1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * VMA-specific functions.
5 */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
13
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 vm_flags_t vm_flags;
19 struct file *file;
20 pgprot_t page_prot;
21
22 /* User-defined fields, perhaps updated by .mmap_prepare(). */
23 const struct vm_operations_struct *vm_ops;
24 void *vm_private_data;
25
26 unsigned long charged;
27
28 struct vm_area_struct *prev;
29 struct vm_area_struct *next;
30
31 /* Unmapping state. */
32 struct vma_munmap_struct vms;
33 struct ma_state mas_detach;
34 struct maple_tree mt_detach;
35
36 /* Determine if we can check KSM flags early in mmap() logic. */
37 bool check_ksm_early :1;
38 /* If we map new, hold the file rmap lock on mapping. */
39 bool hold_file_rmap_lock :1;
40 };
41
42 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \
43 struct mmap_state name = { \
44 .mm = mm_, \
45 .vmi = vmi_, \
46 .addr = addr_, \
47 .end = (addr_) + (len_), \
48 .pgoff = pgoff_, \
49 .pglen = PHYS_PFN(len_), \
50 .vm_flags = vm_flags_, \
51 .file = file_, \
52 .page_prot = vm_get_page_prot(vm_flags_), \
53 }
54
55 #define VMG_MMAP_STATE(name, map_, vma_) \
56 struct vma_merge_struct name = { \
57 .mm = (map_)->mm, \
58 .vmi = (map_)->vmi, \
59 .start = (map_)->addr, \
60 .end = (map_)->end, \
61 .vm_flags = (map_)->vm_flags, \
62 .pgoff = (map_)->pgoff, \
63 .file = (map_)->file, \
64 .prev = (map_)->prev, \
65 .middle = vma_, \
66 .next = (vma_) ? NULL : (map_)->next, \
67 .state = VMA_MERGE_START, \
68 }
69
70 /* Was this VMA ever forked from a parent, i.e. maybe contains CoW mappings? */
vma_is_fork_child(struct vm_area_struct * vma)71 static bool vma_is_fork_child(struct vm_area_struct *vma)
72 {
73 /*
74 * The list_is_singular() test is to avoid merging VMA cloned from
75 * parents. This can improve scalability caused by the anon_vma root
76 * lock.
77 */
78 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
79 }
80
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)81 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
82 {
83 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
84
85 if (!mpol_equal(vmg->policy, vma_policy(vma)))
86 return false;
87 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE)
88 return false;
89 if (vma->vm_file != vmg->file)
90 return false;
91 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
92 return false;
93 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
94 return false;
95 return true;
96 }
97
is_mergeable_anon_vma(struct vma_merge_struct * vmg,bool merge_next)98 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
99 {
100 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
101 struct vm_area_struct *src = vmg->middle; /* existing merge case. */
102 struct anon_vma *tgt_anon = tgt->anon_vma;
103 struct anon_vma *src_anon = vmg->anon_vma;
104
105 /*
106 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
107 * will remove the existing VMA's anon_vma's so there's no scalability
108 * concerns.
109 */
110 VM_WARN_ON(src && src_anon != src->anon_vma);
111
112 /* Case 1 - we will dup_anon_vma() from src into tgt. */
113 if (!tgt_anon && src_anon) {
114 struct vm_area_struct *copied_from = vmg->copied_from;
115
116 if (vma_is_fork_child(src))
117 return false;
118 if (vma_is_fork_child(copied_from))
119 return false;
120
121 return true;
122 }
123 /* Case 2 - we will simply use tgt's anon_vma. */
124 if (tgt_anon && !src_anon)
125 return !vma_is_fork_child(tgt);
126 /* Case 3 - the anon_vma's are already shared. */
127 return src_anon == tgt_anon;
128 }
129
130 /*
131 * init_multi_vma_prep() - Initializer for struct vma_prepare
132 * @vp: The vma_prepare struct
133 * @vma: The vma that will be altered once locked
134 * @vmg: The merge state that will be used to determine adjustment and VMA
135 * removal.
136 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vma_merge_struct * vmg)137 static void init_multi_vma_prep(struct vma_prepare *vp,
138 struct vm_area_struct *vma,
139 struct vma_merge_struct *vmg)
140 {
141 struct vm_area_struct *adjust;
142 struct vm_area_struct **remove = &vp->remove;
143
144 memset(vp, 0, sizeof(struct vma_prepare));
145 vp->vma = vma;
146 vp->anon_vma = vma->anon_vma;
147
148 if (vmg && vmg->__remove_middle) {
149 *remove = vmg->middle;
150 remove = &vp->remove2;
151 }
152 if (vmg && vmg->__remove_next)
153 *remove = vmg->next;
154
155 if (vmg && vmg->__adjust_middle_start)
156 adjust = vmg->middle;
157 else if (vmg && vmg->__adjust_next_start)
158 adjust = vmg->next;
159 else
160 adjust = NULL;
161
162 vp->adj_next = adjust;
163 if (!vp->anon_vma && adjust)
164 vp->anon_vma = adjust->anon_vma;
165
166 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
167 vp->anon_vma != adjust->anon_vma);
168
169 vp->file = vma->vm_file;
170 if (vp->file)
171 vp->mapping = vma->vm_file->f_mapping;
172
173 if (vmg && vmg->skip_vma_uprobe)
174 vp->skip_vma_uprobe = true;
175 }
176
177 /*
178 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
179 * in front of (at a lower virtual address and file offset than) the vma.
180 *
181 * We cannot merge two vmas if they have differently assigned (non-NULL)
182 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
183 *
184 * We don't check here for the merged mmap wrapping around the end of pagecache
185 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
186 * wrap, nor mmaps which cover the final page at index -1UL.
187 *
188 * We assume the vma may be removed as part of the merge.
189 */
can_vma_merge_before(struct vma_merge_struct * vmg)190 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
191 {
192 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
193
194 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
195 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
196 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
197 return true;
198 }
199
200 return false;
201 }
202
203 /*
204 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
205 * beyond (at a higher virtual address and file offset than) the vma.
206 *
207 * We cannot merge two vmas if they have differently assigned (non-NULL)
208 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
209 *
210 * We assume that vma is not removed as part of the merge.
211 */
can_vma_merge_after(struct vma_merge_struct * vmg)212 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
213 {
214 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
215 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
216 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
217 return true;
218 }
219 return false;
220 }
221
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)222 static void __vma_link_file(struct vm_area_struct *vma,
223 struct address_space *mapping)
224 {
225 if (vma_is_shared_maywrite(vma))
226 mapping_allow_writable(mapping);
227
228 flush_dcache_mmap_lock(mapping);
229 vma_interval_tree_insert(vma, &mapping->i_mmap);
230 flush_dcache_mmap_unlock(mapping);
231 }
232
233 /*
234 * Requires inode->i_mapping->i_mmap_rwsem
235 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)236 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
237 struct address_space *mapping)
238 {
239 if (vma_is_shared_maywrite(vma))
240 mapping_unmap_writable(mapping);
241
242 flush_dcache_mmap_lock(mapping);
243 vma_interval_tree_remove(vma, &mapping->i_mmap);
244 flush_dcache_mmap_unlock(mapping);
245 }
246
247 /*
248 * vma has some anon_vma assigned, and is already inserted on that
249 * anon_vma's interval trees.
250 *
251 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
252 * vma must be removed from the anon_vma's interval trees using
253 * anon_vma_interval_tree_pre_update_vma().
254 *
255 * After the update, the vma will be reinserted using
256 * anon_vma_interval_tree_post_update_vma().
257 *
258 * The entire update must be protected by exclusive mmap_lock and by
259 * the root anon_vma's mutex.
260 */
261 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)262 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
263 {
264 struct anon_vma_chain *avc;
265
266 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
267 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
268 }
269
270 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)271 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
272 {
273 struct anon_vma_chain *avc;
274
275 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
276 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
277 }
278
279 /*
280 * vma_prepare() - Helper function for handling locking VMAs prior to altering
281 * @vp: The initialized vma_prepare struct
282 */
vma_prepare(struct vma_prepare * vp)283 static void vma_prepare(struct vma_prepare *vp)
284 {
285 if (vp->file) {
286 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
287
288 if (vp->adj_next)
289 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
290 vp->adj_next->vm_end);
291
292 i_mmap_lock_write(vp->mapping);
293 if (vp->insert && vp->insert->vm_file) {
294 /*
295 * Put into interval tree now, so instantiated pages
296 * are visible to arm/parisc __flush_dcache_page
297 * throughout; but we cannot insert into address
298 * space until vma start or end is updated.
299 */
300 __vma_link_file(vp->insert,
301 vp->insert->vm_file->f_mapping);
302 }
303 }
304
305 if (vp->anon_vma) {
306 anon_vma_lock_write(vp->anon_vma);
307 anon_vma_interval_tree_pre_update_vma(vp->vma);
308 if (vp->adj_next)
309 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
310 }
311
312 if (vp->file) {
313 flush_dcache_mmap_lock(vp->mapping);
314 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
315 if (vp->adj_next)
316 vma_interval_tree_remove(vp->adj_next,
317 &vp->mapping->i_mmap);
318 }
319
320 }
321
322 /*
323 * vma_complete- Helper function for handling the unlocking after altering VMAs,
324 * or for inserting a VMA.
325 *
326 * @vp: The vma_prepare struct
327 * @vmi: The vma iterator
328 * @mm: The mm_struct
329 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)330 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
331 struct mm_struct *mm)
332 {
333 if (vp->file) {
334 if (vp->adj_next)
335 vma_interval_tree_insert(vp->adj_next,
336 &vp->mapping->i_mmap);
337 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
338 flush_dcache_mmap_unlock(vp->mapping);
339 }
340
341 if (vp->remove && vp->file) {
342 __remove_shared_vm_struct(vp->remove, vp->mapping);
343 if (vp->remove2)
344 __remove_shared_vm_struct(vp->remove2, vp->mapping);
345 } else if (vp->insert) {
346 /*
347 * split_vma has split insert from vma, and needs
348 * us to insert it before dropping the locks
349 * (it may either follow vma or precede it).
350 */
351 vma_iter_store_new(vmi, vp->insert);
352 mm->map_count++;
353 }
354
355 if (vp->anon_vma) {
356 anon_vma_interval_tree_post_update_vma(vp->vma);
357 if (vp->adj_next)
358 anon_vma_interval_tree_post_update_vma(vp->adj_next);
359 anon_vma_unlock_write(vp->anon_vma);
360 }
361
362 if (vp->file) {
363 i_mmap_unlock_write(vp->mapping);
364
365 if (!vp->skip_vma_uprobe) {
366 uprobe_mmap(vp->vma);
367
368 if (vp->adj_next)
369 uprobe_mmap(vp->adj_next);
370 }
371 }
372
373 if (vp->remove) {
374 again:
375 vma_mark_detached(vp->remove);
376 if (vp->file) {
377 uprobe_munmap(vp->remove, vp->remove->vm_start,
378 vp->remove->vm_end);
379 fput(vp->file);
380 }
381 if (vp->remove->anon_vma)
382 anon_vma_merge(vp->vma, vp->remove);
383 mm->map_count--;
384 mpol_put(vma_policy(vp->remove));
385 if (!vp->remove2)
386 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
387 vm_area_free(vp->remove);
388
389 /*
390 * In mprotect's case 6 (see comments on vma_merge),
391 * we are removing both mid and next vmas
392 */
393 if (vp->remove2) {
394 vp->remove = vp->remove2;
395 vp->remove2 = NULL;
396 goto again;
397 }
398 }
399 if (vp->insert && vp->file)
400 uprobe_mmap(vp->insert);
401 }
402
403 /*
404 * init_vma_prep() - Initializer wrapper for vma_prepare struct
405 * @vp: The vma_prepare struct
406 * @vma: The vma that will be altered once locked
407 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)408 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
409 {
410 init_multi_vma_prep(vp, vma, NULL);
411 }
412
413 /*
414 * Can the proposed VMA be merged with the left (previous) VMA taking into
415 * account the start position of the proposed range.
416 */
can_vma_merge_left(struct vma_merge_struct * vmg)417 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
418
419 {
420 return vmg->prev && vmg->prev->vm_end == vmg->start &&
421 can_vma_merge_after(vmg);
422 }
423
424 /*
425 * Can the proposed VMA be merged with the right (next) VMA taking into
426 * account the end position of the proposed range.
427 *
428 * In addition, if we can merge with the left VMA, ensure that left and right
429 * anon_vma's are also compatible.
430 */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)431 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
432 bool can_merge_left)
433 {
434 struct vm_area_struct *next = vmg->next;
435 struct vm_area_struct *prev;
436
437 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
438 return false;
439
440 if (!can_merge_left)
441 return true;
442
443 /*
444 * If we can merge with prev (left) and next (right), indicating that
445 * each VMA's anon_vma is compatible with the proposed anon_vma, this
446 * does not mean prev and next are compatible with EACH OTHER.
447 *
448 * We therefore check this in addition to mergeability to either side.
449 */
450 prev = vmg->prev;
451 return !prev->anon_vma || !next->anon_vma ||
452 prev->anon_vma == next->anon_vma;
453 }
454
455 /*
456 * Close a vm structure and free it.
