1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28
29 /*
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
33 *
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 * - __klp_sched_try_switch()
37 */
38 DEFINE_MUTEX(klp_mutex);
39
40 /*
41 * Actively used patches: enabled or in transition. Note that replaced
42 * or disabled patches are not listed even though the related kernel
43 * module still can be loaded.
44 */
45 LIST_HEAD(klp_patches);
46
47 static struct kobject *klp_root_kobj;
48
klp_is_module(struct klp_object * obj)49 static bool klp_is_module(struct klp_object *obj)
50 {
51 return obj->name;
52 }
53
54 /* sets obj->mod if object is not vmlinux and module is found */
klp_find_object_module(struct klp_object * obj)55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 struct module *mod;
58
59 if (!klp_is_module(obj))
60 return;
61
62 rcu_read_lock_sched();
63 /*
64 * We do not want to block removal of patched modules and therefore
65 * we do not take a reference here. The patches are removed by
66 * klp_module_going() instead.
67 */
68 mod = find_module(obj->name);
69 /*
70 * Do not mess work of klp_module_coming() and klp_module_going().
71 * Note that the patch might still be needed before klp_module_going()
72 * is called. Module functions can be called even in the GOING state
73 * until mod->exit() finishes. This is especially important for
74 * patches that modify semantic of the functions.
75 */
76 if (mod && mod->klp_alive)
77 obj->mod = mod;
78
79 rcu_read_unlock_sched();
80 }
81
klp_initialized(void)82 static bool klp_initialized(void)
83 {
84 return !!klp_root_kobj;
85 }
86
klp_find_func(struct klp_object * obj,struct klp_func * old_func)87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 struct klp_func *old_func)
89 {
90 struct klp_func *func;
91
92 klp_for_each_func(obj, func) {
93 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 (old_func->old_sympos == func->old_sympos)) {
95 return func;
96 }
97 }
98
99 return NULL;
100 }
101
klp_find_object(struct klp_patch * patch,struct klp_object * old_obj)102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 struct klp_object *old_obj)
104 {
105 struct klp_object *obj;
106
107 klp_for_each_object(patch, obj) {
108 if (klp_is_module(old_obj)) {
109 if (klp_is_module(obj) &&
110 strcmp(old_obj->name, obj->name) == 0) {
111 return obj;
112 }
113 } else if (!klp_is_module(obj)) {
114 return obj;
115 }
116 }
117
118 return NULL;
119 }
120
121 struct klp_find_arg {
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
126 };
127
klp_match_callback(void * data,unsigned long addr)128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 struct klp_find_arg *args = data;
131
132 args->addr = addr;
133 args->count++;
134
135 /*
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
138 */
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
142
143 return 0;
144 }
145
klp_find_callback(void * data,const char * name,unsigned long addr)146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 struct klp_find_arg *args = data;
149
150 if (strcmp(args->name, name))
151 return 0;
152
153 return klp_match_callback(data, addr);
154 }
155
klp_find_object_symbol(const char * objname,const char * name,unsigned long sympos,unsigned long * addr)156 static int klp_find_object_symbol(const char *objname, const char *name,
157 unsigned long sympos, unsigned long *addr)
158 {
159 struct klp_find_arg args = {
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
164 };
165
166 if (objname)
167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 else
169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170
171 /*
172 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 * otherwise ensure the symbol position count matches sympos.
174 */
175 if (args.addr == 0)
176 pr_err("symbol '%s' not found in symbol table\n", name);
177 else if (args.count > 1 && sympos == 0) {
178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 name, objname);
180 } else if (sympos != args.count && sympos > 0) {
181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 sympos, name, objname ? objname : "vmlinux");
183 } else {
184 *addr = args.addr;
185 return 0;
186 }
187
188 *addr = 0;
189 return -EINVAL;
190 }
191
klp_resolve_symbols(Elf_Shdr * sechdrs,const char * strtab,unsigned int symndx,Elf_Shdr * relasec,const char * sec_objname)192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 unsigned int symndx, Elf_Shdr *relasec,
194 const char *sec_objname)
195 {
196 int i, cnt, ret;
197 char sym_objname[MODULE_NAME_LEN];
198 char sym_name[KSYM_NAME_LEN];
199 Elf_Rela *relas;
200 Elf_Sym *sym;
201 unsigned long sympos, addr;
202 bool sym_vmlinux;
203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204
205 /*
206 * Since the field widths for sym_objname and sym_name in the sscanf()
207 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 * and KSYM_NAME_LEN have the values we expect them to have.
