1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59
60 #include "trace.h"
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 .set = set_nx_huge_pages,
79 .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 .set = set_nx_huge_pages_recovery_param,
84 .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100 * When setting this variable to true it enables Two-Dimensional-Paging
101 * where the hardware walks 2 page tables:
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
104 * If the hardware supports that we don't need to do shadow paging.
105 */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118
119 #define PTE_PREFETCH_NUM 8
120
121 #include <trace/events/kvm.h>
122
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125
126 /*
127 * struct pte_list_desc is the core data structure used to implement a custom
128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129 * given GFN when used in the context of rmaps. Using a custom list allows KVM
130 * to optimize for the common case where many GFNs will have at most a handful
131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132 * memory footprint, which in turn improves runtime performance by exploiting
133 * cache locality.
134 *
135 * A list is comprised of one or more pte_list_desc objects (descriptors).
136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138 * becomes the head of the list. This means that by definitions, all tail
139 * descriptors are full.
140 *
141 * Note, the meta data fields are deliberately placed at the start of the
142 * structure to optimize the cacheline layout; accessing the descriptor will
143 * touch only a single cacheline so long as @spte_count<=6 (or if only the
144 * descriptors metadata is accessed).
145 */
146 struct pte_list_desc {
147 struct pte_list_desc *more;
148 /* The number of PTEs stored in _this_ descriptor. */
149 u32 spte_count;
150 /* The number of PTEs stored in all tails of this descriptor. */
151 u32 tail_count;
152 u64 *sptes[PTE_LIST_EXT];
153 };
154
155 struct kvm_shadow_walk_iterator {
156 u64 addr;
157 hpa_t shadow_addr;
158 u64 *sptep;
159 int level;
160 unsigned index;
161 };
162
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
165 (_root), (_addr)); \
166 shadow_walk_okay(&(_walker)); \
167 shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182
183 static void mmu_spte_set(u64 *sptep, u64 spte);
184
185 struct kvm_mmu_role_regs {
186 const unsigned long cr0;
187 const unsigned long cr4;
188 const u64 efer;
189 };
190
191 #define CREATE_TRACE_POINTS
192 #include "mmutrace.h"
193
194 /*
195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
196 * reading from the role_regs. Once the root_role is constructed, it becomes
197 * the single source of truth for the MMU's state.
198 */
199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
200 static inline bool __maybe_unused \
201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
202 { \
203 return !!(regs->reg & flag); \
204 }
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
215
216 /*
217 * The MMU itself (with a valid role) is the single source of truth for the
218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
220 * and the vCPU may be incorrect/irrelevant.
221 */
222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
224 { \
225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
226 }
227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
235
is_cr0_pg(struct kvm_mmu * mmu)236 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
237 {
238 return mmu->cpu_role.base.level > 0;
239 }
240
is_cr4_pae(struct kvm_mmu * mmu)241 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
242 {
243 return !mmu->cpu_role.base.has_4_byte_gpte;
244 }
245
vcpu_to_role_regs(struct kvm_vcpu * vcpu)246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
247 {
248 struct kvm_mmu_role_regs regs = {
249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
251 .efer = vcpu->arch.efer,
252 };
253
254 return regs;
255 }
256
get_guest_cr3(struct kvm_vcpu * vcpu)257 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
258 {
259 return kvm_read_cr3(vcpu);
260 }
261
kvm_mmu_get_guest_pgd(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)262 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
263 struct kvm_mmu *mmu)
264 {
265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
266 return kvm_read_cr3(vcpu);
267
268 return mmu->get_guest_pgd(vcpu);
269 }
270
kvm_available_flush_remote_tlbs_range(void)271 static inline bool kvm_available_flush_remote_tlbs_range(void)
272 {
273 #if IS_ENABLED(CONFIG_HYPERV)
274 return kvm_x86_ops.flush_remote_tlbs_range;
275 #else
276 return false;
277 #endif
278 }
279
280 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
281
282 /* Flush the range of guest memory mapped by the given SPTE. */
kvm_flush_remote_tlbs_sptep(struct kvm * kvm,u64 * sptep)283 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
284 {
285 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
286 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
287
288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
289 }
290
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
292 unsigned int access)
293 {
294 u64 spte = make_mmio_spte(vcpu, gfn, access);
295
296 trace_mark_mmio_spte(sptep, gfn, spte);
297 mmu_spte_set(sptep, spte);
298 }
299
get_mmio_spte_gfn(u64 spte)300 static gfn_t get_mmio_spte_gfn(u64 spte)
301 {
302 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
303
304 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
305 & shadow_nonpresent_or_rsvd_mask;
306
307 return gpa >> PAGE_SHIFT;
308 }
309
get_mmio_spte_access(u64 spte)310 static unsigned get_mmio_spte_access(u64 spte)
311 {
312 return spte & shadow_mmio_access_mask;
313 }
314
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)315 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
316 {
317 u64 kvm_gen, spte_gen, gen;
318
319 gen = kvm_vcpu_memslots(vcpu)->generation;
320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
321 return false;
322
323 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
324 spte_gen = get_mmio_spte_generation(spte);
325
326 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
327 return likely(kvm_gen == spte_gen);
328 }
329
is_cpuid_PSE36(void)330 static int is_cpuid_PSE36(void)
331 {
332 return 1;
333 }
334
335 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)336 static void __set_spte(u64 *sptep, u64 spte)
337 {
338 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
339 WRITE_ONCE(*sptep, spte);
340 }
341
__update_clear_spte_fast(u64 * sptep,u64 spte)342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
345 WRITE_ONCE(*sptep, spte);
346 }
347
__update_clear_spte_slow(u64 * sptep,u64 spte)348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
349 {
350 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
351 return xchg(sptep, spte);
352 }
353
__get_spte_lockless(u64 * sptep)354 static u64 __get_spte_lockless(u64 *sptep)
355 {
356 return READ_ONCE(*sptep);
357 }
358 #else
359 union split_spte {
360 struct {
361 u32 spte_low;
362 u32 spte_high;
363 };
364 u64 spte;
365 };
366
count_spte_clear(u64 * sptep,u64 spte)367 static void count_spte_clear(u64 *sptep, u64 spte)
368 {
369 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
370
371 if (is_shadow_present_pte(spte))
372 return;
373
374 /* Ensure the spte is completely set before we increase the count */
375 smp_wmb();
376 sp->clear_spte_count++;
377 }
378
__set_spte(u64 * sptep,u64 spte)379 static void __set_spte(u64 *sptep, u64 spte)
380 {
381 union split_spte *ssptep, sspte;
382
383 ssptep = (union split_spte *)sptep;
384 sspte = (union split_spte)spte;
385
386 ssptep->spte_high = sspte.spte_high;
387
388 /*
389 * If we map the spte from nonpresent to present, We should store
390 * the high bits firstly, then set present bit, so cpu can not
391 * fetch this spte while we are setting the spte.
392 */
393 smp_wmb();
394
395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
396 }
397
__update_clear_spte_fast(u64 * sptep,u64 spte)398 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
399 {
400 union split_spte *ssptep, sspte;
401
402 ssptep = (union split_spte *)sptep;
403 sspte = (union split_spte)spte;
404
405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
406
407 /*
408 * If we map the spte from present to nonpresent, we should clear
409 * present bit firstly to avoid vcpu fetch the old high bits.
410 */
411 smp_wmb();
412
413 ssptep->spte_high = sspte.spte_high;
414 count_spte_clear(sptep, spte);
415 }
416
__update_clear_spte_slow(u64 * sptep,u64 spte)417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
418 {
419 union split_spte *ssptep, sspte, orig;
420
421 ssptep = (union split_spte *)sptep;
422 sspte = (union split_spte)spte;
423
424 /* xchg acts as a barrier before the setting of the high bits */
425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
426 orig.spte_high = ssptep->spte_high;
427 ssptep->spte_high = sspte.spte_high;
428 count_spte_clear(sptep, spte);
429
430 return orig.spte;
431 }
432
433 /*
434 * The idea using the light way get the spte on x86_32 guest is from
435 * gup_get_pte (mm/gup.c).
436 *
437 * An spte tlb flush may be pending, because they are coalesced and
438 * we are running out of the MMU lock. Therefore
439 * we need to protect against in-progress updates of the spte.
440 *
441 * Reading the spte while an update is in progress may get the old value
442 * for the high part of the spte. The race is fine for a present->non-present
443 * change (because the high part of the spte is ignored for non-present spte),
444 * but for a present->present change we must reread the spte.
445 *
446 * All such changes are done in two steps (present->non-present and
447 * non-present->present), hence it is enough to count the number of
448 * present->non-present updates: if it changed while reading the spte,
449 * we might have hit the race. This is done using clear_spte_count.
450 */
__get_spte_lockless(u64 * sptep)451 static u64 __get_spte_lockless(u64 *sptep)
452 {
453 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
454 union split_spte spte, *orig = (union split_spte *)sptep;
455 int count;
456
457 retry:
458 count = sp->clear_spte_count;
459 smp_rmb();
460
461 spte.spte_low = orig->spte_low;
462 smp_rmb();
463
464 spte.spte_high = orig->spte_high;
465 smp_rmb();
466
467 if (unlikely(spte.spte_low != orig->spte_low ||
468 count != sp->clear_spte_count))
469 goto retry;
470
471 return spte.spte;
472 }
473 #endif
474
475 /* Rules for using mmu_spte_set:
476 * Set the sptep from nonpresent to present.
477 * Note: the sptep being assigned *must* be either not present
478 * or in a state where the hardware will not attempt to update
479 * the spte.
480 */
mmu_spte_set(u64 * sptep,u64 new_spte)481 static void mmu_spte_set(u64 *sptep, u64 new_spte)
482 {
483 WARN_ON_ONCE(is_shadow_present_pte(*sptep));
484 __set_spte(sptep, new_spte);
485 }
486
487 /* Rules for using mmu_spte_update:
488 * Update the state bits, it means the mapped pfn is not changed.
489 *
490 * Returns true if the TLB needs to be flushed
491 */
mmu_spte_update(u64 * sptep,u64 new_spte)492 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
493 {
494 u64 old_spte = *sptep;
495
496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
497 check_spte_writable_invariants(new_spte);
498
499 if (!is_shadow_present_pte(old_spte)) {
500 mmu_spte_set(sptep, new_spte);
501 return false;
502 }
503
504 if (!spte_has_volatile_bits(old_spte))
505 __update_clear_spte_fast(sptep, new_spte);
506 else
507 old_spte = __update_clear_spte_slow(sptep, new_spte);
508
509 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
510 spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
511
512 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
513 }
514
515 /*
516 * Rules for using mmu_spte_clear_track_bits:
517 * It sets the sptep from present to nonpresent, and track the
518 * state bits, it is used to clear the last level sptep.
519 * Returns the old PTE.
520 */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)521 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
522 {
523 u64 old_spte = *sptep;
524 int level = sptep_to_sp(sptep)->role.level;
525
526 if (!is_shadow_present_pte(old_spte) ||
527 !spte_has_volatile_bits(old_spte))
528 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
529 else
530 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
531
532 if (!is_shadow_present_pte(old_spte))
533 return old_spte;
534
535 kvm_update_page_stats(kvm, level, -1);
536 return old_spte;
537 }
538
539 /*
540 * Rules for using mmu_spte_clear_no_track:
541 * Directly clear spte without caring the state bits of sptep,
542 * it is used to set the upper level spte.
543 */
mmu_spte_clear_no_track(u64 * sptep)544 static void mmu_spte_clear_no_track(u64 *sptep)
545 {
546 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
547 }
548
mmu_spte_get_lockless(u64 * sptep)549 static u64 mmu_spte_get_lockless(u64 *sptep)
550 {
551 return __get_spte_lockless(sptep);
552 }
553
is_tdp_mmu_active(struct kvm_vcpu * vcpu)554 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
555 {
556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
557 }
558
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)559 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
560 {
561 if (is_tdp_mmu_active(vcpu)) {
562 kvm_tdp_mmu_walk_lockless_begin();
563 } else {
564 /*
565 * Prevent page table teardown by making any free-er wait during
566 * kvm_flush_remote_tlbs() IPI to all active vcpus.
567 */
568 local_irq_disable();
569
570 /*
571 * Make sure a following spte read is not reordered ahead of the write
572 * to vcpu->mode.
573 */
574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
575 }
576 }
577
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)578 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
579 {
580 if (is_tdp_mmu_active(vcpu)) {
581 kvm_tdp_mmu_walk_lockless_end();
582 } else {
583 /*
584 * Make sure the write to vcpu->mode is not reordered in front of
585 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
586 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
587 */
588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
589 local_irq_enable();
590 }
591 }
592
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)593 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
594 {
595 int r;
596
597 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
599 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
600 if (r)
601 return r;
602 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
603 PT64_ROOT_MAX_LEVEL);
604 if (r)
605 return r;
606 if (maybe_indirect) {
607 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
608 PT64_ROOT_MAX_LEVEL);
609 if (r)
610 return r;
611 }
612 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
613 PT64_ROOT_MAX_LEVEL);
614 }
615
mmu_free_memory_caches(struct kvm_vcpu * vcpu)616 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
617 {
618 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
619 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
620 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
621 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
622 }
623
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)624 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
625 {
626 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
627 }
628
629 static bool sp_has_gptes(struct kvm_mmu_page *sp);
630
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)631 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
632 {
633 if (sp->role.passthrough)
634 return sp->gfn;
635
636 if (sp->shadowed_translation)
637 return sp->shadowed_translation[index] >> PAGE_SHIFT;
638
639 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
640 }
641
642 /*
643 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
644 * that the SPTE itself may have a more constrained access permissions that
645 * what the guest enforces. For example, a guest may create an executable
646 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
647 */
kvm_mmu_page_get_access(struct kvm_mmu_page * sp,int index)648 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
649 {
650 if (sp->shadowed_translation)
651 return sp->shadowed_translation[index] & ACC_ALL;
652
653 /*
654 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
655 * KVM is not shadowing any guest page tables, so the "guest access
656 * permissions" are just ACC_ALL.
657 *
658 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
659 * is shadowing a guest huge page with small pages, the guest access
660 * permissions being shadowed are the access permissions of the huge
661 * page.
662 *
663 * In both cases, sp->role.access contains the correct access bits.
664 */
665 return sp->role.access;
666 }
667
kvm_mmu_page_set_translation(struct kvm_mmu_page * sp,int index,gfn_t gfn,unsigned int access)668 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
669 gfn_t gfn, unsigned int access)
670 {
671 if (sp->shadowed_translation) {
672 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
673 return;
674 }
675
676 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
677 "access mismatch under %s page %llx (expected %u, got %u)\n",
678 sp->role.passthrough ? "passthrough" : "direct",
679 sp->gfn, kvm_mmu_page_get_access(sp, index), access);
680
681 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
682 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
683 sp->role.passthrough ? "passthrough" : "direct",
684 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
685 }
686
kvm_mmu_page_set_access(struct kvm_mmu_page * sp,int index,unsigned int access)687 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
688 unsigned int access)
689 {
690 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
691
692 kvm_mmu_page_set_translation(sp, index, gfn, access);
693 }
694
695 /*
696 * Return the pointer to the large page information for a given gfn,
697 * handling slots that are not large page aligned.
698 */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)699 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
700 const struct kvm_memory_slot *slot, int level)
701 {
702 unsigned long idx;
703
704 idx = gfn_to_index(gfn, slot->base_gfn, level);
705 return &slot->arch.lpage_info[level - 2][idx];
706 }
707
708 /*
709 * The most significant bit in disallow_lpage tracks whether or not memory
710 * attributes are mixed, i.e. not identical for all gfns at the current level.
711 * The lower order bits are used to refcount other cases where a hugepage is
712 * disallowed, e.g. if KVM has shadow a page table at the gfn.
713 */
714 #define KVM_LPAGE_MIXED_FLAG BIT(31)
715
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)716 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
717 gfn_t gfn, int count)
718 {
719 struct kvm_lpage_info *linfo;
720 int old, i;
721
722 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
723 linfo = lpage_info_slot(gfn, slot, i);
724
725 old = linfo->disallow_lpage;
726 linfo->disallow_lpage += count;
727 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
728 }
729 }
730
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)731 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
732 {
733 update_gfn_disallow_lpage_count(slot, gfn, 1);
734 }
735
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)736 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
737 {
738 update_gfn_disallow_lpage_count(slot, gfn, -1);
739 }
740
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)741 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
742 {
743 struct kvm_memslots *slots;
744 struct kvm_memory_slot *slot;
745 gfn_t gfn;
746
747 kvm->arch.indirect_shadow_pages++;
748 /*
749 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
750 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
751 * emulated writes are visible before re-reading guest PTEs, or that
752 * an emulated write will see the elevated count and acquire mmu_lock
753 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write().
754 */
755 smp_mb();
756
757 gfn = sp->gfn;
758 slots = kvm_memslots_for_spte_role(kvm, sp->role);
759 slot = __gfn_to_memslot(slots, gfn);
760
761 /* the non-leaf shadow pages are keeping readonly. */
762 if (sp->role.level > PG_LEVEL_4K)
763 return __kvm_write_track_add_gfn(kvm, slot, gfn);
764
765 kvm_mmu_gfn_disallow_lpage(slot, gfn);
766
767 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
768 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
769 }
770
track_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)771 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773 /*
774 * If it's possible to replace the shadow page with an NX huge page,
775 * i.e. if the shadow page is the only thing currently preventing KVM
776 * from using a huge page, add the shadow page to the list of "to be
777 * zapped for NX recovery" pages. Note, the shadow page can already be
778 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
779 * links a shadow page at multiple points.
780 */
781 if (!list_empty(&sp->possible_nx_huge_page_link))
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
785 list_add_tail(&sp->possible_nx_huge_page_link,
786 &kvm->arch.possible_nx_huge_pages);
787 }
788
account_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,bool nx_huge_page_possible)789 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
790 bool nx_huge_page_possible)
791 {
792 sp->nx_huge_page_disallowed = true;
793
794 if (nx_huge_page_possible)
795 track_possible_nx_huge_page(kvm, sp);
796 }
797
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)798 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
799 {
800 struct kvm_memslots *slots;
801 struct kvm_memory_slot *slot;
802 gfn_t gfn;
803
804 kvm->arch.indirect_shadow_pages--;
805 gfn = sp->gfn;
806 slots = kvm_memslots_for_spte_role(kvm, sp->role);
807 slot = __gfn_to_memslot(slots, gfn);
808 if (sp->role.level > PG_LEVEL_4K)
809 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
810
811 kvm_mmu_gfn_allow_lpage(slot, gfn);
812 }
813
untrack_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)814 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
815 {
816 if (list_empty(&sp->possible_nx_huge_page_link))
817 return;
818
819 --kvm->stat.nx_lpage_splits;
820 list_del_init(&sp->possible_nx_huge_page_link);
821 }
822
unaccount_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)823 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
824 {
825 sp->nx_huge_page_disallowed = false;
826
827 untrack_possible_nx_huge_page(kvm, sp);
828 }
829
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)830 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
831 gfn_t gfn,
832 bool no_dirty_log)
833 {
834 struct kvm_memory_slot *slot;
835
836 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
837 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
838 return NULL;
839 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
840 return NULL;
841
842 return slot;
843 }
844
845 /*
846 * About rmap_head encoding:
847 *
848 * If the bit zero of rmap_head->val is clear, then it points to the only spte
849 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 */
852 #define KVM_RMAP_MANY BIT(0)
853
854 /*
855 * Returns the number of pointers in the rmap chain, not counting the new one.
856 */
pte_list_add(struct kvm_mmu_memory_cache * cache,u64 * spte,struct kvm_rmap_head * rmap_head)857 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
858 struct kvm_rmap_head *rmap_head)
859 {
860 struct pte_list_desc *desc;
861 int count = 0;
862
863 if (!rmap_head->val) {
864 rmap_head->val = (unsigned long)spte;
865 } else if (!(rmap_head->val & KVM_RMAP_MANY)) {
866 desc = kvm_mmu_memory_cache_alloc(cache);
867 desc->sptes[0] = (u64 *)rmap_head->val;
868 desc->sptes[1] = spte;
869 desc->spte_count = 2;
870 desc->tail_count = 0;
871 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
872 ++count;
873 } else {
874 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
875 count = desc->tail_count + desc->spte_count;
876
877 /*
878 * If the previous head is full, allocate a new head descriptor
879 * as tail descriptors are always kept full.
880 */
881 if (desc->spte_count == PTE_LIST_EXT) {
882 desc = kvm_mmu_memory_cache_alloc(cache);
883 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
884 desc->spte_count = 0;
885 desc->tail_count = count;
886 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
887 }
888 desc->sptes[desc->spte_count++] = spte;
889 }
890 return count;
891 }
892
pte_list_desc_remove_entry(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i)893 static void pte_list_desc_remove_entry(struct kvm *kvm,
894 struct kvm_rmap_head *rmap_head,
895 struct pte_list_desc *desc, int i)
896 {
897 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
898 int j = head_desc->spte_count - 1;
899
900 /*
901 * The head descriptor should never be empty. A new head is added only
902 * when adding an entry and the previous head is full, and heads are
903 * removed (this flow) when they become empty.
904 */
905 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
906
907 /*
908 * Replace the to-be-freed SPTE with the last valid entry from the head
909 * descriptor to ensure that tail descriptors are full at all times.
910 * Note, this also means that tail_count is stable for each descriptor.
911 */
912 desc->sptes[i] = head_desc->sptes[j];
913 head_desc->sptes[j] = NULL;
914 head_desc->spte_count--;
915 if (head_desc->spte_count)
916 return;
917
918 /*
919 * The head descriptor is empty. If there are no tail descriptors,
920 * nullify the rmap head to mark the list as empty, else point the rmap
921 * head at the next descriptor, i.e. the new head.
922 */
923 if (!head_desc->more)
924 rmap_head->val = 0;
925 else
926 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
927 mmu_free_pte_list_desc(head_desc);
928 }
929
pte_list_remove(struct kvm * kvm,u64 * spte,struct kvm_rmap_head * rmap_head)930 static void pte_list_remove(struct kvm *kvm, u64 *spte,
931 struct kvm_rmap_head *rmap_head)
932 {
933 struct pte_list_desc *desc;
934 int i;
935
936 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
937 return;
938
939 if (!(rmap_head->val & KVM_RMAP_MANY)) {
940 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
941 return;
942
943 rmap_head->val = 0;
944 } else {
945 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
946 while (desc) {
947 for (i = 0; i < desc->spte_count; ++i) {
948 if (desc->sptes[i] == spte) {
949 pte_list_desc_remove_entry(kvm, rmap_head,
950 desc, i);
951 return;
952 }
953 }
954 desc = desc->more;
955 }
956
957 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
958 }
959 }
960
kvm_zap_one_rmap_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)961 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
962 struct kvm_rmap_head *rmap_head, u64 *sptep)
963 {
964 mmu_spte_clear_track_bits(kvm, sptep);
965 pte_list_remove(kvm, sptep, rmap_head);
966 }
967
968 /* Return true if at least one SPTE was zapped, false otherwise */
kvm_zap_all_rmap_sptes(struct kvm * kvm,struct kvm_rmap_head * rmap_head)969 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
970 struct kvm_rmap_head *rmap_head)
971 {
972 struct pte_list_desc *desc, *next;
973 int i;
974
975 if (!rmap_head->val)
976 return false;
977
978 if (!(rmap_head->val & KVM_RMAP_MANY)) {
979 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
980 goto out;
981 }
982
983 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
984
985 for (; desc; desc = next) {
986 for (i = 0; i < desc->spte_count; i++)
987 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
988 next = desc->more;
989 mmu_free_pte_list_desc(desc);
990 }
991 out:
992 /* rmap_head is meaningless now, remember to reset it */
993 rmap_head->val = 0;
994 return true;
995 }
996
pte_list_count(struct kvm_rmap_head * rmap_head)997 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
998 {
999 struct pte_list_desc *desc;
1000
1001 if (!rmap_head->val)
1002 return 0;
1003 else if (!(rmap_head->val & KVM_RMAP_MANY))
1004 return 1;
1005
1006 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1007 return desc->tail_count + desc->spte_count;
1008 }
1009
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1010 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1011 const struct kvm_memory_slot *slot)
1012 {
1013 unsigned long idx;
1014
1015 idx = gfn_to_index(gfn, slot->base_gfn, level);
1016 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1017 }
1018
rmap_remove(struct kvm * kvm,u64 * spte)1019 static void rmap_remove(struct kvm *kvm, u64 *spte)
1020 {
1021 struct kvm_memslots *slots;
1022 struct kvm_memory_slot *slot;
1023 struct kvm_mmu_page *sp;
1024 gfn_t gfn;
1025 struct kvm_rmap_head *rmap_head;
1026
1027 sp = sptep_to_sp(spte);
1028 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1029
1030 /*
1031 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1032 * so we have to determine which memslots to use based on context
1033 * information in sp->role.
1034 */
1035 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1036
1037 slot = __gfn_to_memslot(slots, gfn);
1038 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1039
1040 pte_list_remove(kvm, spte, rmap_head);
1041 }
1042
1043 /*
1044 * Used by the following functions to iterate through the sptes linked by a
1045 * rmap. All fields are private and not assumed to be used outside.
1046 */
1047 struct rmap_iterator {
1048 /* private fields */
1049 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1050 int pos; /* index of the sptep */
1051 };
1052
1053 /*
1054 * Iteration must be started by this function. This should also be used after
1055 * removing/dropping sptes from the rmap link because in such cases the
1056 * information in the iterator may not be valid.
1057 *
1058 * Returns sptep if found, NULL otherwise.
1059 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1060 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1061 struct rmap_iterator *iter)
1062 {
1063 u64 *sptep;
1064
1065 if (!rmap_head->val)
1066 return NULL;
1067
1068 if (!(rmap_head->val & KVM_RMAP_MANY)) {
1069 iter->desc = NULL;
1070 sptep = (u64 *)rmap_head->val;
1071 goto out;
1072 }
1073
1074 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1075 iter->pos = 0;
1076 sptep = iter->desc->sptes[iter->pos];
1077 out:
1078 BUG_ON(!is_shadow_present_pte(*sptep));
1079 return sptep;
1080 }
1081
1082 /*
1083 * Must be used with a valid iterator: e.g. after rmap_get_first().
1084 *
1085 * Returns sptep if found, NULL otherwise.
