xref: /linux/arch/x86/kvm/cpuid.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid/api.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpu_caps);
38 
39 struct cpuid_xstate_sizes {
40 	u32 eax;
41 	u32 ebx;
42 	u32 ecx;
43 };
44 
45 static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46 
kvm_init_xstate_sizes(void)47 void __init kvm_init_xstate_sizes(void)
48 {
49 	u32 ign;
50 	int i;
51 
52 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54 
55 		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56 	}
57 }
58 
xstate_required_size(u64 xstate_bv,bool compacted)59 u32 xstate_required_size(u64 xstate_bv, bool compacted)
60 {
61 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
62 	int i;
63 
64 	xstate_bv &= XFEATURE_MASK_EXTEND;
65 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
66 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
67 		u32 offset;
68 
69 		if (!(xstate_bv & BIT_ULL(i)))
70 			continue;
71 
72 		/* ECX[1]: 64B alignment in compacted form */
73 		if (compacted)
74 			offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
75 		else
76 			offset = xs->ebx;
77 		ret = max(ret, offset + xs->eax);
78 		xstate_bv &= ~BIT_ULL(i);
79 	}
80 
81 	return ret;
82 }
83 
kvm_find_cpuid_entry2(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)84 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
85 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
86 {
87 	struct kvm_cpuid_entry2 *e;
88 	int i;
89 
90 	/*
91 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
92 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
93 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
94 	 * typically disabled in KVM only when KVM is in a performance critical
95 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
96 	 * if this rule is violated, this assertion is purely to flag potential
97 	 * performance issues.  If this fires, consider moving the lookup out
98 	 * of the hotpath, e.g. by caching information during CPUID updates.
99 	 */
100 	lockdep_assert_irqs_enabled();
101 
102 	for (i = 0; i < nent; i++) {
103 		e = &entries[i];
104 
105 		if (e->function != function)
106 			continue;
107 
108 		/*
109 		 * If the index isn't significant, use the first entry with a
110 		 * matching function.  It's userspace's responsibility to not
111 		 * provide "duplicate" entries in all cases.
112 		 */
113 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
114 			return e;
115 
116 
117 		/*
118 		 * Similarly, use the first matching entry if KVM is doing a
119 		 * lookup (as opposed to emulating CPUID) for a function that's
120 		 * architecturally defined as not having a significant index.
121 		 */
122 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
123 			/*
124 			 * Direct lookups from KVM should not diverge from what
125 			 * KVM defines internally (the architectural behavior).
126 			 */
127 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
128 			return e;
129 		}
130 	}
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_cpuid_entry2);
135 
kvm_check_cpuid(struct kvm_vcpu * vcpu)136 static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
137 {
138 	struct kvm_cpuid_entry2 *best;
139 	u64 xfeatures;
140 
141 	/*
142 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
143 	 * canonical address checks; exit if it is ever changed.
144 	 */
145 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
146 	if (best) {
147 		int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 			return -EINVAL;
151 	}
152 
153 	/*
154 	 * Exposing dynamic xfeatures to the guest requires additional
155 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 	 */
157 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
158 	if (!best)
159 		return 0;
160 
161 	xfeatures = best->eax | ((u64)best->edx << 32);
162 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 	if (!xfeatures)
164 		return 0;
165 
166 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
170 static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
171 
172 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)173 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
174 				 int nent)
175 {
176 	struct kvm_cpuid_entry2 *orig;
177 	int i;
178 
179 	/*
180 	 * Apply runtime CPUID updates to the incoming CPUID entries to avoid
181 	 * false positives due mismatches on KVM-owned feature flags.
182 	 *
183 	 * Note!  @e2 and @nent track the _old_ CPUID entries!
184 	 */
185 	kvm_update_cpuid_runtime(vcpu);
186 	kvm_apply_cpuid_pv_features_quirk(vcpu);
187 
188 	if (nent != vcpu->arch.cpuid_nent)
189 		return -EINVAL;
190 
191 	for (i = 0; i < nent; i++) {
192 		orig = &vcpu->arch.cpuid_entries[i];
193 		if (e2[i].function != orig->function ||
194 		    e2[i].index != orig->index ||
195 		    e2[i].flags != orig->flags ||
196 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
197 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
198 			return -EINVAL;
199 	}
200 
201 	return 0;
202 }
203 
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)204 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
205 							    const char *sig)
206 {
207 	struct kvm_hypervisor_cpuid cpuid = {};
208 	struct kvm_cpuid_entry2 *entry;
209 	u32 base;
210 
211 	for_each_possible_cpuid_base_hypervisor(base) {
212 		entry = kvm_find_cpuid_entry(vcpu, base);
213 
214 		if (entry) {
215 			u32 signature[3];
216 
217 			signature[0] = entry->ebx;
218 			signature[1] = entry->ecx;
219 			signature[2] = entry->edx;
220 
221 			if (!memcmp(signature, sig, sizeof(signature))) {
222 				cpuid.base = base;
223 				cpuid.limit = entry->eax;
224 				break;
225 			}
226 		}
227 	}
228 
229 	return cpuid;
230 }
231 
kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu * vcpu)232 static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_hypervisor_cpuid kvm_cpuid;
235 	struct kvm_cpuid_entry2 *best;
236 
237 	kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
238 	if (!kvm_cpuid.base)
239 		return 0;
240 
241 	best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
242 	if (!best)
243 		return 0;
244 
245 	if (kvm_hlt_in_guest(vcpu->kvm))
246 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
247 
248 	return best->eax;
249 }
250 
251 /*
252  * Calculate guest's supported XCR0 taking into account guest CPUID data and
253  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
254  */
cpuid_get_supported_xcr0(struct kvm_vcpu * vcpu)255 static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
256 {
257 	struct kvm_cpuid_entry2 *best;
258 
259 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
260 	if (!best)
261 		return 0;
262 
263 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
264 }
265 
cpuid_get_supported_xss(struct kvm_vcpu * vcpu)266 static u64 cpuid_get_supported_xss(struct kvm_vcpu *vcpu)
267 {
268 	struct kvm_cpuid_entry2 *best;
269 
270 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 1);
271 	if (!best)
272 		return 0;
273 
274 	return (best->ecx | ((u64)best->edx << 32)) & kvm_caps.supported_xss;
275 }
276 
kvm_update_feature_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool has_feature)277 static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
278 						       struct kvm_cpuid_entry2 *entry,
279 						       unsigned int x86_feature,
280 						       bool has_feature)
281 {
282 	cpuid_entry_change(entry, x86_feature, has_feature);
283 	guest_cpu_cap_change(vcpu, x86_feature, has_feature);
284 }
285 
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)286 static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
287 {
288 	struct kvm_cpuid_entry2 *best;
289 
290 	vcpu->arch.cpuid_dynamic_bits_dirty = false;
291 
292 	best = kvm_find_cpuid_entry(vcpu, 1);
293 	if (best) {
294 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
295 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
296 
297 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
298 					   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
299 
300 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
301 			kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
302 						   vcpu->arch.ia32_misc_enable_msr &
303 						   MSR_IA32_MISC_ENABLE_MWAIT);
304 	}
305 
306 	best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
307 	if (best)
308 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
309 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
310 
311 
312 	best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
313 	if (best)
314 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
315 
316 	best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
317 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
318 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
319 		best->ebx = xstate_required_size(vcpu->arch.xcr0 |
320 						 vcpu->arch.ia32_xss, true);
321 }
322 
kvm_cpuid_has_hyperv(struct kvm_vcpu * vcpu)323 static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
324 {
325 #ifdef CONFIG_KVM_HYPERV
326 	struct kvm_cpuid_entry2 *entry;
327 
328 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
329 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
330 #else
331 	return false;
332 #endif
333 }
334 
guest_cpuid_is_amd_or_hygon(struct kvm_vcpu * vcpu)335 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
336 {
337 	struct kvm_cpuid_entry2 *entry;
338 
339 	entry = kvm_find_cpuid_entry(vcpu, 0);
340 	if (!entry)
341 		return false;
342 
343 	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
344 	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
345 }
346 
347 /*
348  * This isn't truly "unsafe", but except for the cpu_caps initialization code,
349  * all register lookups should use __cpuid_entry_get_reg(), which provides
350  * compile-time validation of the input.
