1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104
task_is_dying(void)105 static inline bool task_is_dying(void)
106 {
107 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 (current->flags & PF_EXITING);
109 }
110
111 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 if (!memcg)
115 memcg = root_mem_cgroup;
116 return &memcg->vmpressure;
117 }
118
vmpressure_to_memcg(struct vmpressure * vmpr)119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127
128 static DEFINE_SPINLOCK(objcg_lock);
129
mem_cgroup_kmem_disabled(void)130 bool mem_cgroup_kmem_disabled(void)
131 {
132 return cgroup_memory_nokmem;
133 }
134
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136
obj_cgroup_release(struct percpu_ref * ref)137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 unsigned int nr_bytes;
141 unsigned int nr_pages;
142 unsigned long flags;
143
144 /*
145 * At this point all allocated objects are freed, and
146 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 *
149 * The following sequence can lead to it:
150 * 1) CPU0: objcg == stock->cached_objcg
151 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 * PAGE_SIZE bytes are charged
153 * 3) CPU1: a process from another memcg is allocating something,
154 * the stock if flushed,
155 * objcg->nr_charged_bytes = PAGE_SIZE - 92
156 * 5) CPU0: we do release this object,
157 * 92 bytes are added to stock->nr_bytes
158 * 6) CPU0: stock is flushed,
159 * 92 bytes are added to objcg->nr_charged_bytes
160 *
161 * In the result, nr_charged_bytes == PAGE_SIZE.
162 * This page will be uncharged in obj_cgroup_release().
163 */
164 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 nr_pages = nr_bytes >> PAGE_SHIFT;
167
168 if (nr_pages) {
169 struct mem_cgroup *memcg;
170
171 memcg = get_mem_cgroup_from_objcg(objcg);
172 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 memcg1_account_kmem(memcg, -nr_pages);
174 if (!mem_cgroup_is_root(memcg))
175 memcg_uncharge(memcg, nr_pages);
176 mem_cgroup_put(memcg);
177 }
178
179 spin_lock_irqsave(&objcg_lock, flags);
180 list_del(&objcg->list);
181 spin_unlock_irqrestore(&objcg_lock, flags);
182
183 percpu_ref_exit(ref);
184 kfree_rcu(objcg, rcu);
185 }
186
obj_cgroup_alloc(void)187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 struct obj_cgroup *objcg;
190 int ret;
191
192 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 if (!objcg)
194 return NULL;
195
196 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 GFP_KERNEL);
198 if (ret) {
199 kfree(objcg);
200 return NULL;
201 }
202 INIT_LIST_HEAD(&objcg->list);
203 return objcg;
204 }
205
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 struct mem_cgroup *parent)
208 {
209 struct obj_cgroup *objcg, *iter;
210
211 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212
213 spin_lock_irq(&objcg_lock);
214
215 /* 1) Ready to reparent active objcg. */
216 list_add(&objcg->list, &memcg->objcg_list);
217 /* 2) Reparent active objcg and already reparented objcgs to parent. */
218 list_for_each_entry(iter, &memcg->objcg_list, list)
219 WRITE_ONCE(iter->memcg, parent);
220 /* 3) Move already reparented objcgs to the parent's list */
221 list_splice(&memcg->objcg_list, &parent->objcg_list);
222
223 spin_unlock_irq(&objcg_lock);
224
225 percpu_ref_kill(&objcg->refcnt);
226 }
227
228 /*
229 * A lot of the calls to the cache allocation functions are expected to be
230 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231 * conditional to this static branch, we'll have to allow modules that does
232 * kmem_cache_alloc and the such to see this symbol as well
233 */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239
240 /**
241 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242 * @folio: folio of interest
243 *
244 * If memcg is bound to the default hierarchy, css of the memcg associated
245 * with @folio is returned. The returned css remains associated with @folio
246 * until it is released.
247 *
248 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249 * is returned.
250 */
mem_cgroup_css_from_folio(struct folio * folio)251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 struct mem_cgroup *memcg = folio_memcg(folio);
254
255 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 memcg = root_mem_cgroup;
257
258 return &memcg->css;
259 }
260
261 /**
262 * page_cgroup_ino - return inode number of the memcg a page is charged to
263 * @page: the page
264 *
265 * Look up the closest online ancestor of the memory cgroup @page is charged to
266 * and return its inode number or 0 if @page is not charged to any cgroup. It
267 * is safe to call this function without holding a reference to @page.
268 *
269 * Note, this function is inherently racy, because there is nothing to prevent
270 * the cgroup inode from getting torn down and potentially reallocated a moment
271 * after page_cgroup_ino() returns, so it only should be used by callers that
272 * do not care (such as procfs interfaces).
273 */
page_cgroup_ino(struct page * page)274 ino_t page_cgroup_ino(struct page *page)
275 {
276 struct mem_cgroup *memcg;
277 unsigned long ino = 0;
278
279 rcu_read_lock();
280 /* page_folio() is racy here, but the entire function is racy anyway */
281 memcg = folio_memcg_check(page_folio(page));
282
283 while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 memcg = parent_mem_cgroup(memcg);
285 if (memcg)
286 ino = cgroup_ino(memcg->css.cgroup);
287 rcu_read_unlock();
288 return ino;
289 }
290 EXPORT_SYMBOL_GPL(page_cgroup_ino);
291
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 NR_INACTIVE_ANON,
295 NR_ACTIVE_ANON,
296 NR_INACTIVE_FILE,
297 NR_ACTIVE_FILE,
298 NR_UNEVICTABLE,
299 NR_SLAB_RECLAIMABLE_B,
300 NR_SLAB_UNRECLAIMABLE_B,
301 WORKINGSET_REFAULT_ANON,
302 WORKINGSET_REFAULT_FILE,
303 WORKINGSET_ACTIVATE_ANON,
304 WORKINGSET_ACTIVATE_FILE,
305 WORKINGSET_RESTORE_ANON,
306 WORKINGSET_RESTORE_FILE,
307 WORKINGSET_NODERECLAIM,
308 NR_ANON_MAPPED,
309 NR_FILE_MAPPED,
310 NR_FILE_PAGES,
311 NR_FILE_DIRTY,
312 NR_WRITEBACK,
313 NR_SHMEM,
314 NR_SHMEM_THPS,
315 NR_FILE_THPS,
316 NR_ANON_THPS,
317 NR_KERNEL_STACK_KB,
318 NR_PAGETABLE,
319 NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 PGPROMOTE_SUCCESS,
325 #endif
326 PGDEMOTE_KSWAPD,
327 PGDEMOTE_DIRECT,
328 PGDEMOTE_KHUGEPAGED,
329 PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 NR_HUGETLB,
332 #endif
333 };
334
335 static const unsigned int memcg_stat_items[] = {
336 MEMCG_SWAP,
337 MEMCG_SOCK,
338 MEMCG_PERCPU_B,
339 MEMCG_VMALLOC,
340 MEMCG_KMEM,
341 MEMCG_ZSWAP_B,
342 MEMCG_ZSWAPPED,
343 };
344
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 u8 i, j = 0;
354
355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356
357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358
359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361
362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 return mem_cgroup_stats_index[idx];
369 }
370
371 struct lruvec_stats_percpu {
372 /* Local (CPU and cgroup) state */
373 long state[NR_MEMCG_NODE_STAT_ITEMS];
374
375 /* Delta calculation for lockless upward propagation */
376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378
379 struct lruvec_stats {
380 /* Aggregated (CPU and subtree) state */
381 long state[NR_MEMCG_NODE_STAT_ITEMS];
382
383 /* Non-hierarchical (CPU aggregated) state */
384 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385
386 /* Pending child counts during tree propagation */
387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 struct mem_cgroup_per_node *pn;
393 long x;
394 int i;
395
396 if (mem_cgroup_disabled())
397 return node_page_state(lruvec_pgdat(lruvec), idx);
398
399 i = memcg_stats_index(idx);
400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 return 0;
402
403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 if (x < 0)
407 x = 0;
408 #endif
409 return x;
410 }
411
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 enum node_stat_item idx)
414 {
415 struct mem_cgroup_per_node *pn;
416 long x;
417 int i;
418
419 if (mem_cgroup_disabled())
420 return node_page_state(lruvec_pgdat(lruvec), idx);
421
422 i = memcg_stats_index(idx);
423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 return 0;
425
426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 if (x < 0)
430 x = 0;
431 #endif
432 return x;
433 }
434
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 PGPGIN,
439 PGPGOUT,
440 #endif
441 PSWPIN,
442 PSWPOUT,
443 PGSCAN_KSWAPD,
444 PGSCAN_DIRECT,
445 PGSCAN_KHUGEPAGED,
446 PGSCAN_PROACTIVE,
447 PGSTEAL_KSWAPD,
448 PGSTEAL_DIRECT,
449 PGSTEAL_KHUGEPAGED,
450 PGSTEAL_PROACTIVE,
451 PGFAULT,
452 PGMAJFAULT,
453 PGREFILL,
454 PGACTIVATE,
455 PGDEACTIVATE,
456 PGLAZYFREE,
457 PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 SWPIN_ZERO,
460 SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 ZSWPIN,
464 ZSWPOUT,
465 ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 THP_FAULT_ALLOC,
469 THP_COLLAPSE_ALLOC,
470 THP_SWPOUT,
471 THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 NUMA_PAGE_MIGRATE,
475 NUMA_PTE_UPDATES,
476 NUMA_HINT_FAULTS,
477 #endif
478 };
479
480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
482
init_memcg_events(void)483 static void init_memcg_events(void)
484 {
485 u8 i;
486
487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
488
489 memset(mem_cgroup_events_index, U8_MAX,
490 sizeof(mem_cgroup_events_index));
491
492 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
494 }
495
memcg_events_index(enum vm_event_item idx)496 static inline int memcg_events_index(enum vm_event_item idx)
497 {
498 return mem_cgroup_events_index[idx];
499 }
500
501 struct memcg_vmstats_percpu {
502 /* Stats updates since the last flush */
503 unsigned int stats_updates;
504
505 /* Cached pointers for fast iteration in memcg_rstat_updated() */
506 struct memcg_vmstats_percpu __percpu *parent_pcpu;
507 struct memcg_vmstats *vmstats;
508
509 /* The above should fit a single cacheline for memcg_rstat_updated() */
510
511 /* Local (CPU and cgroup) page state & events */
512 long state[MEMCG_VMSTAT_SIZE];
513 unsigned long events[NR_MEMCG_EVENTS];
514
515 /* Delta calculation for lockless upward propagation */
516 long state_prev[MEMCG_VMSTAT_SIZE];
517 unsigned long events_prev[NR_MEMCG_EVENTS];
518 } ____cacheline_aligned;
519
520 struct memcg_vmstats {
521 /* Aggregated (CPU and subtree) page state & events */
522 long state[MEMCG_VMSTAT_SIZE];
523 unsigned long events[NR_MEMCG_EVENTS];
524
525 /* Non-hierarchical (CPU aggregated) page state & events */
526 long state_local[MEMCG_VMSTAT_SIZE];
527 unsigned long events_local[NR_MEMCG_EVENTS];
528
529 /* Pending child counts during tree propagation */
530 long state_pending[MEMCG_VMSTAT_SIZE];
531 unsigned long events_pending[NR_MEMCG_EVENTS];
532
533 /* Stats updates since the last flush */
534 atomic_t stats_updates;
535 };
536
537 /*
538 * memcg and lruvec stats flushing
539 *
540 * Many codepaths leading to stats update or read are performance sensitive and
541 * adding stats flushing in such codepaths is not desirable. So, to optimize the
542 * flushing the kernel does:
543 *
544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
545 * rstat update tree grow unbounded.
546 *
547 * 2) Flush the stats synchronously on reader side only when there are more than
548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
550 * only for 2 seconds due to (1).
551 */
552 static void flush_memcg_stats_dwork(struct work_struct *w);
553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
554 static u64 flush_last_time;
555
556 #define FLUSH_TIME (2UL*HZ)
557
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
559 {
560 return atomic_read(&vmstats->stats_updates) >
561 MEMCG_CHARGE_BATCH * num_online_cpus();
562 }
563
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
565 int cpu)
566 {
567 struct memcg_vmstats_percpu __percpu *statc_pcpu;
568 struct memcg_vmstats_percpu *statc;
569 unsigned int stats_updates;
570
571 if (!val)
572 return;
573
574 css_rstat_updated(&memcg->css, cpu);
575 statc_pcpu = memcg->vmstats_percpu;
576 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
577 statc = this_cpu_ptr(statc_pcpu);
578 /*
579 * If @memcg is already flushable then all its ancestors are
580 * flushable as well and also there is no need to increase
581 * stats_updates.
582 */
583 if (memcg_vmstats_needs_flush(statc->vmstats))
584 break;
585
586 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
587 abs(val));
588 if (stats_updates < MEMCG_CHARGE_BATCH)
589 continue;
590
591 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
592 atomic_add(stats_updates, &statc->vmstats->stats_updates);
593 }
594 }
595
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
597 {
598 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
599
600 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
601 force, needs_flush);
602
603 if (!force && !needs_flush)
604 return;
605
606 if (mem_cgroup_is_root(memcg))
607 WRITE_ONCE(flush_last_time, jiffies_64);
608
609 css_rstat_flush(&memcg->css);
610 }
611
612 /*
613 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
614 * @memcg: root of the subtree to flush
615 *
616 * Flushing is serialized by the underlying global rstat lock. There is also a
617 * minimum amount of work to be done even if there are no stat updates to flush.
618 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
619 * avoids unnecessary work and contention on the underlying lock.
620 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
622 {
623 if (mem_cgroup_disabled())
624 return;
625
626 if (!memcg)
627 memcg = root_mem_cgroup;
628
629 __mem_cgroup_flush_stats(memcg, false);
630 }
631
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
633 {
634 /* Only flush if the periodic flusher is one full cycle late */
635 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
636 mem_cgroup_flush_stats(memcg);
637 }
638
flush_memcg_stats_dwork(struct work_struct * w)639 static void flush_memcg_stats_dwork(struct work_struct *w)
640 {
641 /*
642 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
643 * in latency-sensitive paths is as cheap as possible.
644 */
645 __mem_cgroup_flush_stats(root_mem_cgroup, true);
646 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
647 }
648
memcg_page_state(struct mem_cgroup * memcg,int idx)649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 long x;
652 int i = memcg_stats_index(idx);
653
654 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
655 return 0;
656
657 x = READ_ONCE(memcg->vmstats->state[i]);
658 #ifdef CONFIG_SMP
659 if (x < 0)
660 x = 0;
661 #endif
662 return x;
663 }
664
665 static int memcg_page_state_unit(int item);
666
667 /*
668 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
669 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
670 */
memcg_state_val_in_pages(int idx,int val)671 static int memcg_state_val_in_pages(int idx, int val)
672 {
673 int unit = memcg_page_state_unit(idx);
674
675 if (!val || unit == PAGE_SIZE)
676 return val;
677 else
678 return max(val * unit / PAGE_SIZE, 1UL);
679 }
680
681 /**
682 * mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
688 int val)
689 {
690 int i = memcg_stats_index(idx);
691 int cpu;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 return;
698
699 cpu = get_cpu();
700
701 this_cpu_add(memcg->vmstats_percpu->state[i], val);
702 val = memcg_state_val_in_pages(idx, val);
703 memcg_rstat_updated(memcg, val, cpu);
704 trace_mod_memcg_state(memcg, idx, val);
705
706 put_cpu();
707 }
708
709 #ifdef CONFIG_MEMCG_V1
710 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
712 {
713 long x;
714 int i = memcg_stats_index(idx);
715
716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
717 return 0;
718
719 x = READ_ONCE(memcg->vmstats->state_local[i]);
720 #ifdef CONFIG_SMP
721 if (x < 0)
722 x = 0;
723 #endif
724 return x;
725 }
726 #endif
727
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)728 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
729 enum node_stat_item idx,
730 int val)
731 {
732 struct mem_cgroup_per_node *pn;
733 struct mem_cgroup *memcg;
734 int i = memcg_stats_index(idx);
735 int cpu;
736
737 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 cpu = get_cpu();
744
745 /* Update memcg */
746 this_cpu_add(memcg->vmstats_percpu->state[i], val);
747
748 /* Update lruvec */
749 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
750
751 val = memcg_state_val_in_pages(idx, val);
752 memcg_rstat_updated(memcg, val, cpu);
753 trace_mod_memcg_lruvec_state(memcg, idx, val);
754
755 put_cpu();
756 }
757
758 /**
759 * __mod_lruvec_state - update lruvec memory statistics
760 * @lruvec: the lruvec
761 * @idx: the stat item
762 * @val: delta to add to the counter, can be negative
763 *
764 * The lruvec is the intersection of the NUMA node and a cgroup. This
765 * function updates the all three counters that are affected by a
766 * change of state at this level: per-node, per-cgroup, per-lruvec.
767 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
769 int val)
770 {
771 /* Update node */
772 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
773
774 /* Update memcg and lruvec */
775 if (!mem_cgroup_disabled())
776 mod_memcg_lruvec_state(lruvec, idx, val);
777 }
778
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
780 int val)
781 {
782 struct mem_cgroup *memcg;
783 pg_data_t *pgdat = folio_pgdat(folio);
784 struct lruvec *lruvec;
785
786 rcu_read_lock();
787 memcg = folio_memcg(folio);
788 /* Untracked pages have no memcg, no lruvec. Update only the node */
789 if (!memcg) {
790 rcu_read_unlock();
791 __mod_node_page_state(pgdat, idx, val);
792 return;
793 }
794
795 lruvec = mem_cgroup_lruvec(memcg, pgdat);
796 __mod_lruvec_state(lruvec, idx, val);
797 rcu_read_unlock();
798 }
799 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
800
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
802 {
803 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
804 struct mem_cgroup *memcg;
805 struct lruvec *lruvec;
806
807 rcu_read_lock();
808 memcg = mem_cgroup_from_slab_obj(p);
809
810 /*
811 * Untracked pages have no memcg, no lruvec. Update only the
812 * node. If we reparent the slab objects to the root memcg,
813 * when we free the slab object, we need to update the per-memcg
814 * vmstats to keep it correct for the root memcg.
815 */
816 if (!memcg) {
817 __mod_node_page_state(pgdat, idx, val);
818 } else {
819 lruvec = mem_cgroup_lruvec(memcg, pgdat);
820 __mod_lruvec_state(lruvec, idx, val);
821 }
822 rcu_read_unlock();
823 }
824
825 /**
826 * count_memcg_events - account VM events in a cgroup
827 * @memcg: the memory cgroup
828 * @idx: the event item
829 * @count: the number of events that occurred
830 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
832 unsigned long count)
833 {
834 int i = memcg_events_index(idx);
835 int cpu;
836
837 if (mem_cgroup_disabled())
838 return;
839
840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
841 return;
842
843 cpu = get_cpu();
844
845 this_cpu_add(memcg->vmstats_percpu->events[i], count);
846 memcg_rstat_updated(memcg, count, cpu);
847 trace_count_memcg_events(memcg, idx, count);
848
849 put_cpu();
850 }
851
memcg_events(struct mem_cgroup * memcg,int event)852 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
853 {
854 int i = memcg_events_index(event);
855
856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
857 return 0;
858
859 return READ_ONCE(memcg->vmstats->events[i]);
860 }
861
862 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
864 {
865 int i = memcg_events_index(event);
866
867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
868 return 0;
869
870 return READ_ONCE(memcg->vmstats->events_local[i]);
871 }
872 #endif
873
mem_cgroup_from_task(struct task_struct * p)874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885 }
886 EXPORT_SYMBOL(mem_cgroup_from_task);
887
active_memcg(void)888 static __always_inline struct mem_cgroup *active_memcg(void)
889 {
890 if (!in_task())
891 return this_cpu_read(int_active_memcg);
892 else
893 return current->active_memcg;
894 }
895
896 /**
897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898 * @mm: mm from which memcg should be extracted. It can be NULL.
