_obsolete_sp(kvm, sp); 2725 } 2726 2727 if (sp->nx_huge_page_disallowed) 2728 unaccount_nx_huge_page(kvm, sp); 2729 2730 sp->role.invalid = 1; 2731 2732 /* 2733 * Make the request to free obsolete roots after marking the root 2734 * invalid, otherwise other vCPUs may not see it as invalid. 2735 */ 2736 if (zapped_root) 2737 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2738 return list_unstable; 2739 } 2740 2741 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2742 struct list_head *invalid_list) 2743 { 2744 int nr_zapped; 2745 2746 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2747 return nr_zapped; 2748 } 2749 2750 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2751 struct list_head *invalid_list) 2752 { 2753 struct kvm_mmu_page *sp, *nsp; 2754 2755 if (list_empty(invalid_list)) 2756 return; 2757 2758 /* 2759 * We need to make sure everyone sees our modifications to 2760 * the page tables and see changes to vcpu->mode here. The barrier 2761 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2762 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2763 * 2764 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2765 * guest mode and/or lockless shadow page table walks. 2766 */ 2767 kvm_flush_remote_tlbs(kvm); 2768 2769 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2770 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2771 kvm_mmu_free_shadow_page(sp); 2772 } 2773 } 2774 2775 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2776 unsigned long nr_to_zap) 2777 { 2778 unsigned long total_zapped = 0; 2779 struct kvm_mmu_page *sp, *tmp; 2780 LIST_HEAD(invalid_list); 2781 bool unstable; 2782 int nr_zapped; 2783 2784 if (list_empty(&kvm->arch.active_mmu_pages)) 2785 return 0; 2786 2787 restart: 2788 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2789 /* 2790 * Don't zap active root pages, the page itself can't be freed 2791 * and zapping it will just force vCPUs to realloc and reload. 2792 */ 2793 if (sp->root_count) 2794 continue; 2795 2796 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2797 &nr_zapped); 2798 total_zapped += nr_zapped; 2799 if (total_zapped >= nr_to_zap) 2800 break; 2801 2802 if (unstable) 2803 goto restart; 2804 } 2805 2806 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2807 2808 kvm->stat.mmu_recycled += total_zapped; 2809 return total_zapped; 2810 } 2811 2812 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2813 { 2814 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2815 return kvm->arch.n_max_mmu_pages - 2816 kvm->arch.n_used_mmu_pages; 2817 2818 return 0; 2819 } 2820 2821 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2822 { 2823 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2824 2825 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2826 return 0; 2827 2828 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2829 2830 /* 2831 * Note, this check is intentionally soft, it only guarantees that one 2832 * page is available, while the caller may end up allocating as many as 2833 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2834 * exceeding the (arbitrary by default) limit will not harm the host, 2835 * being too aggressive may unnecessarily kill the guest, and getting an 2836 * exact count is far more trouble than it's worth, especially in the 2837 * page fault paths. 2838 */ 2839 if (!kvm_mmu_available_pages(vcpu->kvm)) 2840 return -ENOSPC; 2841 return 0; 2842 } 2843 2844 /* 2845 * Changing the number of mmu pages allocated to the vm 2846 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2847 */ 2848 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2849 { 2850 write_lock(&kvm->mmu_lock); 2851 2852 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2853 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2854 goal_nr_mmu_pages); 2855 2856 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2857 } 2858 2859 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2860 2861 write_unlock(&kvm->mmu_lock); 2862 } 2863 2864 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2865 bool always_retry) 2866 { 2867 struct kvm *kvm = vcpu->kvm; 2868 LIST_HEAD(invalid_list); 2869 struct kvm_mmu_page *sp; 2870 gpa_t gpa = cr2_or_gpa; 2871 bool r = false; 2872 2873 /* 2874 * Bail early if there aren't any write-protected shadow pages to avoid 2875 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2876 * by a third party. Reading indirect_shadow_pages without holding 2877 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2878 * positive is benign, and a false negative will simply result in KVM 2879 * skipping the unprotect+retry path, which is also an optimization. 2880 */ 2881 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2882 goto out; 2883 2884 if (!vcpu->arch.mmu->root_role.direct) { 2885 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2886 if (gpa == INVALID_GPA) 2887 goto out; 2888 } 2889 2890 write_lock(&kvm->mmu_lock); 2891 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2892 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2893 2894 /* 2895 * Snapshot the result before zapping, as zapping will remove all list 2896 * entries, i.e. checking the list later would yield a false negative. 2897 */ 2898 r = !list_empty(&invalid_list); 2899 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2900 write_unlock(&kvm->mmu_lock); 2901 2902 out: 2903 if (r || always_retry) { 2904 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2905 vcpu->arch.last_retry_addr = cr2_or_gpa; 2906 } 2907 return r; 2908 } 2909 2910 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2911 { 2912 trace_kvm_mmu_unsync_page(sp); 2913 ++kvm->stat.mmu_unsync; 2914 sp->unsync = 1; 2915 2916 kvm_mmu_mark_parents_unsync(sp); 2917 } 2918 2919 /* 2920 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2921 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2922 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2923 * be write-protected. 2924 */ 2925 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2926 gfn_t gfn, bool synchronizing, bool prefetch) 2927 { 2928 struct kvm_mmu_page *sp; 2929 bool locked = false; 2930 2931 /* 2932 * Force write-protection if the page is being tracked. Note, the page 2933 * track machinery is used to write-protect upper-level shadow pages, 2934 * i.e. this guards the role.level == 4K assertion below! 2935 */ 2936 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2937 return -EPERM; 2938 2939 /* 2940 * The page is not write-tracked, mark existing shadow pages unsync 2941 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2942 * complete emulation of the guest TLB flush before allowing shadow 2943 * pages to become unsync (writable by the guest). 2944 */ 2945 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2946 if (synchronizing) 2947 return -EPERM; 2948 2949 if (sp->unsync) 2950 continue; 2951 2952 if (prefetch) 2953 return -EEXIST; 2954 2955 /* 2956 * TDP MMU page faults require an additional spinlock as they 2957 * run with mmu_lock held for read, not write, and the unsync 2958 * logic is not thread safe. Take the spinklock regardless of 2959 * the MMU type to avoid extra conditionals/parameters, there's 2960 * no meaningful penalty if mmu_lock is held for write. 2961 */ 2962 if (!locked) { 2963 locked = true; 2964 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2965 2966 /* 2967 * Recheck after taking the spinlock, a different vCPU 2968 * may have since marked the page unsync. A false 2969 * negative on the unprotected check above is not 2970 * possible as clearing sp->unsync _must_ hold mmu_lock 2971 * for write, i.e. unsync cannot transition from 1->0 2972 * while this CPU holds mmu_lock for read (or write). 2973 */ 2974 if (READ_ONCE(sp->unsync)) 2975 continue; 2976 } 2977 2978 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2979 kvm_unsync_page(kvm, sp); 2980 } 2981 if (locked) 2982 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2983 2984 /* 2985 * We need to ensure that the marking of unsync pages is visible 2986 * before the SPTE is updated to allow writes because 2987 * kvm_mmu_sync_roots() checks the unsync flags without holding 2988 * the MMU lock and so can race with this. If the SPTE was updated 2989 * before the page had been marked as unsync-ed, something like the 2990 * following could happen: 2991 * 2992 * CPU 1 CPU 2 2993 * --------------------------------------------------------------------- 2994 * 1.2 Host updates SPTE 2995 * to be writable 2996 * 2.1 Guest writes a GPTE for GVA X. 2997 * (GPTE being in the guest page table shadowed 2998 * by the SP from CPU 1.) 2999 * This reads SPTE during the page table walk. 3000 * Since SPTE.W is read as 1, there is no 3001 * fault. 3002 * 3003 * 2.2 Guest issues TLB flush. 3004 * That causes a VM Exit. 3005 * 3006 * 2.3 Walking of unsync pages sees sp->unsync is 3007 * false and skips the page. 3008 * 3009 * 2.4 Guest accesses GVA X. 3010 * Since the mapping in the SP was not updated, 3011 * so the old mapping for GVA X incorrectly 3012 * gets used. 3013 * 1.1 Host marks SP 3014 * as unsync 3015 * (sp->unsync = true) 3016 * 3017 * The write barrier below ensures that 1.1 happens before 1.2 and thus 3018 * the situation in 2.4 does not arise. It pairs with the read barrier 3019 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 3020 */ 3021 smp_wmb(); 3022 3023 return 0; 3024 } 3025 3026 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 3027 u64 *sptep, unsigned int pte_access, gfn_t gfn, 3028 kvm_pfn_t pfn, struct kvm_page_fault *fault) 3029 { 3030 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 3031 int level = sp->role.level; 3032 int was_rmapped = 0; 3033 int ret = RET_PF_FIXED; 3034 bool flush = false; 3035 bool wrprot; 3036 u64 spte; 3037 3038 /* Prefetching always gets a writable pfn. */ 3039 bool host_writable = !fault || fault->map_writable; 3040 bool prefetch = !fault || fault->prefetch; 3041 bool write_fault = fault && fault->write; 3042 3043 if (unlikely(is_noslot_pfn(pfn))) { 3044 vcpu->stat.pf_mmio_spte_created++; 3045 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 3046 return RET_PF_EMULATE; 3047 } 3048 3049 if (is_shadow_present_pte(*sptep)) { 3050 if (prefetch && is_last_spte(*sptep, level) && 3051 pfn == spte_to_pfn(*sptep)) 3052 return RET_PF_SPURIOUS; 3053 3054 /* 3055 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3056 * the parent of the now unreachable PTE. 3057 */ 3058 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3059 struct kvm_mmu_page *child; 3060 u64 pte = *sptep; 3061 3062 child = spte_to_child_sp(pte); 3063 drop_parent_pte(vcpu->kvm, child, sptep); 3064 flush = true; 3065 } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { 3066 drop_spte(vcpu->kvm, sptep); 3067 flush = true; 3068 } else 3069 was_rmapped = 1; 3070 } 3071 3072 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 3073 false, host_writable, &spte); 3074 3075 if (*sptep == spte) { 3076 ret = RET_PF_SPURIOUS; 3077 } else { 3078 flush |= mmu_spte_update(sptep, spte); 3079 trace_kvm_mmu_set_spte(level, gfn, sptep); 3080 } 3081 3082 if (wrprot && write_fault) 3083 ret = RET_PF_WRITE_PROTECTED; 3084 3085 if (flush) 3086 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 3087 3088 if (!was_rmapped) { 3089 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 3090 rmap_add(vcpu, slot, sptep, gfn, pte_access); 3091 } else { 3092 /* Already rmapped but the pte_access bits may have changed. */ 3093 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 3094 } 3095 3096 return ret; 3097 } 3098 3099 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 3100 int nr_pages, unsigned int access) 3101 { 3102 struct page *pages[PTE_PREFETCH_NUM]; 3103 struct kvm_memory_slot *slot; 3104 int i; 3105 3106 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 3107 return false; 3108 3109 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3110 if (!slot) 3111 return false; 3112 3113 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 3114 if (nr_pages <= 0) 3115 return false; 3116 3117 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 3118 mmu_set_spte(vcpu, slot, sptep, access, gfn, 3119 page_to_pfn(pages[i]), NULL); 3120 3121 /* 3122 * KVM always prefetches writable pages from the primary MMU, 3123 * and KVM can make its SPTE writable in the fast page handler, 3124 * without notifying the primary MMU. Mark pages/folios dirty 3125 * now to ensure file data is written back if it ends up being 3126 * written by the guest. Because KVM's prefetching GUPs 3127 * writable PTEs, the probability of unnecessary writeback is 3128 * extremely low. 3129 */ 3130 kvm_release_page_dirty(pages[i]); 3131 } 3132 3133 return true; 3134 } 3135 3136 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3137 struct kvm_mmu_page *sp, 3138 u64 *start, u64 *end) 3139 { 3140 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3141 unsigned int access = sp->role.access; 3142 3143 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 3144 } 3145 3146 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3147 struct kvm_mmu_page *sp, u64 *sptep) 3148 { 3149 u64 *spte, *start = NULL; 3150 int i; 3151 3152 WARN_ON_ONCE(!sp->role.direct); 3153 3154 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3155 spte = sp->spt + i; 3156 3157 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3158 if (is_shadow_present_pte(*spte) || spte == sptep) { 3159 if (!start) 3160 continue; 3161 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 3162 return; 3163 3164 start = NULL; 3165 } else if (!start) 3166 start = spte; 3167 } 3168 if (start) 3169 direct_pte_prefetch_many(vcpu, sp, start, spte); 3170 } 3171 3172 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3173 { 3174 struct kvm_mmu_page *sp; 3175 3176 sp = sptep_to_sp(sptep); 3177 3178 /* 3179 * Without accessed bits, there's no way to distinguish between 3180 * actually accessed translations and prefetched, so disable pte 3181 * prefetch if accessed bits aren't available. 3182 */ 3183 if (sp_ad_disabled(sp)) 3184 return; 3185 3186 if (sp->role.level > PG_LEVEL_4K) 3187 return; 3188 3189 /* 3190 * If addresses are being invalidated, skip prefetching to avoid 3191 * accidentally prefetching those addresses. 3192 */ 3193 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3194 return; 3195 3196 __direct_pte_prefetch(vcpu, sp, sptep); 3197 } 3198 3199 /* 3200 * Lookup the mapping level for @gfn in the current mm. 3201 * 3202 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3203 * consumer to be tied into KVM's handlers for MMU notifier events! 3204 * 3205 * There are several ways to safely use this helper: 3206 * 3207 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3208 * consuming it. In this case, mmu_lock doesn't need to be held during the 3209 * lookup, but it does need to be held while checking the MMU notifier. 3210 * 3211 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3212 * event for the hva. This can be done by explicit checking the MMU notifier 3213 * or by ensuring that KVM already has a valid mapping that covers the hva. 3214 * 3215 * - Do not use the result to install new mappings, e.g. use the host mapping 3216 * level only to decide whether or not to zap an entry. In this case, it's 3217 * not required to hold mmu_lock (though it's highly likely the caller will 3218 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3219 * 3220 * Note! The lookup can still race with modifications to host page tables, but 3221 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3222 * race with the primary MMU occurs. 3223 */ 3224 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3225 const struct kvm_memory_slot *slot) 3226 { 3227 int level = PG_LEVEL_4K; 3228 unsigned long hva; 3229 unsigned long flags; 3230 pgd_t pgd; 3231 p4d_t p4d; 3232 pud_t pud; 3233 pmd_t pmd; 3234 3235 /* 3236 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3237 * is not solely for performance, it's also necessary to avoid the 3238 * "writable" check in __gfn_to_hva_many(), which will always fail on 3239 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3240 * page fault steps have already verified the guest isn't writing a 3241 * read-only memslot. 3242 */ 3243 hva = __gfn_to_hva_memslot(slot, gfn); 3244 3245 /* 3246 * Disable IRQs to prevent concurrent tear down of host page tables, 3247 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3248 * the original page table. 3249 */ 3250 local_irq_save(flags); 3251 3252 /* 3253 * Read each entry once. As above, a non-leaf entry can be promoted to 3254 * a huge page _during_ this walk. Re-reading the entry could send the 3255 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3256 * value) and then p*d_offset() walks into the target huge page instead 3257 * of the old page table (sees the new value). 3258 */ 3259 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3260 if (pgd_none(pgd)) 3261 goto out; 3262 3263 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3264 if (p4d_none(p4d) || !p4d_present(p4d)) 3265 goto out; 3266 3267 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3268 if (pud_none(pud) || !pud_present(pud)) 3269 goto out; 3270 3271 if (pud_leaf(pud)) { 3272 level = PG_LEVEL_1G; 3273 goto out; 3274 } 3275 3276 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3277 if (pmd_none(pmd) || !pmd_present(pmd)) 3278 goto out; 3279 3280 if (pmd_leaf(pmd)) 3281 level = PG_LEVEL_2M; 3282 3283 out: 3284 local_irq_restore(flags); 3285 return level; 3286 } 3287 3288 static u8 kvm_max_level_for_order(int order) 3289 { 3290 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 3291 3292 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 3293 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 3294 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 3295 3296 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 3297 return PG_LEVEL_1G; 3298 3299 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 3300 return PG_LEVEL_2M; 3301 3302 return PG_LEVEL_4K; 3303 } 3304 3305 static u8 kvm_gmem_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, 3306 const struct kvm_memory_slot *slot, gfn_t gfn, 3307 bool is_private) 3308 { 3309 u8 max_level, coco_level; 3310 kvm_pfn_t pfn; 3311 3312 /* For faults, use the gmem information that was resolved earlier. */ 3313 if (fault) { 3314 pfn = fault->pfn; 3315 max_level = fault->max_level; 3316 } else { 3317 /* TODO: Call into guest_memfd once hugepages are supported. */ 3318 WARN_ONCE(1, "Get pfn+order from guest_memfd"); 3319 pfn = KVM_PFN_ERR_FAULT; 3320 max_level = PG_LEVEL_4K; 3321 } 3322 3323 if (max_level == PG_LEVEL_4K) 3324 return max_level; 3325 3326 /* 3327 * CoCo may influence the max mapping level, e.g. due to RMP or S-EPT 3328 * restrictions. A return of '0' means "no additional restrictions", to 3329 * allow for using an optional "ret0" static call. 3330 */ 3331 coco_level = kvm_x86_call(gmem_max_mapping_level)(kvm, pfn, is_private); 3332 if (coco_level) 3333 max_level = min(max_level, coco_level); 3334 3335 return max_level; 3336 } 3337 3338 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, 3339 const struct kvm_memory_slot *slot, gfn_t gfn) 3340 { 3341 struct kvm_lpage_info *linfo; 3342 int host_level, max_level; 3343 bool is_private; 3344 3345 lockdep_assert_held(&kvm->mmu_lock); 3346 3347 if (fault) { 3348 max_level = fault->max_level; 3349 is_private = fault->is_private; 3350 } else { 3351 max_level = PG_LEVEL_NUM; 3352 is_private = kvm_mem_is_private(kvm, gfn); 3353 } 3354 3355 max_level = min(max_level, max_huge_page_level); 3356 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3357 linfo = lpage_info_slot(gfn, slot, max_level); 3358 if (!linfo->disallow_lpage) 3359 break; 3360 } 3361 3362 if (max_level == PG_LEVEL_4K) 3363 return PG_LEVEL_4K; 3364 3365 if (is_private || kvm_memslot_is_gmem_only(slot)) 3366 host_level = kvm_gmem_max_mapping_level(kvm, fault, slot, gfn, 3367 is_private); 3368 else 3369 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3370 return min(host_level, max_level); 3371 } 3372 3373 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3374 { 3375 struct kvm_memory_slot *slot = fault->slot; 3376 kvm_pfn_t mask; 3377 3378 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3379 3380 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3381 return; 3382 3383 if (is_error_noslot_pfn(fault->pfn)) 3384 return; 3385 3386 if (kvm_slot_dirty_track_enabled(slot)) 3387 return; 3388 3389 /* 3390 * Enforce the iTLB multihit workaround after capturing the requested 3391 * level, which will be used to do precise, accurate accounting. 