1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
19
20 struct kvm_pgtable_walk_data {
21 struct kvm_pgtable_walker *walker;
22
23 const u64 start;
24 u64 addr;
25 const u64 end;
26 };
27
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)28 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
29 {
30 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
31 }
32
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)33 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
34 {
35 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
36 }
37
kvm_phys_is_valid(u64 phys)38 static bool kvm_phys_is_valid(u64 phys)
39 {
40 u64 parange_max = kvm_get_parange_max();
41 u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
42
43 return phys < BIT(shift);
44 }
45
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)46 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
47 {
48 u64 granule = kvm_granule_size(ctx->level);
49
50 if (!kvm_level_supports_block_mapping(ctx->level))
51 return false;
52
53 if (granule > (ctx->end - ctx->addr))
54 return false;
55
56 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
57 return false;
58
59 return IS_ALIGNED(ctx->addr, granule);
60 }
61
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)62 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
63 {
64 u64 shift = kvm_granule_shift(level);
65 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
66
67 return (data->addr >> shift) & mask;
68 }
69
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)70 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
71 {
72 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
73 u64 mask = BIT(pgt->ia_bits) - 1;
74
75 return (addr & mask) >> shift;
76 }
77
kvm_pgd_pages(u32 ia_bits,s8 start_level)78 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
79 {
80 struct kvm_pgtable pgt = {
81 .ia_bits = ia_bits,
82 .start_level = start_level,
83 };
84
85 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
86 }
87
kvm_pte_table(kvm_pte_t pte,s8 level)88 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
89 {
90 if (level == KVM_PGTABLE_LAST_LEVEL)
91 return false;
92
93 if (!kvm_pte_valid(pte))
94 return false;
95
96 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
97 }
98
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)99 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
100 {
101 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
102 }
103
kvm_clear_pte(kvm_pte_t * ptep)104 static void kvm_clear_pte(kvm_pte_t *ptep)
105 {
106 WRITE_ONCE(*ptep, 0);
107 }
108
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)109 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
110 {
111 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
112
113 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
114 pte |= KVM_PTE_VALID;
115 return pte;
116 }
117
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)118 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
119 {
120 kvm_pte_t pte = kvm_phys_to_pte(pa);
121 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
122 KVM_PTE_TYPE_BLOCK;
123
124 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
125 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
126 pte |= KVM_PTE_VALID;
127
128 return pte;
129 }
130
kvm_init_invalid_leaf_owner(u8 owner_id)131 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
132 {
133 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
134 }
135
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)136 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
137 const struct kvm_pgtable_visit_ctx *ctx,
138 enum kvm_pgtable_walk_flags visit)
139 {
140 struct kvm_pgtable_walker *walker = data->walker;
141
142 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
143 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
144 return walker->cb(ctx, visit);
145 }
146
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)147 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
148 int r)
149 {
150 /*
151 * Visitor callbacks return EAGAIN when the conditions that led to a
152 * fault are no longer reflected in the page tables due to a race to
153 * update a PTE. In the context of a fault handler this is interpreted
154 * as a signal to retry guest execution.
155 *
156 * Ignore the return code altogether for walkers outside a fault handler
157 * (e.g. write protecting a range of memory) and chug along with the
158 * page table walk.
159 */
160 if (r == -EAGAIN)
161 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
162
163 return !r;
164 }
165
166 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
167 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
168
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)169 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
170 struct kvm_pgtable_mm_ops *mm_ops,
171 kvm_pteref_t pteref, s8 level)
172 {
173 enum kvm_pgtable_walk_flags flags = data->walker->flags;
174 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
175 struct kvm_pgtable_visit_ctx ctx = {
176 .ptep = ptep,
177 .old = READ_ONCE(*ptep),
178 .arg = data->walker->arg,
179 .mm_ops = mm_ops,
180 .start = data->start,
181 .addr = data->addr,
182 .end = data->end,
183 .level = level,
184 .flags = flags,
185 };
186 int ret = 0;
187 bool reload = false;
188 kvm_pteref_t childp;
189 bool table = kvm_pte_table(ctx.old, level);
190
191 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
192 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
193 reload = true;
194 }
195
196 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
197 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
198 reload = true;
199 }
200
201 /*
202 * Reload the page table after invoking the walker callback for leaf
203 * entries or after pre-order traversal, to allow the walker to descend
204 * into a newly installed or replaced table.