210 *
211 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 * we use the smallest/strictest upper bound possible (56, based on
213 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 */
215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216
217 relas = (Elf_Rela *) relasec->sh_addr;
218 /* For each rela in this klp relocation section */
219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 if (sym->st_shndx != SHN_LIVEPATCH) {
222 pr_err("symbol %s is not marked as a livepatch symbol\n",
223 strtab + sym->st_name);
224 return -EINVAL;
225 }
226
227 /* Format: .klp.sym.sym_objname.sym_name,sympos */
228 cnt = sscanf(strtab + sym->st_name,
229 ".klp.sym.%55[^.].%511[^,],%lu",
230 sym_objname, sym_name, &sympos);
231 if (cnt != 3) {
232 pr_err("symbol %s has an incorrectly formatted name\n",
233 strtab + sym->st_name);
234 return -EINVAL;
235 }
236
237 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238
239 /*
240 * Prevent module-specific KLP rela sections from referencing
241 * vmlinux symbols. This helps prevent ordering issues with
242 * module special section initializations. Presumably such
243 * symbols are exported and normal relas can be used instead.
244 */
245 if (!sec_vmlinux && sym_vmlinux) {
246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 sym_name);
248 return -EINVAL;
249 }
250
251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 sym_name, sympos, &addr);
254 if (ret)
255 return ret;
256
257 sym->st_value = addr;
258 }
259
260 return 0;
261 }
262
clear_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 const char *strtab,
265 unsigned int symindex,
266 unsigned int relsec,
267 struct module *me)
268 {
269 }
270
271 /*
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
275 *
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
283 *
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
293 */
klp_write_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname,bool apply)294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname, bool apply)
298 {
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
302
303 /*
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
307 */
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
314 }
315
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
318
319 if (apply) {
320 ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 sec, sec_objname);
322 if (ret)
323 return ret;
324
325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 }
327
328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 return 0;
330 }
331
klp_apply_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname)332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 const char *shstrtab, const char *strtab,
334 unsigned int symndx, unsigned int secndx,
335 const char *objname)
336 {
337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 secndx, objname, true);
339 }
340
341 /*
342 * Sysfs Interface
343 *
344 * /sys/kernel/livepatch
345 * /sys/kernel/livepatch/<patch>
346 * /sys/kernel/livepatch/<patch>/enabled
347 * /sys/kernel/livepatch/<patch>/transition
348 * /sys/kernel/livepatch/<patch>/force
349 * /sys/kernel/livepatch/<patch>/replace
350 * /sys/kernel/livepatch/<patch>/<object>
351 * /sys/kernel/livepatch/<patch>/<object>/patched
352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
353 */
354 static int __klp_disable_patch(struct klp_patch *patch);
355
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
357 const char *buf, size_t count)
358 {
359 struct klp_patch *patch;
360 int ret;
361 bool enabled;
362
363 ret = kstrtobool(buf, &enabled);
364 if (ret)
365 return ret;
366
367 patch = container_of(kobj, struct klp_patch, kobj);
368
369 mutex_lock(&klp_mutex);
370
371 if (patch->enabled == enabled) {
372 /* already in requested state */
373 ret = -EINVAL;
374 goto out;
375 }
376
377 /*
378 * Allow to reverse a pending transition in both ways. It might be
379 * necessary to complete the transition without forcing and breaking
380 * the system integrity.
381 *
382 * Do not allow to re-enable a disabled patch.