3392 */ 3393 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault, 3394 fault->slot, fault->gfn); 3395 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3396 return; 3397 3398 /* 3399 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3400 * the pmd can't be split from under us. 3401 */ 3402 fault->goal_level = fault->req_level; 3403 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3404 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3405 fault->pfn &= ~mask; 3406 } 3407 3408 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3409 { 3410 if (cur_level > PG_LEVEL_4K && 3411 cur_level == fault->goal_level && 3412 is_shadow_present_pte(spte) && 3413 !is_large_pte(spte) && 3414 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3415 /* 3416 * A small SPTE exists for this pfn, but FNAME(fetch), 3417 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3418 * large PTE instead: just force them to go down another level, 3419 * patching back for them into pfn the next 9 bits of the 3420 * address. 3421 */ 3422 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3423 KVM_PAGES_PER_HPAGE(cur_level - 1); 3424 fault->pfn |= fault->gfn & page_mask; 3425 fault->goal_level--; 3426 } 3427 } 3428 3429 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3430 { 3431 struct kvm_shadow_walk_iterator it; 3432 struct kvm_mmu_page *sp; 3433 int ret; 3434 gfn_t base_gfn = fault->gfn; 3435 3436 kvm_mmu_hugepage_adjust(vcpu, fault); 3437 3438 trace_kvm_mmu_spte_requested(fault); 3439 for_each_shadow_entry(vcpu, fault->addr, it) { 3440 /* 3441 * We cannot overwrite existing page tables with an NX 3442 * large page, as the leaf could be executable. 3443 */ 3444 if (fault->nx_huge_page_workaround_enabled) 3445 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3446 3447 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3448 if (it.level == fault->goal_level) 3449 break; 3450 3451 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3452 if (sp == ERR_PTR(-EEXIST)) 3453 continue; 3454 3455 link_shadow_page(vcpu, it.sptep, sp); 3456 if (fault->huge_page_disallowed) 3457 account_nx_huge_page(vcpu->kvm, sp, 3458 fault->req_level >= it.level); 3459 } 3460 3461 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3462 return -EFAULT; 3463 3464 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3465 base_gfn, fault->pfn, fault); 3466 if (ret == RET_PF_SPURIOUS) 3467 return ret; 3468 3469 direct_pte_prefetch(vcpu, it.sptep); 3470 return ret; 3471 } 3472 3473 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3474 { 3475 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3476 3477 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3478 } 3479 3480 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3481 { 3482 if (is_sigpending_pfn(fault->pfn)) { 3483 kvm_handle_signal_exit(vcpu); 3484 return -EINTR; 3485 } 3486 3487 /* 3488 * Do not cache the mmio info caused by writing the readonly gfn 3489 * into the spte otherwise read access on readonly gfn also can 3490 * caused mmio page fault and treat it as mmio access. 3491 */ 3492 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3493 return RET_PF_EMULATE; 3494 3495 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3496 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3497 return RET_PF_RETRY; 3498 } 3499 3500 return -EFAULT; 3501 } 3502 3503 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3504 struct kvm_page_fault *fault, 3505 unsigned int access) 3506 { 3507 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3508 3509 if (fault->is_private) { 3510 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3511 return -EFAULT; 3512 } 3513 3514 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3515 access & shadow_mmio_access_mask); 3516 3517 fault->slot = NULL; 3518 fault->pfn = KVM_PFN_NOSLOT; 3519 fault->map_writable = false; 3520 3521 /* 3522 * If MMIO caching is disabled, emulate immediately without 3523 * touching the shadow page tables as attempting to install an 3524 * MMIO SPTE will just be an expensive nop. 3525 */ 3526 if (unlikely(!enable_mmio_caching)) 3527 return RET_PF_EMULATE; 3528 3529 /* 3530 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3531 * any guest that generates such gfns is running nested and is being 3532 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3533 * only if L1's MAXPHYADDR is inaccurate with respect to the 3534 * hardware's). 3535 */ 3536 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3537 return RET_PF_EMULATE; 3538 3539 return RET_PF_CONTINUE; 3540 } 3541 3542 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3543 { 3544 /* 3545 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3546 * reach the common page fault handler if the SPTE has an invalid MMIO 3547 * generation number. Refreshing the MMIO generation needs to go down 3548 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3549 */ 3550 if (fault->rsvd) 3551 return false; 3552 3553 /* 3554 * For hardware-protected VMs, certain conditions like attempting to 3555 * perform a write to a page which is not in the state that the guest 3556 * expects it to be in can result in a nested/extended #PF. In this 3557 * case, the below code might misconstrue this situation as being the 3558 * result of a write-protected access, and treat it as a spurious case 3559 * rather than taking any action to satisfy the real source of the #PF 3560 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3561 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3562 * in this case. 3563 * 3564 * Note that the kvm_mem_is_private() check might race with an 3565 * attribute update, but this will either result in the guest spinning 3566 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3567 * case might go down the slow path. Either case will resolve itself. 3568 */ 3569 if (kvm->arch.has_private_mem && 3570 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3571 return false; 3572 3573 /* 3574 * #PF can be fast if: 3575 * 3576 * 1. The shadow page table entry is not present and A/D bits are 3577 * disabled _by KVM_, which could mean that the fault is potentially 3578 * caused by access tracking (if enabled). If A/D bits are enabled 3579 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3580 * bits for L2 and employ access tracking, but the fast page fault 3581 * mechanism only supports direct MMUs. 3582 * 2. The shadow page table entry is present, the access is a write, 3583 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3584 * the fault was caused by a write-protection violation. If the 3585 * SPTE is MMU-writable (determined later), the fault can be fixed 3586 * by setting the Writable bit, which can be done out of mmu_lock. 3587 */ 3588 if (!fault->present) 3589 return !kvm_ad_enabled; 3590 3591 /* 3592 * Note, instruction fetches and writes are mutually exclusive, ignore 3593 * the "exec" flag. 3594 */ 3595 return fault->write; 3596 } 3597 3598 /* 3599 * Returns true if the SPTE was fixed successfully. Otherwise, 3600 * someone else modified the SPTE from its original value. 3601 */ 3602 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3603 struct kvm_page_fault *fault, 3604 u64 *sptep, u64 old_spte, u64 new_spte) 3605 { 3606 /* 3607 * Theoretically we could also set dirty bit (and flush TLB) here in 3608 * order to eliminate unnecessary PML logging. See comments in 3609 * set_spte. But fast_page_fault is very unlikely to happen with PML 3610 * enabled, so we do not do this. This might result in the same GPA 3611 * to be logged in PML buffer again when the write really happens, and 3612 * eventually to be called by mark_page_dirty twice. But it's also no 3613 * harm. This also avoids the TLB flush needed after setting dirty bit 3614 * so non-PML cases won't be impacted. 3615 * 3616 * Compare with make_spte() where instead shadow_dirty_mask is set. 3617 */ 3618 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3619 return false; 3620 3621 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3622 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3623 3624 return true; 3625 } 3626 3627 /* 3628 * Returns the last level spte pointer of the shadow page walk for the given 3629 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3630 * walk could be performed, returns NULL and *spte does not contain valid data. 3631 * 3632 * Contract: 3633 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3634 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3635 */ 3636 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3637 { 3638 struct kvm_shadow_walk_iterator iterator; 3639 u64 old_spte; 3640 u64 *sptep = NULL; 3641 3642 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3643 sptep = iterator.sptep; 3644 *spte = old_spte; 3645 } 3646 3647 return sptep; 3648 } 3649 3650 /* 3651 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3652 */ 3653 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3654 { 3655 struct kvm_mmu_page *sp; 3656 int ret = RET_PF_INVALID; 3657 u64 spte; 3658 u64 *sptep; 3659 uint retry_count = 0; 3660 3661 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3662 return ret; 3663 3664 walk_shadow_page_lockless_begin(vcpu); 3665 3666 do { 3667 u64 new_spte; 3668 3669 if (tdp_mmu_enabled) 3670 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3671 else 3672 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3673 3674 /* 3675 * It's entirely possible for the mapping to have been zapped 3676 * by a different task, but the root page should always be 3677 * available as the vCPU holds a reference to its root(s). 3678 */ 3679 if (WARN_ON_ONCE(!sptep)) 3680 spte = FROZEN_SPTE; 3681 3682 if (!is_shadow_present_pte(spte)) 3683 break; 3684 3685 sp = sptep_to_sp(sptep); 3686 if (!is_last_spte(spte, sp->role.level)) 3687 break; 3688 3689 /* 3690 * Check whether the memory access that caused the fault would 3691 * still cause it if it were to be performed right now. If not, 3692 * then this is a spurious fault caused by TLB lazily flushed, 3693 * or some other CPU has already fixed the PTE after the 3694 * current CPU took the fault. 3695 * 3696 * Need not check the access of upper level table entries since 3697 * they are always ACC_ALL. 3698 */ 3699 if (is_access_allowed(fault, spte)) { 3700 ret = RET_PF_SPURIOUS; 3701 break; 3702 } 3703 3704 new_spte = spte; 3705 3706 /* 3707 * KVM only supports fixing page faults outside of MMU lock for 3708 * direct MMUs, nested MMUs are always indirect, and KVM always 3709 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3710 * enabled, the SPTE can't be an access-tracked SPTE. 3711 */ 3712 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3713 new_spte = restore_acc_track_spte(new_spte) | 3714 shadow_accessed_mask; 3715 3716 /* 3717 * To keep things simple, only SPTEs that are MMU-writable can 3718 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3719 * that were write-protected for dirty-logging or access 3720 * tracking are handled here. Don't bother checking if the 3721 * SPTE is writable to prioritize running with A/D bits enabled. 3722 * The is_access_allowed() check above handles the common case 3723 * of the fault being spurious, and the SPTE is known to be 3724 * shadow-present, i.e. except for access tracking restoration 3725 * making the new SPTE writable, the check is wasteful. 3726 */ 3727 if (fault->write && is_mmu_writable_spte(spte)) { 3728 new_spte |= PT_WRITABLE_MASK; 3729 3730 /* 3731 * Do not fix write-permission on the large spte when 3732 * dirty logging is enabled. Since we only dirty the 3733 * first page into the dirty-bitmap in 3734 * fast_pf_fix_direct_spte(), other pages are missed 3735 * if its slot has dirty logging enabled. 3736 * 3737 * Instead, we let the slow page fault path create a 3738 * normal spte to fix the access. 3739 */ 3740 if (sp->role.level > PG_LEVEL_4K && 3741 kvm_slot_dirty_track_enabled(fault->slot)) 3742 break; 3743 } 3744 3745 /* Verify that the fault can be handled in the fast path */ 3746 if (new_spte == spte || 3747 !is_access_allowed(fault, new_spte)) 3748 break; 3749 3750 /* 3751 * Currently, fast page fault only works for direct mapping 3752 * since the gfn is not stable for indirect shadow page. See 3753 * Documentation/virt/kvm/locking.rst to get more detail. 3754 */ 3755 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3756 ret = RET_PF_FIXED; 3757 break; 3758 } 3759 3760 if (++retry_count > 4) { 3761 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3762 break; 3763 } 3764 3765 } while (true); 3766 3767 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3768 walk_shadow_page_lockless_end(vcpu); 3769 3770 if (ret != RET_PF_INVALID) 3771 vcpu->stat.pf_fast++; 3772 3773 return ret; 3774 } 3775 3776 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3777 struct list_head *invalid_list) 3778 { 3779 struct kvm_mmu_page *sp; 3780 3781 if (!VALID_PAGE(*root_hpa)) 3782 return; 3783 3784 sp = root_to_sp(*root_hpa); 3785 if (WARN_ON_ONCE(!sp)) 3786 return; 3787 3788 if (is_tdp_mmu_page(sp)) { 3789 lockdep_assert_held_read(&kvm->mmu_lock); 3790 kvm_tdp_mmu_put_root(kvm, sp); 3791 } else { 3792 lockdep_assert_held_write(&kvm->mmu_lock); 3793 if (!--sp->root_count && sp->role.invalid) 3794 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3795 } 3796 3797 *root_hpa = INVALID_PAGE; 3798 } 3799 3800 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3801 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3802 ulong roots_to_free) 3803 { 3804 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3805 int i; 3806 LIST_HEAD(invalid_list); 3807 bool free_active_root; 3808 3809 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3810 3811 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3812 3813 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3814 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3815 && VALID_PAGE(mmu->root.hpa); 3816 3817 if (!free_active_root) { 3818 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3819 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3820 VALID_PAGE(mmu->prev_roots[i].hpa)) 3821 break; 3822 3823 if (i == KVM_MMU_NUM_PREV_ROOTS) 3824 return; 3825 } 3826 3827 if (is_tdp_mmu) 3828 read_lock(&kvm->mmu_lock); 3829 else 3830 write_lock(&kvm->mmu_lock); 3831 3832 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3833 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3834 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3835 &invalid_list); 3836 3837 if (free_active_root) { 3838 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3839 /* Nothing to cleanup for dummy roots. */ 3840 } else if (root_to_sp(mmu->root.hpa)) { 3841 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3842 } else if (mmu->pae_root) { 3843 for (i = 0; i < 4; ++i) { 3844 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3845 continue; 3846 3847 mmu_free_root_page(kvm, &mmu->pae_root[i], 3848 &invalid_list); 3849 mmu->pae_root[i] = INVALID_PAE_ROOT; 3850 } 3851 } 3852 mmu->root.hpa = INVALID_PAGE; 3853 mmu->root.pgd = 0; 3854 } 3855 3856 if (is_tdp_mmu) { 3857 read_unlock(&kvm->mmu_lock); 3858 WARN_ON_ONCE(!list_empty(&invalid_list)); 3859 } else { 3860 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3861 write_unlock(&kvm->mmu_lock); 3862 } 3863 } 3864 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3865 3866 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3867 { 3868 unsigned long roots_to_free = 0; 3869 struct kvm_mmu_page *sp; 3870 hpa_t root_hpa; 3871 int i; 3872 3873 /* 3874 * This should not be called while L2 is active, L2 can't invalidate 3875 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3876 */ 3877 WARN_ON_ONCE(mmu->root_role.guest_mode); 3878 3879 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3880 root_hpa = mmu->prev_roots[i].hpa; 3881 if (!VALID_PAGE(root_hpa)) 3882 continue; 3883 3884 sp = root_to_sp(root_hpa); 3885 if (!sp || sp->role.guest_mode) 3886 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3887 } 3888 3889 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3890 } 3891 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3892 3893 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3894 u8 level) 3895 { 3896 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3897 struct kvm_mmu_page *sp; 3898 3899 role.level = level; 3900 role.quadrant = quadrant; 3901 3902 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3903 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3904 3905 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3906 ++sp->root_count; 3907 3908 return __pa(sp->spt); 3909 } 3910 3911 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3912 { 3913 struct kvm_mmu *mmu = vcpu->arch.mmu; 3914 u8 shadow_root_level = mmu->root_role.level; 3915 hpa_t root; 3916 unsigned i; 3917 int r; 3918 3919 if (tdp_mmu_enabled) { 3920 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3921 !VALID_PAGE(mmu->mirror_root_hpa)) 3922 kvm_tdp_mmu_alloc_root(vcpu, true); 3923 kvm_tdp_mmu_alloc_root(vcpu, false); 3924 return 0; 3925 } 3926 3927 write_lock(&vcpu->kvm->mmu_lock); 3928 r = make_mmu_pages_available(vcpu); 3929 if (r < 0) 3930 goto out_unlock; 3931 3932 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3933 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3934 mmu->root.hpa = root; 3935 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3936 if (WARN_ON_ONCE(!mmu->pae_root)) { 3937 r = -EIO; 3938 goto out_unlock; 3939 } 3940 3941 for (i = 0; i < 4; ++i) { 3942 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3943 3944 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3945 PT32_ROOT_LEVEL); 3946 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3947 shadow_me_value; 3948 } 3949 mmu->root.hpa = __pa(mmu->pae_root); 3950 } else { 3951 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3952 r = -EIO; 3953 goto out_unlock; 3954 } 3955 3956 /* root.pgd is ignored for direct MMUs. */ 3957 mmu->root.pgd = 0; 3958 out_unlock: 3959 write_unlock(&vcpu->kvm->mmu_lock); 3960 return r; 3961 } 3962 3963 static int kvm_mmu_alloc_page_hash(struct kvm *kvm) 3964 { 3965 struct hlist_head *h; 3966 3967 if (kvm->arch.mmu_page_hash) 3968 return 0; 3969 3970 h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT); 3971 if (!h) 3972 return -ENOMEM; 3973 3974 /* 3975 * Ensure the hash table pointer is set only after all stores to zero 3976 * the memory are retired. Pairs with the smp_load_acquire() in 3977 * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to 3978 * add (or remove) shadow pages, and so readers are guaranteed to see 3979 * an empty list for their current mmu_lock critical section. 3980 */ 3981 smp_store_release(&kvm->arch.mmu_page_hash, h); 3982 return 0; 3983 } 3984 3985 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3986 { 3987 struct kvm_memslots *slots; 3988 struct kvm_memory_slot *slot; 3989 int r = 0, i, bkt; 3990 3991 /* 3992 * Check if this is the first shadow root being allocated before 3993 * taking the lock. 3994 */ 3995 if (kvm_shadow_root_allocated(kvm)) 3996 return 0; 3997 3998 mutex_lock(&kvm->slots_arch_lock); 3999 4000 /* Recheck, under the lock, whether this is the first shadow root. */ 4001 if (kvm_shadow_root_allocated(kvm)) 4002 goto out_unlock; 4003 4004 r = kvm_mmu_alloc_page_hash(kvm); 4005 if (r) 4006 goto out_unlock; 4007 4008 /* 4009 * Check if memslot metadata actually needs to be allocated, e.g. all 4010 * metadata will be allocated upfront if TDP is disabled. 4011 */ 4012 if (kvm_memslots_have_rmaps(kvm) && 4013 kvm_page_track_write_tracking_enabled(kvm)) 4014 goto out_success; 4015 4016 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4017 slots = __kvm_memslots(kvm, i); 4018 kvm_for_each_memslot(slot, bkt, slots) { 4019 /* 4020 * Both of these functions are no-ops if the target is 4021 * already allocated, so unconditionally calling both 4022 * is safe. Intentionally do NOT free allocations on 4023 * failure to avoid having to track which allocations 4024 * were made now versus when the memslot was created. 4025 * The metadata is guaranteed to be freed when the slot 4026 * is freed, and will be kept/used if userspace retries 4027 * KVM_RUN instead of killing the VM. 4028 */ 4029 r = memslot_rmap_alloc(slot, slot->npages); 4030 if (r) 4031 goto out_unlock; 4032 r = kvm_page_track_write_tracking_alloc(slot); 4033 if (r) 4034 goto out_unlock; 4035 } 4036 } 4037 4038 /* 4039 * Ensure that shadow_root_allocated becomes true strictly after 4040 * all the related pointers are set. 4041 */ 4042 out_success: 4043 smp_store_release(&kvm->arch.shadow_root_allocated, true); 4044 4045 out_unlock: 4046 mutex_unlock(&kvm->slots_arch_lock); 4047 return r; 4048 } 4049 4050 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 4051 { 4052 struct kvm_mmu *mmu = vcpu->arch.mmu; 4053 u64 pdptrs[4], pm_mask; 4054 gfn_t root_gfn, root_pgd; 4055 int quadrant, i, r; 4056 hpa_t root; 4057 4058 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 4059 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 4060 4061 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 4062 mmu->root.hpa = kvm_mmu_get_dummy_root(); 4063 return 0; 4064 } 4065 4066 /* 4067 * On SVM, reading PDPTRs might access guest memory, which might fault 4068 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 4069 */ 4070 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4071 for (i = 0; i < 4; ++i) { 4072 pdptrs[i] = mmu->get_pdptr(vcpu, i); 4073 if (!