205 */
206 if (reload) {
207 ctx.old = READ_ONCE(*ptep);
208 table = kvm_pte_table(ctx.old, level);
209 }
210
211 if (!kvm_pgtable_walk_continue(data->walker, ret))
212 goto out;
213
214 if (!table) {
215 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
216 data->addr += kvm_granule_size(level);
217 goto out;
218 }
219
220 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
221 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
222 if (!kvm_pgtable_walk_continue(data->walker, ret))
223 goto out;
224
225 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
226 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
227
228 out:
229 if (kvm_pgtable_walk_continue(data->walker, ret))
230 return 0;
231
232 return ret;
233 }
234
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)235 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
236 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
237 {
238 u32 idx;
239 int ret = 0;
240
241 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
242 level > KVM_PGTABLE_LAST_LEVEL))
243 return -EINVAL;
244
245 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
246 kvm_pteref_t pteref = &pgtable[idx];
247
248 if (data->addr >= data->end)
249 break;
250
251 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
252 if (ret)
253 break;
254 }
255
256 return ret;
257 }
258
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)259 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
260 {
261 u32 idx;
262 int ret = 0;
263 u64 limit = BIT(pgt->ia_bits);
264
265 if (data->addr > limit || data->end > limit)
266 return -ERANGE;
267
268 if (!pgt->pgd)
269 return -EINVAL;
270
271 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
272 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
273
274 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
275 if (ret)
276 break;
277 }
278
279 return ret;
280 }
281
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)282 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
283 struct kvm_pgtable_walker *walker)
284 {
285 struct kvm_pgtable_walk_data walk_data = {
286 .start = ALIGN_DOWN(addr, PAGE_SIZE),
287 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
288 .end = PAGE_ALIGN(walk_data.addr + size),
289 .walker = walker,
290 };
291 int r;
292
293 r = kvm_pgtable_walk_begin(walker);
294 if (r)
295 return r;
296
297 r = _kvm_pgtable_walk(pgt, &walk_data);
298 kvm_pgtable_walk_end(walker);
299
300 return r;
301 }
302
303 struct leaf_walk_data {
304 kvm_pte_t pte;
305 s8 level;
306 };
307
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)308 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
309 enum kvm_pgtable_walk_flags visit)
310 {
311 struct leaf_walk_data *data = ctx->arg;
312
313 data->pte = ctx->old;
314 data->level = ctx->level;
315
316 return 0;
317 }
318
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)319 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
320 kvm_pte_t *ptep, s8 *level)
321 {
322 struct leaf_walk_data data;
323 struct kvm_pgtable_walker walker = {
324 .cb = leaf_walker,
325 .flags = KVM_PGTABLE_WALK_LEAF,
326 .arg = &data,
327 };
328 int ret;
329
330 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
331 PAGE_SIZE, &walker);
332 if (!ret) {
333 if (ptep)
334 *ptep = data.pte;
335 if (level)
336 *level = data.level;
337 }
338
339 return ret;
340 }
341
342 struct hyp_map_data {
343 const u64 phys;
344 kvm_pte_t attr;
345 };
346
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)347 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
348 {
349 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
350 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
351 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
352 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
353 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
354 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
355
356 if (!(prot & KVM_PGTABLE_PROT_R))
357 return -EINVAL;
358
359 if (prot & KVM_PGTABLE_PROT_X) {
360 if (prot & KVM_PGTABLE_PROT_W)
361 return -EINVAL;
362
363 if (device)
364 return -EINVAL;
365
366 if (system_supports_bti_kernel())
367 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
368 } else {
369 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
370 }
371
372 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
373 if (!kvm_lpa2_is_enabled())
374 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
375 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
376 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
377 *ptep = attr;
378
379 return 0;
380 }
381
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)382 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
383 {
384 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
385 u32 ap;
386
387 if (!kvm_pte_valid(pte))
388 return prot;
389
390 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
391 prot |= KVM_PGTABLE_PROT_X;
392
393 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
394 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
395 prot |= KVM_PGTABLE_PROT_R;
396 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
397 prot |= KVM_PGTABLE_PROT_RW;
398
399 return prot;
400 }
401
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)402 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
403 struct hyp_map_data *data)
404 {
405 u64 phys = data->phys + (ctx->addr - ctx->start);
406 kvm_pte_t new;
407
408 if (!kvm_block_mapping_supported(ctx, phys))
409 return false;
410
411 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
412 if (ctx->old == new)
413 return true;
414 if (!kvm_pte_valid(ctx->old))
415 ctx->mm_ops->get_page(ctx->ptep);
416 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
417 return false;
418
419 smp_store_release(ctx->ptep, new);
420 return true;
421 }
422
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)423 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