351  */
cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 * entry,u32 reg)352 static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
353 {
354 	switch (reg) {
355 	case CPUID_EAX:
356 		return entry->eax;
357 	case CPUID_EBX:
358 		return entry->ebx;
359 	case CPUID_ECX:
360 		return entry->ecx;
361 	case CPUID_EDX:
362 		return entry->edx;
363 	default:
364 		WARN_ON_ONCE(1);
365 		return 0;
366 	}
367 }
368 
369 static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
370 			       bool include_partially_emulated);
371 
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)372 void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
373 {
374 	struct kvm_lapic *apic = vcpu->arch.apic;
375 	struct kvm_cpuid_entry2 *best;
376 	struct kvm_cpuid_entry2 *entry;
377 	bool allow_gbpages;
378 	int i;
379 
380 	memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
381 	BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
382 
383 	/*
384 	 * Reset guest capabilities to userspace's guest CPUID definition, i.e.
385 	 * honor userspace's definition for features that don't require KVM or
386 	 * hardware management/support (or that KVM simply doesn't care about).
387 	 */
388 	for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
389 		const struct cpuid_reg cpuid = reverse_cpuid[i];
390 		struct kvm_cpuid_entry2 emulated;
391 
392 		if (!cpuid.function)
393 			continue;
394 
395 		entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
396 		if (!entry)
397 			continue;
398 
399 		cpuid_func_emulated(&emulated, cpuid.function, true);
400 
401 		/*
402 		 * A vCPU has a feature if it's supported by KVM and is enabled
403 		 * in guest CPUID.  Note, this includes features that are
404 		 * supported by KVM but aren't advertised to userspace!
405 		 */
406 		vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
407 					 cpuid_get_reg_unsafe(&emulated, cpuid.reg);
408 		vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
409 	}
410 
411 	kvm_update_cpuid_runtime(vcpu);
412 
413 	/*
414 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
415 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
416 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
417 	 * walk for performance and complexity reasons.  Not to mention KVM
418 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
419 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
420 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
421 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
422 	 * and can install smaller shadow pages if the host lacks 1GiB support.
423 	 */
424 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
425 				      guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
426 	guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
427 
428 	best = kvm_find_cpuid_entry(vcpu, 1);
429 	if (best && apic) {
430 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
431 			apic->lapic_timer.timer_mode_mask = 3 << 17;
432 		else
433 			apic->lapic_timer.timer_mode_mask = 1 << 17;
434 
435 		kvm_apic_set_version(vcpu);
436 	}
437 
438 	vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
439 	vcpu->arch.guest_supported_xss = cpuid_get_supported_xss(vcpu);
440 
441 	vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
442 
443 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
444 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
445 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
446 
447 	kvm_pmu_refresh(vcpu);
448 
449 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
450 	vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
451 					 __cr4_reserved_bits(guest_cpu_cap_has, vcpu);
452 #undef __kvm_cpu_cap_has
453 
454 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
455 
456 	/* Invoke the vendor callback only after the above state is updated. */
457 	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
458 
459 	/*
460 	 * Except for the MMU, which needs to do its thing any vendor specific
461 	 * adjustments to the reserved GPA bits.
462 	 */
463 	kvm_mmu_after_set_cpuid(vcpu);
464 
465 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
466 }
467 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)468 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
469 {
470 	struct kvm_cpuid_entry2 *best;
471 
472 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
473 	if (!best || best->eax < 0x80000008)
474 		goto not_found;
475 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
476 	if (best)
477 		return best->eax & 0xff;
478 not_found:
479 	return 36;
480 }
481 
cpuid_query_maxguestphyaddr(struct kvm_vcpu * vcpu)482 int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
483 {
484 	struct kvm_cpuid_entry2 *best;
485 
486 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
487 	if (!best || best->eax < 0x80000008)
488 		goto not_found;
489 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
490 	if (best)
491 		return (best->eax >> 16) & 0xff;
492 not_found:
493 	return 0;
494 }
495 
496 /*
497  * This "raw" version returns the reserved GPA bits without any adjustments for
498  * encryption technologies that usurp bits.  The raw mask should be used if and
499  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
500  */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)501 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
502 {
503 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
504 }
505 
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)506 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
507                         int nent)
508 {
509 	u32 vcpu_caps[NR_KVM_CPU_CAPS];
510 	int r;
511 
512 	/*
513 	 * Swap the existing (old) entries with the incoming (new) entries in
514 	 * order to massage the new entries, e.g. to account for dynamic bits
515 	 * that KVM controls, without clobbering the current guest CPUID, which
516 	 * KVM needs to preserve in order to unwind on failure.
517 	 *
518 	 * Similarly, save the vCPU's current cpu_caps so that the capabilities
519 	 * can be updated alongside the CPUID entries when performing runtime
520 	 * updates.  Full initialization is done if and only if the vCPU hasn't
521 	 * run, i.e. only if userspace is potentially changing CPUID features.
522 	 */
523 	swap(vcpu->arch.cpuid_entries, e2);
524 	swap(vcpu->arch.cpuid_nent, nent);
525 
526 	memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
527 	BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
528 
529 	/*
530 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
531 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
532 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
533 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
534 	 * the core vCPU model on the fly. It would've been better to forbid any
535 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
536 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
537 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
538 	 * whether the supplied CPUID data is equal to what's already set.
539 	 */
540 	if (kvm_vcpu_has_run(vcpu)) {
541 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
542 		if (r)
543 			goto err;
544 		goto success;
545 	}
546 
547 #ifdef CONFIG_KVM_HYPERV
548 	if (kvm_cpuid_has_hyperv(vcpu)) {
549 		r = kvm_hv_vcpu_init(vcpu);
550 		if (r)
551 			goto err;
552 	}
553 #endif
554 
555 	r = kvm_check_cpuid(vcpu);
556 	if (r)
557 		goto err;
558 
559 #ifdef CONFIG_KVM_XEN
560 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
561 #endif
562 	kvm_vcpu_after_set_cpuid(vcpu);
563 
564 success:
565 	kvfree(e2);
566 	return 0;
567 
568 err:
569 	memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
570 	swap(vcpu->arch.cpuid_entries, e2);
571 	swap(vcpu->arch.cpuid_nent, nent);
572 	return r;
573 }
574 
575 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)576 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
577 			     struct kvm_cpuid *cpuid,
578 			     struct kvm_cpuid_entry __user *entries)
579 {
580 	int r, i;
581 	struct kvm_cpuid_entry *e = NULL;
582 	struct kvm_cpuid_entry2 *e2 = NULL;
583 
584 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
585 		return -E2BIG;
586 
587 	if (cpuid->nent) {
588 		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
589 		if (IS_ERR(e))
590 			return PTR_ERR(e);
591 
592 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
593 		if (!e2) {
594 			r = -ENOMEM;
595 			goto out_free_cpuid;
596 		}
597 	}
598 	for (i = 0; i < cpuid->nent; i++) {
599 		e2[i].function = e[i].function;
600 		e2[i].eax = e[i].eax;
601 		e2[i].ebx = e[i].ebx;
602 		e2[i].ecx = e[i].ecx;
603 		e2[i].edx = e[i].edx;
604 		e2[i].index = 0;
605 		e2[i].flags = 0;
606 		e2[i].padding[0] = 0;
607 		e2[i].padding[1] = 0;
608 		e2[i].padding[2] = 0;
609 	}
610 
611 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
612 	if (r)
613 		kvfree(e2);
614 
615 out_free_cpuid:
616 	kvfree(e);
617 
618 	return r;
619 }
620 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)621 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
622 			      struct kvm_cpuid2 *cpuid,
623 			      struct kvm_cpuid_entry2 __user *entries)
624 {
625 	struct kvm_cpuid_entry2 *e2 = NULL;
626 	int r;
627 
628 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
629 		return -E2BIG;
630 
631 	if (cpuid->nent) {
632 		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
633 		if (IS_ERR(e2))
634 			return PTR_ERR(e2);
635 	}
636 
637 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
638 	if (r)
639 		kvfree(e2);
640 
641 	return r;
642 }
643 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)644 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
645 			      struct kvm_cpuid2 *cpuid,
646 			      struct kvm_cpuid_entry2 __user *entries)
647 {
648 	if (cpuid->nent < vcpu->arch.cpuid_nent)
649 		return -E2BIG;
650 
651 	if (vcpu->arch.cpuid_dynamic_bits_dirty)
652 		kvm_update_cpuid_runtime(vcpu);
653 
654 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
655 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
656 		return -EFAULT;
657 
658 	cpuid->nent = vcpu->arch.cpuid_nent;
659 	return 0;
660 }
661 
raw_cpuid_get(struct cpuid_reg cpuid)662 static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
663 {
664 	struct kvm_cpuid_entry2 entry;
665 	u32 base;
666 
667 	/*
668 	 * KVM only supports features defined by Intel (0x0), AMD (0x80000000),
669 	 * and Centaur (0xc0000000).  WARN if a feature for new vendor base is
670 	 * defined, as this and other code would need to be updated.