(pdptrs[i] & PT_PRESENT_MASK)) 4074 continue; 4075 4076 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 4077 pdptrs[i] = 0; 4078 } 4079 } 4080 4081 r = mmu_first_shadow_root_alloc(vcpu->kvm); 4082 if (r) 4083 return r; 4084 4085 write_lock(&vcpu->kvm->mmu_lock); 4086 r = make_mmu_pages_available(vcpu); 4087 if (r < 0) 4088 goto out_unlock; 4089 4090 /* 4091 * Do we shadow a long mode page table? If so we need to 4092 * write-protect the guests page table root. 4093 */ 4094 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4095 root = mmu_alloc_root(vcpu, root_gfn, 0, 4096 mmu->root_role.level); 4097 mmu->root.hpa = root; 4098 goto set_root_pgd; 4099 } 4100 4101 if (WARN_ON_ONCE(!mmu->pae_root)) { 4102 r = -EIO; 4103 goto out_unlock; 4104 } 4105 4106 /* 4107 * We shadow a 32 bit page table. This may be a legacy 2-level 4108 * or a PAE 3-level page table. In either case we need to be aware that 4109 * the shadow page table may be a PAE or a long mode page table. 4110 */ 4111 pm_mask = PT_PRESENT_MASK | shadow_me_value; 4112 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 4113 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 4114 4115 if (WARN_ON_ONCE(!mmu->pml4_root)) { 4116 r = -EIO; 4117 goto out_unlock; 4118 } 4119 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 4120 4121 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 4122 if (WARN_ON_ONCE(!mmu->pml5_root)) { 4123 r = -EIO; 4124 goto out_unlock; 4125 } 4126 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 4127 } 4128 } 4129 4130 for (i = 0; i < 4; ++i) { 4131 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 4132 4133 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4134 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 4135 mmu->pae_root[i] = INVALID_PAE_ROOT; 4136 continue; 4137 } 4138 root_gfn = pdptrs[i] >> PAGE_SHIFT; 4139 } 4140 4141 /* 4142 * If shadowing 32-bit non-PAE page tables, each PAE page 4143 * directory maps one quarter of the guest's non-PAE page 4144 * directory. Othwerise each PAE page direct shadows one guest 4145 * PAE page directory so that quadrant should be 0. 4146 */ 4147 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 4148 4149 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 4150 mmu->pae_root[i] = root | pm_mask; 4151 } 4152 4153 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 4154 mmu->root.hpa = __pa(mmu->pml5_root); 4155 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 4156 mmu->root.hpa = __pa(mmu->pml4_root); 4157 else 4158 mmu->root.hpa = __pa(mmu->pae_root); 4159 4160 set_root_pgd: 4161 mmu->root.pgd = root_pgd; 4162 out_unlock: 4163 write_unlock(&vcpu->kvm->mmu_lock); 4164 4165 return r; 4166 } 4167 4168 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 4169 { 4170 struct kvm_mmu *mmu = vcpu->arch.mmu; 4171 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 4172 u64 *pml5_root = NULL; 4173 u64 *pml4_root = NULL; 4174 u64 *pae_root; 4175 4176 /* 4177 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 4178 * tables are allocated and initialized at root creation as there is no 4179 * equivalent level in the guest's NPT to shadow. Allocate the tables 4180 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 4181 */ 4182 if (mmu->root_role.direct || 4183 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 4184 mmu->root_role.level < PT64_ROOT_4LEVEL) 4185 return 0; 4186 4187 /* 4188 * NPT, the only paging mode that uses this horror, uses a fixed number 4189 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 4190 * all MMus are 5-level. Thus, this can safely require that pml5_root 4191 * is allocated if the other roots are valid and pml5 is needed, as any 4192 * prior MMU would also have required pml5. 4193 */ 4194 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 4195 return 0; 4196 4197 /* 4198 * The special roots should always be allocated in concert. Yell and 4199 * bail if KVM ends up in a state where only one of the roots is valid. 4200 */ 4201 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 4202 (need_pml5 && mmu->pml5_root))) 4203 return -EIO; 4204 4205 /* 4206 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 4207 * doesn't need to be decrypted. 4208 */ 4209 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4210 if (!pae_root) 4211 return -ENOMEM; 4212 4213 #ifdef CONFIG_X86_64 4214 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4215 if (!pml4_root) 4216 goto err_pml4; 4217 4218 if (need_pml5) { 4219 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4220 if (!pml5_root) 4221 goto err_pml5; 4222 } 4223 #endif 4224 4225 mmu->pae_root = pae_root; 4226 mmu->pml4_root = pml4_root; 4227 mmu->pml5_root = pml5_root; 4228 4229 return 0; 4230 4231 #ifdef CONFIG_X86_64 4232 err_pml5: 4233 free_page((unsigned long)pml4_root); 4234 err_pml4: 4235 free_page((unsigned long)pae_root); 4236 return -ENOMEM; 4237 #endif 4238 } 4239 4240 static bool is_unsync_root(hpa_t root) 4241 { 4242 struct kvm_mmu_page *sp; 4243 4244 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4245 return false; 4246 4247 /* 4248 * The read barrier orders the CPU's read of SPTE.W during the page table 4249 * walk before the reads of sp->unsync/sp->unsync_children here. 4250 * 4251 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4252 * any guest page table changes are not guaranteed to be visible anyway 4253 * until this VCPU issues a TLB flush strictly after those changes are 4254 * made. We only need to ensure that the other CPU sets these flags 4255 * before any actual changes to the page tables are made. The comments 4256 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4257 * requirement isn't satisfied. 4258 */ 4259 smp_rmb(); 4260 sp = root_to_sp(root); 4261 4262 /* 4263 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4264 * PDPTEs for a given PAE root need to be synchronized individually. 4265 */ 4266 if (WARN_ON_ONCE(!sp)) 4267 return false; 4268 4269 if (sp->unsync || sp->unsync_children) 4270 return true; 4271 4272 return false; 4273 } 4274 4275 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4276 { 4277 int i; 4278 struct kvm_mmu_page *sp; 4279 4280 if (vcpu->arch.mmu->root_role.direct) 4281 return; 4282 4283 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4284 return; 4285 4286 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4287 4288 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4289 hpa_t root = vcpu->arch.mmu->root.hpa; 4290 4291 if (!is_unsync_root(root)) 4292 return; 4293 4294 sp = root_to_sp(root); 4295 4296 write_lock(&vcpu->kvm->mmu_lock); 4297 mmu_sync_children(vcpu, sp, true); 4298 write_unlock(&vcpu->kvm->mmu_lock); 4299 return; 4300 } 4301 4302 write_lock(&vcpu->kvm->mmu_lock); 4303 4304 for (i = 0; i < 4; ++i) { 4305 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4306 4307 if (IS_VALID_PAE_ROOT(root)) { 4308 sp = spte_to_child_sp(root); 4309 mmu_sync_children(vcpu, sp, true); 4310 } 4311 } 4312 4313 write_unlock(&vcpu->kvm->mmu_lock); 4314 } 4315 4316 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4317 { 4318 unsigned long roots_to_free = 0; 4319 int i; 4320 4321 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4322 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4323 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4324 4325 /* sync prev_roots by simply freeing them */ 4326 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4327 } 4328 4329 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4330 gpa_t vaddr, u64 access, 4331 struct x86_exception *exception) 4332 { 4333 if (exception) 4334 exception->error_code = 0; 4335 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4336 } 4337 4338 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4339 { 4340 /* 4341 * A nested guest cannot use the MMIO cache if it is using nested 4342 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4343 */ 4344 if (mmu_is_nested(vcpu)) 4345 return false; 4346 4347 if (direct) 4348 return vcpu_match_mmio_gpa(vcpu, addr); 4349 4350 return vcpu_match_mmio_gva(vcpu, addr); 4351 } 4352 4353 /* 4354 * Return the level of the lowest level SPTE added to sptes. 4355 * That SPTE may be non-present. 4356 * 4357 * Must be called between walk_shadow_page_lockless_{begin,end}. 4358 */ 4359 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4360 { 4361 struct kvm_shadow_walk_iterator iterator; 4362 int leaf = -1; 4363 u64 spte; 4364 4365 for (shadow_walk_init(&iterator, vcpu, addr), 4366 *root_level = iterator.level; 4367 shadow_walk_okay(&iterator); 4368 __shadow_walk_next(&iterator, spte)) { 4369 leaf = iterator.level; 4370 spte = mmu_spte_get_lockless(iterator.sptep); 4371 4372 sptes[leaf] = spte; 4373 } 4374 4375 return leaf; 4376 } 4377 4378 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4379 int *root_level) 4380 { 4381 int leaf; 4382 4383 walk_shadow_page_lockless_begin(vcpu); 4384 4385 if (is_tdp_mmu_active(vcpu)) 4386 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4387 else 4388 leaf = get_walk(vcpu, addr, sptes, root_level); 4389 4390 walk_shadow_page_lockless_end(vcpu); 4391 return leaf; 4392 } 4393 4394 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4395 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4396 { 4397 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4398 struct rsvd_bits_validate *rsvd_check; 4399 int root, leaf, level; 4400 bool reserved = false; 4401 4402 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4403 if (unlikely(leaf < 0)) { 4404 *sptep = 0ull; 4405 return reserved; 4406 } 4407 4408 *sptep = sptes[leaf]; 4409 4410 /* 4411 * Skip reserved bits checks on the terminal leaf if it's not a valid 4412 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4413 * design, always have reserved bits set. The purpose of the checks is 4414 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4415 */ 4416 if (!is_shadow_present_pte(sptes[leaf])) 4417 leaf++; 4418 4419 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4420 4421 for (level = root; level >= leaf; level--) 4422 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4423 4424 if (reserved) { 4425 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4426 __func__, addr); 4427 for (level = root; level >= leaf; level--) 4428 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4429 sptes[level], level, 4430 get_rsvd_bits(rsvd_check, sptes[level], level)); 4431 } 4432 4433 return reserved; 4434 } 4435 4436 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4437 { 4438 u64 spte; 4439 bool reserved; 4440 4441 if (mmio_info_in_cache(vcpu, addr, direct)) 4442 return RET_PF_EMULATE; 4443 4444 reserved = get_mmio_spte(vcpu, addr, &spte); 4445 if (WARN_ON_ONCE(reserved)) 4446 return -EINVAL; 4447 4448 if (is_mmio_spte(vcpu->kvm, spte)) { 4449 gfn_t gfn = get_mmio_spte_gfn(spte); 4450 unsigned int access = get_mmio_spte_access(spte); 4451 4452 if (!check_mmio_spte(vcpu, spte)) 4453 return RET_PF_INVALID; 4454 4455 if (direct) 4456 addr = 0; 4457 4458 trace_handle_mmio_page_fault(addr, gfn, access); 4459 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4460 return RET_PF_EMULATE; 4461 } 4462 4463 /* 4464 * If the page table is zapped by other cpus, let CPU fault again on 4465 * the address. 4466 */ 4467 return RET_PF_RETRY; 4468 } 4469 4470 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4471 struct kvm_page_fault *fault) 4472 { 4473 if (unlikely(fault->rsvd)) 4474 return false; 4475 4476 if (!fault->present || !fault->write) 4477 return false; 4478 4479 /* 4480 * guest is writing the page which is write tracked which can 4481 * not be fixed by page fault handler. 4482 */ 4483 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4484 return true; 4485 4486 return false; 4487 } 4488 4489 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4490 { 4491 struct kvm_shadow_walk_iterator iterator; 4492 u64 spte; 4493 4494 walk_shadow_page_lockless_begin(vcpu); 4495 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4496 clear_sp_write_flooding_count(iterator.sptep); 4497 walk_shadow_page_lockless_end(vcpu); 4498 } 4499 4500 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4501 { 4502 /* make sure the token value is not 0 */ 4503 u32 id = vcpu->arch.apf.id; 4504 4505 if (id << 12 == 0) 4506 vcpu->arch.apf.id = 1; 4507 4508 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4509 } 4510 4511 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4512 struct kvm_page_fault *fault) 4513 { 4514 struct kvm_arch_async_pf arch; 4515 4516 arch.token = alloc_apf_token(vcpu); 4517 arch.gfn = fault->gfn; 4518 arch.error_code = fault->error_code; 4519 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4520 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4521 4522 return kvm_setup_async_pf(vcpu, fault->addr, 4523 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4524 } 4525 4526 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4527 { 4528 int r; 4529 4530 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4531 return; 4532 4533 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4534 work->wakeup_all) 4535 return; 4536 4537 r = kvm_mmu_reload(vcpu); 4538 if (unlikely(r)) 4539 return; 4540 4541 if (!vcpu->arch.mmu->root_role.direct && 4542 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4543 return; 4544 4545 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4546 true, NULL, NULL); 4547 4548 /* 4549 * Account fixed page faults, otherwise they'll never be counted, but 4550 * ignore stats for all other return times. Page-ready "faults" aren't 4551 * truly spurious and never trigger emulation 4552 */ 4553 if (r == RET_PF_FIXED) 4554 vcpu->stat.pf_fixed++; 4555 } 4556 4557 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4558 struct kvm_page_fault *fault, int r) 4559 { 4560 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4561 r == RET_PF_RETRY, fault->map_writable); 4562 } 4563 4564 static int kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu *vcpu, 4565 struct kvm_page_fault *fault) 4566 { 4567 int max_order, r; 4568 4569 if (!kvm_slot_has_gmem(fault->slot)) { 4570 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4571 return -EFAULT; 4572 } 4573 4574 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4575 &fault->refcounted_page, &max_order); 4576 if (r) { 4577 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4578 return r; 4579 } 4580 4581 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4582 fault->max_level = kvm_max_level_for_order(max_order); 4583 4584 return RET_PF_CONTINUE; 4585 } 4586 4587 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4588 struct kvm_page_fault *fault) 4589 { 4590 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4591 4592 if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot)) 4593 return kvm_mmu_faultin_pfn_gmem(vcpu, fault); 4594 4595 foll |= FOLL_NOWAIT; 4596 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4597 &fault->map_writable, &fault->refcounted_page); 4598 4599 /* 4600 * If resolving the page failed because I/O is needed to fault-in the 4601 * page, then either set up an asynchronous #PF to do the I/O, or if 4602 * doing an async #PF isn't possible, retry with I/O allowed. All 4603 * other failures are terminal, i.e. retrying won't help. 4604 */ 4605 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4606 return RET_PF_CONTINUE; 4607 4608 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4609 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4610 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4611 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4612 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4613 return RET_PF_RETRY; 4614 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4615 return RET_PF_RETRY; 4616 } 4617 } 4618 4619 /* 4620 * Allow gup to bail on pending non-fatal signals when it's also allowed 4621 * to wait for IO. Note, gup always bails if it is unable to quickly 4622 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4623 */ 4624 foll |= FOLL_INTERRUPTIBLE; 4625 foll &= ~FOLL_NOWAIT; 4626 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4627 &fault->map_writable, &fault->refcounted_page); 4628 4629 return RET_PF_CONTINUE; 4630 } 4631 4632 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4633 struct kvm_page_fault *fault, unsigned int access) 4634 { 4635 struct kvm_memory_slot *slot = fault->slot; 4636 struct kvm *kvm = vcpu->kvm; 4637 int ret; 4638 4639 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4640 return -EFAULT; 4641 4642 /* 4643 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4644 * change in attributes. is_page_fault_stale() will detect an 4645 * invalidation relate to fault->fn and resume the guest without 4646 * installing a mapping in the page tables. 4647 */ 4648 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4649 smp_rmb(); 4650 4651 /* 4652 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4653 * private vs. shared mismatch. 4654 */ 4655 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4656 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4657 return -EFAULT; 4658 } 4659 4660 if (unlikely(!slot)) 4661 return kvm_handle_noslot_fault(vcpu, fault, access); 4662 4663 /* 4664 * Retry the page fault if the gfn hit a memslot that is being deleted 4665 * or moved. This ensures any existing SPTEs for the old memslot will 4666 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4667 */ 4668 if (slot->flags & KVM_MEMSLOT_INVALID) 4669 return RET_PF_RETRY; 4670 4671 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4672 /* 4673 * Don't map L1's APIC access page into L2, KVM doesn't support 4674 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4675 * i.e. the access needs to be emulated. Emulating access to 4676 * L1's APIC is also correct if L1 is accelerating L2's own 4677 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4678 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4679 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4680 * uses different roots for L1 vs. L2, i.e. there is no danger 4681 * of breaking APICv/AVIC for L1. 4682 */ 4683 if (is_guest_mode(vcpu)) 4684 return kvm_handle_noslot_fault(vcpu, fault, access); 4685 4686 /* 4687 * If the APIC access page exists but is disabled, go directly 4688 * to emulation without caching the MMIO access or creating a 4689 * MMIO SPTE. That way the cache doesn't need to be purged 4690 * when the AVIC is re-enabled. 4691 */ 4692 if (!kvm_apicv_activated(vcpu->kvm)) 4693 return RET_PF_EMULATE; 4694 } 4695 4696 /* 4697 * Check for a relevant mmu_notifier invalidation event before getting 4698 * the pfn from the primary MMU, and before acquiring mmu_lock. 4699 * 4700 * For mmu_lock, if there is an in-progress invalidation and the kernel 4701 * allows preemption, the invalidation task may drop mmu_lock and yield 4702 * in response to mmu_lock being contended, which is *very* counter- 4703 * productive as this vCPU can't actually make forward progress until 4704 * the invalidation completes. 4705 * 4706 * Retrying now can also avoid unnessary lock contention in the primary 4707 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4708 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4709 * can cause the invalidation to take longer by holding locks that are 4710 * needed to complete the invalidation. 4711 * 4712 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4713 * will never yield mmu_lock in response to contention, as this vCPU is 4714 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4715 * to detect retry guarantees the worst case latency for the vCPU. 4716 */ 4717 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4718 return RET_PF_RETRY; 4719 4720 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4721 if (ret != RET_PF_CONTINUE) 4722 return ret; 4723 4724 if (unlikely(is_error_pfn(fault->pfn))) 4725 return kvm_handle_error_pfn(vcpu, fault); 4726 4727 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4728 return kvm_handle_noslot_fault(vcpu, fault, access); 4729 4730 /* 4731 * Check again for a relevant mmu_notifier invalidation event purely to 4732 * avoid contending mmu_lock. Most invalidations will be detected by 4733 * the previous check, but checking is extremely cheap relative to the 4734 * overall cost of failing to detect the invalidation until after 4735 * mmu_lock is acquired. 