424 enum kvm_pgtable_walk_flags visit)
425 {
426 kvm_pte_t *childp, new;
427 struct hyp_map_data *data = ctx->arg;
428 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
429
430 if (hyp_map_walker_try_leaf(ctx, data))
431 return 0;
432
433 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
434 return -EINVAL;
435
436 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
437 if (!childp)
438 return -ENOMEM;
439
440 new = kvm_init_table_pte(childp, mm_ops);
441 mm_ops->get_page(ctx->ptep);
442 smp_store_release(ctx->ptep, new);
443
444 return 0;
445 }
446
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)447 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
448 enum kvm_pgtable_prot prot)
449 {
450 int ret;
451 struct hyp_map_data map_data = {
452 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
453 };
454 struct kvm_pgtable_walker walker = {
455 .cb = hyp_map_walker,
456 .flags = KVM_PGTABLE_WALK_LEAF,
457 .arg = &map_data,
458 };
459
460 ret = hyp_set_prot_attr(prot, &map_data.attr);
461 if (ret)
462 return ret;
463
464 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
465 dsb(ishst);
466 isb();
467 return ret;
468 }
469
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)470 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
471 enum kvm_pgtable_walk_flags visit)
472 {
473 kvm_pte_t *childp = NULL;
474 u64 granule = kvm_granule_size(ctx->level);
475 u64 *unmapped = ctx->arg;
476 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
477
478 if (!kvm_pte_valid(ctx->old))
479 return -EINVAL;
480
481 if (kvm_pte_table(ctx->old, ctx->level)) {
482 childp = kvm_pte_follow(ctx->old, mm_ops);
483
484 if (mm_ops->page_count(childp) != 1)
485 return 0;
486
487 kvm_clear_pte(ctx->ptep);
488 dsb(ishst);
489 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
490 } else {
491 if (ctx->end - ctx->addr < granule)
492 return -EINVAL;
493
494 kvm_clear_pte(ctx->ptep);
495 dsb(ishst);
496 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
497 *unmapped += granule;
498 }
499
500 dsb(ish);
501 isb();
502 mm_ops->put_page(ctx->ptep);
503
504 if (childp)
505 mm_ops->put_page(childp);
506
507 return 0;
508 }
509
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)510 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
511 {
512 u64 unmapped = 0;
513 struct kvm_pgtable_walker walker = {
514 .cb = hyp_unmap_walker,
515 .arg = &unmapped,
516 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
517 };
518
519 if (!pgt->mm_ops->page_count)
520 return 0;
521
522 kvm_pgtable_walk(pgt, addr, size, &walker);
523 return unmapped;
524 }
525
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)526 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
527 struct kvm_pgtable_mm_ops *mm_ops)
528 {
529 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
530 ARM64_HW_PGTABLE_LEVELS(va_bits);
531
532 if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
533 start_level > KVM_PGTABLE_LAST_LEVEL)
534 return -EINVAL;
535
536 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
537 if (!pgt->pgd)
538 return -ENOMEM;
539
540 pgt->ia_bits = va_bits;
541 pgt->start_level = start_level;
542 pgt->mm_ops = mm_ops;
543 pgt->mmu = NULL;
544 pgt->force_pte_cb = NULL;
545
546 return 0;
547 }
548
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)549 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
550 enum kvm_pgtable_walk_flags visit)
551 {
552 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
553
554 if (!kvm_pte_valid(ctx->old))
555 return 0;
556
557 mm_ops->put_page(ctx->ptep);
558
559 if (kvm_pte_table(ctx->old, ctx->level))
560 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
561
562 return 0;
563 }
564
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)565 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
566 {
567 struct kvm_pgtable_walker walker = {
568 .cb = hyp_free_walker,
569 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
570 };
571
572 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
573 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
574 pgt->pgd = NULL;
575 }
576
577 struct stage2_map_data {
578 const u64 phys;
579 kvm_pte_t attr;
580 u8 owner_id;
581
582 kvm_pte_t *anchor;
583 kvm_pte_t *childp;
584
585 struct kvm_s2_mmu *mmu;
586 void *memcache;
587
588 /* Force mappings to page granularity */
589 bool force_pte;
590 };
591
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)592 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
593 {
594 u64 vtcr = VTCR_EL2_FLAGS;
595 s8 lvls;
596
597 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
598 vtcr |= VTCR_EL2_T0SZ(phys_shift);
599 /*
600 * Use a minimum 2 level page table to prevent splitting
601 * host PMD huge pages at stage2.
602 */
603 lvls = stage2_pgtable_levels(phys_shift);
604 if (lvls < 2)
605 lvls = 2;
606
607 /*
608 * When LPA2 is enabled, the HW supports an extra level of translation
609 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
610 * to as an addition to SL0 to enable encoding this extra start level.
611 * However, since we always use concatenated pages for the first level
612 * lookup, we will never need this extra level and therefore do not need
613 * to touch SL2.
614 */
615 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
616
617 #ifdef CONFIG_ARM64_HW_AFDBM
618 /*
619 * Enable the Hardware Access Flag management, unconditionally
620 * on all CPUs. In systems that have asymmetric support for the feature
621 * this allows KVM to leverage hardware support on the subset of cores
622 * that implement the feature.
623 *
624 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
625 * hardware) on implementations that do not advertise support for the
626 * feature. As such, setting HA unconditionally is safe, unless you
627 * happen to be running on a design that has unadvertised support for
628 * HAFDBS. Here be dragons.