671 	 */
672 	base = cpuid.function & 0xffff0000;
673 	if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
674 		return 0;
675 
676 	if (cpuid_eax(base) < cpuid.function)
677 		return 0;
678 
679 	cpuid_count(cpuid.function, cpuid.index,
680 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
681 
682 	return *__cpuid_entry_get_reg(&entry, cpuid.reg);
683 }
684 
685 /*
686  * For kernel-defined leafs, mask KVM's supported feature set with the kernel's
687  * capabilities as well as raw CPUID.  For KVM-defined leafs, consult only raw
688  * CPUID, as KVM is the one and only authority (in the kernel).
689  */
690 #define kvm_cpu_cap_init(leaf, feature_initializers...)			\
691 do {									\
692 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);	\
693 	const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf;	\
694 	const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability;	\
695 	u32 kvm_cpu_cap_passthrough = 0;				\
696 	u32 kvm_cpu_cap_synthesized = 0;				\
697 	u32 kvm_cpu_cap_emulated = 0;					\
698 	u32 kvm_cpu_cap_features = 0;					\
699 									\
700 	feature_initializers						\
701 									\
702 	kvm_cpu_caps[leaf] = kvm_cpu_cap_features;			\
703 									\
704 	if (leaf < NCAPINTS)						\
705 		kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf];		\
706 									\
707 	kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough;			\
708 	kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) |			\
709 			       kvm_cpu_cap_synthesized);		\
710 	kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated;			\
711 } while (0)
712 
713 /*
714  * Assert that the feature bit being declared, e.g. via F(), is in the CPUID
715  * word that's being initialized.  Exempt 0x8000_0001.EDX usage of 0x1.EDX
716  * features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
717  */
718 #define KVM_VALIDATE_CPU_CAP_USAGE(name)				\
719 do {									\
720 	u32 __leaf = __feature_leaf(X86_FEATURE_##name);		\
721 									\
722 	BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress);		\
723 } while (0)
724 
725 #define F(name)							\
726 ({								\
727 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
728 	kvm_cpu_cap_features |= feature_bit(name);		\
729 })
730 
731 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
732 #define SCATTERED_F(name)					\
733 ({								\
734 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
735 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
736 	if (boot_cpu_has(X86_FEATURE_##name))			\
737 		F(name);					\
738 })
739 
740 /* Features that KVM supports only on 64-bit kernels. */
741 #define X86_64_F(name)						\
742 ({								\
743 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
744 	if (IS_ENABLED(CONFIG_X86_64))				\
745 		F(name);					\
746 })
747 
748 /*
749  * Emulated Feature - For features that KVM emulates in software irrespective
750  * of host CPU/kernel support.
751  */
752 #define EMULATED_F(name)					\
753 ({								\
754 	kvm_cpu_cap_emulated |= feature_bit(name);		\
755 	F(name);						\
756 })
757 
758 /*
759  * Synthesized Feature - For features that are synthesized into boot_cpu_data,
760  * i.e. may not be present in the raw CPUID, but can still be advertised to
761  * userspace.  Primarily used for mitigation related feature flags.
762  */
763 #define SYNTHESIZED_F(name)					\
764 ({								\
765 	kvm_cpu_cap_synthesized |= feature_bit(name);		\
766 	F(name);						\
767 })
768 
769 /*
770  * Passthrough Feature - For features that KVM supports based purely on raw
771  * hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
772  * use the feature.  Simply force set the feature in KVM's capabilities, raw
773  * CPUID support will be factored in by kvm_cpu_cap_mask().
774  */
775 #define PASSTHROUGH_F(name)					\
776 ({								\
777 	kvm_cpu_cap_passthrough |= feature_bit(name);		\
778 	F(name);						\
779 })
780 
781 /*
782  * Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
783  * identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
784  */
785 #define ALIASED_1_EDX_F(name)							\
786 ({										\
787 	BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX);	\
788 	BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX);	\
789 	kvm_cpu_cap_features |= feature_bit(name);				\
790 })
791 
792 /*
793  * Vendor Features - For features that KVM supports, but are added in later
794  * because they require additional vendor enabling.
795  */
796 #define VENDOR_F(name)						\
797 ({								\
798 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
799 })
800 
801 /*
802  * Runtime Features - For features that KVM dynamically sets/clears at runtime,
803  * e.g. when CR4 changes, but which are never advertised to userspace.
804  */
805 #define RUNTIME_F(name)						\
806 ({								\
807 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
808 })
809 
810 /*
811  * Undefine the MSR bit macro to avoid token concatenation issues when
812  * processing X86_FEATURE_SPEC_CTRL_SSBD.
813  */
814 #undef SPEC_CTRL_SSBD
815 
816 /* DS is defined by ptrace-abi.h on 32-bit builds. */
817 #undef DS
818 
kvm_set_cpu_caps(void)819 void kvm_set_cpu_caps(void)
820 {
821 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
822 
823 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
824 		     sizeof(boot_cpu_data.x86_capability));
825 
826 	kvm_cpu_cap_init(CPUID_1_ECX,
827 		F(XMM3),
828 		F(PCLMULQDQ),
829 		VENDOR_F(DTES64),
830 		/*
831 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
832 		 * advertised to guests via CPUID!  MWAIT is also technically a
833 		 * runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
834 		 * that KVM is aware that it's a known, unadvertised flag.