899 *
900 * Obtain a reference on mm->memcg and returns it if successful. If mm
901 * is NULL, then the memcg is chosen as follows:
902 * 1) The active memcg, if set.
903 * 2) current->mm->memcg, if available
904 * 3) root memcg
905 * If mem_cgroup is disabled, NULL is returned.
906 */
get_mem_cgroup_from_mm(struct mm_struct * mm)907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 {
909 struct mem_cgroup *memcg;
910
911 if (mem_cgroup_disabled())
912 return NULL;
913
914 /*
915 * Page cache insertions can happen without an
916 * actual mm context, e.g. during disk probing
917 * on boot, loopback IO, acct() writes etc.
918 *
919 * No need to css_get on root memcg as the reference
920 * counting is disabled on the root level in the
921 * cgroup core. See CSS_NO_REF.
922 */
923 if (unlikely(!mm)) {
924 memcg = active_memcg();
925 if (unlikely(memcg)) {
926 /* remote memcg must hold a ref */
927 css_get(&memcg->css);
928 return memcg;
929 }
930 mm = current->mm;
931 if (unlikely(!mm))
932 return root_mem_cgroup;
933 }
934
935 rcu_read_lock();
936 do {
937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 if (unlikely(!memcg))
939 memcg = root_mem_cgroup;
940 } while (!css_tryget(&memcg->css));
941 rcu_read_unlock();
942 return memcg;
943 }
944 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945
946 /**
947 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
948 */
get_mem_cgroup_from_current(void)949 struct mem_cgroup *get_mem_cgroup_from_current(void)
950 {
951 struct mem_cgroup *memcg;
952
953 if (mem_cgroup_disabled())
954 return NULL;
955
956 again:
957 rcu_read_lock();
958 memcg = mem_cgroup_from_task(current);
959 if (!css_tryget(&memcg->css)) {
960 rcu_read_unlock();
961 goto again;
962 }
963 rcu_read_unlock();
964 return memcg;
965 }
966
967 /**
968 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
969 * @folio: folio from which memcg should be extracted.
970 */
get_mem_cgroup_from_folio(struct folio * folio)971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
972 {
973 struct mem_cgroup *memcg = folio_memcg(folio);
974
975 if (mem_cgroup_disabled())
976 return NULL;
977
978 rcu_read_lock();
979 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
980 memcg = root_mem_cgroup;
981 rcu_read_unlock();
982 return memcg;
983 }
984
985 /**
986 * mem_cgroup_iter - iterate over memory cgroup hierarchy
987 * @root: hierarchy root
988 * @prev: previously returned memcg, NULL on first invocation
989 * @reclaim: cookie for shared reclaim walks, NULL for full walks
990 *
991 * Returns references to children of the hierarchy below @root, or
992 * @root itself, or %NULL after a full round-trip.
993 *
994 * Caller must pass the return value in @prev on subsequent
995 * invocations for reference counting, or use mem_cgroup_iter_break()
996 * to cancel a hierarchy walk before the round-trip is complete.
997 *
998 * Reclaimers can specify a node in @reclaim to divide up the memcgs
999 * in the hierarchy among all concurrent reclaimers operating on the
1000 * same node.
1001 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003 struct mem_cgroup *prev,
1004 struct mem_cgroup_reclaim_cookie *reclaim)
1005 {
1006 struct mem_cgroup_reclaim_iter *iter;
1007 struct cgroup_subsys_state *css;
1008 struct mem_cgroup *pos;
1009 struct mem_cgroup *next;
1010
1011 if (mem_cgroup_disabled())
1012 return NULL;
1013
1014 if (!root)
1015 root = root_mem_cgroup;
1016
1017 rcu_read_lock();
1018 restart:
1019 next = NULL;
1020
1021 if (reclaim) {
1022 int gen;
1023 int nid = reclaim->pgdat->node_id;
1024
1025 iter = &root->nodeinfo[nid]->iter;
1026 gen = atomic_read(&iter->generation);
1027
1028 /*
1029 * On start, join the current reclaim iteration cycle.
1030 * Exit when a concurrent walker completes it.
1031 */
1032 if (!prev)
1033 reclaim->generation = gen;
1034 else if (reclaim->generation != gen)
1035 goto out_unlock;
1036
1037 pos = READ_ONCE(iter->position);
1038 } else
1039 pos = prev;
1040
1041 css = pos ? &pos->css : NULL;
1042
1043 while ((css = css_next_descendant_pre(css, &root->css))) {
1044 /*
1045 * Verify the css and acquire a reference. The root
1046 * is provided by the caller, so we know it's alive
1047 * and kicking, and don't take an extra reference.
1048 */
1049 if (css == &root->css || css_tryget(css))
1050 break;
1051 }
1052
1053 next = mem_cgroup_from_css(css);
1054
1055 if (reclaim) {
1056 /*
1057 * The position could have already been updated by a competing
1058 * thread, so check that the value hasn't changed since we read
1059 * it to avoid reclaiming from the same cgroup twice.
1060 */
1061 if (cmpxchg(&iter->position, pos, next) != pos) {
1062 if (css && css != &root->css)
1063 css_put(css);
1064 goto restart;
1065 }
1066
1067 if (!next) {
1068 atomic_inc(&iter->generation);
1069
1070 /*
1071 * Reclaimers share the hierarchy walk, and a
1072 * new one might jump in right at the end of
1073 * the hierarchy - make sure they see at least
1074 * one group and restart from the beginning.
1075 */
1076 if (!prev)
1077 goto restart;
1078 }
1079 }
1080
1081 out_unlock:
1082 rcu_read_unlock();
1083 if (prev && prev != root)
1084 css_put(&prev->css);
1085
1086 return next;
1087 }
1088
1089 /**
1090 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1091 * @root: hierarchy root
1092 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1093 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1094 void mem_cgroup_iter_break(struct mem_cgroup *root,
1095 struct mem_cgroup *prev)
1096 {
1097 if (!root)
1098 root = root_mem_cgroup;
1099 if (prev && prev != root)
1100 css_put(&prev->css);
1101 }
1102
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1104 struct mem_cgroup *dead_memcg)
1105 {
1106 struct mem_cgroup_reclaim_iter *iter;
1107 struct mem_cgroup_per_node *mz;
1108 int nid;
1109
1110 for_each_node(nid) {
1111 mz = from->nodeinfo[nid];
1112 iter = &mz->iter;
1113 cmpxchg(&iter->position, dead_memcg, NULL);
1114 }
1115 }
1116
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1118 {
1119 struct mem_cgroup *memcg = dead_memcg;
1120 struct mem_cgroup *last;
1121
1122 do {
1123 __invalidate_reclaim_iterators(memcg, dead_memcg);
1124 last = memcg;
1125 } while ((memcg = parent_mem_cgroup(memcg)));
1126
1127 /*
1128 * When cgroup1 non-hierarchy mode is used,
1129 * parent_mem_cgroup() does not walk all the way up to the
1130 * cgroup root (root_mem_cgroup). So we have to handle
1131 * dead_memcg from cgroup root separately.
1132 */
1133 if (!mem_cgroup_is_root(last))
1134 __invalidate_reclaim_iterators(root_mem_cgroup,
1135 dead_memcg);
1136 }
1137
1138 /**
1139 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1140 * @memcg: hierarchy root
1141 * @fn: function to call for each task
1142 * @arg: argument passed to @fn
1143 *
1144 * This function iterates over tasks attached to @memcg or to any of its
1145 * descendants and calls @fn for each task. If @fn returns a non-zero
1146 * value, the function breaks the iteration loop. Otherwise, it will iterate
1147 * over all tasks and return 0.
1148 *
1149 * This function must not be called for the root memory cgroup.
1150 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1152 int (*fn)(struct task_struct *, void *), void *arg)
1153 {
1154 struct mem_cgroup *iter;
1155 int ret = 0;
1156
1157 BUG_ON(mem_cgroup_is_root(memcg));
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 struct css_task_iter it;
1161 struct task_struct *task;
1162
1163 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1164 while (!ret && (task = css_task_iter_next(&it))) {
1165 ret = fn(task, arg);
1166 /* Avoid potential softlockup warning */
1167 cond_resched();
1168 }
1169 css_task_iter_end(&it);
1170 if (ret) {
1171 mem_cgroup_iter_break(memcg, iter);
1172 break;
1173 }
1174 }
1175 }
1176
1177 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1179 {
1180 struct mem_cgroup *memcg;
1181
1182 if (mem_cgroup_disabled())
1183 return;
1184
1185 memcg = folio_memcg(folio);
1186
1187 if (!memcg)
1188 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1189 else
1190 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1191 }
1192 #endif
1193
1194 /**
1195 * folio_lruvec_lock - Lock the lruvec for a folio.
1196 * @folio: Pointer to the folio.
1197 *
1198 * These functions are safe to use under any of the following conditions:
1199 * - folio locked
1200 * - folio_test_lru false
1201 * - folio frozen (refcount of 0)
1202 *
1203 * Return: The lruvec this folio is on with its lock held.
1204 */
folio_lruvec_lock(struct folio * folio)1205 struct lruvec *folio_lruvec_lock(struct folio *folio)
1206 {
1207 struct lruvec *lruvec = folio_lruvec(folio);
1208
1209 spin_lock(&lruvec->lru_lock);
1210 lruvec_memcg_debug(lruvec, folio);
1211
1212 return lruvec;
1213 }
1214
1215 /**
1216 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1217 * @folio: Pointer to the folio.
1218 *
1219 * These functions are safe to use under any of the following conditions:
1220 * - folio locked
1221 * - folio_test_lru false
1222 * - folio frozen (refcount of 0)
1223 *
1224 * Return: The lruvec this folio is on with its lock held and interrupts
1225 * disabled.
1226 */
folio_lruvec_lock_irq(struct folio * folio)1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1228 {
1229 struct lruvec *lruvec = folio_lruvec(folio);
1230
1231 spin_lock_irq(&lruvec->lru_lock);
1232 lruvec_memcg_debug(lruvec, folio);
1233
1234 return lruvec;
1235 }
1236
1237 /**
1238 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1239 * @folio: Pointer to the folio.
1240 * @flags: Pointer to irqsave flags.
1241 *
1242 * These functions are safe to use under any of the following conditions:
1243 * - folio locked
1244 * - folio_test_lru false
1245 * - folio frozen (refcount of 0)
1246 *
1247 * Return: The lruvec this folio is on with its lock held and interrupts
1248 * disabled.
1249 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1251 unsigned long *flags)
1252 {
1253 struct lruvec *lruvec = folio_lruvec(folio);
1254
1255 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1256 lruvec_memcg_debug(lruvec, folio);
1257
1258 return lruvec;
1259 }
1260
1261 /**
1262 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1263 * @lruvec: mem_cgroup per zone lru vector
1264 * @lru: index of lru list the page is sitting on
1265 * @zid: zone id of the accounted pages
1266 * @nr_pages: positive when adding or negative when removing
1267 *
1268 * This function must be called under lru_lock, just before a page is added
1269 * to or just after a page is removed from an lru list.
1270 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1272 int zid, int nr_pages)
1273 {
1274 struct mem_cgroup_per_node *mz;
1275 unsigned long *lru_size;
1276 long size;
1277
1278 if (mem_cgroup_disabled())
1279 return;
1280
1281 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1282 lru_size = &mz->lru_zone_size[zid][lru];
1283
1284 if (nr_pages < 0)
1285 *lru_size += nr_pages;
1286
1287 size = *lru_size;
1288 if (WARN_ONCE(size < 0,
1289 "%s(%p, %d, %d): lru_size %ld\n",
1290 __func__, lruvec, lru, nr_pages, size)) {
1291 VM_BUG_ON(1);
1292 *lru_size = 0;
1293 }
1294
1295 if (nr_pages > 0)
1296 *lru_size += nr_pages;
1297 }
1298
1299 /**
1300 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1301 * @memcg: the memory cgroup
1302 *
1303 * Returns the maximum amount of memory @mem can be charged with, in
1304 * pages.
1305 */
mem_cgroup_margin(struct mem_cgroup * memcg)1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1307 {
1308 unsigned long margin = 0;
1309 unsigned long count;
1310 unsigned long limit;
1311
1312 count = page_counter_read(&memcg->memory);
1313 limit = READ_ONCE(memcg->memory.max);
1314 if (count < limit)
1315 margin = limit - count;
1316
1317 if (do_memsw_account()) {
1318 count = page_counter_read(&memcg->memsw);
1319 limit = READ_ONCE(memcg->memsw.max);
1320 if (count < limit)
1321 margin = min(margin, limit - count);
1322 else
1323 margin = 0;
1324 }
1325
1326 return margin;
1327 }
1328
1329 struct memory_stat {
1330 const char *name;
1331 unsigned int idx;
1332 };
1333
1334 static const struct memory_stat memory_stats[] = {
1335 { "anon", NR_ANON_MAPPED },
1336 { "file", NR_FILE_PAGES },
1337 { "kernel", MEMCG_KMEM },
1338 { "kernel_stack", NR_KERNEL_STACK_KB },
1339 { "pagetables", NR_PAGETABLE },
1340 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1341 { "percpu", MEMCG_PERCPU_B },
1342 { "sock", MEMCG_SOCK },
1343 { "vmalloc", MEMCG_VMALLOC },
1344 { "shmem", NR_SHMEM },
1345 #ifdef CONFIG_ZSWAP
1346 { "zswap", MEMCG_ZSWAP_B },
1347 { "zswapped", MEMCG_ZSWAPPED },
1348 #endif
1349 { "file_mapped", NR_FILE_MAPPED },
1350 { "file_dirty", NR_FILE_DIRTY },
1351 { "file_writeback", NR_WRITEBACK },
1352 #ifdef CONFIG_SWAP
1353 { "swapcached", NR_SWAPCACHE },
1354 #endif
1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356 { "anon_thp", NR_ANON_THPS },
1357 { "file_thp", NR_FILE_THPS },
1358 { "shmem_thp", NR_SHMEM_THPS },
1359 #endif
1360 { "inactive_anon", NR_INACTIVE_ANON },
1361 { "active_anon", NR_ACTIVE_ANON },
1362 { "inactive_file", NR_INACTIVE_FILE },
1363 { "active_file", NR_ACTIVE_FILE },
1364 { "unevictable", NR_UNEVICTABLE },
1365 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1366 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1367 #ifdef CONFIG_HUGETLB_PAGE
1368 { "hugetlb", NR_HUGETLB },
1369 #endif
1370
1371 /* The memory events */
1372 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1373 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1374 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1375 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1376 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1377 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1378 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1379
1380 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1381 { "pgdemote_direct", PGDEMOTE_DIRECT },
1382 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1383 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1384 #ifdef CONFIG_NUMA_BALANCING
1385 { "pgpromote_success", PGPROMOTE_SUCCESS },
1386 #endif
1387 };
1388
1389 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1390 static int memcg_page_state_unit(int item)
1391 {
1392 switch (item) {
1393 case MEMCG_PERCPU_B:
1394 case MEMCG_ZSWAP_B:
1395 case NR_SLAB_RECLAIMABLE_B:
1396 case NR_SLAB_UNRECLAIMABLE_B:
1397 return 1;
1398 case NR_KERNEL_STACK_KB:
1399 return SZ_1K;
1400 default:
1401 return PAGE_SIZE;
1402 }
1403 }
1404
1405 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1406 static int memcg_page_state_output_unit(int item)
1407 {
1408 /*
1409 * Workingset state is actually in pages, but we export it to userspace
1410 * as a scalar count of events, so special case it here.
1411 *
1412 * Demotion and promotion activities are exported in pages, consistent
1413 * with their global counterparts.
1414 */
1415 switch (item) {
1416 case WORKINGSET_REFAULT_ANON:
1417 case WORKINGSET_REFAULT_FILE:
1418 case WORKINGSET_ACTIVATE_ANON:
1419 case WORKINGSET_ACTIVATE_FILE:
1420 case WORKINGSET_RESTORE_ANON:
1421 case WORKINGSET_RESTORE_FILE:
1422 case WORKINGSET_NODERECLAIM:
1423 case PGDEMOTE_KSWAPD:
1424 case PGDEMOTE_DIRECT:
1425 case PGDEMOTE_KHUGEPAGED:
1426 case PGDEMOTE_PROACTIVE:
1427 #ifdef CONFIG_NUMA_BALANCING
1428 case PGPROMOTE_SUCCESS:
1429 #endif
1430 return 1;
1431 default:
1432 return memcg_page_state_unit(item);
1433 }
1434 }
1435
memcg_page_state_output(struct mem_cgroup * memcg,int item)1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1437 {
1438 return memcg_page_state(memcg, item) *
1439 memcg_page_state_output_unit(item);
1440 }
1441
1442 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1444 {
1445 return memcg_page_state_local(memcg, item) *
1446 memcg_page_state_output_unit(item);
1447 }
1448 #endif
1449
1450 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1451 static bool memcg_accounts_hugetlb(void)
1452 {
1453 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1454 }
1455 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1456 static bool memcg_accounts_hugetlb(void)
1457 {
1458 return false;
1459 }
1460 #endif /* CONFIG_HUGETLB_PAGE */
1461
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1463 {
1464 int i;
1465
1466 /*
1467 * Provide statistics on the state of the memory subsystem as
1468 * well as cumulative event counters that show past behavior.
1469 *
1470 * This list is ordered following a combination of these gradients:
1471 * 1) generic big picture -> specifics and details
1472 * 2) reflecting userspace activity -> reflecting kernel heuristics
1473 *
1474 * Current memory state:
1475 */
1476 mem_cgroup_flush_stats(memcg);
1477
1478 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1479 u64 size;
1480
1481 #ifdef CONFIG_HUGETLB_PAGE
1482 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1483 !memcg_accounts_hugetlb())
1484 continue;
1485 #endif
1486 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1488
1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 size += memcg_page_state_output(memcg,
1491 NR_SLAB_RECLAIMABLE_B);
1492 seq_buf_printf(s, "slab %llu\n", size);
1493 }
1494 }
1495
1496 /* Accumulated memory events */
1497 seq_buf_printf(s, "pgscan %lu\n",
1498 memcg_events(memcg, PGSCAN_KSWAPD) +
1499 memcg_events(memcg, PGSCAN_DIRECT) +
1500 memcg_events(memcg, PGSCAN_PROACTIVE) +
1501 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1502 seq_buf_printf(s, "pgsteal %lu\n",
1503 memcg_events(memcg, PGSTEAL_KSWAPD) +
1504 memcg_events(memcg, PGSTEAL_DIRECT) +
1505 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1506 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1507
1508 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1509 #ifdef CONFIG_MEMCG_V1
1510 if (memcg_vm_event_stat[i] == PGPGIN ||
1511 memcg_vm_event_stat[i] == PGPGOUT)
1512 continue;
1513 #endif
1514 seq_buf_printf(s, "%s %lu\n",
1515 vm_event_name(memcg_vm_event_stat[i]),
1516 memcg_events(memcg, memcg_vm_event_stat[i]));
1517 }
1518 }
1519
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1521 {
1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 memcg_stat_format(memcg, s);
1524 else
1525 memcg1_stat_format(memcg, s);
1526 if (seq_buf_has_overflowed(s))
1527 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1528 }
1529
1530 /**
1531 * mem_cgroup_print_oom_context: Print OOM information relevant to
1532 * memory controller.