383 */
384 if (patch == klp_transition_patch)
385 klp_reverse_transition();
386 else if (!enabled)
387 ret = __klp_disable_patch(patch);
388 else
389 ret = -EINVAL;
390
391 out:
392 mutex_unlock(&klp_mutex);
393
394 if (ret)
395 return ret;
396 return count;
397 }
398
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)399 static ssize_t enabled_show(struct kobject *kobj,
400 struct kobj_attribute *attr, char *buf)
401 {
402 struct klp_patch *patch;
403
404 patch = container_of(kobj, struct klp_patch, kobj);
405 return sysfs_emit(buf, "%d\n", patch->enabled);
406 }
407
transition_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)408 static ssize_t transition_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410 {
411 struct klp_patch *patch;
412
413 patch = container_of(kobj, struct klp_patch, kobj);
414 return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
415 }
416
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)417 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
418 const char *buf, size_t count)
419 {
420 struct klp_patch *patch;
421 int ret;
422 bool val;
423
424 ret = kstrtobool(buf, &val);
425 if (ret)
426 return ret;
427
428 if (!val)
429 return count;
430
431 mutex_lock(&klp_mutex);
432
433 patch = container_of(kobj, struct klp_patch, kobj);
434 if (patch != klp_transition_patch) {
435 mutex_unlock(&klp_mutex);
436 return -EINVAL;
437 }
438
439 klp_force_transition();
440
441 mutex_unlock(&klp_mutex);
442
443 return count;
444 }
445
replace_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)446 static ssize_t replace_show(struct kobject *kobj,
447 struct kobj_attribute *attr, char *buf)
448 {
449 struct klp_patch *patch;
450
451 patch = container_of(kobj, struct klp_patch, kobj);
452 return sysfs_emit(buf, "%d\n", patch->replace);
453 }
454
455 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
456 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
457 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
458 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
459 static struct attribute *klp_patch_attrs[] = {
460 &enabled_kobj_attr.attr,
461 &transition_kobj_attr.attr,
462 &force_kobj_attr.attr,
463 &replace_kobj_attr.attr,
464 NULL
465 };
466 ATTRIBUTE_GROUPS(klp_patch);
467
patched_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)468 static ssize_t patched_show(struct kobject *kobj,
469 struct kobj_attribute *attr, char *buf)
470 {
471 struct klp_object *obj;
472
473 obj = container_of(kobj, struct klp_object, kobj);
474 return sysfs_emit(buf, "%d\n", obj->patched);
475 }
476
477 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
478 static struct attribute *klp_object_attrs[] = {
479 &patched_kobj_attr.attr,
480 NULL,
481 };
482 ATTRIBUTE_GROUPS(klp_object);
483
klp_free_object_dynamic(struct klp_object * obj)484 static void klp_free_object_dynamic(struct klp_object *obj)
485 {
486 kfree(obj->name);
487 kfree(obj);
488 }
489
490 static void klp_init_func_early(struct klp_object *obj,
491 struct klp_func *func);
492 static void klp_init_object_early(struct klp_patch *patch,
493 struct klp_object *obj);
494
klp_alloc_object_dynamic(const char * name,struct klp_patch * patch)495 static struct klp_object *klp_alloc_object_dynamic(const char *name,
496 struct klp_patch *patch)
497 {
498 struct klp_object *obj;
499
500 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
501 if (!obj)
502 return NULL;
503
504 if (name) {
505 obj->name = kstrdup(name, GFP_KERNEL);
506 if (!obj->name) {
507 kfree(obj);
508 return NULL;
509 }
510 }
511
512 klp_init_object_early(patch, obj);
513 obj->dynamic = true;
514
515 return obj;
516 }
517
klp_free_func_nop(struct klp_func * func)518 static void klp_free_func_nop(struct klp_func *func)
519 {
520 kfree(func->old_name);
521 kfree(func);
522 }
523
klp_alloc_func_nop(struct klp_func * old_func,struct klp_object * obj)524 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
525 struct klp_object *obj)
526 {
527 struct klp_func *func;
528
529 func = kzalloc(sizeof(*func), GFP_KERNEL);
530 if (!func)
531 return NULL;
532
533 if (old_func->old_name) {
534 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
535 if (!func->old_name) {
536 kfree(func);
537 return NULL;
538 }
539 }
540
541 klp_init_func_early(obj, func);
542 /*
543 * func->new_func is same as func->old_func. These addresses are
544 * set when the object is loaded, see klp_init_object_loaded().
545 */
546 func->old_sympos = old_func->old_sympos;
547 func->nop = true;
548
549 return func;
550 }
551
klp_add_object_nops(struct klp_patch * patch,struct klp_object * old_obj)552 static int klp_add_object_nops(struct klp_patch *patch,
553 struct klp_object *old_obj)
554 {
555 struct klp_object *obj;
556 struct klp_func *func, *old_func;
557
558 obj = klp_find_object(patch, old_obj);
559
560 if (!obj) {
561 obj = klp_alloc_object_dynamic(old_obj->name, patch);
562 if (!obj)
563 return -ENOMEM;
564 }
565
566 klp_for_each_func(old_obj, old_func) {
567 func = klp_find_func(obj, old_func);
568 if (func)
569 continue;
570
571 func = klp_alloc_func_nop(old_func, obj);
572 if (!func)
573 return -ENOMEM;
574 }
575
576 return 0;
577 }
578
579 /*
580 * Add 'nop' functions which simply return to the caller to run
581 * the original function. The 'nop' functions are added to a
582 * patch to facilitate a 'replace' mode.