1086 */
rmap_get_next(struct rmap_iterator * iter)1087 static u64 *rmap_get_next(struct rmap_iterator *iter)
1088 {
1089 u64 *sptep;
1090
1091 if (iter->desc) {
1092 if (iter->pos < PTE_LIST_EXT - 1) {
1093 ++iter->pos;
1094 sptep = iter->desc->sptes[iter->pos];
1095 if (sptep)
1096 goto out;
1097 }
1098
1099 iter->desc = iter->desc->more;
1100
1101 if (iter->desc) {
1102 iter->pos = 0;
1103 /* desc->sptes[0] cannot be NULL */
1104 sptep = iter->desc->sptes[iter->pos];
1105 goto out;
1106 }
1107 }
1108
1109 return NULL;
1110 out:
1111 BUG_ON(!is_shadow_present_pte(*sptep));
1112 return sptep;
1113 }
1114
1115 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1116 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1117 _spte_; _spte_ = rmap_get_next(_iter_))
1118
drop_spte(struct kvm * kvm,u64 * sptep)1119 static void drop_spte(struct kvm *kvm, u64 *sptep)
1120 {
1121 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1122
1123 if (is_shadow_present_pte(old_spte))
1124 rmap_remove(kvm, sptep);
1125 }
1126
drop_large_spte(struct kvm * kvm,u64 * sptep,bool flush)1127 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1128 {
1129 struct kvm_mmu_page *sp;
1130
1131 sp = sptep_to_sp(sptep);
1132 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1133
1134 drop_spte(kvm, sptep);
1135
1136 if (flush)
1137 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1138 }
1139
1140 /*
1141 * Write-protect on the specified @sptep, @pt_protect indicates whether
1142 * spte write-protection is caused by protecting shadow page table.
1143 *
1144 * Note: write protection is difference between dirty logging and spte
1145 * protection:
1146 * - for dirty logging, the spte can be set to writable at anytime if
1147 * its dirty bitmap is properly set.
1148 * - for spte protection, the spte can be writable only after unsync-ing
1149 * shadow page.
1150 *
1151 * Return true if tlb need be flushed.
1152 */
spte_write_protect(u64 * sptep,bool pt_protect)1153 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1154 {
1155 u64 spte = *sptep;
1156
1157 if (!is_writable_pte(spte) &&
1158 !(pt_protect && is_mmu_writable_spte(spte)))
1159 return false;
1160
1161 if (pt_protect)
1162 spte &= ~shadow_mmu_writable_mask;
1163 spte = spte & ~PT_WRITABLE_MASK;
1164
1165 return mmu_spte_update(sptep, spte);
1166 }
1167
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1168 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1169 bool pt_protect)
1170 {
1171 u64 *sptep;
1172 struct rmap_iterator iter;
1173 bool flush = false;
1174
1175 for_each_rmap_spte(rmap_head, &iter, sptep)
1176 flush |= spte_write_protect(sptep, pt_protect);
1177
1178 return flush;
1179 }
1180
spte_clear_dirty(u64 * sptep)1181 static bool spte_clear_dirty(u64 *sptep)
1182 {
1183 u64 spte = *sptep;
1184
1185 KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1186 spte &= ~shadow_dirty_mask;
1187 return mmu_spte_update(sptep, spte);
1188 }
1189
1190 /*
1191 * Gets the GFN ready for another round of dirty logging by clearing the
1192 * - D bit on ad-enabled SPTEs, and
1193 * - W bit on ad-disabled SPTEs.
1194 * Returns true iff any D or W bits were cleared.
1195 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1196 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1197 const struct kvm_memory_slot *slot)
1198 {
1199 u64 *sptep;
1200 struct rmap_iterator iter;
1201 bool flush = false;
1202
1203 for_each_rmap_spte(rmap_head, &iter, sptep)
1204 if (spte_ad_need_write_protect(*sptep))
1205 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1206 (unsigned long *)sptep);
1207 else
1208 flush |= spte_clear_dirty(sptep);
1209
1210 return flush;
1211 }
1212
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1213 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1214 struct kvm_memory_slot *slot,
1215 gfn_t gfn_offset, unsigned long mask)
1216 {
1217 struct kvm_rmap_head *rmap_head;
1218
1219 if (tdp_mmu_enabled)
1220 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1221 slot->base_gfn + gfn_offset, mask, true);
1222
1223 if (!kvm_memslots_have_rmaps(kvm))
1224 return;
1225
1226 while (mask) {
1227 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1228 PG_LEVEL_4K, slot);
1229 rmap_write_protect(rmap_head, false);
1230
1231 /* clear the first set bit */
1232 mask &= mask - 1;
1233 }
1234 }
1235
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1236 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1237 struct kvm_memory_slot *slot,
1238 gfn_t gfn_offset, unsigned long mask)
1239 {
1240 struct kvm_rmap_head *rmap_head;
1241
1242 if (tdp_mmu_enabled)
1243 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1244 slot->base_gfn + gfn_offset, mask, false);
1245
1246 if (!kvm_memslots_have_rmaps(kvm))
1247 return;
1248
1249 while (mask) {
1250 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1251 PG_LEVEL_4K, slot);
1252 __rmap_clear_dirty(kvm, rmap_head, slot);
1253
1254 /* clear the first set bit */
1255 mask &= mask - 1;
1256 }
1257 }
1258
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1259 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1260 struct kvm_memory_slot *slot,
1261 gfn_t gfn_offset, unsigned long mask)
1262 {
1263 /*
1264 * If the slot was assumed to be "initially all dirty", write-protect
1265 * huge pages to ensure they are split to 4KiB on the first write (KVM
1266 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1267 * immediately try to split huge pages, e.g. so that vCPUs don't get
1268 * saddled with the cost of splitting.
1269 *
1270 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1271 * of memslot has no such restriction, so the range can cross two large
1272 * pages.
1273 */
1274 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1275 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1276 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1277
1278 if (READ_ONCE(eager_page_split))
1279 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1280
1281 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1282
1283 /* Cross two large pages? */
1284 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1285 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1286 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1287 PG_LEVEL_2M);
1288 }
1289
1290 /*
1291 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1292 * mask. If PML is enabled and the GFN doesn't need to be write-
1293 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1294 * Otherwise clear the Writable bit.
1295 *
1296 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1297 * enabled but it chooses between clearing the Dirty bit and Writeable
1298 * bit based on the context.
1299 */
1300 if (kvm_x86_ops.cpu_dirty_log_size)
1301 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1302 else
1303 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1304 }
1305
kvm_cpu_dirty_log_size(void)1306 int kvm_cpu_dirty_log_size(void)
1307 {
1308 return kvm_x86_ops.cpu_dirty_log_size;
1309 }
1310
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1311 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1312 struct kvm_memory_slot *slot, u64 gfn,
1313 int min_level)
1314 {
1315 struct kvm_rmap_head *rmap_head;
1316 int i;
1317 bool write_protected = false;
1318
1319 if (kvm_memslots_have_rmaps(kvm)) {
1320 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1321 rmap_head = gfn_to_rmap(gfn, i, slot);
1322 write_protected |= rmap_write_protect(rmap_head, true);
1323 }
1324 }
1325
1326 if (tdp_mmu_enabled)
1327 write_protected |=
1328 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1329
1330 return write_protected;
1331 }
1332
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1333 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1334 {
1335 struct kvm_memory_slot *slot;
1336
1337 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1338 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1339 }
1340
kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1341 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1342 const struct kvm_memory_slot *slot)
1343 {
1344 return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1345 }
1346
1347 struct slot_rmap_walk_iterator {
1348 /* input fields. */
1349 const struct kvm_memory_slot *slot;
1350 gfn_t start_gfn;
1351 gfn_t end_gfn;
1352 int start_level;
1353 int end_level;
1354
1355 /* output fields. */
1356 gfn_t gfn;
1357 struct kvm_rmap_head *rmap;
1358 int level;
1359
1360 /* private field. */
1361 struct kvm_rmap_head *end_rmap;
1362 };
1363
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1364 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1365 int level)
1366 {
1367 iterator->level = level;
1368 iterator->gfn = iterator->start_gfn;
1369 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1370 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1371 }
1372
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1373 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1374 const struct kvm_memory_slot *slot,
1375 int start_level, int end_level,
1376 gfn_t start_gfn, gfn_t end_gfn)
1377 {
1378 iterator->slot = slot;
1379 iterator->start_level = start_level;
1380 iterator->end_level = end_level;
1381 iterator->start_gfn = start_gfn;
1382 iterator->end_gfn = end_gfn;
1383
1384 rmap_walk_init_level(iterator, iterator->start_level);
1385 }
1386
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1387 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1388 {
1389 return !!iterator->rmap;
1390 }
1391
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1392 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1393 {
1394 while (++iterator->rmap <= iterator->end_rmap) {
1395 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1396
1397 if (iterator->rmap->val)
1398 return;
1399 }
1400
1401 if (++iterator->level > iterator->end_level) {
1402 iterator->rmap = NULL;
1403 return;
1404 }
1405
1406 rmap_walk_init_level(iterator, iterator->level);
1407 }
1408
1409 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1410 _start_gfn, _end_gfn, _iter_) \
1411 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1412 _end_level_, _start_gfn, _end_gfn); \
1413 slot_rmap_walk_okay(_iter_); \
1414 slot_rmap_walk_next(_iter_))
1415
1416 /* The return value indicates if tlb flush on all vcpus is needed. */
1417 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1418 struct kvm_rmap_head *rmap_head,
1419 const struct kvm_memory_slot *slot);
1420
__walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool can_yield,bool flush_on_yield,bool flush)1421 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1422 const struct kvm_memory_slot *slot,
1423 slot_rmaps_handler fn,
1424 int start_level, int end_level,
1425 gfn_t start_gfn, gfn_t end_gfn,
1426 bool can_yield, bool flush_on_yield,
1427 bool flush)
1428 {
1429 struct slot_rmap_walk_iterator iterator;
1430
1431 lockdep_assert_held_write(&kvm->mmu_lock);
1432
1433 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1434 end_gfn, &iterator) {
1435 if (iterator.rmap)
1436 flush |= fn(kvm, iterator.rmap, slot);
1437
1438 if (!can_yield)
1439 continue;
1440
1441 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1442 if (flush && flush_on_yield) {
1443 kvm_flush_remote_tlbs_range(kvm, start_gfn,
1444 iterator.gfn - start_gfn + 1);
1445 flush = false;
1446 }
1447 cond_resched_rwlock_write(&kvm->mmu_lock);
1448 }
1449 }
1450
1451 return flush;
1452 }
1453
walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,bool flush_on_yield)1454 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1455 const struct kvm_memory_slot *slot,
1456 slot_rmaps_handler fn,
1457 int start_level, int end_level,
1458 bool flush_on_yield)
1459 {
1460 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1461 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1462 true, flush_on_yield, false);
1463 }
1464
walk_slot_rmaps_4k(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,bool flush_on_yield)1465 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1466 const struct kvm_memory_slot *slot,
1467 slot_rmaps_handler fn,
1468 bool flush_on_yield)
1469 {
1470 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1471 }
1472
__kvm_rmap_zap_gfn_range(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,bool can_yield,bool flush)1473 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1474 const struct kvm_memory_slot *slot,
1475 gfn_t start, gfn_t end, bool can_yield,
1476 bool flush)
1477 {
1478 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1479 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1480 start, end - 1, can_yield, true, flush);
1481 }
1482
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1483 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1484 {
1485 bool flush = false;
1486
1487 /*
1488 * To prevent races with vCPUs faulting in a gfn using stale data,
1489 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1490 * (and mmu_invalidate_seq). The only exception is memslot deletion;
1491 * in that case, SRCU synchronization ensures that SPTEs are zapped
1492 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1493 * invalid slot.
1494 */
1495 lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1496 lockdep_is_held(&kvm->slots_lock));
1497
1498 if (kvm_memslots_have_rmaps(kvm))
1499 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1500 range->start, range->end,
1501 range->may_block, flush);
1502
1503 if (tdp_mmu_enabled)
1504 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1505
1506 if (kvm_x86_ops.set_apic_access_page_addr &&
1507 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1508 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1509
1510 return flush;
1511 }
1512
1513 #define RMAP_RECYCLE_THRESHOLD 1000
1514
__rmap_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1515 static void __rmap_add(struct kvm *kvm,
1516 struct kvm_mmu_memory_cache *cache,
1517 const struct kvm_memory_slot *slot,
1518 u64 *spte, gfn_t gfn, unsigned int access)
1519 {
1520 struct kvm_mmu_page *sp;
1521 struct kvm_rmap_head *rmap_head;
1522 int rmap_count;
1523
1524 sp = sptep_to_sp(spte);
1525 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1526 kvm_update_page_stats(kvm, sp->role.level, 1);
1527
1528 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1529 rmap_count = pte_list_add(cache, spte, rmap_head);
1530
1531 if (rmap_count > kvm->stat.max_mmu_rmap_size)
1532 kvm->stat.max_mmu_rmap_size = rmap_count;
1533 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1534 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1535 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1536 }
1537 }
1538
rmap_add(struct kvm_vcpu * vcpu,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1539 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1540 u64 *spte, gfn_t gfn, unsigned int access)
1541 {
1542 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1543
1544 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1545 }
1546
kvm_rmap_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1547 static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1548 struct kvm_gfn_range *range, bool test_only)
1549 {
1550 struct slot_rmap_walk_iterator iterator;
1551 struct rmap_iterator iter;
1552 bool young = false;
1553 u64 *sptep;
1554
1555 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1556 range->start, range->end - 1, &iterator) {
1557 for_each_rmap_spte(iterator.rmap, &iter, sptep) {
1558 u64 spte = *sptep;
1559
1560 if (!is_accessed_spte(spte))
1561 continue;
1562
1563 if (test_only)
1564 return true;
1565
1566 if (spte_ad_enabled(spte)) {
1567 clear_bit((ffs(shadow_accessed_mask) - 1),
1568 (unsigned long *)sptep);
1569 } else {
1570 /*
1571 * WARN if mmu_spte_update() signals the need
1572 * for a TLB flush, as Access tracking a SPTE
1573 * should never trigger an _immediate_ flush.
1574 */
1575 spte = mark_spte_for_access_track(spte);
1576 WARN_ON_ONCE(mmu_spte_update(sptep, spte));
1577 }
1578 young = true;
1579 }
1580 }
1581 return young;
1582 }
1583
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1584 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585 {
1586 bool young = false;
1587
1588 if (kvm_memslots_have_rmaps(kvm))
1589 young = kvm_rmap_age_gfn_range(kvm, range, false);
1590
1591 if (tdp_mmu_enabled)
1592 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1593
1594 return young;
1595 }
1596
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1597 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598 {
1599 bool young = false;
1600
1601 if (kvm_memslots_have_rmaps(kvm))
1602 young = kvm_rmap_age_gfn_range(kvm, range, true);
1603
1604 if (tdp_mmu_enabled)
1605 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1606
1607 return young;
1608 }
1609
kvm_mmu_check_sptes_at_free(struct kvm_mmu_page * sp)1610 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1611 {
1612 #ifdef CONFIG_KVM_PROVE_MMU
1613 int i;
1614
1615 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1616 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1617 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1618 sp->spt[i], &sp->spt[i],
1619 kvm_mmu_page_get_gfn(sp, i));
1620 }
1621 #endif
1622 }
1623
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1624 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1625 {
1626 kvm->arch.n_used_mmu_pages++;
1627 kvm_account_pgtable_pages((void *)sp->spt, +1);
1628 }
1629
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1630 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1631 {
1632 kvm->arch.n_used_mmu_pages--;
1633 kvm_account_pgtable_pages((void *)sp->spt, -1);
1634 }
1635
kvm_mmu_free_shadow_page(struct kvm_mmu_page * sp)1636 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1637 {
1638 kvm_mmu_check_sptes_at_free(sp);
1639
1640 hlist_del(&sp->hash_link);
1641 list_del(&sp->link);
1642 free_page((unsigned long)sp->spt);
1643 free_page((unsigned long)sp->shadowed_translation);
1644 kmem_cache_free(mmu_page_header_cache, sp);
1645 }
1646
kvm_page_table_hashfn(gfn_t gfn)1647 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648 {
1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1650 }
1651
mmu_page_add_parent_pte(struct kvm_mmu_memory_cache * cache,struct kvm_mmu_page * sp,u64 * parent_pte)1652 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1653 struct kvm_mmu_page *sp, u64 *parent_pte)
1654 {
1655 if (!parent_pte)
1656 return;
1657
1658 pte_list_add(cache, parent_pte, &sp->parent_ptes);
1659 }
1660
mmu_page_remove_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1661 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1662 u64 *parent_pte)
1663 {
1664 pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1665 }
1666
drop_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1667 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1668 u64 *parent_pte)
1669 {
1670 mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1671 mmu_spte_clear_no_track(parent_pte);
1672 }
1673
1674 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1675 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1676 {
1677 u64 *sptep;
1678 struct rmap_iterator iter;
1679
1680 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1681 mark_unsync(sptep);
1682 }
1683 }
1684
mark_unsync(u64 * spte)1685 static void mark_unsync(u64 *spte)
1686 {
1687 struct kvm_mmu_page *sp;
1688
1689 sp = sptep_to_sp(spte);
1690 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1691 return;
1692 if (sp->unsync_children++)
1693 return;
1694 kvm_mmu_mark_parents_unsync(sp);
1695 }
1696
1697 #define KVM_PAGE_ARRAY_NR 16
1698
1699 struct kvm_mmu_pages {
1700 struct mmu_page_and_offset {
1701 struct kvm_mmu_page *sp;
1702 unsigned int idx;
1703 } page[KVM_PAGE_ARRAY_NR];
1704 unsigned int nr;
1705 };
1706
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1707 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1708 int idx)
1709 {
1710 int i;
1711
1712 if (sp->unsync)
1713 for (i=0; i < pvec->nr; i++)
1714 if (pvec->page[i].sp == sp)
1715 return 0;
1716
1717 pvec->page[pvec->nr].sp = sp;
1718 pvec->page[pvec->nr].idx = idx;
1719 pvec->nr++;
1720 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1721 }
1722
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1723 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1724 {
1725 --sp->unsync_children;
1726 WARN_ON_ONCE((int)sp->unsync_children < 0);
1727 __clear_bit(idx, sp->unsync_child_bitmap);
1728 }
1729
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1730 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1731 struct kvm_mmu_pages *pvec)
1732 {
1733 int i, ret, nr_unsync_leaf = 0;
1734
1735 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1736 struct kvm_mmu_page *child;
1737 u64 ent = sp->spt[i];
1738
1739 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1740 clear_unsync_child_bit(sp, i);
1741 continue;
1742 }
1743
1744 child = spte_to_child_sp(ent);
1745
1746 if (child->unsync_children) {
1747 if (mmu_pages_add(pvec, child, i))
1748 return -ENOSPC;
1749
1750 ret = __mmu_unsync_walk(child, pvec);
1751 if (!ret) {
1752 clear_unsync_child_bit(sp, i);
1753 continue;
1754 } else if (ret > 0) {
1755 nr_unsync_leaf += ret;
1756 } else
1757 return ret;
1758 } else if (child->unsync) {
1759 nr_unsync_leaf++;
1760 if (mmu_pages_add(pvec, child, i))
1761 return -ENOSPC;
1762 } else
1763 clear_unsync_child_bit(sp, i);
1764 }
1765
1766 return nr_unsync_leaf;
1767 }
1768
1769 #define INVALID_INDEX (-1)
1770
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1771 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1772 struct kvm_mmu_pages *pvec)
1773 {
1774 pvec->nr = 0;
1775 if (!sp->unsync_children)
1776 return 0;
1777
1778 mmu_pages_add(pvec, sp, INVALID_INDEX);
1779 return __mmu_unsync_walk(sp, pvec);
1780 }
1781
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1782 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1783 {
1784 WARN_ON_ONCE(!sp->unsync);
1785 trace_kvm_mmu_sync_page(sp);
1786 sp->unsync = 0;
1787 --kvm->stat.mmu_unsync;
1788 }
1789
1790 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1791 struct list_head *invalid_list);
1792 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1793 struct list_head *invalid_list);
1794
sp_has_gptes(struct kvm_mmu_page * sp)1795 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1796 {
1797 if (sp->role.direct)
1798 return false;
1799
1800 if (sp->role.passthrough)
1801 return false;
1802
1803 return true;
1804 }
1805
1806 #define for_each_valid_sp(_kvm, _sp, _list) \
1807 hlist_for_each_entry(_sp, _list, hash_link) \
1808 if (is_obsolete_sp((_kvm), (_sp))) { \
1809 } else
1810
1811 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
1812 for_each_valid_sp(_kvm, _sp, \
1813 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1814 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1815
kvm_sync_page_check(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1816 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1817 {
1818 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1819
1820 /*
1821 * Ignore various flags when verifying that it's safe to sync a shadow
1822 * page using the current MMU context.
1823 *
1824 * - level: not part of the overall MMU role and will never match as the MMU's
1825 * level tracks the root level
1826 * - access: updated based on the new guest PTE
1827 * - quadrant: not part of the overall MMU role (similar to level)
1828 */
1829 const union kvm_mmu_page_role sync_role_ign = {
1830 .level = 0xf,
1831 .access = 0x7,
1832 .quadrant = 0x3,
1833 .passthrough = 0x1,
1834 };
1835
1836 /*
1837 * Direct pages can never be unsync, and KVM should never attempt to
1838 * sync a shadow page for a different MMU context, e.g. if the role
1839 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1840 * reserved bits checks will be wrong, etc...
1841 */
1842 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1843 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1844 return false;
1845
1846 return true;
1847 }
1848
kvm_sync_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,int i)1849 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1850 {
1851 /* sp->spt[i] has initial value of shadow page table allocation */
1852 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
1853 return 0;
1854
1855 return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1856 }
1857
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1858 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1859 {
1860 int flush = 0;
1861 int i;
1862
1863 if (!kvm_sync_page_check(vcpu, sp))
1864 return -1;
1865
1866 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1867 int ret = kvm_sync_spte(vcpu, sp, i);
1868
1869 if (ret < -1)
1870 return -1;
1871 flush |= ret;
1872 }
1873
1874 /*
1875 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1876 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1877 * unmap or dirty logging event doesn't fail to flush. The guest is
1878 * responsible for flushing the TLB to ensure any changes in protection
1879 * bits are recognized, i.e. until the guest flushes or page faults on
1880 * a relevant address, KVM is architecturally allowed to let vCPUs use
1881 * cached translations with the old protection bits.
1882 */
1883 return flush;
1884 }
1885
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1886 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1887 struct list_head *invalid_list)
1888 {
1889 int ret = __kvm_sync_page(vcpu, sp);
1890
1891 if (ret < 0)
1892 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1893 return ret;
1894 }
1895
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1896 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1897 struct list_head *invalid_list,
1898 bool remote_flush)
1899 {
1900 if (!remote_flush && list_empty(invalid_list))
1901 return false;
1902
1903 if (!list_empty(invalid_list))
1904 kvm_mmu_commit_zap_page(kvm, invalid_list);
1905 else
1906 kvm_flush_remote_tlbs(kvm);
1907 return true;
1908 }
1909
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1910 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1911 {
1912 if (sp->role.invalid)
1913 return true;
1914
1915 /* TDP MMU pages do not use the MMU generation. */
1916 return !is_tdp_mmu_page(sp) &&
1917 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1918 }
1919
1920 struct mmu_page_path {
1921 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1922 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1923 };
1924
1925 #define for_each_sp(pvec, sp, parents, i) \
1926 for (i = mmu_pages_first(&pvec, &parents); \
1927 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1928 i = mmu_pages_next(&pvec, &parents, i))
1929
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1930 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1931 struct mmu_page_path *parents,
1932 int i)
1933 {
1934 int n;
1935
1936 for (n = i+1; n < pvec->nr; n++) {
1937 struct kvm_mmu_page *sp = pvec->page[n].sp;
1938 unsigned idx = pvec->page[n].idx;
1939 int level = sp->role.level;
1940
1941 parents->idx[level-1] = idx;
1942 if (level == PG_LEVEL_4K)
1943 break;
1944
1945 parents->parent[level-2] = sp;
1946 }
1947
1948 return n;
1949 }
1950
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1951 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1952 struct mmu_page_path *parents)
1953 {
1954 struct kvm_mmu_page *sp;
1955 int level;
1956
1957 if (pvec->nr == 0)
1958 return 0;
1959
1960 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
1961
1962 sp = pvec->page[0].sp;
1963 level = sp->role.level;
1964 WARN_ON_ONCE(level == PG_LEVEL_4K);
1965
1966 parents->parent[level-2] = sp;
1967
1968 /* Also set up a sentinel. Further entries in pvec are all
1969 * children of sp, so this element is never overwritten.
1970 */
1971 parents->parent[level-1] = NULL;
1972 return mmu_pages_next(pvec, parents, 0);
1973 }
1974
mmu_pages_clear_parents(struct mmu_page_path * parents)1975 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1976 {
1977 struct kvm_mmu_page *sp;
1978 unsigned int level = 0;
1979
1980 do {
1981 unsigned int idx = parents->idx[level];
1982 sp = parents->parent[level];
1983 if (!sp)
1984 return;
1985
1986 WARN_ON_ONCE(idx == INVALID_INDEX);
1987 clear_unsync_child_bit(sp, idx);
1988 level++;
1989 } while (!sp->unsync_children);
1990 }
1991
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)1992 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1993 struct kvm_mmu_page *parent, bool can_yield)
1994 {
1995 int i;
1996 struct kvm_mmu_page *sp;
1997 struct mmu_page_path parents;
1998 struct kvm_mmu_pages pages;
1999 LIST_HEAD(invalid_list);
2000 bool flush = false;
2001
2002 while (mmu_unsync_walk(parent, &pages)) {
2003 bool protected = false;
2004
2005 for_each_sp(pages, sp, parents, i)
2006 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2007
2008 if (protected) {
2009 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2010 flush = false;
2011 }
2012
2013 for_each_sp(pages, sp, parents, i) {
2014 kvm_unlink_unsync_page(vcpu->kvm, sp);
2015 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2016 mmu_pages_clear_parents(&parents);
2017 }
2018 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2019 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2020 if (!can_yield) {
2021 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2022 return -EINTR;
2023 }
2024
2025 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2026 flush = false;
2027 }
2028 }
2029
2030 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2031 return 0;
2032 }
2033
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2034 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2035 {
2036 atomic_set(&sp->write_flooding_count, 0);
2037 }
2038
clear_sp_write_flooding_count(u64 * spte)2039 static void clear_sp_write_flooding_count(u64 *spte)
2040 {
2041 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2042 }
2043
2044 /*
2045 * The vCPU is required when finding indirect shadow pages; the shadow
2046 * page may already exist and syncing it needs the vCPU pointer in
2047 * order to read guest page tables. Direct shadow pages are never
2048 * unsync, thus @vcpu can be NULL if @role.direct is true.
2049 */
kvm_mmu_find_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2050 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2051 struct kvm_vcpu *vcpu,
2052 gfn_t gfn,
2053 struct hlist_head *sp_list,
2054 union kvm_mmu_page_role role)
2055 {
2056 struct kvm_mmu_page *sp;
2057 int ret;
2058 int collisions = 0;
2059 LIST_HEAD(invalid_list);
2060
2061 for_each_valid_sp(kvm, sp, sp_list) {
2062 if (sp->gfn != gfn) {
2063 collisions++;
2064 continue;
2065 }
2066
2067 if (sp->role.word != role.word) {
2068 /*
2069 * If the guest is creating an upper-level page, zap
2070 * unsync pages for the same gfn. While it's possible
2071 * the guest is using recursive page tables, in all
2072 * likelihood the guest has stopped using the unsync
2073 * page and is installing a completely unrelated page.