835 		 */
836 		RUNTIME_F(MWAIT),
837 		/* DS-CPL */
838 		VENDOR_F(VMX),
839 		/* SMX, EST */
840 		/* TM2 */
841 		F(SSSE3),
842 		/* CNXT-ID */
843 		/* Reserved */
844 		F(FMA),
845 		F(CX16),
846 		/* xTPR Update */
847 		F(PDCM),
848 		F(PCID),
849 		/* Reserved, DCA */
850 		F(XMM4_1),
851 		F(XMM4_2),
852 		EMULATED_F(X2APIC),
853 		F(MOVBE),
854 		F(POPCNT),
855 		EMULATED_F(TSC_DEADLINE_TIMER),
856 		F(AES),
857 		F(XSAVE),
858 		RUNTIME_F(OSXSAVE),
859 		F(AVX),
860 		F(F16C),
861 		F(RDRAND),
862 		EMULATED_F(HYPERVISOR),
863 	);
864 
865 	kvm_cpu_cap_init(CPUID_1_EDX,
866 		F(FPU),
867 		F(VME),
868 		F(DE),
869 		F(PSE),
870 		F(TSC),
871 		F(MSR),
872 		F(PAE),
873 		F(MCE),
874 		F(CX8),
875 		F(APIC),
876 		/* Reserved */
877 		F(SEP),
878 		F(MTRR),
879 		F(PGE),
880 		F(MCA),
881 		F(CMOV),
882 		F(PAT),
883 		F(PSE36),
884 		/* PSN */
885 		F(CLFLUSH),
886 		/* Reserved */
887 		VENDOR_F(DS),
888 		/* ACPI */
889 		F(MMX),
890 		F(FXSR),
891 		F(XMM),
892 		F(XMM2),
893 		F(SELFSNOOP),
894 		/* HTT, TM, Reserved, PBE */
895 	);
896 
897 	kvm_cpu_cap_init(CPUID_7_0_EBX,
898 		F(FSGSBASE),
899 		EMULATED_F(TSC_ADJUST),
900 		F(SGX),
901 		F(BMI1),
902 		F(HLE),
903 		F(AVX2),
904 		F(FDP_EXCPTN_ONLY),
905 		F(SMEP),
906 		F(BMI2),
907 		F(ERMS),
908 		F(INVPCID),
909 		F(RTM),
910 		F(ZERO_FCS_FDS),
911 		VENDOR_F(MPX),
912 		F(AVX512F),
913 		F(AVX512DQ),
914 		F(RDSEED),
915 		F(ADX),
916 		F(SMAP),
917 		F(AVX512IFMA),
918 		F(CLFLUSHOPT),
919 		F(CLWB),
920 		VENDOR_F(INTEL_PT),
921 		F(AVX512PF),
922 		F(AVX512ER),
923 		F(AVX512CD),
924 		F(SHA_NI),
925 		F(AVX512BW),
926 		F(AVX512VL),
927 	);
928 
929 	kvm_cpu_cap_init(CPUID_7_ECX,
930 		F(AVX512VBMI),
931 		PASSTHROUGH_F(LA57),
932 		F(PKU),
933 		RUNTIME_F(OSPKE),
934 		F(RDPID),
935 		F(AVX512_VPOPCNTDQ),
936 		F(UMIP),
937 		F(AVX512_VBMI2),
938 		F(GFNI),
939 		F(VAES),
940 		F(VPCLMULQDQ),
941 		F(AVX512_VNNI),
942 		F(AVX512_BITALG),
943 		F(CLDEMOTE),
944 		F(MOVDIRI),
945 		F(MOVDIR64B),
946 		VENDOR_F(WAITPKG),
947 		F(SGX_LC),
948 		F(BUS_LOCK_DETECT),
949 		X86_64_F(SHSTK),
950 	);
951 
952 	/*
953 	 * PKU not yet implemented for shadow paging and requires OSPKE
954 	 * to be set on the host. Clear it if that is not the case
955 	 */
956 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
957 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
958 
959 	/*
960 	 * Shadow Stacks aren't implemented in the Shadow MMU.  Shadow Stack
961 	 * accesses require "magic" Writable=0,Dirty=1 protection, which KVM
962 	 * doesn't know how to emulate or map.
963 	 */
964 	if (!tdp_enabled)
965 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
966 
967 	kvm_cpu_cap_init(CPUID_7_EDX,
968 		F(AVX512_4VNNIW),
969 		F(AVX512_4FMAPS),
970 		F(SPEC_CTRL),
971 		F(SPEC_CTRL_SSBD),
972 		EMULATED_F(ARCH_CAPABILITIES),
973 		F(INTEL_STIBP),
974 		F(MD_CLEAR),
975 		F(AVX512_VP2INTERSECT),
976 		F(FSRM),
977 		F(SERIALIZE),
978 		F(TSXLDTRK),
979 		F(AVX512_FP16),
980 		F(AMX_TILE),
981 		F(AMX_INT8),
982 		F(AMX_BF16),
983 		F(FLUSH_L1D),
984 		F(IBT),
985 	);
986 
987 	/*
988 	 * Disable support for IBT and SHSTK if KVM is configured to emulate
989 	 * accesses to reserved GPAs, as KVM's emulator doesn't support IBT or
990 	 * SHSTK, nor does KVM handle Shadow Stack #PFs (see above).
991 	 */
992 	if (allow_smaller_maxphyaddr) {
993 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
994 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
995 	}
996 
997 	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
998 	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
999 	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
1000 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
1001 	if (boot_cpu_has(X86_FEATURE_STIBP))
1002 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
1003 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
1004 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
1005 
1006 	kvm_cpu_cap_init(CPUID_7_1_EAX,
1007 		F(SHA512),
1008 		F(SM3),
1009 		F(SM4),
1010 		F(AVX_VNNI),
1011 		F(AVX512_BF16),
1012 		F(CMPCCXADD),
1013 		F(FZRM),
1014 		F(FSRS),
1015 		F(FSRC),
1016 		F(WRMSRNS),
1017 		X86_64_F(LKGS),
1018 		F(AMX_FP16),
1019 		F(AVX_IFMA),
1020 		F(LAM),
1021 	);
1022 
1023 	kvm_cpu_cap_init(CPUID_7_1_ECX,
1024 		SCATTERED_F(MSR_IMM),
1025 	);
1026 
1027 	kvm_cpu_cap_init(CPUID_7_1_EDX,
1028 		F(AVX_VNNI_INT8),
1029 		F(AVX_NE_CONVERT),
1030 		F(AMX_COMPLEX),
1031 		F(AVX_VNNI_INT16),
1032 		F(PREFETCHITI),
1033 		F(AVX10),
1034 	);
1035 
1036 	kvm_cpu_cap_init(CPUID_7_2_EDX,
1037 		F(INTEL_PSFD),
1038 		F(IPRED_CTRL),
1039 		F(RRSBA_CTRL),
1040 		F(DDPD_U),
1041 		F(BHI_CTRL),
1042 		F(MCDT_NO),
1043 	);
1044 
1045 	kvm_cpu_cap_init(CPUID_D_1_EAX,
1046 		F(XSAVEOPT),
1047 		F(XSAVEC),
1048 		F(XGETBV1),
1049 		F(XSAVES),
1050 		X86_64_F(XFD),
1051 	);
1052 
1053 	kvm_cpu_cap_init(CPUID_12_EAX,
1054 		SCATTERED_F(SGX1),
1055 		SCATTERED_F(SGX2),
1056 		SCATTERED_F(SGX_EDECCSSA),
1057 	);
1058 
1059 	kvm_cpu_cap_init(CPUID_24_0_EBX,
1060 		F(AVX10_128),
1061 		F(AVX10_256),
1062 		F(AVX10_512),
1063 	);
1064 
1065 	kvm_cpu_cap_init(CPUID_8000_0001_ECX,
1066 		F(LAHF_LM),
1067 		F(CMP_LEGACY),
1068 		VENDOR_F(SVM),
1069 		/* ExtApicSpace */
1070 		F(CR8_LEGACY),
1071 		F(ABM),
1072 		F(SSE4A),
1073 		F(MISALIGNSSE),
1074 		F(3DNOWPREFETCH),
1075 		F(OSVW),
1076 		/* IBS */
1077 		F(XOP),
1078 		/* SKINIT, WDT, LWP */
1079 		F(FMA4),
1080 		F(TBM),
1081 		F(TOPOEXT),
1082 		VENDOR_F(PERFCTR_CORE),
1083 	);
1084 
1085 	kvm_cpu_cap_init(CPUID_8000_0001_EDX,
1086 		ALIASED_1_EDX_F(FPU),
1087 		ALIASED_1_EDX_F(VME),
1088 		ALIASED_1_EDX_F(DE),
1089 		ALIASED_1_EDX_F(PSE),
1090 		ALIASED_1_EDX_F(TSC),
1091 		ALIASED_1_EDX_F(MSR),
1092 		ALIASED_1_EDX_F(PAE),
1093 		ALIASED_1_EDX_F(MCE),
1094 		ALIASED_1_EDX_F(CX8),
1095 		ALIASED_1_EDX_F(APIC),
1096 		/* Reserved */
1097 		F(SYSCALL),
1098 		ALIASED_1_EDX_F(MTRR),
1099 		ALIASED_1_EDX_F(PGE),
1100 		ALIASED_1_EDX_F(MCA),
1101 		ALIASED_1_EDX_F(CMOV),
1102 		ALIASED_1_EDX_F(PAT),
1103 		ALIASED_1_EDX_F(PSE36),
1104 		/* Reserved */
1105 		F(NX),
1106 		/* Reserved */
1107 		F(MMXEXT),
1108 		ALIASED_1_EDX_F(MMX),
1109 		ALIASED_1_EDX_F(FXSR),
1110 		F(FXSR_OPT),
1111 		X86_64_F(GBPAGES),
1112 		F(RDTSCP),
1113 		/* Reserved */
1114 		X86_64_F(LM),
1115 		F(3DNOWEXT),
1116 		F(3DNOW),
1117 	);
1118 
1119 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
1120 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
1121 
1122 	kvm_cpu_cap_init(CPUID_8000_0007_EDX,
1123 		SCATTERED_F(CONSTANT_TSC),
1124 	);
1125 
1126 	kvm_cpu_cap_init(CPUID_8000_0008_EBX,
1127 		F(CLZERO),
1128 		F(XSAVEERPTR),
1129 		F(WBNOINVD),
1130 		F(AMD_IBPB),
1131 		F(AMD_IBRS),
1132 		F(AMD_SSBD),
1133 		F(VIRT_SSBD),
1134 		F(AMD_SSB_NO),
1135 		F(AMD_STIBP),
1136 		F(AMD_STIBP_ALWAYS_ON),
1137 		F(AMD_IBRS_SAME_MODE),
1138 		F(AMD_PSFD),
1139 		F(AMD_IBPB_RET),
1140 	);
1141 
1142 	/*
1143 	 * AMD has separate bits for each SPEC_CTRL bit.