583 */
klp_add_nops(struct klp_patch * patch)584 static int klp_add_nops(struct klp_patch *patch)
585 {
586 struct klp_patch *old_patch;
587 struct klp_object *old_obj;
588
589 klp_for_each_patch(old_patch) {
590 klp_for_each_object(old_patch, old_obj) {
591 int err;
592
593 err = klp_add_object_nops(patch, old_obj);
594 if (err)
595 return err;
596 }
597 }
598
599 return 0;
600 }
601
klp_kobj_release_patch(struct kobject * kobj)602 static void klp_kobj_release_patch(struct kobject *kobj)
603 {
604 struct klp_patch *patch;
605
606 patch = container_of(kobj, struct klp_patch, kobj);
607 complete(&patch->finish);
608 }
609
610 static const struct kobj_type klp_ktype_patch = {
611 .release = klp_kobj_release_patch,
612 .sysfs_ops = &kobj_sysfs_ops,
613 .default_groups = klp_patch_groups,
614 };
615
klp_kobj_release_object(struct kobject * kobj)616 static void klp_kobj_release_object(struct kobject *kobj)
617 {
618 struct klp_object *obj;
619
620 obj = container_of(kobj, struct klp_object, kobj);
621
622 if (obj->dynamic)
623 klp_free_object_dynamic(obj);
624 }
625
626 static const struct kobj_type klp_ktype_object = {
627 .release = klp_kobj_release_object,
628 .sysfs_ops = &kobj_sysfs_ops,
629 .default_groups = klp_object_groups,
630 };
631
klp_kobj_release_func(struct kobject * kobj)632 static void klp_kobj_release_func(struct kobject *kobj)
633 {
634 struct klp_func *func;
635
636 func = container_of(kobj, struct klp_func, kobj);
637
638 if (func->nop)
639 klp_free_func_nop(func);
640 }
641
642 static const struct kobj_type klp_ktype_func = {
643 .release = klp_kobj_release_func,
644 .sysfs_ops = &kobj_sysfs_ops,
645 };
646
__klp_free_funcs(struct klp_object * obj,bool nops_only)647 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
648 {
649 struct klp_func *func, *tmp_func;
650
651 klp_for_each_func_safe(obj, func, tmp_func) {
652 if (nops_only && !func->nop)
653 continue;
654
655 list_del(&func->node);
656 kobject_put(&func->kobj);
657 }
658 }
659
660 /* Clean up when a patched object is unloaded */
klp_free_object_loaded(struct klp_object * obj)661 static void klp_free_object_loaded(struct klp_object *obj)
662 {
663 struct klp_func *func;
664
665 obj->mod = NULL;
666
667 klp_for_each_func(obj, func) {
668 func->old_func = NULL;
669
670 if (func->nop)
671 func->new_func = NULL;
672 }
673 }
674
__klp_free_objects(struct klp_patch * patch,bool nops_only)675 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
676 {
677 struct klp_object *obj, *tmp_obj;
678
679 klp_for_each_object_safe(patch, obj, tmp_obj) {
680 __klp_free_funcs(obj, nops_only);
681
682 if (nops_only && !obj->dynamic)
683 continue;
684
685 list_del(&obj->node);
686 kobject_put(&obj->kobj);
687 }
688 }
689
klp_free_objects(struct klp_patch * patch)690 static void klp_free_objects(struct klp_patch *patch)
691 {
692 __klp_free_objects(patch, false);
693 }
694
klp_free_objects_dynamic(struct klp_patch * patch)695 static void klp_free_objects_dynamic(struct klp_patch *patch)
696 {
697 __klp_free_objects(patch, true);
698 }
699
700 /*
701 * This function implements the free operations that can be called safely
702 * under klp_mutex.
703 *
704 * The operation must be completed by calling klp_free_patch_finish()
705 * outside klp_mutex.
706 */
klp_free_patch_start(struct klp_patch * patch)707 static void klp_free_patch_start(struct klp_patch *patch)
708 {
709 if (!list_empty(&patch->list))
710 list_del(&patch->list);
711
712 klp_free_objects(patch);
713 }
714
715 /*
716 * This function implements the free part that must be called outside
717 * klp_mutex.
718 *
719 * It must be called after klp_free_patch_start(). And it has to be
720 * the last function accessing the livepatch structures when the patch
721 * gets disabled.
722 */
klp_free_patch_finish(struct klp_patch * patch)723 static void klp_free_patch_finish(struct klp_patch *patch)
724 {
725 /*
726 * Avoid deadlock with enabled_store() sysfs callback by
727 * calling this outside klp_mutex. It is safe because
728 * this is called when the patch gets disabled and it
729 * cannot get enabled again.
730 */
731 kobject_put(&patch->kobj);
732 wait_for_completion(&patch->finish);
733
734 /* Put the module after the last access to struct klp_patch. */
735 if (!patch->forced)
736 module_put(patch->mod);
737 }
738
739 /*
740 * The livepatch might be freed from sysfs interface created by the patch.