1533 * @memcg: The memory cgroup that went over limit
1534 * @p: Task that is going to be killed
1535 *
1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537 * enabled
1538 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1540 {
1541 rcu_read_lock();
1542
1543 if (memcg) {
1544 pr_cont(",oom_memcg=");
1545 pr_cont_cgroup_path(memcg->css.cgroup);
1546 } else
1547 pr_cont(",global_oom");
1548 if (p) {
1549 pr_cont(",task_memcg=");
1550 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1551 }
1552 rcu_read_unlock();
1553 }
1554
1555 /**
1556 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1557 * memory controller.
1558 * @memcg: The memory cgroup that went over limit
1559 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1561 {
1562 /* Use static buffer, for the caller is holding oom_lock. */
1563 static char buf[SEQ_BUF_SIZE];
1564 struct seq_buf s;
1565 unsigned long memory_failcnt;
1566
1567 lockdep_assert_held(&oom_lock);
1568
1569 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1570 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1571 else
1572 memory_failcnt = memcg->memory.failcnt;
1573
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1577 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579 K((u64)page_counter_read(&memcg->swap)),
1580 K((u64)READ_ONCE(memcg->swap.max)),
1581 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1582 #ifdef CONFIG_MEMCG_V1
1583 else {
1584 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->memsw)),
1586 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1587 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1588 K((u64)page_counter_read(&memcg->kmem)),
1589 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1590 }
1591 #endif
1592
1593 pr_info("Memory cgroup stats for ");
1594 pr_cont_cgroup_path(memcg->css.cgroup);
1595 pr_cont(":");
1596 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1597 memory_stat_format(memcg, &s);
1598 seq_buf_do_printk(&s, KERN_INFO);
1599 }
1600
1601 /*
1602 * Return the memory (and swap, if configured) limit for a memcg.
1603 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606 unsigned long max = READ_ONCE(memcg->memory.max);
1607
1608 if (do_memsw_account()) {
1609 if (mem_cgroup_swappiness(memcg)) {
1610 /* Calculate swap excess capacity from memsw limit */
1611 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1612
1613 max += min(swap, (unsigned long)total_swap_pages);
1614 }
1615 } else {
1616 if (mem_cgroup_swappiness(memcg))
1617 max += min(READ_ONCE(memcg->swap.max),
1618 (unsigned long)total_swap_pages);
1619 }
1620 return max;
1621 }
1622
mem_cgroup_size(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625 return page_counter_read(&memcg->memory);
1626 }
1627
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629 int order)
1630 {
1631 struct oom_control oc = {
1632 .zonelist = NULL,
1633 .nodemask = NULL,
1634 .memcg = memcg,
1635 .gfp_mask = gfp_mask,
1636 .order = order,
1637 };
1638 bool ret = true;
1639
1640 if (mutex_lock_killable(&oom_lock))
1641 return true;
1642
1643 if (mem_cgroup_margin(memcg) >= (1 << order))
1644 goto unlock;
1645
1646 /*
1647 * A few threads which were not waiting at mutex_lock_killable() can
1648 * fail to bail out. Therefore, check again after holding oom_lock.
1649 */
1650 ret = out_of_memory(&oc);
1651
1652 unlock:
1653 mutex_unlock(&oom_lock);
1654 return ret;
1655 }
1656
1657 /*
1658 * Returns true if successfully killed one or more processes. Though in some
1659 * corner cases it can return true even without killing any process.
1660 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1662 {
1663 bool locked, ret;
1664
1665 if (order > PAGE_ALLOC_COSTLY_ORDER)
1666 return false;
1667
1668 memcg_memory_event(memcg, MEMCG_OOM);
1669
1670 if (!memcg1_oom_prepare(memcg, &locked))
1671 return false;
1672
1673 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1674
1675 memcg1_oom_finish(memcg, locked);
1676
1677 return ret;
1678 }
1679
1680 /**
1681 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1682 * @victim: task to be killed by the OOM killer
1683 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1684 *
1685 * Returns a pointer to a memory cgroup, which has to be cleaned up
1686 * by killing all belonging OOM-killable tasks.
1687 *
1688 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1689 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1691 struct mem_cgroup *oom_domain)
1692 {
1693 struct mem_cgroup *oom_group = NULL;
1694 struct mem_cgroup *memcg;
1695
1696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1697 return NULL;
1698
1699 if (!oom_domain)
1700 oom_domain = root_mem_cgroup;
1701
1702 rcu_read_lock();
1703
1704 memcg = mem_cgroup_from_task(victim);
1705 if (mem_cgroup_is_root(memcg))
1706 goto out;
1707
1708 /*
1709 * If the victim task has been asynchronously moved to a different
1710 * memory cgroup, we might end up killing tasks outside oom_domain.
1711 * In this case it's better to ignore memory.group.oom.
1712 */
1713 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1714 goto out;
1715
1716 /*
1717 * Traverse the memory cgroup hierarchy from the victim task's
1718 * cgroup up to the OOMing cgroup (or root) to find the
1719 * highest-level memory cgroup with oom.group set.
1720 */
1721 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1722 if (READ_ONCE(memcg->oom_group))
1723 oom_group = memcg;
1724
1725 if (memcg == oom_domain)
1726 break;
1727 }
1728
1729 if (oom_group)
1730 css_get(&oom_group->css);
1731 out:
1732 rcu_read_unlock();
1733
1734 return oom_group;
1735 }
1736
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1738 {
1739 pr_info("Tasks in ");
1740 pr_cont_cgroup_path(memcg->css.cgroup);
1741 pr_cont(" are going to be killed due to memory.oom.group set\n");
1742 }
1743
1744 /*
1745 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1746 * nr_pages in a single cacheline. This may change in future.
1747 */
1748 #define NR_MEMCG_STOCK 7
1749 #define FLUSHING_CACHED_CHARGE 0
1750 struct memcg_stock_pcp {
1751 local_trylock_t lock;
1752 uint8_t nr_pages[NR_MEMCG_STOCK];
1753 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1754
1755 struct work_struct work;
1756 unsigned long flags;
1757 };
1758
1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1760 .lock = INIT_LOCAL_TRYLOCK(lock),
1761 };
1762
1763 struct obj_stock_pcp {
1764 local_trylock_t lock;
1765 unsigned int nr_bytes;
1766 struct obj_cgroup *cached_objcg;
1767 struct pglist_data *cached_pgdat;
1768 int nr_slab_reclaimable_b;
1769 int nr_slab_unreclaimable_b;
1770
1771 struct work_struct work;
1772 unsigned long flags;
1773 };
1774
1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1776 .lock = INIT_LOCAL_TRYLOCK(lock),
1777 };
1778
1779 static DEFINE_MUTEX(percpu_charge_mutex);
1780
1781 static void drain_obj_stock(struct obj_stock_pcp *stock);
1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1783 struct mem_cgroup *root_memcg);
1784
1785 /**
1786 * consume_stock: Try to consume stocked charge on this cpu.
1787 * @memcg: memcg to consume from.
1788 * @nr_pages: how many pages to charge.
1789 *
1790 * Consume the cached charge if enough nr_pages are present otherwise return
1791 * failure. Also return failure for charge request larger than
1792 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1793 *
1794 * returns true if successful, false otherwise.
1795 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1797 {
1798 struct memcg_stock_pcp *stock;
1799 uint8_t stock_pages;
1800 bool ret = false;
1801 int i;
1802
1803 if (nr_pages > MEMCG_CHARGE_BATCH ||
1804 !local_trylock(&memcg_stock.lock))
1805 return ret;
1806
1807 stock = this_cpu_ptr(&memcg_stock);
1808
1809 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1810 if (memcg != READ_ONCE(stock->cached[i]))
1811 continue;
1812
1813 stock_pages = READ_ONCE(stock->nr_pages[i]);
1814 if (stock_pages >= nr_pages) {
1815 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1816 ret = true;
1817 }
1818 break;
1819 }
1820
1821 local_unlock(&memcg_stock.lock);
1822
1823 return ret;
1824 }
1825
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828 page_counter_uncharge(&memcg->memory, nr_pages);
1829 if (do_memsw_account())
1830 page_counter_uncharge(&memcg->memsw, nr_pages);
1831 }
1832
1833 /*
1834 * Returns stocks cached in percpu and reset cached information.
1835 */
drain_stock(struct memcg_stock_pcp * stock,int i)1836 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1837 {
1838 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1839 uint8_t stock_pages;
1840
1841 if (!old)
1842 return;
1843
1844 stock_pages = READ_ONCE(stock->nr_pages[i]);
1845 if (stock_pages) {
1846 memcg_uncharge(old, stock_pages);
1847 WRITE_ONCE(stock->nr_pages[i], 0);
1848 }
1849
1850 css_put(&old->css);
1851 WRITE_ONCE(stock->cached[i], NULL);
1852 }
1853
drain_stock_fully(struct memcg_stock_pcp * stock)1854 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1855 {
1856 int i;
1857
1858 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1859 drain_stock(stock, i);
1860 }
1861
drain_local_memcg_stock(struct work_struct * dummy)1862 static void drain_local_memcg_stock(struct work_struct *dummy)
1863 {
1864 struct memcg_stock_pcp *stock;
1865
1866 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1867 return;
1868
1869 local_lock(&memcg_stock.lock);
1870
1871 stock = this_cpu_ptr(&memcg_stock);
1872 drain_stock_fully(stock);
1873 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1874
1875 local_unlock(&memcg_stock.lock);
1876 }
1877
drain_local_obj_stock(struct work_struct * dummy)1878 static void drain_local_obj_stock(struct work_struct *dummy)
1879 {
1880 struct obj_stock_pcp *stock;
1881
1882 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1883 return;
1884
1885 local_lock(&obj_stock.lock);
1886
1887 stock = this_cpu_ptr(&obj_stock);
1888 drain_obj_stock(stock);
1889 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1890
1891 local_unlock(&obj_stock.lock);
1892 }
1893
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1895 {
1896 struct memcg_stock_pcp *stock;
1897 struct mem_cgroup *cached;
1898 uint8_t stock_pages;
1899 bool success = false;
1900 int empty_slot = -1;
1901 int i;
1902
1903 /*
1904 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1905 * decide to increase it more than 127 then we will need more careful
1906 * handling of nr_pages[] in struct memcg_stock_pcp.
1907 */
1908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1909
1910 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1911
1912 if (nr_pages > MEMCG_CHARGE_BATCH ||
1913 !local_trylock(&memcg_stock.lock)) {
1914 /*
1915 * In case of larger than batch refill or unlikely failure to
1916 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1917 */
1918 memcg_uncharge(memcg, nr_pages);
1919 return;
1920 }
1921
1922 stock = this_cpu_ptr(&memcg_stock);
1923 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1924 cached = READ_ONCE(stock->cached[i]);
1925 if (!cached && empty_slot == -1)
1926 empty_slot = i;
1927 if (memcg == READ_ONCE(stock->cached[i])) {
1928 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1929 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1930 if (stock_pages > MEMCG_CHARGE_BATCH)
1931 drain_stock(stock, i);
1932 success = true;
1933 break;
1934 }
1935 }
1936
1937 if (!success) {
1938 i = empty_slot;
1939 if (i == -1) {
1940 i = get_random_u32_below(NR_MEMCG_STOCK);
1941 drain_stock(stock, i);
1942 }
1943 css_get(&memcg->css);
1944 WRITE_ONCE(stock->cached[i], memcg);
1945 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1946 }
1947
1948 local_unlock(&memcg_stock.lock);
1949 }
1950
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1952 struct mem_cgroup *root_memcg)
1953 {
1954 struct mem_cgroup *memcg;
1955 bool flush = false;
1956 int i;
1957
1958 rcu_read_lock();
1959 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1960 memcg = READ_ONCE(stock->cached[i]);
1961 if (!memcg)
1962 continue;
1963
1964 if (READ_ONCE(stock->nr_pages[i]) &&
1965 mem_cgroup_is_descendant(memcg, root_memcg)) {
1966 flush = true;
1967 break;
1968 }
1969 }
1970 rcu_read_unlock();
1971 return flush;
1972 }
1973
1974 /*
1975 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1976 * of the hierarchy under it.
1977 */
drain_all_stock(struct mem_cgroup * root_memcg)1978 void drain_all_stock(struct mem_cgroup *root_memcg)
1979 {
1980 int cpu, curcpu;
1981
1982 /* If someone's already draining, avoid adding running more workers. */
1983 if (!mutex_trylock(&percpu_charge_mutex))
1984 return;
1985 /*
1986 * Notify other cpus that system-wide "drain" is running
1987 * We do not care about races with the cpu hotplug because cpu down
1988 * as well as workers from this path always operate on the local
1989 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1990 */
1991 migrate_disable();
1992 curcpu = smp_processor_id();
1993 for_each_online_cpu(cpu) {
1994 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1995 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1996
1997 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1998 is_memcg_drain_needed(memcg_st, root_memcg) &&
1999 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2000 &memcg_st->flags)) {
2001 if (cpu == curcpu)
2002 drain_local_memcg_stock(&memcg_st->work);
2003 else if (!cpu_is_isolated(cpu))
2004 schedule_work_on(cpu, &memcg_st->work);
2005 }
2006
2007 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2008 obj_stock_flush_required(obj_st, root_memcg) &&
2009 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2010 &obj_st->flags)) {
2011 if (cpu == curcpu)
2012 drain_local_obj_stock(&obj_st->work);
2013 else if (!cpu_is_isolated(cpu))
2014 schedule_work_on(cpu, &obj_st->work);
2015 }
2016 }
2017 migrate_enable();
2018 mutex_unlock(&percpu_charge_mutex);
2019 }
2020
memcg_hotplug_cpu_dead(unsigned int cpu)2021 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2022 {
2023 /* no need for the local lock */
2024 drain_obj_stock(&per_cpu(obj_stock, cpu));
2025 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2026
2027 return 0;
2028 }
2029
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2030 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2031 unsigned int nr_pages,
2032 gfp_t gfp_mask)
2033 {
2034 unsigned long nr_reclaimed = 0;
2035
2036 do {
2037 unsigned long pflags;
2038
2039 if (page_counter_read(&memcg->memory) <=
2040 READ_ONCE(memcg->memory.high))
2041 continue;
2042
2043 memcg_memory_event(memcg, MEMCG_HIGH);
2044
2045 psi_memstall_enter(&pflags);
2046 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2047 gfp_mask,
2048 MEMCG_RECLAIM_MAY_SWAP,
2049 NULL);
2050 psi_memstall_leave(&pflags);
2051 } while ((memcg = parent_mem_cgroup(memcg)) &&
2052 !mem_cgroup_is_root(memcg));
2053
2054 return nr_reclaimed;
2055 }
2056
high_work_func(struct work_struct * work)2057 static void high_work_func(struct work_struct *work)
2058 {
2059 struct mem_cgroup *memcg;
2060
2061 memcg = container_of(work, struct mem_cgroup, high_work);
2062 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2063 }
2064
2065 /*
2066 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2067 * enough to still cause a significant slowdown in most cases, while still
2068 * allowing diagnostics and tracing to proceed without becoming stuck.
2069 */
2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2071
2072 /*
2073 * When calculating the delay, we use these either side of the exponentiation to
2074 * maintain precision and scale to a reasonable number of jiffies (see the table
2075 * below.
2076 *
2077 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2078 * overage ratio to a delay.
2079 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2080 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2081 * to produce a reasonable delay curve.
2082 *
2083 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2084 * reasonable delay curve compared to precision-adjusted overage, not
2085 * penalising heavily at first, but still making sure that growth beyond the
2086 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2087 * example, with a high of 100 megabytes:
2088 *
2089 * +-------+------------------------+
2090 * | usage | time to allocate in ms |
2091 * +-------+------------------------+
2092 * | 100M | 0 |
2093 * | 101M | 6 |
2094 * | 102M | 25 |
2095 * | 103M | 57 |
2096 * | 104M | 102 |
2097 * | 105M | 159 |
2098 * | 106M | 230 |
2099 * | 107M | 313 |
2100 * | 108M | 409 |
2101 * | 109M | 518 |
2102 * | 110M | 639 |
2103 * | 111M | 774 |
2104 * | 112M | 921 |
2105 * | 113M | 1081 |
2106 * | 114M | 1254 |
2107 * | 115M | 1439 |
2108 * | 116M | 1638 |
2109 * | 117M | 1849 |
2110 * | 118M | 2000 |
2111 * | 119M | 2000 |
2112 * | 120M | 2000 |
2113 * +-------+------------------------+
2114 */
2115 #define MEMCG_DELAY_PRECISION_SHIFT 20
2116 #define MEMCG_DELAY_SCALING_SHIFT 14
2117
calculate_overage(unsigned long usage,unsigned long high)2118 static u64 calculate_overage(unsigned long usage, unsigned long high)
2119 {
2120 u64 overage;
2121
2122 if (usage <= high)
2123 return 0;
2124
2125 /*
2126 * Prevent division by 0 in overage calculation by acting as if
2127 * it was a threshold of 1 page
2128 */
2129 high = max(high, 1UL);
2130
2131 overage = usage - high;
2132 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2133 return div64_u64(overage, high);
2134 }
2135
mem_find_max_overage(struct mem_cgroup * memcg)2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2137 {
2138 u64 overage, max_overage = 0;
2139
2140 do {
2141 overage = calculate_overage(page_counter_read(&memcg->memory),
2142 READ_ONCE(memcg->memory.high));
2143 max_overage = max(overage, max_overage);
2144 } while ((memcg = parent_mem_cgroup(memcg)) &&
2145 !mem_cgroup_is_root(memcg));
2146
2147 return max_overage;
2148 }
2149
swap_find_max_overage(struct mem_cgroup * memcg)2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2151 {
2152 u64 overage, max_overage = 0;
2153
2154 do {
2155 overage = calculate_overage(page_counter_read(&memcg->swap),
2156 READ_ONCE(memcg->swap.high));
2157 if (overage)
2158 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2159 max_overage = max(overage, max_overage);
2160 } while ((memcg = parent_mem_cgroup(memcg)) &&
2161 !mem_cgroup_is_root(memcg));
2162
2163 return max_overage;
2164 }
2165
2166 /*
2167 * Get the number of jiffies that we should penalise a mischievous cgroup which
2168 * is exceeding its memory.high by checking both it and its ancestors.
2169 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2171 unsigned int nr_pages,
2172 u64 max_overage)
2173 {
2174 unsigned long penalty_jiffies;
2175
2176 if (!max_overage)
2177 return 0;
2178
2179 /*
2180 * We use overage compared to memory.high to calculate the number of
2181 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2182 * fairly lenient on small overages, and increasingly harsh when the
2183 * memcg in question makes it clear that it has no intention of stopping
2184 * its crazy behaviour, so we exponentially increase the delay based on
2185 * overage amount.
2186 */
2187 penalty_jiffies = max_overage * max_overage * HZ;
2188 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2189 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2190
2191 /*
2192 * Factor in the task's own contribution to the overage, such that four
2193 * N-sized allocations are throttled approximately the same as one
2194 * 4N-sized allocation.
2195 *
2196 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2197 * larger the current charge patch is than that.
2198 */
2199 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2200 }
2201
2202 /*
2203 * Reclaims memory over the high limit. Called directly from
2204 * try_charge() (context permitting), as well as from the userland
2205 * return path where reclaim is always able to block.
2206 */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2207 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2208 {
2209 unsigned long penalty_jiffies;
2210 unsigned long pflags;
2211 unsigned long nr_reclaimed;
2212 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2213 int nr_retries = MAX_RECLAIM_RETRIES;
2214 struct mem_cgroup *memcg;
2215 bool in_retry = false;
2216
2217 memcg = get_mem_cgroup_from_mm(current->mm);
2218 current->memcg_nr_pages_over_high = 0;
2219
2220 retry_reclaim:
2221 /*
2222 * Bail if the task is already exiting. Unlike memory.max,
2223 * memory.high enforcement isn't as strict, and there is no
2224 * OOM killer involved, which means the excess could already
2225 * be much bigger (and still growing) than it could for
2226 * memory.max; the dying task could get stuck in fruitless
2227 * reclaim for a long time, which isn't desirable.