1144 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
1145 	 * record that in cpufeatures so use them.
1146 	 */
1147 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1148 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
1149 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
1150 		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
1151 			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
1152 	}
1153 	if (boot_cpu_has(X86_FEATURE_IBRS))
1154 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
1155 	if (boot_cpu_has(X86_FEATURE_STIBP))
1156 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
1157 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
1158 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
1159 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1160 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
1161 	/*
1162 	 * The preference is to use SPEC CTRL MSR instead of the
1163 	 * VIRT_SPEC MSR.
1164 	 */
1165 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
1166 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
1167 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
1168 
1169 	/* All SVM features required additional vendor module enabling. */
1170 	kvm_cpu_cap_init(CPUID_8000_000A_EDX,
1171 		VENDOR_F(NPT),
1172 		VENDOR_F(VMCBCLEAN),
1173 		VENDOR_F(FLUSHBYASID),
1174 		VENDOR_F(NRIPS),
1175 		VENDOR_F(TSCRATEMSR),
1176 		VENDOR_F(V_VMSAVE_VMLOAD),
1177 		VENDOR_F(LBRV),
1178 		VENDOR_F(PAUSEFILTER),
1179 		VENDOR_F(PFTHRESHOLD),
1180 		VENDOR_F(VGIF),
1181 		VENDOR_F(VNMI),
1182 		VENDOR_F(SVME_ADDR_CHK),
1183 	);
1184 
1185 	kvm_cpu_cap_init(CPUID_8000_001F_EAX,
1186 		VENDOR_F(SME),
1187 		VENDOR_F(SEV),
1188 		/* VM_PAGE_FLUSH */
1189 		VENDOR_F(SEV_ES),
1190 		F(SME_COHERENT),
1191 	);
1192 
1193 	kvm_cpu_cap_init(CPUID_8000_0021_EAX,
1194 		F(NO_NESTED_DATA_BP),
1195 		F(WRMSR_XX_BASE_NS),
1196 		/*
1197 		 * Synthesize "LFENCE is serializing" into the AMD-defined entry
1198 		 * in KVM's supported CPUID, i.e. if the feature is reported as
1199 		 * supported by the kernel.  LFENCE_RDTSC was a Linux-defined
1200 		 * synthetic feature long before AMD joined the bandwagon, e.g.
1201 		 * LFENCE is serializing on most CPUs that support SSE2.  On
1202 		 * CPUs that don't support AMD's leaf, ANDing with the raw host
1203 		 * CPUID will drop the flags, and reporting support in AMD's
1204 		 * leaf can make it easier for userspace to detect the feature.
1205 		 */
1206 		SYNTHESIZED_F(LFENCE_RDTSC),
1207 		/* SmmPgCfgLock */
1208 		/* 4: Resv */
1209 		SYNTHESIZED_F(VERW_CLEAR),
1210 		F(NULL_SEL_CLR_BASE),
1211 		/* UpperAddressIgnore */
1212 		F(AUTOIBRS),
1213 		F(PREFETCHI),
1214 		EMULATED_F(NO_SMM_CTL_MSR),
1215 		/* PrefetchCtlMsr */
1216 		/* GpOnUserCpuid */
1217 		/* EPSF */
1218 		SYNTHESIZED_F(SBPB),
1219 		SYNTHESIZED_F(IBPB_BRTYPE),
1220 		SYNTHESIZED_F(SRSO_NO),
1221 		F(SRSO_USER_KERNEL_NO),
1222 	);
1223 
1224 	kvm_cpu_cap_init(CPUID_8000_0021_ECX,
1225 		SYNTHESIZED_F(TSA_SQ_NO),
1226 		SYNTHESIZED_F(TSA_L1_NO),
1227 	);
1228 
1229 	kvm_cpu_cap_init(CPUID_8000_0022_EAX,
1230 		F(PERFMON_V2),
1231 	);
1232 
1233 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1234 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
1235 
1236 	kvm_cpu_cap_init(CPUID_C000_0001_EDX,
1237 		F(XSTORE),
1238 		F(XSTORE_EN),
1239 		F(XCRYPT),
1240 		F(XCRYPT_EN),
1241 		F(ACE2),
1242 		F(ACE2_EN),
1243 		F(PHE),
1244 		F(PHE_EN),
1245 		F(PMM),
1246 		F(PMM_EN),
1247 	);
1248 
1249 	/*
1250 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
1251 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
1252 	 * should never happen, but the guest will likely crash if RDTSCP or
1253 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
1254 	 * the past.  For example, the sanity check may fire if this instance of
1255 	 * KVM is running as L1 on top of an older, broken KVM.
1256 	 */
1257 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
1258 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
1259 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
1260 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
1261 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
1262 	}
1263 }
1264 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cpu_caps);
1265 
1266 #undef F
1267 #undef SCATTERED_F
1268 #undef X86_64_F
1269 #undef EMULATED_F
1270 #undef SYNTHESIZED_F
1271 #undef PASSTHROUGH_F
1272 #undef ALIASED_1_EDX_F
1273 #undef VENDOR_F
1274 #undef RUNTIME_F
1275 
1276 struct kvm_cpuid_array {
1277 	struct kvm_cpuid_entry2 *entries;
1278 	int maxnent;
1279 	int nent;
1280 };
1281 
get_next_cpuid(struct kvm_cpuid_array * array)1282 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
1283 {
1284 	if (array->nent >= array->maxnent)
1285 		return NULL;
1286 
1287 	return &array->entries[array->nent++];
1288 }
1289 
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)1290 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
1291 					      u32 function, u32 index)
1292 {
1293 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
1294 
1295 	if (!entry)
1296 		return NULL;
1297 
1298 	memset(entry, 0, sizeof(*entry));
1299 	entry->function = function;
1300 	entry->index = index;
1301 	switch (function & 0xC0000000) {
1302 	case 0x40000000:
1303 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
1304 		return entry;
1305 
1306 	case 0x80000000:
1307 		/*
1308 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
1309 		 * would result in out-of-bounds calls to do_host_cpuid.