629 */
630 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
631 vtcr |= VTCR_EL2_HA;
632 #endif /* CONFIG_ARM64_HW_AFDBM */
633
634 if (kvm_lpa2_is_enabled())
635 vtcr |= VTCR_EL2_DS;
636
637 /* Set the vmid bits */
638 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
639 VTCR_EL2_VS_16BIT :
640 VTCR_EL2_VS_8BIT;
641
642 return vtcr;
643 }
644
stage2_has_fwb(struct kvm_pgtable * pgt)645 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
646 {
647 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
648 return false;
649
650 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
651 }
652
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)653 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
654 phys_addr_t addr, size_t size)
655 {
656 unsigned long pages, inval_pages;
657
658 if (!system_supports_tlb_range()) {
659 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
660 return;
661 }
662
663 pages = size >> PAGE_SHIFT;
664 while (pages > 0) {
665 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
666 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
667
668 addr += inval_pages << PAGE_SHIFT;
669 pages -= inval_pages;
670 }
671 }
672
673 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
674
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)675 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
676 kvm_pte_t *ptep)
677 {
678 kvm_pte_t attr;
679 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
680
681 switch (prot & (KVM_PGTABLE_PROT_DEVICE |
682 KVM_PGTABLE_PROT_NORMAL_NC)) {
683 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
684 return -EINVAL;
685 case KVM_PGTABLE_PROT_DEVICE:
686 if (prot & KVM_PGTABLE_PROT_X)
687 return -EINVAL;
688 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
689 break;
690 case KVM_PGTABLE_PROT_NORMAL_NC:
691 if (prot & KVM_PGTABLE_PROT_X)
692 return -EINVAL;
693 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
694 break;
695 default:
696 attr = KVM_S2_MEMATTR(pgt, NORMAL);
697 }
698
699 if (!(prot & KVM_PGTABLE_PROT_X))
700 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
701
702 if (prot & KVM_PGTABLE_PROT_R)
703 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
704
705 if (prot & KVM_PGTABLE_PROT_W)
706 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
707
708 if (!kvm_lpa2_is_enabled())
709 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
710
711 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
712 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
713 *ptep = attr;
714
715 return 0;
716 }
717
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)718 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
719 {
720 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
721
722 if (!kvm_pte_valid(pte))
723 return prot;
724
725 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
726 prot |= KVM_PGTABLE_PROT_R;
727 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
728 prot |= KVM_PGTABLE_PROT_W;
729 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
730 prot |= KVM_PGTABLE_PROT_X;
731
732 return prot;
733 }
734
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)735 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
736 {
737 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
738 return true;
739
740 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
741 }
742
stage2_pte_is_counted(kvm_pte_t pte)743 static bool stage2_pte_is_counted(kvm_pte_t pte)
744 {
745 /*
746 * The refcount tracks valid entries as well as invalid entries if they
747 * encode ownership of a page to another entity than the page-table
748 * owner, whose id is 0.
749 */
750 return !!pte;
751 }
752
stage2_pte_is_locked(kvm_pte_t pte)753 static bool stage2_pte_is_locked(kvm_pte_t pte)
754 {
755 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
756 }
757
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)758 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
759 {
760 if (!kvm_pgtable_walk_shared(ctx)) {
761 WRITE_ONCE(*ctx->ptep, new);
762 return true;
763 }
764
765 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
766 }
767
768 /**
769 * stage2_try_break_pte() - Invalidates a pte according to the
770 * 'break-before-make' requirements of the
771 * architecture.
772 *
773 * @ctx: context of the visited pte.
774 * @mmu: stage-2 mmu
775 *
776 * Returns: true if the pte was successfully broken.
777 *
778 * If the removed pte was valid, performs the necessary serialization and TLB
779 * invalidation for the old value. For counted ptes, drops the reference count
780 * on the containing table page.
781 */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)782 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
783 struct kvm_s2_mmu *mmu)
784 {
785 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
786
787 if (stage2_pte_is_locked(ctx->old)) {
788 /*
789 * Should never occur if this walker has exclusive access to the
790 * page tables.
791 */
792 WARN_ON(!kvm_pgtable_walk_shared(ctx));
793 return false;
794 }
795
796 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
797 return false;
798
799 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
800 /*
801 * Perform the appropriate TLB invalidation based on the
802 * evicted pte value (if any).
803 */
804 if (kvm_pte_table(ctx->old, ctx->level)) {
805 u64 size = kvm_granule_size(ctx->level);
806 u64 addr = ALIGN_DOWN(ctx->addr, size);
807
808 kvm_tlb_flush_vmid_range(mmu, addr, size);
809 } else if (kvm_pte_valid(ctx->old)) {
810 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
811 ctx->addr, ctx->level);
812 }
813 }
814
815 if (stage2_pte_is_counted(ctx->old))
816 mm_ops->put_page(ctx->ptep);
817
818 return true;
819 }
820
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)821 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
822 {
823 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
824
825 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
826
827 if (stage2_pte_is_counted(new))
828 mm_ops->get_page(ctx->ptep);
829
830 smp_store_release(ctx->ptep, new);
831 }
832
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)833 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
834 {
835 /*
836 * If FEAT_TLBIRANGE is implemented, defer the individual
837 * TLB invalidations until the entire walk is finished, and
838 * then use the range-based TLBI instructions to do the
839 * invalidations. Condition deferred TLB invalidation on the
840 * system supporting FWB as the optimization is entirely
841 * pointless when the unmap walker needs to perform CMOs.
842 */
843 return system_supports_tlb_range() && stage2_has_fwb(pgt);
844 }
845
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)846 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
847 struct kvm_s2_mmu *mmu,
848 struct kvm_pgtable_mm_ops *mm_ops)
849 {
850 struct kvm_pgtable *pgt = ctx->arg;
851
852 /*
853 * Clear the existing PTE, and perform break-before-make if it was
854 * valid. Depending on the system support, defer the TLB maintenance
855 * for the same until the entire unmap walk is completed.
856 */
857 if (kvm_pte_valid(ctx->old)) {
858 kvm_clear_pte(ctx->ptep);
859
860 if (kvm_pte_table(ctx->old, ctx->level)) {
861 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
862 TLBI_TTL_UNKNOWN);
863 } else if (!stage2_unmap_defer_tlb_flush(pgt)) {
864 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
865 ctx->level);
866 }
867 }
868
869 mm_ops->put_page(ctx->ptep);
870 }
871
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)872 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
873 {
874 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
875 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
876 }
877
stage2_pte_executable(kvm_pte_t pte)878 static bool stage2_pte_executable(kvm_pte_t pte)
879 {
880 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
881 }
882
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)883 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
884 const struct stage2_map_data *data)
885 {
886 u64 phys = data->phys;
887
888 /*
889 * Stage-2 walks to update ownership data are communicated to the map
890 * walker using an invalid PA. Avoid offsetting an already invalid PA,
891 * which could overflow and make the address valid again.
