xref: /linux/arch/x86/kernel/kvm.c (revision 208eed95fc710827b100266c9450ae84d46727bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11 
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/cc_platform.h>
31 #include <linux/efi.h>
32 #include <linux/kvm_types.h>
33 #include <asm/timer.h>
34 #include <asm/cpu.h>
35 #include <asm/traps.h>
36 #include <asm/desc.h>
37 #include <asm/tlbflush.h>
38 #include <asm/apic.h>
39 #include <asm/apicdef.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mtrr.h>
42 #include <asm/tlb.h>
43 #include <asm/cpuidle_haltpoll.h>
44 #include <asm/msr.h>
45 #include <asm/ptrace.h>
46 #include <asm/reboot.h>
47 #include <asm/svm.h>
48 #include <asm/e820/api.h>
49 
50 DEFINE_STATIC_KEY_FALSE_RO(kvm_async_pf_enabled);
51 
52 static int kvmapf = 1;
53 
parse_no_kvmapf(char * arg)54 static int __init parse_no_kvmapf(char *arg)
55 {
56         kvmapf = 0;
57         return 0;
58 }
59 
60 early_param("no-kvmapf", parse_no_kvmapf);
61 
62 static int steal_acc = 1;
parse_no_stealacc(char * arg)63 static int __init parse_no_stealacc(char *arg)
64 {
65         steal_acc = 0;
66         return 0;
67 }
68 
69 early_param("no-steal-acc", parse_no_stealacc);
70 
71 static DEFINE_PER_CPU_READ_MOSTLY(bool, async_pf_enabled);
72 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
73 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
74 static int has_steal_clock = 0;
75 
76 static int has_guest_poll = 0;
77 /*
78  * No need for any "IO delay" on KVM
79  */
kvm_io_delay(void)80 static void kvm_io_delay(void)
81 {
82 }
83 
84 #define KVM_TASK_SLEEP_HASHBITS 8
85 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
86 
87 struct kvm_task_sleep_node {
88 	struct hlist_node link;
89 	struct swait_queue_head wq;
90 	u32 token;
91 	int cpu;
92 };
93 
94 static struct kvm_task_sleep_head {
95 	raw_spinlock_t lock;
96 	struct hlist_head list;
97 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
98 
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)99 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
100 						  u32 token)
101 {
102 	struct hlist_node *p;
103 
104 	hlist_for_each(p, &b->list) {
105 		struct kvm_task_sleep_node *n =
106 			hlist_entry(p, typeof(*n), link);
107 		if (n->token == token)
108 			return n;
109 	}
110 
111 	return NULL;
112 }
113 
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)114 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
115 {
116 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
117 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
118 	struct kvm_task_sleep_node *e;
119 
120 	raw_spin_lock(&b->lock);
121 	e = _find_apf_task(b, token);
122 	if (e) {
123 		/* dummy entry exist -> wake up was delivered ahead of PF */
124 		hlist_del(&e->link);
125 		raw_spin_unlock(&b->lock);
126 		kfree(e);
127 		return false;
128 	}
129 
130 	n->token = token;
131 	n->cpu = smp_processor_id();
132 	init_swait_queue_head(&n->wq);
133 	hlist_add_head(&n->link, &b->list);
134 	raw_spin_unlock(&b->lock);
135 	return true;
136 }
137 
138 /*
139  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
140  * @token:	Token to identify the sleep node entry
141  *
142  * Invoked from the async pagefault handling code or from the VM exit page
143  * fault handler. In both cases RCU is watching.
144  */
kvm_async_pf_task_wait_schedule(u32 token)145 void kvm_async_pf_task_wait_schedule(u32 token)
146 {
147 	struct kvm_task_sleep_node n;
148 	DECLARE_SWAITQUEUE(wait);
149 
150 	lockdep_assert_irqs_disabled();
151 
152 	if (!kvm_async_pf_queue_task(token, &n))
153 		return;
154 
155 	for (;;) {
156 		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
157 		if (hlist_unhashed(&n.link))
158 			break;
159 
160 		local_irq_enable();
161 		schedule();
162 		local_irq_disable();
163 	}
164 	finish_swait(&n.wq, &wait);
165 }
166 EXPORT_SYMBOL_FOR_KVM(kvm_async_pf_task_wait_schedule);
167 
apf_task_wake_one(struct kvm_task_sleep_node * n)168 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
169 {
170 	hlist_del_init(&n->link);
171 	if (swq_has_sleeper(&n->wq))
172 		swake_up_one(&n->wq);
173 }
174 
apf_task_wake_all(void)175 static void apf_task_wake_all(void)
176 {
177 	int i;
178 
179 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
180 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
181 		struct kvm_task_sleep_node *n;
182 		struct hlist_node *p, *next;
183 
184 		raw_spin_lock(&b->lock);
185 		hlist_for_each_safe(p, next, &b->list) {
186 			n = hlist_entry(p, typeof(*n), link);
187 			if (n->cpu == smp_processor_id())
188 				apf_task_wake_one(n);
189 		}
190 		raw_spin_unlock(&b->lock);
191 	}
192 }
193 
kvm_async_pf_task_wake(u32 token)194 static void kvm_async_pf_task_wake(u32 token)
195 {
196 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
197 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
198 	struct kvm_task_sleep_node *n, *dummy = NULL;
199 
200 	if (token == ~0) {
201 		apf_task_wake_all();
202 		return;
203 	}
204 
205 again:
206 	raw_spin_lock(&b->lock);
207 	n = _find_apf_task(b, token);
208 	if (!n) {
209 		/*
210 		 * Async #PF not yet handled, add a dummy entry for the token.