2228 */
2229 if (task_is_dying())
2230 goto out;
2231
2232 /*
2233 * The allocating task should reclaim at least the batch size, but for
2234 * subsequent retries we only want to do what's necessary to prevent oom
2235 * or breaching resource isolation.
2236 *
2237 * This is distinct from memory.max or page allocator behaviour because
2238 * memory.high is currently batched, whereas memory.max and the page
2239 * allocator run every time an allocation is made.
2240 */
2241 nr_reclaimed = reclaim_high(memcg,
2242 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2243 gfp_mask);
2244
2245 /*
2246 * memory.high is breached and reclaim is unable to keep up. Throttle
2247 * allocators proactively to slow down excessive growth.
2248 */
2249 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2250 mem_find_max_overage(memcg));
2251
2252 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2253 swap_find_max_overage(memcg));
2254
2255 /*
2256 * Clamp the max delay per usermode return so as to still keep the
2257 * application moving forwards and also permit diagnostics, albeit
2258 * extremely slowly.
2259 */
2260 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2261
2262 /*
2263 * Don't sleep if the amount of jiffies this memcg owes us is so low
2264 * that it's not even worth doing, in an attempt to be nice to those who
2265 * go only a small amount over their memory.high value and maybe haven't
2266 * been aggressively reclaimed enough yet.
2267 */
2268 if (penalty_jiffies <= HZ / 100)
2269 goto out;
2270
2271 /*
2272 * If reclaim is making forward progress but we're still over
2273 * memory.high, we want to encourage that rather than doing allocator
2274 * throttling.
2275 */
2276 if (nr_reclaimed || nr_retries--) {
2277 in_retry = true;
2278 goto retry_reclaim;
2279 }
2280
2281 /*
2282 * Reclaim didn't manage to push usage below the limit, slow
2283 * this allocating task down.
2284 *
2285 * If we exit early, we're guaranteed to die (since
2286 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2287 * need to account for any ill-begotten jiffies to pay them off later.
2288 */
2289 psi_memstall_enter(&pflags);
2290 schedule_timeout_killable(penalty_jiffies);
2291 psi_memstall_leave(&pflags);
2292
2293 out:
2294 css_put(&memcg->css);
2295 }
2296
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2297 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2298 unsigned int nr_pages)
2299 {
2300 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2301 int nr_retries = MAX_RECLAIM_RETRIES;
2302 struct mem_cgroup *mem_over_limit;
2303 struct page_counter *counter;
2304 unsigned long nr_reclaimed;
2305 bool passed_oom = false;
2306 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2307 bool drained = false;
2308 bool raised_max_event = false;
2309 unsigned long pflags;
2310 bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2311
2312 retry:
2313 if (consume_stock(memcg, nr_pages))
2314 return 0;
2315
2316 if (!allow_spinning)
2317 /* Avoid the refill and flush of the older stock */
2318 batch = nr_pages;
2319
2320 if (!do_memsw_account() ||
2321 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2322 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2323 goto done_restock;
2324 if (do_memsw_account())
2325 page_counter_uncharge(&memcg->memsw, batch);
2326 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2327 } else {
2328 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2329 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2330 }
2331
2332 if (batch > nr_pages) {
2333 batch = nr_pages;
2334 goto retry;
2335 }
2336
2337 /*
2338 * Prevent unbounded recursion when reclaim operations need to
2339 * allocate memory. This might exceed the limits temporarily,
2340 * but we prefer facilitating memory reclaim and getting back
2341 * under the limit over triggering OOM kills in these cases.
2342 */
2343 if (unlikely(current->flags & PF_MEMALLOC))
2344 goto force;
2345
2346 if (unlikely(task_in_memcg_oom(current)))
2347 goto nomem;
2348
2349 if (!gfpflags_allow_blocking(gfp_mask))
2350 goto nomem;
2351
2352 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2353 raised_max_event = true;
2354
2355 psi_memstall_enter(&pflags);
2356 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2357 gfp_mask, reclaim_options, NULL);
2358 psi_memstall_leave(&pflags);
2359
2360 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2361 goto retry;
2362
2363 if (!drained) {
2364 drain_all_stock(mem_over_limit);
2365 drained = true;
2366 goto retry;
2367 }
2368
2369 if (gfp_mask & __GFP_NORETRY)
2370 goto nomem;
2371 /*
2372 * Even though the limit is exceeded at this point, reclaim
2373 * may have been able to free some pages. Retry the charge
2374 * before killing the task.
2375 *
2376 * Only for regular pages, though: huge pages are rather
2377 * unlikely to succeed so close to the limit, and we fall back
2378 * to regular pages anyway in case of failure.
2379 */
2380 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2381 goto retry;
2382
2383 if (nr_retries--)
2384 goto retry;
2385
2386 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2387 goto nomem;
2388
2389 /* Avoid endless loop for tasks bypassed by the oom killer */
2390 if (passed_oom && task_is_dying())
2391 goto nomem;
2392
2393 /*
2394 * keep retrying as long as the memcg oom killer is able to make
2395 * a forward progress or bypass the charge if the oom killer
2396 * couldn't make any progress.
2397 */
2398 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2399 get_order(nr_pages * PAGE_SIZE))) {
2400 passed_oom = true;
2401 nr_retries = MAX_RECLAIM_RETRIES;
2402 goto retry;
2403 }
2404 nomem:
2405 /*
2406 * Memcg doesn't have a dedicated reserve for atomic
2407 * allocations. But like the global atomic pool, we need to
2408 * put the burden of reclaim on regular allocation requests
2409 * and let these go through as privileged allocations.
2410 */
2411 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2412 return -ENOMEM;
2413 force:
2414 /*
2415 * If the allocation has to be enforced, don't forget to raise
2416 * a MEMCG_MAX event.
2417 */
2418 if (!raised_max_event)
2419 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2420
2421 /*
2422 * The allocation either can't fail or will lead to more memory
2423 * being freed very soon. Allow memory usage go over the limit
2424 * temporarily by force charging it.
2425 */
2426 page_counter_charge(&memcg->memory, nr_pages);
2427 if (do_memsw_account())
2428 page_counter_charge(&memcg->memsw, nr_pages);
2429
2430 return 0;
2431
2432 done_restock:
2433 if (batch > nr_pages)
2434 refill_stock(memcg, batch - nr_pages);
2435
2436 /*
2437 * If the hierarchy is above the normal consumption range, schedule
2438 * reclaim on returning to userland. We can perform reclaim here
2439 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2440 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2441 * not recorded as it most likely matches current's and won't
2442 * change in the meantime. As high limit is checked again before
2443 * reclaim, the cost of mismatch is negligible.
2444 */
2445 do {
2446 bool mem_high, swap_high;
2447
2448 mem_high = page_counter_read(&memcg->memory) >
2449 READ_ONCE(memcg->memory.high);
2450 swap_high = page_counter_read(&memcg->swap) >
2451 READ_ONCE(memcg->swap.high);
2452
2453 /* Don't bother a random interrupted task */
2454 if (!in_task()) {
2455 if (mem_high) {
2456 schedule_work(&memcg->high_work);
2457 break;
2458 }
2459 continue;
2460 }
2461
2462 if (mem_high || swap_high) {
2463 /*
2464 * The allocating tasks in this cgroup will need to do
2465 * reclaim or be throttled to prevent further growth
2466 * of the memory or swap footprints.
2467 *
2468 * Target some best-effort fairness between the tasks,
2469 * and distribute reclaim work and delay penalties
2470 * based on how much each task is actually allocating.
2471 */
2472 current->memcg_nr_pages_over_high += batch;
2473 set_notify_resume(current);
2474 break;
2475 }
2476 } while ((memcg = parent_mem_cgroup(memcg)));
2477
2478 /*
2479 * Reclaim is set up above to be called from the userland
2480 * return path. But also attempt synchronous reclaim to avoid
2481 * excessive overrun while the task is still inside the
2482 * kernel. If this is successful, the return path will see it
2483 * when it rechecks the overage and simply bail out.
2484 */
2485 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2486 !(current->flags & PF_MEMALLOC) &&
2487 gfpflags_allow_blocking(gfp_mask))
2488 __mem_cgroup_handle_over_high(gfp_mask);
2489 return 0;
2490 }
2491
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2492 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2493 unsigned int nr_pages)
2494 {
2495 if (mem_cgroup_is_root(memcg))
2496 return 0;
2497
2498 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2499 }
2500
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2501 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2502 {
2503 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2504 /*
2505 * Any of the following ensures page's memcg stability:
2506 *
2507 * - the page lock
2508 * - LRU isolation
2509 * - exclusive reference
2510 */
2511 folio->memcg_data = (unsigned long)memcg;
2512 }
2513
2514 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2515 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2516 struct pglist_data *pgdat,
2517 enum node_stat_item idx, int nr)
2518 {
2519 struct lruvec *lruvec;
2520
2521 if (likely(!in_nmi())) {
2522 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2523 mod_memcg_lruvec_state(lruvec, idx, nr);
2524 } else {
2525 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2526
2527 /* preemption is disabled in_nmi(). */
2528 css_rstat_updated(&memcg->css, smp_processor_id());
2529 if (idx == NR_SLAB_RECLAIMABLE_B)
2530 atomic_add(nr, &pn->slab_reclaimable);
2531 else
2532 atomic_add(nr, &pn->slab_unreclaimable);
2533 }
2534 }
2535 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2536 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2537 struct pglist_data *pgdat,
2538 enum node_stat_item idx, int nr)
2539 {
2540 struct lruvec *lruvec;
2541
2542 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2543 mod_memcg_lruvec_state(lruvec, idx, nr);
2544 }
2545 #endif
2546
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2547 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2548 struct pglist_data *pgdat,
2549 enum node_stat_item idx, int nr)
2550 {
2551 struct mem_cgroup *memcg;
2552
2553 rcu_read_lock();
2554 memcg = obj_cgroup_memcg(objcg);
2555 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2556 rcu_read_unlock();
2557 }
2558
2559 static __always_inline
mem_cgroup_from_obj_slab(struct slab * slab,void * p)2560 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
2561 {
2562 /*
2563 * Slab objects are accounted individually, not per-page.
2564 * Memcg membership data for each individual object is saved in
2565 * slab->obj_exts.
2566 */
2567 struct slabobj_ext *obj_exts;
2568 unsigned int off;
2569
2570 obj_exts = slab_obj_exts(slab);
2571 if (!obj_exts)
2572 return NULL;
2573
2574 off = obj_to_index(slab->slab_cache, slab, p);
2575 if (obj_exts[off].objcg)
2576 return obj_cgroup_memcg(obj_exts[off].objcg);
2577
2578 return NULL;
2579 }
2580
2581 /*
2582 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2583 * It is not suitable for objects allocated using vmalloc().
2584 *
2585 * A passed kernel object must be a slab object or a generic kernel page.
2586 *
2587 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2588 * cgroup_mutex, etc.
2589 */
mem_cgroup_from_slab_obj(void * p)2590 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2591 {
2592 struct slab *slab;
2593
2594 if (mem_cgroup_disabled())
2595 return NULL;
2596
2597 slab = virt_to_slab(p);
2598 if (slab)
2599 return mem_cgroup_from_obj_slab(slab, p);
2600 return folio_memcg_check(virt_to_folio(p));
2601 }
2602
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2603 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2604 {
2605 struct obj_cgroup *objcg = NULL;
2606
2607 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2608 objcg = rcu_dereference(memcg->objcg);
2609 if (likely(objcg && obj_cgroup_tryget(objcg)))
2610 break;
2611 objcg = NULL;
2612 }
2613 return objcg;
2614 }
2615
current_objcg_update(void)2616 static struct obj_cgroup *current_objcg_update(void)
2617 {
2618 struct mem_cgroup *memcg;
2619 struct obj_cgroup *old, *objcg = NULL;
2620
2621 do {
2622 /* Atomically drop the update bit. */
2623 old = xchg(¤t->objcg, NULL);
2624 if (old) {
2625 old = (struct obj_cgroup *)
2626 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2627 obj_cgroup_put(old);
2628
2629 old = NULL;
2630 }
2631
2632 /* If new objcg is NULL, no reason for the second atomic update. */
2633 if (!current->mm || (current->flags & PF_KTHREAD))
2634 return NULL;
2635
2636 /*
2637 * Release the objcg pointer from the previous iteration,
2638 * if try_cmpxcg() below fails.
2639 */
2640 if (unlikely(objcg)) {
2641 obj_cgroup_put(objcg);
2642 objcg = NULL;
2643 }
2644
2645 /*
2646 * Obtain the new objcg pointer. The current task can be
2647 * asynchronously moved to another memcg and the previous
2648 * memcg can be offlined. So let's get the memcg pointer
2649 * and try get a reference to objcg under a rcu read lock.
2650 */
2651
2652 rcu_read_lock();
2653 memcg = mem_cgroup_from_task(current);
2654 objcg = __get_obj_cgroup_from_memcg(memcg);
2655 rcu_read_unlock();
2656
2657 /*
2658 * Try set up a new objcg pointer atomically. If it
2659 * fails, it means the update flag was set concurrently, so
2660 * the whole procedure should be repeated.
2661 */
2662 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2663
2664 return objcg;
2665 }
2666
current_obj_cgroup(void)2667 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2668 {
2669 struct mem_cgroup *memcg;
2670 struct obj_cgroup *objcg;
2671
2672 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2673 return NULL;
2674
2675 if (in_task()) {
2676 memcg = current->active_memcg;
2677 if (unlikely(memcg))
2678 goto from_memcg;
2679
2680 objcg = READ_ONCE(current->objcg);
2681 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2682 objcg = current_objcg_update();
2683 /*
2684 * Objcg reference is kept by the task, so it's safe
2685 * to use the objcg by the current task.
2686 */
2687 return objcg;
2688 }
2689
2690 memcg = this_cpu_read(int_active_memcg);
2691 if (unlikely(memcg))
2692 goto from_memcg;
2693
2694 return NULL;
2695
2696 from_memcg:
2697 objcg = NULL;
2698 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2699 /*
2700 * Memcg pointer is protected by scope (see set_active_memcg())
2701 * and is pinning the corresponding objcg, so objcg can't go
2702 * away and can be used within the scope without any additional
2703 * protection.
2704 */
2705 objcg = rcu_dereference_check(memcg->objcg, 1);
2706 if (likely(objcg))
2707 break;
2708 }
2709
2710 return objcg;
2711 }
2712
get_obj_cgroup_from_folio(struct folio * folio)2713 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2714 {
2715 struct obj_cgroup *objcg;
2716
2717 if (!memcg_kmem_online())
2718 return NULL;
2719
2720 if (folio_memcg_kmem(folio)) {
2721 objcg = __folio_objcg(folio);
2722 obj_cgroup_get(objcg);
2723 } else {
2724 struct mem_cgroup *memcg;
2725
2726 rcu_read_lock();
2727 memcg = __folio_memcg(folio);
2728 if (memcg)
2729 objcg = __get_obj_cgroup_from_memcg(memcg);
2730 else
2731 objcg = NULL;
2732 rcu_read_unlock();
2733 }
2734 return objcg;
2735 }
2736
2737 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2738 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2739 {
2740 if (likely(!in_nmi())) {
2741 mod_memcg_state(memcg, MEMCG_KMEM, val);
2742 } else {
2743 /* preemption is disabled in_nmi(). */
2744 css_rstat_updated(&memcg->css, smp_processor_id());
2745 atomic_add(val, &memcg->kmem_stat);
2746 }
2747 }
2748 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2749 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2750 {
2751 mod_memcg_state(memcg, MEMCG_KMEM, val);
2752 }
2753 #endif
2754
2755 /*
2756 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2757 * @objcg: object cgroup to uncharge
2758 * @nr_pages: number of pages to uncharge
2759 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2760 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2761 unsigned int nr_pages)
2762 {
2763 struct mem_cgroup *memcg;
2764
2765 memcg = get_mem_cgroup_from_objcg(objcg);
2766
2767 account_kmem_nmi_safe(memcg, -nr_pages);
2768 memcg1_account_kmem(memcg, -nr_pages);
2769 if (!mem_cgroup_is_root(memcg))
2770 refill_stock(memcg, nr_pages);
2771
2772 css_put(&memcg->css);
2773 }
2774
2775 /*
2776 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2777 * @objcg: object cgroup to charge
2778 * @gfp: reclaim mode
2779 * @nr_pages: number of pages to charge
2780 *
2781 * Returns 0 on success, an error code on failure.
2782 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2783 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2784 unsigned int nr_pages)
2785 {
2786 struct mem_cgroup *memcg;
2787 int ret;
2788
2789 memcg = get_mem_cgroup_from_objcg(objcg);
2790
2791 ret = try_charge_memcg(memcg, gfp, nr_pages);
2792 if (ret)
2793 goto out;
2794
2795 account_kmem_nmi_safe(memcg, nr_pages);
2796 memcg1_account_kmem(memcg, nr_pages);
2797 out:
2798 css_put(&memcg->css);
2799
2800 return ret;
2801 }
2802
page_objcg(const struct page * page)2803 static struct obj_cgroup *page_objcg(const struct page *page)
2804 {
2805 unsigned long memcg_data = page->memcg_data;
2806
2807 if (mem_cgroup_disabled() || !memcg_data)
2808 return NULL;
2809
2810 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2811 page);
2812 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2813 }
2814
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2815 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2816 {
2817 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2818 }
2819
2820 /**
2821 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2822 * @page: page to charge
2823 * @gfp: reclaim mode
2824 * @order: allocation order
2825 *
2826 * Returns 0 on success, an error code on failure.
2827 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2828 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2829 {
2830 struct obj_cgroup *objcg;
2831 int ret = 0;
2832
2833 objcg = current_obj_cgroup();
2834 if (objcg) {
2835 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2836 if (!ret) {
2837 obj_cgroup_get(objcg);
2838 page_set_objcg(page, objcg);
2839 return 0;
2840 }
2841 }
2842 return ret;
2843 }
2844
2845 /**
2846 * __memcg_kmem_uncharge_page: uncharge a kmem page
2847 * @page: page to uncharge
2848 * @order: allocation order
2849 */
__memcg_kmem_uncharge_page(struct page * page,int order)2850 void __memcg_kmem_uncharge_page(struct page *page, int order)
2851 {
2852 struct obj_cgroup *objcg = page_objcg(page);
2853 unsigned int nr_pages = 1 << order;
2854
2855 if (!objcg)
2856 return;
2857
2858 obj_cgroup_uncharge_pages(objcg, nr_pages);
2859 page->memcg_data = 0;
2860 obj_cgroup_put(objcg);
2861 }
2862
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2863 static void __account_obj_stock(struct obj_cgroup *objcg,
2864 struct obj_stock_pcp *stock, int nr,
2865 struct pglist_data *pgdat, enum node_stat_item idx)
2866 {
2867 int *bytes;
2868
2869 /*
2870 * Save vmstat data in stock and skip vmstat array update unless
2871 * accumulating over a page of vmstat data or when pgdat changes.
2872 */
2873 if (stock->cached_pgdat != pgdat) {
2874 /* Flush the existing cached vmstat data */
2875 struct pglist_data *oldpg = stock->cached_pgdat;
2876
2877 if (stock->nr_slab_reclaimable_b) {
2878 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2879 stock->nr_slab_reclaimable_b);
2880 stock->nr_slab_reclaimable_b = 0;
2881 }
2882 if (stock->nr_slab_unreclaimable_b) {
2883 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2884 stock->nr_slab_unreclaimable_b);
2885 stock->nr_slab_unreclaimable_b = 0;
2886 }
2887 stock->cached_pgdat = pgdat;
2888 }
2889
2890 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2891 : &stock->nr_slab_unreclaimable_b;
2892 /*
2893 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2894 * cached locally at least once before pushing it out.