741 * This work allows to wait until the interface is destroyed in a separate
742 * context.
743 */
klp_free_patch_work_fn(struct work_struct * work)744 static void klp_free_patch_work_fn(struct work_struct *work)
745 {
746 struct klp_patch *patch =
747 container_of(work, struct klp_patch, free_work);
748
749 klp_free_patch_finish(patch);
750 }
751
klp_free_patch_async(struct klp_patch * patch)752 void klp_free_patch_async(struct klp_patch *patch)
753 {
754 klp_free_patch_start(patch);
755 schedule_work(&patch->free_work);
756 }
757
klp_free_replaced_patches_async(struct klp_patch * new_patch)758 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
759 {
760 struct klp_patch *old_patch, *tmp_patch;
761
762 klp_for_each_patch_safe(old_patch, tmp_patch) {
763 if (old_patch == new_patch)
764 return;
765 klp_free_patch_async(old_patch);
766 }
767 }
768
klp_init_func(struct klp_object * obj,struct klp_func * func)769 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
770 {
771 if (!func->old_name)
772 return -EINVAL;
773
774 /*
775 * NOPs get the address later. The patched module must be loaded,
776 * see klp_init_object_loaded().
777 */
778 if (!func->new_func && !func->nop)
779 return -EINVAL;
780
781 if (strlen(func->old_name) >= KSYM_NAME_LEN)
782 return -EINVAL;
783
784 INIT_LIST_HEAD(&func->stack_node);
785 func->patched = false;
786 func->transition = false;
787
788 /* The format for the sysfs directory is <function,sympos> where sympos
789 * is the nth occurrence of this symbol in kallsyms for the patched
790 * object. If the user selects 0 for old_sympos, then 1 will be used
791 * since a unique symbol will be the first occurrence.
792 */
793 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
794 func->old_name,
795 func->old_sympos ? func->old_sympos : 1);
796 }
797
klp_write_object_relocs(struct klp_patch * patch,struct klp_object * obj,bool apply)798 static int klp_write_object_relocs(struct klp_patch *patch,
799 struct klp_object *obj,
800 bool apply)
801 {
802 int i, ret;
803 struct klp_modinfo *info = patch->mod->klp_info;
804
805 for (i = 1; i < info->hdr.e_shnum; i++) {
806 Elf_Shdr *sec = info->sechdrs + i;
807
808 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
809 continue;
810
811 ret = klp_write_section_relocs(patch->mod, info->sechdrs,
812 info->secstrings,
813 patch->mod->core_kallsyms.strtab,
814 info->symndx, i, obj->name, apply);
815 if (ret)
816 return ret;
817 }
818
819 return 0;
820 }
821
klp_apply_object_relocs(struct klp_patch * patch,struct klp_object * obj)822 static int klp_apply_object_relocs(struct klp_patch *patch,
823 struct klp_object *obj)
824 {
825 return klp_write_object_relocs(patch, obj, true);
826 }
827
klp_clear_object_relocs(struct klp_patch * patch,struct klp_object * obj)828 static void klp_clear_object_relocs(struct klp_patch *patch,
829 struct klp_object *obj)
830 {
831 klp_write_object_relocs(patch, obj, false);
832 }
833
834 /* parts of the initialization that is done only when the object is loaded */
klp_init_object_loaded(struct klp_patch * patch,struct klp_object * obj)835 static int klp_init_object_loaded(struct klp_patch *patch,
836 struct klp_object *obj)
837 {
838 struct klp_func *func;
839 int ret;
840
841 if (klp_is_module(obj)) {
842 /*
843 * Only write module-specific relocations here
844 * (.klp.rela.{module}.*). vmlinux-specific relocations were
845 * written earlier during the initialization of the klp module
846 * itself.