211 		 * Allocating the token must be down outside of the raw lock
212 		 * as the allocator is preemptible on PREEMPT_RT kernels.
213 		 */
214 		if (!dummy) {
215 			raw_spin_unlock(&b->lock);
216 			dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
217 
218 			/*
219 			 * Continue looping on allocation failure, eventually
220 			 * the async #PF will be handled and allocating a new
221 			 * node will be unnecessary.
222 			 */
223 			if (!dummy)
224 				cpu_relax();
225 
226 			/*
227 			 * Recheck for async #PF completion before enqueueing
228 			 * the dummy token to avoid duplicate list entries.
229 			 */
230 			goto again;
231 		}
232 		dummy->token = token;
233 		dummy->cpu = smp_processor_id();
234 		init_swait_queue_head(&dummy->wq);
235 		hlist_add_head(&dummy->link, &b->list);
236 		dummy = NULL;
237 	} else {
238 		apf_task_wake_one(n);
239 	}
240 	raw_spin_unlock(&b->lock);
241 
242 	/* A dummy token might be allocated and ultimately not used.  */
243 	kfree(dummy);
244 }
245 
kvm_read_and_reset_apf_flags(void)246 noinstr u32 kvm_read_and_reset_apf_flags(void)
247 {
248 	u32 flags = 0;
249 
250 	if (__this_cpu_read(async_pf_enabled)) {
251 		flags = __this_cpu_read(apf_reason.flags);
252 		__this_cpu_write(apf_reason.flags, 0);
253 	}
254 
255 	return flags;
256 }
257 EXPORT_SYMBOL_FOR_KVM(kvm_read_and_reset_apf_flags);
258 
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)259 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
260 {
261 	u32 flags = kvm_read_and_reset_apf_flags();
262 	irqentry_state_t state;
263 
264 	if (!flags)
265 		return false;
266 
267 	state = irqentry_enter(regs);
268 	instrumentation_begin();
269 
270 	/*
271 	 * If the host managed to inject an async #PF into an interrupt
272 	 * disabled region, then die hard as this is not going to end well
273 	 * and the host side is seriously broken.
274 	 */
275 	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
276 		panic("Host injected async #PF in interrupt disabled region\n");
277 
278 	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
279 		if (unlikely(!(user_mode(regs))))
280 			panic("Host injected async #PF in kernel mode\n");
281 		/* Page is swapped out by the host. */
282 		kvm_async_pf_task_wait_schedule(token);
283 	} else {
284 		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
285 	}
286 
287 	instrumentation_end();
288 	irqentry_exit(regs, state);
289 	return true;
290 }
291 
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)292 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
293 {
294 	struct pt_regs *old_regs = set_irq_regs(regs);
295 	u32 token;
296 
297 	apic_eoi();
298 
299 	inc_irq_stat(irq_hv_callback_count);
300 
301 	if (__this_cpu_read(async_pf_enabled)) {
302 		token = __this_cpu_read(apf_reason.token);
303 		kvm_async_pf_task_wake(token);
304 		__this_cpu_write(apf_reason.token, 0);
305 		wrmsrq(MSR_KVM_ASYNC_PF_ACK, 1);
306 	}
307 
308 	set_irq_regs(old_regs);
309 }
310 
paravirt_ops_setup(void)311 static void __init paravirt_ops_setup(void)
312 {
313 	pv_info.name = "KVM";
314 
315 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
316 		pv_ops.cpu.io_delay = kvm_io_delay;
317 
318 #ifdef CONFIG_X86_IO_APIC
319 	no_timer_check = 1;
320 #endif
321 }
322 
kvm_register_steal_time(void)323 static void kvm_register_steal_time(void)
324 {
325 	int cpu = smp_processor_id();
326 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
327 
328 	if (!has_steal_clock)
329 		return;
330 
331 	wrmsrq(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
332 	pr_debug("stealtime: cpu %d, msr %llx\n", cpu,
333 		(unsigned long long) slow_virt_to_phys(st));
334 }
335 
336 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
337 
kvm_guest_apic_eoi_write(void)338 static notrace __maybe_unused void kvm_guest_apic_eoi_write(void)
339 {
340 	/**
341 	 * This relies on __test_and_clear_bit to modify the memory
342 	 * in a way that is atomic with respect to the local CPU.