457 */
remove_vma(struct vm_area_struct * vma)458 void remove_vma(struct vm_area_struct *vma)
459 {
460 might_sleep();
461 vma_close(vma);
462 if (vma->vm_file)
463 fput(vma->vm_file);
464 mpol_put(vma_policy(vma));
465 vm_area_free(vma);
466 }
467
468 /*
469 * Get rid of page table information in the indicated region.
470 *
471 * Called with the mm semaphore held.
472 */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)473 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
474 struct vm_area_struct *prev, struct vm_area_struct *next)
475 {
476 struct mm_struct *mm = vma->vm_mm;
477 struct mmu_gather tlb;
478
479 tlb_gather_mmu(&tlb, mm);
480 update_hiwater_rss(mm);
481 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end);
482 mas_set(mas, vma->vm_end);
483 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
484 next ? next->vm_start : USER_PGTABLES_CEILING,
485 /* mm_wr_locked = */ true);
486 tlb_finish_mmu(&tlb);
487 }
488
489 /*
490 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
491 * has already been checked or doesn't make sense to fail.
492 * VMA Iterator will point to the original VMA.
493 */
494 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)495 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
496 unsigned long addr, int new_below)
497 {
498 struct vma_prepare vp;
499 struct vm_area_struct *new;
500 int err;
501
502 WARN_ON(vma->vm_start >= addr);
503 WARN_ON(vma->vm_end <= addr);
504
505 if (vma->vm_ops && vma->vm_ops->may_split) {
506 err = vma->vm_ops->may_split(vma, addr);
507 if (err)
508 return err;
509 }
510
511 new = vm_area_dup(vma);
512 if (!new)
513 return -ENOMEM;
514
515 if (new_below) {
516 new->vm_end = addr;
517 } else {
518 new->vm_start = addr;
519 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
520 }
521
522 err = -ENOMEM;
523 vma_iter_config(vmi, new->vm_start, new->vm_end);
524 if (vma_iter_prealloc(vmi, new))
525 goto out_free_vma;
526
527 err = vma_dup_policy(vma, new);
528 if (err)
529 goto out_free_vmi;
530
531 err = anon_vma_clone(new, vma);
532 if (err)
533 goto out_free_mpol;
534
535 if (new->vm_file)
536 get_file(new->vm_file);
537
538 if (new->vm_ops && new->vm_ops->open)
539 new->vm_ops->open(new);
540
541 vma_start_write(vma);
542 vma_start_write(new);
543
544 init_vma_prep(&vp, vma);
545 vp.insert = new;
546 vma_prepare(&vp);
547
548 /*
549 * Get rid of huge pages and shared page tables straddling the split
550 * boundary.
551 */
552 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
553 if (is_vm_hugetlb_page(vma))
554 hugetlb_split(vma, addr);
555
556 if (new_below) {
557 vma->vm_start = addr;
558 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
559 } else {
560 vma->vm_end = addr;
561 }
562
563 /* vma_complete stores the new vma */
564 vma_complete(&vp, vmi, vma->vm_mm);
565 validate_mm(vma->vm_mm);
566
567 /* Success. */
568 if (new_below)
569 vma_next(vmi);
570 else
571 vma_prev(vmi);
572
573 return 0;
574
575 out_free_mpol:
576 mpol_put(vma_policy(new));
577 out_free_vmi:
578 vma_iter_free(vmi);
579 out_free_vma:
580 vm_area_free(new);
581 return err;
582 }
583
584 /*
585 * Split a vma into two pieces at address 'addr', a new vma is allocated
586 * either for the first part or the tail.
587 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)588 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
589 unsigned long addr, int new_below)
590 {
591 if (vma->vm_mm->map_count >= sysctl_max_map_count)
592 return -ENOMEM;
593
594 return __split_vma(vmi, vma, addr, new_below);
595 }
596
597 /*
598 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
599 * instance that the destination VMA has no anon_vma but the source does.
600 *
601 * @dst: The destination VMA
602 * @src: The source VMA
603 * @dup: Pointer to the destination VMA when successful.
604 *
605 * Returns: 0 on success.
606 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)607 static int dup_anon_vma(struct vm_area_struct *dst,
608 struct vm_area_struct *src, struct vm_area_struct **dup)
609 {
610 /*
611 * There are three cases to consider for correctly propagating
612 * anon_vma's on merge.
613 *
614 * The first is trivial - neither VMA has anon_vma, we need not do
615 * anything.
616 *
617 * The second where both have anon_vma is also a no-op, as they must
618 * then be the same, so there is simply nothing to copy.
619 *
620 * Here we cover the third - if the destination VMA has no anon_vma,
621 * that is it is unfaulted, we need to ensure that the newly merged
622 * range is referenced by the anon_vma's of the source.
623 */
624 if (src->anon_vma && !dst->anon_vma) {
625 int ret;
626
627 vma_assert_write_locked(dst);
628 dst->anon_vma = src->anon_vma;
629 ret = anon_vma_clone(dst, src);
630 if (ret)
631 return ret;
632
633 *dup = dst;
634 }
635
636 return 0;
637 }
638
639 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)640 void validate_mm(struct mm_struct *mm)
641 {
642 int bug = 0;
643 int i = 0;
644 struct vm_area_struct *vma;
645 VMA_ITERATOR(vmi, mm, 0);
646
647 mt_validate(&mm->mm_mt);
648 for_each_vma(vmi, vma) {
649 #ifdef CONFIG_DEBUG_VM_RB
650 struct anon_vma *anon_vma = vma->anon_vma;
651 struct anon_vma_chain *avc;
652 #endif
653 unsigned long vmi_start, vmi_end;
654 bool warn = 0;
655
656 vmi_start = vma_iter_addr(&vmi);
657 vmi_end = vma_iter_end(&vmi);
658 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
659 warn = 1;
660
661 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
662 warn = 1;
663
664 if (warn) {
665 pr_emerg("issue in %s\n", current->comm);
666 dump_stack();
667 dump_vma(vma);
668 pr_emerg("tree range: %px start %lx end %lx\n", vma,
669 vmi_start, vmi_end - 1);
670 vma_iter_dump_tree(&vmi);
671 }
672
673 #ifdef CONFIG_DEBUG_VM_RB
674 if (anon_vma) {
675 anon_vma_lock_read(anon_vma);
676 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
677 anon_vma_interval_tree_verify(avc);
678 anon_vma_unlock_read(anon_vma);
679 }
680 #endif
681 /* Check for a infinite loop */
682 if (++i > mm->map_count + 10) {
683 i = -1;
684 break;
685 }
686 }
687 if (i != mm->map_count) {
688 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
689 bug = 1;
690 }
691 VM_BUG_ON_MM(bug, mm);
692 }
693 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
694
695 /*
696 * Based on the vmg flag indicating whether we need to adjust the vm_start field
697 * for the middle or next VMA, we calculate what the range of the newly adjusted
698 * VMA ought to be, and set the VMA's range accordingly.
699 */
vmg_adjust_set_range(struct vma_merge_struct * vmg)700 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
701 {
702 struct vm_area_struct *adjust;
703 pgoff_t pgoff;
704
705 if (vmg->__adjust_middle_start) {
706 adjust = vmg->middle;
707 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
708 } else if (vmg->__adjust_next_start) {
709 adjust = vmg->next;
710 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
711 } else {
712 return;
713 }
714
715 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
716 }
717
718 /*
719 * Actually perform the VMA merge operation.
720 *
721 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
722 * modify any VMAs or cause inconsistent state should an OOM condition arise.
723 *
724 * Returns 0 on success, or an error value on failure.
725 */
commit_merge(struct vma_merge_struct * vmg)726 static int commit_merge(struct vma_merge_struct *vmg)
727 {
728 struct vm_area_struct *vma;
729 struct vma_prepare vp;
730
731 if (vmg->__adjust_next_start) {
732 /* We manipulate middle and adjust next, which is the target. */
733 vma = vmg->middle;
734 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
735 } else {
736 vma = vmg->target;
737 /* Note: vma iterator must be pointing to 'start'. */
738 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
739 }
740
741 init_multi_vma_prep(&vp, vma, vmg);
742
743 /*
744 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
745 * manipulate any VMAs until we succeed at preallocation.
746 *
747 * Past this point, we will not return an error.
748 */
749 if (vma_iter_prealloc(vmg->vmi, vma))
750 return -ENOMEM;
751
752 vma_prepare(&vp);
753 /*
754 * THP pages may need to do additional splits if we increase
755 * middle->vm_start.
756 */
757 vma_adjust_trans_huge(vma, vmg->start, vmg->end,
758 vmg->__adjust_middle_start ? vmg->middle : NULL);
759 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
760 vmg_adjust_set_range(vmg);
761 vma_iter_store_overwrite(vmg->vmi, vmg->target);
762
763 vma_complete(&vp, vmg->vmi, vma->vm_mm);
764
765 return 0;
766 }
767
768 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)769 static bool can_merge_remove_vma(struct vm_area_struct *vma)
770 {
771 return !vma->vm_ops || !vma->vm_ops->close;
772 }
773
774 /*
775 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
776 * attributes modified.
777 *
778 * @vmg: Describes the modifications being made to a VMA and associated
779 * metadata.
780 *
781 * When the attributes of a range within a VMA change, then it might be possible
782 * for immediately adjacent VMAs to be merged into that VMA due to having
783 * identical properties.
784 *
785 * This function checks for the existence of any such mergeable VMAs and updates
786 * the maple tree describing the @vmg->middle->vm_mm address space to account
787 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
788 * merge.
789 *
790 * As part of this operation, if a merge occurs, the @vmg object will have its
791 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
792 * calls to this function should reset these fields.
793 *
794 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
795 *
796 * ASSUMPTIONS:
797 * - The caller must assign the VMA to be modified to @vmg->middle.
798 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
799 * - The caller must not set @vmg->next, as we determine this.
800 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
801 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
802 */
vma_merge_existing_range(struct vma_merge_struct * vmg)803 static __must_check struct vm_area_struct *vma_merge_existing_range(
804 struct vma_merge_struct *vmg)
805 {
806 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY;
807 struct vm_area_struct *middle = vmg->middle;
808 struct vm_area_struct *prev = vmg->prev;
809 struct vm_area_struct *next;
810 struct vm_area_struct *anon_dup = NULL;
811 unsigned long start = vmg->start;
812 unsigned long end = vmg->end;
813 bool left_side = middle && start == middle->vm_start;
814 bool right_side = middle && end == middle->vm_end;
815 int err = 0;
816 bool merge_left, merge_right, merge_both;
817
818 mmap_assert_write_locked(vmg->mm);
819 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
820 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
821 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
822 VM_WARN_ON_VMG(start >= end, vmg);
823
824 /*
825 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
826 * not, we must span a portion of the VMA.
827 */
828 VM_WARN_ON_VMG(middle &&
829 ((middle != prev && vmg->start != middle->vm_start) ||
830 vmg->end > middle->vm_end), vmg);
831 /* The vmi must be positioned within vmg->middle. */
832 VM_WARN_ON_VMG(middle &&
833 !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
834 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
835 /* An existing merge can never be used by the mremap() logic. */
836 VM_WARN_ON_VMG(vmg->copied_from, vmg);
837
838 vmg->state = VMA_MERGE_NOMERGE;
839
840 /*
841 * If a special mapping or if the range being modified is neither at the
842 * furthermost left or right side of the VMA, then we have no chance of
843 * merging and should abort.
844 */
845 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side))
846 return NULL;
847
848 if (left_side)
849 merge_left = can_vma_merge_left(vmg);
850 else
851 merge_left = false;
852
853 if (right_side) {
854 next = vmg->next = vma_iter_next_range(vmg->vmi);
855 vma_iter_prev_range(vmg->vmi);
856
857 merge_right = can_vma_merge_right(vmg, merge_left);
858 } else {
859 merge_right = false;
860 next = NULL;
861 }
862
863 if (merge_left) /* If merging prev, position iterator there. */
864 vma_prev(vmg->vmi);
865 else if (!merge_right) /* If we have nothing to merge, abort. */
866 return NULL;
867
868 merge_both = merge_left && merge_right;
869 /* If we span the entire VMA, a merge implies it will be deleted. */
870 vmg->__remove_middle = left_side && right_side;
871
872 /*
873 * If we need to remove middle in its entirety but are unable to do so,
874 * we have no sensible recourse but to abort the merge.
875 */
876 if (vmg->__remove_middle && !can_merge_remove_vma(middle))
877 return NULL;
878
879 /*
880 * If we merge both VMAs, then next is also deleted. This implies
881 * merge_will_delete_vma also.
882 */
883 vmg->__remove_next = merge_both;
884
885 /*
886 * If we cannot delete next, then we can reduce the operation to merging
887 * prev and middle (thereby deleting middle).