847 */
848 ret = klp_apply_object_relocs(patch, obj);
849 if (ret)
850 return ret;
851 }
852
853 klp_for_each_func(obj, func) {
854 ret = klp_find_object_symbol(obj->name, func->old_name,
855 func->old_sympos,
856 (unsigned long *)&func->old_func);
857 if (ret)
858 return ret;
859
860 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
861 &func->old_size, NULL);
862 if (!ret) {
863 pr_err("kallsyms size lookup failed for '%s'\n",
864 func->old_name);
865 return -ENOENT;
866 }
867
868 if (func->nop)
869 func->new_func = func->old_func;
870
871 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
872 &func->new_size, NULL);
873 if (!ret) {
874 pr_err("kallsyms size lookup failed for '%s' replacement\n",
875 func->old_name);
876 return -ENOENT;
877 }
878 }
879
880 return 0;
881 }
882
klp_init_object(struct klp_patch * patch,struct klp_object * obj)883 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
884 {
885 struct klp_func *func;
886 int ret;
887 const char *name;
888
889 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
890 return -EINVAL;
891
892 obj->patched = false;
893 obj->mod = NULL;
894
895 klp_find_object_module(obj);
896
897 name = klp_is_module(obj) ? obj->name : "vmlinux";
898 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
899 if (ret)
900 return ret;
901
902 klp_for_each_func(obj, func) {
903 ret = klp_init_func(obj, func);
904 if (ret)
905 return ret;
906 }
907
908 if (klp_is_object_loaded(obj))
909 ret = klp_init_object_loaded(patch, obj);
910
911 return ret;
912 }
913
klp_init_func_early(struct klp_object * obj,struct klp_func * func)914 static void klp_init_func_early(struct klp_object *obj,
915 struct klp_func *func)
916 {
917 kobject_init(&func->kobj, &klp_ktype_func);
918 list_add_tail(&func->node, &obj->func_list);
919 }
920
klp_init_object_early(struct klp_patch * patch,struct klp_object * obj)921 static void klp_init_object_early(struct klp_patch *patch,
922 struct klp_object *obj)
923 {
924 INIT_LIST_HEAD(&obj->func_list);
925 kobject_init(&obj->kobj, &klp_ktype_object);
926 list_add_tail(&obj->node, &patch->obj_list);
927 }
928
klp_init_patch_early(struct klp_patch * patch)929 static void klp_init_patch_early(struct klp_patch *patch)
930 {
931 struct klp_object *obj;
932 struct klp_func *func;
933
934 INIT_LIST_HEAD(&patch->list);
935 INIT_LIST_HEAD(&patch->obj_list);
936 kobject_init(&patch->kobj, &klp_ktype_patch);
937 patch->enabled = false;
938 patch->forced = false;
939 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
940 init_completion(&patch->finish);
941
942 klp_for_each_object_static(patch, obj) {
943 klp_init_object_early(patch, obj);
944
945 klp_for_each_func_static(obj, func) {
946 klp_init_func_early(obj, func);
947 }
948 }
949 }
950
klp_init_patch(struct klp_patch * patch)951 static int klp_init_patch(struct klp_patch *patch)
952 {
953 struct klp_object *obj;
954 int ret;
955
956 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
957 if (ret)
958 return ret;
959
960 if (patch->replace) {
961 ret = klp_add_nops(patch);
962 if (ret)
963 return ret;
964 }
965
966 klp_for_each_object(patch, obj) {
967 ret = klp_init_object(patch, obj);
968 if (ret)
969 return ret;
970 }
971
972 list_add_tail(&patch->list, &klp_patches);
973
974 return 0;
975 }
976
__klp_disable_patch(struct klp_patch * patch)977 static int __klp_disable_patch(struct klp_patch *patch)
978 {
979 struct klp_object *obj;
980
981 if (WARN_ON(!patch->enabled))
982 return -EINVAL;
983
984 if (klp_transition_patch)
985 return -EBUSY;
986
987 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
988
989 klp_for_each_object(patch, obj)
990 if (obj->patched)
991 klp_pre_unpatch_callback(obj);
992
993 /*
994 * Enforce the order of the func->transition writes in
995 * klp_init_transition() and the TIF_PATCH_PENDING writes in
996 * klp_start_transition(). In the rare case where klp_ftrace_handler()
997 * is called shortly after klp_update_patch_state() switches the task,
998 * this ensures the handler sees that func->transition is set.
999 */
1000 smp_wmb();
1001
1002 klp_start_transition();
1003 patch->enabled = false;
1004 klp_try_complete_transition();
1005
1006 return 0;
1007 }
1008
__klp_enable_patch(struct klp_patch * patch)1009 static int __klp_enable_patch(struct klp_patch *patch)
1010 {
1011 struct klp_object *obj;
1012 int ret;
1013
1014 if (klp_transition_patch)
1015 return -EBUSY;
1016
1017 if (WARN_ON(patch->enabled))
1018 return -EINVAL;
1019
1020 pr_notice("enabling patch '%s'\n", patch->mod->name);
1021
1022 klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1023
1024 /*
1025 * Enforce the order of the func->transition writes in
1026 * klp_init_transition() and the ops->func_stack writes in
1027 * klp_patch_object(), so that klp_ftrace_handler() will see the
1028 * func->transition updates before the handler is registered and the
1029 * new funcs become visible to the handler.