343 	 * The hypervisor only accesses this memory from the local CPU so
344 	 * there's no need for lock or memory barriers.
345 	 * An optimization barrier is implied in apic write.
346 	 */
347 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
348 		return;
349 	apic_native_eoi();
350 }
351 
kvm_guest_cpu_init(void)352 static void kvm_guest_cpu_init(void)
353 {
354 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
355 		u64 pa;
356 
357 		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
358 
359 		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
360 		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
361 
362 		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
363 			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
364 
365 		wrmsrq(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
366 
367 		wrmsrq(MSR_KVM_ASYNC_PF_EN, pa);
368 		__this_cpu_write(async_pf_enabled, true);
369 		pr_debug("setup async PF for cpu %d\n", smp_processor_id());
370 	}
371 
372 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
373 		unsigned long pa;
374 
375 		/* Size alignment is implied but just to make it explicit. */
376 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
377 		__this_cpu_write(kvm_apic_eoi, 0);
378 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
379 			| KVM_MSR_ENABLED;
380 		wrmsrq(MSR_KVM_PV_EOI_EN, pa);
381 	}
382 
383 	if (has_steal_clock)
384 		kvm_register_steal_time();
385 }
386 
kvm_pv_disable_apf(void)387 static void kvm_pv_disable_apf(void)
388 {
389 	if (!__this_cpu_read(async_pf_enabled))
390 		return;
391 
392 	wrmsrq(MSR_KVM_ASYNC_PF_EN, 0);
393 	__this_cpu_write(async_pf_enabled, false);
394 
395 	pr_debug("disable async PF for cpu %d\n", smp_processor_id());
396 }
397 
kvm_disable_steal_time(void)398 static void kvm_disable_steal_time(void)
399 {
400 	if (!has_steal_clock)
401 		return;
402 
403 	wrmsrq(MSR_KVM_STEAL_TIME, 0);
404 }
405 
kvm_steal_clock(int cpu)406 static u64 kvm_steal_clock(int cpu)
407 {
408 	u64 steal;
409 	struct kvm_steal_time *src;
410 	int version;
411 
412 	src = &per_cpu(steal_time, cpu);
413 	do {
414 		version = src->version;
415 		virt_rmb();
416 		steal = src->steal;
417 		virt_rmb();
418 	} while ((version & 1) || (version != src->version));
419 
420 	return steal;
421 }
422 
__set_percpu_decrypted(void * ptr,unsigned long size)423 static inline __init void __set_percpu_decrypted(void *ptr, unsigned long size)
424 {
425 	early_set_memory_decrypted((unsigned long) ptr, size);
426 }
427 
428 /*
429  * Iterate through all possible CPUs and map the memory region pointed
430  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
431  *
432  * Note: we iterate through all possible CPUs to ensure that CPUs
433  * hotplugged will have their per-cpu variable already mapped as
434  * decrypted.