2895 */
2896 if (!*bytes) {
2897 *bytes = nr;
2898 nr = 0;
2899 } else {
2900 *bytes += nr;
2901 if (abs(*bytes) > PAGE_SIZE) {
2902 nr = *bytes;
2903 *bytes = 0;
2904 } else {
2905 nr = 0;
2906 }
2907 }
2908 if (nr)
2909 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2910 }
2911
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2912 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2913 struct pglist_data *pgdat, enum node_stat_item idx)
2914 {
2915 struct obj_stock_pcp *stock;
2916 bool ret = false;
2917
2918 if (!local_trylock(&obj_stock.lock))
2919 return ret;
2920
2921 stock = this_cpu_ptr(&obj_stock);
2922 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2923 stock->nr_bytes -= nr_bytes;
2924 ret = true;
2925
2926 if (pgdat)
2927 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2928 }
2929
2930 local_unlock(&obj_stock.lock);
2931
2932 return ret;
2933 }
2934
drain_obj_stock(struct obj_stock_pcp * stock)2935 static void drain_obj_stock(struct obj_stock_pcp *stock)
2936 {
2937 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2938
2939 if (!old)
2940 return;
2941
2942 if (stock->nr_bytes) {
2943 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2944 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2945
2946 if (nr_pages) {
2947 struct mem_cgroup *memcg;
2948
2949 memcg = get_mem_cgroup_from_objcg(old);
2950
2951 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2952 memcg1_account_kmem(memcg, -nr_pages);
2953 if (!mem_cgroup_is_root(memcg))
2954 memcg_uncharge(memcg, nr_pages);
2955
2956 css_put(&memcg->css);
2957 }
2958
2959 /*
2960 * The leftover is flushed to the centralized per-memcg value.
2961 * On the next attempt to refill obj stock it will be moved
2962 * to a per-cpu stock (probably, on an other CPU), see
2963 * refill_obj_stock().
2964 *
2965 * How often it's flushed is a trade-off between the memory
2966 * limit enforcement accuracy and potential CPU contention,
2967 * so it might be changed in the future.
2968 */
2969 atomic_add(nr_bytes, &old->nr_charged_bytes);
2970 stock->nr_bytes = 0;
2971 }
2972
2973 /*
2974 * Flush the vmstat data in current stock
2975 */
2976 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2977 if (stock->nr_slab_reclaimable_b) {
2978 mod_objcg_mlstate(old, stock->cached_pgdat,
2979 NR_SLAB_RECLAIMABLE_B,
2980 stock->nr_slab_reclaimable_b);
2981 stock->nr_slab_reclaimable_b = 0;
2982 }
2983 if (stock->nr_slab_unreclaimable_b) {
2984 mod_objcg_mlstate(old, stock->cached_pgdat,
2985 NR_SLAB_UNRECLAIMABLE_B,
2986 stock->nr_slab_unreclaimable_b);
2987 stock->nr_slab_unreclaimable_b = 0;
2988 }
2989 stock->cached_pgdat = NULL;
2990 }
2991
2992 WRITE_ONCE(stock->cached_objcg, NULL);
2993 obj_cgroup_put(old);
2994 }
2995
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)2996 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
2997 struct mem_cgroup *root_memcg)
2998 {
2999 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3000 struct mem_cgroup *memcg;
3001 bool flush = false;
3002
3003 rcu_read_lock();
3004 if (objcg) {
3005 memcg = obj_cgroup_memcg(objcg);
3006 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3007 flush = true;
3008 }
3009 rcu_read_unlock();
3010
3011 return flush;
3012 }
3013
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3014 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3015 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3016 enum node_stat_item idx)
3017 {
3018 struct obj_stock_pcp *stock;
3019 unsigned int nr_pages = 0;
3020
3021 if (!local_trylock(&obj_stock.lock)) {
3022 if (pgdat)
3023 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3024 nr_pages = nr_bytes >> PAGE_SHIFT;
3025 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3026 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3027 goto out;
3028 }
3029
3030 stock = this_cpu_ptr(&obj_stock);
3031 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3032 drain_obj_stock(stock);
3033 obj_cgroup_get(objcg);
3034 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3035 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3036 WRITE_ONCE(stock->cached_objcg, objcg);
3037
3038 allow_uncharge = true; /* Allow uncharge when objcg changes */
3039 }
3040 stock->nr_bytes += nr_bytes;
3041
3042 if (pgdat)
3043 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3044
3045 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3046 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3047 stock->nr_bytes &= (PAGE_SIZE - 1);
3048 }
3049
3050 local_unlock(&obj_stock.lock);
3051 out:
3052 if (nr_pages)
3053 obj_cgroup_uncharge_pages(objcg, nr_pages);
3054 }
3055
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3056 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3057 struct pglist_data *pgdat, enum node_stat_item idx)
3058 {
3059 unsigned int nr_pages, nr_bytes;
3060 int ret;
3061
3062 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3063 return 0;
3064
3065 /*
3066 * In theory, objcg->nr_charged_bytes can have enough
3067 * pre-charged bytes to satisfy the allocation. However,
3068 * flushing objcg->nr_charged_bytes requires two atomic
3069 * operations, and objcg->nr_charged_bytes can't be big.
3070 * The shared objcg->nr_charged_bytes can also become a
3071 * performance bottleneck if all tasks of the same memcg are
3072 * trying to update it. So it's better to ignore it and try
3073 * grab some new pages. The stock's nr_bytes will be flushed to
3074 * objcg->nr_charged_bytes later on when objcg changes.
3075 *
3076 * The stock's nr_bytes may contain enough pre-charged bytes
3077 * to allow one less page from being charged, but we can't rely
3078 * on the pre-charged bytes not being changed outside of
3079 * consume_obj_stock() or refill_obj_stock(). So ignore those
3080 * pre-charged bytes as well when charging pages. To avoid a
3081 * page uncharge right after a page charge, we set the
3082 * allow_uncharge flag to false when calling refill_obj_stock()
3083 * to temporarily allow the pre-charged bytes to exceed the page
3084 * size limit. The maximum reachable value of the pre-charged
3085 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3086 * race.
3087 */
3088 nr_pages = size >> PAGE_SHIFT;
3089 nr_bytes = size & (PAGE_SIZE - 1);
3090
3091 if (nr_bytes)
3092 nr_pages += 1;
3093
3094 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3095 if (!ret && (nr_bytes || pgdat))
3096 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3097 false, size, pgdat, idx);
3098
3099 return ret;
3100 }
3101
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3102 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3103 {
3104 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3105 }
3106
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3107 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3108 {
3109 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3110 }
3111
obj_full_size(struct kmem_cache * s)3112 static inline size_t obj_full_size(struct kmem_cache *s)
3113 {
3114 /*
3115 * For each accounted object there is an extra space which is used
3116 * to store obj_cgroup membership. Charge it too.
3117 */
3118 return s->size + sizeof(struct obj_cgroup *);
3119 }
3120
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3121 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3122 gfp_t flags, size_t size, void **p)
3123 {
3124 struct obj_cgroup *objcg;
3125 struct slab *slab;
3126 unsigned long off;
3127 size_t i;
3128
3129 /*
3130 * The obtained objcg pointer is safe to use within the current scope,
3131 * defined by current task or set_active_memcg() pair.
3132 * obj_cgroup_get() is used to get a permanent reference.
3133 */
3134 objcg = current_obj_cgroup();
3135 if (!objcg)
3136 return true;
3137
3138 /*
3139 * slab_alloc_node() avoids the NULL check, so we might be called with a
3140 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3141 * the whole requested size.
3142 * return success as there's nothing to free back
3143 */
3144 if (unlikely(*p == NULL))
3145 return true;
3146
3147 flags &= gfp_allowed_mask;
3148
3149 if (lru) {
3150 int ret;
3151 struct mem_cgroup *memcg;
3152
3153 memcg = get_mem_cgroup_from_objcg(objcg);
3154 ret = memcg_list_lru_alloc(memcg, lru, flags);
3155 css_put(&memcg->css);
3156
3157 if (ret)
3158 return false;
3159 }
3160
3161 for (i = 0; i < size; i++) {
3162 slab = virt_to_slab(p[i]);
3163
3164 if (!slab_obj_exts(slab) &&
3165 alloc_slab_obj_exts(slab, s, flags, false)) {
3166 continue;
3167 }
3168
3169 /*
3170 * if we fail and size is 1, memcg_alloc_abort_single() will
3171 * just free the object, which is ok as we have not assigned
3172 * objcg to its obj_ext yet
3173 *
3174 * for larger sizes, kmem_cache_free_bulk() will uncharge
3175 * any objects that were already charged and obj_ext assigned
3176 *
3177 * TODO: we could batch this until slab_pgdat(slab) changes
3178 * between iterations, with a more complicated undo
3179 */
3180 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3181 slab_pgdat(slab), cache_vmstat_idx(s)))
3182 return false;
3183
3184 off = obj_to_index(s, slab, p[i]);
3185 obj_cgroup_get(objcg);
3186 slab_obj_exts(slab)[off].objcg = objcg;
3187 }
3188
3189 return true;
3190 }
3191
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3192 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3193 void **p, int objects, struct slabobj_ext *obj_exts)
3194 {
3195 size_t obj_size = obj_full_size(s);
3196
3197 for (int i = 0; i < objects; i++) {
3198 struct obj_cgroup *objcg;
3199 unsigned int off;
3200
3201 off = obj_to_index(s, slab, p[i]);
3202 objcg = obj_exts[off].objcg;
3203 if (!objcg)
3204 continue;
3205
3206 obj_exts[off].objcg = NULL;
3207 refill_obj_stock(objcg, obj_size, true, -obj_size,
3208 slab_pgdat(slab), cache_vmstat_idx(s));
3209 obj_cgroup_put(objcg);
3210 }
3211 }
3212
3213 /*
3214 * The objcg is only set on the first page, so transfer it to all the
3215 * other pages.
3216 */
split_page_memcg(struct page * page,unsigned order)3217 void split_page_memcg(struct page *page, unsigned order)
3218 {
3219 struct obj_cgroup *objcg = page_objcg(page);
3220 unsigned int i, nr = 1 << order;
3221
3222 if (!objcg)
3223 return;
3224
3225 for (i = 1; i < nr; i++)
3226 page_set_objcg(&page[i], objcg);
3227
3228 obj_cgroup_get_many(objcg, nr - 1);
3229 }
3230
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3231 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3232 unsigned new_order)
3233 {
3234 unsigned new_refs;
3235
3236 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3237 return;
3238
3239 new_refs = (1 << (old_order - new_order)) - 1;
3240 css_get_many(&__folio_memcg(folio)->css, new_refs);
3241 }
3242
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3243 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3244 {
3245 unsigned long val;
3246
3247 if (mem_cgroup_is_root(memcg)) {
3248 /*
3249 * Approximate root's usage from global state. This isn't
3250 * perfect, but the root usage was always an approximation.
3251 */
3252 val = global_node_page_state(NR_FILE_PAGES) +
3253 global_node_page_state(NR_ANON_MAPPED);
3254 if (swap)
3255 val += total_swap_pages - get_nr_swap_pages();
3256 } else {
3257 if (!swap)
3258 val = page_counter_read(&memcg->memory);
3259 else
3260 val = page_counter_read(&memcg->memsw);
3261 }
3262 return val;
3263 }
3264
memcg_online_kmem(struct mem_cgroup * memcg)3265 static int memcg_online_kmem(struct mem_cgroup *memcg)
3266 {
3267 struct obj_cgroup *objcg;
3268
3269 if (mem_cgroup_kmem_disabled())
3270 return 0;
3271
3272 if (unlikely(mem_cgroup_is_root(memcg)))
3273 return 0;
3274
3275 objcg = obj_cgroup_alloc();
3276 if (!objcg)
3277 return -ENOMEM;
3278
3279 objcg->memcg = memcg;
3280 rcu_assign_pointer(memcg->objcg, objcg);
3281 obj_cgroup_get(objcg);
3282 memcg->orig_objcg = objcg;
3283
3284 static_branch_enable(&memcg_kmem_online_key);
3285
3286 memcg->kmemcg_id = memcg->id.id;
3287
3288 return 0;
3289 }
3290
memcg_offline_kmem(struct mem_cgroup * memcg)3291 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3292 {
3293 struct mem_cgroup *parent;
3294
3295 if (mem_cgroup_kmem_disabled())
3296 return;
3297
3298 if (unlikely(mem_cgroup_is_root(memcg)))
3299 return;
3300
3301 parent = parent_mem_cgroup(memcg);
3302 if (!parent)
3303 parent = root_mem_cgroup;
3304
3305 memcg_reparent_list_lrus(memcg, parent);
3306
3307 /*
3308 * Objcg's reparenting must be after list_lru's, make sure list_lru
3309 * helpers won't use parent's list_lru until child is drained.
3310 */
3311 memcg_reparent_objcgs(memcg, parent);
3312 }
3313
3314 #ifdef CONFIG_CGROUP_WRITEBACK
3315
3316 #include <trace/events/writeback.h>
3317
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3318 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3319 {
3320 return wb_domain_init(&memcg->cgwb_domain, gfp);
3321 }
3322
memcg_wb_domain_exit(struct mem_cgroup * memcg)3323 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3324 {
3325 wb_domain_exit(&memcg->cgwb_domain);
3326 }
3327
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3328 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3329 {
3330 wb_domain_size_changed(&memcg->cgwb_domain);
3331 }
3332
mem_cgroup_wb_domain(struct bdi_writeback * wb)3333 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3334 {
3335 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3336
3337 if (!memcg->css.parent)
3338 return NULL;
3339
3340 return &memcg->cgwb_domain;
3341 }
3342
3343 /**
3344 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3345 * @wb: bdi_writeback in question
3346 * @pfilepages: out parameter for number of file pages
3347 * @pheadroom: out parameter for number of allocatable pages according to memcg
3348 * @pdirty: out parameter for number of dirty pages
3349 * @pwriteback: out parameter for number of pages under writeback
3350 *
3351 * Determine the numbers of file, headroom, dirty, and writeback pages in
3352 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3353 * is a bit more involved.
3354 *
3355 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3356 * headroom is calculated as the lowest headroom of itself and the
3357 * ancestors. Note that this doesn't consider the actual amount of
3358 * available memory in the system. The caller should further cap
3359 * *@pheadroom accordingly.
3360 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3361 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3362 unsigned long *pheadroom, unsigned long *pdirty,
3363 unsigned long *pwriteback)
3364 {
3365 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3366 struct mem_cgroup *parent;
3367
3368 mem_cgroup_flush_stats_ratelimited(memcg);
3369
3370 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3371 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3372 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3373 memcg_page_state(memcg, NR_ACTIVE_FILE);
3374
3375 *pheadroom = PAGE_COUNTER_MAX;
3376 while ((parent = parent_mem_cgroup(memcg))) {
3377 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3378 READ_ONCE(memcg->memory.high));
3379 unsigned long used = page_counter_read(&memcg->memory);
3380
3381 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3382 memcg = parent;
3383 }
3384 }
3385
3386 /*
3387 * Foreign dirty flushing
3388 *
3389 * There's an inherent mismatch between memcg and writeback. The former
3390 * tracks ownership per-page while the latter per-inode. This was a
3391 * deliberate design decision because honoring per-page ownership in the
3392 * writeback path is complicated, may lead to higher CPU and IO overheads
3393 * and deemed unnecessary given that write-sharing an inode across
3394 * different cgroups isn't a common use-case.
3395 *
3396 * Combined with inode majority-writer ownership switching, this works well
3397 * enough in most cases but there are some pathological cases. For
3398 * example, let's say there are two cgroups A and B which keep writing to
3399 * different but confined parts of the same inode. B owns the inode and
3400 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3401 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3402 * triggering background writeback. A will be slowed down without a way to
3403 * make writeback of the dirty pages happen.
3404 *
3405 * Conditions like the above can lead to a cgroup getting repeatedly and
3406 * severely throttled after making some progress after each
3407 * dirty_expire_interval while the underlying IO device is almost
3408 * completely idle.
3409 *
3410 * Solving this problem completely requires matching the ownership tracking
3411 * granularities between memcg and writeback in either direction. However,
3412 * the more egregious behaviors can be avoided by simply remembering the
3413 * most recent foreign dirtying events and initiating remote flushes on
3414 * them when local writeback isn't enough to keep the memory clean enough.
3415 *
3416 * The following two functions implement such mechanism. When a foreign
3417 * page - a page whose memcg and writeback ownerships don't match - is
3418 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3419 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3420 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3421 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3422 * foreign bdi_writebacks which haven't expired. Both the numbers of
3423 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3424 * limited to MEMCG_CGWB_FRN_CNT.
3425 *
3426 * The mechanism only remembers IDs and doesn't hold any object references.
3427 * As being wrong occasionally doesn't matter, updates and accesses to the
3428 * records are lockless and racy.
3429 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3430 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3431 struct bdi_writeback *wb)
3432 {
3433 struct mem_cgroup *memcg = folio_memcg(folio);
3434 struct memcg_cgwb_frn *frn;
3435 u64 now = get_jiffies_64();
3436 u64 oldest_at = now;
3437 int oldest = -1;
3438 int i;
3439
3440 trace_track_foreign_dirty(folio, wb);
3441
3442 /*
3443 * Pick the slot to use. If there is already a slot for @wb, keep
3444 * using it. If not replace the oldest one which isn't being
3445 * written out.
3446 */
3447 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3448 frn = &memcg->cgwb_frn[i];
3449 if (frn->bdi_id == wb->bdi->id &&
3450 frn->memcg_id == wb->memcg_css->id)
3451 break;
3452 if (time_before64(frn->at, oldest_at) &&
3453 atomic_read(&frn->done.cnt) == 1) {
3454 oldest = i;
3455 oldest_at = frn->at;
3456 }
3457 }
3458
3459 if (i < MEMCG_CGWB_FRN_CNT) {
3460 /*
3461 * Re-using an existing one. Update timestamp lazily to
3462 * avoid making the cacheline hot. We want them to be
3463 * reasonably up-to-date and significantly shorter than
3464 * dirty_expire_interval as that's what expires the record.
3465 * Use the shorter of 1s and dirty_expire_interval / 8.
3466 */
3467 unsigned long update_intv =
3468 min_t(unsigned long, HZ,
3469 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3470
3471 if (time_before64(frn->at, now - update_intv))
3472 frn->at = now;
3473 } else if (oldest >= 0) {
3474 /* replace the oldest free one */
3475 frn = &memcg->cgwb_frn[oldest];
3476 frn->bdi_id = wb->bdi->id;
3477 frn->memcg_id = wb->memcg_css->id;
3478 frn->at = now;
3479 }
3480 }
3481
3482 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3483 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3484 {
3485 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3486 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3487 u64 now = jiffies_64;
3488 int i;
3489
3490 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3491 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3492
3493 /*
3494 * If the record is older than dirty_expire_interval,
3495 * writeback on it has already started. No need to kick it
3496 * off again. Also, don't start a new one if there's
3497 * already one in flight.