1030 */
1031 smp_wmb();
1032
1033 klp_for_each_object(patch, obj) {
1034 if (!klp_is_object_loaded(obj))
1035 continue;
1036
1037 ret = klp_pre_patch_callback(obj);
1038 if (ret) {
1039 pr_warn("pre-patch callback failed for object '%s'\n",
1040 klp_is_module(obj) ? obj->name : "vmlinux");
1041 goto err;
1042 }
1043
1044 ret = klp_patch_object(obj);
1045 if (ret) {
1046 pr_warn("failed to patch object '%s'\n",
1047 klp_is_module(obj) ? obj->name : "vmlinux");
1048 goto err;
1049 }
1050 }
1051
1052 klp_start_transition();
1053 patch->enabled = true;
1054 klp_try_complete_transition();
1055
1056 return 0;
1057 err:
1058 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1059
1060 klp_cancel_transition();
1061 return ret;
1062 }
1063
1064 /**
1065 * klp_enable_patch() - enable the livepatch
1066 * @patch: patch to be enabled
1067 *
1068 * Initializes the data structure associated with the patch, creates the sysfs
1069 * interface, performs the needed symbol lookups and code relocations,
1070 * registers the patched functions with ftrace.
1071 *
1072 * This function is supposed to be called from the livepatch module_init()
1073 * callback.
1074 *
1075 * Return: 0 on success, otherwise error
1076 */
klp_enable_patch(struct klp_patch * patch)1077 int klp_enable_patch(struct klp_patch *patch)
1078 {
1079 int ret;
1080 struct klp_object *obj;
1081
1082 if (!patch || !patch->mod || !patch->objs)
1083 return -EINVAL;
1084
1085 klp_for_each_object_static(patch, obj) {
1086 if (!obj->funcs)
1087 return -EINVAL;
1088 }
1089
1090
1091 if (!is_livepatch_module(patch->mod)) {
1092 pr_err("module %s is not marked as a livepatch module\n",
1093 patch->mod->name);
1094 return -EINVAL;
1095 }
1096
1097 if (!klp_initialized())
1098 return -ENODEV;
1099
1100 if (!klp_have_reliable_stack()) {
1101 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1102 pr_warn("The livepatch transition may never complete.\n");
1103 }
1104
1105 mutex_lock(&klp_mutex);
1106
1107 if (!klp_is_patch_compatible(patch)) {
1108 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1109 patch->mod->name);
1110 mutex_unlock(&klp_mutex);
1111 return -EINVAL;
1112 }
1113
1114 if (!try_module_get(patch->mod)) {
1115 mutex_unlock(&klp_mutex);
1116 return -ENODEV;
1117 }
1118
1119 klp_init_patch_early(patch);
1120
1121 ret = klp_init_patch(patch);
1122 if (ret)
1123 goto err;
1124
1125 ret = __klp_enable_patch(patch);
1126 if (ret)
1127 goto err;
1128
1129 mutex_unlock(&klp_mutex);
1130
1131 return 0;
1132
1133 err:
1134 klp_free_patch_start(patch);
1135
1136 mutex_unlock(&klp_mutex);
1137
1138 klp_free_patch_finish(patch);
1139
1140 return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(klp_enable_patch);
1143
1144 /*
1145 * This function unpatches objects from the replaced livepatches.
1146 *
1147 * We could be pretty aggressive here. It is called in the situation where
1148 * these structures are no longer accessed from the ftrace handler.
1149 * All functions are redirected by the klp_transition_patch. They
1150 * use either a new code or they are in the original code because
1151 * of the special nop function patches.
1152 *
1153 * The only exception is when the transition was forced. In this case,
1154 * klp_ftrace_handler() might still see the replaced patch on the stack.
1155 * Fortunately, it is carefully designed to work with removed functions
1156 * thanks to RCU. We only have to keep the patches on the system. Also
1157 * this is handled transparently by patch->module_put.
1158 */
klp_unpatch_replaced_patches(struct klp_patch * new_patch)1159 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1160 {
1161 struct klp_patch *old_patch;
1162
1163 klp_for_each_patch(old_patch) {
1164 if (old_patch == new_patch)
1165 return;
1166
1167 old_patch->enabled = false;
1168 klp_unpatch_objects(old_patch);
1169 }
1170 }
1171
1172 /*
1173 * This function removes the dynamically allocated 'nop' functions.
1174 *
1175 * We could be pretty aggressive. NOPs do not change the existing
1176 * behavior except for adding unnecessary delay by the ftrace handler.
1177 *
1178 * It is safe even when the transition was forced. The ftrace handler
1179 * will see a valid ops->func_stack entry thanks to RCU.
1180 *
1181 * We could even free the NOPs structures. They must be the last entry
1182 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1183 * It does the same as klp_synchronize_transition() to make sure that
1184 * nobody is inside the ftrace handler once the operation finishes.