435  */
sev_map_percpu_data(void)436 static void __init sev_map_percpu_data(void)
437 {
438 	int cpu;
439 
440 	if (cc_vendor != CC_VENDOR_AMD ||
441 	    !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
442 		return;
443 
444 	for_each_possible_cpu(cpu) {
445 		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
446 		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
447 		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
448 	}
449 }
450 
kvm_guest_cpu_offline(bool shutdown)451 static void kvm_guest_cpu_offline(bool shutdown)
452 {
453 	kvm_disable_steal_time();
454 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
455 		wrmsrq(MSR_KVM_PV_EOI_EN, 0);
456 	if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
457 		wrmsrq(MSR_KVM_MIGRATION_CONTROL, 0);
458 	kvm_pv_disable_apf();
459 	if (!shutdown)
460 		apf_task_wake_all();
461 	kvmclock_disable();
462 }
463 
kvm_cpu_online(unsigned int cpu)464 static int kvm_cpu_online(unsigned int cpu)
465 {
466 	unsigned long flags;
467 
468 	local_irq_save(flags);
469 	kvm_guest_cpu_init();
470 	local_irq_restore(flags);
471 	return 0;
472 }
473 
474 #ifdef CONFIG_SMP
475 
476 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
477 
pv_tlb_flush_supported(void)478 static bool pv_tlb_flush_supported(void)
479 {
480 	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
481 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
482 		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
483 		!boot_cpu_has(X86_FEATURE_MWAIT) &&
484 		(num_possible_cpus() != 1));
485 }
486 
pv_ipi_supported(void)487 static bool pv_ipi_supported(void)
488 {
489 	return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) &&
490 	       (num_possible_cpus() != 1));
491 }
492 
pv_sched_yield_supported(void)493 static bool pv_sched_yield_supported(void)
494 {
495 	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
496 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
497 	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
498 	    !boot_cpu_has(X86_FEATURE_MWAIT) &&
499 	    (num_possible_cpus() != 1));
500 }
501 
502 #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
503 
__send_ipi_mask(const struct cpumask * mask,int vector)504 static void __send_ipi_mask(const struct cpumask *mask, int vector)
505 {
506 	unsigned long flags;
507 	int cpu, min = 0, max = 0;
508 #ifdef CONFIG_X86_64
509 	__uint128_t ipi_bitmap = 0;
510 #else
511 	u64 ipi_bitmap = 0;
512 #endif
513 	u32 apic_id, icr;
514 	long ret;
515 
516 	if (cpumask_empty(mask))
517 		return;
518 
519 	local_irq_save(flags);
520 
521 	switch (vector) {
522 	default:
523 		icr = APIC_DM_FIXED | vector;
524 		break;
525 	case NMI_VECTOR:
526 		icr = APIC_DM_NMI;
527 		break;
528 	}
529 
530 	for_each_cpu(cpu, mask) {
531 		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
532 		if (!ipi_bitmap) {
533 			min = max = apic_id;
534 		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
535 			ipi_bitmap <<= min - apic_id;
536 			min = apic_id;
537 		} else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
538 			max = apic_id < max ? max : apic_id;
539 		} else {
540 			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
541 				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
542 			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
543 				  ret);
544 			min = max = apic_id;
545 			ipi_bitmap = 0;
546 		}
547 		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
548 	}
549 
550 	if (ipi_bitmap) {
551 		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
552 			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
553 		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
554 			  ret);
555 	}
556 
557 	local_irq_restore(flags);
558 }
559 
kvm_send_ipi_mask(const struct cpumask * mask,int vector)560 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
561 {
562 	__send_ipi_mask(mask, vector);
563 }
564 
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)565 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
566 {
567 	unsigned int this_cpu = smp_processor_id();
568 	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
569 	const struct cpumask *local_mask;
570 
571 	cpumask_copy(new_mask, mask);
572 	cpumask_clear_cpu(this_cpu, new_mask);
573 	local_mask = new_mask;
574 	__send_ipi_mask(local_mask, vector);
575 }
576 
setup_efi_kvm_sev_migration(void)577 static int __init setup_efi_kvm_sev_migration(void)
578 {
579 	efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled";
580 	efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID;
581 	efi_status_t status;
582 	unsigned long size;
583 	bool enabled;
584 
585 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) ||
586 	    !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
587 		return 0;
588 
589 	if (!efi_enabled(EFI_BOOT))
590 		return 0;
591 
592 	if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
593 		pr_info("%s : EFI runtime services are not enabled\n", __func__);
594 		return 0;
595 	}
596 
597 	size = sizeof(enabled);
598 
599 	/* Get variable contents into buffer */
600 	status = efi.get_variable(efi_sev_live_migration_enabled,