888 */
889 if (vmg->__remove_next && !can_merge_remove_vma(next)) {
890 vmg->__remove_next = false;
891 merge_right = false;
892 merge_both = false;
893 }
894
895 /* No matter what happens, we will be adjusting middle. */
896 vma_start_write(middle);
897
898 if (merge_right) {
899 vma_start_write(next);
900 vmg->target = next;
901 sticky_flags |= (next->vm_flags & VM_STICKY);
902 }
903
904 if (merge_left) {
905 vma_start_write(prev);
906 vmg->target = prev;
907 sticky_flags |= (prev->vm_flags & VM_STICKY);
908 }
909
910 if (merge_both) {
911 /*
912 * |<-------------------->|
913 * |-------********-------|
914 * prev middle next
915 * extend delete delete
916 */
917
918 vmg->start = prev->vm_start;
919 vmg->end = next->vm_end;
920 vmg->pgoff = prev->vm_pgoff;
921
922 /*
923 * We already ensured anon_vma compatibility above, so now it's
924 * simply a case of, if prev has no anon_vma object, which of
925 * next or middle contains the anon_vma we must duplicate.
926 */
927 err = dup_anon_vma(prev, next->anon_vma ? next : middle,
928 &anon_dup);
929 } else if (merge_left) {
930 /*
931 * |<------------>| OR
932 * |<----------------->|
933 * |-------*************
934 * prev middle
935 * extend shrink/delete
936 */
937
938 vmg->start = prev->vm_start;
939 vmg->pgoff = prev->vm_pgoff;
940
941 if (!vmg->__remove_middle)
942 vmg->__adjust_middle_start = true;
943
944 err = dup_anon_vma(prev, middle, &anon_dup);
945 } else { /* merge_right */
946 /*
947 * |<------------->| OR
948 * |<----------------->|
949 * *************-------|
950 * middle next
951 * shrink/delete extend
952 */
953
954 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
955
956 VM_WARN_ON_VMG(!merge_right, vmg);
957 /* If we are offset into a VMA, then prev must be middle. */
958 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
959
960 if (vmg->__remove_middle) {
961 vmg->end = next->vm_end;
962 vmg->pgoff = next->vm_pgoff - pglen;
963 } else {
964 /* We shrink middle and expand next. */
965 vmg->__adjust_next_start = true;
966 vmg->start = middle->vm_start;
967 vmg->end = start;
968 vmg->pgoff = middle->vm_pgoff;
969 }
970
971 err = dup_anon_vma(next, middle, &anon_dup);
972 }
973
974 if (err || commit_merge(vmg))
975 goto abort;
976
977 vm_flags_set(vmg->target, sticky_flags);
978 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
979 vmg->state = VMA_MERGE_SUCCESS;
980 return vmg->target;
981
982 abort:
983 vma_iter_set(vmg->vmi, start);
984 vma_iter_load(vmg->vmi);
985
986 if (anon_dup)
987 unlink_anon_vmas(anon_dup);
988
989 /*
990 * This means we have failed to clone anon_vma's correctly, but no
991 * actual changes to VMAs have occurred, so no harm no foul - if the
992 * user doesn't want this reported and instead just wants to give up on
993 * the merge, allow it.
994 */
995 if (!vmg->give_up_on_oom)
996 vmg->state = VMA_MERGE_ERROR_NOMEM;
997 return NULL;
998 }
999
1000 /*
1001 * vma_merge_new_range - Attempt to merge a new VMA into address space
1002 *
1003 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
1004 * (exclusive), which we try to merge with any adjacent VMAs if possible.
1005 *
1006 * We are about to add a VMA to the address space starting at @vmg->start and
1007 * ending at @vmg->end. There are three different possible scenarios:
1008 *
1009 * 1. There is a VMA with identical properties immediately adjacent to the
1010 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1011 * EXPAND that VMA:
1012 *
1013 * Proposed: |-----| or |-----|
1014 * Existing: |----| |----|
1015 *
1016 * 2. There are VMAs with identical properties immediately adjacent to the
1017 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1018 * EXPAND the former and REMOVE the latter:
1019 *
1020 * Proposed: |-----|
1021 * Existing: |----| |----|
1022 *
1023 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1024 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
1025 *
1026 * In instances where we can merge, this function returns the expanded VMA which
1027 * will have its range adjusted accordingly and the underlying maple tree also
1028 * adjusted.
1029 *
1030 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1031 * to the VMA we expanded.
1032 *
1033 * This function adjusts @vmg to provide @vmg->next if not already specified,
1034 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1035 *
1036 * ASSUMPTIONS:
1037 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1038 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1039 other than VMAs that will be unmapped should the operation succeed.
1040 * - The caller must have specified the previous vma in @vmg->prev.
1041 * - The caller must have specified the next vma in @vmg->next.
1042 * - The caller must have positioned the vmi at or before the gap.
1043 */
vma_merge_new_range(struct vma_merge_struct * vmg)1044 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1045 {
1046 struct vm_area_struct *prev = vmg->prev;
1047 struct vm_area_struct *next = vmg->next;
1048 unsigned long end = vmg->end;
1049 bool can_merge_left, can_merge_right;
1050
1051 mmap_assert_write_locked(vmg->mm);
1052 VM_WARN_ON_VMG(vmg->middle, vmg);
1053 VM_WARN_ON_VMG(vmg->target, vmg);
1054 /* vmi must point at or before the gap. */
1055 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1056
1057 vmg->state = VMA_MERGE_NOMERGE;
1058
1059 /* Special VMAs are unmergeable, also if no prev/next. */
1060 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next))
1061 return NULL;
1062
1063 can_merge_left = can_vma_merge_left(vmg);
1064 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1065
1066 /* If we can merge with the next VMA, adjust vmg accordingly. */
1067 if (can_merge_right) {
1068 vmg->end = next->vm_end;
1069 vmg->target = next;
1070 }
1071
1072 /* If we can merge with the previous VMA, adjust vmg accordingly. */
1073 if (can_merge_left) {
1074 vmg->start = prev->vm_start;
1075 vmg->target = prev;
1076 vmg->pgoff = prev->vm_pgoff;
1077
1078 /*
1079 * If this merge would result in removal of the next VMA but we
1080 * are not permitted to do so, reduce the operation to merging
1081 * prev and vma.
1082 */
1083 if (can_merge_right && !can_merge_remove_vma(next))
1084 vmg->end = end;
1085
1086 /* In expand-only case we are already positioned at prev. */
1087 if (!vmg->just_expand) {
1088 /* Equivalent to going to the previous range. */
1089 vma_prev(vmg->vmi);
1090 }
1091 }
1092
1093 /*
1094 * Now try to expand adjacent VMA(s). This takes care of removing the
1095 * following VMA if we have VMAs on both sides.
1096 */
1097 if (vmg->target && !vma_expand(vmg)) {
1098 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
1099 vmg->state = VMA_MERGE_SUCCESS;
1100 return vmg->target;
1101 }
1102
1103 return NULL;
1104 }
1105
1106 /*
1107 * vma_merge_copied_range - Attempt to merge a VMA that is being copied by
1108 * mremap()
1109 *
1110 * @vmg: Describes the VMA we are adding, in the copied-to range @vmg->start to
1111 * @vmg->end (exclusive), which we try to merge with any adjacent VMAs if
1112 * possible.
1113 *
1114 * vmg->prev, next, start, end, pgoff should all be relative to the COPIED TO
1115 * range, i.e. the target range for the VMA.
1116 *
1117 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1118 * to the VMA we expanded.
1119 *
1120 * ASSUMPTIONS: Same as vma_merge_new_range(), except vmg->middle must contain
1121 * the copied-from VMA.
1122 */
vma_merge_copied_range(struct vma_merge_struct * vmg)1123 static struct vm_area_struct *vma_merge_copied_range(struct vma_merge_struct *vmg)
1124 {
1125 /* We must have a copied-from VMA. */
1126 VM_WARN_ON_VMG(!vmg->middle, vmg);
1127
1128 vmg->copied_from = vmg->middle;
1129 vmg->middle = NULL;
1130 return vma_merge_new_range(vmg);
1131 }
1132
1133 /*
1134 * vma_expand - Expand an existing VMA
1135 *
1136 * @vmg: Describes a VMA expansion operation.
1137 *
1138 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1139 * Will expand over vmg->next if it's different from vmg->target and vmg->end ==
1140 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with
1141 * vmg->next needs to be handled by the caller.
1142 *
1143 * Returns: 0 on success.
1144 *
1145 * ASSUMPTIONS:
1146 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1147 * - The caller must have set @vmg->target and @vmg->next.
1148 */
vma_expand(struct vma_merge_struct * vmg)1149 int vma_expand(struct vma_merge_struct *vmg)
1150 {
1151 struct vm_area_struct *anon_dup = NULL;
1152 struct vm_area_struct *target = vmg->target;
1153 struct vm_area_struct *next = vmg->next;
1154 bool remove_next = false;
1155 vm_flags_t sticky_flags;
1156 int ret = 0;
1157
1158 mmap_assert_write_locked(vmg->mm);
1159 vma_start_write(target);
1160
1161 if (next && target != next && vmg->end == next->vm_end)
1162 remove_next = true;
1163
1164 /* We must have a target. */
1165 VM_WARN_ON_VMG(!target, vmg);
1166 /* This should have already been checked by this point. */
1167 VM_WARN_ON_VMG(remove_next && !can_merge_remove_vma(next), vmg);
1168 /* Not merging but overwriting any part of next is not handled. */
1169 VM_WARN_ON_VMG(next && !remove_next &&
1170 next != target && vmg->end > next->vm_start, vmg);
1171 /* Only handles expanding. */
1172 VM_WARN_ON_VMG(target->vm_start < vmg->start ||
1173 target->vm_end > vmg->end, vmg);
1174
1175 sticky_flags = vmg->vm_flags & VM_STICKY;
1176 sticky_flags |= target->vm_flags & VM_STICKY;
1177 if (remove_next)
1178 sticky_flags |= next->vm_flags & VM_STICKY;
1179
1180 /*
1181 * If we are removing the next VMA or copying from a VMA
1182 * (e.g. mremap()'ing), we must propagate anon_vma state.
1183 *
1184 * Note that, by convention, callers ignore OOM for this case, so
1185 * we don't need to account for vmg->give_up_on_mm here.
1186 */
1187 if (remove_next)
1188 ret = dup_anon_vma(target, next, &anon_dup);
1189 if (!ret && vmg->copied_from)
1190 ret = dup_anon_vma(target, vmg->copied_from, &anon_dup);
1191 if (ret)
1192 return ret;
1193
1194 if (remove_next) {
1195 vma_start_write(next);
1196 vmg->__remove_next = true;
1197 }
1198 if (commit_merge(vmg))
1199 goto nomem;
1200
1201 vm_flags_set(target, sticky_flags);
1202 return 0;
1203
1204 nomem:
1205 if (anon_dup)
1206 unlink_anon_vmas(anon_dup);
1207 /*
1208 * If the user requests that we just give upon OOM, we are safe to do so
1209 * here, as commit merge provides this contract to us. Nothing has been
1210 * changed - no harm no foul, just don't report it.
1211 */
1212 if (!vmg->give_up_on_oom)
1213 vmg->state = VMA_MERGE_ERROR_NOMEM;
1214 return -ENOMEM;
1215 }
1216
1217 /*
1218 * vma_shrink() - Reduce an existing VMAs memory area
1219 * @vmi: The vma iterator
1220 * @vma: The VMA to modify
1221 * @start: The new start
1222 * @end: The new end
1223 *
1224 * Returns: 0 on success, -ENOMEM otherwise
1225 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1226 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1227 unsigned long start, unsigned long end, pgoff_t pgoff)
1228 {
1229 struct vma_prepare vp;
1230
1231 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1232
1233 if (vma->vm_start < start)
1234 vma_iter_config(vmi, vma->vm_start, start);
1235 else
1236 vma_iter_config(vmi, end, vma->vm_end);
1237
1238 if (vma_iter_prealloc(vmi, NULL))
1239 return -ENOMEM;
1240
1241 vma_start_write(vma);
1242
1243 init_vma_prep(&vp, vma);
1244 vma_prepare(&vp);
1245 vma_adjust_trans_huge(vma, start, end, NULL);
1246
1247 vma_iter_clear(vmi);
1248 vma_set_range(vma, start, end, pgoff);
1249 vma_complete(&vp, vmi, vma->vm_mm);
1250 validate_mm(vma->vm_mm);
1251 return 0;
1252 }
1253
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1254 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1255 struct ma_state *mas_detach, bool mm_wr_locked)
1256 {
1257 struct mmu_gather tlb;
1258
1259 if (!vms->clear_ptes) /* Nothing to do */
1260 return;
1261
1262 /*
1263 * We can free page tables without write-locking mmap_lock because VMAs
1264 * were isolated before we downgraded mmap_lock.
1265 */
1266 mas_set(mas_detach, 1);
1267 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1268 update_hiwater_rss(vms->vma->vm_mm);
1269 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1270 vms->vma_count);
1271
1272 mas_set(mas_detach, 1);
1273 /* start and end may be different if there is no prev or next vma. */
1274 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1275 vms->unmap_end, mm_wr_locked);
1276 tlb_finish_mmu(&tlb);
1277 vms->clear_ptes = false;
1278 }
1279
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1280 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1281 struct ma_state *mas_detach)
1282 {
1283 struct vm_area_struct *vma;
1284
1285 if (!vms->nr_pages)
1286 return;
1287
1288 vms_clear_ptes(vms, mas_detach, true);
1289 mas_set(mas_detach, 0);
1290 mas_for_each(mas_detach, vma, ULONG_MAX)
1291 vma_close(vma);
1292 }
1293
1294 /*
1295 * vms_complete_munmap_vmas() - Finish the munmap() operation
1296 * @vms: The vma munmap struct
1297 * @mas_detach: The maple state of the detached vmas
1298 *
1299 * This updates the mm_struct, unmaps the region, frees the resources
1300 * used for the munmap() and may downgrade the lock - if requested. Everything
1301 * needed to be done once the vma maple tree is updated.