4736 */ 4737 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4738 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4739 return RET_PF_RETRY; 4740 } 4741 4742 return RET_PF_CONTINUE; 4743 } 4744 4745 /* 4746 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4747 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4748 */ 4749 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4750 struct kvm_page_fault *fault) 4751 { 4752 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4753 4754 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4755 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4756 return true; 4757 4758 /* 4759 * Roots without an associated shadow page are considered invalid if 4760 * there is a pending request to free obsolete roots. The request is 4761 * only a hint that the current root _may_ be obsolete and needs to be 4762 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4763 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4764 * to reload even if no vCPU is actively using the root. 4765 */ 4766 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4767 return true; 4768 4769 /* 4770 * Check for a relevant mmu_notifier invalidation event one last time 4771 * now that mmu_lock is held, as the "unsafe" checks performed without 4772 * holding mmu_lock can get false negatives. 4773 */ 4774 return fault->slot && 4775 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4776 } 4777 4778 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4779 { 4780 int r; 4781 4782 /* Dummy roots are used only for shadowing bad guest roots. */ 4783 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4784 return RET_PF_RETRY; 4785 4786 if (page_fault_handle_page_track(vcpu, fault)) 4787 return RET_PF_WRITE_PROTECTED; 4788 4789 r = fast_page_fault(vcpu, fault); 4790 if (r != RET_PF_INVALID) 4791 return r; 4792 4793 r = mmu_topup_memory_caches(vcpu, false); 4794 if (r) 4795 return r; 4796 4797 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4798 if (r != RET_PF_CONTINUE) 4799 return r; 4800 4801 r = RET_PF_RETRY; 4802 write_lock(&vcpu->kvm->mmu_lock); 4803 4804 if (is_page_fault_stale(vcpu, fault)) 4805 goto out_unlock; 4806 4807 r = make_mmu_pages_available(vcpu); 4808 if (r) 4809 goto out_unlock; 4810 4811 r = direct_map(vcpu, fault); 4812 4813 out_unlock: 4814 kvm_mmu_finish_page_fault(vcpu, fault, r); 4815 write_unlock(&vcpu->kvm->mmu_lock); 4816 return r; 4817 } 4818 4819 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4820 struct kvm_page_fault *fault) 4821 { 4822 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4823 fault->max_level = PG_LEVEL_2M; 4824 return direct_page_fault(vcpu, fault); 4825 } 4826 4827 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4828 u64 fault_address, char *insn, int insn_len) 4829 { 4830 int r = 1; 4831 u32 flags = vcpu->arch.apf.host_apf_flags; 4832 4833 #ifndef CONFIG_X86_64 4834 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4835 if (WARN_ON_ONCE(fault_address >> 32)) 4836 return -EFAULT; 4837 #endif 4838 /* 4839 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4840 * upper bits as KVM doesn't use them for #PF (because they are never 4841 * set), and to ensure there are no collisions with KVM-defined bits. 4842 */ 4843 if (WARN_ON_ONCE(error_code >> 32)) 4844 error_code = lower_32_bits(error_code); 4845 4846 /* 4847 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4848 * them to conflict with #PF error codes, which are limited to 32 bits. 4849 */ 4850 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4851 4852 vcpu->arch.l1tf_flush_l1d = true; 4853 if (!flags) { 4854 trace_kvm_page_fault(vcpu, fault_address, error_code); 4855 4856 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4857 insn_len); 4858 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4859 vcpu->arch.apf.host_apf_flags = 0; 4860 local_irq_disable(); 4861 kvm_async_pf_task_wait_schedule(fault_address); 4862 local_irq_enable(); 4863 } else { 4864 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4865 } 4866 4867 return r; 4868 } 4869 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4870 4871 #ifdef CONFIG_X86_64 4872 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4873 struct kvm_page_fault *fault) 4874 { 4875 int r; 4876 4877 if (page_fault_handle_page_track(vcpu, fault)) 4878 return RET_PF_WRITE_PROTECTED; 4879 4880 r = fast_page_fault(vcpu, fault); 4881 if (r != RET_PF_INVALID) 4882 return r; 4883 4884 r = mmu_topup_memory_caches(vcpu, false); 4885 if (r) 4886 return r; 4887 4888 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4889 if (r != RET_PF_CONTINUE) 4890 return r; 4891 4892 r = RET_PF_RETRY; 4893 read_lock(&vcpu->kvm->mmu_lock); 4894 4895 if (is_page_fault_stale(vcpu, fault)) 4896 goto out_unlock; 4897 4898 r = kvm_tdp_mmu_map(vcpu, fault); 4899 4900 out_unlock: 4901 kvm_mmu_finish_page_fault(vcpu, fault, r); 4902 read_unlock(&vcpu->kvm->mmu_lock); 4903 return r; 4904 } 4905 #endif 4906 4907 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4908 { 4909 #ifdef CONFIG_X86_64 4910 if (tdp_mmu_enabled) 4911 return kvm_tdp_mmu_page_fault(vcpu, fault); 4912 #endif 4913 4914 return direct_page_fault(vcpu, fault); 4915 } 4916 4917 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level) 4918 { 4919 int r; 4920 4921 /* 4922 * Restrict to TDP page fault, since that's the only case where the MMU 4923 * is indexed by GPA. 4924 */ 4925 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4926 return -EOPNOTSUPP; 4927 4928 do { 4929 if (signal_pending(current)) 4930 return -EINTR; 4931 4932 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 4933 return -EIO; 4934 4935 cond_resched(); 4936 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4937 } while (r == RET_PF_RETRY); 4938 4939 if (r < 0) 4940 return r; 4941 4942 switch (r) { 4943 case RET_PF_FIXED: 4944 case RET_PF_SPURIOUS: 4945 case RET_PF_WRITE_PROTECTED: 4946 return 0; 4947 4948 case RET_PF_EMULATE: 4949 return -ENOENT; 4950 4951 case RET_PF_RETRY: 4952 case RET_PF_CONTINUE: 4953 case RET_PF_INVALID: 4954 default: 4955 WARN_ONCE(1, "could not fix page fault during prefault"); 4956 return -EIO; 4957 } 4958 } 4959 EXPORT_SYMBOL_GPL(kvm_tdp_map_page); 4960 4961 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4962 struct kvm_pre_fault_memory *range) 4963 { 4964 u64 error_code = PFERR_GUEST_FINAL_MASK; 4965 u8 level = PG_LEVEL_4K; 4966 u64 direct_bits; 4967 u64 end; 4968 int r; 4969 4970 if (!vcpu->kvm->arch.pre_fault_allowed) 4971 return -EOPNOTSUPP; 4972 4973 if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) 4974 return -EINVAL; 4975 4976 /* 4977 * reload is efficient when called repeatedly, so we can do it on 4978 * every iteration. 4979 */ 4980 r = kvm_mmu_reload(vcpu); 4981 if (r) 4982 return r; 4983 4984 direct_bits = 0; 4985 if (kvm_arch_has_private_mem(vcpu->kvm) && 4986 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4987 error_code |= PFERR_PRIVATE_ACCESS; 4988 else 4989 direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); 4990 4991 /* 4992 * Shadow paging uses GVA for kvm page fault, so restrict to 4993 * two-dimensional paging. 4994 */ 4995 r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level); 4996 if (r < 0) 4997 return r; 4998 4999 /* 5000 * If the mapping that covers range->gpa can use a huge page, it 5001 * may start below it or end after range->gpa + range->size. 5002 */ 5003 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 5004 return min(range->size, end - range->gpa); 5005 } 5006 5007 static void nonpaging_init_context(struct kvm_mmu *context) 5008 { 5009 context->page_fault = nonpaging_page_fault; 5010 context->gva_to_gpa = nonpaging_gva_to_gpa; 5011 context->sync_spte = NULL; 5012 } 5013 5014 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 5015 union kvm_mmu_page_role role) 5016 { 5017 struct kvm_mmu_page *sp; 5018 5019 if (!VALID_PAGE(root->hpa)) 5020 return false; 5021 5022 if (!role.direct && pgd != root->pgd) 5023 return false; 5024 5025 sp = root_to_sp(root->hpa); 5026 if (WARN_ON_ONCE(!sp)) 5027 return false; 5028 5029 return role.word == sp->role.word; 5030 } 5031 5032 /* 5033 * Find out if a previously cached root matching the new pgd/role is available, 5034 * and insert the current root as the MRU in the cache. 5035 * If a matching root is found, it is assigned to kvm_mmu->root and 5036 * true is returned. 5037 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 5038 * evicted to make room for the current root, and false is returned. 5039 */ 5040 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 5041 gpa_t new_pgd, 5042 union kvm_mmu_page_role new_role) 5043 { 5044 uint i; 5045 5046 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5047 return true; 5048 5049 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5050 /* 5051 * The swaps end up rotating the cache like this: 5052 * C 0 1 2 3 (on entry to the function) 5053 * 0 C 1 2 3 5054 * 1 C 0 2 3 5055 * 2 C 0 1 3 5056 * 3 C 0 1 2 (on exit from the loop) 5057 */ 5058 swap(mmu->root, mmu->prev_roots[i]); 5059 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5060 return true; 5061 } 5062 5063 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5064 return false; 5065 } 5066 5067 /* 5068 * Find out if a previously cached root matching the new pgd/role is available. 5069 * On entry, mmu->root is invalid. 5070 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 5071 * of the cache becomes invalid, and true is returned. 5072 * If no match is found, kvm_mmu->root is left invalid and false is returned. 5073 */ 5074 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 5075 gpa_t new_pgd, 5076 union kvm_mmu_page_role new_role) 5077 { 5078 uint i; 5079 5080 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5081 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 5082 goto hit; 5083 5084 return false; 5085 5086 hit: 5087 swap(mmu->root, mmu->prev_roots[i]); 5088 /* Bubble up the remaining roots. */ 5089 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 5090 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 5091 mmu->prev_roots[i].hpa = INVALID_PAGE; 5092 return true; 5093 } 5094 5095 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 5096 gpa_t new_pgd, union kvm_mmu_page_role new_role) 5097 { 5098 /* 5099 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 5100 * avoid having to deal with PDPTEs and other complexities. 5101 */ 5102 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 5103 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5104 5105 if (VALID_PAGE(mmu->root.hpa)) 5106 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 5107 else 5108 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 5109 } 5110 5111 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 5112 { 5113 struct kvm_mmu *mmu = vcpu->arch.mmu; 5114 union kvm_mmu_page_role new_role = mmu->root_role; 5115 5116 /* 5117 * Return immediately if no usable root was found, kvm_mmu_reload() 5118 * will establish a valid root prior to the next VM-Enter. 5119 */ 5120 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 5121 return; 5122 5123 /* 5124 * It's possible that the cached previous root page is obsolete because 5125 * of a change in the MMU generation number. However, changing the 5126 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 5127 * which will free the root set here and allocate a new one. 5128 */ 5129 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 5130 5131 if (force_flush_and_sync_on_reuse) { 5132 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 5133 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 5134 } 5135 5136 /* 5137 * The last MMIO access's GVA and GPA are cached in the VCPU. When 5138 * switching to a new CR3, that GVA->GPA mapping may no longer be 5139 * valid. So clear any cached MMIO info even when we don't need to sync 5140 * the shadow page tables. 5141 */ 5142 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5143 5144 /* 5145 * If this is a direct root page, it doesn't have a write flooding 5146 * count. Otherwise, clear the write flooding count. 5147 */ 5148 if (!new_role.direct) { 5149 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 5150 5151 if (!WARN_ON_ONCE(!sp)) 5152 __clear_sp_write_flooding_count(sp); 5153 } 5154 } 5155 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 5156 5157 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 5158 unsigned int access) 5159 { 5160 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 5161 if (gfn != get_mmio_spte_gfn(*sptep)) { 5162 mmu_spte_clear_no_track(sptep); 5163 return true; 5164 } 5165 5166 mark_mmio_spte(vcpu, sptep, gfn, access); 5167 return true; 5168 } 5169 5170 return false; 5171 } 5172 5173 #define PTTYPE_EPT 18 /* arbitrary */ 5174 #define PTTYPE PTTYPE_EPT 5175 #include "paging_tmpl.h" 5176 #undef PTTYPE 5177 5178 #define PTTYPE 64 5179 #include "paging_tmpl.h" 5180 #undef PTTYPE 5181 5182 #define PTTYPE 32 5183 #include "paging_tmpl.h" 5184 #undef PTTYPE 5185 5186 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 5187 u64 pa_bits_rsvd, int level, bool nx, 5188 bool gbpages, bool pse, bool amd) 5189 { 5190 u64 gbpages_bit_rsvd = 0; 5191 u64 nonleaf_bit8_rsvd = 0; 5192 u64 high_bits_rsvd; 5193 5194 rsvd_check->bad_mt_xwr = 0; 5195 5196 if (!gbpages) 5197 gbpages_bit_rsvd = rsvd_bits(7, 7); 5198 5199 if (level == PT32E_ROOT_LEVEL) 5200 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5201 else 5202 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5203 5204 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5205 if (!nx) 5206 high_bits_rsvd |= rsvd_bits(63, 63); 5207 5208 /* 5209 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5210 * leaf entries) on AMD CPUs only. 5211 */ 5212 if (amd) 5213 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5214 5215 switch (level) { 5216 case PT32_ROOT_LEVEL: 5217 /* no rsvd bits for 2 level 4K page table entries */ 5218 rsvd_check->rsvd_bits_mask[0][1] = 0; 5219 rsvd_check->rsvd_bits_mask[0][0] = 0; 5220 rsvd_check->rsvd_bits_mask[1][0] = 5221 rsvd_check->rsvd_bits_mask[0][0]; 5222 5223 if (!pse) { 5224 rsvd_check->rsvd_bits_mask[1][1] = 0; 5225 break; 5226 } 5227 5228 if (is_cpuid_PSE36()) 5229 /* 36bits PSE 4MB page */ 5230 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5231 else 5232 /* 32 bits PSE 4MB page */ 5233 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5234 break; 5235 case PT32E_ROOT_LEVEL: 5236 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5237 high_bits_rsvd | 5238 rsvd_bits(5, 8) | 5239 rsvd_bits(1, 2); /* PDPTE */ 5240 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5241 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5242 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5243 rsvd_bits(13, 20); /* large page */ 5244 rsvd_check->rsvd_bits_mask[1][0] = 5245 rsvd_check->rsvd_bits_mask[0][0]; 5246 break; 5247 case PT64_ROOT_5LEVEL: 5248 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5249 nonleaf_bit8_rsvd | 5250 rsvd_bits(7, 7); 5251 rsvd_check->rsvd_bits_mask[1][4] = 5252 rsvd_check->rsvd_bits_mask[0][4]; 5253 fallthrough; 5254 case PT64_ROOT_4LEVEL: 5255 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5256 nonleaf_bit8_rsvd | 5257 rsvd_bits(7, 7); 5258 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5259 gbpages_bit_rsvd; 5260 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5261 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5262 rsvd_check->rsvd_bits_mask[1][3] = 5263 rsvd_check->rsvd_bits_mask[0][3]; 5264 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5265 gbpages_bit_rsvd | 5266 rsvd_bits(13, 29); 5267 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5268 rsvd_bits(13, 20); /* large page */ 5269 rsvd_check->rsvd_bits_mask[1][0] = 5270 rsvd_check->rsvd_bits_mask[0][0]; 5271 break; 5272 } 5273 } 5274 5275 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5276 struct kvm_mmu *context) 5277 { 5278 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5279 vcpu->arch.reserved_gpa_bits, 5280 context->cpu_role.base.level, is_efer_nx(context), 5281 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5282 is_cr4_pse(context), 5283 guest_cpuid_is_amd_compatible(vcpu)); 5284 } 5285 5286 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5287 u64 pa_bits_rsvd, bool execonly, 5288 int huge_page_level) 5289 { 5290 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5291 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5292 u64 bad_mt_xwr; 5293 5294 if (huge_page_level < PG_LEVEL_1G) 5295 large_1g_rsvd = rsvd_bits(7, 7); 5296 if (huge_page_level < PG_LEVEL_2M) 5297 large_2m_rsvd = rsvd_bits(7, 7); 5298 5299 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5300 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5301 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5302 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5303 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5304 5305 /* large page */ 5306 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5307 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5308 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5309 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5310 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5311 5312 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5313 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5314 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5315 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5316 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5317 if (!execonly) { 5318 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5319 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5320 } 5321 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5322 } 5323 5324 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5325 struct kvm_mmu *context, bool execonly, int huge_page_level) 5326 { 5327 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5328 vcpu->arch.reserved_gpa_bits, execonly, 5329 huge_page_level); 5330 } 5331 5332 static inline u64 reserved_hpa_bits(void) 5333 { 5334 return rsvd_bits(kvm_host.maxphyaddr, 63); 5335 } 5336 5337 /* 5338 * the page table on host is the shadow page table for the page 5339 * table in guest or amd nested guest, its mmu features completely 5340 * follow the features in guest. 5341 */ 5342 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5343 struct kvm_mmu *context) 5344 { 5345 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5346 bool is_amd = true; 5347 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5348 bool is_pse = false; 5349 struct rsvd_bits_validate *shadow_zero_check; 5350 int i; 5351 5352 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5353 5354 shadow_zero_check = &context->shadow_zero_check; 5355 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5356 context->root_role.level, 5357 context->root_role.efer_nx, 5358 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5359 is_pse, is_amd); 5360 5361 if (!shadow_me_mask) 5362 return; 5363 5364 for (i = context->root_role.level; --i >= 0;) { 5365 /* 5366 * So far shadow_me_value is a constant during KVM's life 5367 * time. Bits in shadow_me_value are allowed to be set. 5368 * Bits in shadow_me_mask but not in shadow_me_value are 5369 * not allowed to be set. 5370 */ 5371 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5372 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5373 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5374 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5375 } 5376 5377 } 5378 5379 static inline bool boot_cpu_is_amd(void) 5380 { 5381 WARN_ON_ONCE(!tdp_enabled); 5382 return shadow_x_mask == 0; 5383 } 5384 5385 /* 5386 * the direct page table on host, use as much mmu features as 5387 * possible, however, kvm currently does not do execution-protection. 5388 */ 5389 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5390 { 5391 struct rsvd_bits_validate *shadow_zero_check; 5392 int i; 5393 5394 shadow_zero_check = &context->shadow_zero_check; 5395 5396 if (boot_cpu_is_amd()) 5397 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5398 context->root_role.level, true, 5399 boot_cpu_has(X86_FEATURE_GBPAGES), 5400 false, true); 5401 else 5402 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5403 reserved_hpa_bits(), false, 5404 max_huge_page_level); 5405 5406 if (!shadow_me_mask) 5407 return; 5408 5409 for (i = context->root_role.level; --i >= 0;) { 5410 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5411 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5412 } 5413 } 5414 5415 /* 5416 * as the comments in reset_shadow_zero_bits_mask() except it 5417 * is the shadow page table for intel nested guest. 