601 				  &efi_variable_guid, NULL, &size, &enabled);
602 
603 	if (status == EFI_NOT_FOUND) {
604 		pr_info("%s : EFI live migration variable not found\n", __func__);
605 		return 0;
606 	}
607 
608 	if (status != EFI_SUCCESS) {
609 		pr_info("%s : EFI variable retrieval failed\n", __func__);
610 		return 0;
611 	}
612 
613 	if (enabled == 0) {
614 		pr_info("%s: live migration disabled in EFI\n", __func__);
615 		return 0;
616 	}
617 
618 	pr_info("%s : live migration enabled in EFI\n", __func__);
619 	wrmsrq(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY);
620 
621 	return 1;
622 }
623 
624 late_initcall(setup_efi_kvm_sev_migration);
625 
626 /*
627  * Set the IPI entry points
628  */
kvm_setup_pv_ipi(void)629 static __init void kvm_setup_pv_ipi(void)
630 {
631 	apic_update_callback(send_IPI_mask, kvm_send_ipi_mask);
632 	apic_update_callback(send_IPI_mask_allbutself, kvm_send_ipi_mask_allbutself);
633 	pr_info("setup PV IPIs\n");
634 }
635 
kvm_smp_send_call_func_ipi(const struct cpumask * mask)636 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
637 {
638 	int cpu;
639 
640 	native_send_call_func_ipi(mask);
641 
642 	/* Make sure other vCPUs get a chance to run if they need to. */
643 	for_each_cpu(cpu, mask) {
644 		if (!idle_cpu(cpu) && vcpu_is_preempted(cpu)) {
645 			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
646 			break;
647 		}
648 	}
649 }
650 
kvm_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)651 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
652 			const struct flush_tlb_info *info)
653 {
654 	u8 state;
655 	int cpu;
656 	struct kvm_steal_time *src;
657 	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
658 
659 	cpumask_copy(flushmask, cpumask);
660 	/*
661 	 * We have to call flush only on online vCPUs. And
662 	 * queue flush_on_enter for pre-empted vCPUs
663 	 */
664 	for_each_cpu(cpu, flushmask) {
665 		/*
666 		 * The local vCPU is never preempted, so we do not explicitly
667 		 * skip check for local vCPU - it will never be cleared from
668 		 * flushmask.
669 		 */
670 		src = &per_cpu(steal_time, cpu);
671 		state = READ_ONCE(src->preempted);
672 		if ((state & KVM_VCPU_PREEMPTED)) {
673 			if (try_cmpxchg(&src->preempted, &state,
674 					state | KVM_VCPU_FLUSH_TLB))
675 				__cpumask_clear_cpu(cpu, flushmask);
676 		}
677 	}
678 
679 	native_flush_tlb_multi(flushmask, info);
680 }
681 
kvm_alloc_cpumask(void)682 static __init int kvm_alloc_cpumask(void)
683 {
684 	int cpu;
685 
686 	if (!kvm_para_available() || nopv)
687 		return 0;
688 
689 	if (pv_tlb_flush_supported() || pv_ipi_supported())
690 		for_each_possible_cpu(cpu) {
691 			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
692 				GFP_KERNEL, cpu_to_node(cpu));
693 		}
694 
695 	return 0;
696 }
697 arch_initcall(kvm_alloc_cpumask);
698 
kvm_smp_prepare_boot_cpu(void)699 static void __init kvm_smp_prepare_boot_cpu(void)
700 {
701 	/*
702 	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
703 	 * shares the guest physical address with the hypervisor.
704 	 */
705 	sev_map_percpu_data();
706 
707 	kvm_guest_cpu_init();
708 	native_smp_prepare_boot_cpu();
709 	kvm_spinlock_init();
710 }
711 
kvm_cpu_down_prepare(unsigned int cpu)712 static int kvm_cpu_down_prepare(unsigned int cpu)
713 {
714 	unsigned long flags;
715 
716 	local_irq_save(flags);
717 	kvm_guest_cpu_offline(false);
718 	local_irq_restore(flags);
719 	return 0;
720 }
721 
722 #endif
723 
kvm_suspend(void * data)724 static int kvm_suspend(void *data)
725 {
726 	u64 val = 0;
727 
728 	kvm_guest_cpu_offline(false);
729 
730 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
731 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
732 		rdmsrq(MSR_KVM_POLL_CONTROL, val);
733 	has_guest_poll = !(val & 1);
734 #endif
735 	return 0;
736 }
737 
kvm_resume(void * data)738 static void kvm_resume(void *data)
739 {
740 	kvm_cpu_online(raw_smp_processor_id());
741 
742 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
743 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
744 		wrmsrq(MSR_KVM_POLL_CONTROL, 0);
745 #endif
746 }
747 
748 static const struct syscore_ops kvm_syscore_ops = {
749 	.suspend	= kvm_suspend,
750 	.resume		= kvm_resume,
751 };
752 
753 static struct syscore kvm_syscore = {
754 	.ops = &kvm_syscore_ops,
755 };
756 
kvm_pv_guest_cpu_reboot(void * unused)757 static void kvm_pv_guest_cpu_reboot(void *unused)
758 {
759 	kvm_guest_cpu_offline(true);
760 }
761 
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)762 static int kvm_pv_reboot_notify(struct notifier_block *nb,
763 				unsigned long code, void *unused)
764 {
765 	if (code == SYS_RESTART)
766 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
767 	return NOTIFY_DONE;
768 }
769 
770 static struct notifier_block kvm_pv_reboot_nb = {
771 	.notifier_call = kvm_pv_reboot_notify,
772 };
773 
774 /*
775  * After a PV feature is registered, the host will keep writing to the
776  * registered memory location. If the guest happens to shutdown, this memory
777  * won't be valid. In cases like kexec, in which you install a new kernel, this
778  * means a random memory location will be kept being written.