3498 */
3499 if (time_after64(frn->at, now - intv) &&
3500 atomic_read(&frn->done.cnt) == 1) {
3501 frn->at = 0;
3502 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3503 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3504 WB_REASON_FOREIGN_FLUSH,
3505 &frn->done);
3506 }
3507 }
3508 }
3509
3510 #else /* CONFIG_CGROUP_WRITEBACK */
3511
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3512 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3513 {
3514 return 0;
3515 }
3516
memcg_wb_domain_exit(struct mem_cgroup * memcg)3517 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3518 {
3519 }
3520
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3521 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3522 {
3523 }
3524
3525 #endif /* CONFIG_CGROUP_WRITEBACK */
3526
3527 /*
3528 * Private memory cgroup IDR
3529 *
3530 * Swap-out records and page cache shadow entries need to store memcg
3531 * references in constrained space, so we maintain an ID space that is
3532 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3533 * memory-controlled cgroups to 64k.
3534 *
3535 * However, there usually are many references to the offline CSS after
3536 * the cgroup has been destroyed, such as page cache or reclaimable
3537 * slab objects, that don't need to hang on to the ID. We want to keep
3538 * those dead CSS from occupying IDs, or we might quickly exhaust the
3539 * relatively small ID space and prevent the creation of new cgroups
3540 * even when there are much fewer than 64k cgroups - possibly none.
3541 *
3542 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3543 * be freed and recycled when it's no longer needed, which is usually
3544 * when the CSS is offlined.
3545 *
3546 * The only exception to that are records of swapped out tmpfs/shmem
3547 * pages that need to be attributed to live ancestors on swapin. But
3548 * those references are manageable from userspace.
3549 */
3550
3551 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3552 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3553
mem_cgroup_id_remove(struct mem_cgroup * memcg)3554 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3555 {
3556 if (memcg->id.id > 0) {
3557 xa_erase(&mem_cgroup_ids, memcg->id.id);
3558 memcg->id.id = 0;
3559 }
3560 }
3561
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3562 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3563 unsigned int n)
3564 {
3565 refcount_add(n, &memcg->id.ref);
3566 }
3567
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3568 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3569 {
3570 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3571 mem_cgroup_id_remove(memcg);
3572
3573 /* Memcg ID pins CSS */
3574 css_put(&memcg->css);
3575 }
3576 }
3577
mem_cgroup_id_put(struct mem_cgroup * memcg)3578 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3579 {
3580 mem_cgroup_id_put_many(memcg, 1);
3581 }
3582
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3583 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3584 {
3585 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3586 /*
3587 * The root cgroup cannot be destroyed, so it's refcount must
3588 * always be >= 1.
3589 */
3590 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3591 VM_BUG_ON(1);
3592 break;
3593 }
3594 memcg = parent_mem_cgroup(memcg);
3595 if (!memcg)
3596 memcg = root_mem_cgroup;
3597 }
3598 return memcg;
3599 }
3600
3601 /**
3602 * mem_cgroup_from_id - look up a memcg from a memcg id
3603 * @id: the memcg id to look up
3604 *
3605 * Caller must hold rcu_read_lock().
3606 */
mem_cgroup_from_id(unsigned short id)3607 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3608 {
3609 WARN_ON_ONCE(!rcu_read_lock_held());
3610 return xa_load(&mem_cgroup_ids, id);
3611 }
3612
3613 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3614 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3615 {
3616 struct cgroup *cgrp;
3617 struct cgroup_subsys_state *css;
3618 struct mem_cgroup *memcg;
3619
3620 cgrp = cgroup_get_from_id(ino);
3621 if (IS_ERR(cgrp))
3622 return ERR_CAST(cgrp);
3623
3624 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3625 if (css)
3626 memcg = container_of(css, struct mem_cgroup, css);
3627 else
3628 memcg = ERR_PTR(-ENOENT);
3629
3630 cgroup_put(cgrp);
3631
3632 return memcg;
3633 }
3634 #endif
3635
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3636 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3637 {
3638 if (!pn)
3639 return;
3640
3641 free_percpu(pn->lruvec_stats_percpu);
3642 kfree(pn->lruvec_stats);
3643 kfree(pn);
3644 }
3645
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3646 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3647 {
3648 struct mem_cgroup_per_node *pn;
3649
3650 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3651 node);
3652 if (!pn)
3653 return false;
3654
3655 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3656 GFP_KERNEL_ACCOUNT, node);
3657 if (!pn->lruvec_stats)
3658 goto fail;
3659
3660 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3661 GFP_KERNEL_ACCOUNT);
3662 if (!pn->lruvec_stats_percpu)
3663 goto fail;
3664
3665 lruvec_init(&pn->lruvec);
3666 pn->memcg = memcg;
3667
3668 memcg->nodeinfo[node] = pn;
3669 return true;
3670 fail:
3671 free_mem_cgroup_per_node_info(pn);
3672 return false;
3673 }
3674
__mem_cgroup_free(struct mem_cgroup * memcg)3675 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3676 {
3677 int node;
3678
3679 obj_cgroup_put(memcg->orig_objcg);
3680
3681 for_each_node(node)
3682 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3683 memcg1_free_events(memcg);
3684 kfree(memcg->vmstats);
3685 free_percpu(memcg->vmstats_percpu);
3686 kfree(memcg);
3687 }
3688
mem_cgroup_free(struct mem_cgroup * memcg)3689 static void mem_cgroup_free(struct mem_cgroup *memcg)
3690 {
3691 lru_gen_exit_memcg(memcg);
3692 memcg_wb_domain_exit(memcg);
3693 __mem_cgroup_free(memcg);
3694 }
3695
mem_cgroup_alloc(struct mem_cgroup * parent)3696 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3697 {
3698 struct memcg_vmstats_percpu *statc;
3699 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3700 struct mem_cgroup *memcg;
3701 int node, cpu;
3702 int __maybe_unused i;
3703 long error;
3704
3705 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3706 if (!memcg)
3707 return ERR_PTR(-ENOMEM);
3708
3709 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3710 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3711 if (error)
3712 goto fail;
3713 error = -ENOMEM;
3714
3715 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3716 GFP_KERNEL_ACCOUNT);
3717 if (!memcg->vmstats)
3718 goto fail;
3719
3720 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3721 GFP_KERNEL_ACCOUNT);
3722 if (!memcg->vmstats_percpu)
3723 goto fail;
3724
3725 if (!memcg1_alloc_events(memcg))
3726 goto fail;
3727
3728 for_each_possible_cpu(cpu) {
3729 if (parent)
3730 pstatc_pcpu = parent->vmstats_percpu;
3731 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3732 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3733 statc->vmstats = memcg->vmstats;
3734 }
3735
3736 for_each_node(node)
3737 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3738 goto fail;
3739
3740 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3741 goto fail;
3742
3743 INIT_WORK(&memcg->high_work, high_work_func);
3744 vmpressure_init(&memcg->vmpressure);
3745 INIT_LIST_HEAD(&memcg->memory_peaks);
3746 INIT_LIST_HEAD(&memcg->swap_peaks);
3747 spin_lock_init(&memcg->peaks_lock);
3748 memcg->socket_pressure = get_jiffies_64();
3749 #if BITS_PER_LONG < 64
3750 seqlock_init(&memcg->socket_pressure_seqlock);
3751 #endif
3752 memcg1_memcg_init(memcg);
3753 memcg->kmemcg_id = -1;
3754 INIT_LIST_HEAD(&memcg->objcg_list);
3755 #ifdef CONFIG_CGROUP_WRITEBACK
3756 INIT_LIST_HEAD(&memcg->cgwb_list);
3757 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3758 memcg->cgwb_frn[i].done =
3759 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3760 #endif
3761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3762 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3763 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3764 memcg->deferred_split_queue.split_queue_len = 0;
3765 #endif
3766 lru_gen_init_memcg(memcg);
3767 return memcg;
3768 fail:
3769 mem_cgroup_id_remove(memcg);
3770 __mem_cgroup_free(memcg);
3771 return ERR_PTR(error);
3772 }
3773
3774 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3775 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3776 {
3777 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3778 struct mem_cgroup *memcg, *old_memcg;
3779 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3780
3781 old_memcg = set_active_memcg(parent);
3782 memcg = mem_cgroup_alloc(parent);
3783 set_active_memcg(old_memcg);
3784 if (IS_ERR(memcg))
3785 return ERR_CAST(memcg);
3786
3787 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3788 memcg1_soft_limit_reset(memcg);
3789 #ifdef CONFIG_ZSWAP
3790 memcg->zswap_max = PAGE_COUNTER_MAX;
3791 WRITE_ONCE(memcg->zswap_writeback, true);
3792 #endif
3793 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3794 if (parent) {
3795 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3796
3797 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3798 page_counter_init(&memcg->swap, &parent->swap, false);
3799 #ifdef CONFIG_MEMCG_V1
3800 memcg->memory.track_failcnt = !memcg_on_dfl;
3801 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3802 page_counter_init(&memcg->kmem, &parent->kmem, false);
3803 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3804 #endif
3805 } else {
3806 init_memcg_stats();
3807 init_memcg_events();
3808 page_counter_init(&memcg->memory, NULL, true);
3809 page_counter_init(&memcg->swap, NULL, false);
3810 #ifdef CONFIG_MEMCG_V1
3811 page_counter_init(&memcg->kmem, NULL, false);
3812 page_counter_init(&memcg->tcpmem, NULL, false);
3813 #endif
3814 root_mem_cgroup = memcg;
3815 return &memcg->css;
3816 }
3817
3818 if (memcg_on_dfl && !cgroup_memory_nosocket)
3819 static_branch_inc(&memcg_sockets_enabled_key);
3820
3821 if (!cgroup_memory_nobpf)
3822 static_branch_inc(&memcg_bpf_enabled_key);
3823
3824 return &memcg->css;
3825 }
3826
mem_cgroup_css_online(struct cgroup_subsys_state * css)3827 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3828 {
3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3830
3831 if (memcg_online_kmem(memcg))
3832 goto remove_id;
3833
3834 /*
3835 * A memcg must be visible for expand_shrinker_info()
3836 * by the time the maps are allocated. So, we allocate maps
3837 * here, when for_each_mem_cgroup() can't skip it.
3838 */
3839 if (alloc_shrinker_info(memcg))
3840 goto offline_kmem;
3841
3842 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3843 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3844 FLUSH_TIME);
3845 lru_gen_online_memcg(memcg);
3846
3847 /* Online state pins memcg ID, memcg ID pins CSS */
3848 refcount_set(&memcg->id.ref, 1);
3849 css_get(css);
3850
3851 /*
3852 * Ensure mem_cgroup_from_id() works once we're fully online.
3853 *
3854 * We could do this earlier and require callers to filter with
3855 * css_tryget_online(). But right now there are no users that
3856 * need earlier access, and the workingset code relies on the
3857 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3858 * publish it here at the end of onlining. This matches the
3859 * regular ID destruction during offlining.
3860 */
3861 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3862
3863 return 0;
3864 offline_kmem:
3865 memcg_offline_kmem(memcg);
3866 remove_id:
3867 mem_cgroup_id_remove(memcg);
3868 return -ENOMEM;
3869 }
3870
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3871 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3872 {
3873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3874
3875 memcg1_css_offline(memcg);
3876
3877 page_counter_set_min(&memcg->memory, 0);
3878 page_counter_set_low(&memcg->memory, 0);
3879
3880 zswap_memcg_offline_cleanup(memcg);
3881
3882 memcg_offline_kmem(memcg);
3883 reparent_shrinker_deferred(memcg);
3884 wb_memcg_offline(memcg);
3885 lru_gen_offline_memcg(memcg);
3886
3887 drain_all_stock(memcg);
3888
3889 mem_cgroup_id_put(memcg);
3890 }
3891
mem_cgroup_css_released(struct cgroup_subsys_state * css)3892 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3893 {
3894 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3895
3896 invalidate_reclaim_iterators(memcg);
3897 lru_gen_release_memcg(memcg);
3898 }
3899
mem_cgroup_css_free(struct cgroup_subsys_state * css)3900 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3901 {
3902 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3903 int __maybe_unused i;
3904
3905 #ifdef CONFIG_CGROUP_WRITEBACK
3906 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3907 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3908 #endif
3909 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3910 static_branch_dec(&memcg_sockets_enabled_key);
3911
3912 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3913 static_branch_dec(&memcg_sockets_enabled_key);
3914
3915 if (!cgroup_memory_nobpf)
3916 static_branch_dec(&memcg_bpf_enabled_key);
3917
3918 vmpressure_cleanup(&memcg->vmpressure);
3919 cancel_work_sync(&memcg->high_work);
3920 memcg1_remove_from_trees(memcg);
3921 free_shrinker_info(memcg);
3922 mem_cgroup_free(memcg);
3923 }
3924
3925 /**
3926 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3927 * @css: the target css
3928 *
3929 * Reset the states of the mem_cgroup associated with @css. This is
3930 * invoked when the userland requests disabling on the default hierarchy
3931 * but the memcg is pinned through dependency. The memcg should stop
3932 * applying policies and should revert to the vanilla state as it may be
3933 * made visible again.
3934 *
3935 * The current implementation only resets the essential configurations.
3936 * This needs to be expanded to cover all the visible parts.
3937 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3938 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3939 {
3940 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3941
3942 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3943 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3944 #ifdef CONFIG_MEMCG_V1
3945 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3946 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3947 #endif
3948 page_counter_set_min(&memcg->memory, 0);
3949 page_counter_set_low(&memcg->memory, 0);
3950 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3951 memcg1_soft_limit_reset(memcg);
3952 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3953 memcg_wb_domain_size_changed(memcg);
3954 }
3955
3956 struct aggregate_control {
3957 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3958 long *aggregate;
3959 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3960 long *local;
3961 /* pointer to the pending child counters during tree propagation */
3962 long *pending;
3963 /* pointer to the parent's pending counters, could be NULL */
3964 long *ppending;
3965 /* pointer to the percpu counters to be aggregated */
3966 long *cstat;
3967 /* pointer to the percpu counters of the last aggregation*/
3968 long *cstat_prev;
3969 /* size of the above counters */
3970 int size;
3971 };
3972
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3973 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3974 {
3975 int i;
3976 long delta, delta_cpu, v;
3977
3978 for (i = 0; i < ac->size; i++) {
3979 /*
3980 * Collect the aggregated propagation counts of groups
3981 * below us. We're in a per-cpu loop here and this is
3982 * a global counter, so the first cycle will get them.
3983 */
3984 delta = ac->pending[i];
3985 if (delta)
3986 ac->pending[i] = 0;
3987
3988 /* Add CPU changes on this level since the last flush */
3989 delta_cpu = 0;
3990 v = READ_ONCE(ac->cstat[i]);
3991 if (v != ac->cstat_prev[i]) {
3992 delta_cpu = v - ac->cstat_prev[i];
3993 delta += delta_cpu;
3994 ac->cstat_prev[i] = v;
3995 }
3996
3997 /* Aggregate counts on this level and propagate upwards */
3998 if (delta_cpu)
3999 ac->local[i] += delta_cpu;
4000
4001 if (delta) {
4002 ac->aggregate[i] += delta;
4003 if (ac->ppending)
4004 ac->ppending[i] += delta;
4005 }
4006 }
4007 }
4008
4009 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4010 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4011 int cpu)
4012 {
4013 int nid;
4014
4015 if (atomic_read(&memcg->kmem_stat)) {
4016 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4017 int index = memcg_stats_index(MEMCG_KMEM);
4018
4019 memcg->vmstats->state[index] += kmem;
4020 if (parent)
4021 parent->vmstats->state_pending[index] += kmem;
4022 }
4023
4024 for_each_node_state(nid, N_MEMORY) {
4025 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4026 struct lruvec_stats *lstats = pn->lruvec_stats;
4027 struct lruvec_stats *plstats = NULL;
4028
4029 if (parent)
4030 plstats = parent->nodeinfo[nid]->lruvec_stats;
4031
4032 if (atomic_read(&pn->slab_reclaimable)) {
4033 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4034 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4035
4036 lstats->state[index] += slab;
4037 if (plstats)
4038 plstats->state_pending[index] += slab;
4039 }
4040 if (atomic_read(&pn->slab_unreclaimable)) {
4041 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4042 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4043
4044 lstats->state[index] += slab;
4045 if (plstats)
4046 plstats->state_pending[index] += slab;
4047 }
4048 }
4049 }
4050 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4051 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4052 int cpu)
4053 {}
4054 #endif
4055
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4056 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4057 {
4058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4059 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4060 struct memcg_vmstats_percpu *statc;
4061 struct aggregate_control ac;
4062 int nid;
4063
4064 flush_nmi_stats(memcg, parent, cpu);
4065
4066 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4067
4068 ac = (struct aggregate_control) {
4069 .aggregate = memcg->vmstats->state,
4070 .local = memcg->vmstats->state_local,
4071 .pending = memcg->vmstats->state_pending,
4072 .ppending = parent ? parent->vmstats->state_pending : NULL,
4073 .cstat = statc->state,
4074 .cstat_prev = statc->state_prev,
4075 .size = MEMCG_VMSTAT_SIZE,
4076 };
4077 mem_cgroup_stat_aggregate(&ac);
4078
4079 ac = (struct aggregate_control) {
4080 .aggregate = memcg->vmstats->events,
4081 .local = memcg->vmstats->events_local,
4082 .pending = memcg->vmstats->events_pending,
4083 .ppending = parent ? parent->vmstats->events_pending : NULL,
4084 .cstat = statc->events,
4085 .cstat_prev = statc->events_prev,
4086 .size = NR_MEMCG_EVENTS,
4087 };
4088 mem_cgroup_stat_aggregate(&ac);
4089
4090 for_each_node_state(nid, N_MEMORY) {
4091 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4092 struct lruvec_stats *lstats = pn->lruvec_stats;
4093 struct lruvec_stats *plstats = NULL;
4094 struct lruvec_stats_percpu *lstatc;
4095
4096 if (parent)
4097 plstats = parent->nodeinfo[nid]->lruvec_stats;
4098
4099 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4100
4101 ac = (struct aggregate_control) {
4102 .aggregate = lstats->state,
4103 .local = lstats->state_local,
4104 .pending = lstats->state_pending,
4105 .ppending = plstats ? plstats->state_pending : NULL,
4106 .cstat = lstatc->state,
4107 .cstat_prev = lstatc->state_prev,
4108 .size = NR_MEMCG_NODE_STAT_ITEMS,
4109 };
4110 mem_cgroup_stat_aggregate(&ac);
4111
4112 }
4113 WRITE_ONCE(statc->stats_updates, 0);
4114 /* We are in a per-cpu loop here, only do the atomic write once */
4115 if (atomic_read(&memcg->vmstats->stats_updates))
4116 atomic_set(&memcg->vmstats->stats_updates, 0);
4117 }
4118
mem_cgroup_fork(struct task_struct * task)4119 static void mem_cgroup_fork(struct task_struct *task)
4120 {
4121 /*
4122 * Set the update flag to cause task->objcg to be initialized lazily
4123 * on the first allocation. It can be done without any synchronization
4124 * because it's always performed on the current task, so does
4125 * current_objcg_update().
4126 */
4127 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4128 }
4129
mem_cgroup_exit(struct task_struct * task)4130 static void mem_cgroup_exit(struct task_struct *task)
4131 {
4132 struct obj_cgroup *objcg = task->objcg;
4133
4134 objcg = (struct obj_cgroup *)
4135 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4136 obj_cgroup_put(objcg);
4137
4138 /*
4139 * Some kernel allocations can happen after this point,
4140 * but let's ignore them. It can be done without any synchronization
4141 * because it's always performed on the current task, so does
4142 * current_objcg_update().