892 */
893 if (!kvm_phys_is_valid(phys))
894 return phys;
895
896 /*
897 * Otherwise, work out the correct PA based on how far the walk has
898 * gotten.
899 */
900 return phys + (ctx->addr - ctx->start);
901 }
902
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)903 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
904 struct stage2_map_data *data)
905 {
906 u64 phys = stage2_map_walker_phys_addr(ctx, data);
907
908 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
909 return false;
910
911 return kvm_block_mapping_supported(ctx, phys);
912 }
913
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)914 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
915 struct stage2_map_data *data)
916 {
917 kvm_pte_t new;
918 u64 phys = stage2_map_walker_phys_addr(ctx, data);
919 u64 granule = kvm_granule_size(ctx->level);
920 struct kvm_pgtable *pgt = data->mmu->pgt;
921 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
922
923 if (!stage2_leaf_mapping_allowed(ctx, data))
924 return -E2BIG;
925
926 if (kvm_phys_is_valid(phys))
927 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
928 else
929 new = kvm_init_invalid_leaf_owner(data->owner_id);
930
931 /*
932 * Skip updating the PTE if we are trying to recreate the exact
933 * same mapping or only change the access permissions. Instead,
934 * the vCPU will exit one more time from guest if still needed
935 * and then go through the path of relaxing permissions.
936 */
937 if (!stage2_pte_needs_update(ctx->old, new))
938 return -EAGAIN;
939
940 /* If we're only changing software bits, then store them and go! */
941 if (!kvm_pgtable_walk_shared(ctx) &&
942 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
943 bool old_is_counted = stage2_pte_is_counted(ctx->old);
944
945 if (old_is_counted != stage2_pte_is_counted(new)) {
946 if (old_is_counted)
947 mm_ops->put_page(ctx->ptep);
948 else
949 mm_ops->get_page(ctx->ptep);
950 }
951 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
952 return 0;
953 }
954
955 if (!stage2_try_break_pte(ctx, data->mmu))
956 return -EAGAIN;
957
958 /* Perform CMOs before installation of the guest stage-2 PTE */
959 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
960 stage2_pte_cacheable(pgt, new))
961 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
962 granule);
963
964 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
965 stage2_pte_executable(new))
966 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
967
968 stage2_make_pte(ctx, new);
969
970 return 0;
971 }
972
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)973 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
974 struct stage2_map_data *data)
975 {
976 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
977 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
978 int ret;
979
980 if (!stage2_leaf_mapping_allowed(ctx, data))
981 return 0;
982
983 ret = stage2_map_walker_try_leaf(ctx, data);
984 if (ret)
985 return ret;
986
987 mm_ops->free_unlinked_table(childp, ctx->level);
988 return 0;
989 }
990
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)991 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
992 struct stage2_map_data *data)
993 {
994 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
995 kvm_pte_t *childp, new;
996 int ret;
997
998 ret = stage2_map_walker_try_leaf(ctx, data);
999 if (ret != -E2BIG)
1000 return ret;
1001
1002 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1003 return -EINVAL;
1004
1005 if (!data->memcache)
1006 return -ENOMEM;
1007
1008 childp = mm_ops->zalloc_page(data->memcache);
1009 if (!childp)
1010 return -ENOMEM;
1011
1012 if (!stage2_try_break_pte(ctx, data->mmu)) {
1013 mm_ops->put_page(childp);
1014 return -EAGAIN;
1015 }
1016
1017 /*
1018 * If we've run into an existing block mapping then replace it with
1019 * a table. Accesses beyond 'end' that fall within the new table
1020 * will be mapped lazily.
1021 */
1022 new = kvm_init_table_pte(childp, mm_ops);
1023 stage2_make_pte(ctx, new);
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * The TABLE_PRE callback runs for table entries on the way down, looking
1030 * for table entries which we could conceivably replace with a block entry
1031 * for this mapping. If it finds one it replaces the entry and calls
1032 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1033 *
1034 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1035 * instead.