1310 		 */
1311 		{
1312 			static int max_cpuid_80000000;
1313 			if (!READ_ONCE(max_cpuid_80000000))
1314 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
1315 			if (function > READ_ONCE(max_cpuid_80000000))
1316 				return entry;
1317 		}
1318 		break;
1319 
1320 	default:
1321 		break;
1322 	}
1323 
1324 	cpuid_count(entry->function, entry->index,
1325 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1326 
1327 	if (cpuid_function_is_indexed(function))
1328 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1329 
1330 	return entry;
1331 }
1332 
cpuid_func_emulated(struct kvm_cpuid_entry2 * entry,u32 func,bool include_partially_emulated)1333 static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
1334 			       bool include_partially_emulated)
1335 {
1336 	memset(entry, 0, sizeof(*entry));
1337 
1338 	entry->function = func;
1339 	entry->index = 0;
1340 	entry->flags = 0;
1341 
1342 	switch (func) {
1343 	case 0:
1344 		entry->eax = 7;
1345 		return 1;
1346 	case 1:
1347 		entry->ecx = feature_bit(MOVBE);
1348 		/*
1349 		 * KVM allows userspace to enumerate MONITOR+MWAIT support to
1350 		 * the guest, but the MWAIT feature flag is never advertised
1351 		 * to userspace because MONITOR+MWAIT aren't virtualized by
1352 		 * hardware, can't be faithfully emulated in software (KVM
1353 		 * emulates them as NOPs), and allowing the guest to execute
1354 		 * them natively requires enabling a per-VM capability.
1355 		 */
1356 		if (include_partially_emulated)
1357 			entry->ecx |= feature_bit(MWAIT);
1358 		return 1;
1359 	case 7:
1360 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1361 		entry->eax = 0;
1362 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
1363 			entry->ecx = feature_bit(RDPID);
1364 		return 1;
1365 	default:
1366 		return 0;
1367 	}
1368 }
1369 
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)1370 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
1371 {
1372 	if (array->nent >= array->maxnent)
1373 		return -E2BIG;
1374 
1375 	array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
1376 	return 0;
1377 }
1378 
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)1379 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
1380 {
1381 	struct kvm_cpuid_entry2 *entry;
1382 	int r, i, max_idx;
1383 
1384 	/* all calls to cpuid_count() should be made on the same cpu */
1385 	get_cpu();
1386 
1387 	r = -E2BIG;
1388 
1389 	entry = do_host_cpuid(array, function, 0);
1390 	if (!entry)
1391 		goto out;
1392 
1393 	switch (function) {
1394 	case 0:
1395 		/* Limited to the highest leaf implemented in KVM. */
1396 		entry->eax = min(entry->eax, 0x24U);
1397 		break;
1398 	case 1:
1399 		cpuid_entry_override(entry, CPUID_1_EDX);
1400 		cpuid_entry_override(entry, CPUID_1_ECX);
1401 		break;
1402 	case 2:
1403 		/*
1404 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
1405 		 * CPUID(function=2, index=0) may return different results each
1406 		 * time, with the least-significant byte in EAX enumerating the
1407 		 * number of times software should do CPUID(2, 0).
1408 		 *
1409 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
1410 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
1411 		 * return 01H. Software should ignore this value and not
1412 		 * interpret it as an informational descriptor", while AMD's
1413 		 * APM states that CPUID(2) is reserved.
1414 		 *
1415 		 * WARN if a frankenstein CPU that supports virtualization and
1416 		 * a stateful CPUID.0x2 is encountered.
1417 		 */
1418 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
1419 		break;
1420 	/* functions 4 and 0x8000001d have additional index. */
1421 	case 4:
1422 	case 0x8000001d:
1423 		/*
1424 		 * Read entries until the cache type in the previous entry is
1425 		 * zero, i.e. indicates an invalid entry.
1426 		 */
1427 		for (i = 1; entry->eax & 0x1f; ++i) {
1428 			entry = do_host_cpuid(array, function, i);
1429 			if (!entry)
1430 				goto out;
1431 		}
1432 		break;
1433 	case 6: /* Thermal management */
1434 		entry->eax = 0x4; /* allow ARAT */
1435 		entry->ebx = 0;
1436 		entry->ecx = 0;
1437 		entry->edx = 0;
1438 		break;
1439 	/* function 7 has additional index. */
1440 	case 7:
1441 		max_idx = entry->eax = min(entry->eax, 2u);
1442 		cpuid_entry_override(entry, CPUID_7_0_EBX);
1443 		cpuid_entry_override(entry, CPUID_7_ECX);
1444 		cpuid_entry_override(entry, CPUID_7_EDX);
1445 
1446 		/* KVM only supports up to 0x7.2, capped above via min(). */
1447 		if (max_idx >= 1) {
1448 			entry = do_host_cpuid(array, function, 1);
1449 			if (!entry)
1450 				goto out;
1451 
1452 			cpuid_entry_override(entry, CPUID_7_1_EAX);
1453 			cpuid_entry_override(entry, CPUID_7_1_ECX);
1454 			cpuid_entry_override(entry, CPUID_7_1_EDX);
1455 			entry->ebx = 0;
1456 		}
1457 		if (max_idx >= 2) {
1458 			entry = do_host_cpuid(array, function, 2);
1459 			if (!entry)
1460 				goto out;
1461 
1462 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1463 			entry->ecx = 0;
1464 			entry->ebx = 0;
1465 			entry->eax = 0;
1466 		}
1467 		break;
1468 	case 0xa: { /* Architectural Performance Monitoring */
1469 		union cpuid10_eax eax = { };
1470 		union cpuid10_edx edx = { };
1471 
1472 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1473 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1474 			break;
1475 		}
1476 
1477 		eax.split.version_id = kvm_pmu_cap.version;
1478 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1479 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1480 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1481 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1482 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1483 
1484 		if (kvm_pmu_cap.version)
1485 			edx.split.anythread_deprecated = 1;
1486 
1487 		entry->eax = eax.full;
1488 		entry->ebx = kvm_pmu_cap.events_mask;
1489 		entry->ecx = 0;
1490 		entry->edx = edx.full;
1491 		break;
1492 	}
1493 	case 0x1f:
1494 	case 0xb:
1495 		/*
1496 		 * No topology; a valid topology is indicated by the presence
1497 		 * of subleaf 1.
1498 		 */
1499 		entry->eax = entry->ebx = entry->ecx = 0;
1500 		break;
1501 	case 0xd: {
1502 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1503 		u64 permitted_xss = kvm_caps.supported_xss;
1504 
1505 		entry->eax &= permitted_xcr0;
1506 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1507 		entry->ecx = entry->ebx;
1508 		entry->edx &= permitted_xcr0 >> 32;
1509 		if (!permitted_xcr0)
1510 			break;
1511 
1512 		entry = do_host_cpuid(array, function, 1);
1513 		if (!entry)
1514 			goto out;
1515 
1516 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1517 		if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
1518 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1519 							  true);
1520 		else {
1521 			WARN_ON_ONCE(permitted_xss != 0);
1522 			entry->ebx = 0;
1523 		}
1524 		entry->ecx &= permitted_xss;
1525 		entry->edx &= permitted_xss >> 32;
1526 
1527 		for (i = 2; i < 64; ++i) {
1528 			bool s_state;
1529 			if (permitted_xcr0 & BIT_ULL(i))
1530 				s_state = false;
1531 			else if (permitted_xss & BIT_ULL(i))
1532 				s_state = true;
1533 			else
1534 				continue;
1535 
1536 			entry = do_host_cpuid(array, function, i);
1537 			if (!entry)
1538 				goto out;
1539 
1540 			/*
1541 			 * The supported check above should have filtered out
1542 			 * invalid sub-leafs.  Only valid sub-leafs should
1543 			 * reach this point, and they should have a non-zero
1544 			 * save state size.  Furthermore, check whether the
1545 			 * processor agrees with permitted_xcr0/permitted_xss
1546 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1547 			 */
1548 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1549 				--array->nent;
1550 				continue;
1551 			}
1552 
1553 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1554 				entry->ecx &= ~BIT_ULL(2);
1555 			entry->edx = 0;
1556 		}
1557 		break;
1558 	}
1559 	case 0x12:
1560 		/* Intel SGX */
1561 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1562 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1563 			break;
1564 		}
1565 
1566 		/*
1567 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1568 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1569 		 * are restricted by kernel and KVM capabilities (like most
1570 		 * feature flags), while enclave size is unrestricted.