2074 * Unsync pages must not be left as is, because the new
2075 * upper-level page will be write-protected.
2076 */
2077 if (role.level > PG_LEVEL_4K && sp->unsync)
2078 kvm_mmu_prepare_zap_page(kvm, sp,
2079 &invalid_list);
2080 continue;
2081 }
2082
2083 /* unsync and write-flooding only apply to indirect SPs. */
2084 if (sp->role.direct)
2085 goto out;
2086
2087 if (sp->unsync) {
2088 if (KVM_BUG_ON(!vcpu, kvm))
2089 break;
2090
2091 /*
2092 * The page is good, but is stale. kvm_sync_page does
2093 * get the latest guest state, but (unlike mmu_unsync_children)
2094 * it doesn't write-protect the page or mark it synchronized!
2095 * This way the validity of the mapping is ensured, but the
2096 * overhead of write protection is not incurred until the
2097 * guest invalidates the TLB mapping. This allows multiple
2098 * SPs for a single gfn to be unsync.
2099 *
2100 * If the sync fails, the page is zapped. If so, break
2101 * in order to rebuild it.
2102 */
2103 ret = kvm_sync_page(vcpu, sp, &invalid_list);
2104 if (ret < 0)
2105 break;
2106
2107 WARN_ON_ONCE(!list_empty(&invalid_list));
2108 if (ret > 0)
2109 kvm_flush_remote_tlbs(kvm);
2110 }
2111
2112 __clear_sp_write_flooding_count(sp);
2113
2114 goto out;
2115 }
2116
2117 sp = NULL;
2118 ++kvm->stat.mmu_cache_miss;
2119
2120 out:
2121 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2122
2123 if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2124 kvm->stat.max_mmu_page_hash_collisions = collisions;
2125 return sp;
2126 }
2127
2128 /* Caches used when allocating a new shadow page. */
2129 struct shadow_page_caches {
2130 struct kvm_mmu_memory_cache *page_header_cache;
2131 struct kvm_mmu_memory_cache *shadow_page_cache;
2132 struct kvm_mmu_memory_cache *shadowed_info_cache;
2133 };
2134
kvm_mmu_alloc_shadow_page(struct kvm * kvm,struct shadow_page_caches * caches,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2135 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2136 struct shadow_page_caches *caches,
2137 gfn_t gfn,
2138 struct hlist_head *sp_list,
2139 union kvm_mmu_page_role role)
2140 {
2141 struct kvm_mmu_page *sp;
2142
2143 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2144 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2145 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2146 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2147
2148 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2149
2150 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2151
2152 /*
2153 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2154 * depends on valid pages being added to the head of the list. See
2155 * comments in kvm_zap_obsolete_pages().
2156 */
2157 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2158 list_add(&sp->link, &kvm->arch.active_mmu_pages);
2159 kvm_account_mmu_page(kvm, sp);
2160
2161 sp->gfn = gfn;
2162 sp->role = role;
2163 hlist_add_head(&sp->hash_link, sp_list);
2164 if (sp_has_gptes(sp))
2165 account_shadowed(kvm, sp);
2166
2167 return sp;
2168 }
2169
2170 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
__kvm_mmu_get_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,struct shadow_page_caches * caches,gfn_t gfn,union kvm_mmu_page_role role)2171 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2172 struct kvm_vcpu *vcpu,
2173 struct shadow_page_caches *caches,
2174 gfn_t gfn,
2175 union kvm_mmu_page_role role)
2176 {
2177 struct hlist_head *sp_list;
2178 struct kvm_mmu_page *sp;
2179 bool created = false;
2180
2181 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2182
2183 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2184 if (!sp) {
2185 created = true;
2186 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2187 }
2188
2189 trace_kvm_mmu_get_page(sp, created);
2190 return sp;
2191 }
2192
kvm_mmu_get_shadow_page(struct kvm_vcpu * vcpu,gfn_t gfn,union kvm_mmu_page_role role)2193 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2194 gfn_t gfn,
2195 union kvm_mmu_page_role role)
2196 {
2197 struct shadow_page_caches caches = {
2198 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2199 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2200 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2201 };
2202
2203 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2204 }
2205
kvm_mmu_child_role(u64 * sptep,bool direct,unsigned int access)2206 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2207 unsigned int access)
2208 {
2209 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2210 union kvm_mmu_page_role role;
2211
2212 role = parent_sp->role;
2213 role.level--;
2214 role.access = access;
2215 role.direct = direct;
2216 role.passthrough = 0;
2217
2218 /*
2219 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2220 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2221 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2222 * shadow each guest page table with multiple shadow page tables, which
2223 * requires extra bookkeeping in the role.
2224 *
2225 * Specifically, to shadow the guest's page directory (which covers a
2226 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2227 * 1GiB of the address space. @role.quadrant encodes which quarter of
2228 * the address space each maps.
2229 *
2230 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2231 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2232 * @role.quadrant encodes which half of the region they map.
2233 *
2234 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2235 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2236 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2237 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2238 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2239 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2240 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2241 * covers bit 21 (see above), thus the quadrant is calculated from the
2242 * _least_ significant bit of the PDE index.
2243 */
2244 if (role.has_4_byte_gpte) {
2245 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2246 role.quadrant = spte_index(sptep) & 1;
2247 }
2248
2249 return role;
2250 }
2251
kvm_mmu_get_child_sp(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,bool direct,unsigned int access)2252 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2253 u64 *sptep, gfn_t gfn,
2254 bool direct, unsigned int access)
2255 {
2256 union kvm_mmu_page_role role;
2257
2258 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2259 return ERR_PTR(-EEXIST);
2260
2261 role = kvm_mmu_child_role(sptep, direct, access);
2262 return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2263 }
2264
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2265 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2266 struct kvm_vcpu *vcpu, hpa_t root,
2267 u64 addr)
2268 {
2269 iterator->addr = addr;
2270 iterator->shadow_addr = root;
2271 iterator->level = vcpu->arch.mmu->root_role.level;
2272
2273 if (iterator->level >= PT64_ROOT_4LEVEL &&
2274 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2275 !vcpu->arch.mmu->root_role.direct)
2276 iterator->level = PT32E_ROOT_LEVEL;
2277
2278 if (iterator->level == PT32E_ROOT_LEVEL) {
2279 /*
2280 * prev_root is currently only used for 64-bit hosts. So only
2281 * the active root_hpa is valid here.
2282 */
2283 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2284
2285 iterator->shadow_addr
2286 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2287 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2288 --iterator->level;
2289 if (!iterator->shadow_addr)
2290 iterator->level = 0;
2291 }
2292 }
2293
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2294 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2295 struct kvm_vcpu *vcpu, u64 addr)
2296 {
2297 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2298 addr);
2299 }
2300
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2301 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2302 {
2303 if (iterator->level < PG_LEVEL_4K)
2304 return false;
2305
2306 iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2307 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2308 return true;
2309 }
2310
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2311 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2312 u64 spte)
2313 {
2314 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2315 iterator->level = 0;
2316 return;
2317 }
2318
2319 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2320 --iterator->level;
2321 }
2322
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2323 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2324 {
2325 __shadow_walk_next(iterator, *iterator->sptep);
2326 }
2327
__link_shadow_page(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * sptep,struct kvm_mmu_page * sp,bool flush)2328 static void __link_shadow_page(struct kvm *kvm,
2329 struct kvm_mmu_memory_cache *cache, u64 *sptep,
2330 struct kvm_mmu_page *sp, bool flush)
2331 {
2332 u64 spte;
2333
2334 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2335
2336 /*
2337 * If an SPTE is present already, it must be a leaf and therefore
2338 * a large one. Drop it, and flush the TLB if needed, before
2339 * installing sp.
2340 */
2341 if (is_shadow_present_pte(*sptep))
2342 drop_large_spte(kvm, sptep, flush);
2343
2344 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2345
2346 mmu_spte_set(sptep, spte);
2347
2348 mmu_page_add_parent_pte(cache, sp, sptep);
2349
2350 /*
2351 * The non-direct sub-pagetable must be updated before linking. For
2352 * L1 sp, the pagetable is updated via kvm_sync_page() in
2353 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2354 * so sp->unsync can be true or false. For higher level non-direct
2355 * sp, the pagetable is updated/synced via mmu_sync_children() in
2356 * FNAME(fetch)(), so sp->unsync_children can only be false.
2357 * WARN_ON_ONCE() if anything happens unexpectedly.
2358 */
2359 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2360 mark_unsync(sptep);
2361 }
2362
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2363 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2364 struct kvm_mmu_page *sp)
2365 {
2366 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2367 }
2368
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2369 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2370 unsigned direct_access)
2371 {
2372 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2373 struct kvm_mmu_page *child;
2374
2375 /*
2376 * For the direct sp, if the guest pte's dirty bit
2377 * changed form clean to dirty, it will corrupt the
2378 * sp's access: allow writable in the read-only sp,
2379 * so we should update the spte at this point to get
2380 * a new sp with the correct access.
2381 */
2382 child = spte_to_child_sp(*sptep);
2383 if (child->role.access == direct_access)
2384 return;
2385
2386 drop_parent_pte(vcpu->kvm, child, sptep);
2387 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2388 }
2389 }
2390
2391 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2392 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2393 u64 *spte, struct list_head *invalid_list)
2394 {
2395 u64 pte;
2396 struct kvm_mmu_page *child;
2397
2398 pte = *spte;
2399 if (is_shadow_present_pte(pte)) {
2400 if (is_last_spte(pte, sp->role.level)) {
2401 drop_spte(kvm, spte);
2402 } else {
2403 child = spte_to_child_sp(pte);
2404 drop_parent_pte(kvm, child, spte);
2405
2406 /*
2407 * Recursively zap nested TDP SPs, parentless SPs are
2408 * unlikely to be used again in the near future. This
2409 * avoids retaining a large number of stale nested SPs.
2410 */
2411 if (tdp_enabled && invalid_list &&
2412 child->role.guest_mode && !child->parent_ptes.val)
2413 return kvm_mmu_prepare_zap_page(kvm, child,
2414 invalid_list);
2415 }
2416 } else if (is_mmio_spte(kvm, pte)) {
2417 mmu_spte_clear_no_track(spte);
2418 }
2419 return 0;
2420 }
2421
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2422 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2423 struct kvm_mmu_page *sp,
2424 struct list_head *invalid_list)
2425 {
2426 int zapped = 0;
2427 unsigned i;
2428
2429 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2430 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2431
2432 return zapped;
2433 }
2434
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2435 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2436 {
2437 u64 *sptep;
2438 struct rmap_iterator iter;
2439
2440 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2441 drop_parent_pte(kvm, sp, sptep);
2442 }
2443
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2444 static int mmu_zap_unsync_children(struct kvm *kvm,
2445 struct kvm_mmu_page *parent,
2446 struct list_head *invalid_list)
2447 {
2448 int i, zapped = 0;
2449 struct mmu_page_path parents;
2450 struct kvm_mmu_pages pages;
2451
2452 if (parent->role.level == PG_LEVEL_4K)
2453 return 0;
2454
2455 while (mmu_unsync_walk(parent, &pages)) {
2456 struct kvm_mmu_page *sp;
2457
2458 for_each_sp(pages, sp, parents, i) {
2459 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2460 mmu_pages_clear_parents(&parents);
2461 zapped++;
2462 }
2463 }
2464
2465 return zapped;
2466 }
2467
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2468 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2469 struct kvm_mmu_page *sp,
2470 struct list_head *invalid_list,
2471 int *nr_zapped)
2472 {
2473 bool list_unstable, zapped_root = false;
2474
2475 lockdep_assert_held_write(&kvm->mmu_lock);
2476 trace_kvm_mmu_prepare_zap_page(sp);
2477 ++kvm->stat.mmu_shadow_zapped;
2478 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2479 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2480 kvm_mmu_unlink_parents(kvm, sp);
2481
2482 /* Zapping children means active_mmu_pages has become unstable. */
2483 list_unstable = *nr_zapped;
2484
2485 if (!sp->role.invalid && sp_has_gptes(sp))
2486 unaccount_shadowed(kvm, sp);
2487
2488 if (sp->unsync)
2489 kvm_unlink_unsync_page(kvm, sp);
2490 if (!sp->root_count) {
2491 /* Count self */
2492 (*nr_zapped)++;
2493
2494 /*
2495 * Already invalid pages (previously active roots) are not on
2496 * the active page list. See list_del() in the "else" case of
2497 * !sp->root_count.
2498 */
2499 if (sp->role.invalid)
2500 list_add(&sp->link, invalid_list);
2501 else
2502 list_move(&sp->link, invalid_list);
2503 kvm_unaccount_mmu_page(kvm, sp);
2504 } else {
2505 /*
2506 * Remove the active root from the active page list, the root
2507 * will be explicitly freed when the root_count hits zero.
2508 */
2509 list_del(&sp->link);
2510
2511 /*
2512 * Obsolete pages cannot be used on any vCPUs, see the comment
2513 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2514 * treats invalid shadow pages as being obsolete.
2515 */
2516 zapped_root = !is_obsolete_sp(kvm, sp);
2517 }
2518
2519 if (sp->nx_huge_page_disallowed)
2520 unaccount_nx_huge_page(kvm, sp);
2521
2522 sp->role.invalid = 1;
2523
2524 /*
2525 * Make the request to free obsolete roots after marking the root
2526 * invalid, otherwise other vCPUs may not see it as invalid.
2527 */
2528 if (zapped_root)
2529 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2530 return list_unstable;
2531 }
2532
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2533 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2534 struct list_head *invalid_list)
2535 {
2536 int nr_zapped;
2537
2538 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2539 return nr_zapped;
2540 }
2541
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2542 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2543 struct list_head *invalid_list)
2544 {
2545 struct kvm_mmu_page *sp, *nsp;
2546
2547 if (list_empty(invalid_list))
2548 return;
2549
2550 /*
2551 * We need to make sure everyone sees our modifications to
2552 * the page tables and see changes to vcpu->mode here. The barrier
2553 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2554 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2555 *
2556 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2557 * guest mode and/or lockless shadow page table walks.
2558 */
2559 kvm_flush_remote_tlbs(kvm);
2560
2561 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2562 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2563 kvm_mmu_free_shadow_page(sp);
2564 }
2565 }
2566
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2567 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2568 unsigned long nr_to_zap)
2569 {
2570 unsigned long total_zapped = 0;
2571 struct kvm_mmu_page *sp, *tmp;
2572 LIST_HEAD(invalid_list);
2573 bool unstable;
2574 int nr_zapped;
2575
2576 if (list_empty(&kvm->arch.active_mmu_pages))
2577 return 0;
2578
2579 restart:
2580 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2581 /*
2582 * Don't zap active root pages, the page itself can't be freed
2583 * and zapping it will just force vCPUs to realloc and reload.
2584 */
2585 if (sp->root_count)
2586 continue;
2587
2588 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2589 &nr_zapped);
2590 total_zapped += nr_zapped;
2591 if (total_zapped >= nr_to_zap)
2592 break;
2593
2594 if (unstable)
2595 goto restart;
2596 }
2597
2598 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2599
2600 kvm->stat.mmu_recycled += total_zapped;
2601 return total_zapped;
2602 }
2603
kvm_mmu_available_pages(struct kvm * kvm)2604 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2605 {
2606 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2607 return kvm->arch.n_max_mmu_pages -
2608 kvm->arch.n_used_mmu_pages;
2609
2610 return 0;
2611 }
2612
make_mmu_pages_available(struct kvm_vcpu * vcpu)2613 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2614 {
2615 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2616
2617 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2618 return 0;
2619
2620 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2621
2622 /*
2623 * Note, this check is intentionally soft, it only guarantees that one
2624 * page is available, while the caller may end up allocating as many as
2625 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2626 * exceeding the (arbitrary by default) limit will not harm the host,
2627 * being too aggressive may unnecessarily kill the guest, and getting an
2628 * exact count is far more trouble than it's worth, especially in the
2629 * page fault paths.
2630 */
2631 if (!kvm_mmu_available_pages(vcpu->kvm))
2632 return -ENOSPC;
2633 return 0;
2634 }
2635
2636 /*
2637 * Changing the number of mmu pages allocated to the vm
2638 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2639 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2640 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2641 {
2642 write_lock(&kvm->mmu_lock);
2643
2644 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2645 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2646 goal_nr_mmu_pages);
2647
2648 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649 }
2650
2651 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652
2653 write_unlock(&kvm->mmu_lock);
2654 }
2655
__kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool always_retry)2656 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2657 bool always_retry)
2658 {
2659 struct kvm *kvm = vcpu->kvm;
2660 LIST_HEAD(invalid_list);
2661 struct kvm_mmu_page *sp;
2662 gpa_t gpa = cr2_or_gpa;
2663 bool r = false;
2664
2665 /*
2666 * Bail early if there aren't any write-protected shadow pages to avoid
2667 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2668 * by a third party. Reading indirect_shadow_pages without holding
2669 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2670 * positive is benign, and a false negative will simply result in KVM
2671 * skipping the unprotect+retry path, which is also an optimization.
2672 */
2673 if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2674 goto out;
2675
2676 if (!vcpu->arch.mmu->root_role.direct) {
2677 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2678 if (gpa == INVALID_GPA)
2679 goto out;
2680 }
2681
2682 write_lock(&kvm->mmu_lock);
2683 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2684 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2685
2686 /*
2687 * Snapshot the result before zapping, as zapping will remove all list
2688 * entries, i.e. checking the list later would yield a false negative.
2689 */
2690 r = !list_empty(&invalid_list);
2691 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2692 write_unlock(&kvm->mmu_lock);
2693
2694 out:
2695 if (r || always_retry) {
2696 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2697 vcpu->arch.last_retry_addr = cr2_or_gpa;
2698 }
2699 return r;
2700 }
2701
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2702 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2703 {
2704 trace_kvm_mmu_unsync_page(sp);
2705 ++kvm->stat.mmu_unsync;
2706 sp->unsync = 1;
2707
2708 kvm_mmu_mark_parents_unsync(sp);
2709 }
2710
2711 /*
2712 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2713 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2714 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2715 * be write-protected.
2716 */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool synchronizing,bool prefetch)2717 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2718 gfn_t gfn, bool synchronizing, bool prefetch)
2719 {
2720 struct kvm_mmu_page *sp;
2721 bool locked = false;
2722
2723 /*
2724 * Force write-protection if the page is being tracked. Note, the page
2725 * track machinery is used to write-protect upper-level shadow pages,
2726 * i.e. this guards the role.level == 4K assertion below!
2727 */
2728 if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2729 return -EPERM;
2730
2731 /*
2732 * The page is not write-tracked, mark existing shadow pages unsync
2733 * unless KVM is synchronizing an unsync SP. In that case, KVM must
2734 * complete emulation of the guest TLB flush before allowing shadow
2735 * pages to become unsync (writable by the guest).
2736 */
2737 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2738 if (synchronizing)
2739 return -EPERM;
2740
2741 if (sp->unsync)
2742 continue;
2743
2744 if (prefetch)
2745 return -EEXIST;
2746
2747 /*
2748 * TDP MMU page faults require an additional spinlock as they
2749 * run with mmu_lock held for read, not write, and the unsync
2750 * logic is not thread safe. Take the spinklock regardless of
2751 * the MMU type to avoid extra conditionals/parameters, there's
2752 * no meaningful penalty if mmu_lock is held for write.
2753 */
2754 if (!locked) {
2755 locked = true;
2756 spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2757
2758 /*
2759 * Recheck after taking the spinlock, a different vCPU
2760 * may have since marked the page unsync. A false
2761 * negative on the unprotected check above is not
2762 * possible as clearing sp->unsync _must_ hold mmu_lock
2763 * for write, i.e. unsync cannot transition from 1->0
2764 * while this CPU holds mmu_lock for read (or write).
2765 */
2766 if (READ_ONCE(sp->unsync))
2767 continue;
2768 }
2769
2770 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2771 kvm_unsync_page(kvm, sp);
2772 }
2773 if (locked)
2774 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2775
2776 /*
2777 * We need to ensure that the marking of unsync pages is visible
2778 * before the SPTE is updated to allow writes because
2779 * kvm_mmu_sync_roots() checks the unsync flags without holding
2780 * the MMU lock and so can race with this. If the SPTE was updated
2781 * before the page had been marked as unsync-ed, something like the
2782 * following could happen:
2783 *
2784 * CPU 1 CPU 2
2785 * ---------------------------------------------------------------------
2786 * 1.2 Host updates SPTE
2787 * to be writable
2788 * 2.1 Guest writes a GPTE for GVA X.
2789 * (GPTE being in the guest page table shadowed
2790 * by the SP from CPU 1.)
2791 * This reads SPTE during the page table walk.
2792 * Since SPTE.W is read as 1, there is no
2793 * fault.
2794 *
2795 * 2.2 Guest issues TLB flush.
2796 * That causes a VM Exit.
2797 *
2798 * 2.3 Walking of unsync pages sees sp->unsync is
2799 * false and skips the page.
2800 *
2801 * 2.4 Guest accesses GVA X.
2802 * Since the mapping in the SP was not updated,
2803 * so the old mapping for GVA X incorrectly
2804 * gets used.
2805 * 1.1 Host marks SP
2806 * as unsync
2807 * (sp->unsync = true)
2808 *
2809 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2810 * the situation in 2.4 does not arise. It pairs with the read barrier
2811 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2812 */
2813 smp_wmb();
2814
2815 return 0;
2816 }
2817
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)2818 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2819 u64 *sptep, unsigned int pte_access, gfn_t gfn,
2820 kvm_pfn_t pfn, struct kvm_page_fault *fault)
2821 {
2822 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2823 int level = sp->role.level;
2824 int was_rmapped = 0;
2825 int ret = RET_PF_FIXED;
2826 bool flush = false;
2827 bool wrprot;
2828 u64 spte;
2829
2830 /* Prefetching always gets a writable pfn. */
2831 bool host_writable = !fault || fault->map_writable;
2832 bool prefetch = !fault || fault->prefetch;
2833 bool write_fault = fault && fault->write;
2834
2835 if (unlikely(is_noslot_pfn(pfn))) {
2836 vcpu->stat.pf_mmio_spte_created++;
2837 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2838 return RET_PF_EMULATE;
2839 }
2840
2841 if (is_shadow_present_pte(*sptep)) {
2842 if (prefetch)
2843 return RET_PF_SPURIOUS;
2844
2845 /*
2846 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2847 * the parent of the now unreachable PTE.
2848 */
2849 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2850 struct kvm_mmu_page *child;
2851 u64 pte = *sptep;
2852
2853 child = spte_to_child_sp(pte);
2854 drop_parent_pte(vcpu->kvm, child, sptep);
2855 flush = true;
2856 } else if (pfn != spte_to_pfn(*sptep)) {
2857 drop_spte(vcpu->kvm, sptep);
2858 flush = true;
2859 } else
2860 was_rmapped = 1;
2861 }
2862
2863 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2864 false, host_writable, &spte);
2865
2866 if (*sptep == spte) {
2867 ret = RET_PF_SPURIOUS;
2868 } else {
2869 flush |= mmu_spte_update(sptep, spte);
2870 trace_kvm_mmu_set_spte(level, gfn, sptep);
2871 }
2872
2873 if (wrprot && write_fault)
2874 ret = RET_PF_WRITE_PROTECTED;
2875
2876 if (flush)
2877 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2878
2879 if (!was_rmapped) {
2880 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2881 rmap_add(vcpu, slot, sptep, gfn, pte_access);
2882 } else {
2883 /* Already rmapped but the pte_access bits may have changed. */
2884 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2885 }
2886
2887 return ret;
2888 }
2889
kvm_mmu_prefetch_sptes(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * sptep,int nr_pages,unsigned int access)2890 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
2891 int nr_pages, unsigned int access)
2892 {
2893 struct page *pages[PTE_PREFETCH_NUM];
2894 struct kvm_memory_slot *slot;
2895 int i;
2896
2897 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
2898 return false;
2899
2900 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2901 if (!slot)
2902 return false;
2903
2904 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
2905 if (nr_pages <= 0)
2906 return false;
2907
2908 for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
2909 mmu_set_spte(vcpu, slot, sptep, access, gfn,
2910 page_to_pfn(pages[i]), NULL);
2911
2912 /*
2913 * KVM always prefetches writable pages from the primary MMU,
2914 * and KVM can make its SPTE writable in the fast page handler,
2915 * without notifying the primary MMU. Mark pages/folios dirty
2916 * now to ensure file data is written back if it ends up being
2917 * written by the guest. Because KVM's prefetching GUPs
2918 * writable PTEs, the probability of unnecessary writeback is
2919 * extremely low.
2920 */
2921 kvm_release_page_dirty(pages[i]);
2922 }
2923
2924 return true;
2925 }
2926
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2927 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2928 struct kvm_mmu_page *sp,
2929 u64 *start, u64 *end)
2930 {
2931 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2932 unsigned int access = sp->role.access;
2933
2934 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
2935 }
2936
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2937 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2938 struct kvm_mmu_page *sp, u64 *sptep)
2939 {
2940 u64 *spte, *start = NULL;
2941 int i;
2942
2943 WARN_ON_ONCE(!sp->role.direct);
2944
2945 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
2946 spte = sp->spt + i;
2947
2948 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2949 if (is_shadow_present_pte(*spte) || spte == sptep) {
2950 if (!start)
2951 continue;
2952 if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
2953 return;
2954
2955 start = NULL;
2956 } else if (!start)
2957 start = spte;
2958 }
2959 if (start)
2960 direct_pte_prefetch_many(vcpu, sp, start, spte);
2961 }
2962
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2963 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2964 {
2965 struct kvm_mmu_page *sp;
2966
2967 sp = sptep_to_sp(sptep);
2968
2969 /*
2970 * Without accessed bits, there's no way to distinguish between
2971 * actually accessed translations and prefetched, so disable pte
2972 * prefetch if accessed bits aren't available.
2973 */
2974 if (sp_ad_disabled(sp))
2975 return;
2976
2977 if (sp->role.level > PG_LEVEL_4K)
2978 return;
2979
2980 /*
2981 * If addresses are being invalidated, skip prefetching to avoid
2982 * accidentally prefetching those addresses.
2983 */
2984 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
2985 return;
2986
2987 __direct_pte_prefetch(vcpu, sp, sptep);
2988 }
2989
2990 /*
2991 * Lookup the mapping level for @gfn in the current mm.
2992 *
2993 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
2994 * consumer to be tied into KVM's handlers for MMU notifier events!
2995 *
2996 * There are several ways to safely use this helper:
2997 *
2998 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
2999 * consuming it. In this case, mmu_lock doesn't need to be held during the
3000 * lookup, but it does need to be held while checking the MMU notifier.
3001 *
3002 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3003 * event for the hva. This can be done by explicit checking the MMU notifier
3004 * or by ensuring that KVM already has a valid mapping that covers the hva.