1036 */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1037 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1038 enum kvm_pgtable_walk_flags visit)
1039 {
1040 struct stage2_map_data *data = ctx->arg;
1041
1042 switch (visit) {
1043 case KVM_PGTABLE_WALK_TABLE_PRE:
1044 return stage2_map_walk_table_pre(ctx, data);
1045 case KVM_PGTABLE_WALK_LEAF:
1046 return stage2_map_walk_leaf(ctx, data);
1047 default:
1048 return -EINVAL;
1049 }
1050 }
1051
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1052 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1053 u64 phys, enum kvm_pgtable_prot prot,
1054 void *mc, enum kvm_pgtable_walk_flags flags)
1055 {
1056 int ret;
1057 struct stage2_map_data map_data = {
1058 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1059 .mmu = pgt->mmu,
1060 .memcache = mc,
1061 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1062 };
1063 struct kvm_pgtable_walker walker = {
1064 .cb = stage2_map_walker,
1065 .flags = flags |
1066 KVM_PGTABLE_WALK_TABLE_PRE |
1067 KVM_PGTABLE_WALK_LEAF,
1068 .arg = &map_data,
1069 };
1070
1071 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1072 return -EINVAL;
1073
1074 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1075 if (ret)
1076 return ret;
1077
1078 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1079 dsb(ishst);
1080 return ret;
1081 }
1082
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1083 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1084 void *mc, u8 owner_id)
1085 {
1086 int ret;
1087 struct stage2_map_data map_data = {
1088 .phys = KVM_PHYS_INVALID,
1089 .mmu = pgt->mmu,
1090 .memcache = mc,
1091 .owner_id = owner_id,
1092 .force_pte = true,
1093 };
1094 struct kvm_pgtable_walker walker = {
1095 .cb = stage2_map_walker,
1096 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
1097 KVM_PGTABLE_WALK_LEAF,
1098 .arg = &map_data,
1099 };
1100
1101 if (owner_id > KVM_MAX_OWNER_ID)
1102 return -EINVAL;
1103
1104 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1105 return ret;
1106 }
1107
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1108 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1109 enum kvm_pgtable_walk_flags visit)
1110 {
1111 struct kvm_pgtable *pgt = ctx->arg;
1112 struct kvm_s2_mmu *mmu = pgt->mmu;
1113 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1114 kvm_pte_t *childp = NULL;
1115 bool need_flush = false;
1116
1117 if (!kvm_pte_valid(ctx->old)) {
1118 if (stage2_pte_is_counted(ctx->old)) {
1119 kvm_clear_pte(ctx->ptep);
1120 mm_ops->put_page(ctx->ptep);
1121 }
1122 return 0;
1123 }
1124
1125 if (kvm_pte_table(ctx->old, ctx->level)) {
1126 childp = kvm_pte_follow(ctx->old, mm_ops);
1127
1128 if (mm_ops->page_count(childp) != 1)
1129 return 0;
1130 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1131 need_flush = !stage2_has_fwb(pgt);
1132 }
1133
1134 /*
1135 * This is similar to the map() path in that we unmap the entire
1136 * block entry and rely on the remaining portions being faulted
1137 * back lazily.
1138 */
1139 stage2_unmap_put_pte(ctx, mmu, mm_ops);
1140
1141 if (need_flush && mm_ops->dcache_clean_inval_poc)
1142 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1143 kvm_granule_size(ctx->level));
1144
1145 if (childp)
1146 mm_ops->put_page(childp);
1147
1148 return 0;
1149 }
1150
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1151 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1152 {
1153 int ret;
1154 struct kvm_pgtable_walker walker = {
1155 .cb = stage2_unmap_walker,
1156 .arg = pgt,
1157 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1158 };
1159
1160 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1161 if (stage2_unmap_defer_tlb_flush(pgt))
1162 /* Perform the deferred TLB invalidations */
1163 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1164
1165 return ret;
1166 }
1167
1168 struct stage2_attr_data {
1169 kvm_pte_t attr_set;
1170 kvm_pte_t attr_clr;
1171 kvm_pte_t pte;
1172 s8 level;
1173 };
1174
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1175 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1176 enum kvm_pgtable_walk_flags visit)
1177 {
1178 kvm_pte_t pte = ctx->old;
1179 struct stage2_attr_data *data = ctx->arg;
1180 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1181
1182 if (!kvm_pte_valid(ctx->old))
1183 return -EAGAIN;
1184
1185 data->level = ctx->level;
1186 data->pte = pte;
1187 pte &= ~data->attr_clr;
1188 pte |= data->attr_set;
1189
1190 /*
1191 * We may race with the CPU trying to set the access flag here,
1192 * but worst-case the access flag update gets lost and will be
1193 * set on the next access instead.
1194 */
1195 if (data->pte != pte) {
1196 /*
1197 * Invalidate instruction cache before updating the guest
1198 * stage-2 PTE if we are going to add executable permission.
1199 */
1200 if (mm_ops->icache_inval_pou &&
1201 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1202 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1203 kvm_granule_size(ctx->level));
1204
1205 if (!stage2_try_set_pte(ctx, pte))
1206 return -EAGAIN;
1207 }
1208
1209 return 0;
1210 }
1211
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1212 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1213 u64 size, kvm_pte_t attr_set,
1214 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1215 s8 *level, enum kvm_pgtable_walk_flags flags)
1216 {
1217 int ret;
1218 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1219 struct stage2_attr_data data = {
1220 .attr_set = attr_set & attr_mask,
1221 .attr_clr = attr_clr & attr_mask,
1222 };
1223 struct kvm_pgtable_walker walker = {
1224 .cb = stage2_attr_walker,
1225 .arg = &data,
1226 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1227 };
1228
1229 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1230 if (ret)
1231 return ret;
1232
1233 if (orig_pte)
1234 *orig_pte = data.pte;
1235
1236 if (level)
1237 *level = data.level;
1238 return 0;
1239 }
1240
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1241 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1242 {
1243 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1244 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1245 NULL, NULL, 0);
1246 }
1247
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)1248 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1249 {
1250 kvm_pte_t pte = 0;
1251 int ret;
1252
1253 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1254 &pte, NULL,
1255 KVM_PGTABLE_WALK_HANDLE_FAULT |
1256 KVM_PGTABLE_WALK_SHARED);
1257 if (!ret)
1258 dsb(ishst);
1259
1260 return pte;
1261 }
1262
1263 struct stage2_age_data {
1264 bool mkold;
1265 bool young;
1266 };
1267
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1268 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1269 enum kvm_pgtable_walk_flags visit)
1270 {
1271 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1272 struct stage2_age_data *data = ctx->arg;
1273
1274 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1275 return 0;
1276
1277 data->young = true;
1278
1279 /*
1280 * stage2_age_walker() is always called while holding the MMU lock for
1281 * write, so this will always succeed. Nonetheless, this deliberately
1282 * follows the race detection pattern of the other stage-2 walkers in
1283 * case the locking mechanics of the MMU notifiers is ever changed.