1571 		 */
1572 		cpuid_entry_override(entry, CPUID_12_EAX);
1573 		entry->ebx &= SGX_MISC_EXINFO;
1574 
1575 		entry = do_host_cpuid(array, function, 1);
1576 		if (!entry)
1577 			goto out;
1578 
1579 		/*
1580 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1581 		 * feature flags.  Advertise all supported flags, including
1582 		 * privileged attributes that require explicit opt-in from
1583 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1584 		 * expected to derive it from supported XCR0.
1585 		 */
1586 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1587 		entry->ebx &= 0;
1588 		break;
1589 	/* Intel PT */
1590 	case 0x14:
1591 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1592 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1593 			break;
1594 		}
1595 
1596 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1597 			if (!do_host_cpuid(array, function, i))
1598 				goto out;
1599 		}
1600 		break;
1601 	/* Intel AMX TILE */
1602 	case 0x1d:
1603 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1604 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1605 			break;
1606 		}
1607 
1608 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1609 			if (!do_host_cpuid(array, function, i))
1610 				goto out;
1611 		}
1612 		break;
1613 	case 0x1e: /* TMUL information */
1614 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1615 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1616 			break;
1617 		}
1618 		break;
1619 	case 0x24: {
1620 		u8 avx10_version;
1621 
1622 		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1623 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1624 			break;
1625 		}
1626 
1627 		/*
1628 		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1629 		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1630 		 * version needs to be captured before overriding EBX features!
1631 		 */
1632 		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1633 		cpuid_entry_override(entry, CPUID_24_0_EBX);
1634 		entry->ebx |= avx10_version;
1635 
1636 		entry->eax = 0;
1637 		entry->ecx = 0;
1638 		entry->edx = 0;
1639 		break;
1640 	}
1641 	case KVM_CPUID_SIGNATURE: {
1642 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1643 		entry->eax = KVM_CPUID_FEATURES;
1644 		entry->ebx = sigptr[0];
1645 		entry->ecx = sigptr[1];
1646 		entry->edx = sigptr[2];
1647 		break;
1648 	}
1649 	case KVM_CPUID_FEATURES:
1650 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1651 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1652 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1653 			     (1 << KVM_FEATURE_ASYNC_PF) |
1654 			     (1 << KVM_FEATURE_PV_EOI) |
1655 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1656 			     (1 << KVM_FEATURE_PV_UNHALT) |
1657 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1658 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1659 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1660 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1661 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1662 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1663 
1664 		if (sched_info_on())
1665 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1666 
1667 		entry->ebx = 0;
1668 		entry->ecx = 0;
1669 		entry->edx = 0;
1670 		break;
1671 	case 0x80000000:
1672 		entry->eax = min(entry->eax, 0x80000022);
1673 		/*
1674 		 * Serializing LFENCE is reported in a multitude of ways, and
1675 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1676 		 * userspace by providing the CPUID leaf ourselves.
1677 		 *
1678 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1679 		 * QEMU thinks that it can query the host blindly for that
1680 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1681 		 * above.  The processor merrily returns values from the
1682 		 * highest Intel leaf which QEMU tries to use as the guest's
1683 		 * 0x8000001d.  Even worse, this can result in an infinite
1684 		 * loop if said highest leaf has no subleaves indexed by ECX.
1685 		 */
1686 		if (entry->eax >= 0x8000001d &&
1687 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1688 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1689 			entry->eax = max(entry->eax, 0x80000021);
1690 		break;
1691 	case 0x80000001:
1692 		entry->ebx &= ~GENMASK(27, 16);
1693 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1694 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1695 		break;
1696 	case 0x80000005:
1697 		/*  Pass host L1 cache and TLB info. */
1698 		break;
1699 	case 0x80000006:
1700 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1701 		entry->edx &= ~GENMASK(17, 16);
1702 		break;
1703 	case 0x80000007: /* Advanced power management */
1704 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1705 
1706 		/* mask against host */
1707 		entry->edx &= boot_cpu_data.x86_power;
1708 		entry->eax = entry->ebx = entry->ecx = 0;
1709 		break;
1710 	case 0x80000008: {
1711 		/*
1712 		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1713 		 * use.
1714 		 *
1715 		 * KVM's ABI is to report the effective MAXPHYADDR for the
1716 		 * guest in PhysAddrSize (phys_as), and the maximum
1717 		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1718 		 *
1719 		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1720 		 * in which case the max GPA that can be addressed by KVM may
1721 		 * be less than the max GPA that can be legally generated by
1722 		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1723 		 * support 5-level TDP.
1724 		 */
1725 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1726 		unsigned int phys_as, g_phys_as;
1727 
1728 		/*
1729 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1730 		 * the guest operates in the same PA space as the host, i.e.
1731 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1732 		 * paging, too.
1733 		 *
1734 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1735 		 * reductions to the HPAs do not affect GPAs.  The max
1736 		 * addressable GPA is the same as the max effective GPA, except
1737 		 * that it's capped at 48 bits if 5-level TDP isn't supported
1738 		 * (hardware processes bits 51:48 only when walking the fifth
1739 		 * level page table).
1740 		 */
1741 		if (!tdp_enabled) {
1742 			phys_as = boot_cpu_data.x86_phys_bits;
1743 			g_phys_as = 0;
1744 		} else {
1745 			phys_as = entry->eax & 0xff;
1746 			g_phys_as = phys_as;
1747 			if (kvm_mmu_get_max_tdp_level() < 5)
1748 				g_phys_as = min(g_phys_as, 48U);
1749 		}
1750 
1751 		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1752 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1753 		entry->edx = 0;
1754 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1755 		break;
1756 	}
1757 	case 0x8000000A:
1758 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1759 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1760 			break;
1761 		}
1762 		entry->eax = 1; /* SVM revision 1 */
1763 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1764 				   ASID emulation to nested SVM */
1765 		entry->ecx = 0; /* Reserved */
1766 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1767 		break;
1768 	case 0x80000019:
1769 		entry->ecx = entry->edx = 0;
1770 		break;
1771 	case 0x8000001a:
1772 		entry->eax &= GENMASK(2, 0);
1773 		entry->ebx = entry->ecx = entry->edx = 0;
1774 		break;
1775 	case 0x8000001e:
1776 		/* Do not return host topology information.  */
1777 		entry->eax = entry->ebx = entry->ecx = 0;
1778 		entry->edx = 0; /* reserved */
1779 		break;
1780 	case 0x8000001F:
1781 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1782 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1783 		} else {
1784 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1785 			/* Clear NumVMPL since KVM does not support VMPL.  */
1786 			entry->ebx &= ~GENMASK(31, 12);
1787 			/*
1788 			 * Enumerate '0' for "PA bits reduction", the adjusted
1789 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1790 			 */
1791 			entry->ebx &= ~GENMASK(11, 6);
1792 		}
1793 		break;
1794 	case 0x80000020:
1795 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1796 		break;
1797 	case 0x80000021:
1798 		entry->ebx = entry->edx = 0;
1799 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1800 		cpuid_entry_override(entry, CPUID_8000_0021_ECX);
1801 		break;
1802 	/* AMD Extended Performance Monitoring and Debug */
1803 	case 0x80000022: {
1804 		union cpuid_0x80000022_ebx ebx = { };
1805 
1806 		entry->ecx = entry->edx = 0;
1807 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1808 			entry->eax = entry->ebx = 0;
1809 			break;
1810 		}
1811 
1812 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1813 
1814 		ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1815 		entry->ebx = ebx.full;
1816 		break;
1817 	}
1818 	/*Add support for Centaur's CPUID instruction*/
1819 	case 0xC0000000:
1820 		/*Just support up to 0xC0000004 now*/
1821 		entry->eax = min(entry->eax, 0xC0000004);
1822 		break;
1823 	case 0xC0000001:
1824 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1825 		break;
1826 	case 3: /* Processor serial number */
1827 	case 5: /* MONITOR/MWAIT */
1828 	case 0xC0000002:
1829 	case 0xC0000003:
1830 	case 0xC0000004:
1831 	default:
1832 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1833 		break;
1834 	}
1835 
1836 	r = 0;
1837 
1838 out:
1839 	put_cpu();
1840 
1841 	return r;
1842 }
1843 
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1844 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1845 			 unsigned int type)
1846 {
1847 	if (type == KVM_GET_EMULATED_CPUID)
1848 		return __do_cpuid_func_emulated(array, func);
1849 
1850 	return __do_cpuid_func(array, func);
1851 }
1852 
1853 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1854 
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1855 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1856 			  unsigned int type)
1857 {
1858 	u32 limit;
1859 	int r;
1860 
1861 	if (func == CENTAUR_CPUID_SIGNATURE &&
1862 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR &&
1863 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
1864 		return 0;
1865 
1866 	r = do_cpuid_func(array, func, type);
1867 	if (r)
1868 		return r;
1869 
1870 	limit = array->entries[array->nent - 1].eax;
1871 	for (func = func + 1; func <= limit; ++func) {
1872 		r = do_cpuid_func(array, func, type);
1873 		if (r)
1874 			break;
1875 	}
1876 
1877 	return r;
1878 }
1879 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1880 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1881 				 __u32 num_entries, unsigned int ioctl_type)
1882 {
1883 	int i;
1884 	__u32 pad[3];
1885 
1886 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1887 		return false;
1888 
1889 	/*
1890 	 * We want to make sure that ->padding is being passed clean from
1891 	 * userspace in case we want to use it for something in the future.