4143 */
4144 task->objcg = NULL;
4145 }
4146
4147 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4148 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4149 {
4150 struct task_struct *task;
4151 struct cgroup_subsys_state *css;
4152
4153 /* find the first leader if there is any */
4154 cgroup_taskset_for_each_leader(task, css, tset)
4155 break;
4156
4157 if (!task)
4158 return;
4159
4160 task_lock(task);
4161 if (task->mm && READ_ONCE(task->mm->owner) == task)
4162 lru_gen_migrate_mm(task->mm);
4163 task_unlock(task);
4164 }
4165 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4166 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4167 #endif /* CONFIG_LRU_GEN */
4168
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4169 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4170 {
4171 struct task_struct *task;
4172 struct cgroup_subsys_state *css;
4173
4174 cgroup_taskset_for_each(task, css, tset) {
4175 /* atomically set the update bit */
4176 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4177 }
4178 }
4179
mem_cgroup_attach(struct cgroup_taskset * tset)4180 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4181 {
4182 mem_cgroup_lru_gen_attach(tset);
4183 mem_cgroup_kmem_attach(tset);
4184 }
4185
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4186 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4187 {
4188 if (value == PAGE_COUNTER_MAX)
4189 seq_puts(m, "max\n");
4190 else
4191 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4192
4193 return 0;
4194 }
4195
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4196 static u64 memory_current_read(struct cgroup_subsys_state *css,
4197 struct cftype *cft)
4198 {
4199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4200
4201 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4202 }
4203
4204 #define OFP_PEAK_UNSET (((-1UL)))
4205
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4206 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4207 {
4208 struct cgroup_of_peak *ofp = of_peak(sf->private);
4209 u64 fd_peak = READ_ONCE(ofp->value), peak;
4210
4211 /* User wants global or local peak? */
4212 if (fd_peak == OFP_PEAK_UNSET)
4213 peak = pc->watermark;
4214 else
4215 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4216
4217 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4218 return 0;
4219 }
4220
memory_peak_show(struct seq_file * sf,void * v)4221 static int memory_peak_show(struct seq_file *sf, void *v)
4222 {
4223 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4224
4225 return peak_show(sf, v, &memcg->memory);
4226 }
4227
peak_open(struct kernfs_open_file * of)4228 static int peak_open(struct kernfs_open_file *of)
4229 {
4230 struct cgroup_of_peak *ofp = of_peak(of);
4231
4232 ofp->value = OFP_PEAK_UNSET;
4233 return 0;
4234 }
4235
peak_release(struct kernfs_open_file * of)4236 static void peak_release(struct kernfs_open_file *of)
4237 {
4238 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4239 struct cgroup_of_peak *ofp = of_peak(of);
4240
4241 if (ofp->value == OFP_PEAK_UNSET) {
4242 /* fast path (no writes on this fd) */
4243 return;
4244 }
4245 spin_lock(&memcg->peaks_lock);
4246 list_del(&ofp->list);
4247 spin_unlock(&memcg->peaks_lock);
4248 }
4249
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4250 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4251 loff_t off, struct page_counter *pc,
4252 struct list_head *watchers)
4253 {
4254 unsigned long usage;
4255 struct cgroup_of_peak *peer_ctx;
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4257 struct cgroup_of_peak *ofp = of_peak(of);
4258
4259 spin_lock(&memcg->peaks_lock);
4260
4261 usage = page_counter_read(pc);
4262 WRITE_ONCE(pc->local_watermark, usage);
4263
4264 list_for_each_entry(peer_ctx, watchers, list)
4265 if (usage > peer_ctx->value)
4266 WRITE_ONCE(peer_ctx->value, usage);
4267
4268 /* initial write, register watcher */
4269 if (ofp->value == OFP_PEAK_UNSET)
4270 list_add(&ofp->list, watchers);
4271
4272 WRITE_ONCE(ofp->value, usage);
4273 spin_unlock(&memcg->peaks_lock);
4274
4275 return nbytes;
4276 }
4277
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4278 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4279 size_t nbytes, loff_t off)
4280 {
4281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4282
4283 return peak_write(of, buf, nbytes, off, &memcg->memory,
4284 &memcg->memory_peaks);
4285 }
4286
4287 #undef OFP_PEAK_UNSET
4288
memory_min_show(struct seq_file * m,void * v)4289 static int memory_min_show(struct seq_file *m, void *v)
4290 {
4291 return seq_puts_memcg_tunable(m,
4292 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4293 }
4294
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4295 static ssize_t memory_min_write(struct kernfs_open_file *of,
4296 char *buf, size_t nbytes, loff_t off)
4297 {
4298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4299 unsigned long min;
4300 int err;
4301
4302 buf = strstrip(buf);
4303 err = page_counter_memparse(buf, "max", &min);
4304 if (err)
4305 return err;
4306
4307 page_counter_set_min(&memcg->memory, min);
4308
4309 return nbytes;
4310 }
4311
memory_low_show(struct seq_file * m,void * v)4312 static int memory_low_show(struct seq_file *m, void *v)
4313 {
4314 return seq_puts_memcg_tunable(m,
4315 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4316 }
4317
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4318 static ssize_t memory_low_write(struct kernfs_open_file *of,
4319 char *buf, size_t nbytes, loff_t off)
4320 {
4321 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4322 unsigned long low;
4323 int err;
4324
4325 buf = strstrip(buf);
4326 err = page_counter_memparse(buf, "max", &low);
4327 if (err)
4328 return err;
4329
4330 page_counter_set_low(&memcg->memory, low);
4331
4332 return nbytes;
4333 }
4334
memory_high_show(struct seq_file * m,void * v)4335 static int memory_high_show(struct seq_file *m, void *v)
4336 {
4337 return seq_puts_memcg_tunable(m,
4338 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4339 }
4340
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4341 static ssize_t memory_high_write(struct kernfs_open_file *of,
4342 char *buf, size_t nbytes, loff_t off)
4343 {
4344 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4345 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4346 bool drained = false;
4347 unsigned long high;
4348 int err;
4349
4350 buf = strstrip(buf);
4351 err = page_counter_memparse(buf, "max", &high);
4352 if (err)
4353 return err;
4354
4355 page_counter_set_high(&memcg->memory, high);
4356
4357 if (of->file->f_flags & O_NONBLOCK)
4358 goto out;
4359
4360 for (;;) {
4361 unsigned long nr_pages = page_counter_read(&memcg->memory);
4362 unsigned long reclaimed;
4363
4364 if (nr_pages <= high)
4365 break;
4366
4367 if (signal_pending(current))
4368 break;
4369
4370 if (!drained) {
4371 drain_all_stock(memcg);
4372 drained = true;
4373 continue;
4374 }
4375
4376 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4377 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4378
4379 if (!reclaimed && !nr_retries--)
4380 break;
4381 }
4382 out:
4383 memcg_wb_domain_size_changed(memcg);
4384 return nbytes;
4385 }
4386
memory_max_show(struct seq_file * m,void * v)4387 static int memory_max_show(struct seq_file *m, void *v)
4388 {
4389 return seq_puts_memcg_tunable(m,
4390 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4391 }
4392
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4393 static ssize_t memory_max_write(struct kernfs_open_file *of,
4394 char *buf, size_t nbytes, loff_t off)
4395 {
4396 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4397 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4398 bool drained = false;
4399 unsigned long max;
4400 int err;
4401
4402 buf = strstrip(buf);
4403 err = page_counter_memparse(buf, "max", &max);
4404 if (err)
4405 return err;
4406
4407 xchg(&memcg->memory.max, max);
4408
4409 if (of->file->f_flags & O_NONBLOCK)
4410 goto out;
4411
4412 for (;;) {
4413 unsigned long nr_pages = page_counter_read(&memcg->memory);
4414
4415 if (nr_pages <= max)
4416 break;
4417
4418 if (signal_pending(current))
4419 break;
4420
4421 if (!drained) {
4422 drain_all_stock(memcg);
4423 drained = true;
4424 continue;
4425 }
4426
4427 if (nr_reclaims) {
4428 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4429 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4430 nr_reclaims--;
4431 continue;
4432 }
4433
4434 memcg_memory_event(memcg, MEMCG_OOM);
4435 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4436 break;
4437 cond_resched();
4438 }
4439 out:
4440 memcg_wb_domain_size_changed(memcg);
4441 return nbytes;
4442 }
4443
4444 /*
4445 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4446 * if any new events become available.
4447 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4448 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4449 {
4450 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4451 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4452 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4453 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4454 seq_printf(m, "oom_kill %lu\n",
4455 atomic_long_read(&events[MEMCG_OOM_KILL]));
4456 seq_printf(m, "oom_group_kill %lu\n",
4457 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4458 }
4459
memory_events_show(struct seq_file * m,void * v)4460 static int memory_events_show(struct seq_file *m, void *v)
4461 {
4462 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4463
4464 __memory_events_show(m, memcg->memory_events);
4465 return 0;
4466 }
4467
memory_events_local_show(struct seq_file * m,void * v)4468 static int memory_events_local_show(struct seq_file *m, void *v)
4469 {
4470 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4471
4472 __memory_events_show(m, memcg->memory_events_local);
4473 return 0;
4474 }
4475
memory_stat_show(struct seq_file * m,void * v)4476 int memory_stat_show(struct seq_file *m, void *v)
4477 {
4478 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4479 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4480 struct seq_buf s;
4481
4482 if (!buf)
4483 return -ENOMEM;
4484 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4485 memory_stat_format(memcg, &s);
4486 seq_puts(m, buf);
4487 kfree(buf);
4488 return 0;
4489 }
4490
4491 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4492 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4493 int item)
4494 {
4495 return lruvec_page_state(lruvec, item) *
4496 memcg_page_state_output_unit(item);
4497 }
4498
memory_numa_stat_show(struct seq_file * m,void * v)4499 static int memory_numa_stat_show(struct seq_file *m, void *v)
4500 {
4501 int i;
4502 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4503
4504 mem_cgroup_flush_stats(memcg);
4505
4506 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4507 int nid;
4508
4509 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4510 continue;
4511
4512 seq_printf(m, "%s", memory_stats[i].name);
4513 for_each_node_state(nid, N_MEMORY) {
4514 u64 size;
4515 struct lruvec *lruvec;
4516
4517 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4518 size = lruvec_page_state_output(lruvec,
4519 memory_stats[i].idx);
4520 seq_printf(m, " N%d=%llu", nid, size);
4521 }
4522 seq_putc(m, '\n');
4523 }
4524
4525 return 0;
4526 }
4527 #endif
4528
memory_oom_group_show(struct seq_file * m,void * v)4529 static int memory_oom_group_show(struct seq_file *m, void *v)
4530 {
4531 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4532
4533 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4534
4535 return 0;
4536 }
4537
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4538 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4539 char *buf, size_t nbytes, loff_t off)
4540 {
4541 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4542 int ret, oom_group;
4543
4544 buf = strstrip(buf);
4545 if (!buf)
4546 return -EINVAL;
4547
4548 ret = kstrtoint(buf, 0, &oom_group);
4549 if (ret)
4550 return ret;
4551
4552 if (oom_group != 0 && oom_group != 1)
4553 return -EINVAL;
4554
4555 WRITE_ONCE(memcg->oom_group, oom_group);
4556
4557 return nbytes;
4558 }
4559
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4560 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4561 size_t nbytes, loff_t off)
4562 {
4563 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4564 int ret;
4565
4566 ret = user_proactive_reclaim(buf, memcg, NULL);
4567 if (ret)
4568 return ret;
4569
4570 return nbytes;
4571 }
4572
4573 static struct cftype memory_files[] = {
4574 {
4575 .name = "current",
4576 .flags = CFTYPE_NOT_ON_ROOT,
4577 .read_u64 = memory_current_read,
4578 },
4579 {
4580 .name = "peak",
4581 .flags = CFTYPE_NOT_ON_ROOT,
4582 .open = peak_open,
4583 .release = peak_release,
4584 .seq_show = memory_peak_show,
4585 .write = memory_peak_write,
4586 },
4587 {
4588 .name = "min",
4589 .flags = CFTYPE_NOT_ON_ROOT,
4590 .seq_show = memory_min_show,
4591 .write = memory_min_write,
4592 },
4593 {
4594 .name = "low",
4595 .flags = CFTYPE_NOT_ON_ROOT,
4596 .seq_show = memory_low_show,
4597 .write = memory_low_write,
4598 },
4599 {
4600 .name = "high",
4601 .flags = CFTYPE_NOT_ON_ROOT,
4602 .seq_show = memory_high_show,
4603 .write = memory_high_write,
4604 },
4605 {
4606 .name = "max",
4607 .flags = CFTYPE_NOT_ON_ROOT,
4608 .seq_show = memory_max_show,
4609 .write = memory_max_write,
4610 },
4611 {
4612 .name = "events",
4613 .flags = CFTYPE_NOT_ON_ROOT,
4614 .file_offset = offsetof(struct mem_cgroup, events_file),
4615 .seq_show = memory_events_show,
4616 },
4617 {
4618 .name = "events.local",
4619 .flags = CFTYPE_NOT_ON_ROOT,
4620 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4621 .seq_show = memory_events_local_show,
4622 },
4623 {
4624 .name = "stat",
4625 .seq_show = memory_stat_show,
4626 },
4627 #ifdef CONFIG_NUMA
4628 {
4629 .name = "numa_stat",
4630 .seq_show = memory_numa_stat_show,
4631 },
4632 #endif
4633 {
4634 .name = "oom.group",
4635 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4636 .seq_show = memory_oom_group_show,
4637 .write = memory_oom_group_write,
4638 },
4639 {
4640 .name = "reclaim",
4641 .flags = CFTYPE_NS_DELEGATABLE,
4642 .write = memory_reclaim,
4643 },
4644 { } /* terminate */
4645 };
4646
4647 struct cgroup_subsys memory_cgrp_subsys = {
4648 .css_alloc = mem_cgroup_css_alloc,
4649 .css_online = mem_cgroup_css_online,
4650 .css_offline = mem_cgroup_css_offline,
4651 .css_released = mem_cgroup_css_released,
4652 .css_free = mem_cgroup_css_free,
4653 .css_reset = mem_cgroup_css_reset,
4654 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4655 .attach = mem_cgroup_attach,
4656 .fork = mem_cgroup_fork,
4657 .exit = mem_cgroup_exit,
4658 .dfl_cftypes = memory_files,
4659 #ifdef CONFIG_MEMCG_V1
4660 .legacy_cftypes = mem_cgroup_legacy_files,
4661 #endif
4662 .early_init = 0,
4663 };
4664
4665 /**
4666 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4667 * @root: the top ancestor of the sub-tree being checked
4668 * @memcg: the memory cgroup to check
4669 *
4670 * WARNING: This function is not stateless! It can only be used as part
4671 * of a top-down tree iteration, not for isolated queries.
4672 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4673 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4674 struct mem_cgroup *memcg)
4675 {
4676 bool recursive_protection =
4677 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4678
4679 if (mem_cgroup_disabled())
4680 return;
4681
4682 if (!root)
4683 root = root_mem_cgroup;
4684
4685 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4686 }
4687
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4688 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4689 gfp_t gfp)
4690 {
4691 int ret;
4692
4693 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4694 if (ret)
4695 goto out;
4696
4697 css_get(&memcg->css);
4698 commit_charge(folio, memcg);
4699 memcg1_commit_charge(folio, memcg);
4700 out:
4701 return ret;
4702 }
4703
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4704 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4705 {
4706 struct mem_cgroup *memcg;
4707 int ret;
4708
4709 memcg = get_mem_cgroup_from_mm(mm);
4710 ret = charge_memcg(folio, memcg, gfp);
4711 css_put(&memcg->css);
4712
4713 return ret;
4714 }
4715
4716 /**
4717 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4718 * @folio: folio being charged
4719 * @gfp: reclaim mode
4720 *
4721 * This function is called when allocating a huge page folio, after the page has
4722 * already been obtained and charged to the appropriate hugetlb cgroup
4723 * controller (if it is enabled).
4724 *
4725 * Returns ENOMEM if the memcg is already full.
4726 * Returns 0 if either the charge was successful, or if we skip the charging.
4727 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4728 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4729 {
4730 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4731 int ret = 0;
4732
4733 /*
4734 * Even memcg does not account for hugetlb, we still want to update
4735 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4736 * charging the memcg.
4737 */
4738 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4739 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4740 goto out;
4741
4742 if (charge_memcg(folio, memcg, gfp))
4743 ret = -ENOMEM;
4744
4745 out:
4746 mem_cgroup_put(memcg);
4747 return ret;
4748 }
4749
4750 /**
4751 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4752 * @folio: folio to charge.
4753 * @mm: mm context of the victim
4754 * @gfp: reclaim mode
4755 * @entry: swap entry for which the folio is allocated
4756 *
4757 * This function charges a folio allocated for swapin. Please call this before
4758 * adding the folio to the swapcache.
4759 *
4760 * Returns 0 on success. Otherwise, an error code is returned.
4761 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4762 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4763 gfp_t gfp, swp_entry_t entry)
4764 {
4765 struct mem_cgroup *memcg;
4766 unsigned short id;
4767 int ret;
4768
4769 if (mem_cgroup_disabled())
4770 return 0;
4771
4772 id = lookup_swap_cgroup_id(entry);
4773 rcu_read_lock();
4774 memcg = mem_cgroup_from_id(id);
4775 if (!memcg || !css_tryget_online(&memcg->css))
4776 memcg = get_mem_cgroup_from_mm(mm);
4777 rcu_read_unlock();
4778
4779 ret = charge_memcg(folio, memcg, gfp);
4780
4781 css_put(&memcg->css);
4782 return ret;
4783 }
4784
4785 struct uncharge_gather {
4786 struct mem_cgroup *memcg;
4787 unsigned long nr_memory;
4788 unsigned long pgpgout;
4789 unsigned long nr_kmem;
4790 int nid;
4791 };
4792
uncharge_gather_clear(struct uncharge_gather * ug)4793 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4794 {
4795 memset(ug, 0, sizeof(*ug));
4796 }
4797
uncharge_batch(const struct uncharge_gather * ug)4798 static void uncharge_batch(const struct uncharge_gather *ug)
4799 {
4800 if (ug->nr_memory) {
4801 memcg_uncharge(ug->memcg, ug->nr_memory);
4802 if (ug->nr_kmem) {
4803 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4804 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4805 }
4806 memcg1_oom_recover(ug->memcg);
4807 }
4808
4809 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4810
4811 /* drop reference from uncharge_folio */
4812 css_put(&ug->memcg->css);
4813 }
4814
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4815 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4816 {
4817 long nr_pages;
4818 struct mem_cgroup *memcg;
4819 struct obj_cgroup *objcg;
4820
4821 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4822
4823 /*
4824 * Nobody should be changing or seriously looking at
4825 * folio memcg or objcg at this point, we have fully
4826 * exclusive access to the folio.
4827 */
4828 if (folio_memcg_kmem(folio)) {
4829 objcg = __folio_objcg(folio);
4830 /*
4831 * This get matches the put at the end of the function and
4832 * kmem pages do not hold memcg references anymore.