3005 *
3006 * - Do not use the result to install new mappings, e.g. use the host mapping
3007 * level only to decide whether or not to zap an entry. In this case, it's
3008 * not required to hold mmu_lock (though it's highly likely the caller will
3009 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
3010 *
3011 * Note! The lookup can still race with modifications to host page tables, but
3012 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3013 * race with the primary MMU occurs.
3014 */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)3015 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3016 const struct kvm_memory_slot *slot)
3017 {
3018 int level = PG_LEVEL_4K;
3019 unsigned long hva;
3020 unsigned long flags;
3021 pgd_t pgd;
3022 p4d_t p4d;
3023 pud_t pud;
3024 pmd_t pmd;
3025
3026 /*
3027 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3028 * is not solely for performance, it's also necessary to avoid the
3029 * "writable" check in __gfn_to_hva_many(), which will always fail on
3030 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3031 * page fault steps have already verified the guest isn't writing a
3032 * read-only memslot.
3033 */
3034 hva = __gfn_to_hva_memslot(slot, gfn);
3035
3036 /*
3037 * Disable IRQs to prevent concurrent tear down of host page tables,
3038 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3039 * the original page table.
3040 */
3041 local_irq_save(flags);
3042
3043 /*
3044 * Read each entry once. As above, a non-leaf entry can be promoted to
3045 * a huge page _during_ this walk. Re-reading the entry could send the
3046 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3047 * value) and then p*d_offset() walks into the target huge page instead
3048 * of the old page table (sees the new value).
3049 */
3050 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3051 if (pgd_none(pgd))
3052 goto out;
3053
3054 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3055 if (p4d_none(p4d) || !p4d_present(p4d))
3056 goto out;
3057
3058 pud = READ_ONCE(*pud_offset(&p4d, hva));
3059 if (pud_none(pud) || !pud_present(pud))
3060 goto out;
3061
3062 if (pud_leaf(pud)) {
3063 level = PG_LEVEL_1G;
3064 goto out;
3065 }
3066
3067 pmd = READ_ONCE(*pmd_offset(&pud, hva));
3068 if (pmd_none(pmd) || !pmd_present(pmd))
3069 goto out;
3070
3071 if (pmd_leaf(pmd))
3072 level = PG_LEVEL_2M;
3073
3074 out:
3075 local_irq_restore(flags);
3076 return level;
3077 }
3078
__kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,int max_level,bool is_private)3079 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3080 const struct kvm_memory_slot *slot,
3081 gfn_t gfn, int max_level, bool is_private)
3082 {
3083 struct kvm_lpage_info *linfo;
3084 int host_level;
3085
3086 max_level = min(max_level, max_huge_page_level);
3087 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3088 linfo = lpage_info_slot(gfn, slot, max_level);
3089 if (!linfo->disallow_lpage)
3090 break;
3091 }
3092
3093 if (is_private)
3094 return max_level;
3095
3096 if (max_level == PG_LEVEL_4K)
3097 return PG_LEVEL_4K;
3098
3099 host_level = host_pfn_mapping_level(kvm, gfn, slot);
3100 return min(host_level, max_level);
3101 }
3102
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn)3103 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3104 const struct kvm_memory_slot *slot, gfn_t gfn)
3105 {
3106 bool is_private = kvm_slot_can_be_private(slot) &&
3107 kvm_mem_is_private(kvm, gfn);
3108
3109 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private);
3110 }
3111
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3112 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3113 {
3114 struct kvm_memory_slot *slot = fault->slot;
3115 kvm_pfn_t mask;
3116
3117 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3118
3119 if (unlikely(fault->max_level == PG_LEVEL_4K))
3120 return;
3121
3122 if (is_error_noslot_pfn(fault->pfn))
3123 return;
3124
3125 if (kvm_slot_dirty_track_enabled(slot))
3126 return;
3127
3128 /*
3129 * Enforce the iTLB multihit workaround after capturing the requested
3130 * level, which will be used to do precise, accurate accounting.
3131 */
3132 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3133 fault->gfn, fault->max_level,
3134 fault->is_private);
3135 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3136 return;
3137
3138 /*
3139 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3140 * the pmd can't be split from under us.
3141 */
3142 fault->goal_level = fault->req_level;
3143 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3144 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3145 fault->pfn &= ~mask;
3146 }
3147
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)3148 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3149 {
3150 if (cur_level > PG_LEVEL_4K &&
3151 cur_level == fault->goal_level &&
3152 is_shadow_present_pte(spte) &&
3153 !is_large_pte(spte) &&
3154 spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3155 /*
3156 * A small SPTE exists for this pfn, but FNAME(fetch),
3157 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3158 * large PTE instead: just force them to go down another level,
3159 * patching back for them into pfn the next 9 bits of the
3160 * address.
3161 */
3162 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3163 KVM_PAGES_PER_HPAGE(cur_level - 1);
3164 fault->pfn |= fault->gfn & page_mask;
3165 fault->goal_level--;
3166 }
3167 }
3168
direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3169 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3170 {
3171 struct kvm_shadow_walk_iterator it;
3172 struct kvm_mmu_page *sp;
3173 int ret;
3174 gfn_t base_gfn = fault->gfn;
3175
3176 kvm_mmu_hugepage_adjust(vcpu, fault);
3177
3178 trace_kvm_mmu_spte_requested(fault);
3179 for_each_shadow_entry(vcpu, fault->addr, it) {
3180 /*
3181 * We cannot overwrite existing page tables with an NX
3182 * large page, as the leaf could be executable.
3183 */
3184 if (fault->nx_huge_page_workaround_enabled)
3185 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3186
3187 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3188 if (it.level == fault->goal_level)
3189 break;
3190
3191 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3192 if (sp == ERR_PTR(-EEXIST))
3193 continue;
3194
3195 link_shadow_page(vcpu, it.sptep, sp);
3196 if (fault->huge_page_disallowed)
3197 account_nx_huge_page(vcpu->kvm, sp,
3198 fault->req_level >= it.level);
3199 }
3200
3201 if (WARN_ON_ONCE(it.level != fault->goal_level))
3202 return -EFAULT;
3203
3204 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3205 base_gfn, fault->pfn, fault);
3206 if (ret == RET_PF_SPURIOUS)
3207 return ret;
3208
3209 direct_pte_prefetch(vcpu, it.sptep);
3210 return ret;
3211 }
3212
kvm_send_hwpoison_signal(struct kvm_memory_slot * slot,gfn_t gfn)3213 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3214 {
3215 unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3216
3217 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3218 }
3219
kvm_handle_error_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3220 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3221 {
3222 if (is_sigpending_pfn(fault->pfn)) {
3223 kvm_handle_signal_exit(vcpu);
3224 return -EINTR;
3225 }
3226
3227 /*
3228 * Do not cache the mmio info caused by writing the readonly gfn
3229 * into the spte otherwise read access on readonly gfn also can
3230 * caused mmio page fault and treat it as mmio access.
3231 */
3232 if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3233 return RET_PF_EMULATE;
3234
3235 if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3236 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3237 return RET_PF_RETRY;
3238 }
3239
3240 return -EFAULT;
3241 }
3242
kvm_handle_noslot_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3243 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3244 struct kvm_page_fault *fault,
3245 unsigned int access)
3246 {
3247 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3248
3249 if (fault->is_private) {
3250 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3251 return -EFAULT;
3252 }
3253
3254 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3255 access & shadow_mmio_access_mask);
3256
3257 fault->slot = NULL;
3258 fault->pfn = KVM_PFN_NOSLOT;
3259 fault->map_writable = false;
3260
3261 /*
3262 * If MMIO caching is disabled, emulate immediately without
3263 * touching the shadow page tables as attempting to install an
3264 * MMIO SPTE will just be an expensive nop.
3265 */
3266 if (unlikely(!enable_mmio_caching))
3267 return RET_PF_EMULATE;
3268
3269 /*
3270 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3271 * any guest that generates such gfns is running nested and is being
3272 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3273 * only if L1's MAXPHYADDR is inaccurate with respect to the
3274 * hardware's).
3275 */
3276 if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3277 return RET_PF_EMULATE;
3278
3279 return RET_PF_CONTINUE;
3280 }
3281
page_fault_can_be_fast(struct kvm * kvm,struct kvm_page_fault * fault)3282 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3283 {
3284 /*
3285 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3286 * reach the common page fault handler if the SPTE has an invalid MMIO
3287 * generation number. Refreshing the MMIO generation needs to go down
3288 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3289 */
3290 if (fault->rsvd)
3291 return false;
3292
3293 /*
3294 * For hardware-protected VMs, certain conditions like attempting to
3295 * perform a write to a page which is not in the state that the guest
3296 * expects it to be in can result in a nested/extended #PF. In this
3297 * case, the below code might misconstrue this situation as being the
3298 * result of a write-protected access, and treat it as a spurious case
3299 * rather than taking any action to satisfy the real source of the #PF
3300 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3301 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3302 * in this case.
3303 *
3304 * Note that the kvm_mem_is_private() check might race with an
3305 * attribute update, but this will either result in the guest spinning
3306 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3307 * case might go down the slow path. Either case will resolve itself.
3308 */
3309 if (kvm->arch.has_private_mem &&
3310 fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3311 return false;
3312
3313 /*
3314 * #PF can be fast if:
3315 *
3316 * 1. The shadow page table entry is not present and A/D bits are
3317 * disabled _by KVM_, which could mean that the fault is potentially
3318 * caused by access tracking (if enabled). If A/D bits are enabled
3319 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3320 * bits for L2 and employ access tracking, but the fast page fault
3321 * mechanism only supports direct MMUs.
3322 * 2. The shadow page table entry is present, the access is a write,
3323 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3324 * the fault was caused by a write-protection violation. If the
3325 * SPTE is MMU-writable (determined later), the fault can be fixed
3326 * by setting the Writable bit, which can be done out of mmu_lock.
3327 */
3328 if (!fault->present)
3329 return !kvm_ad_enabled;
3330
3331 /*
3332 * Note, instruction fetches and writes are mutually exclusive, ignore
3333 * the "exec" flag.
3334 */
3335 return fault->write;
3336 }
3337
3338 /*
3339 * Returns true if the SPTE was fixed successfully. Otherwise,
3340 * someone else modified the SPTE from its original value.
3341 */
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3342 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3343 struct kvm_page_fault *fault,
3344 u64 *sptep, u64 old_spte, u64 new_spte)
3345 {
3346 /*
3347 * Theoretically we could also set dirty bit (and flush TLB) here in
3348 * order to eliminate unnecessary PML logging. See comments in
3349 * set_spte. But fast_page_fault is very unlikely to happen with PML
3350 * enabled, so we do not do this. This might result in the same GPA
3351 * to be logged in PML buffer again when the write really happens, and
3352 * eventually to be called by mark_page_dirty twice. But it's also no
3353 * harm. This also avoids the TLB flush needed after setting dirty bit
3354 * so non-PML cases won't be impacted.
3355 *
3356 * Compare with make_spte() where instead shadow_dirty_mask is set.
3357 */
3358 if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3359 return false;
3360
3361 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3362 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3363
3364 return true;
3365 }
3366
3367 /*
3368 * Returns the last level spte pointer of the shadow page walk for the given
3369 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3370 * walk could be performed, returns NULL and *spte does not contain valid data.
3371 *
3372 * Contract:
3373 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3374 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3375 */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3376 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3377 {
3378 struct kvm_shadow_walk_iterator iterator;
3379 u64 old_spte;
3380 u64 *sptep = NULL;
3381
3382 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3383 sptep = iterator.sptep;
3384 *spte = old_spte;
3385 }
3386
3387 return sptep;
3388 }
3389
3390 /*
3391 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3392 */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3393 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3394 {
3395 struct kvm_mmu_page *sp;
3396 int ret = RET_PF_INVALID;
3397 u64 spte;
3398 u64 *sptep;
3399 uint retry_count = 0;
3400
3401 if (!page_fault_can_be_fast(vcpu->kvm, fault))
3402 return ret;
3403
3404 walk_shadow_page_lockless_begin(vcpu);
3405
3406 do {
3407 u64 new_spte;
3408
3409 if (tdp_mmu_enabled)
3410 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3411 else
3412 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3413
3414 /*
3415 * It's entirely possible for the mapping to have been zapped
3416 * by a different task, but the root page should always be
3417 * available as the vCPU holds a reference to its root(s).
3418 */
3419 if (WARN_ON_ONCE(!sptep))
3420 spte = FROZEN_SPTE;
3421
3422 if (!is_shadow_present_pte(spte))
3423 break;
3424
3425 sp = sptep_to_sp(sptep);
3426 if (!is_last_spte(spte, sp->role.level))
3427 break;
3428
3429 /*
3430 * Check whether the memory access that caused the fault would
3431 * still cause it if it were to be performed right now. If not,
3432 * then this is a spurious fault caused by TLB lazily flushed,
3433 * or some other CPU has already fixed the PTE after the
3434 * current CPU took the fault.
3435 *
3436 * Need not check the access of upper level table entries since
3437 * they are always ACC_ALL.
3438 */
3439 if (is_access_allowed(fault, spte)) {
3440 ret = RET_PF_SPURIOUS;
3441 break;
3442 }
3443
3444 new_spte = spte;
3445
3446 /*
3447 * KVM only supports fixing page faults outside of MMU lock for
3448 * direct MMUs, nested MMUs are always indirect, and KVM always
3449 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3450 * enabled, the SPTE can't be an access-tracked SPTE.
3451 */
3452 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3453 new_spte = restore_acc_track_spte(new_spte) |
3454 shadow_accessed_mask;
3455
3456 /*
3457 * To keep things simple, only SPTEs that are MMU-writable can
3458 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3459 * that were write-protected for dirty-logging or access
3460 * tracking are handled here. Don't bother checking if the
3461 * SPTE is writable to prioritize running with A/D bits enabled.
3462 * The is_access_allowed() check above handles the common case
3463 * of the fault being spurious, and the SPTE is known to be
3464 * shadow-present, i.e. except for access tracking restoration
3465 * making the new SPTE writable, the check is wasteful.
3466 */
3467 if (fault->write && is_mmu_writable_spte(spte)) {
3468 new_spte |= PT_WRITABLE_MASK;
3469
3470 /*
3471 * Do not fix write-permission on the large spte when
3472 * dirty logging is enabled. Since we only dirty the
3473 * first page into the dirty-bitmap in
3474 * fast_pf_fix_direct_spte(), other pages are missed
3475 * if its slot has dirty logging enabled.
3476 *
3477 * Instead, we let the slow page fault path create a
3478 * normal spte to fix the access.
3479 */
3480 if (sp->role.level > PG_LEVEL_4K &&
3481 kvm_slot_dirty_track_enabled(fault->slot))
3482 break;
3483 }
3484
3485 /* Verify that the fault can be handled in the fast path */
3486 if (new_spte == spte ||
3487 !is_access_allowed(fault, new_spte))
3488 break;
3489
3490 /*
3491 * Currently, fast page fault only works for direct mapping
3492 * since the gfn is not stable for indirect shadow page. See
3493 * Documentation/virt/kvm/locking.rst to get more detail.
3494 */
3495 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3496 ret = RET_PF_FIXED;
3497 break;
3498 }
3499
3500 if (++retry_count > 4) {
3501 pr_warn_once("Fast #PF retrying more than 4 times.\n");
3502 break;
3503 }
3504
3505 } while (true);
3506
3507 trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3508 walk_shadow_page_lockless_end(vcpu);
3509
3510 if (ret != RET_PF_INVALID)
3511 vcpu->stat.pf_fast++;
3512
3513 return ret;
3514 }
3515
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3516 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3517 struct list_head *invalid_list)
3518 {
3519 struct kvm_mmu_page *sp;
3520
3521 if (!VALID_PAGE(*root_hpa))
3522 return;
3523
3524 sp = root_to_sp(*root_hpa);
3525 if (WARN_ON_ONCE(!sp))
3526 return;
3527
3528 if (is_tdp_mmu_page(sp)) {
3529 lockdep_assert_held_read(&kvm->mmu_lock);
3530 kvm_tdp_mmu_put_root(kvm, sp);
3531 } else {
3532 lockdep_assert_held_write(&kvm->mmu_lock);
3533 if (!--sp->root_count && sp->role.invalid)
3534 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3535 }
3536
3537 *root_hpa = INVALID_PAGE;
3538 }
3539
3540 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3541 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3542 ulong roots_to_free)
3543 {
3544 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3545 int i;
3546 LIST_HEAD(invalid_list);
3547 bool free_active_root;
3548
3549 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3550
3551 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3552
3553 /* Before acquiring the MMU lock, see if we need to do any real work. */
3554 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3555 && VALID_PAGE(mmu->root.hpa);
3556
3557 if (!free_active_root) {
3558 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3559 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3560 VALID_PAGE(mmu->prev_roots[i].hpa))
3561 break;
3562
3563 if (i == KVM_MMU_NUM_PREV_ROOTS)
3564 return;
3565 }
3566
3567 if (is_tdp_mmu)
3568 read_lock(&kvm->mmu_lock);
3569 else
3570 write_lock(&kvm->mmu_lock);
3571
3572 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3573 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3574 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3575 &invalid_list);
3576
3577 if (free_active_root) {
3578 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3579 /* Nothing to cleanup for dummy roots. */
3580 } else if (root_to_sp(mmu->root.hpa)) {
3581 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3582 } else if (mmu->pae_root) {
3583 for (i = 0; i < 4; ++i) {
3584 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3585 continue;
3586
3587 mmu_free_root_page(kvm, &mmu->pae_root[i],
3588 &invalid_list);
3589 mmu->pae_root[i] = INVALID_PAE_ROOT;
3590 }
3591 }
3592 mmu->root.hpa = INVALID_PAGE;
3593 mmu->root.pgd = 0;
3594 }
3595
3596 if (is_tdp_mmu) {
3597 read_unlock(&kvm->mmu_lock);
3598 WARN_ON_ONCE(!list_empty(&invalid_list));
3599 } else {
3600 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3601 write_unlock(&kvm->mmu_lock);
3602 }
3603 }
3604 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3605
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3606 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3607 {
3608 unsigned long roots_to_free = 0;
3609 struct kvm_mmu_page *sp;
3610 hpa_t root_hpa;
3611 int i;
3612
3613 /*
3614 * This should not be called while L2 is active, L2 can't invalidate
3615 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3616 */
3617 WARN_ON_ONCE(mmu->root_role.guest_mode);
3618
3619 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3620 root_hpa = mmu->prev_roots[i].hpa;
3621 if (!VALID_PAGE(root_hpa))
3622 continue;
3623
3624 sp = root_to_sp(root_hpa);
3625 if (!sp || sp->role.guest_mode)
3626 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3627 }
3628
3629 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3632
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,int quadrant,u8 level)3633 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3634 u8 level)
3635 {
3636 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3637 struct kvm_mmu_page *sp;
3638
3639 role.level = level;
3640 role.quadrant = quadrant;
3641
3642 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3643 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3644
3645 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3646 ++sp->root_count;
3647
3648 return __pa(sp->spt);
3649 }
3650
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3651 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3652 {
3653 struct kvm_mmu *mmu = vcpu->arch.mmu;
3654 u8 shadow_root_level = mmu->root_role.level;
3655 hpa_t root;
3656 unsigned i;
3657 int r;
3658
3659 if (tdp_mmu_enabled)
3660 return kvm_tdp_mmu_alloc_root(vcpu);
3661
3662 write_lock(&vcpu->kvm->mmu_lock);
3663 r = make_mmu_pages_available(vcpu);
3664 if (r < 0)
3665 goto out_unlock;
3666
3667 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3668 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3669 mmu->root.hpa = root;
3670 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3671 if (WARN_ON_ONCE(!mmu->pae_root)) {
3672 r = -EIO;
3673 goto out_unlock;
3674 }
3675
3676 for (i = 0; i < 4; ++i) {
3677 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3678
3679 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3680 PT32_ROOT_LEVEL);
3681 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3682 shadow_me_value;
3683 }
3684 mmu->root.hpa = __pa(mmu->pae_root);
3685 } else {
3686 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3687 r = -EIO;
3688 goto out_unlock;
3689 }
3690
3691 /* root.pgd is ignored for direct MMUs. */
3692 mmu->root.pgd = 0;
3693 out_unlock:
3694 write_unlock(&vcpu->kvm->mmu_lock);
3695 return r;
3696 }
3697
mmu_first_shadow_root_alloc(struct kvm * kvm)3698 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3699 {
3700 struct kvm_memslots *slots;
3701 struct kvm_memory_slot *slot;
3702 int r = 0, i, bkt;
3703
3704 /*
3705 * Check if this is the first shadow root being allocated before
3706 * taking the lock.
3707 */
3708 if (kvm_shadow_root_allocated(kvm))
3709 return 0;
3710
3711 mutex_lock(&kvm->slots_arch_lock);
3712
3713 /* Recheck, under the lock, whether this is the first shadow root. */
3714 if (kvm_shadow_root_allocated(kvm))
3715 goto out_unlock;
3716
3717 /*
3718 * Check if anything actually needs to be allocated, e.g. all metadata
3719 * will be allocated upfront if TDP is disabled.
3720 */
3721 if (kvm_memslots_have_rmaps(kvm) &&
3722 kvm_page_track_write_tracking_enabled(kvm))
3723 goto out_success;
3724
3725 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3726 slots = __kvm_memslots(kvm, i);
3727 kvm_for_each_memslot(slot, bkt, slots) {
3728 /*
3729 * Both of these functions are no-ops if the target is
3730 * already allocated, so unconditionally calling both
3731 * is safe. Intentionally do NOT free allocations on
3732 * failure to avoid having to track which allocations
3733 * were made now versus when the memslot was created.
3734 * The metadata is guaranteed to be freed when the slot
3735 * is freed, and will be kept/used if userspace retries
3736 * KVM_RUN instead of killing the VM.
3737 */
3738 r = memslot_rmap_alloc(slot, slot->npages);
3739 if (r)
3740 goto out_unlock;
3741 r = kvm_page_track_write_tracking_alloc(slot);
3742 if (r)
3743 goto out_unlock;
3744 }
3745 }
3746
3747 /*
3748 * Ensure that shadow_root_allocated becomes true strictly after
3749 * all the related pointers are set.
3750 */
3751 out_success:
3752 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3753
3754 out_unlock:
3755 mutex_unlock(&kvm->slots_arch_lock);
3756 return r;
3757 }
3758
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3759 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3760 {
3761 struct kvm_mmu *mmu = vcpu->arch.mmu;
3762 u64 pdptrs[4], pm_mask;
3763 gfn_t root_gfn, root_pgd;
3764 int quadrant, i, r;
3765 hpa_t root;
3766
3767 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3768 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3769
3770 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3771 mmu->root.hpa = kvm_mmu_get_dummy_root();
3772 return 0;
3773 }
3774
3775 /*
3776 * On SVM, reading PDPTRs might access guest memory, which might fault
3777 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3778 */
3779 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3780 for (i = 0; i < 4; ++i) {
3781 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3782 if (!(pdptrs[i] & PT_PRESENT_MASK))
3783 continue;
3784
3785 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3786 pdptrs[i] = 0;
3787 }
3788 }
3789
3790 r = mmu_first_shadow_root_alloc(vcpu->kvm);
3791 if (r)
3792 return r;
3793
3794 write_lock(&vcpu->kvm->mmu_lock);
3795 r = make_mmu_pages_available(vcpu);
3796 if (r < 0)
3797 goto out_unlock;
3798
3799 /*
3800 * Do we shadow a long mode page table? If so we need to
3801 * write-protect the guests page table root.
3802 */
3803 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3804 root = mmu_alloc_root(vcpu, root_gfn, 0,
3805 mmu->root_role.level);
3806 mmu->root.hpa = root;
3807 goto set_root_pgd;
3808 }
3809
3810 if (WARN_ON_ONCE(!mmu->pae_root)) {
3811 r = -EIO;
3812 goto out_unlock;
3813 }
3814
3815 /*
3816 * We shadow a 32 bit page table. This may be a legacy 2-level
3817 * or a PAE 3-level page table. In either case we need to be aware that
3818 * the shadow page table may be a PAE or a long mode page table.
3819 */
3820 pm_mask = PT_PRESENT_MASK | shadow_me_value;
3821 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3822 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3823
3824 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3825 r = -EIO;
3826 goto out_unlock;
3827 }
3828 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3829
3830 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3831 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3832 r = -EIO;
3833 goto out_unlock;
3834 }
3835 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3836 }
3837 }
3838
3839 for (i = 0; i < 4; ++i) {
3840 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3841
3842 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3843 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3844 mmu->pae_root[i] = INVALID_PAE_ROOT;
3845 continue;
3846 }
3847 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3848 }
3849
3850 /*
3851 * If shadowing 32-bit non-PAE page tables, each PAE page
3852 * directory maps one quarter of the guest's non-PAE page
3853 * directory. Othwerise each PAE page direct shadows one guest
3854 * PAE page directory so that quadrant should be 0.
3855 */
3856 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3857
3858 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3859 mmu->pae_root[i] = root | pm_mask;
3860 }
3861
3862 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3863 mmu->root.hpa = __pa(mmu->pml5_root);
3864 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3865 mmu->root.hpa = __pa(mmu->pml4_root);
3866 else
3867 mmu->root.hpa = __pa(mmu->pae_root);
3868
3869 set_root_pgd:
3870 mmu->root.pgd = root_pgd;
3871 out_unlock:
3872 write_unlock(&vcpu->kvm->mmu_lock);
3873
3874 return r;
3875 }
3876
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3877 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3878 {
3879 struct kvm_mmu *mmu = vcpu->arch.mmu;
3880 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3881 u64 *pml5_root = NULL;
3882 u64 *pml4_root = NULL;
3883 u64 *pae_root;
3884
3885 /*
3886 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3887 * tables are allocated and initialized at root creation as there is no
3888 * equivalent level in the guest's NPT to shadow. Allocate the tables
3889 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3890 */
3891 if (mmu->root_role.direct ||
3892 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3893 mmu->root_role.level < PT64_ROOT_4LEVEL)
3894 return 0;
3895
3896 /*
3897 * NPT, the only paging mode that uses this horror, uses a fixed number
3898 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3899 * all MMus are 5-level. Thus, this can safely require that pml5_root
3900 * is allocated if the other roots are valid and pml5 is needed, as any
3901 * prior MMU would also have required pml5.
3902 */
3903 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3904 return 0;
3905
3906 /*
3907 * The special roots should always be allocated in concert. Yell and
3908 * bail if KVM ends up in a state where only one of the roots is valid.
3909 */
3910 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3911 (need_pml5 && mmu->pml5_root)))
3912 return -EIO;
3913
3914 /*
3915 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3916 * doesn't need to be decrypted.