1302 */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1303 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1304 struct ma_state *mas_detach)
1305 {
1306 struct vm_area_struct *vma;
1307 struct mm_struct *mm;
1308
1309 mm = current->mm;
1310 mm->map_count -= vms->vma_count;
1311 mm->locked_vm -= vms->locked_vm;
1312 if (vms->unlock)
1313 mmap_write_downgrade(mm);
1314
1315 if (!vms->nr_pages)
1316 return;
1317
1318 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1319 /* Update high watermark before we lower total_vm */
1320 update_hiwater_vm(mm);
1321 /* Stat accounting */
1322 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1323 /* Paranoid bookkeeping */
1324 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1325 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1326 VM_WARN_ON(vms->data_vm > mm->data_vm);
1327 mm->exec_vm -= vms->exec_vm;
1328 mm->stack_vm -= vms->stack_vm;
1329 mm->data_vm -= vms->data_vm;
1330
1331 /* Remove and clean up vmas */
1332 mas_set(mas_detach, 0);
1333 mas_for_each(mas_detach, vma, ULONG_MAX)
1334 remove_vma(vma);
1335
1336 vm_unacct_memory(vms->nr_accounted);
1337 validate_mm(mm);
1338 if (vms->unlock)
1339 mmap_read_unlock(mm);
1340
1341 __mt_destroy(mas_detach->tree);
1342 }
1343
1344 /*
1345 * reattach_vmas() - Undo any munmap work and free resources
1346 * @mas_detach: The maple state with the detached maple tree
1347 *
1348 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1349 */
reattach_vmas(struct ma_state * mas_detach)1350 static void reattach_vmas(struct ma_state *mas_detach)
1351 {
1352 struct vm_area_struct *vma;
1353
1354 mas_set(mas_detach, 0);
1355 mas_for_each(mas_detach, vma, ULONG_MAX)
1356 vma_mark_attached(vma);
1357
1358 __mt_destroy(mas_detach->tree);
1359 }
1360
1361 /*
1362 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1363 * for removal at a later date. Handles splitting first and last if necessary
1364 * and marking the vmas as isolated.
1365 *
1366 * @vms: The vma munmap struct
1367 * @mas_detach: The maple state tracking the detached tree
1368 *
1369 * Return: 0 on success, error otherwise
1370 */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1371 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1372 struct ma_state *mas_detach)
1373 {
1374 struct vm_area_struct *next = NULL;
1375 int error;
1376
1377 /*
1378 * If we need to split any vma, do it now to save pain later.
1379 * Does it split the first one?
1380 */
1381 if (vms->start > vms->vma->vm_start) {
1382
1383 /*
1384 * Make sure that map_count on return from munmap() will
1385 * not exceed its limit; but let map_count go just above
1386 * its limit temporarily, to help free resources as expected.
1387 */
1388 if (vms->end < vms->vma->vm_end &&
1389 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1390 error = -ENOMEM;
1391 goto map_count_exceeded;
1392 }
1393
1394 /* Don't bother splitting the VMA if we can't unmap it anyway */
1395 if (vma_is_sealed(vms->vma)) {
1396 error = -EPERM;
1397 goto start_split_failed;
1398 }
1399
1400 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1401 if (error)
1402 goto start_split_failed;
1403 }
1404 vms->prev = vma_prev(vms->vmi);
1405 if (vms->prev)
1406 vms->unmap_start = vms->prev->vm_end;
1407
1408 /*
1409 * Detach a range of VMAs from the mm. Using next as a temp variable as
1410 * it is always overwritten.
1411 */
1412 for_each_vma_range(*(vms->vmi), next, vms->end) {
1413 long nrpages;
1414
1415 if (vma_is_sealed(next)) {
1416 error = -EPERM;
1417 goto modify_vma_failed;
1418 }
1419 /* Does it split the end? */
1420 if (next->vm_end > vms->end) {
1421 error = __split_vma(vms->vmi, next, vms->end, 0);
1422 if (error)
1423 goto end_split_failed;
1424 }
1425 vma_start_write(next);
1426 mas_set(mas_detach, vms->vma_count++);
1427 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1428 if (error)
1429 goto munmap_gather_failed;
1430
1431 vma_mark_detached(next);
1432 nrpages = vma_pages(next);
1433
1434 vms->nr_pages += nrpages;
1435 if (next->vm_flags & VM_LOCKED)
1436 vms->locked_vm += nrpages;
1437
1438 if (next->vm_flags & VM_ACCOUNT)
1439 vms->nr_accounted += nrpages;
1440
1441 if (is_exec_mapping(next->vm_flags))
1442 vms->exec_vm += nrpages;
1443 else if (is_stack_mapping(next->vm_flags))
1444 vms->stack_vm += nrpages;
1445 else if (is_data_mapping(next->vm_flags))
1446 vms->data_vm += nrpages;
1447
1448 if (vms->uf) {
1449 /*
1450 * If userfaultfd_unmap_prep returns an error the vmas
1451 * will remain split, but userland will get a
1452 * highly unexpected error anyway. This is no
1453 * different than the case where the first of the two
1454 * __split_vma fails, but we don't undo the first
1455 * split, despite we could. This is unlikely enough
1456 * failure that it's not worth optimizing it for.
1457 */
1458 error = userfaultfd_unmap_prep(next, vms->start,
1459 vms->end, vms->uf);
1460 if (error)
1461 goto userfaultfd_error;
1462 }
1463 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1464 BUG_ON(next->vm_start < vms->start);
1465 BUG_ON(next->vm_start > vms->end);
1466 #endif
1467 }
1468
1469 vms->next = vma_next(vms->vmi);
1470 if (vms->next)
1471 vms->unmap_end = vms->next->vm_start;
1472
1473 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1474 /* Make sure no VMAs are about to be lost. */
1475 {
1476 MA_STATE(test, mas_detach->tree, 0, 0);
1477 struct vm_area_struct *vma_mas, *vma_test;
1478 int test_count = 0;
1479
1480 vma_iter_set(vms->vmi, vms->start);
1481 rcu_read_lock();
1482 vma_test = mas_find(&test, vms->vma_count - 1);
1483 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1484 BUG_ON(vma_mas != vma_test);
1485 test_count++;
1486 vma_test = mas_next(&test, vms->vma_count - 1);
1487 }
1488 rcu_read_unlock();
1489 BUG_ON(vms->vma_count != test_count);
1490 }
1491 #endif
1492
1493 while (vma_iter_addr(vms->vmi) > vms->start)
1494 vma_iter_prev_range(vms->vmi);
1495
1496 vms->clear_ptes = true;
1497 return 0;
1498
1499 userfaultfd_error:
1500 munmap_gather_failed:
1501 end_split_failed:
1502 modify_vma_failed:
1503 reattach_vmas(mas_detach);
1504 start_split_failed:
1505 map_count_exceeded:
1506 return error;
1507 }
1508
1509 /*
1510 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1511 * @vms: The vma munmap struct
1512 * @vmi: The vma iterator
1513 * @vma: The first vm_area_struct to munmap
1514 * @start: The aligned start address to munmap
1515 * @end: The aligned end address to munmap
1516 * @uf: The userfaultfd list_head
1517 * @unlock: Unlock after the operation. Only unlocked on success
1518 */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1519 static void init_vma_munmap(struct vma_munmap_struct *vms,
1520 struct vma_iterator *vmi, struct vm_area_struct *vma,
1521 unsigned long start, unsigned long end, struct list_head *uf,
1522 bool unlock)
1523 {
1524 vms->vmi = vmi;
1525 vms->vma = vma;
1526 if (vma) {
1527 vms->start = start;
1528 vms->end = end;
1529 } else {
1530 vms->start = vms->end = 0;
1531 }
1532 vms->unlock = unlock;
1533 vms->uf = uf;
1534 vms->vma_count = 0;
1535 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1536 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1537 vms->unmap_start = FIRST_USER_ADDRESS;
1538 vms->unmap_end = USER_PGTABLES_CEILING;
1539 vms->clear_ptes = false;
1540 }
1541
1542 /*
1543 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1544 * @vmi: The vma iterator
1545 * @vma: The starting vm_area_struct
1546 * @mm: The mm_struct
1547 * @start: The aligned start address to munmap.
1548 * @end: The aligned end address to munmap.
1549 * @uf: The userfaultfd list_head
1550 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1551 * success.
1552 *
1553 * Return: 0 on success and drops the lock if so directed, error and leaves the
1554 * lock held otherwise.
1555 */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1556 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1557 struct mm_struct *mm, unsigned long start, unsigned long end,
1558 struct list_head *uf, bool unlock)
1559 {
1560 struct maple_tree mt_detach;
1561 MA_STATE(mas_detach, &mt_detach, 0, 0);
1562 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1563 mt_on_stack(mt_detach);
1564 struct vma_munmap_struct vms;
1565 int error;
1566
1567 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1568 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1569 if (error)
1570 goto gather_failed;
1571
1572 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1573 if (error)
1574 goto clear_tree_failed;
1575
1576 /* Point of no return */
1577 vms_complete_munmap_vmas(&vms, &mas_detach);
1578 return 0;
1579
1580 clear_tree_failed:
1581 reattach_vmas(&mas_detach);
1582 gather_failed:
1583 validate_mm(mm);
1584 return error;
1585 }
1586
1587 /*
1588 * do_vmi_munmap() - munmap a given range.
1589 * @vmi: The vma iterator
1590 * @mm: The mm_struct
1591 * @start: The start address to munmap
1592 * @len: The length of the range to munmap
1593 * @uf: The userfaultfd list_head
1594 * @unlock: set to true if the user wants to drop the mmap_lock on success
1595 *
1596 * This function takes a @mas that is either pointing to the previous VMA or set
1597 * to MA_START and sets it up to remove the mapping(s). The @len will be
1598 * aligned.
1599 *
1600 * Return: 0 on success and drops the lock if so directed, error and leaves the
1601 * lock held otherwise.
1602 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1603 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1604 unsigned long start, size_t len, struct list_head *uf,
1605 bool unlock)
1606 {
1607 unsigned long end;
1608 struct vm_area_struct *vma;
1609
1610 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1611 return -EINVAL;
1612
1613 end = start + PAGE_ALIGN(len);
1614 if (end == start)
1615 return -EINVAL;
1616
1617 /* Find the first overlapping VMA */
1618 vma = vma_find(vmi, end);
1619 if (!vma) {
1620 if (unlock)
1621 mmap_write_unlock(mm);
1622 return 0;
1623 }
1624
1625 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1626 }
1627
1628 /*
1629 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1630 * context and anonymous VMA name within the range [start, end).
1631 *
1632 * As a result, we might be able to merge the newly modified VMA range with an
1633 * adjacent VMA with identical properties.
1634 *
1635 * If no merge is possible and the range does not span the entirety of the VMA,
1636 * we then need to split the VMA to accommodate the change.
1637 *
1638 * The function returns either the merged VMA, the original VMA if a split was
1639 * required instead, or an error if the split failed.
1640 */
vma_modify(struct vma_merge_struct * vmg)1641 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1642 {
1643 struct vm_area_struct *vma = vmg->middle;
1644 unsigned long start = vmg->start;
1645 unsigned long end = vmg->end;
1646 struct vm_area_struct *merged;
1647
1648 /* First, try to merge. */
1649 merged = vma_merge_existing_range(vmg);
1650 if (merged)
1651 return merged;
1652 if (vmg_nomem(vmg))
1653 return ERR_PTR(-ENOMEM);
1654
1655 /*
1656 * Split can fail for reasons other than OOM, so if the user requests
1657 * this it's probably a mistake.
1658 */
1659 VM_WARN_ON(vmg->give_up_on_oom &&
1660 (vma->vm_start != start || vma->vm_end != end));
1661
1662 /* Split any preceding portion of the VMA. */
1663 if (vma->vm_start < start) {
1664 int err = split_vma(vmg->vmi, vma, start, 1);
1665
1666 if (err)
1667 return ERR_PTR(err);
1668 }
1669
1670 /* Split any trailing portion of the VMA. */
1671 if (vma->vm_end > end) {
1672 int err = split_vma(vmg->vmi, vma, end, 0);
1673
1674 if (err)
1675 return ERR_PTR(err);
1676 }
1677
1678 return vma;
1679 }
1680
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t * vm_flags_ptr)1681 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
1682 struct vm_area_struct *prev, struct vm_area_struct *vma,
1683 unsigned long start, unsigned long end,
1684 vm_flags_t *vm_flags_ptr)
1685 {
1686 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1687 const vm_flags_t vm_flags = *vm_flags_ptr;
1688 struct vm_area_struct *ret;
1689
1690 vmg.vm_flags = vm_flags;
1691
1692 ret = vma_modify(&vmg);
1693 if (IS_ERR(ret))
1694 return ret;
1695
1696 /*
1697 * For a merge to succeed, the flags must match those
1698 * requested. However, sticky flags may have been retained, so propagate
1699 * them to the caller.