4833 */
4834 memcg = get_mem_cgroup_from_objcg(objcg);
4835 } else {
4836 memcg = __folio_memcg(folio);
4837 }
4838
4839 if (!memcg)
4840 return;
4841
4842 if (ug->memcg != memcg) {
4843 if (ug->memcg) {
4844 uncharge_batch(ug);
4845 uncharge_gather_clear(ug);
4846 }
4847 ug->memcg = memcg;
4848 ug->nid = folio_nid(folio);
4849
4850 /* pairs with css_put in uncharge_batch */
4851 css_get(&memcg->css);
4852 }
4853
4854 nr_pages = folio_nr_pages(folio);
4855
4856 if (folio_memcg_kmem(folio)) {
4857 ug->nr_memory += nr_pages;
4858 ug->nr_kmem += nr_pages;
4859
4860 folio->memcg_data = 0;
4861 obj_cgroup_put(objcg);
4862 } else {
4863 /* LRU pages aren't accounted at the root level */
4864 if (!mem_cgroup_is_root(memcg))
4865 ug->nr_memory += nr_pages;
4866 ug->pgpgout++;
4867
4868 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4869 folio->memcg_data = 0;
4870 }
4871
4872 css_put(&memcg->css);
4873 }
4874
__mem_cgroup_uncharge(struct folio * folio)4875 void __mem_cgroup_uncharge(struct folio *folio)
4876 {
4877 struct uncharge_gather ug;
4878
4879 /* Don't touch folio->lru of any random page, pre-check: */
4880 if (!folio_memcg_charged(folio))
4881 return;
4882
4883 uncharge_gather_clear(&ug);
4884 uncharge_folio(folio, &ug);
4885 uncharge_batch(&ug);
4886 }
4887
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4888 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4889 {
4890 struct uncharge_gather ug;
4891 unsigned int i;
4892
4893 uncharge_gather_clear(&ug);
4894 for (i = 0; i < folios->nr; i++)
4895 uncharge_folio(folios->folios[i], &ug);
4896 if (ug.memcg)
4897 uncharge_batch(&ug);
4898 }
4899
4900 /**
4901 * mem_cgroup_replace_folio - Charge a folio's replacement.
4902 * @old: Currently circulating folio.
4903 * @new: Replacement folio.
4904 *
4905 * Charge @new as a replacement folio for @old. @old will
4906 * be uncharged upon free.
4907 *
4908 * Both folios must be locked, @new->mapping must be set up.
4909 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4910 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4911 {
4912 struct mem_cgroup *memcg;
4913 long nr_pages = folio_nr_pages(new);
4914
4915 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4916 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4917 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4918 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4919
4920 if (mem_cgroup_disabled())
4921 return;
4922
4923 /* Page cache replacement: new folio already charged? */
4924 if (folio_memcg_charged(new))
4925 return;
4926
4927 memcg = folio_memcg(old);
4928 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4929 if (!memcg)
4930 return;
4931
4932 /* Force-charge the new page. The old one will be freed soon */
4933 if (!mem_cgroup_is_root(memcg)) {
4934 page_counter_charge(&memcg->memory, nr_pages);
4935 if (do_memsw_account())
4936 page_counter_charge(&memcg->memsw, nr_pages);
4937 }
4938
4939 css_get(&memcg->css);
4940 commit_charge(new, memcg);
4941 memcg1_commit_charge(new, memcg);
4942 }
4943
4944 /**
4945 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4946 * @old: Currently circulating folio.
4947 * @new: Replacement folio.
4948 *
4949 * Transfer the memcg data from the old folio to the new folio for migration.
4950 * The old folio's data info will be cleared. Note that the memory counters
4951 * will remain unchanged throughout the process.
4952 *
4953 * Both folios must be locked, @new->mapping must be set up.
4954 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4955 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4956 {
4957 struct mem_cgroup *memcg;
4958
4959 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4960 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4961 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4962 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4963 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4964
4965 if (mem_cgroup_disabled())
4966 return;
4967
4968 memcg = folio_memcg(old);
4969 /*
4970 * Note that it is normal to see !memcg for a hugetlb folio.
4971 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4972 * was not selected.
4973 */
4974 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4975 if (!memcg)
4976 return;
4977
4978 /* Transfer the charge and the css ref */
4979 commit_charge(new, memcg);
4980
4981 /* Warning should never happen, so don't worry about refcount non-0 */
4982 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4983 old->memcg_data = 0;
4984 }
4985
4986 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4987 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4988
mem_cgroup_sk_alloc(struct sock * sk)4989 void mem_cgroup_sk_alloc(struct sock *sk)
4990 {
4991 struct mem_cgroup *memcg;
4992
4993 if (!mem_cgroup_sockets_enabled)
4994 return;
4995
4996 /* Do not associate the sock with unrelated interrupted task's memcg. */
4997 if (!in_task())
4998 return;
4999
5000 rcu_read_lock();
5001 memcg = mem_cgroup_from_task(current);
5002 if (mem_cgroup_is_root(memcg))
5003 goto out;
5004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5005 goto out;
5006 if (css_tryget(&memcg->css))
5007 sk->sk_memcg = memcg;
5008 out:
5009 rcu_read_unlock();
5010 }
5011
mem_cgroup_sk_free(struct sock * sk)5012 void mem_cgroup_sk_free(struct sock *sk)
5013 {
5014 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5015
5016 if (memcg)
5017 css_put(&memcg->css);
5018 }
5019
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5020 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5021 {
5022 struct mem_cgroup *memcg;
5023
5024 if (sk->sk_memcg == newsk->sk_memcg)
5025 return;
5026
5027 mem_cgroup_sk_free(newsk);
5028
5029 memcg = mem_cgroup_from_sk(sk);
5030 if (memcg)
5031 css_get(&memcg->css);
5032
5033 newsk->sk_memcg = sk->sk_memcg;
5034 }
5035
5036 /**
5037 * mem_cgroup_sk_charge - charge socket memory
5038 * @sk: socket in memcg to charge
5039 * @nr_pages: number of pages to charge
5040 * @gfp_mask: reclaim mode
5041 *
5042 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5043 * @memcg's configured limit, %false if it doesn't.
5044 */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5045 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5046 gfp_t gfp_mask)
5047 {
5048 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5049
5050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5052
5053 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5054 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5055 return true;
5056 }
5057
5058 return false;
5059 }
5060
5061 /**
5062 * mem_cgroup_sk_uncharge - uncharge socket memory
5063 * @sk: socket in memcg to uncharge
5064 * @nr_pages: number of pages to uncharge
5065 */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5066 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5067 {
5068 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5069
5070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5071 memcg1_uncharge_skmem(memcg, nr_pages);
5072 return;
5073 }
5074
5075 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5076
5077 refill_stock(memcg, nr_pages);
5078 }
5079
cgroup_memory(char * s)5080 static int __init cgroup_memory(char *s)
5081 {
5082 char *token;
5083
5084 while ((token = strsep(&s, ",")) != NULL) {
5085 if (!*token)
5086 continue;
5087 if (!strcmp(token, "nosocket"))
5088 cgroup_memory_nosocket = true;
5089 if (!strcmp(token, "nokmem"))
5090 cgroup_memory_nokmem = true;
5091 if (!strcmp(token, "nobpf"))
5092 cgroup_memory_nobpf = true;
5093 }
5094 return 1;
5095 }
5096 __setup("cgroup.memory=", cgroup_memory);
5097
5098 /*
5099 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5100 *
5101 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5102 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5103 * basically everything that doesn't depend on a specific mem_cgroup structure
5104 * should be initialized from here.
5105 */
mem_cgroup_init(void)5106 int __init mem_cgroup_init(void)
5107 {
5108 unsigned int memcg_size;
5109 int cpu;
5110
5111 /*
5112 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5113 * used for per-memcg-per-cpu caching of per-node statistics. In order
5114 * to work fine, we should make sure that the overfill threshold can't
5115 * exceed S32_MAX / PAGE_SIZE.
5116 */
5117 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5118
5119 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5120 memcg_hotplug_cpu_dead);
5121
5122 for_each_possible_cpu(cpu) {
5123 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5124 drain_local_memcg_stock);
5125 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5126 drain_local_obj_stock);
5127 }
5128
5129 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5130 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5131 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5132
5133 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5134 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5135
5136 return 0;
5137 }
5138
5139 #ifdef CONFIG_SWAP
5140 /**
5141 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5142 * @folio: folio being added to swap
5143 * @entry: swap entry to charge
5144 *
5145 * Try to charge @folio's memcg for the swap space at @entry.
5146 *
5147 * Returns 0 on success, -ENOMEM on failure.
5148 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5149 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5150 {
5151 unsigned int nr_pages = folio_nr_pages(folio);
5152 struct page_counter *counter;
5153 struct mem_cgroup *memcg;
5154
5155 if (do_memsw_account())
5156 return 0;
5157
5158 memcg = folio_memcg(folio);
5159
5160 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5161 if (!memcg)
5162 return 0;
5163
5164 if (!entry.val) {
5165 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5166 return 0;
5167 }
5168
5169 memcg = mem_cgroup_id_get_online(memcg);
5170
5171 if (!mem_cgroup_is_root(memcg) &&
5172 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5173 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5174 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5175 mem_cgroup_id_put(memcg);
5176 return -ENOMEM;
5177 }
5178
5179 /* Get references for the tail pages, too */
5180 if (nr_pages > 1)
5181 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5182 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5183
5184 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5185
5186 return 0;
5187 }
5188
5189 /**
5190 * __mem_cgroup_uncharge_swap - uncharge swap space
5191 * @entry: swap entry to uncharge
5192 * @nr_pages: the amount of swap space to uncharge
5193 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5194 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5195 {
5196 struct mem_cgroup *memcg;
5197 unsigned short id;
5198
5199 id = swap_cgroup_clear(entry, nr_pages);
5200 rcu_read_lock();
5201 memcg = mem_cgroup_from_id(id);
5202 if (memcg) {
5203 if (!mem_cgroup_is_root(memcg)) {
5204 if (do_memsw_account())
5205 page_counter_uncharge(&memcg->memsw, nr_pages);
5206 else
5207 page_counter_uncharge(&memcg->swap, nr_pages);
5208 }
5209 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5210 mem_cgroup_id_put_many(memcg, nr_pages);
5211 }
5212 rcu_read_unlock();
5213 }
5214
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5215 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5216 {
5217 long nr_swap_pages = get_nr_swap_pages();
5218
5219 if (mem_cgroup_disabled() || do_memsw_account())
5220 return nr_swap_pages;
5221 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5222 nr_swap_pages = min_t(long, nr_swap_pages,
5223 READ_ONCE(memcg->swap.max) -
5224 page_counter_read(&memcg->swap));
5225 return nr_swap_pages;
5226 }
5227
mem_cgroup_swap_full(struct folio * folio)5228 bool mem_cgroup_swap_full(struct folio *folio)
5229 {
5230 struct mem_cgroup *memcg;
5231
5232 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5233
5234 if (vm_swap_full())
5235 return true;
5236 if (do_memsw_account())
5237 return false;
5238
5239 memcg = folio_memcg(folio);
5240 if (!memcg)
5241 return false;
5242
5243 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5244 unsigned long usage = page_counter_read(&memcg->swap);
5245
5246 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5247 usage * 2 >= READ_ONCE(memcg->swap.max))
5248 return true;
5249 }
5250
5251 return false;
5252 }
5253
setup_swap_account(char * s)5254 static int __init setup_swap_account(char *s)
5255 {
5256 bool res;
5257
5258 if (!kstrtobool(s, &res) && !res)
5259 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5260 "in favor of configuring swap control via cgroupfs. "
5261 "Please report your usecase to linux-mm@kvack.org if you "
5262 "depend on this functionality.\n");
5263 return 1;
5264 }
5265 __setup("swapaccount=", setup_swap_account);
5266
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5267 static u64 swap_current_read(struct cgroup_subsys_state *css,
5268 struct cftype *cft)
5269 {
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271
5272 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5273 }
5274
swap_peak_show(struct seq_file * sf,void * v)5275 static int swap_peak_show(struct seq_file *sf, void *v)
5276 {
5277 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5278
5279 return peak_show(sf, v, &memcg->swap);
5280 }
5281
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5282 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5283 size_t nbytes, loff_t off)
5284 {
5285 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5286
5287 return peak_write(of, buf, nbytes, off, &memcg->swap,
5288 &memcg->swap_peaks);
5289 }
5290
swap_high_show(struct seq_file * m,void * v)5291 static int swap_high_show(struct seq_file *m, void *v)
5292 {
5293 return seq_puts_memcg_tunable(m,
5294 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5295 }
5296
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5297 static ssize_t swap_high_write(struct kernfs_open_file *of,
5298 char *buf, size_t nbytes, loff_t off)
5299 {
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5301 unsigned long high;
5302 int err;
5303
5304 buf = strstrip(buf);
5305 err = page_counter_memparse(buf, "max", &high);
5306 if (err)
5307 return err;
5308
5309 page_counter_set_high(&memcg->swap, high);
5310
5311 return nbytes;
5312 }
5313
swap_max_show(struct seq_file * m,void * v)5314 static int swap_max_show(struct seq_file *m, void *v)
5315 {
5316 return seq_puts_memcg_tunable(m,
5317 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5318 }
5319
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5320 static ssize_t swap_max_write(struct kernfs_open_file *of,
5321 char *buf, size_t nbytes, loff_t off)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5324 unsigned long max;
5325 int err;
5326
5327 buf = strstrip(buf);
5328 err = page_counter_memparse(buf, "max", &max);
5329 if (err)
5330 return err;
5331
5332 xchg(&memcg->swap.max, max);
5333
5334 return nbytes;
5335 }
5336
swap_events_show(struct seq_file * m,void * v)5337 static int swap_events_show(struct seq_file *m, void *v)
5338 {
5339 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5340
5341 seq_printf(m, "high %lu\n",
5342 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5343 seq_printf(m, "max %lu\n",
5344 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5345 seq_printf(m, "fail %lu\n",
5346 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5347
5348 return 0;
5349 }
5350
5351 static struct cftype swap_files[] = {
5352 {
5353 .name = "swap.current",
5354 .flags = CFTYPE_NOT_ON_ROOT,
5355 .read_u64 = swap_current_read,
5356 },
5357 {
5358 .name = "swap.high",
5359 .flags = CFTYPE_NOT_ON_ROOT,
5360 .seq_show = swap_high_show,
5361 .write = swap_high_write,
5362 },
5363 {
5364 .name = "swap.max",
5365 .flags = CFTYPE_NOT_ON_ROOT,
5366 .seq_show = swap_max_show,
5367 .write = swap_max_write,
5368 },
5369 {
5370 .name = "swap.peak",
5371 .flags = CFTYPE_NOT_ON_ROOT,
5372 .open = peak_open,
5373 .release = peak_release,
5374 .seq_show = swap_peak_show,
5375 .write = swap_peak_write,
5376 },
5377 {
5378 .name = "swap.events",
5379 .flags = CFTYPE_NOT_ON_ROOT,
5380 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5381 .seq_show = swap_events_show,
5382 },
5383 { } /* terminate */
5384 };
5385
5386 #ifdef CONFIG_ZSWAP
5387 /**
5388 * obj_cgroup_may_zswap - check if this cgroup can zswap
5389 * @objcg: the object cgroup
5390 *
5391 * Check if the hierarchical zswap limit has been reached.
5392 *
5393 * This doesn't check for specific headroom, and it is not atomic
5394 * either. But with zswap, the size of the allocation is only known
5395 * once compression has occurred, and this optimistic pre-check avoids
5396 * spending cycles on compression when there is already no room left
5397 * or zswap is disabled altogether somewhere in the hierarchy.
5398 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5399 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5400 {
5401 struct mem_cgroup *memcg, *original_memcg;
5402 bool ret = true;
5403
5404 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5405 return true;
5406
5407 original_memcg = get_mem_cgroup_from_objcg(objcg);
5408 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5409 memcg = parent_mem_cgroup(memcg)) {
5410 unsigned long max = READ_ONCE(memcg->zswap_max);
5411 unsigned long pages;
5412
5413 if (max == PAGE_COUNTER_MAX)
5414 continue;
5415 if (max == 0) {
5416 ret = false;
5417 break;
5418 }
5419
5420 /* Force flush to get accurate stats for charging */
5421 __mem_cgroup_flush_stats(memcg, true);
5422 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5423 if (pages < max)
5424 continue;
5425 ret = false;
5426 break;
5427 }
5428 mem_cgroup_put(original_memcg);
5429 return ret;
5430 }
5431
5432 /**
5433 * obj_cgroup_charge_zswap - charge compression backend memory
5434 * @objcg: the object cgroup
5435 * @size: size of compressed object
5436 *
5437 * This forces the charge after obj_cgroup_may_zswap() allowed
5438 * compression and storage in zwap for this cgroup to go ahead.
5439 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5440 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5441 {
5442 struct mem_cgroup *memcg;
5443
5444 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5445 return;
5446
5447 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5448
5449 /* PF_MEMALLOC context, charging must succeed */
5450 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5451 VM_WARN_ON_ONCE(1);
5452
5453 rcu_read_lock();
5454 memcg = obj_cgroup_memcg(objcg);
5455 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5456 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5457 rcu_read_unlock();
5458 }
5459
5460 /**
5461 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5462 * @objcg: the object cgroup
5463 * @size: size of compressed object
5464 *
5465 * Uncharges zswap memory on page in.
5466 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5467 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5468 {
5469 struct mem_cgroup *memcg;
5470
5471 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5472 return;
5473
5474 obj_cgroup_uncharge(objcg, size);
5475
5476 rcu_read_lock();
5477 memcg = obj_cgroup_memcg(objcg);
5478 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5479 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5480 rcu_read_unlock();
5481 }
5482
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5483 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5484 {
5485 /* if zswap is disabled, do not block pages going to the swapping device */
5486 if (!zswap_is_enabled())
5487 return true;
5488
5489 for (; memcg; memcg = parent_mem_cgroup(memcg))
5490 if (!READ_ONCE(memcg->zswap_writeback))
5491 return false;
5492
5493 return true;
5494 }
5495
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5496 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5497 struct cftype *cft)
5498 {
5499 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5500
5501 mem_cgroup_flush_stats(memcg);
5502 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5503 }
5504
zswap_max_show(struct seq_file * m,void * v)5505 static int zswap_max_show(struct seq_file *m, void *v)
5506 {
5507 return seq_puts_memcg_tunable(m,
5508 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5509 }
5510
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5511 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5512 char *buf, size_t nbytes, loff_t off)
5513 {
5514 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5515 unsigned long max;
5516 int err;
5517
5518 buf = strstrip(buf);
5519 err = page_counter_memparse(buf, "max", &max);
5520 if (err)
5521 return err;
5522
5523 xchg(&memcg->zswap_max, max);
5524
5525 return nbytes;
5526 }
5527
zswap_writeback_show(struct seq_file * m,void * v)5528 static int zswap_writeback_show(struct seq_file *m, void *v)
5529 {
5530 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5531
5532 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5533 return 0;
5534 }
5535
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5536 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5537 char *buf, size_t nbytes, loff_t off)
5538 {
5539 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5540 int zswap_writeback;
5541 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5542
5543 if (parse_ret)
5544 return parse_ret;
5545
5546 if (zswap_writeback != 0 && zswap_writeback != 1)
5547 return -EINVAL;
5548
5549 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5550 return nbytes;
5551 }
5552
5553 static struct cftype zswap_files[] = {
5554 {
5555 .name = "zswap.current",
5556 .flags = CFTYPE_NOT_ON_ROOT,
5557 .read_u64 = zswap_current_read,
5558 },
5559 {
5560 .name = "zswap.max",
5561 .flags = CFTYPE_NOT_ON_ROOT,
5562 .seq_show = zswap_max_show,
5563 .write = zswap_max_write,
5564 },
5565 {
5566 .name = "zswap.writeback",
5567 .seq_show = zswap_writeback_show,
5568 .write = zswap_writeback_write,
5569 },
5570 { } /* terminate */
5571 };
5572 #endif /* CONFIG_ZSWAP */
5573
mem_cgroup_swap_init(void)5574 static int __init mem_cgroup_swap_init(void)
5575 {
5576 if (mem_cgroup_disabled())
5577 return 0;
5578
5579 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5580 #ifdef CONFIG_MEMCG_V1
5581 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5582 #endif
5583 #ifdef CONFIG_ZSWAP
5584 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5585 #endif
5586 return 0;
5587 }
5588 subsys_initcall(mem_cgroup_swap_init);
5589
5590 #endif /* CONFIG_SWAP */
5591
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5592 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5593 {
5594 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5595 }
5596