3917 */
3918 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3919 if (!pae_root)
3920 return -ENOMEM;
3921
3922 #ifdef CONFIG_X86_64
3923 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3924 if (!pml4_root)
3925 goto err_pml4;
3926
3927 if (need_pml5) {
3928 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3929 if (!pml5_root)
3930 goto err_pml5;
3931 }
3932 #endif
3933
3934 mmu->pae_root = pae_root;
3935 mmu->pml4_root = pml4_root;
3936 mmu->pml5_root = pml5_root;
3937
3938 return 0;
3939
3940 #ifdef CONFIG_X86_64
3941 err_pml5:
3942 free_page((unsigned long)pml4_root);
3943 err_pml4:
3944 free_page((unsigned long)pae_root);
3945 return -ENOMEM;
3946 #endif
3947 }
3948
is_unsync_root(hpa_t root)3949 static bool is_unsync_root(hpa_t root)
3950 {
3951 struct kvm_mmu_page *sp;
3952
3953 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
3954 return false;
3955
3956 /*
3957 * The read barrier orders the CPU's read of SPTE.W during the page table
3958 * walk before the reads of sp->unsync/sp->unsync_children here.
3959 *
3960 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3961 * any guest page table changes are not guaranteed to be visible anyway
3962 * until this VCPU issues a TLB flush strictly after those changes are
3963 * made. We only need to ensure that the other CPU sets these flags
3964 * before any actual changes to the page tables are made. The comments
3965 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3966 * requirement isn't satisfied.
3967 */
3968 smp_rmb();
3969 sp = root_to_sp(root);
3970
3971 /*
3972 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3973 * PDPTEs for a given PAE root need to be synchronized individually.
3974 */
3975 if (WARN_ON_ONCE(!sp))
3976 return false;
3977
3978 if (sp->unsync || sp->unsync_children)
3979 return true;
3980
3981 return false;
3982 }
3983
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3984 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3985 {
3986 int i;
3987 struct kvm_mmu_page *sp;
3988
3989 if (vcpu->arch.mmu->root_role.direct)
3990 return;
3991
3992 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3993 return;
3994
3995 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3996
3997 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3998 hpa_t root = vcpu->arch.mmu->root.hpa;
3999
4000 if (!is_unsync_root(root))
4001 return;
4002
4003 sp = root_to_sp(root);
4004
4005 write_lock(&vcpu->kvm->mmu_lock);
4006 mmu_sync_children(vcpu, sp, true);
4007 write_unlock(&vcpu->kvm->mmu_lock);
4008 return;
4009 }
4010
4011 write_lock(&vcpu->kvm->mmu_lock);
4012
4013 for (i = 0; i < 4; ++i) {
4014 hpa_t root = vcpu->arch.mmu->pae_root[i];
4015
4016 if (IS_VALID_PAE_ROOT(root)) {
4017 sp = spte_to_child_sp(root);
4018 mmu_sync_children(vcpu, sp, true);
4019 }
4020 }
4021
4022 write_unlock(&vcpu->kvm->mmu_lock);
4023 }
4024
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)4025 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4026 {
4027 unsigned long roots_to_free = 0;
4028 int i;
4029
4030 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4031 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4032 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4033
4034 /* sync prev_roots by simply freeing them */
4035 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4036 }
4037
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)4038 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4039 gpa_t vaddr, u64 access,
4040 struct x86_exception *exception)
4041 {
4042 if (exception)
4043 exception->error_code = 0;
4044 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4045 }
4046
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)4047 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4048 {
4049 /*
4050 * A nested guest cannot use the MMIO cache if it is using nested
4051 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4052 */
4053 if (mmu_is_nested(vcpu))
4054 return false;
4055
4056 if (direct)
4057 return vcpu_match_mmio_gpa(vcpu, addr);
4058
4059 return vcpu_match_mmio_gva(vcpu, addr);
4060 }
4061
4062 /*
4063 * Return the level of the lowest level SPTE added to sptes.
4064 * That SPTE may be non-present.
4065 *
4066 * Must be called between walk_shadow_page_lockless_{begin,end}.
4067 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4068 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4069 {
4070 struct kvm_shadow_walk_iterator iterator;
4071 int leaf = -1;
4072 u64 spte;
4073
4074 for (shadow_walk_init(&iterator, vcpu, addr),
4075 *root_level = iterator.level;
4076 shadow_walk_okay(&iterator);
4077 __shadow_walk_next(&iterator, spte)) {
4078 leaf = iterator.level;
4079 spte = mmu_spte_get_lockless(iterator.sptep);
4080
4081 sptes[leaf] = spte;
4082 }
4083
4084 return leaf;
4085 }
4086
get_sptes_lockless(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4087 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4088 int *root_level)
4089 {
4090 int leaf;
4091
4092 walk_shadow_page_lockless_begin(vcpu);
4093
4094 if (is_tdp_mmu_active(vcpu))
4095 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4096 else
4097 leaf = get_walk(vcpu, addr, sptes, root_level);
4098
4099 walk_shadow_page_lockless_end(vcpu);
4100 return leaf;
4101 }
4102
4103 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)4104 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4105 {
4106 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4107 struct rsvd_bits_validate *rsvd_check;
4108 int root, leaf, level;
4109 bool reserved = false;
4110
4111 leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4112 if (unlikely(leaf < 0)) {
4113 *sptep = 0ull;
4114 return reserved;
4115 }
4116
4117 *sptep = sptes[leaf];
4118
4119 /*
4120 * Skip reserved bits checks on the terminal leaf if it's not a valid
4121 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4122 * design, always have reserved bits set. The purpose of the checks is
4123 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4124 */
4125 if (!is_shadow_present_pte(sptes[leaf]))
4126 leaf++;
4127
4128 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4129
4130 for (level = root; level >= leaf; level--)
4131 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4132
4133 if (reserved) {
4134 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4135 __func__, addr);
4136 for (level = root; level >= leaf; level--)
4137 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4138 sptes[level], level,
4139 get_rsvd_bits(rsvd_check, sptes[level], level));
4140 }
4141
4142 return reserved;
4143 }
4144
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4145 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4146 {
4147 u64 spte;
4148 bool reserved;
4149
4150 if (mmio_info_in_cache(vcpu, addr, direct))
4151 return RET_PF_EMULATE;
4152
4153 reserved = get_mmio_spte(vcpu, addr, &spte);
4154 if (WARN_ON_ONCE(reserved))
4155 return -EINVAL;
4156
4157 if (is_mmio_spte(vcpu->kvm, spte)) {
4158 gfn_t gfn = get_mmio_spte_gfn(spte);
4159 unsigned int access = get_mmio_spte_access(spte);
4160
4161 if (!check_mmio_spte(vcpu, spte))
4162 return RET_PF_INVALID;
4163
4164 if (direct)
4165 addr = 0;
4166
4167 trace_handle_mmio_page_fault(addr, gfn, access);
4168 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4169 return RET_PF_EMULATE;
4170 }
4171
4172 /*
4173 * If the page table is zapped by other cpus, let CPU fault again on
4174 * the address.
4175 */
4176 return RET_PF_RETRY;
4177 }
4178
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4179 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4180 struct kvm_page_fault *fault)
4181 {
4182 if (unlikely(fault->rsvd))
4183 return false;
4184
4185 if (!fault->present || !fault->write)
4186 return false;
4187
4188 /*
4189 * guest is writing the page which is write tracked which can
4190 * not be fixed by page fault handler.
4191 */
4192 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4193 return true;
4194
4195 return false;
4196 }
4197
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4198 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4199 {
4200 struct kvm_shadow_walk_iterator iterator;
4201 u64 spte;
4202
4203 walk_shadow_page_lockless_begin(vcpu);
4204 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4205 clear_sp_write_flooding_count(iterator.sptep);
4206 walk_shadow_page_lockless_end(vcpu);
4207 }
4208
alloc_apf_token(struct kvm_vcpu * vcpu)4209 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4210 {
4211 /* make sure the token value is not 0 */
4212 u32 id = vcpu->arch.apf.id;
4213
4214 if (id << 12 == 0)
4215 vcpu->arch.apf.id = 1;
4216
4217 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4218 }
4219
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4220 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4221 struct kvm_page_fault *fault)
4222 {
4223 struct kvm_arch_async_pf arch;
4224
4225 arch.token = alloc_apf_token(vcpu);
4226 arch.gfn = fault->gfn;
4227 arch.error_code = fault->error_code;
4228 arch.direct_map = vcpu->arch.mmu->root_role.direct;
4229 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4230
4231 return kvm_setup_async_pf(vcpu, fault->addr,
4232 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4233 }
4234
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4236 {
4237 int r;
4238
4239 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4240 return;
4241
4242 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4243 work->wakeup_all)
4244 return;
4245
4246 r = kvm_mmu_reload(vcpu);
4247 if (unlikely(r))
4248 return;
4249
4250 if (!vcpu->arch.mmu->root_role.direct &&
4251 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4252 return;
4253
4254 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4255 true, NULL, NULL);
4256
4257 /*
4258 * Account fixed page faults, otherwise they'll never be counted, but
4259 * ignore stats for all other return times. Page-ready "faults" aren't
4260 * truly spurious and never trigger emulation
4261 */
4262 if (r == RET_PF_FIXED)
4263 vcpu->stat.pf_fixed++;
4264 }
4265
kvm_max_level_for_order(int order)4266 static inline u8 kvm_max_level_for_order(int order)
4267 {
4268 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4269
4270 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4271 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4272 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4273
4274 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4275 return PG_LEVEL_1G;
4276
4277 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4278 return PG_LEVEL_2M;
4279
4280 return PG_LEVEL_4K;
4281 }
4282
kvm_max_private_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,u8 max_level,int gmem_order)4283 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
4284 u8 max_level, int gmem_order)
4285 {
4286 u8 req_max_level;
4287
4288 if (max_level == PG_LEVEL_4K)
4289 return PG_LEVEL_4K;
4290
4291 max_level = min(kvm_max_level_for_order(gmem_order), max_level);
4292 if (max_level == PG_LEVEL_4K)
4293 return PG_LEVEL_4K;
4294
4295 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn);
4296 if (req_max_level)
4297 max_level = min(max_level, req_max_level);
4298
4299 return max_level;
4300 }
4301
kvm_mmu_finish_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int r)4302 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4303 struct kvm_page_fault *fault, int r)
4304 {
4305 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4306 r == RET_PF_RETRY, fault->map_writable);
4307 }
4308
kvm_mmu_faultin_pfn_private(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4309 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu,
4310 struct kvm_page_fault *fault)
4311 {
4312 int max_order, r;
4313
4314 if (!kvm_slot_can_be_private(fault->slot)) {
4315 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4316 return -EFAULT;
4317 }
4318
4319 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4320 &fault->refcounted_page, &max_order);
4321 if (r) {
4322 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4323 return r;
4324 }
4325
4326 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4327 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn,
4328 fault->max_level, max_order);
4329
4330 return RET_PF_CONTINUE;
4331 }
4332
__kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4333 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4334 struct kvm_page_fault *fault)
4335 {
4336 unsigned int foll = fault->write ? FOLL_WRITE : 0;
4337
4338 if (fault->is_private)
4339 return kvm_mmu_faultin_pfn_private(vcpu, fault);
4340
4341 foll |= FOLL_NOWAIT;
4342 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4343 &fault->map_writable, &fault->refcounted_page);
4344
4345 /*
4346 * If resolving the page failed because I/O is needed to fault-in the
4347 * page, then either set up an asynchronous #PF to do the I/O, or if
4348 * doing an async #PF isn't possible, retry with I/O allowed. All
4349 * other failures are terminal, i.e. retrying won't help.
4350 */
4351 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4352 return RET_PF_CONTINUE;
4353
4354 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4355 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4356 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4357 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4358 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4359 return RET_PF_RETRY;
4360 } else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4361 return RET_PF_RETRY;
4362 }
4363 }
4364
4365 /*
4366 * Allow gup to bail on pending non-fatal signals when it's also allowed
4367 * to wait for IO. Note, gup always bails if it is unable to quickly
4368 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4369 */
4370 foll |= FOLL_INTERRUPTIBLE;
4371 foll &= ~FOLL_NOWAIT;
4372 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4373 &fault->map_writable, &fault->refcounted_page);
4374
4375 return RET_PF_CONTINUE;
4376 }
4377
kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)4378 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4379 struct kvm_page_fault *fault, unsigned int access)
4380 {
4381 struct kvm_memory_slot *slot = fault->slot;
4382 int ret;
4383
4384 /*
4385 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4386 * change in attributes. is_page_fault_stale() will detect an
4387 * invalidation relate to fault->fn and resume the guest without
4388 * installing a mapping in the page tables.
4389 */
4390 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4391 smp_rmb();
4392
4393 /*
4394 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4395 * private vs. shared mismatch.
4396 */
4397 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
4398 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4399 return -EFAULT;
4400 }
4401
4402 if (unlikely(!slot))
4403 return kvm_handle_noslot_fault(vcpu, fault, access);
4404
4405 /*
4406 * Retry the page fault if the gfn hit a memslot that is being deleted
4407 * or moved. This ensures any existing SPTEs for the old memslot will
4408 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4409 */
4410 if (slot->flags & KVM_MEMSLOT_INVALID)
4411 return RET_PF_RETRY;
4412
4413 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4414 /*
4415 * Don't map L1's APIC access page into L2, KVM doesn't support
4416 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4417 * i.e. the access needs to be emulated. Emulating access to
4418 * L1's APIC is also correct if L1 is accelerating L2's own
4419 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4420 * into L2. Note, vcpu_is_mmio_gpa() always treats access to
4421 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM
4422 * uses different roots for L1 vs. L2, i.e. there is no danger
4423 * of breaking APICv/AVIC for L1.
4424 */
4425 if (is_guest_mode(vcpu))
4426 return kvm_handle_noslot_fault(vcpu, fault, access);
4427
4428 /*
4429 * If the APIC access page exists but is disabled, go directly
4430 * to emulation without caching the MMIO access or creating a
4431 * MMIO SPTE. That way the cache doesn't need to be purged
4432 * when the AVIC is re-enabled.
4433 */
4434 if (!kvm_apicv_activated(vcpu->kvm))
4435 return RET_PF_EMULATE;
4436 }
4437
4438 /*
4439 * Check for a relevant mmu_notifier invalidation event before getting
4440 * the pfn from the primary MMU, and before acquiring mmu_lock.
4441 *
4442 * For mmu_lock, if there is an in-progress invalidation and the kernel
4443 * allows preemption, the invalidation task may drop mmu_lock and yield
4444 * in response to mmu_lock being contended, which is *very* counter-
4445 * productive as this vCPU can't actually make forward progress until
4446 * the invalidation completes.
4447 *
4448 * Retrying now can also avoid unnessary lock contention in the primary
4449 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4450 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4451 * can cause the invalidation to take longer by holding locks that are
4452 * needed to complete the invalidation.
4453 *
4454 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4455 * will never yield mmu_lock in response to contention, as this vCPU is
4456 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4457 * to detect retry guarantees the worst case latency for the vCPU.
4458 */
4459 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
4460 return RET_PF_RETRY;
4461
4462 ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4463 if (ret != RET_PF_CONTINUE)
4464 return ret;
4465
4466 if (unlikely(is_error_pfn(fault->pfn)))
4467 return kvm_handle_error_pfn(vcpu, fault);
4468
4469 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4470 return kvm_handle_noslot_fault(vcpu, fault, access);
4471
4472 /*
4473 * Check again for a relevant mmu_notifier invalidation event purely to
4474 * avoid contending mmu_lock. Most invalidations will be detected by
4475 * the previous check, but checking is extremely cheap relative to the
4476 * overall cost of failing to detect the invalidation until after
4477 * mmu_lock is acquired.
4478 */
4479 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
4480 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4481 return RET_PF_RETRY;
4482 }
4483
4484 return RET_PF_CONTINUE;
4485 }
4486
4487 /*
4488 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4489 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4490 */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4491 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4492 struct kvm_page_fault *fault)
4493 {
4494 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4495
4496 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4497 if (sp && is_obsolete_sp(vcpu->kvm, sp))
4498 return true;
4499
4500 /*
4501 * Roots without an associated shadow page are considered invalid if
4502 * there is a pending request to free obsolete roots. The request is
4503 * only a hint that the current root _may_ be obsolete and needs to be
4504 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4505 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4506 * to reload even if no vCPU is actively using the root.
4507 */
4508 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4509 return true;
4510
4511 /*
4512 * Check for a relevant mmu_notifier invalidation event one last time
4513 * now that mmu_lock is held, as the "unsafe" checks performed without
4514 * holding mmu_lock can get false negatives.
4515 */
4516 return fault->slot &&
4517 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4518 }
4519
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4520 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4521 {
4522 int r;
4523
4524 /* Dummy roots are used only for shadowing bad guest roots. */
4525 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4526 return RET_PF_RETRY;
4527
4528 if (page_fault_handle_page_track(vcpu, fault))
4529 return RET_PF_WRITE_PROTECTED;
4530
4531 r = fast_page_fault(vcpu, fault);
4532 if (r != RET_PF_INVALID)
4533 return r;
4534
4535 r = mmu_topup_memory_caches(vcpu, false);
4536 if (r)
4537 return r;
4538
4539 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4540 if (r != RET_PF_CONTINUE)
4541 return r;
4542
4543 r = RET_PF_RETRY;
4544 write_lock(&vcpu->kvm->mmu_lock);
4545
4546 if (is_page_fault_stale(vcpu, fault))
4547 goto out_unlock;
4548
4549 r = make_mmu_pages_available(vcpu);
4550 if (r)
4551 goto out_unlock;
4552
4553 r = direct_map(vcpu, fault);
4554
4555 out_unlock:
4556 kvm_mmu_finish_page_fault(vcpu, fault, r);
4557 write_unlock(&vcpu->kvm->mmu_lock);
4558 return r;
4559 }
4560
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4561 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4562 struct kvm_page_fault *fault)
4563 {
4564 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4565 fault->max_level = PG_LEVEL_2M;
4566 return direct_page_fault(vcpu, fault);
4567 }
4568
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4569 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4570 u64 fault_address, char *insn, int insn_len)
4571 {
4572 int r = 1;
4573 u32 flags = vcpu->arch.apf.host_apf_flags;
4574
4575 #ifndef CONFIG_X86_64
4576 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4577 if (WARN_ON_ONCE(fault_address >> 32))
4578 return -EFAULT;
4579 #endif
4580 /*
4581 * Legacy #PF exception only have a 32-bit error code. Simply drop the
4582 * upper bits as KVM doesn't use them for #PF (because they are never
4583 * set), and to ensure there are no collisions with KVM-defined bits.
4584 */
4585 if (WARN_ON_ONCE(error_code >> 32))
4586 error_code = lower_32_bits(error_code);
4587
4588 /*
4589 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4590 * them to conflict with #PF error codes, which are limited to 32 bits.
4591 */
4592 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4593
4594 vcpu->arch.l1tf_flush_l1d = true;
4595 if (!flags) {
4596 trace_kvm_page_fault(vcpu, fault_address, error_code);
4597
4598 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4599 insn_len);
4600 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4601 vcpu->arch.apf.host_apf_flags = 0;
4602 local_irq_disable();
4603 kvm_async_pf_task_wait_schedule(fault_address);
4604 local_irq_enable();
4605 } else {
4606 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4607 }
4608
4609 return r;
4610 }
4611 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4612
4613 #ifdef CONFIG_X86_64
kvm_tdp_mmu_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4614 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4615 struct kvm_page_fault *fault)
4616 {
4617 int r;
4618
4619 if (page_fault_handle_page_track(vcpu, fault))
4620 return RET_PF_WRITE_PROTECTED;
4621
4622 r = fast_page_fault(vcpu, fault);
4623 if (r != RET_PF_INVALID)
4624 return r;
4625
4626 r = mmu_topup_memory_caches(vcpu, false);
4627 if (r)
4628 return r;
4629
4630 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4631 if (r != RET_PF_CONTINUE)
4632 return r;
4633
4634 r = RET_PF_RETRY;
4635 read_lock(&vcpu->kvm->mmu_lock);
4636
4637 if (is_page_fault_stale(vcpu, fault))
4638 goto out_unlock;
4639
4640 r = kvm_tdp_mmu_map(vcpu, fault);
4641
4642 out_unlock:
4643 kvm_mmu_finish_page_fault(vcpu, fault, r);
4644 read_unlock(&vcpu->kvm->mmu_lock);
4645 return r;
4646 }
4647 #endif
4648
kvm_mmu_may_ignore_guest_pat(void)4649 bool kvm_mmu_may_ignore_guest_pat(void)
4650 {
4651 /*
4652 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM
4653 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to
4654 * honor the memtype from the guest's PAT so that guest accesses to
4655 * memory that is DMA'd aren't cached against the guest's wishes. As a
4656 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA,
4657 * KVM _always_ ignores guest PAT (when EPT is enabled).
4658 */
4659 return shadow_memtype_mask;
4660 }
4661
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4662 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4663 {
4664 #ifdef CONFIG_X86_64
4665 if (tdp_mmu_enabled)
4666 return kvm_tdp_mmu_page_fault(vcpu, fault);
4667 #endif
4668
4669 return direct_page_fault(vcpu, fault);
4670 }
4671
kvm_tdp_map_page(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code,u8 * level)4672 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
4673 u8 *level)
4674 {
4675 int r;
4676
4677 /*
4678 * Restrict to TDP page fault, since that's the only case where the MMU
4679 * is indexed by GPA.
4680 */
4681 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4682 return -EOPNOTSUPP;
4683
4684 do {
4685 if (signal_pending(current))
4686 return -EINTR;
4687 cond_resched();
4688 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4689 } while (r == RET_PF_RETRY);
4690
4691 if (r < 0)
4692 return r;
4693
4694 switch (r) {
4695 case RET_PF_FIXED:
4696 case RET_PF_SPURIOUS:
4697 case RET_PF_WRITE_PROTECTED:
4698 return 0;
4699
4700 case RET_PF_EMULATE:
4701 return -ENOENT;
4702
4703 case RET_PF_RETRY:
4704 case RET_PF_CONTINUE:
4705 case RET_PF_INVALID:
4706 default:
4707 WARN_ONCE(1, "could not fix page fault during prefault");
4708 return -EIO;
4709 }
4710 }
4711
kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4712 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4713 struct kvm_pre_fault_memory *range)
4714 {
4715 u64 error_code = PFERR_GUEST_FINAL_MASK;
4716 u8 level = PG_LEVEL_4K;
4717 u64 end;
4718 int r;
4719
4720 if (!vcpu->kvm->arch.pre_fault_allowed)
4721 return -EOPNOTSUPP;
4722
4723 /*
4724 * reload is efficient when called repeatedly, so we can do it on
4725 * every iteration.
4726 */
4727 r = kvm_mmu_reload(vcpu);
4728 if (r)
4729 return r;
4730
4731 if (kvm_arch_has_private_mem(vcpu->kvm) &&
4732 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4733 error_code |= PFERR_PRIVATE_ACCESS;
4734
4735 /*
4736 * Shadow paging uses GVA for kvm page fault, so restrict to
4737 * two-dimensional paging.
4738 */
4739 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level);
4740 if (r < 0)
4741 return r;
4742
4743 /*
4744 * If the mapping that covers range->gpa can use a huge page, it
4745 * may start below it or end after range->gpa + range->size.
4746 */
4747 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
4748 return min(range->size, end - range->gpa);
4749 }
4750
nonpaging_init_context(struct kvm_mmu * context)4751 static void nonpaging_init_context(struct kvm_mmu *context)
4752 {
4753 context->page_fault = nonpaging_page_fault;
4754 context->gva_to_gpa = nonpaging_gva_to_gpa;
4755 context->sync_spte = NULL;
4756 }
4757
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4758 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4759 union kvm_mmu_page_role role)
4760 {
4761 struct kvm_mmu_page *sp;
4762
4763 if (!VALID_PAGE(root->hpa))
4764 return false;
4765
4766 if (!role.direct && pgd != root->pgd)
4767 return false;
4768
4769 sp = root_to_sp(root->hpa);
4770 if (WARN_ON_ONCE(!sp))
4771 return false;
4772
4773 return role.word == sp->role.word;
4774 }
4775
4776 /*
4777 * Find out if a previously cached root matching the new pgd/role is available,
4778 * and insert the current root as the MRU in the cache.
4779 * If a matching root is found, it is assigned to kvm_mmu->root and
4780 * true is returned.
4781 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4782 * evicted to make room for the current root, and false is returned.
4783 */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4784 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4785 gpa_t new_pgd,
4786 union kvm_mmu_page_role new_role)
4787 {
4788 uint i;
4789
4790 if (is_root_usable(&mmu->root, new_pgd, new_role))
4791 return true;
4792
4793 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4794 /*
4795 * The swaps end up rotating the cache like this:
4796 * C 0 1 2 3 (on entry to the function)
4797 * 0 C 1 2 3
4798 * 1 C 0 2 3
4799 * 2 C 0 1 3
4800 * 3 C 0 1 2 (on exit from the loop)
4801 */
4802 swap(mmu->root, mmu->prev_roots[i]);
4803 if (is_root_usable(&mmu->root, new_pgd, new_role))
4804 return true;
4805 }
4806
4807 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4808 return false;
4809 }
4810
4811 /*
4812 * Find out if a previously cached root matching the new pgd/role is available.
4813 * On entry, mmu->root is invalid.
4814 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4815 * of the cache becomes invalid, and true is returned.
4816 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4817 */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4818 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4819 gpa_t new_pgd,
4820 union kvm_mmu_page_role new_role)
4821 {
4822 uint i;
4823
4824 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4825 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4826 goto hit;
4827
4828 return false;
4829
4830 hit:
4831 swap(mmu->root, mmu->prev_roots[i]);
4832 /* Bubble up the remaining roots. */
4833 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4834 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4835 mmu->prev_roots[i].hpa = INVALID_PAGE;
4836 return true;
4837 }
4838
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4839 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4840 gpa_t new_pgd, union kvm_mmu_page_role new_role)
4841 {
4842 /*
4843 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4844 * avoid having to deal with PDPTEs and other complexities.
4845 */
4846 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4847 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4848
4849 if (VALID_PAGE(mmu->root.hpa))
4850 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4851 else
4852 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4853 }
4854
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4855 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4856 {
4857 struct kvm_mmu *mmu = vcpu->arch.mmu;
4858 union kvm_mmu_page_role new_role = mmu->root_role;
4859
4860 /*
4861 * Return immediately if no usable root was found, kvm_mmu_reload()
4862 * will establish a valid root prior to the next VM-Enter.
4863 */
4864 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4865 return;
4866
4867 /*
4868 * It's possible that the cached previous root page is obsolete because
4869 * of a change in the MMU generation number. However, changing the
4870 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4871 * which will free the root set here and allocate a new one.
4872 */
4873 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4874
4875 if (force_flush_and_sync_on_reuse) {
4876 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4877 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4878 }
4879
4880 /*
4881 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4882 * switching to a new CR3, that GVA->GPA mapping may no longer be
4883 * valid. So clear any cached MMIO info even when we don't need to sync
4884 * the shadow page tables.
4885 */
4886 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4887
4888 /*
4889 * If this is a direct root page, it doesn't have a write flooding
4890 * count. Otherwise, clear the write flooding count.