1284 */
1285 if (data->mkold && !stage2_try_set_pte(ctx, new))
1286 return -EAGAIN;
1287
1288 /*
1289 * "But where's the TLBI?!", you scream.
1290 * "Over in the core code", I sigh.
1291 *
1292 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1293 */
1294 return 0;
1295 }
1296
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1297 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1298 u64 size, bool mkold)
1299 {
1300 struct stage2_age_data data = {
1301 .mkold = mkold,
1302 };
1303 struct kvm_pgtable_walker walker = {
1304 .cb = stage2_age_walker,
1305 .arg = &data,
1306 .flags = KVM_PGTABLE_WALK_LEAF,
1307 };
1308
1309 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1310 return data.young;
1311 }
1312
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)1313 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1314 enum kvm_pgtable_prot prot)
1315 {
1316 int ret;
1317 s8 level;
1318 kvm_pte_t set = 0, clr = 0;
1319
1320 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1321 return -EINVAL;
1322
1323 if (prot & KVM_PGTABLE_PROT_R)
1324 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1325
1326 if (prot & KVM_PGTABLE_PROT_W)
1327 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1328
1329 if (prot & KVM_PGTABLE_PROT_X)
1330 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1331
1332 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1333 KVM_PGTABLE_WALK_HANDLE_FAULT |
1334 KVM_PGTABLE_WALK_SHARED);
1335 if (!ret || ret == -EAGAIN)
1336 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1337 return ret;
1338 }
1339
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1340 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1341 enum kvm_pgtable_walk_flags visit)
1342 {
1343 struct kvm_pgtable *pgt = ctx->arg;
1344 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1345
1346 if (!stage2_pte_cacheable(pgt, ctx->old))
1347 return 0;
1348
1349 if (mm_ops->dcache_clean_inval_poc)
1350 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1351 kvm_granule_size(ctx->level));
1352 return 0;
1353 }
1354
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1355 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1356 {
1357 struct kvm_pgtable_walker walker = {
1358 .cb = stage2_flush_walker,
1359 .flags = KVM_PGTABLE_WALK_LEAF,
1360 .arg = pgt,
1361 };
1362
1363 if (stage2_has_fwb(pgt))
1364 return 0;
1365
1366 return kvm_pgtable_walk(pgt, addr, size, &walker);
1367 }
1368
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1369 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1370 u64 phys, s8 level,
1371 enum kvm_pgtable_prot prot,
1372 void *mc, bool force_pte)
1373 {
1374 struct stage2_map_data map_data = {
1375 .phys = phys,
1376 .mmu = pgt->mmu,
1377 .memcache = mc,
1378 .force_pte = force_pte,
1379 };
1380 struct kvm_pgtable_walker walker = {
1381 .cb = stage2_map_walker,
1382 .flags = KVM_PGTABLE_WALK_LEAF |
1383 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1384 KVM_PGTABLE_WALK_SKIP_CMO,
1385 .arg = &map_data,
1386 };
1387 /*
1388 * The input address (.addr) is irrelevant for walking an
1389 * unlinked table. Construct an ambiguous IA range to map
1390 * kvm_granule_size(level) worth of memory.
1391 */
1392 struct kvm_pgtable_walk_data data = {
1393 .walker = &walker,
1394 .addr = 0,
1395 .end = kvm_granule_size(level),
1396 };
1397 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1398 kvm_pte_t *pgtable;
1399 int ret;
1400
1401 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1402 return ERR_PTR(-EINVAL);
1403
1404 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1405 if (ret)
1406 return ERR_PTR(ret);
1407
1408 pgtable = mm_ops->zalloc_page(mc);
1409 if (!pgtable)
1410 return ERR_PTR(-ENOMEM);
1411
1412 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1413 level + 1);
1414 if (ret) {
1415 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1416 return ERR_PTR(ret);
1417 }
1418
1419 return pgtable;
1420 }
1421
1422 /*
1423 * Get the number of page-tables needed to replace a block with a
1424 * fully populated tree up to the PTE entries. Note that @level is
1425 * interpreted as in "level @level entry".