5418 */ 5419 static void 5420 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5421 { 5422 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5423 reserved_hpa_bits(), execonly, 5424 max_huge_page_level); 5425 } 5426 5427 #define BYTE_MASK(access) \ 5428 ((1 & (access) ? 2 : 0) | \ 5429 (2 & (access) ? 4 : 0) | \ 5430 (3 & (access) ? 8 : 0) | \ 5431 (4 & (access) ? 16 : 0) | \ 5432 (5 & (access) ? 32 : 0) | \ 5433 (6 & (access) ? 64 : 0) | \ 5434 (7 & (access) ? 128 : 0)) 5435 5436 5437 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5438 { 5439 unsigned byte; 5440 5441 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5442 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5443 const u8 u = BYTE_MASK(ACC_USER_MASK); 5444 5445 bool cr4_smep = is_cr4_smep(mmu); 5446 bool cr4_smap = is_cr4_smap(mmu); 5447 bool cr0_wp = is_cr0_wp(mmu); 5448 bool efer_nx = is_efer_nx(mmu); 5449 5450 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5451 unsigned pfec = byte << 1; 5452 5453 /* 5454 * Each "*f" variable has a 1 bit for each UWX value 5455 * that causes a fault with the given PFEC. 5456 */ 5457 5458 /* Faults from writes to non-writable pages */ 5459 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5460 /* Faults from user mode accesses to supervisor pages */ 5461 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5462 /* Faults from fetches of non-executable pages*/ 5463 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5464 /* Faults from kernel mode fetches of user pages */ 5465 u8 smepf = 0; 5466 /* Faults from kernel mode accesses of user pages */ 5467 u8 smapf = 0; 5468 5469 if (!ept) { 5470 /* Faults from kernel mode accesses to user pages */ 5471 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5472 5473 /* Not really needed: !nx will cause pte.nx to fault */ 5474 if (!efer_nx) 5475 ff = 0; 5476 5477 /* Allow supervisor writes if !cr0.wp */ 5478 if (!cr0_wp) 5479 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5480 5481 /* Disallow supervisor fetches of user code if cr4.smep */ 5482 if (cr4_smep) 5483 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5484 5485 /* 5486 * SMAP:kernel-mode data accesses from user-mode 5487 * mappings should fault. A fault is considered 5488 * as a SMAP violation if all of the following 5489 * conditions are true: 5490 * - X86_CR4_SMAP is set in CR4 5491 * - A user page is accessed 5492 * - The access is not a fetch 5493 * - The access is supervisor mode 5494 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5495 * 5496 * Here, we cover the first four conditions. 5497 * The fifth is computed dynamically in permission_fault(); 5498 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5499 * *not* subject to SMAP restrictions. 5500 */ 5501 if (cr4_smap) 5502 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5503 } 5504 5505 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5506 } 5507 } 5508 5509 /* 5510 * PKU is an additional mechanism by which the paging controls access to 5511 * user-mode addresses based on the value in the PKRU register. Protection 5512 * key violations are reported through a bit in the page fault error code. 5513 * Unlike other bits of the error code, the PK bit is not known at the 5514 * call site of e.g. gva_to_gpa; it must be computed directly in 5515 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5516 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5517 * 5518 * In particular the following conditions come from the error code, the 5519 * page tables and the machine state: 5520 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5521 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5522 * - PK is always zero if U=0 in the page tables 5523 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5524 * 5525 * The PKRU bitmask caches the result of these four conditions. The error 5526 * code (minus the P bit) and the page table's U bit form an index into the 5527 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5528 * with the two bits of the PKRU register corresponding to the protection key. 5529 * For the first three conditions above the bits will be 00, thus masking 5530 * away both AD and WD. For all reads or if the last condition holds, WD 5531 * only will be masked away. 5532 */ 5533 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5534 { 5535 unsigned bit; 5536 bool wp; 5537 5538 mmu->pkru_mask = 0; 5539 5540 if (!is_cr4_pke(mmu)) 5541 return; 5542 5543 wp = is_cr0_wp(mmu); 5544 5545 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5546 unsigned pfec, pkey_bits; 5547 bool check_pkey, check_write, ff, uf, wf, pte_user; 5548 5549 pfec = bit << 1; 5550 ff = pfec & PFERR_FETCH_MASK; 5551 uf = pfec & PFERR_USER_MASK; 5552 wf = pfec & PFERR_WRITE_MASK; 5553 5554 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5555 pte_user = pfec & PFERR_RSVD_MASK; 5556 5557 /* 5558 * Only need to check the access which is not an 5559 * instruction fetch and is to a user page. 5560 */ 5561 check_pkey = (!ff && pte_user); 5562 /* 5563 * write access is controlled by PKRU if it is a 5564 * user access or CR0.WP = 1. 5565 */ 5566 check_write = check_pkey && wf && (uf || wp); 5567 5568 /* PKRU.AD stops both read and write access. */ 5569 pkey_bits = !!check_pkey; 5570 /* PKRU.WD stops write access. */ 5571 pkey_bits |= (!!check_write) << 1; 5572 5573 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5574 } 5575 } 5576 5577 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5578 struct kvm_mmu *mmu) 5579 { 5580 if (!is_cr0_pg(mmu)) 5581 return; 5582 5583 reset_guest_rsvds_bits_mask(vcpu, mmu); 5584 update_permission_bitmask(mmu, false); 5585 update_pkru_bitmask(mmu); 5586 } 5587 5588 static void paging64_init_context(struct kvm_mmu *context) 5589 { 5590 context->page_fault = paging64_page_fault; 5591 context->gva_to_gpa = paging64_gva_to_gpa; 5592 context->sync_spte = paging64_sync_spte; 5593 } 5594 5595 static void paging32_init_context(struct kvm_mmu *context) 5596 { 5597 context->page_fault = paging32_page_fault; 5598 context->gva_to_gpa = paging32_gva_to_gpa; 5599 context->sync_spte = paging32_sync_spte; 5600 } 5601 5602 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5603 const struct kvm_mmu_role_regs *regs) 5604 { 5605 union kvm_cpu_role role = {0}; 5606 5607 role.base.access = ACC_ALL; 5608 role.base.smm = is_smm(vcpu); 5609 role.base.guest_mode = is_guest_mode(vcpu); 5610 role.ext.valid = 1; 5611 5612 if (!____is_cr0_pg(regs)) { 5613 role.base.direct = 1; 5614 return role; 5615 } 5616 5617 role.base.efer_nx = ____is_efer_nx(regs); 5618 role.base.cr0_wp = ____is_cr0_wp(regs); 5619 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5620 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5621 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5622 5623 if (____is_efer_lma(regs)) 5624 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5625 : PT64_ROOT_4LEVEL; 5626 else if (____is_cr4_pae(regs)) 5627 role.base.level = PT32E_ROOT_LEVEL; 5628 else 5629 role.base.level = PT32_ROOT_LEVEL; 5630 5631 role.ext.cr4_smep = ____is_cr4_smep(regs); 5632 role.ext.cr4_smap = ____is_cr4_smap(regs); 5633 role.ext.cr4_pse = ____is_cr4_pse(regs); 5634 5635 /* PKEY and LA57 are active iff long mode is active. */ 5636 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5637 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5638 role.ext.efer_lma = ____is_efer_lma(regs); 5639 return role; 5640 } 5641 5642 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5643 struct kvm_mmu *mmu) 5644 { 5645 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5646 5647 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5648 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5649 5650 if (is_cr0_wp(mmu) == cr0_wp) 5651 return; 5652 5653 mmu->cpu_role.base.cr0_wp = cr0_wp; 5654 reset_guest_paging_metadata(vcpu, mmu); 5655 } 5656 5657 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5658 { 5659 int maxpa; 5660 5661 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) 5662 maxpa = cpuid_query_maxguestphyaddr(vcpu); 5663 else 5664 maxpa = cpuid_maxphyaddr(vcpu); 5665 5666 /* tdp_root_level is architecture forced level, use it if nonzero */ 5667 if (tdp_root_level) 5668 return tdp_root_level; 5669 5670 /* Use 5-level TDP if and only if it's useful/necessary. */ 5671 if (max_tdp_level == 5 && maxpa <= 48) 5672 return 4; 5673 5674 return max_tdp_level; 5675 } 5676 5677 u8 kvm_mmu_get_max_tdp_level(void) 5678 { 5679 return tdp_root_level ? tdp_root_level : max_tdp_level; 5680 } 5681 5682 static union kvm_mmu_page_role 5683 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5684 union kvm_cpu_role cpu_role) 5685 { 5686 union kvm_mmu_page_role role = {0}; 5687 5688 role.access = ACC_ALL; 5689 role.cr0_wp = true; 5690 role.efer_nx = true; 5691 role.smm = cpu_role.base.smm; 5692 role.guest_mode = cpu_role.base.guest_mode; 5693 role.ad_disabled = !kvm_ad_enabled; 5694 role.level = kvm_mmu_get_tdp_level(vcpu); 5695 role.direct = true; 5696 role.has_4_byte_gpte = false; 5697 5698 return role; 5699 } 5700 5701 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5702 union kvm_cpu_role cpu_role) 5703 { 5704 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5705 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5706 5707 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5708 root_role.word == context->root_role.word) 5709 return; 5710 5711 context->cpu_role.as_u64 = cpu_role.as_u64; 5712 context->root_role.word = root_role.word; 5713 context->page_fault = kvm_tdp_page_fault; 5714 context->sync_spte = NULL; 5715 context->get_guest_pgd = get_guest_cr3; 5716 context->get_pdptr = kvm_pdptr_read; 5717 context->inject_page_fault = kvm_inject_page_fault; 5718 5719 if (!is_cr0_pg(context)) 5720 context->gva_to_gpa = nonpaging_gva_to_gpa; 5721 else if (is_cr4_pae(context)) 5722 context->gva_to_gpa = paging64_gva_to_gpa; 5723 else 5724 context->gva_to_gpa = paging32_gva_to_gpa; 5725 5726 reset_guest_paging_metadata(vcpu, context); 5727 reset_tdp_shadow_zero_bits_mask(context); 5728 } 5729 5730 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5731 union kvm_cpu_role cpu_role, 5732 union kvm_mmu_page_role root_role) 5733 { 5734 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5735 root_role.word == context->root_role.word) 5736 return; 5737 5738 context->cpu_role.as_u64 = cpu_role.as_u64; 5739 context->root_role.word = root_role.word; 5740 5741 if (!is_cr0_pg(context)) 5742 nonpaging_init_context(context); 5743 else if (is_cr4_pae(context)) 5744 paging64_init_context(context); 5745 else 5746 paging32_init_context(context); 5747 5748 reset_guest_paging_metadata(vcpu, context); 5749 reset_shadow_zero_bits_mask(vcpu, context); 5750 } 5751 5752 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5753 union kvm_cpu_role cpu_role) 5754 { 5755 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5756 union kvm_mmu_page_role root_role; 5757 5758 root_role = cpu_role.base; 5759 5760 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5761 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5762 5763 /* 5764 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5765 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5766 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5767 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5768 * The iTLB multi-hit workaround can be toggled at any time, so assume 5769 * NX can be used by any non-nested shadow MMU to avoid having to reset 5770 * MMU contexts. 5771 */ 5772 root_role.efer_nx = true; 5773 5774 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5775 } 5776 5777 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5778 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5779 { 5780 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5781 struct kvm_mmu_role_regs regs = { 5782 .cr0 = cr0, 5783 .cr4 = cr4 & ~X86_CR4_PKE, 5784 .efer = efer, 5785 }; 5786 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5787 union kvm_mmu_page_role root_role; 5788 5789 /* NPT requires CR0.PG=1. */ 5790 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5791 5792 root_role = cpu_role.base; 5793 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5794 if (root_role.level == PT64_ROOT_5LEVEL && 5795 cpu_role.base.level == PT64_ROOT_4LEVEL) 5796 root_role.passthrough = 1; 5797 5798 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5799 kvm_mmu_new_pgd(vcpu, nested_cr3); 5800 } 5801 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5802 5803 static union kvm_cpu_role 5804 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5805 bool execonly, u8 level) 5806 { 5807 union kvm_cpu_role role = {0}; 5808 5809 /* 5810 * KVM does not support SMM transfer monitors, and consequently does not 5811 * support the "entry to SMM" control either. role.base.smm is always 0. 5812 */ 5813 WARN_ON_ONCE(is_smm(vcpu)); 5814 role.base.level = level; 5815 role.base.has_4_byte_gpte = false; 5816 role.base.direct = false; 5817 role.base.ad_disabled = !accessed_dirty; 5818 role.base.guest_mode = true; 5819 role.base.access = ACC_ALL; 5820 5821 role.ext.word = 0; 5822 role.ext.execonly = execonly; 5823 role.ext.valid = 1; 5824 5825 return role; 5826 } 5827 5828 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5829 int huge_page_level, bool accessed_dirty, 5830 gpa_t new_eptp) 5831 { 5832 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5833 u8 level = vmx_eptp_page_walk_level(new_eptp); 5834 union kvm_cpu_role new_mode = 5835 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5836 execonly, level); 5837 5838 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5839 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5840 context->cpu_role.as_u64 = new_mode.as_u64; 5841 context->root_role.word = new_mode.base.word; 5842 5843 context->page_fault = ept_page_fault; 5844 context->gva_to_gpa = ept_gva_to_gpa; 5845 context->sync_spte = ept_sync_spte; 5846 5847 update_permission_bitmask(context, true); 5848 context->pkru_mask = 0; 5849 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5850 reset_ept_shadow_zero_bits_mask(context, execonly); 5851 } 5852 5853 kvm_mmu_new_pgd(vcpu, new_eptp); 5854 } 5855 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5856 5857 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5858 union kvm_cpu_role cpu_role) 5859 { 5860 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5861 5862 kvm_init_shadow_mmu(vcpu, cpu_role); 5863 5864 context->get_guest_pgd = get_guest_cr3; 5865 context->get_pdptr = kvm_pdptr_read; 5866 context->inject_page_fault = kvm_inject_page_fault; 5867 } 5868 5869 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5870 union kvm_cpu_role new_mode) 5871 { 5872 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5873 5874 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5875 return; 5876 5877 g_context->cpu_role.as_u64 = new_mode.as_u64; 5878 g_context->get_guest_pgd = get_guest_cr3; 5879 g_context->get_pdptr = kvm_pdptr_read; 5880 g_context->inject_page_fault = kvm_inject_page_fault; 5881 5882 /* 5883 * L2 page tables are never shadowed, so there is no need to sync 5884 * SPTEs. 5885 */ 5886 g_context->sync_spte = NULL; 5887 5888 /* 5889 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5890 * L1's nested page tables (e.g. EPT12). The nested translation 5891 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5892 * L2's page tables as the first level of translation and L1's 5893 * nested page tables as the second level of translation. Basically 5894 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5895 */ 5896 if (!is_paging(vcpu)) 5897 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5898 else if (is_long_mode(vcpu)) 5899 g_context->gva_to_gpa = paging64_gva_to_gpa; 5900 else if (is_pae(vcpu)) 5901 g_context->gva_to_gpa = paging64_gva_to_gpa; 5902 else 5903 g_context->gva_to_gpa = paging32_gva_to_gpa; 5904 5905 reset_guest_paging_metadata(vcpu, g_context); 5906 } 5907 5908 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5909 { 5910 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5911 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5912 5913 if (mmu_is_nested(vcpu)) 5914 init_kvm_nested_mmu(vcpu, cpu_role); 5915 else if (tdp_enabled) 5916 init_kvm_tdp_mmu(vcpu, cpu_role); 5917 else 5918 init_kvm_softmmu(vcpu, cpu_role); 5919 } 5920 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5921 5922 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5923 { 5924 /* 5925 * Invalidate all MMU roles to force them to reinitialize as CPUID 5926 * information is factored into reserved bit calculations. 5927 * 5928 * Correctly handling multiple vCPU models with respect to paging and 5929 * physical address properties) in a single VM would require tracking 5930 * all relevant CPUID information in kvm_mmu_page_role. That is very 5931 * undesirable as it would increase the memory requirements for 5932 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5933 * that problem is swept under the rug; KVM's CPUID API is horrific and 5934 * it's all but impossible to solve it without introducing a new API. 5935 */ 5936 vcpu->arch.root_mmu.root_role.invalid = 1; 5937 vcpu->arch.guest_mmu.root_role.invalid = 1; 5938 vcpu->arch.nested_mmu.root_role.invalid = 1; 5939 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5940 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5941 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5942 kvm_mmu_reset_context(vcpu); 5943 5944 /* 5945 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5946 * kvm_arch_vcpu_ioctl(). 5947 */ 5948 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5949 } 5950 5951 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5952 { 5953 kvm_mmu_unload(vcpu); 5954 kvm_init_mmu(vcpu); 5955 } 5956 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5957 5958 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5959 { 5960 int r; 5961 5962 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5963 if (r) 5964 goto out; 5965 r = mmu_alloc_special_roots(vcpu); 5966 if (r) 5967 goto out; 5968 if (vcpu->arch.mmu->root_role.direct) 5969 r = mmu_alloc_direct_roots(vcpu); 5970 else 5971 r = mmu_alloc_shadow_roots(vcpu); 5972 if (r) 5973 goto out; 5974 5975 kvm_mmu_sync_roots(vcpu); 5976 5977 kvm_mmu_load_pgd(vcpu); 5978 5979 /* 5980 * Flush any TLB entries for the new root, the provenance of the root 5981 * is unknown. Even if KVM ensures there are no stale TLB entries 5982 * for a freed root, in theory another hypervisor could have left 5983 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5984 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5985 */ 5986 kvm_x86_call(flush_tlb_current)(vcpu); 5987 out: 5988 return r; 5989 } 5990 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5991 5992 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5993 { 5994 struct kvm *kvm = vcpu->kvm; 5995 5996 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5997 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5998 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5999 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 6000 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 6001 } 6002 6003 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 6004 { 6005 struct kvm_mmu_page *sp; 6006 6007 if (!VALID_PAGE(root_hpa)) 6008 return false; 6009 6010 /* 6011 * When freeing obsolete roots, treat roots as obsolete if they don't 6012 * have an associated shadow page, as it's impossible to determine if 6013 * such roots are fresh or stale. This does mean KVM will get false 6014 * positives and free roots that don't strictly need to be freed, but 6015 * such false positives are relatively rare: 6016 * 6017 * (a) only PAE paging and nested NPT have roots without shadow pages 6018 * (or any shadow paging flavor with a dummy root, see note below) 6019 * (b) remote reloads due to a memslot update obsoletes _all_ roots 6020 * (c) KVM doesn't track previous roots for PAE paging, and the guest 6021 * is unlikely to zap an in-use PGD. 6022 * 6023 * Note! Dummy roots are unique in that they are obsoleted by memslot 6024 * _creation_! See also FNAME(fetch). 