4891 */
4892 if (!new_role.direct) {
4893 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4894
4895 if (!WARN_ON_ONCE(!sp))
4896 __clear_sp_write_flooding_count(sp);
4897 }
4898 }
4899 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4900
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)4901 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4902 unsigned int access)
4903 {
4904 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
4905 if (gfn != get_mmio_spte_gfn(*sptep)) {
4906 mmu_spte_clear_no_track(sptep);
4907 return true;
4908 }
4909
4910 mark_mmio_spte(vcpu, sptep, gfn, access);
4911 return true;
4912 }
4913
4914 return false;
4915 }
4916
4917 #define PTTYPE_EPT 18 /* arbitrary */
4918 #define PTTYPE PTTYPE_EPT
4919 #include "paging_tmpl.h"
4920 #undef PTTYPE
4921
4922 #define PTTYPE 64
4923 #include "paging_tmpl.h"
4924 #undef PTTYPE
4925
4926 #define PTTYPE 32
4927 #include "paging_tmpl.h"
4928 #undef PTTYPE
4929
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4930 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4931 u64 pa_bits_rsvd, int level, bool nx,
4932 bool gbpages, bool pse, bool amd)
4933 {
4934 u64 gbpages_bit_rsvd = 0;
4935 u64 nonleaf_bit8_rsvd = 0;
4936 u64 high_bits_rsvd;
4937
4938 rsvd_check->bad_mt_xwr = 0;
4939
4940 if (!gbpages)
4941 gbpages_bit_rsvd = rsvd_bits(7, 7);
4942
4943 if (level == PT32E_ROOT_LEVEL)
4944 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4945 else
4946 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4947
4948 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4949 if (!nx)
4950 high_bits_rsvd |= rsvd_bits(63, 63);
4951
4952 /*
4953 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4954 * leaf entries) on AMD CPUs only.
4955 */
4956 if (amd)
4957 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4958
4959 switch (level) {
4960 case PT32_ROOT_LEVEL:
4961 /* no rsvd bits for 2 level 4K page table entries */
4962 rsvd_check->rsvd_bits_mask[0][1] = 0;
4963 rsvd_check->rsvd_bits_mask[0][0] = 0;
4964 rsvd_check->rsvd_bits_mask[1][0] =
4965 rsvd_check->rsvd_bits_mask[0][0];
4966
4967 if (!pse) {
4968 rsvd_check->rsvd_bits_mask[1][1] = 0;
4969 break;
4970 }
4971
4972 if (is_cpuid_PSE36())
4973 /* 36bits PSE 4MB page */
4974 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4975 else
4976 /* 32 bits PSE 4MB page */
4977 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4978 break;
4979 case PT32E_ROOT_LEVEL:
4980 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4981 high_bits_rsvd |
4982 rsvd_bits(5, 8) |
4983 rsvd_bits(1, 2); /* PDPTE */
4984 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4985 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4986 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4987 rsvd_bits(13, 20); /* large page */
4988 rsvd_check->rsvd_bits_mask[1][0] =
4989 rsvd_check->rsvd_bits_mask[0][0];
4990 break;
4991 case PT64_ROOT_5LEVEL:
4992 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4993 nonleaf_bit8_rsvd |
4994 rsvd_bits(7, 7);
4995 rsvd_check->rsvd_bits_mask[1][4] =
4996 rsvd_check->rsvd_bits_mask[0][4];
4997 fallthrough;
4998 case PT64_ROOT_4LEVEL:
4999 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5000 nonleaf_bit8_rsvd |
5001 rsvd_bits(7, 7);
5002 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5003 gbpages_bit_rsvd;
5004 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5005 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5006 rsvd_check->rsvd_bits_mask[1][3] =
5007 rsvd_check->rsvd_bits_mask[0][3];
5008 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5009 gbpages_bit_rsvd |
5010 rsvd_bits(13, 29);
5011 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5012 rsvd_bits(13, 20); /* large page */
5013 rsvd_check->rsvd_bits_mask[1][0] =
5014 rsvd_check->rsvd_bits_mask[0][0];
5015 break;
5016 }
5017 }
5018
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5019 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5020 struct kvm_mmu *context)
5021 {
5022 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
5023 vcpu->arch.reserved_gpa_bits,
5024 context->cpu_role.base.level, is_efer_nx(context),
5025 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5026 is_cr4_pse(context),
5027 guest_cpuid_is_amd_compatible(vcpu));
5028 }
5029
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)5030 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5031 u64 pa_bits_rsvd, bool execonly,
5032 int huge_page_level)
5033 {
5034 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5035 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5036 u64 bad_mt_xwr;
5037
5038 if (huge_page_level < PG_LEVEL_1G)
5039 large_1g_rsvd = rsvd_bits(7, 7);
5040 if (huge_page_level < PG_LEVEL_2M)
5041 large_2m_rsvd = rsvd_bits(7, 7);
5042
5043 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5044 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5045 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5046 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5047 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5048
5049 /* large page */
5050 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5051 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5052 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5053 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5054 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5055
5056 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
5057 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
5058 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
5059 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
5060 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
5061 if (!execonly) {
5062 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
5063 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5064 }
5065 rsvd_check->bad_mt_xwr = bad_mt_xwr;
5066 }
5067
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)5068 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5069 struct kvm_mmu *context, bool execonly, int huge_page_level)
5070 {
5071 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5072 vcpu->arch.reserved_gpa_bits, execonly,
5073 huge_page_level);
5074 }
5075
reserved_hpa_bits(void)5076 static inline u64 reserved_hpa_bits(void)
5077 {
5078 return rsvd_bits(kvm_host.maxphyaddr, 63);
5079 }
5080
5081 /*
5082 * the page table on host is the shadow page table for the page
5083 * table in guest or amd nested guest, its mmu features completely
5084 * follow the features in guest.
5085 */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5086 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5087 struct kvm_mmu *context)
5088 {
5089 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5090 bool is_amd = true;
5091 /* KVM doesn't use 2-level page tables for the shadow MMU. */
5092 bool is_pse = false;
5093 struct rsvd_bits_validate *shadow_zero_check;
5094 int i;
5095
5096 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5097
5098 shadow_zero_check = &context->shadow_zero_check;
5099 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5100 context->root_role.level,
5101 context->root_role.efer_nx,
5102 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5103 is_pse, is_amd);
5104
5105 if (!shadow_me_mask)
5106 return;
5107
5108 for (i = context->root_role.level; --i >= 0;) {
5109 /*
5110 * So far shadow_me_value is a constant during KVM's life
5111 * time. Bits in shadow_me_value are allowed to be set.
5112 * Bits in shadow_me_mask but not in shadow_me_value are
5113 * not allowed to be set.
5114 */
5115 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5116 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5117 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5118 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5119 }
5120
5121 }
5122
boot_cpu_is_amd(void)5123 static inline bool boot_cpu_is_amd(void)
5124 {
5125 WARN_ON_ONCE(!tdp_enabled);
5126 return shadow_x_mask == 0;
5127 }
5128
5129 /*
5130 * the direct page table on host, use as much mmu features as
5131 * possible, however, kvm currently does not do execution-protection.
5132 */
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)5133 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5134 {
5135 struct rsvd_bits_validate *shadow_zero_check;
5136 int i;
5137
5138 shadow_zero_check = &context->shadow_zero_check;
5139
5140 if (boot_cpu_is_amd())
5141 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5142 context->root_role.level, true,
5143 boot_cpu_has(X86_FEATURE_GBPAGES),
5144 false, true);
5145 else
5146 __reset_rsvds_bits_mask_ept(shadow_zero_check,
5147 reserved_hpa_bits(), false,
5148 max_huge_page_level);
5149
5150 if (!shadow_me_mask)
5151 return;
5152
5153 for (i = context->root_role.level; --i >= 0;) {
5154 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5155 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5156 }
5157 }
5158
5159 /*
5160 * as the comments in reset_shadow_zero_bits_mask() except it
5161 * is the shadow page table for intel nested guest.
5162 */
5163 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)5164 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5165 {
5166 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5167 reserved_hpa_bits(), execonly,
5168 max_huge_page_level);
5169 }
5170
5171 #define BYTE_MASK(access) \
5172 ((1 & (access) ? 2 : 0) | \
5173 (2 & (access) ? 4 : 0) | \
5174 (3 & (access) ? 8 : 0) | \
5175 (4 & (access) ? 16 : 0) | \
5176 (5 & (access) ? 32 : 0) | \
5177 (6 & (access) ? 64 : 0) | \
5178 (7 & (access) ? 128 : 0))
5179
5180
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)5181 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5182 {
5183 unsigned byte;
5184
5185 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5186 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5187 const u8 u = BYTE_MASK(ACC_USER_MASK);
5188
5189 bool cr4_smep = is_cr4_smep(mmu);
5190 bool cr4_smap = is_cr4_smap(mmu);
5191 bool cr0_wp = is_cr0_wp(mmu);
5192 bool efer_nx = is_efer_nx(mmu);
5193
5194 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5195 unsigned pfec = byte << 1;
5196
5197 /*
5198 * Each "*f" variable has a 1 bit for each UWX value
5199 * that causes a fault with the given PFEC.
5200 */
5201
5202 /* Faults from writes to non-writable pages */
5203 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5204 /* Faults from user mode accesses to supervisor pages */
5205 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5206 /* Faults from fetches of non-executable pages*/
5207 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5208 /* Faults from kernel mode fetches of user pages */
5209 u8 smepf = 0;
5210 /* Faults from kernel mode accesses of user pages */
5211 u8 smapf = 0;
5212
5213 if (!ept) {
5214 /* Faults from kernel mode accesses to user pages */
5215 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5216
5217 /* Not really needed: !nx will cause pte.nx to fault */
5218 if (!efer_nx)
5219 ff = 0;
5220
5221 /* Allow supervisor writes if !cr0.wp */
5222 if (!cr0_wp)
5223 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5224
5225 /* Disallow supervisor fetches of user code if cr4.smep */
5226 if (cr4_smep)
5227 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5228
5229 /*
5230 * SMAP:kernel-mode data accesses from user-mode
5231 * mappings should fault. A fault is considered
5232 * as a SMAP violation if all of the following
5233 * conditions are true:
5234 * - X86_CR4_SMAP is set in CR4
5235 * - A user page is accessed
5236 * - The access is not a fetch
5237 * - The access is supervisor mode
5238 * - If implicit supervisor access or X86_EFLAGS_AC is clear
5239 *
5240 * Here, we cover the first four conditions.
5241 * The fifth is computed dynamically in permission_fault();
5242 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5243 * *not* subject to SMAP restrictions.
5244 */
5245 if (cr4_smap)
5246 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5247 }
5248
5249 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5250 }
5251 }
5252
5253 /*
5254 * PKU is an additional mechanism by which the paging controls access to
5255 * user-mode addresses based on the value in the PKRU register. Protection
5256 * key violations are reported through a bit in the page fault error code.
5257 * Unlike other bits of the error code, the PK bit is not known at the
5258 * call site of e.g. gva_to_gpa; it must be computed directly in
5259 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5260 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5261 *
5262 * In particular the following conditions come from the error code, the
5263 * page tables and the machine state:
5264 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5265 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5266 * - PK is always zero if U=0 in the page tables
5267 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5268 *
5269 * The PKRU bitmask caches the result of these four conditions. The error
5270 * code (minus the P bit) and the page table's U bit form an index into the
5271 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5272 * with the two bits of the PKRU register corresponding to the protection key.
5273 * For the first three conditions above the bits will be 00, thus masking
5274 * away both AD and WD. For all reads or if the last condition holds, WD
5275 * only will be masked away.
5276 */
update_pkru_bitmask(struct kvm_mmu * mmu)5277 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5278 {
5279 unsigned bit;
5280 bool wp;
5281
5282 mmu->pkru_mask = 0;
5283
5284 if (!is_cr4_pke(mmu))
5285 return;
5286
5287 wp = is_cr0_wp(mmu);
5288
5289 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5290 unsigned pfec, pkey_bits;
5291 bool check_pkey, check_write, ff, uf, wf, pte_user;
5292
5293 pfec = bit << 1;
5294 ff = pfec & PFERR_FETCH_MASK;
5295 uf = pfec & PFERR_USER_MASK;
5296 wf = pfec & PFERR_WRITE_MASK;
5297
5298 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5299 pte_user = pfec & PFERR_RSVD_MASK;
5300
5301 /*
5302 * Only need to check the access which is not an
5303 * instruction fetch and is to a user page.
5304 */
5305 check_pkey = (!ff && pte_user);
5306 /*
5307 * write access is controlled by PKRU if it is a
5308 * user access or CR0.WP = 1.
5309 */
5310 check_write = check_pkey && wf && (uf || wp);
5311
5312 /* PKRU.AD stops both read and write access. */
5313 pkey_bits = !!check_pkey;
5314 /* PKRU.WD stops write access. */
5315 pkey_bits |= (!!check_write) << 1;
5316
5317 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5318 }
5319 }
5320
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5321 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5322 struct kvm_mmu *mmu)
5323 {
5324 if (!is_cr0_pg(mmu))
5325 return;
5326
5327 reset_guest_rsvds_bits_mask(vcpu, mmu);
5328 update_permission_bitmask(mmu, false);
5329 update_pkru_bitmask(mmu);
5330 }
5331
paging64_init_context(struct kvm_mmu * context)5332 static void paging64_init_context(struct kvm_mmu *context)
5333 {
5334 context->page_fault = paging64_page_fault;
5335 context->gva_to_gpa = paging64_gva_to_gpa;
5336 context->sync_spte = paging64_sync_spte;
5337 }
5338
paging32_init_context(struct kvm_mmu * context)5339 static void paging32_init_context(struct kvm_mmu *context)
5340 {
5341 context->page_fault = paging32_page_fault;
5342 context->gva_to_gpa = paging32_gva_to_gpa;
5343 context->sync_spte = paging32_sync_spte;
5344 }
5345
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)5346 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5347 const struct kvm_mmu_role_regs *regs)
5348 {
5349 union kvm_cpu_role role = {0};
5350
5351 role.base.access = ACC_ALL;
5352 role.base.smm = is_smm(vcpu);
5353 role.base.guest_mode = is_guest_mode(vcpu);
5354 role.ext.valid = 1;
5355
5356 if (!____is_cr0_pg(regs)) {
5357 role.base.direct = 1;
5358 return role;
5359 }
5360
5361 role.base.efer_nx = ____is_efer_nx(regs);
5362 role.base.cr0_wp = ____is_cr0_wp(regs);
5363 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5364 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5365 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5366
5367 if (____is_efer_lma(regs))
5368 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5369 : PT64_ROOT_4LEVEL;
5370 else if (____is_cr4_pae(regs))
5371 role.base.level = PT32E_ROOT_LEVEL;
5372 else
5373 role.base.level = PT32_ROOT_LEVEL;
5374
5375 role.ext.cr4_smep = ____is_cr4_smep(regs);
5376 role.ext.cr4_smap = ____is_cr4_smap(regs);
5377 role.ext.cr4_pse = ____is_cr4_pse(regs);
5378
5379 /* PKEY and LA57 are active iff long mode is active. */
5380 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5381 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5382 role.ext.efer_lma = ____is_efer_lma(regs);
5383 return role;
5384 }
5385
__kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5386 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5387 struct kvm_mmu *mmu)
5388 {
5389 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5390
5391 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5392 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5393
5394 if (is_cr0_wp(mmu) == cr0_wp)
5395 return;
5396
5397 mmu->cpu_role.base.cr0_wp = cr0_wp;
5398 reset_guest_paging_metadata(vcpu, mmu);
5399 }
5400
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)5401 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5402 {
5403 /* tdp_root_level is architecture forced level, use it if nonzero */
5404 if (tdp_root_level)
5405 return tdp_root_level;
5406
5407 /* Use 5-level TDP if and only if it's useful/necessary. */
5408 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5409 return 4;
5410
5411 return max_tdp_level;
5412 }
5413
kvm_mmu_get_max_tdp_level(void)5414 u8 kvm_mmu_get_max_tdp_level(void)
5415 {
5416 return tdp_root_level ? tdp_root_level : max_tdp_level;
5417 }
5418
5419 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5420 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5421 union kvm_cpu_role cpu_role)
5422 {
5423 union kvm_mmu_page_role role = {0};
5424
5425 role.access = ACC_ALL;
5426 role.cr0_wp = true;
5427 role.efer_nx = true;
5428 role.smm = cpu_role.base.smm;
5429 role.guest_mode = cpu_role.base.guest_mode;
5430 role.ad_disabled = !kvm_ad_enabled;
5431 role.level = kvm_mmu_get_tdp_level(vcpu);
5432 role.direct = true;
5433 role.has_4_byte_gpte = false;
5434
5435 return role;
5436 }
5437
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5438 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5439 union kvm_cpu_role cpu_role)
5440 {
5441 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5442 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5443
5444 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5445 root_role.word == context->root_role.word)
5446 return;
5447
5448 context->cpu_role.as_u64 = cpu_role.as_u64;
5449 context->root_role.word = root_role.word;
5450 context->page_fault = kvm_tdp_page_fault;
5451 context->sync_spte = NULL;
5452 context->get_guest_pgd = get_guest_cr3;
5453 context->get_pdptr = kvm_pdptr_read;
5454 context->inject_page_fault = kvm_inject_page_fault;
5455
5456 if (!is_cr0_pg(context))
5457 context->gva_to_gpa = nonpaging_gva_to_gpa;
5458 else if (is_cr4_pae(context))
5459 context->gva_to_gpa = paging64_gva_to_gpa;
5460 else
5461 context->gva_to_gpa = paging32_gva_to_gpa;
5462
5463 reset_guest_paging_metadata(vcpu, context);
5464 reset_tdp_shadow_zero_bits_mask(context);
5465 }
5466
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)5467 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5468 union kvm_cpu_role cpu_role,
5469 union kvm_mmu_page_role root_role)
5470 {
5471 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5472 root_role.word == context->root_role.word)
5473 return;
5474
5475 context->cpu_role.as_u64 = cpu_role.as_u64;
5476 context->root_role.word = root_role.word;
5477
5478 if (!is_cr0_pg(context))
5479 nonpaging_init_context(context);
5480 else if (is_cr4_pae(context))
5481 paging64_init_context(context);
5482 else
5483 paging32_init_context(context);
5484
5485 reset_guest_paging_metadata(vcpu, context);
5486 reset_shadow_zero_bits_mask(vcpu, context);
5487 }
5488
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5489 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5490 union kvm_cpu_role cpu_role)
5491 {
5492 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5493 union kvm_mmu_page_role root_role;
5494
5495 root_role = cpu_role.base;
5496
5497 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5498 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5499
5500 /*
5501 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5502 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5503 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5504 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5505 * The iTLB multi-hit workaround can be toggled at any time, so assume
5506 * NX can be used by any non-nested shadow MMU to avoid having to reset
5507 * MMU contexts.
5508 */
5509 root_role.efer_nx = true;
5510
5511 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5512 }
5513
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)5514 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5515 unsigned long cr4, u64 efer, gpa_t nested_cr3)
5516 {
5517 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5518 struct kvm_mmu_role_regs regs = {
5519 .cr0 = cr0,
5520 .cr4 = cr4 & ~X86_CR4_PKE,
5521 .efer = efer,
5522 };
5523 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5524 union kvm_mmu_page_role root_role;
5525
5526 /* NPT requires CR0.PG=1. */
5527 WARN_ON_ONCE(cpu_role.base.direct);
5528
5529 root_role = cpu_role.base;
5530 root_role.level = kvm_mmu_get_tdp_level(vcpu);
5531 if (root_role.level == PT64_ROOT_5LEVEL &&
5532 cpu_role.base.level == PT64_ROOT_4LEVEL)
5533 root_role.passthrough = 1;
5534
5535 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5536 kvm_mmu_new_pgd(vcpu, nested_cr3);
5537 }
5538 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5539
5540 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)5541 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5542 bool execonly, u8 level)
5543 {
5544 union kvm_cpu_role role = {0};
5545
5546 /*
5547 * KVM does not support SMM transfer monitors, and consequently does not
5548 * support the "entry to SMM" control either. role.base.smm is always 0.
5549 */
5550 WARN_ON_ONCE(is_smm(vcpu));
5551 role.base.level = level;
5552 role.base.has_4_byte_gpte = false;
5553 role.base.direct = false;
5554 role.base.ad_disabled = !accessed_dirty;
5555 role.base.guest_mode = true;
5556 role.base.access = ACC_ALL;
5557
5558 role.ext.word = 0;
5559 role.ext.execonly = execonly;
5560 role.ext.valid = 1;
5561
5562 return role;
5563 }
5564
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)5565 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5566 int huge_page_level, bool accessed_dirty,
5567 gpa_t new_eptp)
5568 {
5569 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5570 u8 level = vmx_eptp_page_walk_level(new_eptp);
5571 union kvm_cpu_role new_mode =
5572 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5573 execonly, level);
5574
5575 if (new_mode.as_u64 != context->cpu_role.as_u64) {
5576 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5577 context->cpu_role.as_u64 = new_mode.as_u64;
5578 context->root_role.word = new_mode.base.word;
5579
5580 context->page_fault = ept_page_fault;
5581 context->gva_to_gpa = ept_gva_to_gpa;
5582 context->sync_spte = ept_sync_spte;
5583
5584 update_permission_bitmask(context, true);
5585 context->pkru_mask = 0;
5586 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5587 reset_ept_shadow_zero_bits_mask(context, execonly);
5588 }
5589
5590 kvm_mmu_new_pgd(vcpu, new_eptp);
5591 }
5592 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5593
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5594 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5595 union kvm_cpu_role cpu_role)
5596 {
5597 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5598
5599 kvm_init_shadow_mmu(vcpu, cpu_role);
5600
5601 context->get_guest_pgd = get_guest_cr3;
5602 context->get_pdptr = kvm_pdptr_read;
5603 context->inject_page_fault = kvm_inject_page_fault;
5604 }
5605
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5606 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5607 union kvm_cpu_role new_mode)
5608 {
5609 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5610
5611 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5612 return;
5613
5614 g_context->cpu_role.as_u64 = new_mode.as_u64;
5615 g_context->get_guest_pgd = get_guest_cr3;
5616 g_context->get_pdptr = kvm_pdptr_read;
5617 g_context->inject_page_fault = kvm_inject_page_fault;
5618
5619 /*
5620 * L2 page tables are never shadowed, so there is no need to sync
5621 * SPTEs.
5622 */
5623 g_context->sync_spte = NULL;
5624
5625 /*
5626 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5627 * L1's nested page tables (e.g. EPT12). The nested translation
5628 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5629 * L2's page tables as the first level of translation and L1's
5630 * nested page tables as the second level of translation. Basically
5631 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5632 */
5633 if (!is_paging(vcpu))
5634 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5635 else if (is_long_mode(vcpu))
5636 g_context->gva_to_gpa = paging64_gva_to_gpa;
5637 else if (is_pae(vcpu))
5638 g_context->gva_to_gpa = paging64_gva_to_gpa;
5639 else
5640 g_context->gva_to_gpa = paging32_gva_to_gpa;
5641
5642 reset_guest_paging_metadata(vcpu, g_context);
5643 }
5644
kvm_init_mmu(struct kvm_vcpu * vcpu)5645 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5646 {
5647 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5648 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5649
5650 if (mmu_is_nested(vcpu))
5651 init_kvm_nested_mmu(vcpu, cpu_role);
5652 else if (tdp_enabled)
5653 init_kvm_tdp_mmu(vcpu, cpu_role);
5654 else
5655 init_kvm_softmmu(vcpu, cpu_role);
5656 }
5657 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5658
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5659 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5660 {
5661 /*
5662 * Invalidate all MMU roles to force them to reinitialize as CPUID
5663 * information is factored into reserved bit calculations.
5664 *
5665 * Correctly handling multiple vCPU models with respect to paging and
5666 * physical address properties) in a single VM would require tracking
5667 * all relevant CPUID information in kvm_mmu_page_role. That is very
5668 * undesirable as it would increase the memory requirements for
5669 * gfn_write_track (see struct kvm_mmu_page_role comments). For now
5670 * that problem is swept under the rug; KVM's CPUID API is horrific and
5671 * it's all but impossible to solve it without introducing a new API.
5672 */
5673 vcpu->arch.root_mmu.root_role.invalid = 1;
5674 vcpu->arch.guest_mmu.root_role.invalid = 1;
5675 vcpu->arch.nested_mmu.root_role.invalid = 1;
5676 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5677 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5678 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5679 kvm_mmu_reset_context(vcpu);
5680
5681 /*
5682 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5683 * kvm_arch_vcpu_ioctl().
5684 */
5685 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5686 }
5687
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5688 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5689 {
5690 kvm_mmu_unload(vcpu);
5691 kvm_init_mmu(vcpu);
5692 }
5693 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5694
kvm_mmu_load(struct kvm_vcpu * vcpu)5695 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5696 {
5697 int r;
5698
5699 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5700 if (r)
5701 goto out;
5702 r = mmu_alloc_special_roots(vcpu);
5703 if (r)
5704 goto out;
5705 if (vcpu->arch.mmu->root_role.direct)
5706 r = mmu_alloc_direct_roots(vcpu);
5707 else
5708 r = mmu_alloc_shadow_roots(vcpu);
5709 if (r)
5710 goto out;
5711
5712 kvm_mmu_sync_roots(vcpu);
5713
5714 kvm_mmu_load_pgd(vcpu);
5715
5716 /*
5717 * Flush any TLB entries for the new root, the provenance of the root
5718 * is unknown. Even if KVM ensures there are no stale TLB entries
5719 * for a freed root, in theory another hypervisor could have left
5720 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5721 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5722 */
5723 kvm_x86_call(flush_tlb_current)(vcpu);
5724 out:
5725 return r;
5726 }
5727
kvm_mmu_unload(struct kvm_vcpu * vcpu)5728 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5729 {
5730 struct kvm *kvm = vcpu->kvm;
5731
5732 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5733 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5734 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5735 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5736 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5737 }
5738
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)5739 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5740 {
5741 struct kvm_mmu_page *sp;
5742
5743 if (!VALID_PAGE(root_hpa))
5744 return false;
5745
5746 /*
5747 * When freeing obsolete roots, treat roots as obsolete if they don't
5748 * have an associated shadow page, as it's impossible to determine if
5749 * such roots are fresh or stale. This does mean KVM will get false
5750 * positives and free roots that don't strictly need to be freed, but
5751 * such false positives are relatively rare:
5752 *
5753 * (a) only PAE paging and nested NPT have roots without shadow pages
5754 * (or any shadow paging flavor with a dummy root, see note below)
5755 * (b) remote reloads due to a memslot update obsoletes _all_ roots
5756 * (c) KVM doesn't track previous roots for PAE paging, and the guest
5757 * is unlikely to zap an in-use PGD.
5758 *
5759 * Note! Dummy roots are unique in that they are obsoleted by memslot
5760 * _creation_! See also FNAME(fetch).