779  */
780 #ifdef CONFIG_CRASH_DUMP
kvm_crash_shutdown(struct pt_regs * regs)781 static void kvm_crash_shutdown(struct pt_regs *regs)
782 {
783 	kvm_guest_cpu_offline(true);
784 	native_machine_crash_shutdown(regs);
785 }
786 #endif
787 
788 #if defined(CONFIG_X86_32) || !defined(CONFIG_SMP)
789 bool __kvm_vcpu_is_preempted(long cpu);
790 
__kvm_vcpu_is_preempted(long cpu)791 __visible bool __kvm_vcpu_is_preempted(long cpu)
792 {
793 	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
794 
795 	return !!(src->preempted & KVM_VCPU_PREEMPTED);
796 }
797 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
798 
799 #else
800 
801 #include <asm/asm-offsets.h>
802 
803 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
804 
805 /*
806  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
807  * restoring to/from the stack.
808  */
809 #define PV_VCPU_PREEMPTED_ASM						     \
810  "movq   __per_cpu_offset(,%rdi,8), %rax\n\t"				     \
811  "cmpb   $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax)\n\t" \
812  "setne  %al\n\t"
813 
814 DEFINE_ASM_FUNC(__raw_callee_save___kvm_vcpu_is_preempted,
815 		PV_VCPU_PREEMPTED_ASM, .text);
816 #endif
817 
kvm_guest_init(void)818 static void __init kvm_guest_init(void)
819 {
820 	int i;
821 
822 	paravirt_ops_setup();
823 	register_reboot_notifier(&kvm_pv_reboot_nb);
824 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
825 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
826 
827 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
828 		has_steal_clock = 1;
829 		static_call_update(pv_steal_clock, kvm_steal_clock);
830 
831 		pv_ops.lock.vcpu_is_preempted =
832 			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
833 	}
834 
835 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
836 		apic_update_callback(eoi, kvm_guest_apic_eoi_write);
837 
838 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
839 		static_branch_enable(&kvm_async_pf_enabled);
840 		sysvec_install(HYPERVISOR_CALLBACK_VECTOR, sysvec_kvm_asyncpf_interrupt);
841 	}
842 
843 #ifdef CONFIG_SMP
844 	if (pv_tlb_flush_supported()) {
845 		pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
846 		pr_info("KVM setup pv remote TLB flush\n");
847 	}
848 
849 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
850 	if (pv_sched_yield_supported()) {
851 		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
852 		pr_info("setup PV sched yield\n");
853 	}
854 	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
855 				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
856 		pr_err("failed to install cpu hotplug callbacks\n");
857 #else
858 	sev_map_percpu_data();
859 	kvm_guest_cpu_init();
860 #endif
861 
862 #ifdef CONFIG_CRASH_DUMP
863 	machine_ops.crash_shutdown = kvm_crash_shutdown;
864 #endif
865 
866 	register_syscore(&kvm_syscore);
867 
868 	/*
869 	 * Hard lockup detection is enabled by default. Disable it, as guests
870 	 * can get false positives too easily, for example if the host is
871 	 * overcommitted.