6025 */ 6026 sp = root_to_sp(root_hpa); 6027 return !sp || is_obsolete_sp(kvm, sp); 6028 } 6029 6030 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 6031 { 6032 unsigned long roots_to_free = 0; 6033 int i; 6034 6035 if (is_obsolete_root(kvm, mmu->root.hpa)) 6036 roots_to_free |= KVM_MMU_ROOT_CURRENT; 6037 6038 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6039 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 6040 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 6041 } 6042 6043 if (roots_to_free) 6044 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 6045 } 6046 6047 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 6048 { 6049 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 6050 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 6051 } 6052 EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots); 6053 6054 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 6055 int *bytes) 6056 { 6057 u64 gentry = 0; 6058 int r; 6059 6060 /* 6061 * Assume that the pte write on a page table of the same type 6062 * as the current vcpu paging mode since we update the sptes only 6063 * when they have the same mode. 6064 */ 6065 if (is_pae(vcpu) && *bytes == 4) { 6066 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 6067 *gpa &= ~(gpa_t)7; 6068 *bytes = 8; 6069 } 6070 6071 if (*bytes == 4 || *bytes == 8) { 6072 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 6073 if (r) 6074 gentry = 0; 6075 } 6076 6077 return gentry; 6078 } 6079 6080 /* 6081 * If we're seeing too many writes to a page, it may no longer be a page table, 6082 * or we may be forking, in which case it is better to unmap the page. 6083 */ 6084 static bool detect_write_flooding(struct kvm_mmu_page *sp) 6085 { 6086 /* 6087 * Skip write-flooding detected for the sp whose level is 1, because 6088 * it can become unsync, then the guest page is not write-protected. 6089 */ 6090 if (sp->role.level == PG_LEVEL_4K) 6091 return false; 6092 6093 atomic_inc(&sp->write_flooding_count); 6094 return atomic_read(&sp->write_flooding_count) >= 3; 6095 } 6096 6097 /* 6098 * Misaligned accesses are too much trouble to fix up; also, they usually 6099 * indicate a page is not used as a page table. 6100 */ 6101 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 6102 int bytes) 6103 { 6104 unsigned offset, pte_size, misaligned; 6105 6106 offset = offset_in_page(gpa); 6107 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 6108 6109 /* 6110 * Sometimes, the OS only writes the last one bytes to update status 6111 * bits, for example, in linux, andb instruction is used in clear_bit(). 6112 */ 6113 if (!(offset & (pte_size - 1)) && bytes == 1) 6114 return false; 6115 6116 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 6117 misaligned |= bytes < 4; 6118 6119 return misaligned; 6120 } 6121 6122 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 6123 { 6124 unsigned page_offset, quadrant; 6125 u64 *spte; 6126 int level; 6127 6128 page_offset = offset_in_page(gpa); 6129 level = sp->role.level; 6130 *nspte = 1; 6131 if (sp->role.has_4_byte_gpte) { 6132 page_offset <<= 1; /* 32->64 */ 6133 /* 6134 * A 32-bit pde maps 4MB while the shadow pdes map 6135 * only 2MB. So we need to double the offset again 6136 * and zap two pdes instead of one. 6137 */ 6138 if (level == PT32_ROOT_LEVEL) { 6139 page_offset &= ~7; /* kill rounding error */ 6140 page_offset <<= 1; 6141 *nspte = 2; 6142 } 6143 quadrant = page_offset >> PAGE_SHIFT; 6144 page_offset &= ~PAGE_MASK; 6145 if (quadrant != sp->role.quadrant) 6146 return NULL; 6147 } 6148 6149 spte = &sp->spt[page_offset / sizeof(*spte)]; 6150 return spte; 6151 } 6152 6153 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 6154 int bytes) 6155 { 6156 gfn_t gfn = gpa >> PAGE_SHIFT; 6157 struct kvm_mmu_page *sp; 6158 LIST_HEAD(invalid_list); 6159 u64 entry, gentry, *spte; 6160 int npte; 6161 bool flush = false; 6162 6163 /* 6164 * When emulating guest writes, ensure the written value is visible to 6165 * any task that is handling page faults before checking whether or not 6166 * KVM is shadowing a guest PTE. This ensures either KVM will create 6167 * the correct SPTE in the page fault handler, or this task will see 6168 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 6169 * account_shadowed(). 6170 */ 6171 smp_mb(); 6172 if (!vcpu->kvm->arch.indirect_shadow_pages) 6173 return; 6174 6175 write_lock(&vcpu->kvm->mmu_lock); 6176 6177 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 6178 6179 ++vcpu->kvm->stat.mmu_pte_write; 6180 6181 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 6182 if (detect_write_misaligned(sp, gpa, bytes) || 6183 detect_write_flooding(sp)) { 6184 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 6185 ++vcpu->kvm->stat.mmu_flooded; 6186 continue; 6187 } 6188 6189 spte = get_written_sptes(sp, gpa, &npte); 6190 if (!spte) 6191 continue; 6192 6193 while (npte--) { 6194 entry = *spte; 6195 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 6196 if (gentry && sp->role.level != PG_LEVEL_4K) 6197 ++vcpu->kvm->stat.mmu_pde_zapped; 6198 if (is_shadow_present_pte(entry)) 6199 flush = true; 6200 ++spte; 6201 } 6202 } 6203 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6204 write_unlock(&vcpu->kvm->mmu_lock); 6205 } 6206 6207 static bool is_write_to_guest_page_table(u64 error_code) 6208 { 6209 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6210 6211 return (error_code & mask) == mask; 6212 } 6213 6214 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6215 u64 error_code, int *emulation_type) 6216 { 6217 bool direct = vcpu->arch.mmu->root_role.direct; 6218 6219 /* 6220 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6221 * RIP with the same address that was previously unprotected, as doing 6222 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6223 * a non-page-table modifying instruction on the PDE that points to the 6224 * instruction, then unprotecting the gfn will unmap the instruction's 6225 * code, i.e. make it impossible for the instruction to ever complete. 6226 */ 6227 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6228 vcpu->arch.last_retry_addr == cr2_or_gpa) 6229 return RET_PF_EMULATE; 6230 6231 /* 6232 * Reset the unprotect+retry values that guard against infinite loops. 6233 * The values will be refreshed if KVM explicitly unprotects a gfn and 6234 * retries, in all other cases it's safe to retry in the future even if 6235 * the next page fault happens on the same RIP+address. 6236 */ 6237 vcpu->arch.last_retry_eip = 0; 6238 vcpu->arch.last_retry_addr = 0; 6239 6240 /* 6241 * It should be impossible to reach this point with an MMIO cache hit, 6242 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6243 * writable memslot, and creating a memslot should invalidate the MMIO 6244 * cache by way of changing the memslot generation. WARN and disallow 6245 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6246 * and could put the vCPU into an infinite loop because the processor 6247 * will keep faulting on the non-existent MMIO address. 6248 */ 6249 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6250 return RET_PF_EMULATE; 6251 6252 /* 6253 * Before emulating the instruction, check to see if the access was due 6254 * to a read-only violation while the CPU was walking non-nested NPT 6255 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6256 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6257 * having nCR3 share lower level page tables with hCR3, then when KVM 6258 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6259 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6260 * shadowing. 6261 * 6262 * Because the CPU (by default) walks NPT page tables using a write 6263 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6264 * trigger write faults for the above case even when L1 isn't modifying 6265 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6266 * to emulate) an excessive number of L1 instructions; because L1's MMU 6267 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6268 * and thus no need to emulate in order to guarantee forward progress. 6269 * 6270 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6271 * proceed without triggering emulation. If one or more shadow pages 6272 * was zapped, skip emulation and resume L1 to let it natively execute 6273 * the instruction. If no shadow pages were zapped, then the write- 6274 * fault is due to something else entirely, i.e. KVM needs to emulate, 6275 * as resuming the guest will put it into an infinite loop. 6276 * 6277 * Note, this code also applies to Intel CPUs, even though it is *very* 6278 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6279 * format) with L2's page tables (EPT format). 6280 * 6281 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6282 * unprotect the gfn and retry if an event is awaiting reinjection. If 6283 * KVM emulates multiple instructions before completing event injection, 6284 * the event could be delayed beyond what is architecturally allowed, 6285 * e.g. KVM could inject an IRQ after the TPR has been raised. 6286 */ 6287 if (((direct && is_write_to_guest_page_table(error_code)) || 6288 (!direct && kvm_event_needs_reinjection(vcpu))) && 6289 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6290 return RET_PF_RETRY; 6291 6292 /* 6293 * The gfn is write-protected, but if KVM detects its emulating an 6294 * instruction that is unlikely to be used to modify page tables, or if 6295 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6296 * re-execute the instruction that caused the page fault. Do not allow 6297 * retrying an instruction from a nested guest as KVM is only explicitly 6298 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6299 * going to magically fix whatever issue caused L2 to fail. 6300 */ 6301 if (!is_guest_mode(vcpu)) 6302 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6303 6304 return RET_PF_EMULATE; 6305 } 6306 6307 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6308 void *insn, int insn_len) 6309 { 6310 int r, emulation_type = EMULTYPE_PF; 6311 bool direct = vcpu->arch.mmu->root_role.direct; 6312 6313 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6314 return RET_PF_RETRY; 6315 6316 /* 6317 * Except for reserved faults (emulated MMIO is shared-only), set the 6318 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6319 * current attributes, which are the source of truth for such VMs. Note, 6320 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6321 * currently supported nested virtualization (among many other things) 6322 * for software-protected VMs. 6323 */ 6324 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6325 !(error_code & PFERR_RSVD_MASK) && 6326 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6327 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6328 error_code |= PFERR_PRIVATE_ACCESS; 6329 6330 r = RET_PF_INVALID; 6331 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6332 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6333 return -EFAULT; 6334 6335 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6336 if (r == RET_PF_EMULATE) 6337 goto emulate; 6338 } 6339 6340 if (r == RET_PF_INVALID) { 6341 vcpu->stat.pf_taken++; 6342 6343 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6344 &emulation_type, NULL); 6345 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6346 return -EIO; 6347 } 6348 6349 if (r < 0) 6350 return r; 6351 6352 if (r == RET_PF_WRITE_PROTECTED) 6353 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6354 &emulation_type); 6355 6356 if (r == RET_PF_FIXED) 6357 vcpu->stat.pf_fixed++; 6358 else if (r == RET_PF_EMULATE) 6359 vcpu->stat.pf_emulate++; 6360 else if (r == RET_PF_SPURIOUS) 6361 vcpu->stat.pf_spurious++; 6362 6363 /* 6364 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6365 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6366 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6367 * indicate continuing the page fault handling until to the final 6368 * page table mapping phase. 6369 */ 6370 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6371 if (r != RET_PF_EMULATE) 6372 return r; 6373 6374 emulate: 6375 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6376 insn_len); 6377 } 6378 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6379 6380 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6381 { 6382 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6383 int root_level, leaf, level; 6384 6385 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6386 if (unlikely(leaf < 0)) 6387 return; 6388 6389 pr_err("%s %llx", msg, gpa); 6390 for (level = root_level; level >= leaf; level--) 6391 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6392 pr_cont("\n"); 6393 } 6394 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6395 6396 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6397 u64 addr, hpa_t root_hpa) 6398 { 6399 struct kvm_shadow_walk_iterator iterator; 6400 6401 vcpu_clear_mmio_info(vcpu, addr); 6402 6403 /* 6404 * Walking and synchronizing SPTEs both assume they are operating in 6405 * the context of the current MMU, and would need to be reworked if 6406 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6407 */ 6408 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6409 return; 6410 6411 if (!VALID_PAGE(root_hpa)) 6412 return; 6413 6414 write_lock(&vcpu->kvm->mmu_lock); 6415 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6416 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6417 6418 if (sp->unsync) { 6419 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6420 6421 if (ret < 0) 6422 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6423 if (ret) 6424 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6425 } 6426 6427 if (!sp->unsync_children) 6428 break; 6429 } 6430 write_unlock(&vcpu->kvm->mmu_lock); 6431 } 6432 6433 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6434 u64 addr, unsigned long roots) 6435 { 6436 int i; 6437 6438 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6439 6440 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6441 if (mmu != &vcpu->arch.guest_mmu) { 6442 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6443 if (is_noncanonical_invlpg_address(addr, vcpu)) 6444 return; 6445 6446 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6447 } 6448 6449 if (!mmu->sync_spte) 6450 return; 6451 6452 if (roots & KVM_MMU_ROOT_CURRENT) 6453 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6454 6455 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6456 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6457 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6458 } 6459 } 6460 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6461 6462 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6463 { 6464 /* 6465 * INVLPG is required to invalidate any global mappings for the VA, 6466 * irrespective of PCID. Blindly sync all roots as it would take 6467 * roughly the same amount of work/time to determine whether any of the 6468 * previous roots have a global mapping. 6469 * 6470 * Mappings not reachable via the current or previous cached roots will 6471 * be synced when switching to that new cr3, so nothing needs to be 6472 * done here for them. 6473 */ 6474 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6475 ++vcpu->stat.invlpg; 6476 } 6477 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6478 6479 6480 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6481 { 6482 struct kvm_mmu *mmu = vcpu->arch.mmu; 6483 unsigned long roots = 0; 6484 uint i; 6485 6486 if (pcid == kvm_get_active_pcid(vcpu)) 6487 roots |= KVM_MMU_ROOT_CURRENT; 6488 6489 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6490 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6491 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6492 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6493 } 6494 6495 if (roots) 6496 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6497 ++vcpu->stat.invlpg; 6498 6499 /* 6500 * Mappings not reachable via the current cr3 or the prev_roots will be 6501 * synced when switching to that cr3, so nothing needs to be done here 6502 * for them. 6503 */ 6504 } 6505 6506 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6507 int tdp_max_root_level, int tdp_huge_page_level) 6508 { 6509 tdp_enabled = enable_tdp; 6510 tdp_root_level = tdp_forced_root_level; 6511 max_tdp_level = tdp_max_root_level; 6512 6513 #ifdef CONFIG_X86_64 6514 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6515 #endif 6516 /* 6517 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6518 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6519 * the kernel is not. But, KVM never creates a page size greater than 6520 * what is used by the kernel for any given HVA, i.e. the kernel's 6521 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6522 */ 6523 if (tdp_enabled) 6524 max_huge_page_level = tdp_huge_page_level; 6525 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6526 max_huge_page_level = PG_LEVEL_1G; 6527 else 6528 max_huge_page_level = PG_LEVEL_2M; 6529 } 6530 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6531 6532 static void free_mmu_pages(struct kvm_mmu *mmu) 6533 { 6534 if (!tdp_enabled && mmu->pae_root) 6535 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6536 free_page((unsigned long)mmu->pae_root); 6537 free_page((unsigned long)mmu->pml4_root); 6538 free_page((unsigned long)mmu->pml5_root); 6539 } 6540 6541 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6542 { 6543 struct page *page; 6544 int i; 6545 6546 mmu->root.hpa = INVALID_PAGE; 6547 mmu->root.pgd = 0; 6548 mmu->mirror_root_hpa = INVALID_PAGE; 6549 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6550 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6551 6552 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6553 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6554 return 0; 6555 6556 /* 6557 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6558 * while the PDP table is a per-vCPU construct that's allocated at MMU 6559 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6560 * x86_64. Therefore we need to allocate the PDP table in the first 6561 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6562 * generally doesn't use PAE paging and can skip allocating the PDP 6563 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6564 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6565 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6566 */ 6567 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6568 return 0; 6569 6570 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6571 if (!page) 6572 return -ENOMEM; 6573 6574 mmu->pae_root = page_address(page); 6575 6576 /* 6577 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6578 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6579 * that KVM's writes and the CPU's reads get along. Note, this is 6580 * only necessary when using shadow paging, as 64-bit NPT can get at 6581 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6582 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6583 */ 6584 if (!tdp_enabled) 6585 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6586 else 6587 WARN_ON_ONCE(shadow_me_value); 6588 6589 for (i = 0; i < 4; ++i) 6590 mmu->pae_root[i] = INVALID_PAE_ROOT; 6591 6592 return 0; 6593 } 6594 6595 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6596 { 6597 int ret; 6598 6599 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6600 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6601 6602 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6603 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6604 6605 vcpu->arch.mmu_shadow_page_cache.init_value = 6606 SHADOW_NONPRESENT_VALUE; 6607 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6608 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6609 6610 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6611 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6612 6613 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6614 if (ret) 6615 return ret; 6616 6617 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6618 if (ret) 6619 goto fail_allocate_root; 6620 6621 return ret; 6622 fail_allocate_root: 6623 free_mmu_pages(&vcpu->arch.guest_mmu); 6624 return ret; 6625 } 6626 6627 #define BATCH_ZAP_PAGES 10 6628 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6629 { 6630 struct kvm_mmu_page *sp, *node; 6631 int nr_zapped, batch = 0; 6632 LIST_HEAD(invalid_list); 6633 bool unstable; 6634 6635 lockdep_assert_held(&kvm->slots_lock); 6636 6637 restart: 6638 list_for_each_entry_safe_reverse(sp, node, 6639 &kvm->arch.active_mmu_pages, link) { 6640 /* 6641 * No obsolete valid page exists before a newly created page 6642 * since active_mmu_pages is a FIFO list. 6643 */ 6644 if (!is_obsolete_sp(kvm, sp)) 6645 break; 6646 6647 /* 6648 * Invalid pages should never land back on the list of active 6649 * pages. Skip the bogus page, otherwise we'll get stuck in an 6650 * infinite loop if the page gets put back on the list (again). 