1700 */
1701 if (vmg.state == VMA_MERGE_SUCCESS)
1702 *vm_flags_ptr = ret->vm_flags;
1703 return ret;
1704 }
1705
vma_modify_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct anon_vma_name * new_name)1706 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi,
1707 struct vm_area_struct *prev, struct vm_area_struct *vma,
1708 unsigned long start, unsigned long end,
1709 struct anon_vma_name *new_name)
1710 {
1711 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1712
1713 vmg.anon_name = new_name;
1714
1715 return vma_modify(&vmg);
1716 }
1717
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1718 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi,
1719 struct vm_area_struct *prev, struct vm_area_struct *vma,
1720 unsigned long start, unsigned long end,
1721 struct mempolicy *new_pol)
1722 {
1723 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1724
1725 vmg.policy = new_pol;
1726
1727 return vma_modify(&vmg);
1728 }
1729
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t vm_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1730 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi,
1731 struct vm_area_struct *prev, struct vm_area_struct *vma,
1732 unsigned long start, unsigned long end, vm_flags_t vm_flags,
1733 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom)
1734 {
1735 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1736
1737 vmg.vm_flags = vm_flags;
1738 vmg.uffd_ctx = new_ctx;
1739 if (give_up_on_oom)
1740 vmg.give_up_on_oom = true;
1741
1742 return vma_modify(&vmg);
1743 }
1744
1745 /*
1746 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1747 * VMA with identical properties.
1748 */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1749 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1750 struct vm_area_struct *vma,
1751 unsigned long delta)
1752 {
1753 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1754
1755 vmg.next = vma_iter_next_rewind(vmi, NULL);
1756 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1757
1758 return vma_merge_new_range(&vmg);
1759 }
1760
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1761 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1762 {
1763 vb->count = 0;
1764 }
1765
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1766 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1767 {
1768 struct address_space *mapping;
1769 int i;
1770
1771 mapping = vb->vmas[0]->vm_file->f_mapping;
1772 i_mmap_lock_write(mapping);
1773 for (i = 0; i < vb->count; i++) {
1774 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1775 __remove_shared_vm_struct(vb->vmas[i], mapping);
1776 }
1777 i_mmap_unlock_write(mapping);
1778
1779 unlink_file_vma_batch_init(vb);
1780 }
1781
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1782 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1783 struct vm_area_struct *vma)
1784 {
1785 if (vma->vm_file == NULL)
1786 return;
1787
1788 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1789 vb->count == ARRAY_SIZE(vb->vmas))
1790 unlink_file_vma_batch_process(vb);
1791
1792 vb->vmas[vb->count] = vma;
1793 vb->count++;
1794 }
1795
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1796 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1797 {
1798 if (vb->count > 0)
1799 unlink_file_vma_batch_process(vb);
1800 }
1801
vma_link_file(struct vm_area_struct * vma,bool hold_rmap_lock)1802 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock)
1803 {
1804 struct file *file = vma->vm_file;
1805 struct address_space *mapping;
1806
1807 if (file) {
1808 mapping = file->f_mapping;
1809 i_mmap_lock_write(mapping);
1810 __vma_link_file(vma, mapping);
1811 if (!hold_rmap_lock)
1812 i_mmap_unlock_write(mapping);
1813 }
1814 }
1815
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1816 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1817 {
1818 VMA_ITERATOR(vmi, mm, 0);
1819
1820 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1821 if (vma_iter_prealloc(&vmi, vma))
1822 return -ENOMEM;
1823
1824 vma_start_write(vma);
1825 vma_iter_store_new(&vmi, vma);
1826 vma_link_file(vma, /* hold_rmap_lock= */false);
1827 mm->map_count++;
1828 validate_mm(mm);
1829 return 0;
1830 }
1831
1832 /*
1833 * Copy the vma structure to a new location in the same mm,
1834 * prior to moving page table entries, to effect an mremap move.
1835 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1836 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1837 unsigned long addr, unsigned long len, pgoff_t pgoff,
1838 bool *need_rmap_locks)
1839 {
1840 struct vm_area_struct *vma = *vmap;
1841 unsigned long vma_start = vma->vm_start;
1842 struct mm_struct *mm = vma->vm_mm;
1843 struct vm_area_struct *new_vma;
1844 bool faulted_in_anon_vma = true;
1845 VMA_ITERATOR(vmi, mm, addr);
1846 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1847
1848 /*
1849 * If anonymous vma has not yet been faulted, update new pgoff
1850 * to match new location, to increase its chance of merging.
1851 */
1852 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1853 pgoff = addr >> PAGE_SHIFT;
1854 faulted_in_anon_vma = false;
1855 }
1856
1857 /*
1858 * If the VMA we are copying might contain a uprobe PTE, ensure
1859 * that we do not establish one upon merge. Otherwise, when mremap()
1860 * moves page tables, it will orphan the newly created PTE.
1861 */
1862 if (vma->vm_file)
1863 vmg.skip_vma_uprobe = true;
1864
1865 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1866 if (new_vma && new_vma->vm_start < addr + len)
1867 return NULL; /* should never get here */
1868
1869 vmg.pgoff = pgoff;
1870 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1871 new_vma = vma_merge_copied_range(&vmg);
1872
1873 if (new_vma) {
1874 /*
1875 * Source vma may have been merged into new_vma
1876 */
1877 if (unlikely(vma_start >= new_vma->vm_start &&
1878 vma_start < new_vma->vm_end)) {
1879 /*
1880 * The only way we can get a vma_merge with
1881 * self during an mremap is if the vma hasn't
1882 * been faulted in yet and we were allowed to
1883 * reset the dst vma->vm_pgoff to the
1884 * destination address of the mremap to allow
1885 * the merge to happen. mremap must change the
1886 * vm_pgoff linearity between src and dst vmas
1887 * (in turn preventing a vma_merge) to be
1888 * safe. It is only safe to keep the vm_pgoff
1889 * linear if there are no pages mapped yet.
1890 */
1891 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1892 *vmap = vma = new_vma;
1893 }
1894 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1895 } else {
1896 new_vma = vm_area_dup(vma);
1897 if (!new_vma)
1898 goto out;
1899 vma_set_range(new_vma, addr, addr + len, pgoff);
1900 if (vma_dup_policy(vma, new_vma))
1901 goto out_free_vma;
1902 if (anon_vma_clone(new_vma, vma))
1903 goto out_free_mempol;
1904 if (new_vma->vm_file)
1905 get_file(new_vma->vm_file);
1906 if (new_vma->vm_ops && new_vma->vm_ops->open)
1907 new_vma->vm_ops->open(new_vma);
1908 if (vma_link(mm, new_vma))
1909 goto out_vma_link;
1910 *need_rmap_locks = false;
1911 }
1912 return new_vma;
1913
1914 out_vma_link:
1915 fixup_hugetlb_reservations(new_vma);
1916 vma_close(new_vma);
1917
1918 if (new_vma->vm_file)
1919 fput(new_vma->vm_file);
1920
1921 unlink_anon_vmas(new_vma);
1922 out_free_mempol:
1923 mpol_put(vma_policy(new_vma));
1924 out_free_vma:
1925 vm_area_free(new_vma);
1926 out:
1927 return NULL;
1928 }
1929
1930 /*
1931 * Rough compatibility check to quickly see if it's even worth looking
1932 * at sharing an anon_vma.
1933 *
1934 * They need to have the same vm_file, and the flags can only differ
1935 * in things that mprotect may change.
1936 *
1937 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1938 * we can merge the two vma's. For example, we refuse to merge a vma if
1939 * there is a vm_ops->close() function, because that indicates that the
1940 * driver is doing some kind of reference counting. But that doesn't
1941 * really matter for the anon_vma sharing case.
1942 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1943 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1944 {
1945 return a->vm_end == b->vm_start &&
1946 mpol_equal(vma_policy(a), vma_policy(b)) &&
1947 a->vm_file == b->vm_file &&
1948 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) &&
1949 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1950 }
1951
1952 /*
1953 * Do some basic sanity checking to see if we can re-use the anon_vma
1954 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1955 * the same as 'old', the other will be the new one that is trying
1956 * to share the anon_vma.
1957 *
1958 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1959 * the anon_vma of 'old' is concurrently in the process of being set up
1960 * by another page fault trying to merge _that_. But that's ok: if it
1961 * is being set up, that automatically means that it will be a singleton
1962 * acceptable for merging, so we can do all of this optimistically. But
1963 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1964 *
1965 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1966 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1967 * is to return an anon_vma that is "complex" due to having gone through
1968 * a fork).
1969 *
1970 * We also make sure that the two vma's are compatible (adjacent,
1971 * and with the same memory policies). That's all stable, even with just
1972 * a read lock on the mmap_lock.
1973 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1974 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1975 struct vm_area_struct *a,
1976 struct vm_area_struct *b)
1977 {
1978 if (anon_vma_compatible(a, b)) {
1979 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1980
1981 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1982 return anon_vma;
1983 }
1984 return NULL;
1985 }
1986
1987 /*
1988 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1989 * neighbouring vmas for a suitable anon_vma, before it goes off
1990 * to allocate a new anon_vma. It checks because a repetitive
1991 * sequence of mprotects and faults may otherwise lead to distinct
1992 * anon_vmas being allocated, preventing vma merge in subsequent
1993 * mprotect.
1994 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1995 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1996 {
1997 struct anon_vma *anon_vma = NULL;
1998 struct vm_area_struct *prev, *next;
1999 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
2000
2001 /* Try next first. */
2002 next = vma_iter_load(&vmi);
2003 if (next) {
2004 anon_vma = reusable_anon_vma(next, vma, next);
2005 if (anon_vma)
2006 return anon_vma;
2007 }
2008
2009 prev = vma_prev(&vmi);
2010 VM_BUG_ON_VMA(prev != vma, vma);
2011 prev = vma_prev(&vmi);
2012 /* Try prev next. */
2013 if (prev)
2014 anon_vma = reusable_anon_vma(prev, prev, vma);
2015
2016 /*
2017 * We might reach here with anon_vma == NULL if we can't find
2018 * any reusable anon_vma.
2019 * There's no absolute need to look only at touching neighbours:
2020 * we could search further afield for "compatible" anon_vmas.
2021 * But it would probably just be a waste of time searching,
2022 * or lead to too many vmas hanging off the same anon_vma.
2023 * We're trying to allow mprotect remerging later on,
2024 * not trying to minimize memory used for anon_vmas.
2025 */
2026 return anon_vma;
2027 }
2028
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)2029 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
2030 {
2031 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
2032 }
2033
vma_is_shared_writable(struct vm_area_struct * vma)2034 static bool vma_is_shared_writable(struct vm_area_struct *vma)
2035 {
2036 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2037 (VM_WRITE | VM_SHARED);
2038 }
2039
vma_fs_can_writeback(struct vm_area_struct * vma)2040 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2041 {
2042 /* No managed pages to writeback. */
2043 if (vma->vm_flags & VM_PFNMAP)
2044 return false;
2045
2046 return vma->vm_file && vma->vm_file->f_mapping &&
2047 mapping_can_writeback(vma->vm_file->f_mapping);
2048 }
2049
2050 /*
2051 * Does this VMA require the underlying folios to have their dirty state
2052 * tracked?
2053 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)2054 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2055 {
2056 /* Only shared, writable VMAs require dirty tracking. */
2057 if (!vma_is_shared_writable(vma))
2058 return false;
2059
2060 /* Does the filesystem need to be notified? */
2061 if (vm_ops_needs_writenotify(vma->vm_ops))
2062 return true;
2063
2064 /*
2065 * Even if the filesystem doesn't indicate a need for writenotify, if it
2066 * can writeback, dirty tracking is still required.
2067 */
2068 return vma_fs_can_writeback(vma);
2069 }
2070
2071 /*
2072 * Some shared mappings will want the pages marked read-only
2073 * to track write events. If so, we'll downgrade vm_page_prot
2074 * to the private version (using protection_map[] without the
2075 * VM_SHARED bit).
2076 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)2077 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2078 {
2079 /* If it was private or non-writable, the write bit is already clear */
2080 if (!vma_is_shared_writable(vma))
2081 return false;
2082
2083 /* The backer wishes to know when pages are first written to? */
2084 if (vm_ops_needs_writenotify(vma->vm_ops))
2085 return true;
2086
2087 /* The open routine did something to the protections that pgprot_modify
2088 * won't preserve? */
2089 if (pgprot_val(vm_page_prot) !=
2090 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2091 return false;
2092
2093 /*
2094 * Do we need to track softdirty? hugetlb does not support softdirty
2095 * tracking yet.
2096 */
2097 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2098 return true;
2099
2100 /* Do we need write faults for uffd-wp tracking? */
2101 if (userfaultfd_wp(vma))
2102 return true;
2103
2104 /* Can the mapping track the dirty pages? */
2105 return vma_fs_can_writeback(vma);
2106 }
2107
2108 static DEFINE_MUTEX(mm_all_locks_mutex);
2109
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2110 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2111 {
2112 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2113 /*
2114 * The LSB of head.next can't change from under us
2115 * because we hold the mm_all_locks_mutex.