1426 */
stage2_block_get_nr_page_tables(s8 level)1427 static int stage2_block_get_nr_page_tables(s8 level)
1428 {
1429 switch (level) {
1430 case 1:
1431 return PTRS_PER_PTE + 1;
1432 case 2:
1433 return 1;
1434 case 3:
1435 return 0;
1436 default:
1437 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1438 level > KVM_PGTABLE_LAST_LEVEL);
1439 return -EINVAL;
1440 };
1441 }
1442
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1443 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1444 enum kvm_pgtable_walk_flags visit)
1445 {
1446 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1447 struct kvm_mmu_memory_cache *mc = ctx->arg;
1448 struct kvm_s2_mmu *mmu;
1449 kvm_pte_t pte = ctx->old, new, *childp;
1450 enum kvm_pgtable_prot prot;
1451 s8 level = ctx->level;
1452 bool force_pte;
1453 int nr_pages;
1454 u64 phys;
1455
1456 /* No huge-pages exist at the last level */
1457 if (level == KVM_PGTABLE_LAST_LEVEL)
1458 return 0;
1459
1460 /* We only split valid block mappings */
1461 if (!kvm_pte_valid(pte))
1462 return 0;
1463
1464 nr_pages = stage2_block_get_nr_page_tables(level);
1465 if (nr_pages < 0)
1466 return nr_pages;
1467
1468 if (mc->nobjs >= nr_pages) {
1469 /* Build a tree mapped down to the PTE granularity. */
1470 force_pte = true;
1471 } else {
1472 /*
1473 * Don't force PTEs, so create_unlinked() below does
1474 * not populate the tree up to the PTE level. The
1475 * consequence is that the call will require a single
1476 * page of level 2 entries at level 1, or a single
1477 * page of PTEs at level 2. If we are at level 1, the
1478 * PTEs will be created recursively.
1479 */
1480 force_pte = false;
1481 nr_pages = 1;
1482 }
1483
1484 if (mc->nobjs < nr_pages)
1485 return -ENOMEM;
1486
1487 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1488 phys = kvm_pte_to_phys(pte);
1489 prot = kvm_pgtable_stage2_pte_prot(pte);
1490
1491 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1492 level, prot, mc, force_pte);
1493 if (IS_ERR(childp))
1494 return PTR_ERR(childp);
1495
1496 if (!stage2_try_break_pte(ctx, mmu)) {
1497 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1498 return -EAGAIN;
1499 }
1500
1501 /*
1502 * Note, the contents of the page table are guaranteed to be made
1503 * visible before the new PTE is assigned because stage2_make_pte()
1504 * writes the PTE using smp_store_release().
1505 */
1506 new = kvm_init_table_pte(childp, mm_ops);
1507 stage2_make_pte(ctx, new);
1508 return 0;
1509 }
1510
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1511 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1512 struct kvm_mmu_memory_cache *mc)
1513 {
1514 struct kvm_pgtable_walker walker = {
1515 .cb = stage2_split_walker,
1516 .flags = KVM_PGTABLE_WALK_LEAF,
1517 .arg = mc,
1518 };
1519 int ret;
1520
1521 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1522 dsb(ishst);
1523 return ret;
1524 }
1525
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1526 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1527 struct kvm_pgtable_mm_ops *mm_ops,
1528 enum kvm_pgtable_stage2_flags flags,
1529 kvm_pgtable_force_pte_cb_t force_pte_cb)
1530 {
1531 size_t pgd_sz;
1532 u64 vtcr = mmu->vtcr;
1533 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1534 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1535 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1536
1537 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1538 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1539 if (!pgt->pgd)
1540 return -ENOMEM;
1541
1542 pgt->ia_bits = ia_bits;
1543 pgt->start_level = start_level;
1544 pgt->mm_ops = mm_ops;
1545 pgt->mmu = mmu;
1546 pgt->flags = flags;
1547 pgt->force_pte_cb = force_pte_cb;
1548
1549 /* Ensure zeroed PGD pages are visible to the hardware walker */
1550 dsb(ishst);
1551 return 0;
1552 }
1553
kvm_pgtable_stage2_pgd_size(u64 vtcr)1554 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1555 {
1556 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1557 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1558 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1559
1560 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1561 }
1562
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1563 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1564 enum kvm_pgtable_walk_flags visit)
1565 {
1566 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1567
1568 if (!stage2_pte_is_counted(ctx->old))
1569 return 0;
1570
1571 mm_ops->put_page(ctx->ptep);
1572
1573 if (kvm_pte_table(ctx->old, ctx->level))
1574 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1575
1576 return 0;
1577 }
1578
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1579 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1580 {
1581 size_t pgd_sz;
1582 struct kvm_pgtable_walker walker = {
1583 .cb = stage2_free_walker,
1584 .flags = KVM_PGTABLE_WALK_LEAF |
1585 KVM_PGTABLE_WALK_TABLE_POST,
1586 };
1587
1588 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1589 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1590 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1591 pgt->pgd = NULL;
1592 }
1593
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1594 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1595 {
1596 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1597 struct kvm_pgtable_walker walker = {
1598 .cb = stage2_free_walker,
1599 .flags = KVM_PGTABLE_WALK_LEAF |
1600 KVM_PGTABLE_WALK_TABLE_POST,
1601 };
1602 struct kvm_pgtable_walk_data data = {
1603 .walker = &walker,
1604
1605 /*
1606 * At this point the IPA really doesn't matter, as the page
1607 * table being traversed has already been removed from the stage
1608 * 2. Set an appropriate range to cover the entire page table.
1609 */
1610 .addr = 0,
1611 .end = kvm_granule_size(level),
1612 };
1613
1614 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1615
1616 WARN_ON(mm_ops->page_count(pgtable) != 1);
1617 mm_ops->put_page(pgtable);
1618 }
1619