872 	 */
873 	hardlockup_detector_disable();
874 }
875 
__kvm_cpuid_base(void)876 static noinline uint32_t __kvm_cpuid_base(void)
877 {
878 	if (boot_cpu_data.cpuid_level < 0)
879 		return 0;	/* So we don't blow up on old processors */
880 
881 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
882 		return cpuid_base_hypervisor(KVM_SIGNATURE, 0);
883 
884 	return 0;
885 }
886 
kvm_cpuid_base(void)887 static inline uint32_t kvm_cpuid_base(void)
888 {
889 	static int kvm_cpuid_base = -1;
890 
891 	if (kvm_cpuid_base == -1)
892 		kvm_cpuid_base = __kvm_cpuid_base();
893 
894 	return kvm_cpuid_base;
895 }
896 
kvm_para_available(void)897 bool kvm_para_available(void)
898 {
899 	return kvm_cpuid_base() != 0;
900 }
901 EXPORT_SYMBOL_GPL(kvm_para_available);
902 
kvm_arch_para_features(void)903 unsigned int kvm_arch_para_features(void)
904 {
905 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
906 }
907 
kvm_arch_para_hints(void)908 unsigned int kvm_arch_para_hints(void)
909 {
910 	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
911 }
912 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
913 
kvm_detect(void)914 static uint32_t __init kvm_detect(void)
915 {
916 	return kvm_cpuid_base();
917 }
918 
kvm_apic_init(void)919 static void __init kvm_apic_init(void)
920 {
921 #ifdef CONFIG_SMP
922 	if (pv_ipi_supported())
923 		kvm_setup_pv_ipi();
924 #endif
925 }
926 
kvm_msi_ext_dest_id(void)927 static bool __init kvm_msi_ext_dest_id(void)
928 {
929 	return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
930 }
931 
kvm_sev_hc_page_enc_status(unsigned long pfn,int npages,bool enc)932 static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc)
933 {
934 	kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages,
935 			   KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
936 }
937 
kvm_init_platform(void)938 static void __init kvm_init_platform(void)
939 {
940 	u64 tolud = PFN_PHYS(e820__end_of_low_ram_pfn());
941 	/*
942 	 * Note, hardware requires variable MTRR ranges to be power-of-2 sized
943 	 * and naturally aligned.  But when forcing guest MTRR state, Linux
944 	 * doesn't program the forced ranges into hardware.  Don't bother doing
945 	 * the math to generate a technically-legal range.
946 	 */
947 	struct mtrr_var_range pci_hole = {
948 		.base_lo = tolud | X86_MEMTYPE_UC,
949 		.mask_lo = (u32)(~(SZ_4G - tolud - 1)) | MTRR_PHYSMASK_V,
950 		.mask_hi = (BIT_ULL(boot_cpu_data.x86_phys_bits) - 1) >> 32,
951 	};
952 
953 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
954 	    kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) {
955 		unsigned long nr_pages;
956 		int i;
957 
958 		pv_ops.mmu.notify_page_enc_status_changed =
959 			kvm_sev_hc_page_enc_status;
960 
961 		/*
962 		 * Reset the host's shared pages list related to kernel
963 		 * specific page encryption status settings before we load a
964 		 * new kernel by kexec. Reset the page encryption status
965 		 * during early boot instead of just before kexec to avoid SMP
966 		 * races during kvm_pv_guest_cpu_reboot().
967 		 * NOTE: We cannot reset the complete shared pages list
968 		 * here as we need to retain the UEFI/OVMF firmware
969 		 * specific settings.
970 		 */
971 
972 		for (i = 0; i < e820_table->nr_entries; i++) {
973 			struct e820_entry *entry = &e820_table->entries[i];
974 
975 			if (entry->type != E820_TYPE_RAM)
976 				continue;
977 
978 			nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE);
979 
980 			kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr,
981 				       nr_pages,
982 				       KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
983 		}
984 
985 		/*
986 		 * Ensure that _bss_decrypted section is marked as decrypted in the
987 		 * shared pages list.
988 		 */
989 		early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted,
990 						__end_bss_decrypted - __start_bss_decrypted, 0);
991 
992 		/*
993 		 * If not booted using EFI, enable Live migration support.
994 		 */
995 		if (!efi_enabled(EFI_BOOT))
996 			wrmsrq(MSR_KVM_MIGRATION_CONTROL,
997 			       KVM_MIGRATION_READY);
998 	}
999 	kvmclock_init();
1000 	x86_platform.apic_post_init = kvm_apic_init;
1001 
1002 	/*
1003 	 * Set WB as the default cache mode for SEV-SNP and TDX, with a single
1004 	 * UC range for the legacy PCI hole, e.g. so that devices that expect
1005 	 * to get UC/WC mappings don't get surprised with WB.