2116 */
2117 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2118 /*
2119 * We can safely modify head.next after taking the
2120 * anon_vma->root->rwsem. If some other vma in this mm shares
2121 * the same anon_vma we won't take it again.
2122 *
2123 * No need of atomic instructions here, head.next
2124 * can't change from under us thanks to the
2125 * anon_vma->root->rwsem.
2126 */
2127 if (__test_and_set_bit(0, (unsigned long *)
2128 &anon_vma->root->rb_root.rb_root.rb_node))
2129 BUG();
2130 }
2131 }
2132
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2133 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2134 {
2135 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2136 /*
2137 * AS_MM_ALL_LOCKS can't change from under us because
2138 * we hold the mm_all_locks_mutex.
2139 *
2140 * Operations on ->flags have to be atomic because
2141 * even if AS_MM_ALL_LOCKS is stable thanks to the
2142 * mm_all_locks_mutex, there may be other cpus
2143 * changing other bitflags in parallel to us.
2144 */
2145 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2146 BUG();
2147 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2148 }
2149 }
2150
2151 /*
2152 * This operation locks against the VM for all pte/vma/mm related
2153 * operations that could ever happen on a certain mm. This includes
2154 * vmtruncate, try_to_unmap, and all page faults.
2155 *
2156 * The caller must take the mmap_lock in write mode before calling
2157 * mm_take_all_locks(). The caller isn't allowed to release the
2158 * mmap_lock until mm_drop_all_locks() returns.
2159 *
2160 * mmap_lock in write mode is required in order to block all operations
2161 * that could modify pagetables and free pages without need of
2162 * altering the vma layout. It's also needed in write mode to avoid new
2163 * anon_vmas to be associated with existing vmas.
2164 *
2165 * A single task can't take more than one mm_take_all_locks() in a row
2166 * or it would deadlock.
2167 *
2168 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2169 * mapping->flags avoid to take the same lock twice, if more than one
2170 * vma in this mm is backed by the same anon_vma or address_space.
2171 *
2172 * We take locks in following order, accordingly to comment at beginning
2173 * of mm/rmap.c:
2174 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2175 * hugetlb mapping);
2176 * - all vmas marked locked
2177 * - all i_mmap_rwsem locks;
2178 * - all anon_vma->rwseml
2179 *
2180 * We can take all locks within these types randomly because the VM code
2181 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2182 * mm_all_locks_mutex.
2183 *
2184 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2185 * that may have to take thousand of locks.
2186 *
2187 * mm_take_all_locks() can fail if it's interrupted by signals.
2188 */
mm_take_all_locks(struct mm_struct * mm)2189 int mm_take_all_locks(struct mm_struct *mm)
2190 {
2191 struct vm_area_struct *vma;
2192 struct anon_vma_chain *avc;
2193 VMA_ITERATOR(vmi, mm, 0);
2194
2195 mmap_assert_write_locked(mm);
2196
2197 mutex_lock(&mm_all_locks_mutex);
2198
2199 /*
2200 * vma_start_write() does not have a complement in mm_drop_all_locks()
2201 * because vma_start_write() is always asymmetrical; it marks a VMA as
2202 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2203 * is reached.
2204 */
2205 for_each_vma(vmi, vma) {
2206 if (signal_pending(current))
2207 goto out_unlock;
2208 vma_start_write(vma);
2209 }
2210
2211 vma_iter_init(&vmi, mm, 0);
2212 for_each_vma(vmi, vma) {
2213 if (signal_pending(current))
2214 goto out_unlock;
2215 if (vma->vm_file && vma->vm_file->f_mapping &&
2216 is_vm_hugetlb_page(vma))
2217 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2218 }
2219
2220 vma_iter_init(&vmi, mm, 0);
2221 for_each_vma(vmi, vma) {
2222 if (signal_pending(current))
2223 goto out_unlock;
2224 if (vma->vm_file && vma->vm_file->f_mapping &&
2225 !is_vm_hugetlb_page(vma))
2226 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2227 }
2228
2229 vma_iter_init(&vmi, mm, 0);
2230 for_each_vma(vmi, vma) {
2231 if (signal_pending(current))
2232 goto out_unlock;
2233 if (vma->anon_vma)
2234 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2235 vm_lock_anon_vma(mm, avc->anon_vma);
2236 }
2237
2238 return 0;
2239
2240 out_unlock:
2241 mm_drop_all_locks(mm);
2242 return -EINTR;
2243 }
2244
vm_unlock_anon_vma(struct anon_vma * anon_vma)2245 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2246 {
2247 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2248 /*
2249 * The LSB of head.next can't change to 0 from under
2250 * us because we hold the mm_all_locks_mutex.
2251 *
2252 * We must however clear the bitflag before unlocking
2253 * the vma so the users using the anon_vma->rb_root will
2254 * never see our bitflag.
2255 *
2256 * No need of atomic instructions here, head.next
2257 * can't change from under us until we release the
2258 * anon_vma->root->rwsem.
2259 */
2260 if (!__test_and_clear_bit(0, (unsigned long *)
2261 &anon_vma->root->rb_root.rb_root.rb_node))
2262 BUG();
2263 anon_vma_unlock_write(anon_vma);
2264 }
2265 }
2266
vm_unlock_mapping(struct address_space * mapping)2267 static void vm_unlock_mapping(struct address_space *mapping)
2268 {
2269 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2270 /*
2271 * AS_MM_ALL_LOCKS can't change to 0 from under us
2272 * because we hold the mm_all_locks_mutex.
2273 */
2274 i_mmap_unlock_write(mapping);
2275 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2276 &mapping->flags))
2277 BUG();
2278 }
2279 }
2280
2281 /*
2282 * The mmap_lock cannot be released by the caller until
2283 * mm_drop_all_locks() returns.
2284 */
mm_drop_all_locks(struct mm_struct * mm)2285 void mm_drop_all_locks(struct mm_struct *mm)
2286 {
2287 struct vm_area_struct *vma;
2288 struct anon_vma_chain *avc;
2289 VMA_ITERATOR(vmi, mm, 0);
2290
2291 mmap_assert_write_locked(mm);
2292 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2293
2294 for_each_vma(vmi, vma) {
2295 if (vma->anon_vma)
2296 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2297 vm_unlock_anon_vma(avc->anon_vma);
2298 if (vma->vm_file && vma->vm_file->f_mapping)
2299 vm_unlock_mapping(vma->vm_file->f_mapping);
2300 }
2301
2302 mutex_unlock(&mm_all_locks_mutex);
2303 }
2304
2305 /*
2306 * We account for memory if it's a private writeable mapping,
2307 * not hugepages and VM_NORESERVE wasn't set.
2308 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2309 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2310 {
2311 /*
2312 * hugetlb has its own accounting separate from the core VM
2313 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2314 */
2315 if (file && is_file_hugepages(file))
2316 return false;
2317
2318 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2319 }
2320
2321 /*
2322 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2323 * operation.
2324 * @vms: The vma unmap structure
2325 * @mas_detach: The maple state with the detached maple tree
2326 *
2327 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2328 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2329 * have been called), then a NULL is written over the vmas and the vmas are
2330 * removed (munmap() completed).
2331 */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2332 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2333 struct ma_state *mas_detach)
2334 {
2335 struct ma_state *mas = &vms->vmi->mas;
2336
2337 if (!vms->nr_pages)
2338 return;
2339
2340 if (vms->clear_ptes)
2341 return reattach_vmas(mas_detach);
2342
2343 /*
2344 * Aborting cannot just call the vm_ops open() because they are often
2345 * not symmetrical and state data has been lost. Resort to the old
2346 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2347 */
2348 mas_set_range(mas, vms->start, vms->end - 1);
2349 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2350 /* Clean up the insertion of the unfortunate gap */
2351 vms_complete_munmap_vmas(vms, mas_detach);
2352 }
2353
update_ksm_flags(struct mmap_state * map)2354 static void update_ksm_flags(struct mmap_state *map)
2355 {
2356 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags);
2357 }
2358
set_desc_from_map(struct vm_area_desc * desc,const struct mmap_state * map)2359 static void set_desc_from_map(struct vm_area_desc *desc,
2360 const struct mmap_state *map)
2361 {
2362 desc->start = map->addr;
2363 desc->end = map->end;
2364
2365 desc->pgoff = map->pgoff;
2366 desc->vm_file = map->file;
2367 desc->vm_flags = map->vm_flags;
2368 desc->page_prot = map->page_prot;
2369 }
2370
2371 /*
2372 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be
2373 * unmapped once the map operation is completed, check limits, account mapping
2374 * and clean up any pre-existing VMAs.
2375 *
2376 * As a result it sets up the @map and @desc objects.
2377 *
2378 * @map: Mapping state.
2379 * @desc: VMA descriptor
2380 * @uf: Userfaultfd context list.
2381 *
2382 * Returns: 0 on success, error code otherwise.
2383 */
__mmap_setup(struct mmap_state * map,struct vm_area_desc * desc,struct list_head * uf)2384 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc,
2385 struct list_head *uf)
2386 {
2387 int error;
2388 struct vma_iterator *vmi = map->vmi;
2389 struct vma_munmap_struct *vms = &map->vms;
2390
2391 /* Find the first overlapping VMA and initialise unmap state. */
2392 vms->vma = vma_find(vmi, map->end);
2393 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2394 /* unlock = */ false);
2395
2396 /* OK, we have overlapping VMAs - prepare to unmap them. */
2397 if (vms->vma) {
2398 mt_init_flags(&map->mt_detach,
2399 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2400 mt_on_stack(map->mt_detach);
2401 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2402 /* Prepare to unmap any existing mapping in the area */
2403 error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2404 if (error) {
2405 /* On error VMAs will already have been reattached. */
2406 vms->nr_pages = 0;
2407 return error;
2408 }
2409
2410 map->next = vms->next;
2411 map->prev = vms->prev;
2412 } else {
2413 map->next = vma_iter_next_rewind(vmi, &map->prev);
2414 }
2415
2416 /* Check against address space limit. */
2417 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages))
2418 return -ENOMEM;
2419
2420 /* Private writable mapping: check memory availability. */
2421 if (accountable_mapping(map->file, map->vm_flags)) {
2422 map->charged = map->pglen;
2423 map->charged -= vms->nr_accounted;
2424 if (map->charged) {
2425 error = security_vm_enough_memory_mm(map->mm, map->charged);
2426 if (error)
2427 return error;
2428 }
2429
2430 vms->nr_accounted = 0;
2431 map->vm_flags |= VM_ACCOUNT;
2432 }
2433
2434 /*
2435 * Clear PTEs while the vma is still in the tree so that rmap
2436 * cannot race with the freeing later in the truncate scenario.
2437 * This is also needed for mmap_file(), which is why vm_ops
2438 * close function is called.
2439 */
2440 vms_clean_up_area(vms, &map->mas_detach);
2441
2442 set_desc_from_map(desc, map);
2443 return 0;
2444 }
2445
2446
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2447 static int __mmap_new_file_vma(struct mmap_state *map,
2448 struct vm_area_struct *vma)
2449 {
2450 struct vma_iterator *vmi = map->vmi;
2451 int error;
2452
2453 vma->vm_file = get_file(map->file);
2454
2455 if (!map->file->f_op->mmap)
2456 return 0;
2457
2458 error = mmap_file(vma->vm_file, vma);
2459 if (error) {
2460 fput(vma->vm_file);
2461 vma->vm_file = NULL;
2462
2463 vma_iter_set(vmi, vma->vm_end);
2464 /* Undo any partial mapping done by a device driver. */
2465 unmap_region(&vmi->mas, vma, map->prev, map->next);
2466
2467 return error;
2468 }
2469
2470 /* Drivers cannot alter the address of the VMA. */
2471 WARN_ON_ONCE(map->addr != vma->vm_start);
2472 /*
2473 * Drivers should not permit writability when previously it was
2474 * disallowed.
2475 */
2476 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags &&
2477 !(map->vm_flags & VM_MAYWRITE) &&
2478 (vma->vm_flags & VM_MAYWRITE));
2479
2480 map->file = vma->vm_file;
2481 map->vm_flags = vma->vm_flags;
2482
2483 return 0;
2484 }
2485
2486 /*
2487 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2488 * possible.
2489 *
2490 * @map: Mapping state.
2491 * @vmap: Output pointer for the new VMA.
2492 *
2493 * Returns: Zero on success, or an error.
2494 */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2495 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2496 {
2497 struct vma_iterator *vmi = map->vmi;
2498 int error = 0;
2499 struct vm_area_struct *vma;
2500
2501 /*
2502 * Determine the object being mapped and call the appropriate
2503 * specific mapper. the address has already been validated, but
2504 * not unmapped, but the maps are removed from the list.