6651 */ 6652 if (WARN_ON_ONCE(sp->role.invalid)) 6653 continue; 6654 6655 /* 6656 * No need to flush the TLB since we're only zapping shadow 6657 * pages with an obsolete generation number and all vCPUS have 6658 * loaded a new root, i.e. the shadow pages being zapped cannot 6659 * be in active use by the guest. 6660 */ 6661 if (batch >= BATCH_ZAP_PAGES && 6662 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6663 batch = 0; 6664 goto restart; 6665 } 6666 6667 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6668 &invalid_list, &nr_zapped); 6669 batch += nr_zapped; 6670 6671 if (unstable) 6672 goto restart; 6673 } 6674 6675 /* 6676 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6677 * to ensure KVM is not in the middle of a lockless shadow page table 6678 * walk, which may reference the pages. The remote TLB flush itself is 6679 * not required and is simply a convenient way to kick vCPUs as needed. 6680 * KVM performs a local TLB flush when allocating a new root (see 6681 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6682 * running with an obsolete MMU. 6683 */ 6684 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6685 } 6686 6687 /* 6688 * Fast invalidate all shadow pages and use lock-break technique 6689 * to zap obsolete pages. 6690 * 6691 * It's required when memslot is being deleted or VM is being 6692 * destroyed, in these cases, we should ensure that KVM MMU does 6693 * not use any resource of the being-deleted slot or all slots 6694 * after calling the function. 6695 */ 6696 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6697 { 6698 lockdep_assert_held(&kvm->slots_lock); 6699 6700 write_lock(&kvm->mmu_lock); 6701 trace_kvm_mmu_zap_all_fast(kvm); 6702 6703 /* 6704 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6705 * held for the entire duration of zapping obsolete pages, it's 6706 * impossible for there to be multiple invalid generations associated 6707 * with *valid* shadow pages at any given time, i.e. there is exactly 6708 * one valid generation and (at most) one invalid generation. 6709 */ 6710 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6711 6712 /* 6713 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6714 * invalidating TDP MMU roots must be done while holding mmu_lock for 6715 * write and in the same critical section as making the reload request, 6716 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6717 */ 6718 if (tdp_mmu_enabled) { 6719 /* 6720 * External page tables don't support fast zapping, therefore 6721 * their mirrors must be invalidated separately by the caller. 6722 */ 6723 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6724 } 6725 6726 /* 6727 * Notify all vcpus to reload its shadow page table and flush TLB. 6728 * Then all vcpus will switch to new shadow page table with the new 6729 * mmu_valid_gen. 6730 * 6731 * Note: we need to do this under the protection of mmu_lock, 6732 * otherwise, vcpu would purge shadow page but miss tlb flush. 6733 */ 6734 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6735 6736 kvm_zap_obsolete_pages(kvm); 6737 6738 write_unlock(&kvm->mmu_lock); 6739 6740 /* 6741 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6742 * returning to the caller, e.g. if the zap is in response to a memslot 6743 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6744 * associated with the deleted memslot once the update completes, and 6745 * Deferring the zap until the final reference to the root is put would 6746 * lead to use-after-free. 6747 */ 6748 if (tdp_mmu_enabled) 6749 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6750 } 6751 6752 int kvm_mmu_init_vm(struct kvm *kvm) 6753 { 6754 int r; 6755 6756 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6757 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6758 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6759 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6760 6761 if (tdp_mmu_enabled) { 6762 kvm_mmu_init_tdp_mmu(kvm); 6763 } else { 6764 r = kvm_mmu_alloc_page_hash(kvm); 6765 if (r) 6766 return r; 6767 } 6768 6769 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6770 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6771 6772 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6773 6774 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6775 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6776 return 0; 6777 } 6778 6779 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6780 { 6781 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6782 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6783 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6784 } 6785 6786 void kvm_mmu_uninit_vm(struct kvm *kvm) 6787 { 6788 kvfree(kvm->arch.mmu_page_hash); 6789 6790 if (tdp_mmu_enabled) 6791 kvm_mmu_uninit_tdp_mmu(kvm); 6792 6793 mmu_free_vm_memory_caches(kvm); 6794 } 6795 6796 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6797 { 6798 const struct kvm_memory_slot *memslot; 6799 struct kvm_memslots *slots; 6800 struct kvm_memslot_iter iter; 6801 bool flush = false; 6802 gfn_t start, end; 6803 int i; 6804 6805 if (!kvm_memslots_have_rmaps(kvm)) 6806 return flush; 6807 6808 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6809 slots = __kvm_memslots(kvm, i); 6810 6811 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6812 memslot = iter.slot; 6813 start = max(gfn_start, memslot->base_gfn); 6814 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6815 if (WARN_ON_ONCE(start >= end)) 6816 continue; 6817 6818 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6819 end, true, flush); 6820 } 6821 } 6822 6823 return flush; 6824 } 6825 6826 /* 6827 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6828 * (not including it) 6829 */ 6830 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6831 { 6832 bool flush; 6833 6834 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6835 return; 6836 6837 write_lock(&kvm->mmu_lock); 6838 6839 kvm_mmu_invalidate_begin(kvm); 6840 6841 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6842 6843 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6844 6845 if (tdp_mmu_enabled) 6846 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6847 6848 if (flush) 6849 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6850 6851 kvm_mmu_invalidate_end(kvm); 6852 6853 write_unlock(&kvm->mmu_lock); 6854 } 6855 6856 static bool slot_rmap_write_protect(struct kvm *kvm, 6857 struct kvm_rmap_head *rmap_head, 6858 const struct kvm_memory_slot *slot) 6859 { 6860 return rmap_write_protect(rmap_head, false); 6861 } 6862 6863 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6864 const struct kvm_memory_slot *memslot, 6865 int start_level) 6866 { 6867 if (kvm_memslots_have_rmaps(kvm)) { 6868 write_lock(&kvm->mmu_lock); 6869 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6870 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6871 write_unlock(&kvm->mmu_lock); 6872 } 6873 6874 if (tdp_mmu_enabled) { 6875 read_lock(&kvm->mmu_lock); 6876 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6877 read_unlock(&kvm->mmu_lock); 6878 } 6879 } 6880 6881 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6882 { 6883 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6884 } 6885 6886 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6887 { 6888 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6889 return true; 6890 6891 /* 6892 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6893 * to split a single huge page. Calculating how many are actually needed 6894 * is possible but not worth the complexity. 6895 */ 6896 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6897 need_topup(&kvm->arch.split_page_header_cache, 1) || 6898 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6899 } 6900 6901 static int topup_split_caches(struct kvm *kvm) 6902 { 6903 /* 6904 * Allocating rmap list entries when splitting huge pages for nested 6905 * MMUs is uncommon as KVM needs to use a list if and only if there is 6906 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6907 * aliased by multiple L2 gfns and/or from multiple nested roots with 6908 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6909 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6910 * but aliasing rarely occurs post-boot or for many gfns. If there is 6911 * only one rmap entry, rmap->val points directly at that one entry and 6912 * doesn't need to allocate a list. Buffer the cache by the default 6913 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6914 * encounters an aliased gfn or two. 6915 */ 6916 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6917 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6918 int r; 6919 6920 lockdep_assert_held(&kvm->slots_lock); 6921 6922 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6923 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6924 if (r) 6925 return r; 6926 6927 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6928 if (r) 6929 return r; 6930 6931 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6932 } 6933 6934 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6935 { 6936 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6937 struct shadow_page_caches caches = {}; 6938 union kvm_mmu_page_role role; 6939 unsigned int access; 6940 gfn_t gfn; 6941 6942 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6943 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6944 6945 /* 6946 * Note, huge page splitting always uses direct shadow pages, regardless 6947 * of whether the huge page itself is mapped by a direct or indirect 6948 * shadow page, since the huge page region itself is being directly 6949 * mapped with smaller pages. 6950 */ 6951 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6952 6953 /* Direct SPs do not require a shadowed_info_cache. */ 6954 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6955 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6956 6957 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6958 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6959 } 6960 6961 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6962 const struct kvm_memory_slot *slot, 6963 u64 *huge_sptep) 6964 6965 { 6966 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6967 u64 huge_spte = READ_ONCE(*huge_sptep); 6968 struct kvm_mmu_page *sp; 6969 bool flush = false; 6970 u64 *sptep, spte; 6971 gfn_t gfn; 6972 int index; 6973 6974 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6975 6976 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6977 sptep = &sp->spt[index]; 6978 gfn = kvm_mmu_page_get_gfn(sp, index); 6979 6980 /* 6981 * The SP may already have populated SPTEs, e.g. if this huge 6982 * page is aliased by multiple sptes with the same access 6983 * permissions. These entries are guaranteed to map the same 6984 * gfn-to-pfn translation since the SP is direct, so no need to 6985 * modify them. 6986 * 6987 * However, if a given SPTE points to a lower level page table, 6988 * that lower level page table may only be partially populated. 6989 * Installing such SPTEs would effectively unmap a potion of the 6990 * huge page. Unmapping guest memory always requires a TLB flush 6991 * since a subsequent operation on the unmapped regions would 6992 * fail to detect the need to flush. 6993 */ 6994 if (is_shadow_present_pte(*sptep)) { 6995 flush |= !is_last_spte(*sptep, sp->role.level); 6996 continue; 6997 } 6998 6999 spte = make_small_spte(kvm, huge_spte, sp->role, index); 7000 mmu_spte_set(sptep, spte); 7001 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 7002 } 7003 7004 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 7005 } 7006 7007 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 7008 const struct kvm_memory_slot *slot, 7009 u64 *huge_sptep) 7010 { 7011 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 7012 int level, r = 0; 7013 gfn_t gfn; 7014 u64 spte; 7015 7016 /* Grab information for the tracepoint before dropping the MMU lock. */ 7017 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 7018 level = huge_sp->role.level; 7019 spte = *huge_sptep; 7020 7021 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 7022 r = -ENOSPC; 7023 goto out; 7024 } 7025 7026 if (need_topup_split_caches_or_resched(kvm)) { 7027 write_unlock(&kvm->mmu_lock); 7028 cond_resched(); 7029 /* 7030 * If the topup succeeds, return -EAGAIN to indicate that the 7031 * rmap iterator should be restarted because the MMU lock was 7032 * dropped. 7033 */ 7034 r = topup_split_caches(kvm) ?: -EAGAIN; 7035 write_lock(&kvm->mmu_lock); 7036 goto out; 7037 } 7038 7039 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 7040 7041 out: 7042 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 7043 return r; 7044 } 7045 7046 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7047 struct kvm_rmap_head *rmap_head, 7048 const struct kvm_memory_slot *slot) 7049 { 7050 struct rmap_iterator iter; 7051 struct kvm_mmu_page *sp; 7052 u64 *huge_sptep; 7053 int r; 7054 7055 restart: 7056 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 7057 sp = sptep_to_sp(huge_sptep); 7058 7059 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 7060 if (WARN_ON_ONCE(!sp->role.guest_mode)) 7061 continue; 7062 7063 /* The rmaps should never contain non-leaf SPTEs. */ 7064 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 7065 continue; 7066 7067 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 7068 if (WARN_ON_ONCE(sp->unsync)) 7069 continue; 7070 7071 /* Don't bother splitting huge pages on invalid SPs. */ 7072 if (sp->role.invalid) 7073 continue; 7074 7075 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 7076 7077 /* 7078 * The split succeeded or needs to be retried because the MMU 7079 * lock was dropped. Either way, restart the iterator to get it 7080 * back into a consistent state. 7081 */ 7082 if (!r || r == -EAGAIN) 7083 goto restart; 7084 7085 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 7086 break; 7087 } 7088 7089 return false; 7090 } 7091 7092 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7093 const struct kvm_memory_slot *slot, 7094 gfn_t start, gfn_t end, 7095 int target_level) 7096 { 7097 int level; 7098 7099 /* 7100 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 7101 * down to the target level. This ensures pages are recursively split 7102 * all the way to the target level. There's no need to split pages 7103 * already at the target level. 7104 */ 7105 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 7106 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 7107 level, level, start, end - 1, true, true, false); 7108 } 7109 7110 /* Must be called with the mmu_lock held in write-mode. */ 7111 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 7112 const struct kvm_memory_slot *memslot, 7113 u64 start, u64 end, 7114 int target_level) 7115 { 7116 if (!tdp_mmu_enabled) 7117 return; 7118 7119 if (kvm_memslots_have_rmaps(kvm)) 7120 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7121 7122 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 7123 7124 /* 7125 * A TLB flush is unnecessary at this point for the same reasons as in 7126 * kvm_mmu_slot_try_split_huge_pages(). 7127 */ 7128 } 7129 7130 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 7131 const struct kvm_memory_slot *memslot, 7132 int target_level) 7133 { 7134 u64 start = memslot->base_gfn; 7135 u64 end = start + memslot->npages; 7136 7137 if (!tdp_mmu_enabled) 7138 return; 7139 7140 if (kvm_memslots_have_rmaps(kvm)) { 7141 write_lock(&kvm->mmu_lock); 7142 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7143 write_unlock(&kvm->mmu_lock); 7144 } 7145 7146 read_lock(&kvm->mmu_lock); 7147 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 7148 read_unlock(&kvm->mmu_lock); 7149 7150 /* 7151 * No TLB flush is necessary here. KVM will flush TLBs after 7152 * write-protecting and/or clearing dirty on the newly split SPTEs to 7153 * ensure that guest writes are reflected in the dirty log before the 7154 * ioctl to enable dirty logging on this memslot completes. Since the 7155 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 7156 * safe for KVM to decide if a TLB flush is necessary based on the split 7157 * SPTEs. 7158 */ 7159 } 7160 7161 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 7162 struct kvm_rmap_head *rmap_head, 7163 const struct kvm_memory_slot *slot) 7164 { 7165 u64 *sptep; 7166 struct rmap_iterator iter; 7167 int need_tlb_flush = 0; 7168 struct kvm_mmu_page *sp; 7169 7170 restart: 7171 for_each_rmap_spte(rmap_head, &iter, sptep) { 7172 sp = sptep_to_sp(sptep); 7173 7174 /* 7175 * We cannot do huge page mapping for indirect shadow pages, 7176 * which are found on the last rmap (level = 1) when not using 7177 * tdp; such shadow pages are synced with the page table in 7178 * the guest, and the guest page table is using 4K page size 7179 * mapping if the indirect sp has level = 1. 7180 */ 7181 if (sp->role.direct && 7182 sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) { 7183 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 7184 7185 if (kvm_available_flush_remote_tlbs_range()) 7186 kvm_flush_remote_tlbs_sptep(kvm, sptep); 7187 else 7188 need_tlb_flush = 1; 7189 7190 goto restart; 7191 } 7192 } 7193 7194 return need_tlb_flush; 7195 } 7196 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 7197 7198 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 7199 const struct kvm_memory_slot *slot) 7200 { 7201 /* 7202 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 7203 * pages that are already mapped at the maximum hugepage level. 7204 */ 7205 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 7206 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 7207 kvm_flush_remote_tlbs_memslot(kvm, slot); 7208 } 7209 7210 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 7211 const struct kvm_memory_slot *slot) 7212 { 7213 if (kvm_memslots_have_rmaps(kvm)) { 7214 write_lock(&kvm->mmu_lock); 7215 kvm_rmap_zap_collapsible_sptes(kvm, slot); 7216 write_unlock(&kvm->mmu_lock); 7217 } 7218 7219 if (tdp_mmu_enabled) { 7220 read_lock(&kvm->mmu_lock); 7221 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 7222 read_unlock(&kvm->mmu_lock); 7223 } 7224 } 7225 7226 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7227 const struct kvm_memory_slot *memslot) 7228 { 7229 if (kvm_memslots_have_rmaps(kvm)) { 7230 write_lock(&kvm->mmu_lock); 7231 /* 7232 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7233 * support dirty logging at a 4k granularity. 7234 */ 7235 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7236 write_unlock(&kvm->mmu_lock); 7237 } 7238 7239 if (tdp_mmu_enabled) { 7240 read_lock(&kvm->mmu_lock); 7241 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7242 read_unlock(&kvm->mmu_lock); 7243 } 7244 7245 /* 7246 * The caller will flush the TLBs after this function returns. 7247 * 7248 * It's also safe to flush TLBs out of mmu lock here as currently this 7249 * function is only used for dirty logging, in which case flushing TLB 7250 * out of mmu lock also guarantees no dirty pages will be lost in 7251 * dirty_bitmap. 7252 */ 7253 } 7254 7255 static void kvm_mmu_zap_all(struct kvm *kvm) 7256 { 7257 struct kvm_mmu_page *sp, *node; 7258 LIST_HEAD(invalid_list); 7259 int ign; 7260 7261 write_lock(&kvm->mmu_lock); 7262 restart: 7263 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7264 if (WARN_ON_ONCE(sp->role.invalid)) 7265 continue; 7266 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7267 goto restart; 7268 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7269 goto restart; 7270 } 7271 7272 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7273 7274 if (tdp_mmu_enabled) 7275 kvm_tdp_mmu_zap_all(kvm); 7276 7277 write_unlock(&kvm->mmu_lock); 7278 } 7279 7280 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7281 { 7282 kvm_mmu_zap_all(kvm); 7283 } 7284 7285 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7286 struct kvm_memory_slot *slot, 7287 bool flush) 7288 { 7289 LIST_HEAD(invalid_list); 7290 unsigned long i; 7291 7292 if (list_empty(&kvm->arch.active_mmu_pages)) 7293 goto out_flush; 7294 7295 /* 7296 * Since accounting information is stored in struct kvm_arch_memory_slot, 7297 * all MMU pages that are shadowing guest PTEs must be zapped before the 7298 * memslot is deleted, as freeing such pages after the memslot is freed 7299 * will result in use-after-free, e.g. in unaccount_shadowed(). 