5761 */
5762 sp = root_to_sp(root_hpa);
5763 return !sp || is_obsolete_sp(kvm, sp);
5764 }
5765
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)5766 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5767 {
5768 unsigned long roots_to_free = 0;
5769 int i;
5770
5771 if (is_obsolete_root(kvm, mmu->root.hpa))
5772 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5773
5774 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5775 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5776 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5777 }
5778
5779 if (roots_to_free)
5780 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5781 }
5782
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)5783 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5784 {
5785 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5786 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5787 }
5788
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5789 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5790 int *bytes)
5791 {
5792 u64 gentry = 0;
5793 int r;
5794
5795 /*
5796 * Assume that the pte write on a page table of the same type
5797 * as the current vcpu paging mode since we update the sptes only
5798 * when they have the same mode.
5799 */
5800 if (is_pae(vcpu) && *bytes == 4) {
5801 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5802 *gpa &= ~(gpa_t)7;
5803 *bytes = 8;
5804 }
5805
5806 if (*bytes == 4 || *bytes == 8) {
5807 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5808 if (r)
5809 gentry = 0;
5810 }
5811
5812 return gentry;
5813 }
5814
5815 /*
5816 * If we're seeing too many writes to a page, it may no longer be a page table,
5817 * or we may be forking, in which case it is better to unmap the page.
5818 */
detect_write_flooding(struct kvm_mmu_page * sp)5819 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5820 {
5821 /*
5822 * Skip write-flooding detected for the sp whose level is 1, because
5823 * it can become unsync, then the guest page is not write-protected.
5824 */
5825 if (sp->role.level == PG_LEVEL_4K)
5826 return false;
5827
5828 atomic_inc(&sp->write_flooding_count);
5829 return atomic_read(&sp->write_flooding_count) >= 3;
5830 }
5831
5832 /*
5833 * Misaligned accesses are too much trouble to fix up; also, they usually
5834 * indicate a page is not used as a page table.
5835 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5836 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5837 int bytes)
5838 {
5839 unsigned offset, pte_size, misaligned;
5840
5841 offset = offset_in_page(gpa);
5842 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5843
5844 /*
5845 * Sometimes, the OS only writes the last one bytes to update status
5846 * bits, for example, in linux, andb instruction is used in clear_bit().
5847 */
5848 if (!(offset & (pte_size - 1)) && bytes == 1)
5849 return false;
5850
5851 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5852 misaligned |= bytes < 4;
5853
5854 return misaligned;
5855 }
5856
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5857 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5858 {
5859 unsigned page_offset, quadrant;
5860 u64 *spte;
5861 int level;
5862
5863 page_offset = offset_in_page(gpa);
5864 level = sp->role.level;
5865 *nspte = 1;
5866 if (sp->role.has_4_byte_gpte) {
5867 page_offset <<= 1; /* 32->64 */
5868 /*
5869 * A 32-bit pde maps 4MB while the shadow pdes map
5870 * only 2MB. So we need to double the offset again
5871 * and zap two pdes instead of one.
5872 */
5873 if (level == PT32_ROOT_LEVEL) {
5874 page_offset &= ~7; /* kill rounding error */
5875 page_offset <<= 1;
5876 *nspte = 2;
5877 }
5878 quadrant = page_offset >> PAGE_SHIFT;
5879 page_offset &= ~PAGE_MASK;
5880 if (quadrant != sp->role.quadrant)
5881 return NULL;
5882 }
5883
5884 spte = &sp->spt[page_offset / sizeof(*spte)];
5885 return spte;
5886 }
5887
kvm_mmu_track_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)5888 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5889 int bytes)
5890 {
5891 gfn_t gfn = gpa >> PAGE_SHIFT;
5892 struct kvm_mmu_page *sp;
5893 LIST_HEAD(invalid_list);
5894 u64 entry, gentry, *spte;
5895 int npte;
5896 bool flush = false;
5897
5898 /*
5899 * When emulating guest writes, ensure the written value is visible to
5900 * any task that is handling page faults before checking whether or not
5901 * KVM is shadowing a guest PTE. This ensures either KVM will create
5902 * the correct SPTE in the page fault handler, or this task will see
5903 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in
5904 * account_shadowed().
5905 */
5906 smp_mb();
5907 if (!vcpu->kvm->arch.indirect_shadow_pages)
5908 return;
5909
5910 write_lock(&vcpu->kvm->mmu_lock);
5911
5912 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5913
5914 ++vcpu->kvm->stat.mmu_pte_write;
5915
5916 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5917 if (detect_write_misaligned(sp, gpa, bytes) ||
5918 detect_write_flooding(sp)) {
5919 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5920 ++vcpu->kvm->stat.mmu_flooded;
5921 continue;
5922 }
5923
5924 spte = get_written_sptes(sp, gpa, &npte);
5925 if (!spte)
5926 continue;
5927
5928 while (npte--) {
5929 entry = *spte;
5930 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5931 if (gentry && sp->role.level != PG_LEVEL_4K)
5932 ++vcpu->kvm->stat.mmu_pde_zapped;
5933 if (is_shadow_present_pte(entry))
5934 flush = true;
5935 ++spte;
5936 }
5937 }
5938 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5939 write_unlock(&vcpu->kvm->mmu_lock);
5940 }
5941
is_write_to_guest_page_table(u64 error_code)5942 static bool is_write_to_guest_page_table(u64 error_code)
5943 {
5944 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
5945
5946 return (error_code & mask) == mask;
5947 }
5948
kvm_mmu_write_protect_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,int * emulation_type)5949 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
5950 u64 error_code, int *emulation_type)
5951 {
5952 bool direct = vcpu->arch.mmu->root_role.direct;
5953
5954 /*
5955 * Do not try to unprotect and retry if the vCPU re-faulted on the same
5956 * RIP with the same address that was previously unprotected, as doing
5957 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses
5958 * a non-page-table modifying instruction on the PDE that points to the
5959 * instruction, then unprotecting the gfn will unmap the instruction's
5960 * code, i.e. make it impossible for the instruction to ever complete.
5961 */
5962 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
5963 vcpu->arch.last_retry_addr == cr2_or_gpa)
5964 return RET_PF_EMULATE;
5965
5966 /*
5967 * Reset the unprotect+retry values that guard against infinite loops.
5968 * The values will be refreshed if KVM explicitly unprotects a gfn and
5969 * retries, in all other cases it's safe to retry in the future even if
5970 * the next page fault happens on the same RIP+address.
5971 */
5972 vcpu->arch.last_retry_eip = 0;
5973 vcpu->arch.last_retry_addr = 0;
5974
5975 /*
5976 * It should be impossible to reach this point with an MMIO cache hit,
5977 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
5978 * writable memslot, and creating a memslot should invalidate the MMIO
5979 * cache by way of changing the memslot generation. WARN and disallow
5980 * retry if MMIO is detected, as retrying MMIO emulation is pointless
5981 * and could put the vCPU into an infinite loop because the processor
5982 * will keep faulting on the non-existent MMIO address.
5983 */
5984 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
5985 return RET_PF_EMULATE;
5986
5987 /*
5988 * Before emulating the instruction, check to see if the access was due
5989 * to a read-only violation while the CPU was walking non-nested NPT
5990 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
5991 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
5992 * having nCR3 share lower level page tables with hCR3, then when KVM
5993 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
5994 * unknowingly write-protecting L1's guest page tables, which KVM isn't
5995 * shadowing.
5996 *
5997 * Because the CPU (by default) walks NPT page tables using a write
5998 * access (to ensure the CPU can do A/D updates), page walks in L1 can
5999 * trigger write faults for the above case even when L1 isn't modifying
6000 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try
6001 * to emulate) an excessive number of L1 instructions; because L1's MMU
6002 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6003 * and thus no need to emulate in order to guarantee forward progress.
6004 *
6005 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6006 * proceed without triggering emulation. If one or more shadow pages
6007 * was zapped, skip emulation and resume L1 to let it natively execute
6008 * the instruction. If no shadow pages were zapped, then the write-
6009 * fault is due to something else entirely, i.e. KVM needs to emulate,
6010 * as resuming the guest will put it into an infinite loop.
6011 *
6012 * Note, this code also applies to Intel CPUs, even though it is *very*
6013 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6014 * format) with L2's page tables (EPT format).
6015 *
6016 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6017 * unprotect the gfn and retry if an event is awaiting reinjection. If
6018 * KVM emulates multiple instructions before completing event injection,
6019 * the event could be delayed beyond what is architecturally allowed,
6020 * e.g. KVM could inject an IRQ after the TPR has been raised.
6021 */
6022 if (((direct && is_write_to_guest_page_table(error_code)) ||
6023 (!direct && kvm_event_needs_reinjection(vcpu))) &&
6024 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6025 return RET_PF_RETRY;
6026
6027 /*
6028 * The gfn is write-protected, but if KVM detects its emulating an
6029 * instruction that is unlikely to be used to modify page tables, or if
6030 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6031 * re-execute the instruction that caused the page fault. Do not allow
6032 * retrying an instruction from a nested guest as KVM is only explicitly
6033 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6034 * going to magically fix whatever issue caused L2 to fail.
6035 */
6036 if (!is_guest_mode(vcpu))
6037 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6038
6039 return RET_PF_EMULATE;
6040 }
6041
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)6042 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6043 void *insn, int insn_len)
6044 {
6045 int r, emulation_type = EMULTYPE_PF;
6046 bool direct = vcpu->arch.mmu->root_role.direct;
6047
6048 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6049 return RET_PF_RETRY;
6050
6051 /*
6052 * Except for reserved faults (emulated MMIO is shared-only), set the
6053 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6054 * current attributes, which are the source of truth for such VMs. Note,
6055 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6056 * currently supported nested virtualization (among many other things)
6057 * for software-protected VMs.
6058 */
6059 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6060 !(error_code & PFERR_RSVD_MASK) &&
6061 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6062 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6063 error_code |= PFERR_PRIVATE_ACCESS;
6064
6065 r = RET_PF_INVALID;
6066 if (unlikely(error_code & PFERR_RSVD_MASK)) {
6067 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6068 return -EFAULT;
6069
6070 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6071 if (r == RET_PF_EMULATE)
6072 goto emulate;
6073 }
6074
6075 if (r == RET_PF_INVALID) {
6076 vcpu->stat.pf_taken++;
6077
6078 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6079 &emulation_type, NULL);
6080 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6081 return -EIO;
6082 }
6083
6084 if (r < 0)
6085 return r;
6086
6087 if (r == RET_PF_WRITE_PROTECTED)
6088 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6089 &emulation_type);
6090
6091 if (r == RET_PF_FIXED)
6092 vcpu->stat.pf_fixed++;
6093 else if (r == RET_PF_EMULATE)
6094 vcpu->stat.pf_emulate++;
6095 else if (r == RET_PF_SPURIOUS)
6096 vcpu->stat.pf_spurious++;
6097
6098 if (r != RET_PF_EMULATE)
6099 return 1;
6100
6101 emulate:
6102 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6103 insn_len);
6104 }
6105 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
6106
kvm_mmu_print_sptes(struct kvm_vcpu * vcpu,gpa_t gpa,const char * msg)6107 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6108 {
6109 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6110 int root_level, leaf, level;
6111
6112 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6113 if (unlikely(leaf < 0))
6114 return;
6115
6116 pr_err("%s %llx", msg, gpa);
6117 for (level = root_level; level >= leaf; level--)
6118 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6119 pr_cont("\n");
6120 }
6121 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
6122
__kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,hpa_t root_hpa)6123 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6124 u64 addr, hpa_t root_hpa)
6125 {
6126 struct kvm_shadow_walk_iterator iterator;
6127
6128 vcpu_clear_mmio_info(vcpu, addr);
6129
6130 /*
6131 * Walking and synchronizing SPTEs both assume they are operating in
6132 * the context of the current MMU, and would need to be reworked if
6133 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6134 */
6135 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6136 return;
6137
6138 if (!VALID_PAGE(root_hpa))
6139 return;
6140
6141 write_lock(&vcpu->kvm->mmu_lock);
6142 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6143 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6144
6145 if (sp->unsync) {
6146 int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6147
6148 if (ret < 0)
6149 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6150 if (ret)
6151 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6152 }
6153
6154 if (!sp->unsync_children)
6155 break;
6156 }
6157 write_unlock(&vcpu->kvm->mmu_lock);
6158 }
6159
kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,unsigned long roots)6160 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6161 u64 addr, unsigned long roots)
6162 {
6163 int i;
6164
6165 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6166
6167 /* It's actually a GPA for vcpu->arch.guest_mmu. */
6168 if (mmu != &vcpu->arch.guest_mmu) {
6169 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
6170 if (is_noncanonical_invlpg_address(addr, vcpu))
6171 return;
6172
6173 kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6174 }
6175
6176 if (!mmu->sync_spte)
6177 return;
6178
6179 if (roots & KVM_MMU_ROOT_CURRENT)
6180 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6181
6182 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6183 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6184 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6185 }
6186 }
6187 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
6188
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)6189 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6190 {
6191 /*
6192 * INVLPG is required to invalidate any global mappings for the VA,
6193 * irrespective of PCID. Blindly sync all roots as it would take
6194 * roughly the same amount of work/time to determine whether any of the
6195 * previous roots have a global mapping.
6196 *
6197 * Mappings not reachable via the current or previous cached roots will
6198 * be synced when switching to that new cr3, so nothing needs to be
6199 * done here for them.
6200 */
6201 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6202 ++vcpu->stat.invlpg;
6203 }
6204 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
6205
6206
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)6207 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6208 {
6209 struct kvm_mmu *mmu = vcpu->arch.mmu;
6210 unsigned long roots = 0;
6211 uint i;
6212
6213 if (pcid == kvm_get_active_pcid(vcpu))
6214 roots |= KVM_MMU_ROOT_CURRENT;
6215
6216 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6217 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6218 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6219 roots |= KVM_MMU_ROOT_PREVIOUS(i);
6220 }
6221
6222 if (roots)
6223 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6224 ++vcpu->stat.invlpg;
6225
6226 /*
6227 * Mappings not reachable via the current cr3 or the prev_roots will be
6228 * synced when switching to that cr3, so nothing needs to be done here
6229 * for them.
6230 */
6231 }
6232
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)6233 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6234 int tdp_max_root_level, int tdp_huge_page_level)
6235 {
6236 tdp_enabled = enable_tdp;
6237 tdp_root_level = tdp_forced_root_level;
6238 max_tdp_level = tdp_max_root_level;
6239
6240 #ifdef CONFIG_X86_64
6241 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6242 #endif
6243 /*
6244 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6245 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6246 * the kernel is not. But, KVM never creates a page size greater than
6247 * what is used by the kernel for any given HVA, i.e. the kernel's
6248 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6249 */
6250 if (tdp_enabled)
6251 max_huge_page_level = tdp_huge_page_level;
6252 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6253 max_huge_page_level = PG_LEVEL_1G;
6254 else
6255 max_huge_page_level = PG_LEVEL_2M;
6256 }
6257 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6258
free_mmu_pages(struct kvm_mmu * mmu)6259 static void free_mmu_pages(struct kvm_mmu *mmu)
6260 {
6261 if (!tdp_enabled && mmu->pae_root)
6262 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6263 free_page((unsigned long)mmu->pae_root);
6264 free_page((unsigned long)mmu->pml4_root);
6265 free_page((unsigned long)mmu->pml5_root);
6266 }
6267
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)6268 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6269 {
6270 struct page *page;
6271 int i;
6272
6273 mmu->root.hpa = INVALID_PAGE;
6274 mmu->root.pgd = 0;
6275 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6276 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6277
6278 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6279 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6280 return 0;
6281
6282 /*
6283 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6284 * while the PDP table is a per-vCPU construct that's allocated at MMU
6285 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
6286 * x86_64. Therefore we need to allocate the PDP table in the first
6287 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6288 * generally doesn't use PAE paging and can skip allocating the PDP
6289 * table. The main exception, handled here, is SVM's 32-bit NPT. The
6290 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6291 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6292 */
6293 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6294 return 0;
6295
6296 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6297 if (!page)
6298 return -ENOMEM;
6299
6300 mmu->pae_root = page_address(page);
6301
6302 /*
6303 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6304 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6305 * that KVM's writes and the CPU's reads get along. Note, this is
6306 * only necessary when using shadow paging, as 64-bit NPT can get at
6307 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6308 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6309 */
6310 if (!tdp_enabled)
6311 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6312 else
6313 WARN_ON_ONCE(shadow_me_value);
6314
6315 for (i = 0; i < 4; ++i)
6316 mmu->pae_root[i] = INVALID_PAE_ROOT;
6317
6318 return 0;
6319 }
6320
kvm_mmu_create(struct kvm_vcpu * vcpu)6321 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6322 {
6323 int ret;
6324
6325 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6326 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6327
6328 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6329 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6330
6331 vcpu->arch.mmu_shadow_page_cache.init_value =
6332 SHADOW_NONPRESENT_VALUE;
6333 if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6334 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6335
6336 vcpu->arch.mmu = &vcpu->arch.root_mmu;
6337 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6338
6339 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6340 if (ret)
6341 return ret;
6342
6343 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6344 if (ret)
6345 goto fail_allocate_root;
6346
6347 return ret;
6348 fail_allocate_root:
6349 free_mmu_pages(&vcpu->arch.guest_mmu);
6350 return ret;
6351 }
6352
6353 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)6354 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6355 {
6356 struct kvm_mmu_page *sp, *node;
6357 int nr_zapped, batch = 0;
6358 LIST_HEAD(invalid_list);
6359 bool unstable;
6360
6361 lockdep_assert_held(&kvm->slots_lock);
6362
6363 restart:
6364 list_for_each_entry_safe_reverse(sp, node,
6365 &kvm->arch.active_mmu_pages, link) {
6366 /*
6367 * No obsolete valid page exists before a newly created page
6368 * since active_mmu_pages is a FIFO list.
6369 */
6370 if (!is_obsolete_sp(kvm, sp))
6371 break;
6372
6373 /*
6374 * Invalid pages should never land back on the list of active
6375 * pages. Skip the bogus page, otherwise we'll get stuck in an
6376 * infinite loop if the page gets put back on the list (again).
6377 */
6378 if (WARN_ON_ONCE(sp->role.invalid))
6379 continue;
6380
6381 /*
6382 * No need to flush the TLB since we're only zapping shadow
6383 * pages with an obsolete generation number and all vCPUS have
6384 * loaded a new root, i.e. the shadow pages being zapped cannot
6385 * be in active use by the guest.
6386 */
6387 if (batch >= BATCH_ZAP_PAGES &&
6388 cond_resched_rwlock_write(&kvm->mmu_lock)) {
6389 batch = 0;
6390 goto restart;
6391 }
6392
6393 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6394 &invalid_list, &nr_zapped);
6395 batch += nr_zapped;
6396
6397 if (unstable)
6398 goto restart;
6399 }
6400
6401 /*
6402 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6403 * to ensure KVM is not in the middle of a lockless shadow page table
6404 * walk, which may reference the pages. The remote TLB flush itself is
6405 * not required and is simply a convenient way to kick vCPUs as needed.
6406 * KVM performs a local TLB flush when allocating a new root (see
6407 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6408 * running with an obsolete MMU.
6409 */
6410 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6411 }
6412
6413 /*
6414 * Fast invalidate all shadow pages and use lock-break technique
6415 * to zap obsolete pages.
6416 *
6417 * It's required when memslot is being deleted or VM is being
6418 * destroyed, in these cases, we should ensure that KVM MMU does
6419 * not use any resource of the being-deleted slot or all slots
6420 * after calling the function.
6421 */
kvm_mmu_zap_all_fast(struct kvm * kvm)6422 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6423 {
6424 lockdep_assert_held(&kvm->slots_lock);
6425
6426 write_lock(&kvm->mmu_lock);
6427 trace_kvm_mmu_zap_all_fast(kvm);
6428
6429 /*
6430 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6431 * held for the entire duration of zapping obsolete pages, it's
6432 * impossible for there to be multiple invalid generations associated
6433 * with *valid* shadow pages at any given time, i.e. there is exactly
6434 * one valid generation and (at most) one invalid generation.
6435 */
6436 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6437
6438 /*
6439 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6440 * invalidating TDP MMU roots must be done while holding mmu_lock for
6441 * write and in the same critical section as making the reload request,
6442 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6443 */
6444 if (tdp_mmu_enabled)
6445 kvm_tdp_mmu_invalidate_all_roots(kvm);
6446
6447 /*
6448 * Notify all vcpus to reload its shadow page table and flush TLB.
6449 * Then all vcpus will switch to new shadow page table with the new
6450 * mmu_valid_gen.
6451 *
6452 * Note: we need to do this under the protection of mmu_lock,
6453 * otherwise, vcpu would purge shadow page but miss tlb flush.
6454 */
6455 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6456
6457 kvm_zap_obsolete_pages(kvm);
6458
6459 write_unlock(&kvm->mmu_lock);
6460
6461 /*
6462 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6463 * returning to the caller, e.g. if the zap is in response to a memslot
6464 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6465 * associated with the deleted memslot once the update completes, and
6466 * Deferring the zap until the final reference to the root is put would
6467 * lead to use-after-free.
6468 */
6469 if (tdp_mmu_enabled)
6470 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6471 }
6472
kvm_mmu_init_vm(struct kvm * kvm)6473 void kvm_mmu_init_vm(struct kvm *kvm)
6474 {
6475 kvm->arch.shadow_mmio_value = shadow_mmio_value;
6476 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6477 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6478 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6479
6480 if (tdp_mmu_enabled)
6481 kvm_mmu_init_tdp_mmu(kvm);
6482
6483 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6484 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6485
6486 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6487
6488 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6489 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6490 }
6491
mmu_free_vm_memory_caches(struct kvm * kvm)6492 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6493 {
6494 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6495 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6496 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6497 }
6498
kvm_mmu_uninit_vm(struct kvm * kvm)6499 void kvm_mmu_uninit_vm(struct kvm *kvm)
6500 {
6501 if (tdp_mmu_enabled)
6502 kvm_mmu_uninit_tdp_mmu(kvm);
6503
6504 mmu_free_vm_memory_caches(kvm);
6505 }
6506
kvm_rmap_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6507 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6508 {
6509 const struct kvm_memory_slot *memslot;
6510 struct kvm_memslots *slots;
6511 struct kvm_memslot_iter iter;
6512 bool flush = false;
6513 gfn_t start, end;
6514 int i;
6515
6516 if (!kvm_memslots_have_rmaps(kvm))
6517 return flush;
6518
6519 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6520 slots = __kvm_memslots(kvm, i);
6521
6522 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6523 memslot = iter.slot;
6524 start = max(gfn_start, memslot->base_gfn);
6525 end = min(gfn_end, memslot->base_gfn + memslot->npages);
6526 if (WARN_ON_ONCE(start >= end))
6527 continue;
6528
6529 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6530 end, true, flush);
6531 }
6532 }
6533
6534 return flush;
6535 }
6536
6537 /*
6538 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6539 * (not including it)
6540 */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6541 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6542 {
6543 bool flush;
6544
6545 if (WARN_ON_ONCE(gfn_end <= gfn_start))
6546 return;
6547
6548 write_lock(&kvm->mmu_lock);
6549
6550 kvm_mmu_invalidate_begin(kvm);
6551
6552 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6553
6554 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6555
6556 if (tdp_mmu_enabled)
6557 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6558
6559 if (flush)
6560 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6561
6562 kvm_mmu_invalidate_end(kvm);
6563
6564 write_unlock(&kvm->mmu_lock);
6565 }
6566
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6567 static bool slot_rmap_write_protect(struct kvm *kvm,
6568 struct kvm_rmap_head *rmap_head,
6569 const struct kvm_memory_slot *slot)
6570 {
6571 return rmap_write_protect(rmap_head, false);
6572 }
6573
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)6574 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6575 const struct kvm_memory_slot *memslot,
6576 int start_level)
6577 {
6578 if (kvm_memslots_have_rmaps(kvm)) {
6579 write_lock(&kvm->mmu_lock);
6580 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6581 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6582 write_unlock(&kvm->mmu_lock);
6583 }
6584
6585 if (tdp_mmu_enabled) {
6586 read_lock(&kvm->mmu_lock);
6587 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6588 read_unlock(&kvm->mmu_lock);
6589 }
6590 }
6591
need_topup(struct kvm_mmu_memory_cache * cache,int min)6592 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6593 {
6594 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6595 }
6596
need_topup_split_caches_or_resched(struct kvm * kvm)6597 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6598 {
6599 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6600 return true;
6601
6602 /*
6603 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6604 * to split a single huge page. Calculating how many are actually needed
6605 * is possible but not worth the complexity.
6606 */
6607 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6608 need_topup(&kvm->arch.split_page_header_cache, 1) ||
6609 need_topup(&kvm->arch.split_shadow_page_cache, 1);
6610 }
6611
topup_split_caches(struct kvm * kvm)6612 static int topup_split_caches(struct kvm *kvm)
6613 {
6614 /*
6615 * Allocating rmap list entries when splitting huge pages for nested
6616 * MMUs is uncommon as KVM needs to use a list if and only if there is
6617 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6618 * aliased by multiple L2 gfns and/or from multiple nested roots with
6619 * different roles. Aliasing gfns when using TDP is atypical for VMMs;
6620 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6621 * but aliasing rarely occurs post-boot or for many gfns. If there is
6622 * only one rmap entry, rmap->val points directly at that one entry and
6623 * doesn't need to allocate a list. Buffer the cache by the default
6624 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6625 * encounters an aliased gfn or two.
6626 */
6627 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6628 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6629 int r;
6630
6631 lockdep_assert_held(&kvm->slots_lock);
6632
6633 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6634 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6635 if (r)
6636 return r;
6637
6638 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6639 if (r)
6640 return r;
6641
6642 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6643 }
6644
shadow_mmu_get_sp_for_split(struct kvm * kvm,u64 * huge_sptep)6645 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6646 {
6647 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6648 struct shadow_page_caches caches = {};
6649 union kvm_mmu_page_role role;
6650 unsigned int access;
6651 gfn_t gfn;
6652
6653 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6654 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6655
6656 /*
6657 * Note, huge page splitting always uses direct shadow pages, regardless
6658 * of whether the huge page itself is mapped by a direct or indirect
6659 * shadow page, since the huge page region itself is being directly
6660 * mapped with smaller pages.
6661 */
6662 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6663
6664 /* Direct SPs do not require a shadowed_info_cache. */
6665 caches.page_header_cache = &kvm->arch.split_page_header_cache;
6666 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6667
6668 /* Safe to pass NULL for vCPU since requesting a direct SP. */
6669 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6670 }
6671
shadow_mmu_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6672 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6673 const struct kvm_memory_slot *slot,
6674 u64 *huge_sptep)
6675
6676 {
6677 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6678 u64 huge_spte = READ_ONCE(*huge_sptep);
6679 struct kvm_mmu_page *sp;
6680 bool flush = false;
6681 u64 *sptep, spte;
6682 gfn_t gfn;
6683 int index;
6684
6685 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6686
6687 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6688 sptep = &sp->spt[index];
6689 gfn = kvm_mmu_page_get_gfn(sp, index);
6690
6691 /*
6692 * The SP may already have populated SPTEs, e.g. if this huge
6693 * page is aliased by multiple sptes with the same access
6694 * permissions. These entries are guaranteed to map the same
6695 * gfn-to-pfn translation since the SP is direct, so no need to
6696 * modify them.