2505 */
2506 vma = vm_area_alloc(map->mm);
2507 if (!vma)
2508 return -ENOMEM;
2509
2510 vma_iter_config(vmi, map->addr, map->end);
2511 vma_set_range(vma, map->addr, map->end, map->pgoff);
2512 vm_flags_init(vma, map->vm_flags);
2513 vma->vm_page_prot = map->page_prot;
2514
2515 if (vma_iter_prealloc(vmi, vma)) {
2516 error = -ENOMEM;
2517 goto free_vma;
2518 }
2519
2520 if (map->file)
2521 error = __mmap_new_file_vma(map, vma);
2522 else if (map->vm_flags & VM_SHARED)
2523 error = shmem_zero_setup(vma);
2524 else
2525 vma_set_anonymous(vma);
2526
2527 if (error)
2528 goto free_iter_vma;
2529
2530 if (!map->check_ksm_early) {
2531 update_ksm_flags(map);
2532 vm_flags_init(vma, map->vm_flags);
2533 }
2534
2535 #ifdef CONFIG_SPARC64
2536 /* TODO: Fix SPARC ADI! */
2537 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags));
2538 #endif
2539
2540 /* Lock the VMA since it is modified after insertion into VMA tree */
2541 vma_start_write(vma);
2542 vma_iter_store_new(vmi, vma);
2543 map->mm->map_count++;
2544 vma_link_file(vma, map->hold_file_rmap_lock);
2545
2546 /*
2547 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2548 * call covers the non-merge case.
2549 */
2550 if (!vma_is_anonymous(vma))
2551 khugepaged_enter_vma(vma, map->vm_flags);
2552 *vmap = vma;
2553 return 0;
2554
2555 free_iter_vma:
2556 vma_iter_free(vmi);
2557 free_vma:
2558 vm_area_free(vma);
2559 return error;
2560 }
2561
2562 /*
2563 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2564 * statistics, handle locking and finalise the VMA.
2565 *
2566 * @map: Mapping state.
2567 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2568 */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2569 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2570 {
2571 struct mm_struct *mm = map->mm;
2572 vm_flags_t vm_flags = vma->vm_flags;
2573
2574 perf_event_mmap(vma);
2575
2576 /* Unmap any existing mapping in the area. */
2577 vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2578
2579 vm_stat_account(mm, vma->vm_flags, map->pglen);
2580 if (vm_flags & VM_LOCKED) {
2581 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2582 is_vm_hugetlb_page(vma) ||
2583 vma == get_gate_vma(mm))
2584 vm_flags_clear(vma, VM_LOCKED_MASK);
2585 else
2586 mm->locked_vm += map->pglen;
2587 }
2588
2589 if (vma->vm_file)
2590 uprobe_mmap(vma);
2591
2592 /*
2593 * New (or expanded) vma always get soft dirty status.
2594 * Otherwise user-space soft-dirty page tracker won't
2595 * be able to distinguish situation when vma area unmapped,
2596 * then new mapped in-place (which must be aimed as
2597 * a completely new data area).
2598 */
2599 if (pgtable_supports_soft_dirty())
2600 vm_flags_set(vma, VM_SOFTDIRTY);
2601
2602 vma_set_page_prot(vma);
2603 }
2604
call_action_prepare(struct mmap_state * map,struct vm_area_desc * desc)2605 static void call_action_prepare(struct mmap_state *map,
2606 struct vm_area_desc *desc)
2607 {
2608 struct mmap_action *action = &desc->action;
2609
2610 mmap_action_prepare(action, desc);
2611
2612 if (action->hide_from_rmap_until_complete)
2613 map->hold_file_rmap_lock = true;
2614 }
2615
2616 /*
2617 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2618 * specifies it.
2619 *
2620 * This is called prior to any merge attempt, and updates whitelisted fields
2621 * that are permitted to be updated by the caller.
2622 *
2623 * All but user-defined fields will be pre-populated with original values.
2624 *
2625 * Returns 0 on success, or an error code otherwise.
2626 */
call_mmap_prepare(struct mmap_state * map,struct vm_area_desc * desc)2627 static int call_mmap_prepare(struct mmap_state *map,
2628 struct vm_area_desc *desc)
2629 {
2630 int err;
2631
2632 /* Invoke the hook. */
2633 err = vfs_mmap_prepare(map->file, desc);
2634 if (err)
2635 return err;
2636
2637 call_action_prepare(map, desc);
2638
2639 /* Update fields permitted to be changed. */
2640 map->pgoff = desc->pgoff;
2641 map->file = desc->vm_file;
2642 map->vm_flags = desc->vm_flags;
2643 map->page_prot = desc->page_prot;
2644 /* User-defined fields. */
2645 map->vm_ops = desc->vm_ops;
2646 map->vm_private_data = desc->private_data;
2647
2648 return 0;
2649 }
2650
set_vma_user_defined_fields(struct vm_area_struct * vma,struct mmap_state * map)2651 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2652 struct mmap_state *map)
2653 {
2654 if (map->vm_ops)
2655 vma->vm_ops = map->vm_ops;
2656 vma->vm_private_data = map->vm_private_data;
2657 }
2658
2659 /*
2660 * Are we guaranteed no driver can change state such as to preclude KSM merging?
2661 * If so, let's set the KSM mergeable flag early so we don't break VMA merging.
2662 */
can_set_ksm_flags_early(struct mmap_state * map)2663 static bool can_set_ksm_flags_early(struct mmap_state *map)
2664 {
2665 struct file *file = map->file;
2666
2667 /* Anonymous mappings have no driver which can change them. */
2668 if (!file)
2669 return true;
2670
2671 /*
2672 * If .mmap_prepare() is specified, then the driver will have already
2673 * manipulated state prior to updating KSM flags. So no need to worry
2674 * about mmap callbacks modifying VMA flags after the KSM flag has been
2675 * updated here, which could otherwise affect KSM eligibility.
2676 */
2677 if (file->f_op->mmap_prepare)
2678 return true;
2679
2680 /* shmem is safe. */
2681 if (shmem_file(file))
2682 return true;
2683
2684 /* Any other .mmap callback is not safe. */
2685 return false;
2686 }
2687
call_action_complete(struct mmap_state * map,struct vm_area_desc * desc,struct vm_area_struct * vma)2688 static int call_action_complete(struct mmap_state *map,
2689 struct vm_area_desc *desc,
2690 struct vm_area_struct *vma)
2691 {
2692 struct mmap_action *action = &desc->action;
2693 int ret;
2694
2695 ret = mmap_action_complete(action, vma);
2696
2697 /* If we held the file rmap we need to release it. */
2698 if (map->hold_file_rmap_lock) {
2699 struct file *file = vma->vm_file;
2700
2701 i_mmap_unlock_write(file->f_mapping);
2702 }
2703 return ret;
2704 }
2705
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2706 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2707 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2708 struct list_head *uf)
2709 {
2710 struct mm_struct *mm = current->mm;
2711 struct vm_area_struct *vma = NULL;
2712 bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2713 VMA_ITERATOR(vmi, mm, addr);
2714 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2715 struct vm_area_desc desc = {
2716 .mm = mm,
2717 .file = file,
2718 .action = {
2719 .type = MMAP_NOTHING, /* Default to no further action. */
2720 },
2721 };
2722 bool allocated_new = false;
2723 int error;
2724
2725 map.check_ksm_early = can_set_ksm_flags_early(&map);
2726
2727 error = __mmap_setup(&map, &desc, uf);
2728 if (!error && have_mmap_prepare)
2729 error = call_mmap_prepare(&map, &desc);
2730 if (error)
2731 goto abort_munmap;
2732
2733 if (map.check_ksm_early)
2734 update_ksm_flags(&map);
2735
2736 /* Attempt to merge with adjacent VMAs... */
2737 if (map.prev || map.next) {
2738 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2739
2740 vma = vma_merge_new_range(&vmg);
2741 }
2742
2743 /* ...but if we can't, allocate a new VMA. */
2744 if (!vma) {
2745 error = __mmap_new_vma(&map, &vma);
2746 if (error)
2747 goto unacct_error;
2748 allocated_new = true;
2749 }
2750
2751 if (have_mmap_prepare)
2752 set_vma_user_defined_fields(vma, &map);
2753
2754 __mmap_complete(&map, vma);
2755
2756 if (have_mmap_prepare && allocated_new) {
2757 error = call_action_complete(&map, &desc, vma);
2758
2759 if (error)
2760 return error;
2761 }
2762
2763 return addr;
2764
2765 /* Accounting was done by __mmap_setup(). */
2766 unacct_error:
2767 if (map.charged)
2768 vm_unacct_memory(map.charged);
2769 abort_munmap:
2770 vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2771 return error;
2772 }
2773
2774 /**
2775 * mmap_region() - Actually perform the userland mapping of a VMA into
2776 * current->mm with known, aligned and overflow-checked @addr and @len, and
2777 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2778 *
2779 * This is an internal memory management function, and should not be used
2780 * directly.
2781 *
2782 * The caller must write-lock current->mm->mmap_lock.
2783 *
2784 * @file: If a file-backed mapping, a pointer to the struct file describing the
2785 * file to be mapped, otherwise NULL.
2786 * @addr: The page-aligned address at which to perform the mapping.
2787 * @len: The page-aligned, non-zero, length of the mapping.
2788 * @vm_flags: The VMA flags which should be applied to the mapping.
2789 * @pgoff: If @file is specified, the page offset into the file, if not then
2790 * the virtual page offset in memory of the anonymous mapping.
2791 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2792 * events.
2793 *
2794 * Returns: Either an error, or the address at which the requested mapping has
2795 * been performed.
2796 */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2797 unsigned long mmap_region(struct file *file, unsigned long addr,
2798 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2799 struct list_head *uf)
2800 {
2801 unsigned long ret;
2802 bool writable_file_mapping = false;
2803
2804 mmap_assert_write_locked(current->mm);
2805
2806 /* Check to see if MDWE is applicable. */
2807 if (map_deny_write_exec(vm_flags, vm_flags))
2808 return -EACCES;
2809
2810 /* Allow architectures to sanity-check the vm_flags. */
2811 if (!arch_validate_flags(vm_flags))
2812 return -EINVAL;
2813
2814 /* Map writable and ensure this isn't a sealed memfd. */
2815 if (file && is_shared_maywrite(vm_flags)) {
2816 int error = mapping_map_writable(file->f_mapping);
2817
2818 if (error)
2819 return error;
2820 writable_file_mapping = true;
2821 }
2822
2823 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2824
2825 /* Clear our write mapping regardless of error. */
2826 if (writable_file_mapping)
2827 mapping_unmap_writable(file->f_mapping);
2828
2829 validate_mm(current->mm);
2830 return ret;
2831 }
2832
2833 /*
2834 * do_brk_flags() - Increase the brk vma if the flags match.
2835 * @vmi: The vma iterator
2836 * @addr: The start address
2837 * @len: The length of the increase
2838 * @vma: The vma,
2839 * @vm_flags: The VMA Flags
2840 *
2841 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2842 * do not match then create a new anonymous VMA. Eventually we may be able to
2843 * do some brk-specific accounting here.
2844 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,vm_flags_t vm_flags)2845 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2846 unsigned long addr, unsigned long len, vm_flags_t vm_flags)
2847 {
2848 struct mm_struct *mm = current->mm;
2849
2850 /*
2851 * Check against address space limits by the changed size
2852 * Note: This happens *after* clearing old mappings in some code paths.
2853 */
2854 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2855 vm_flags = ksm_vma_flags(mm, NULL, vm_flags);
2856 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT))
2857 return -ENOMEM;
2858
2859 if (mm->map_count > sysctl_max_map_count)
2860 return -ENOMEM;
2861
2862 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2863 return -ENOMEM;
2864
2865 /*
2866 * Expand the existing vma if possible; Note that singular lists do not
2867 * occur after forking, so the expand will only happen on new VMAs.
2868 */
2869 if (vma && vma->vm_end == addr) {
2870 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr));
2871
2872 vmg.prev = vma;
2873 /* vmi is positioned at prev, which this mode expects. */
2874 vmg.just_expand = true;
2875
2876 if (vma_merge_new_range(&vmg))
2877 goto out;
2878 else if (vmg_nomem(&vmg))
2879 goto unacct_fail;
2880 }
2881
2882 if (vma)
2883 vma_iter_next_range(vmi);
2884 /* create a vma struct for an anonymous mapping */
2885 vma = vm_area_alloc(mm);
2886 if (!vma)
2887 goto unacct_fail;
2888
2889 vma_set_anonymous(vma);
2890 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2891 vm_flags_init(vma, vm_flags);
2892 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2893 vma_start_write(vma);
2894 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2895 goto mas_store_fail;
2896
2897 mm->map_count++;
2898 validate_mm(mm);
2899 out:
2900 perf_event_mmap(vma);
2901 mm->total_vm += len >> PAGE_SHIFT;
2902 mm->data_vm += len >> PAGE_SHIFT;
2903 if (vm_flags & VM_LOCKED)
2904 mm->locked_vm += (len >> PAGE_SHIFT);
2905 if (pgtable_supports_soft_dirty())
2906 vm_flags_set(vma, VM_SOFTDIRTY);
2907 return 0;
2908
2909 mas_store_fail:
2910 vm_area_free(vma);
2911 unacct_fail:
2912 vm_unacct_memory(len >> PAGE_SHIFT);
2913 return -ENOMEM;
2914 }
2915
2916 /**
2917 * unmapped_area() - Find an area between the low_limit and the high_limit with
2918 * the correct alignment and offset, all from @info. Note: current->mm is used
2919 * for the search.