1006 	 */
1007 	guest_force_mtrr_state(&pci_hole, 1, MTRR_TYPE_WRBACK);
1008 }
1009 
1010 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)1011 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
1012 {
1013 	/* RAX and CPL are already in the GHCB */
1014 	ghcb_set_rbx(ghcb, regs->bx);
1015 	ghcb_set_rcx(ghcb, regs->cx);
1016 	ghcb_set_rdx(ghcb, regs->dx);
1017 	ghcb_set_rsi(ghcb, regs->si);
1018 }
1019 
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)1020 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
1021 {
1022 	/* No checking of the return state needed */
1023 	return true;
1024 }
1025 #endif
1026 
1027 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
1028 	.name				= "KVM",
1029 	.detect				= kvm_detect,
1030 	.type				= X86_HYPER_KVM,
1031 	.init.guest_late_init		= kvm_guest_init,
1032 	.init.x2apic_available		= kvm_para_available,
1033 	.init.msi_ext_dest_id		= kvm_msi_ext_dest_id,
1034 	.init.init_platform		= kvm_init_platform,
1035 #if defined(CONFIG_AMD_MEM_ENCRYPT)
1036 	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
1037 	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
1038 #endif
1039 };
1040 
activate_jump_labels(void)1041 static __init int activate_jump_labels(void)
1042 {
1043 	if (has_steal_clock) {
1044 		static_key_slow_inc(&paravirt_steal_enabled);
1045 		if (steal_acc)
1046 			static_key_slow_inc(&paravirt_steal_rq_enabled);
1047 	}
1048 
1049 	return 0;
1050 }
1051 arch_initcall(activate_jump_labels);
1052 
1053 #ifdef CONFIG_PARAVIRT_SPINLOCKS
1054 
1055 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)1056 static void kvm_kick_cpu(int cpu)
1057 {
1058 	unsigned long flags = 0;
1059 	u32 apicid;
1060 
1061 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
1062 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
1063 }
1064 
1065 #include <asm/qspinlock.h>
1066 
kvm_wait(u8 * ptr,u8 val)1067 static void kvm_wait(u8 *ptr, u8 val)
1068 {
1069 	if (in_nmi())
1070 		return;
1071 
1072 	/*
1073 	 * halt until it's our turn and kicked. Note that we do safe halt
1074 	 * for irq enabled case to avoid hang when lock info is overwritten
1075 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
1076 	 */
1077 	if (irqs_disabled()) {
1078 		if (READ_ONCE(*ptr) == val)
1079 			halt();
1080 	} else {
1081 		local_irq_disable();
1082 
1083 		/* safe_halt() will enable IRQ */
1084 		if (READ_ONCE(*ptr) == val)
1085 			safe_halt();
1086 		else
1087 			local_irq_enable();
1088 	}
1089 }
1090 
1091 /*
1092  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
1093  */
kvm_spinlock_init(void)1094 void __init kvm_spinlock_init(void)
1095 {
1096 	/*
1097 	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
1098 	 * are available.
1099 	 */
1100 	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
1101 		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
1102 		goto out;
1103 	}
1104 
1105 	if (num_possible_cpus() == 1) {
1106 		pr_info("PV spinlocks disabled, single CPU\n");
1107 		goto out;
1108 	}
1109 
1110 	if (nopvspin) {
1111 		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
1112 		goto out;
1113 	}
1114 
1115 	/*
1116 	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
1117 	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
1118 	 * preferred over native qspinlock when vCPU is preempted.
1119 	 */
1120 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
1121 		pr_info("PV spinlocks disabled, no host support\n");
1122 		return;
1123 	}
1124 
1125 	pr_info("PV spinlocks enabled\n");
1126 
1127 	__pv_init_lock_hash();
1128 	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1129 	pv_ops.lock.queued_spin_unlock =
1130 		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1131 	pv_ops.lock.wait = kvm_wait;
1132 	pv_ops.lock.kick = kvm_kick_cpu;
1133 
1134 	/*
1135 	 * When PV spinlock is enabled which is preferred over
1136 	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1137 	 * Just disable it anyway.
1138 	 */
1139 out:
1140 	static_branch_disable(&virt_spin_lock_key);
1141 }
1142 
1143 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
1144 
1145 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1146 
kvm_disable_host_haltpoll(void * i)1147 static void kvm_disable_host_haltpoll(void *i)
1148 {
1149 	wrmsrq(MSR_KVM_POLL_CONTROL, 0);
1150 }
1151 
kvm_enable_host_haltpoll(void * i)1152 static void kvm_enable_host_haltpoll(void *i)
1153 {
1154 	wrmsrq(MSR_KVM_POLL_CONTROL, 1);
1155 }
1156 
arch_haltpoll_enable(unsigned int cpu)1157 void arch_haltpoll_enable(unsigned int cpu)
1158 {
1159 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1160 		pr_err_once("host does not support poll control\n");
1161 		pr_err_once("host upgrade recommended\n");
1162 		return;
1163 	}
1164 
1165 	/* Enable guest halt poll disables host halt poll */
1166 	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1167 }
1168 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1169 
arch_haltpoll_disable(unsigned int cpu)1170 void arch_haltpoll_disable(unsigned int cpu)
1171 {
1172 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1173 		return;
1174 
1175 	/* Disable guest halt poll enables host halt poll */
1176 	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1177 }
1178 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1179 #endif
1180