1892 	 *
1893 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1894 	 * have to give ourselves satisfied only with the emulated side. /me
1895 	 * sheds a tear.
1896 	 */
1897 	for (i = 0; i < num_entries; i++) {
1898 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1899 			return true;
1900 
1901 		if (pad[0] || pad[1] || pad[2])
1902 			return true;
1903 	}
1904 	return false;
1905 }
1906 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1907 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1908 			    struct kvm_cpuid_entry2 __user *entries,
1909 			    unsigned int type)
1910 {
1911 	static const u32 funcs[] = {
1912 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1913 	};
1914 
1915 	struct kvm_cpuid_array array = {
1916 		.nent = 0,
1917 	};
1918 	int r, i;
1919 
1920 	if (cpuid->nent < 1)
1921 		return -E2BIG;
1922 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1923 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1924 
1925 	if (sanity_check_entries(entries, cpuid->nent, type))
1926 		return -EINVAL;
1927 
1928 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1929 	if (!array.entries)
1930 		return -ENOMEM;
1931 
1932 	array.maxnent = cpuid->nent;
1933 
1934 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1935 		r = get_cpuid_func(&array, funcs[i], type);
1936 		if (r)
1937 			goto out_free;
1938 	}
1939 	cpuid->nent = array.nent;
1940 
1941 	if (copy_to_user(entries, array.entries,
1942 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1943 		r = -EFAULT;
1944 
1945 out_free:
1946 	kvfree(array.entries);
1947 	return r;
1948 }
1949 
1950 /*
1951  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1952  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1953  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1954  * range.  Centaur/VIA follows Intel semantics.
1955  *
1956  * A leaf is considered out-of-range if its function is higher than the maximum
1957  * supported leaf of its associated class or if its associated class does not
1958  * exist.
1959  *
1960  * There are three primary classes to be considered, with their respective
1961  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1962  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1963  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1964  *
1965  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1966  *  - Hypervisor: 0x40000000 - 0x4fffffff
1967  *  - Extended:   0x80000000 - 0xbfffffff
1968  *  - Centaur:    0xc0000000 - 0xcfffffff
1969  *
1970  * The Hypervisor class is further subdivided into sub-classes that each act as
1971  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1972  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1973  * CPUID sub-classes are:
1974  *
1975  *  - HyperV:     0x40000000 - 0x400000ff
1976  *  - KVM:        0x40000100 - 0x400001ff
1977  */
1978 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1979 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1980 {
1981 	struct kvm_cpuid_entry2 *basic, *class;
1982 	u32 function = *fn_ptr;
1983 
1984 	basic = kvm_find_cpuid_entry(vcpu, 0);
1985 	if (!basic)
1986 		return NULL;
1987 
1988 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1989 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1990 		return NULL;
1991 
1992 	if (function >= 0x40000000 && function <= 0x4fffffff)
1993 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1994 	else if (function >= 0xc0000000)
1995 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1996 	else
1997 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1998 
1999 	if (class && function <= class->eax)
2000 		return NULL;
2001 
2002 	/*
2003 	 * Leaf specific adjustments are also applied when redirecting to the
2004 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
2005 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
2006 	 * needs to be pulled from CPUID.0xb.1.
2007 	 */
2008 	*fn_ptr = basic->eax;
2009 
2010 	/*
2011 	 * The class does not exist or the requested function is out of range;
2012 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
2013 	 * the original requested leaf is observed!
2014 	 */
2015 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
2016 }
2017 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)2018 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
2019 	       u32 *ecx, u32 *edx, bool exact_only)
2020 {
2021 	u32 orig_function = *eax, function = *eax, index = *ecx;
2022 	struct kvm_cpuid_entry2 *entry;
2023 	bool exact, used_max_basic = false;
2024 
2025 	if (vcpu->arch.cpuid_dynamic_bits_dirty)
2026 		kvm_update_cpuid_runtime(vcpu);
2027 
2028 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
2029 	exact = !!entry;
2030 
2031 	if (!entry && !exact_only) {
2032 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
2033 		used_max_basic = !!entry;
2034 	}
2035 
2036 	if (entry) {
2037 		*eax = entry->eax;
2038 		*ebx = entry->ebx;
2039 		*ecx = entry->ecx;
2040 		*edx = entry->edx;
2041 		if (function == 7 && index == 0) {
2042 			u64 data;
2043 			if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
2044 			    !kvm_msr_read(vcpu, MSR_IA32_TSX_CTRL, &data) &&
2045 			    (data & TSX_CTRL_CPUID_CLEAR))
2046 				*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
2047 		} else if (function == 0x80000007) {
2048 			if (kvm_hv_invtsc_suppressed(vcpu))
2049 				*edx &= ~feature_bit(CONSTANT_TSC);
2050 		} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
2051 			   kvm_xen_is_tsc_leaf(vcpu, function)) {
2052 			/*
2053 			 * Update guest TSC frequency information if necessary.
2054 			 * Ignore failures, there is no sane value that can be
2055 			 * provided if KVM can't get the TSC frequency.
2056 			 */
2057 			if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
2058 				kvm_guest_time_update(vcpu);
2059 
2060 			if (index == 1) {
2061 				*ecx = vcpu->arch.pvclock_tsc_mul;
2062 				*edx = vcpu->arch.pvclock_tsc_shift;
2063 			} else if (index == 2) {
2064 				*eax = vcpu->arch.hw_tsc_khz;
2065 			}
2066 		}
2067 	} else {
2068 		*eax = *ebx = *ecx = *edx = 0;
2069 		/*
2070 		 * When leaf 0BH or 1FH is defined, CL is pass-through
2071 		 * and EDX is always the x2APIC ID, even for undefined
2072 		 * subleaves. Index 1 will exist iff the leaf is
2073 		 * implemented, so we pass through CL iff leaf 1
2074 		 * exists. EDX can be copied from any existing index.
2075 		 */
2076 		if (function == 0xb || function == 0x1f) {
2077 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2078 			if (entry) {
2079 				*ecx = index & 0xff;
2080 				*edx = entry->edx;
2081 			}
2082 		}
2083 	}
2084 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
2085 			used_max_basic);
2086 	return exact;
2087 }
2088 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpuid);
2089 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)2090 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2091 {
2092 	u32 eax, ebx, ecx, edx;
2093 
2094 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
2095 		return 1;
2096 
2097 	eax = kvm_rax_read(vcpu);
2098 	ecx = kvm_rcx_read(vcpu);
2099 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
2100 	kvm_rax_write(vcpu, eax);
2101 	kvm_rbx_write(vcpu, ebx);
2102 	kvm_rcx_write(vcpu, ecx);
2103 	kvm_rdx_write(vcpu, edx);
2104 	return kvm_skip_emulated_instruction(vcpu);
2105 }
2106 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_cpuid);
2107