2920 *
2921 * @info: The unmapped area information including the range [low_limit -
2922 * high_limit), the alignment offset and mask.
2923 *
2924 * Return: A memory address or -ENOMEM.
2925 */
unmapped_area(struct vm_unmapped_area_info * info)2926 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2927 {
2928 unsigned long length, gap;
2929 unsigned long low_limit, high_limit;
2930 struct vm_area_struct *tmp;
2931 VMA_ITERATOR(vmi, current->mm, 0);
2932
2933 /* Adjust search length to account for worst case alignment overhead */
2934 length = info->length + info->align_mask + info->start_gap;
2935 if (length < info->length)
2936 return -ENOMEM;
2937
2938 low_limit = info->low_limit;
2939 if (low_limit < mmap_min_addr)
2940 low_limit = mmap_min_addr;
2941 high_limit = info->high_limit;
2942 retry:
2943 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2944 return -ENOMEM;
2945
2946 /*
2947 * Adjust for the gap first so it doesn't interfere with the
2948 * later alignment. The first step is the minimum needed to
2949 * fulill the start gap, the next steps is the minimum to align
2950 * that. It is the minimum needed to fulill both.
2951 */
2952 gap = vma_iter_addr(&vmi) + info->start_gap;
2953 gap += (info->align_offset - gap) & info->align_mask;
2954 tmp = vma_next(&vmi);
2955 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2956 if (vm_start_gap(tmp) < gap + length - 1) {
2957 low_limit = tmp->vm_end;
2958 vma_iter_reset(&vmi);
2959 goto retry;
2960 }
2961 } else {
2962 tmp = vma_prev(&vmi);
2963 if (tmp && vm_end_gap(tmp) > gap) {
2964 low_limit = vm_end_gap(tmp);
2965 vma_iter_reset(&vmi);
2966 goto retry;
2967 }
2968 }
2969
2970 return gap;
2971 }
2972
2973 /**
2974 * unmapped_area_topdown() - Find an area between the low_limit and the
2975 * high_limit with the correct alignment and offset at the highest available
2976 * address, all from @info. Note: current->mm is used for the search.
2977 *
2978 * @info: The unmapped area information including the range [low_limit -
2979 * high_limit), the alignment offset and mask.
2980 *
2981 * Return: A memory address or -ENOMEM.
2982 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2983 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2984 {
2985 unsigned long length, gap, gap_end;
2986 unsigned long low_limit, high_limit;
2987 struct vm_area_struct *tmp;
2988 VMA_ITERATOR(vmi, current->mm, 0);
2989
2990 /* Adjust search length to account for worst case alignment overhead */
2991 length = info->length + info->align_mask + info->start_gap;
2992 if (length < info->length)
2993 return -ENOMEM;
2994
2995 low_limit = info->low_limit;
2996 if (low_limit < mmap_min_addr)
2997 low_limit = mmap_min_addr;
2998 high_limit = info->high_limit;
2999 retry:
3000 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
3001 return -ENOMEM;
3002
3003 gap = vma_iter_end(&vmi) - info->length;
3004 gap -= (gap - info->align_offset) & info->align_mask;
3005 gap_end = vma_iter_end(&vmi);
3006 tmp = vma_next(&vmi);
3007 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
3008 if (vm_start_gap(tmp) < gap_end) {
3009 high_limit = vm_start_gap(tmp);
3010 vma_iter_reset(&vmi);
3011 goto retry;
3012 }
3013 } else {
3014 tmp = vma_prev(&vmi);
3015 if (tmp && vm_end_gap(tmp) > gap) {
3016 high_limit = tmp->vm_start;
3017 vma_iter_reset(&vmi);
3018 goto retry;
3019 }
3020 }
3021
3022 return gap;
3023 }
3024
3025 /*
3026 * Verify that the stack growth is acceptable and
3027 * update accounting. This is shared with both the
3028 * grow-up and grow-down cases.
3029 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)3030 static int acct_stack_growth(struct vm_area_struct *vma,
3031 unsigned long size, unsigned long grow)
3032 {
3033 struct mm_struct *mm = vma->vm_mm;
3034 unsigned long new_start;
3035
3036 /* address space limit tests */
3037 if (!may_expand_vm(mm, vma->vm_flags, grow))
3038 return -ENOMEM;
3039
3040 /* Stack limit test */
3041 if (size > rlimit(RLIMIT_STACK))
3042 return -ENOMEM;
3043
3044 /* mlock limit tests */
3045 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
3046 return -ENOMEM;
3047
3048 /* Check to ensure the stack will not grow into a hugetlb-only region */
3049 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
3050 vma->vm_end - size;
3051 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
3052 return -EFAULT;
3053
3054 /*
3055 * Overcommit.. This must be the final test, as it will
3056 * update security statistics.
3057 */
3058 if (security_vm_enough_memory_mm(mm, grow))
3059 return -ENOMEM;
3060
3061 return 0;
3062 }
3063
3064 #if defined(CONFIG_STACK_GROWSUP)
3065 /*
3066 * PA-RISC uses this for its stack.
3067 * vma is the last one with address > vma->vm_end. Have to extend vma.
3068 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)3069 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
3070 {
3071 struct mm_struct *mm = vma->vm_mm;
3072 struct vm_area_struct *next;
3073 unsigned long gap_addr;
3074 int error = 0;
3075 VMA_ITERATOR(vmi, mm, vma->vm_start);
3076
3077 if (!(vma->vm_flags & VM_GROWSUP))
3078 return -EFAULT;
3079
3080 mmap_assert_write_locked(mm);
3081
3082 /* Guard against exceeding limits of the address space. */
3083 address &= PAGE_MASK;
3084 if (address >= (TASK_SIZE & PAGE_MASK))
3085 return -ENOMEM;
3086 address += PAGE_SIZE;
3087
3088 /* Enforce stack_guard_gap */
3089 gap_addr = address + stack_guard_gap;
3090
3091 /* Guard against overflow */
3092 if (gap_addr < address || gap_addr > TASK_SIZE)
3093 gap_addr = TASK_SIZE;
3094
3095 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
3096 if (next && vma_is_accessible(next)) {
3097 if (!(next->vm_flags & VM_GROWSUP))
3098 return -ENOMEM;
3099 /* Check that both stack segments have the same anon_vma? */
3100 }
3101
3102 if (next)
3103 vma_iter_prev_range_limit(&vmi, address);
3104
3105 vma_iter_config(&vmi, vma->vm_start, address);
3106 if (vma_iter_prealloc(&vmi, vma))
3107 return -ENOMEM;
3108
3109 /* We must make sure the anon_vma is allocated. */
3110 if (unlikely(anon_vma_prepare(vma))) {
3111 vma_iter_free(&vmi);
3112 return -ENOMEM;
3113 }
3114
3115 /* Lock the VMA before expanding to prevent concurrent page faults */
3116 vma_start_write(vma);
3117 /* We update the anon VMA tree. */
3118 anon_vma_lock_write(vma->anon_vma);
3119
3120 /* Somebody else might have raced and expanded it already */
3121 if (address > vma->vm_end) {
3122 unsigned long size, grow;
3123
3124 size = address - vma->vm_start;
3125 grow = (address - vma->vm_end) >> PAGE_SHIFT;
3126
3127 error = -ENOMEM;
3128 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
3129 error = acct_stack_growth(vma, size, grow);
3130 if (!error) {
3131 if (vma->vm_flags & VM_LOCKED)
3132 mm->locked_vm += grow;
3133 vm_stat_account(mm, vma->vm_flags, grow);
3134 anon_vma_interval_tree_pre_update_vma(vma);
3135 vma->vm_end = address;
3136 /* Overwrite old entry in mtree. */
3137 vma_iter_store_overwrite(&vmi, vma);
3138 anon_vma_interval_tree_post_update_vma(vma);
3139
3140 perf_event_mmap(vma);
3141 }
3142 }
3143 }
3144 anon_vma_unlock_write(vma->anon_vma);
3145 vma_iter_free(&vmi);
3146 validate_mm(mm);
3147 return error;
3148 }
3149 #endif /* CONFIG_STACK_GROWSUP */
3150
3151 /*
3152 * vma is the first one with address < vma->vm_start. Have to extend vma.
3153 * mmap_lock held for writing.
3154 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)3155 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3156 {
3157 struct mm_struct *mm = vma->vm_mm;
3158 struct vm_area_struct *prev;
3159 int error = 0;
3160 VMA_ITERATOR(vmi, mm, vma->vm_start);
3161
3162 if (!(vma->vm_flags & VM_GROWSDOWN))
3163 return -EFAULT;
3164
3165 mmap_assert_write_locked(mm);
3166
3167 address &= PAGE_MASK;
3168 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3169 return -EPERM;
3170
3171 /* Enforce stack_guard_gap */
3172 prev = vma_prev(&vmi);
3173 /* Check that both stack segments have the same anon_vma? */
3174 if (prev) {
3175 if (!(prev->vm_flags & VM_GROWSDOWN) &&
3176 vma_is_accessible(prev) &&
3177 (address - prev->vm_end < stack_guard_gap))
3178 return -ENOMEM;
3179 }
3180
3181 if (prev)
3182 vma_iter_next_range_limit(&vmi, vma->vm_start);
3183
3184 vma_iter_config(&vmi, address, vma->vm_end);
3185 if (vma_iter_prealloc(&vmi, vma))
3186 return -ENOMEM;
3187
3188 /* We must make sure the anon_vma is allocated. */
3189 if (unlikely(anon_vma_prepare(vma))) {
3190 vma_iter_free(&vmi);
3191 return -ENOMEM;
3192 }
3193
3194 /* Lock the VMA before expanding to prevent concurrent page faults */
3195 vma_start_write(vma);
3196 /* We update the anon VMA tree. */
3197 anon_vma_lock_write(vma->anon_vma);
3198
3199 /* Somebody else might have raced and expanded it already */
3200 if (address < vma->vm_start) {
3201 unsigned long size, grow;
3202
3203 size = vma->vm_end - address;
3204 grow = (vma->vm_start - address) >> PAGE_SHIFT;
3205
3206 error = -ENOMEM;
3207 if (grow <= vma->vm_pgoff) {
3208 error = acct_stack_growth(vma, size, grow);
3209 if (!error) {
3210 if (vma->vm_flags & VM_LOCKED)
3211 mm->locked_vm += grow;
3212 vm_stat_account(mm, vma->vm_flags, grow);
3213 anon_vma_interval_tree_pre_update_vma(vma);
3214 vma->vm_start = address;
3215 vma->vm_pgoff -= grow;
3216 /* Overwrite old entry in mtree. */
3217 vma_iter_store_overwrite(&vmi, vma);
3218 anon_vma_interval_tree_post_update_vma(vma);
3219
3220 perf_event_mmap(vma);
3221 }
3222 }
3223 }
3224 anon_vma_unlock_write(vma->anon_vma);
3225 vma_iter_free(&vmi);
3226 validate_mm(mm);
3227 return error;
3228 }
3229
__vm_munmap(unsigned long start,size_t len,bool unlock)3230 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3231 {
3232 int ret;
3233 struct mm_struct *mm = current->mm;
3234 LIST_HEAD(uf);
3235 VMA_ITERATOR(vmi, mm, start);
3236
3237 if (mmap_write_lock_killable(mm))
3238 return -EINTR;
3239
3240 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3241 if (ret || !unlock)
3242 mmap_write_unlock(mm);
3243
3244 userfaultfd_unmap_complete(mm, &uf);
3245 return ret;
3246 }
3247
3248 /* Insert vm structure into process list sorted by address
3249 * and into the inode's i_mmap tree. If vm_file is non-NULL
3250 * then i_mmap_rwsem is taken here.
3251 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3252 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3253 {
3254 unsigned long charged = vma_pages(vma);
3255
3256
3257 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3258 return -ENOMEM;
3259
3260 if ((vma->vm_flags & VM_ACCOUNT) &&
3261 security_vm_enough_memory_mm(mm, charged))
3262 return -ENOMEM;
3263
3264 /*
3265 * The vm_pgoff of a purely anonymous vma should be irrelevant
3266 * until its first write fault, when page's anon_vma and index
3267 * are set. But now set the vm_pgoff it will almost certainly
3268 * end up with (unless mremap moves it elsewhere before that
3269 * first wfault), so /proc/pid/maps tells a consistent story.
3270 *
3271 * By setting it to reflect the virtual start address of the
3272 * vma, merges and splits can happen in a seamless way, just
3273 * using the existing file pgoff checks and manipulations.
3274 * Similarly in do_mmap and in do_brk_flags.
3275 */
3276 if (vma_is_anonymous(vma)) {
3277 BUG_ON(vma->anon_vma);
3278 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3279 }
3280
3281 if (vma_link(mm, vma)) {
3282 if (vma->vm_flags & VM_ACCOUNT)
3283 vm_unacct_memory(charged);
3284 return -ENOMEM;
3285 }
3286
3287 return 0;
3288 }
3289