1185 *
1186 * IMPORTANT: It must be called right after removing the replaced patches!
1187 */
klp_discard_nops(struct klp_patch * new_patch)1188 void klp_discard_nops(struct klp_patch *new_patch)
1189 {
1190 klp_unpatch_objects_dynamic(klp_transition_patch);
1191 klp_free_objects_dynamic(klp_transition_patch);
1192 }
1193
1194 /*
1195 * Remove parts of patches that touch a given kernel module. The list of
1196 * patches processed might be limited. When limit is NULL, all patches
1197 * will be handled.
1198 */
klp_cleanup_module_patches_limited(struct module * mod,struct klp_patch * limit)1199 static void klp_cleanup_module_patches_limited(struct module *mod,
1200 struct klp_patch *limit)
1201 {
1202 struct klp_patch *patch;
1203 struct klp_object *obj;
1204
1205 klp_for_each_patch(patch) {
1206 if (patch == limit)
1207 break;
1208
1209 klp_for_each_object(patch, obj) {
1210 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1211 continue;
1212
1213 if (patch != klp_transition_patch)
1214 klp_pre_unpatch_callback(obj);
1215
1216 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1217 patch->mod->name, obj->mod->name);
1218 klp_unpatch_object(obj);
1219
1220 klp_post_unpatch_callback(obj);
1221 klp_clear_object_relocs(patch, obj);
1222 klp_free_object_loaded(obj);
1223 break;
1224 }
1225 }
1226 }
1227
klp_module_coming(struct module * mod)1228 int klp_module_coming(struct module *mod)
1229 {
1230 int ret;
1231 struct klp_patch *patch;
1232 struct klp_object *obj;
1233
1234 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1235 return -EINVAL;
1236
1237 if (!strcmp(mod->name, "vmlinux")) {
1238 pr_err("vmlinux.ko: invalid module name\n");
1239 return -EINVAL;
1240 }
1241
1242 mutex_lock(&klp_mutex);
1243 /*
1244 * Each module has to know that klp_module_coming()
1245 * has been called. We never know what module will
1246 * get patched by a new patch.
1247 */
1248 mod->klp_alive = true;
1249
1250 klp_for_each_patch(patch) {
1251 klp_for_each_object(patch, obj) {
1252 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1253 continue;
1254
1255 obj->mod = mod;
1256
1257 ret = klp_init_object_loaded(patch, obj);
1258 if (ret) {
1259 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1260 patch->mod->name, obj->mod->name, ret);
1261 goto err;
1262 }
1263
1264 pr_notice("applying patch '%s' to loading module '%s'\n",
1265 patch->mod->name, obj->mod->name);
1266
1267 ret = klp_pre_patch_callback(obj);
1268 if (ret) {
1269 pr_warn("pre-patch callback failed for object '%s'\n",
1270 obj->name);
1271 goto err;
1272 }
1273
1274 ret = klp_patch_object(obj);
1275 if (ret) {
1276 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1277 patch->mod->name, obj->mod->name, ret);
1278
1279 klp_post_unpatch_callback(obj);
1280 goto err;
1281 }
1282
1283 if (patch != klp_transition_patch)
1284 klp_post_patch_callback(obj);
1285
1286 break;
1287 }
1288 }
1289
1290 mutex_unlock(&klp_mutex);
1291
1292 return 0;
1293
1294 err:
1295 /*
1296 * If a patch is unsuccessfully applied, return
1297 * error to the module loader.
1298 */
1299 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1300 patch->mod->name, obj->mod->name, obj->mod->name);
1301 mod->klp_alive = false;
1302 obj->mod = NULL;
1303 klp_cleanup_module_patches_limited(mod, patch);
1304 mutex_unlock(&klp_mutex);
1305
1306 return ret;
1307 }
1308
klp_module_going(struct module * mod)1309 void klp_module_going(struct module *mod)
1310 {
1311 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1312 mod->state != MODULE_STATE_COMING))
1313 return;
1314
1315 mutex_lock(&klp_mutex);
1316 /*
1317 * Each module has to know that klp_module_going()
1318 * has been called. We never know what module will
1319 * get patched by a new patch.
1320 */
1321 mod->klp_alive = false;
1322
1323 klp_cleanup_module_patches_limited(mod, NULL);
1324
1325 mutex_unlock(&klp_mutex);
1326 }
1327
klp_init(void)1328 static int __init klp_init(void)
1329 {
1330 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1331 if (!klp_root_kobj)
1332 return -ENOMEM;
1333
1334 return 0;
1335 }
1336
1337 module_init(klp_init);
1338