6697 *
6698 * However, if a given SPTE points to a lower level page table,
6699 * that lower level page table may only be partially populated.
6700 * Installing such SPTEs would effectively unmap a potion of the
6701 * huge page. Unmapping guest memory always requires a TLB flush
6702 * since a subsequent operation on the unmapped regions would
6703 * fail to detect the need to flush.
6704 */
6705 if (is_shadow_present_pte(*sptep)) {
6706 flush |= !is_last_spte(*sptep, sp->role.level);
6707 continue;
6708 }
6709
6710 spte = make_small_spte(kvm, huge_spte, sp->role, index);
6711 mmu_spte_set(sptep, spte);
6712 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6713 }
6714
6715 __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6716 }
6717
shadow_mmu_try_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6718 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6719 const struct kvm_memory_slot *slot,
6720 u64 *huge_sptep)
6721 {
6722 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6723 int level, r = 0;
6724 gfn_t gfn;
6725 u64 spte;
6726
6727 /* Grab information for the tracepoint before dropping the MMU lock. */
6728 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6729 level = huge_sp->role.level;
6730 spte = *huge_sptep;
6731
6732 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6733 r = -ENOSPC;
6734 goto out;
6735 }
6736
6737 if (need_topup_split_caches_or_resched(kvm)) {
6738 write_unlock(&kvm->mmu_lock);
6739 cond_resched();
6740 /*
6741 * If the topup succeeds, return -EAGAIN to indicate that the
6742 * rmap iterator should be restarted because the MMU lock was
6743 * dropped.
6744 */
6745 r = topup_split_caches(kvm) ?: -EAGAIN;
6746 write_lock(&kvm->mmu_lock);
6747 goto out;
6748 }
6749
6750 shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6751
6752 out:
6753 trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6754 return r;
6755 }
6756
shadow_mmu_try_split_huge_pages(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6757 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6758 struct kvm_rmap_head *rmap_head,
6759 const struct kvm_memory_slot *slot)
6760 {
6761 struct rmap_iterator iter;
6762 struct kvm_mmu_page *sp;
6763 u64 *huge_sptep;
6764 int r;
6765
6766 restart:
6767 for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6768 sp = sptep_to_sp(huge_sptep);
6769
6770 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6771 if (WARN_ON_ONCE(!sp->role.guest_mode))
6772 continue;
6773
6774 /* The rmaps should never contain non-leaf SPTEs. */
6775 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6776 continue;
6777
6778 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6779 if (WARN_ON_ONCE(sp->unsync))
6780 continue;
6781
6782 /* Don't bother splitting huge pages on invalid SPs. */
6783 if (sp->role.invalid)
6784 continue;
6785
6786 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6787
6788 /*
6789 * The split succeeded or needs to be retried because the MMU
6790 * lock was dropped. Either way, restart the iterator to get it
6791 * back into a consistent state.
6792 */
6793 if (!r || r == -EAGAIN)
6794 goto restart;
6795
6796 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6797 break;
6798 }
6799
6800 return false;
6801 }
6802
kvm_shadow_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level)6803 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6804 const struct kvm_memory_slot *slot,
6805 gfn_t start, gfn_t end,
6806 int target_level)
6807 {
6808 int level;
6809
6810 /*
6811 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6812 * down to the target level. This ensures pages are recursively split
6813 * all the way to the target level. There's no need to split pages
6814 * already at the target level.
6815 */
6816 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6817 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6818 level, level, start, end - 1, true, true, false);
6819 }
6820
6821 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)6822 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6823 const struct kvm_memory_slot *memslot,
6824 u64 start, u64 end,
6825 int target_level)
6826 {
6827 if (!tdp_mmu_enabled)
6828 return;
6829
6830 if (kvm_memslots_have_rmaps(kvm))
6831 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6832
6833 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6834
6835 /*
6836 * A TLB flush is unnecessary at this point for the same reasons as in
6837 * kvm_mmu_slot_try_split_huge_pages().
6838 */
6839 }
6840
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)6841 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6842 const struct kvm_memory_slot *memslot,
6843 int target_level)
6844 {
6845 u64 start = memslot->base_gfn;
6846 u64 end = start + memslot->npages;
6847
6848 if (!tdp_mmu_enabled)
6849 return;
6850
6851 if (kvm_memslots_have_rmaps(kvm)) {
6852 write_lock(&kvm->mmu_lock);
6853 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6854 write_unlock(&kvm->mmu_lock);
6855 }
6856
6857 read_lock(&kvm->mmu_lock);
6858 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6859 read_unlock(&kvm->mmu_lock);
6860
6861 /*
6862 * No TLB flush is necessary here. KVM will flush TLBs after
6863 * write-protecting and/or clearing dirty on the newly split SPTEs to
6864 * ensure that guest writes are reflected in the dirty log before the
6865 * ioctl to enable dirty logging on this memslot completes. Since the
6866 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6867 * safe for KVM to decide if a TLB flush is necessary based on the split
6868 * SPTEs.
6869 */
6870 }
6871
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6872 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6873 struct kvm_rmap_head *rmap_head,
6874 const struct kvm_memory_slot *slot)
6875 {
6876 u64 *sptep;
6877 struct rmap_iterator iter;
6878 int need_tlb_flush = 0;
6879 struct kvm_mmu_page *sp;
6880
6881 restart:
6882 for_each_rmap_spte(rmap_head, &iter, sptep) {
6883 sp = sptep_to_sp(sptep);
6884
6885 /*
6886 * We cannot do huge page mapping for indirect shadow pages,
6887 * which are found on the last rmap (level = 1) when not using
6888 * tdp; such shadow pages are synced with the page table in
6889 * the guest, and the guest page table is using 4K page size
6890 * mapping if the indirect sp has level = 1.
6891 */
6892 if (sp->role.direct &&
6893 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) {
6894 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6895
6896 if (kvm_available_flush_remote_tlbs_range())
6897 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6898 else
6899 need_tlb_flush = 1;
6900
6901 goto restart;
6902 }
6903 }
6904
6905 return need_tlb_flush;
6906 }
6907 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range);
6908
kvm_rmap_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)6909 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6910 const struct kvm_memory_slot *slot)
6911 {
6912 /*
6913 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6914 * pages that are already mapped at the maximum hugepage level.
6915 */
6916 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6917 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6918 kvm_flush_remote_tlbs_memslot(kvm, slot);
6919 }
6920
kvm_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)6921 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
6922 const struct kvm_memory_slot *slot)
6923 {
6924 if (kvm_memslots_have_rmaps(kvm)) {
6925 write_lock(&kvm->mmu_lock);
6926 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6927 write_unlock(&kvm->mmu_lock);
6928 }
6929
6930 if (tdp_mmu_enabled) {
6931 read_lock(&kvm->mmu_lock);
6932 kvm_tdp_mmu_recover_huge_pages(kvm, slot);
6933 read_unlock(&kvm->mmu_lock);
6934 }
6935 }
6936
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)6937 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6938 const struct kvm_memory_slot *memslot)
6939 {
6940 if (kvm_memslots_have_rmaps(kvm)) {
6941 write_lock(&kvm->mmu_lock);
6942 /*
6943 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6944 * support dirty logging at a 4k granularity.
6945 */
6946 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6947 write_unlock(&kvm->mmu_lock);
6948 }
6949
6950 if (tdp_mmu_enabled) {
6951 read_lock(&kvm->mmu_lock);
6952 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6953 read_unlock(&kvm->mmu_lock);
6954 }
6955
6956 /*
6957 * The caller will flush the TLBs after this function returns.
6958 *
6959 * It's also safe to flush TLBs out of mmu lock here as currently this
6960 * function is only used for dirty logging, in which case flushing TLB
6961 * out of mmu lock also guarantees no dirty pages will be lost in
6962 * dirty_bitmap.
6963 */
6964 }
6965
kvm_mmu_zap_all(struct kvm * kvm)6966 static void kvm_mmu_zap_all(struct kvm *kvm)
6967 {
6968 struct kvm_mmu_page *sp, *node;
6969 LIST_HEAD(invalid_list);
6970 int ign;
6971
6972 write_lock(&kvm->mmu_lock);
6973 restart:
6974 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6975 if (WARN_ON_ONCE(sp->role.invalid))
6976 continue;
6977 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6978 goto restart;
6979 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6980 goto restart;
6981 }
6982
6983 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6984
6985 if (tdp_mmu_enabled)
6986 kvm_tdp_mmu_zap_all(kvm);
6987
6988 write_unlock(&kvm->mmu_lock);
6989 }
6990
kvm_arch_flush_shadow_all(struct kvm * kvm)6991 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6992 {
6993 kvm_mmu_zap_all(kvm);
6994 }
6995
kvm_mmu_zap_memslot_pages_and_flush(struct kvm * kvm,struct kvm_memory_slot * slot,bool flush)6996 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
6997 struct kvm_memory_slot *slot,
6998 bool flush)
6999 {
7000 LIST_HEAD(invalid_list);
7001 unsigned long i;
7002
7003 if (list_empty(&kvm->arch.active_mmu_pages))
7004 goto out_flush;
7005
7006 /*
7007 * Since accounting information is stored in struct kvm_arch_memory_slot,
7008 * all MMU pages that are shadowing guest PTEs must be zapped before the
7009 * memslot is deleted, as freeing such pages after the memslot is freed
7010 * will result in use-after-free, e.g. in unaccount_shadowed().
7011 */
7012 for (i = 0; i < slot->npages; i++) {
7013 struct kvm_mmu_page *sp;
7014 gfn_t gfn = slot->base_gfn + i;
7015
7016 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7017 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7018
7019 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7020 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7021 flush = false;
7022 cond_resched_rwlock_write(&kvm->mmu_lock);
7023 }
7024 }
7025
7026 out_flush:
7027 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7028 }
7029
kvm_mmu_zap_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7030 static void kvm_mmu_zap_memslot(struct kvm *kvm,
7031 struct kvm_memory_slot *slot)
7032 {
7033 struct kvm_gfn_range range = {
7034 .slot = slot,
7035 .start = slot->base_gfn,
7036 .end = slot->base_gfn + slot->npages,
7037 .may_block = true,
7038 };
7039 bool flush;
7040
7041 write_lock(&kvm->mmu_lock);
7042 flush = kvm_unmap_gfn_range(kvm, &range);
7043 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7044 write_unlock(&kvm->mmu_lock);
7045 }
7046
kvm_memslot_flush_zap_all(struct kvm * kvm)7047 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7048 {
7049 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7050 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7051 }
7052
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7053 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7054 struct kvm_memory_slot *slot)
7055 {
7056 if (kvm_memslot_flush_zap_all(kvm))
7057 kvm_mmu_zap_all_fast(kvm);
7058 else
7059 kvm_mmu_zap_memslot(kvm, slot);
7060 }
7061
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)7062 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7063 {
7064 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7065
7066 gen &= MMIO_SPTE_GEN_MASK;
7067
7068 /*
7069 * Generation numbers are incremented in multiples of the number of
7070 * address spaces in order to provide unique generations across all
7071 * address spaces. Strip what is effectively the address space
7072 * modifier prior to checking for a wrap of the MMIO generation so
7073 * that a wrap in any address space is detected.
7074 */
7075 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7076
7077 /*
7078 * The very rare case: if the MMIO generation number has wrapped,
7079 * zap all shadow pages.
7080 */
7081 if (unlikely(gen == 0)) {
7082 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7083 kvm_mmu_zap_all_fast(kvm);
7084 }
7085 }
7086
mmu_destroy_caches(void)7087 static void mmu_destroy_caches(void)
7088 {
7089 kmem_cache_destroy(pte_list_desc_cache);
7090 kmem_cache_destroy(mmu_page_header_cache);
7091 }
7092
get_nx_huge_pages(char * buffer,const struct kernel_param * kp)7093 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7094 {
7095 if (nx_hugepage_mitigation_hard_disabled)
7096 return sysfs_emit(buffer, "never\n");
7097
7098 return param_get_bool(buffer, kp);
7099 }
7100
get_nx_auto_mode(void)7101 static bool get_nx_auto_mode(void)
7102 {
7103 /* Return true when CPU has the bug, and mitigations are ON */
7104 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7105 }
7106
__set_nx_huge_pages(bool val)7107 static void __set_nx_huge_pages(bool val)
7108 {
7109 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7110 }
7111
set_nx_huge_pages(const char * val,const struct kernel_param * kp)7112 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7113 {
7114 bool old_val = nx_huge_pages;
7115 bool new_val;
7116
7117 if (nx_hugepage_mitigation_hard_disabled)
7118 return -EPERM;
7119
7120 /* In "auto" mode deploy workaround only if CPU has the bug. */
7121 if (sysfs_streq(val, "off")) {
7122 new_val = 0;
7123 } else if (sysfs_streq(val, "force")) {
7124 new_val = 1;
7125 } else if (sysfs_streq(val, "auto")) {
7126 new_val = get_nx_auto_mode();
7127 } else if (sysfs_streq(val, "never")) {
7128 new_val = 0;
7129
7130 mutex_lock(&kvm_lock);
7131 if (!list_empty(&vm_list)) {
7132 mutex_unlock(&kvm_lock);
7133 return -EBUSY;
7134 }
7135 nx_hugepage_mitigation_hard_disabled = true;
7136 mutex_unlock(&kvm_lock);
7137 } else if (kstrtobool(val, &new_val) < 0) {
7138 return -EINVAL;
7139 }
7140
7141 __set_nx_huge_pages(new_val);
7142
7143 if (new_val != old_val) {
7144 struct kvm *kvm;
7145
7146 mutex_lock(&kvm_lock);
7147
7148 list_for_each_entry(kvm, &vm_list, vm_list) {
7149 mutex_lock(&kvm->slots_lock);
7150 kvm_mmu_zap_all_fast(kvm);
7151 mutex_unlock(&kvm->slots_lock);
7152
7153 vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread);
7154 }
7155 mutex_unlock(&kvm_lock);
7156 }
7157
7158 return 0;
7159 }
7160
7161 /*
7162 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7163 * its default value of -1 is technically undefined behavior for a boolean.
7164 * Forward the module init call to SPTE code so that it too can handle module
7165 * params that need to be resolved/snapshot.
7166 */
kvm_mmu_x86_module_init(void)7167 void __init kvm_mmu_x86_module_init(void)
7168 {
7169 if (nx_huge_pages == -1)
7170 __set_nx_huge_pages(get_nx_auto_mode());
7171
7172 /*
7173 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7174 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7175 * when the vendor module is loaded.
7176 */
7177 tdp_mmu_allowed = tdp_mmu_enabled;
7178
7179 kvm_mmu_spte_module_init();
7180 }
7181
7182 /*
7183 * The bulk of the MMU initialization is deferred until the vendor module is
7184 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7185 * to be reset when a potentially different vendor module is loaded.
7186 */
kvm_mmu_vendor_module_init(void)7187 int kvm_mmu_vendor_module_init(void)
7188 {
7189 int ret = -ENOMEM;
7190
7191 /*
7192 * MMU roles use union aliasing which is, generally speaking, an
7193 * undefined behavior. However, we supposedly know how compilers behave
7194 * and the current status quo is unlikely to change. Guardians below are
7195 * supposed to let us know if the assumption becomes false.
7196 */
7197 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7198 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7199 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7200
7201 kvm_mmu_reset_all_pte_masks();
7202
7203 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7204 if (!pte_list_desc_cache)
7205 goto out;
7206
7207 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7208 sizeof(struct kvm_mmu_page),
7209 0, SLAB_ACCOUNT, NULL);
7210 if (!mmu_page_header_cache)
7211 goto out;
7212
7213 return 0;
7214
7215 out:
7216 mmu_destroy_caches();
7217 return ret;
7218 }
7219
kvm_mmu_destroy(struct kvm_vcpu * vcpu)7220 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7221 {
7222 kvm_mmu_unload(vcpu);
7223 free_mmu_pages(&vcpu->arch.root_mmu);
7224 free_mmu_pages(&vcpu->arch.guest_mmu);
7225 mmu_free_memory_caches(vcpu);
7226 }
7227
kvm_mmu_vendor_module_exit(void)7228 void kvm_mmu_vendor_module_exit(void)
7229 {
7230 mmu_destroy_caches();
7231 }
7232
7233 /*
7234 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7235 * select a halving time of 1 hour". Returns true if recovery is enabled.
7236 */
calc_nx_huge_pages_recovery_period(uint * period)7237 static bool calc_nx_huge_pages_recovery_period(uint *period)
7238 {
7239 /*
7240 * Use READ_ONCE to get the params, this may be called outside of the
7241 * param setters, e.g. by the kthread to compute its next timeout.
7242 */
7243 bool enabled = READ_ONCE(nx_huge_pages);
7244 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7245
7246 if (!enabled || !ratio)
7247 return false;
7248
7249 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7250 if (!*period) {
7251 /* Make sure the period is not less than one second. */
7252 ratio = min(ratio, 3600u);
7253 *period = 60 * 60 * 1000 / ratio;
7254 }
7255 return true;
7256 }
7257
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)7258 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7259 {
7260 bool was_recovery_enabled, is_recovery_enabled;
7261 uint old_period, new_period;
7262 int err;
7263
7264 if (nx_hugepage_mitigation_hard_disabled)
7265 return -EPERM;
7266
7267 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7268
7269 err = param_set_uint(val, kp);
7270 if (err)
7271 return err;
7272
7273 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7274
7275 if (is_recovery_enabled &&
7276 (!was_recovery_enabled || old_period > new_period)) {
7277 struct kvm *kvm;
7278
7279 mutex_lock(&kvm_lock);
7280
7281 list_for_each_entry(kvm, &vm_list, vm_list)
7282 vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread);
7283
7284 mutex_unlock(&kvm_lock);
7285 }
7286
7287 return err;
7288 }
7289
kvm_recover_nx_huge_pages(struct kvm * kvm)7290 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7291 {
7292 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7293 struct kvm_memory_slot *slot;
7294 int rcu_idx;
7295 struct kvm_mmu_page *sp;
7296 unsigned int ratio;
7297 LIST_HEAD(invalid_list);
7298 bool flush = false;
7299 ulong to_zap;
7300
7301 rcu_idx = srcu_read_lock(&kvm->srcu);
7302 write_lock(&kvm->mmu_lock);
7303
7304 /*
7305 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7306 * be done under RCU protection, because the pages are freed via RCU
7307 * callback.
7308 */
7309 rcu_read_lock();
7310
7311 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7312 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7313 for ( ; to_zap; --to_zap) {
7314 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7315 break;
7316
7317 /*
7318 * We use a separate list instead of just using active_mmu_pages
7319 * because the number of shadow pages that be replaced with an
7320 * NX huge page is expected to be relatively small compared to
7321 * the total number of shadow pages. And because the TDP MMU
7322 * doesn't use active_mmu_pages.
7323 */
7324 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7325 struct kvm_mmu_page,
7326 possible_nx_huge_page_link);
7327 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7328 WARN_ON_ONCE(!sp->role.direct);
7329
7330 /*
7331 * Unaccount and do not attempt to recover any NX Huge Pages
7332 * that are being dirty tracked, as they would just be faulted
7333 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7334 * recovered, along with all the other huge pages in the slot,
7335 * when dirty logging is disabled.
7336 *
7337 * Since gfn_to_memslot() is relatively expensive, it helps to
7338 * skip it if it the test cannot possibly return true. On the
7339 * other hand, if any memslot has logging enabled, chances are
7340 * good that all of them do, in which case unaccount_nx_huge_page()
7341 * is much cheaper than zapping the page.
7342 *
7343 * If a memslot update is in progress, reading an incorrect value
7344 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7345 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7346 * it is becoming nonzero, the page will be zapped unnecessarily.
7347 * Either way, this only affects efficiency in racy situations,
7348 * and not correctness.
7349 */
7350 slot = NULL;
7351 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7352 struct kvm_memslots *slots;
7353
7354 slots = kvm_memslots_for_spte_role(kvm, sp->role);
7355 slot = __gfn_to_memslot(slots, sp->gfn);
7356 WARN_ON_ONCE(!slot);
7357 }
7358
7359 if (slot && kvm_slot_dirty_track_enabled(slot))
7360 unaccount_nx_huge_page(kvm, sp);
7361 else if (is_tdp_mmu_page(sp))
7362 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7363 else
7364 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7365 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7366
7367 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7368 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7369 rcu_read_unlock();
7370
7371 cond_resched_rwlock_write(&kvm->mmu_lock);
7372 flush = false;
7373
7374 rcu_read_lock();
7375 }
7376 }
7377 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7378
7379 rcu_read_unlock();
7380
7381 write_unlock(&kvm->mmu_lock);
7382 srcu_read_unlock(&kvm->srcu, rcu_idx);
7383 }
7384
kvm_nx_huge_page_recovery_worker_kill(void * data)7385 static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7386 {
7387 }
7388
kvm_nx_huge_page_recovery_worker(void * data)7389 static bool kvm_nx_huge_page_recovery_worker(void *data)
7390 {
7391 struct kvm *kvm = data;
7392 bool enabled;
7393 uint period;
7394 long remaining_time;
7395
7396 enabled = calc_nx_huge_pages_recovery_period(&period);
7397 if (!enabled)
7398 return false;
7399
7400 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7401 - get_jiffies_64();
7402 if (remaining_time > 0) {
7403 schedule_timeout(remaining_time);
7404 /* check for signals and come back */
7405 return true;
7406 }
7407
7408 __set_current_state(TASK_RUNNING);
7409 kvm_recover_nx_huge_pages(kvm);
7410 kvm->arch.nx_huge_page_last = get_jiffies_64();
7411 return true;
7412 }
7413
kvm_mmu_post_init_vm(struct kvm * kvm)7414 int kvm_mmu_post_init_vm(struct kvm *kvm)
7415 {
7416 if (nx_hugepage_mitigation_hard_disabled)
7417 return 0;
7418
7419 kvm->arch.nx_huge_page_last = get_jiffies_64();
7420 kvm->arch.nx_huge_page_recovery_thread = vhost_task_create(
7421 kvm_nx_huge_page_recovery_worker, kvm_nx_huge_page_recovery_worker_kill,
7422 kvm, "kvm-nx-lpage-recovery");
7423
7424 if (!kvm->arch.nx_huge_page_recovery_thread)
7425 return -ENOMEM;
7426
7427 vhost_task_start(kvm->arch.nx_huge_page_recovery_thread);
7428 return 0;
7429 }
7430
kvm_mmu_pre_destroy_vm(struct kvm * kvm)7431 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7432 {
7433 if (kvm->arch.nx_huge_page_recovery_thread)
7434 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7435 }
7436
7437 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_arch_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7438 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7439 struct kvm_gfn_range *range)
7440 {
7441 /*
7442 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
7443 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7444 * can simply ignore such slots. But if userspace is making memory
7445 * PRIVATE, then KVM must prevent the guest from accessing the memory
7446 * as shared. And if userspace is making memory SHARED and this point
7447 * is reached, then at least one page within the range was previously
7448 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7449 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7450 * a hugepage can be used for affected ranges.
7451 */
7452 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7453 return false;
7454
7455 return kvm_unmap_gfn_range(kvm, range);
7456 }
7457
hugepage_test_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7458 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7459 int level)
7460 {
7461 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7462 }
7463
hugepage_clear_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7464 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7465 int level)
7466 {
7467 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7468 }
7469
hugepage_set_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7470 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7471 int level)
7472 {
7473 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7474 }
7475
hugepage_has_attrs(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long attrs)7476 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7477 gfn_t gfn, int level, unsigned long attrs)
7478 {
7479 const unsigned long start = gfn;
7480 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7481
7482 if (level == PG_LEVEL_2M)
7483 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7484
7485 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7486 if (hugepage_test_mixed(slot, gfn, level - 1) ||
7487 attrs != kvm_get_memory_attributes(kvm, gfn))
7488 return false;
7489 }
7490 return true;
7491 }
7492
kvm_arch_post_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7493 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7494 struct kvm_gfn_range *range)
7495 {
7496 unsigned long attrs = range->arg.attributes;
7497 struct kvm_memory_slot *slot = range->slot;
7498 int level;
7499
7500 lockdep_assert_held_write(&kvm->mmu_lock);
7501 lockdep_assert_held(&kvm->slots_lock);
7502
7503 /*
7504 * Calculate which ranges can be mapped with hugepages even if the slot
7505 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over
7506 * a range that has PRIVATE GFNs, and conversely converting a range to
7507 * SHARED may now allow hugepages.
7508 */
7509 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7510 return false;
7511
7512 /*
7513 * The sequence matters here: upper levels consume the result of lower
7514 * level's scanning.
7515 */
7516 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7517 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7518 gfn_t gfn = gfn_round_for_level(range->start, level);
7519
7520 /* Process the head page if it straddles the range. */
7521 if (gfn != range->start || gfn + nr_pages > range->end) {
7522 /*
7523 * Skip mixed tracking if the aligned gfn isn't covered
7524 * by the memslot, KVM can't use a hugepage due to the
7525 * misaligned address regardless of memory attributes.
7526 */
7527 if (gfn >= slot->base_gfn &&
7528 gfn + nr_pages <= slot->base_gfn + slot->npages) {
7529 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7530 hugepage_clear_mixed(slot, gfn, level);
7531 else
7532 hugepage_set_mixed(slot, gfn, level);
7533 }
7534 gfn += nr_pages;
7535 }
7536
7537 /*
7538 * Pages entirely covered by the range are guaranteed to have
7539 * only the attributes which were just set.
7540 */
7541 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7542 hugepage_clear_mixed(slot, gfn, level);
7543
7544 /*
7545 * Process the last tail page if it straddles the range and is
7546 * contained by the memslot. Like the head page, KVM can't
7547 * create a hugepage if the slot size is misaligned.
7548 */
7549 if (gfn < range->end &&
7550 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7551 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7552 hugepage_clear_mixed(slot, gfn, level);
7553 else
7554 hugepage_set_mixed(slot, gfn, level);
7555 }
7556 }
7557 return false;
7558 }
7559
kvm_mmu_init_memslot_memory_attributes(struct kvm * kvm,struct kvm_memory_slot * slot)7560 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7561 struct kvm_memory_slot *slot)
7562 {
7563 int level;
7564
7565 if (!kvm_arch_has_private_mem(kvm))
7566 return;
7567
7568 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7569 /*
7570 * Don't bother tracking mixed attributes for pages that can't
7571 * be huge due to alignment, i.e. process only pages that are
7572 * entirely contained by the memslot.
7573 */
7574 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7575 gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7576 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7577 gfn_t gfn;
7578
7579 if (start < slot->base_gfn)
7580 start += nr_pages;
7581
7582 /*
7583 * Unlike setting attributes, every potential hugepage needs to
7584 * be manually checked as the attributes may already be mixed.
7585 */
7586 for (gfn = start; gfn < end; gfn += nr_pages) {
7587 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7588
7589 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7590 hugepage_clear_mixed(slot, gfn, level);
7591 else
7592 hugepage_set_mixed(slot, gfn, level);
7593 }
7594 }
7595 }
7596 #endif
7597