7300 */ 7301 for (i = 0; i < slot->npages; i++) { 7302 struct kvm_mmu_page *sp; 7303 gfn_t gfn = slot->base_gfn + i; 7304 7305 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7306 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7307 7308 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7309 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7310 flush = false; 7311 cond_resched_rwlock_write(&kvm->mmu_lock); 7312 } 7313 } 7314 7315 out_flush: 7316 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7317 } 7318 7319 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7320 struct kvm_memory_slot *slot) 7321 { 7322 struct kvm_gfn_range range = { 7323 .slot = slot, 7324 .start = slot->base_gfn, 7325 .end = slot->base_gfn + slot->npages, 7326 .may_block = true, 7327 .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, 7328 }; 7329 bool flush; 7330 7331 write_lock(&kvm->mmu_lock); 7332 flush = kvm_unmap_gfn_range(kvm, &range); 7333 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7334 write_unlock(&kvm->mmu_lock); 7335 } 7336 7337 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7338 { 7339 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7340 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7341 } 7342 7343 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7344 struct kvm_memory_slot *slot) 7345 { 7346 if (kvm_memslot_flush_zap_all(kvm)) 7347 kvm_mmu_zap_all_fast(kvm); 7348 else 7349 kvm_mmu_zap_memslot(kvm, slot); 7350 } 7351 7352 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7353 { 7354 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7355 7356 gen &= MMIO_SPTE_GEN_MASK; 7357 7358 /* 7359 * Generation numbers are incremented in multiples of the number of 7360 * address spaces in order to provide unique generations across all 7361 * address spaces. Strip what is effectively the address space 7362 * modifier prior to checking for a wrap of the MMIO generation so 7363 * that a wrap in any address space is detected. 7364 */ 7365 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7366 7367 /* 7368 * The very rare case: if the MMIO generation number has wrapped, 7369 * zap all shadow pages. 7370 */ 7371 if (unlikely(gen == 0)) { 7372 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7373 kvm_mmu_zap_all_fast(kvm); 7374 } 7375 } 7376 7377 static void mmu_destroy_caches(void) 7378 { 7379 kmem_cache_destroy(pte_list_desc_cache); 7380 kmem_cache_destroy(mmu_page_header_cache); 7381 } 7382 7383 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7384 { 7385 /* 7386 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7387 * may not be valid even though the VM is globally visible. Do nothing, 7388 * as such a VM can't have any possible NX huge pages. 7389 */ 7390 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7391 7392 if (nx_thread) 7393 vhost_task_wake(nx_thread); 7394 } 7395 7396 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7397 { 7398 if (nx_hugepage_mitigation_hard_disabled) 7399 return sysfs_emit(buffer, "never\n"); 7400 7401 return param_get_bool(buffer, kp); 7402 } 7403 7404 static bool get_nx_auto_mode(void) 7405 { 7406 /* Return true when CPU has the bug, and mitigations are ON */ 7407 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7408 } 7409 7410 static void __set_nx_huge_pages(bool val) 7411 { 7412 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7413 } 7414 7415 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7416 { 7417 bool old_val = nx_huge_pages; 7418 bool new_val; 7419 7420 if (nx_hugepage_mitigation_hard_disabled) 7421 return -EPERM; 7422 7423 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7424 if (sysfs_streq(val, "off")) { 7425 new_val = 0; 7426 } else if (sysfs_streq(val, "force")) { 7427 new_val = 1; 7428 } else if (sysfs_streq(val, "auto")) { 7429 new_val = get_nx_auto_mode(); 7430 } else if (sysfs_streq(val, "never")) { 7431 new_val = 0; 7432 7433 mutex_lock(&kvm_lock); 7434 if (!list_empty(&vm_list)) { 7435 mutex_unlock(&kvm_lock); 7436 return -EBUSY; 7437 } 7438 nx_hugepage_mitigation_hard_disabled = true; 7439 mutex_unlock(&kvm_lock); 7440 } else if (kstrtobool(val, &new_val) < 0) { 7441 return -EINVAL; 7442 } 7443 7444 __set_nx_huge_pages(new_val); 7445 7446 if (new_val != old_val) { 7447 struct kvm *kvm; 7448 7449 mutex_lock(&kvm_lock); 7450 7451 list_for_each_entry(kvm, &vm_list, vm_list) { 7452 mutex_lock(&kvm->slots_lock); 7453 kvm_mmu_zap_all_fast(kvm); 7454 mutex_unlock(&kvm->slots_lock); 7455 7456 kvm_wake_nx_recovery_thread(kvm); 7457 } 7458 mutex_unlock(&kvm_lock); 7459 } 7460 7461 return 0; 7462 } 7463 7464 /* 7465 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7466 * its default value of -1 is technically undefined behavior for a boolean. 7467 * Forward the module init call to SPTE code so that it too can handle module 7468 * params that need to be resolved/snapshot. 7469 */ 7470 void __init kvm_mmu_x86_module_init(void) 7471 { 7472 if (nx_huge_pages == -1) 7473 __set_nx_huge_pages(get_nx_auto_mode()); 7474 7475 /* 7476 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7477 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7478 * when the vendor module is loaded. 7479 */ 7480 tdp_mmu_allowed = tdp_mmu_enabled; 7481 7482 kvm_mmu_spte_module_init(); 7483 } 7484 7485 /* 7486 * The bulk of the MMU initialization is deferred until the vendor module is 7487 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7488 * to be reset when a potentially different vendor module is loaded. 7489 */ 7490 int kvm_mmu_vendor_module_init(void) 7491 { 7492 int ret = -ENOMEM; 7493 7494 /* 7495 * MMU roles use union aliasing which is, generally speaking, an 7496 * undefined behavior. However, we supposedly know how compilers behave 7497 * and the current status quo is unlikely to change. Guardians below are 7498 * supposed to let us know if the assumption becomes false. 7499 */ 7500 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7501 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7502 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7503 7504 kvm_mmu_reset_all_pte_masks(); 7505 7506 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7507 if (!pte_list_desc_cache) 7508 goto out; 7509 7510 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7511 sizeof(struct kvm_mmu_page), 7512 0, SLAB_ACCOUNT, NULL); 7513 if (!mmu_page_header_cache) 7514 goto out; 7515 7516 return 0; 7517 7518 out: 7519 mmu_destroy_caches(); 7520 return ret; 7521 } 7522 7523 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7524 { 7525 kvm_mmu_unload(vcpu); 7526 if (tdp_mmu_enabled) { 7527 read_lock(&vcpu->kvm->mmu_lock); 7528 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7529 NULL); 7530 read_unlock(&vcpu->kvm->mmu_lock); 7531 } 7532 free_mmu_pages(&vcpu->arch.root_mmu); 7533 free_mmu_pages(&vcpu->arch.guest_mmu); 7534 mmu_free_memory_caches(vcpu); 7535 } 7536 7537 void kvm_mmu_vendor_module_exit(void) 7538 { 7539 mmu_destroy_caches(); 7540 } 7541 7542 /* 7543 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7544 * select a halving time of 1 hour". Returns true if recovery is enabled. 7545 */ 7546 static bool calc_nx_huge_pages_recovery_period(uint *period) 7547 { 7548 /* 7549 * Use READ_ONCE to get the params, this may be called outside of the 7550 * param setters, e.g. by the kthread to compute its next timeout. 7551 */ 7552 bool enabled = READ_ONCE(nx_huge_pages); 7553 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7554 7555 if (!enabled || !ratio) 7556 return false; 7557 7558 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7559 if (!*period) { 7560 /* Make sure the period is not less than one second. */ 7561 ratio = min(ratio, 3600u); 7562 *period = 60 * 60 * 1000 / ratio; 7563 } 7564 return true; 7565 } 7566 7567 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7568 { 7569 bool was_recovery_enabled, is_recovery_enabled; 7570 uint old_period, new_period; 7571 int err; 7572 7573 if (nx_hugepage_mitigation_hard_disabled) 7574 return -EPERM; 7575 7576 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7577 7578 err = param_set_uint(val, kp); 7579 if (err) 7580 return err; 7581 7582 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7583 7584 if (is_recovery_enabled && 7585 (!was_recovery_enabled || old_period > new_period)) { 7586 struct kvm *kvm; 7587 7588 mutex_lock(&kvm_lock); 7589 7590 list_for_each_entry(kvm, &vm_list, vm_list) 7591 kvm_wake_nx_recovery_thread(kvm); 7592 7593 mutex_unlock(&kvm_lock); 7594 } 7595 7596 return err; 7597 } 7598 7599 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7600 { 7601 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7602 struct kvm_memory_slot *slot; 7603 int rcu_idx; 7604 struct kvm_mmu_page *sp; 7605 unsigned int ratio; 7606 LIST_HEAD(invalid_list); 7607 bool flush = false; 7608 ulong to_zap; 7609 7610 rcu_idx = srcu_read_lock(&kvm->srcu); 7611 write_lock(&kvm->mmu_lock); 7612 7613 /* 7614 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7615 * be done under RCU protection, because the pages are freed via RCU 7616 * callback. 7617 */ 7618 rcu_read_lock(); 7619 7620 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7621 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7622 for ( ; to_zap; --to_zap) { 7623 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7624 break; 7625 7626 /* 7627 * We use a separate list instead of just using active_mmu_pages 7628 * because the number of shadow pages that be replaced with an 7629 * NX huge page is expected to be relatively small compared to 7630 * the total number of shadow pages. And because the TDP MMU 7631 * doesn't use active_mmu_pages. 7632 */ 7633 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7634 struct kvm_mmu_page, 7635 possible_nx_huge_page_link); 7636 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7637 WARN_ON_ONCE(!sp->role.direct); 7638 7639 /* 7640 * Unaccount and do not attempt to recover any NX Huge Pages 7641 * that are being dirty tracked, as they would just be faulted 7642 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7643 * recovered, along with all the other huge pages in the slot, 7644 * when dirty logging is disabled. 7645 * 7646 * Since gfn_to_memslot() is relatively expensive, it helps to 7647 * skip it if it the test cannot possibly return true. On the 7648 * other hand, if any memslot has logging enabled, chances are 7649 * good that all of them do, in which case unaccount_nx_huge_page() 7650 * is much cheaper than zapping the page. 7651 * 7652 * If a memslot update is in progress, reading an incorrect value 7653 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7654 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7655 * it is becoming nonzero, the page will be zapped unnecessarily. 7656 * Either way, this only affects efficiency in racy situations, 7657 * and not correctness. 7658 */ 7659 slot = NULL; 7660 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7661 struct kvm_memslots *slots; 7662 7663 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7664 slot = __gfn_to_memslot(slots, sp->gfn); 7665 WARN_ON_ONCE(!slot); 7666 } 7667 7668 if (slot && kvm_slot_dirty_track_enabled(slot)) 7669 unaccount_nx_huge_page(kvm, sp); 7670 else if (is_tdp_mmu_page(sp)) 7671 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7672 else 7673 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7674 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7675 7676 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7677 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7678 rcu_read_unlock(); 7679 7680 cond_resched_rwlock_write(&kvm->mmu_lock); 7681 flush = false; 7682 7683 rcu_read_lock(); 7684 } 7685 } 7686 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7687 7688 rcu_read_unlock(); 7689 7690 write_unlock(&kvm->mmu_lock); 7691 srcu_read_unlock(&kvm->srcu, rcu_idx); 7692 } 7693 7694 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7695 { 7696 } 7697 7698 static bool kvm_nx_huge_page_recovery_worker(void *data) 7699 { 7700 struct kvm *kvm = data; 7701 bool enabled; 7702 uint period; 7703 long remaining_time; 7704 7705 enabled = calc_nx_huge_pages_recovery_period(&period); 7706 if (!enabled) 7707 return false; 7708 7709 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7710 - get_jiffies_64(); 7711 if (remaining_time > 0) { 7712 schedule_timeout(remaining_time); 7713 /* check for signals and come back */ 7714 return true; 7715 } 7716 7717 __set_current_state(TASK_RUNNING); 7718 kvm_recover_nx_huge_pages(kvm); 7719 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7720 return true; 7721 } 7722 7723 static int kvm_mmu_start_lpage_recovery(struct once *once) 7724 { 7725 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7726 struct kvm *kvm = container_of(ka, struct kvm, arch); 7727 struct vhost_task *nx_thread; 7728 7729 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7730 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7731 kvm_nx_huge_page_recovery_worker_kill, 7732 kvm, "kvm-nx-lpage-recovery"); 7733 7734 if (IS_ERR(nx_thread)) 7735 return PTR_ERR(nx_thread); 7736 7737 vhost_task_start(nx_thread); 7738 7739 /* Make the task visible only once it is fully started. */ 7740 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7741 return 0; 7742 } 7743 7744 int kvm_mmu_post_init_vm(struct kvm *kvm) 7745 { 7746 if (nx_hugepage_mitigation_hard_disabled) 7747 return 0; 7748 7749 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7750 } 7751 7752 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7753 { 7754 if (kvm->arch.nx_huge_page_recovery_thread) 7755 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7756 } 7757 7758 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7759 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7760 int level) 7761 { 7762 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7763 } 7764 7765 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7766 int level) 7767 { 7768 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7769 } 7770 7771 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7772 int level) 7773 { 7774 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7775 } 7776 7777 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7778 struct kvm_gfn_range *range) 7779 { 7780 struct kvm_memory_slot *slot = range->slot; 7781 int level; 7782 7783 /* 7784 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7785 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7786 * can simply ignore such slots. But if userspace is making memory 7787 * PRIVATE, then KVM must prevent the guest from accessing the memory 7788 * as shared. And if userspace is making memory SHARED and this point 7789 * is reached, then at least one page within the range was previously 7790 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7791 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7792 * a hugepage can be used for affected ranges. 7793 */ 7794 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7795 return false; 7796 7797 if (WARN_ON_ONCE(range->end <= range->start)) 7798 return false; 7799 7800 /* 7801 * If the head and tail pages of the range currently allow a hugepage, 7802 * i.e. reside fully in the slot and don't have mixed attributes, then 7803 * add each corresponding hugepage range to the ongoing invalidation, 7804 * e.g. to prevent KVM from creating a hugepage in response to a fault 7805 * for a gfn whose attributes aren't changing. Note, only the range 7806 * of gfns whose attributes are being modified needs to be explicitly 7807 * unmapped, as that will unmap any existing hugepages. 7808 */ 7809 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7810 gfn_t start = gfn_round_for_level(range->start, level); 7811 gfn_t end = gfn_round_for_level(range->end - 1, level); 7812 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7813 7814 if ((start != range->start || start + nr_pages > range->end) && 7815 start >= slot->base_gfn && 7816 start + nr_pages <= slot->base_gfn + slot->npages && 7817 !hugepage_test_mixed(slot, start, level)) 7818 kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); 7819 7820 if (end == start) 7821 continue; 7822 7823 if ((end + nr_pages) > range->end && 7824 (end + nr_pages) <= (slot->base_gfn + slot->npages) && 7825 !hugepage_test_mixed(slot, end, level)) 7826 kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); 7827 } 7828 7829 /* Unmap the old attribute page. */ 7830 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7831 range->attr_filter = KVM_FILTER_SHARED; 7832 else 7833 range->attr_filter = KVM_FILTER_PRIVATE; 7834 7835 return kvm_unmap_gfn_range(kvm, range); 7836 } 7837 7838 7839 7840 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7841 gfn_t gfn, int level, unsigned long attrs) 7842 { 7843 const unsigned long start = gfn; 7844 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7845 7846 if (level == PG_LEVEL_2M) 7847 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7848 7849 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7850 if (hugepage_test_mixed(slot, gfn, level - 1) || 7851 attrs != kvm_get_memory_attributes(kvm, gfn)) 7852 return false; 7853 } 7854 return true; 7855 } 7856 7857 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7858 struct kvm_gfn_range *range) 7859 { 7860 unsigned long attrs = range->arg.attributes; 7861 struct kvm_memory_slot *slot = range->slot; 7862 int level; 7863 7864 lockdep_assert_held_write(&kvm->mmu_lock); 7865 lockdep_assert_held(&kvm->slots_lock); 7866 7867 /* 7868 * Calculate which ranges can be mapped with hugepages even if the slot 7869 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7870 * a range that has PRIVATE GFNs, and conversely converting a range to 7871 * SHARED may now allow hugepages. 7872 */ 7873 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7874 return false; 7875 7876 /* 7877 * The sequence matters here: upper levels consume the result of lower 7878 * level's scanning. 7879 */ 7880 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7881 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7882 gfn_t gfn = gfn_round_for_level(range->start, level); 7883 7884 /* Process the head page if it straddles the range. */ 7885 if (gfn != range->start || gfn + nr_pages > range->end) { 7886 /* 7887 * Skip mixed tracking if the aligned gfn isn't covered 7888 * by the memslot, KVM can't use a hugepage due to the 7889 * misaligned address regardless of memory attributes. 7890 */ 7891 if (gfn >= slot->base_gfn && 7892 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7893 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7894 hugepage_clear_mixed(slot, gfn, level); 7895 else 7896 hugepage_set_mixed(slot, gfn, level); 7897 } 7898 gfn += nr_pages; 7899 } 7900 7901 /* 7902 * Pages entirely covered by the range are guaranteed to have 7903 * only the attributes which were just set. 7904 */ 7905 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7906 hugepage_clear_mixed(slot, gfn, level); 7907 7908 /* 7909 * Process the last tail page if it straddles the range and is 7910 * contained by the memslot. Like the head page, KVM can't 7911 * create a hugepage if the slot size is misaligned. 7912 */ 7913 if (gfn < range->end && 7914 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7915 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7916 hugepage_clear_mixed(slot, gfn, level); 7917 else 7918 hugepage_set_mixed(slot, gfn, level); 7919 } 7920 } 7921 return false; 7922 } 7923 7924 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7925 struct kvm_memory_slot *slot) 7926 { 7927 int level; 7928 7929 if (!kvm_arch_has_private_mem(kvm)) 7930 return; 7931 7932 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7933 /* 7934 * Don't bother tracking mixed attributes for pages that can't 7935 * be huge due to alignment, i.e. process only pages that are 7936 * entirely contained by the memslot. 7937 */ 7938 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7939 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7940 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7941 gfn_t gfn; 7942 7943 if (start < slot->base_gfn) 7944 start += nr_pages; 7945 7946 /* 7947 * Unlike setting attributes, every potential hugepage needs to 7948 * be manually checked as the attributes may already be mixed. 7949 */ 7950 for (gfn = start; gfn < end; gfn += nr_pages) { 7951 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7952 7953 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7954 hugepage_clear_mixed(slot, gfn, level); 7955 else 7956 hugepage_set_mixed(slot, gfn, level); 7957 } 7958 } 7959 } 7960 #endif 7961