xref: /linux/net/ipv4/ip_output.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readability.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/flow.h>
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/gso.h>
78 #include <net/inetpeer.h>
79 #include <net/lwtunnel.h>
80 #include <net/inet_dscp.h>
81 #include <linux/bpf-cgroup.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/netlink.h>
86 #include <linux/tcp.h>
87 #include <net/psp.h>
88 
89 static int
90 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
91 	    unsigned int mtu,
92 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
93 
94 /* Generate a checksum for an outgoing IP datagram. */
95 void ip_send_check(struct iphdr *iph)
96 {
97 	iph->check = 0;
98 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
99 }
100 EXPORT_SYMBOL(ip_send_check);
101 
102 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
103 {
104 	struct iphdr *iph = ip_hdr(skb);
105 
106 	IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
107 
108 	iph_set_totlen(iph, skb->len);
109 	ip_send_check(iph);
110 
111 	/* if egress device is enslaved to an L3 master device pass the
112 	 * skb to its handler for processing
113 	 */
114 	skb = l3mdev_ip_out(sk, skb);
115 	if (unlikely(!skb))
116 		return 0;
117 
118 	skb->protocol = htons(ETH_P_IP);
119 
120 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
121 		       net, sk, skb, NULL, skb_dst_dev(skb),
122 		       dst_output);
123 }
124 
125 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
126 {
127 	int err;
128 
129 	err = __ip_local_out(net, sk, skb);
130 	if (likely(err == 1))
131 		err = dst_output(net, sk, skb);
132 
133 	return err;
134 }
135 EXPORT_SYMBOL_GPL(ip_local_out);
136 
137 static inline int ip_select_ttl(const struct inet_sock *inet,
138 				const struct dst_entry *dst)
139 {
140 	int ttl = READ_ONCE(inet->uc_ttl);
141 
142 	if (ttl < 0)
143 		ttl = ip4_dst_hoplimit(dst);
144 	return ttl;
145 }
146 
147 /*
148  *		Add an ip header to a skbuff and send it out.
149  *
150  */
151 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
152 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
153 			  u8 tos)
154 {
155 	const struct inet_sock *inet = inet_sk(sk);
156 	struct rtable *rt = skb_rtable(skb);
157 	struct net *net = sock_net(sk);
158 	struct iphdr *iph;
159 
160 	/* Build the IP header. */
161 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
162 	skb_reset_network_header(skb);
163 	iph = ip_hdr(skb);
164 	iph->version  = 4;
165 	iph->ihl      = 5;
166 	iph->tos      = tos;
167 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
168 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
169 	iph->saddr    = saddr;
170 	iph->protocol = sk->sk_protocol;
171 	/* Do not bother generating IPID for small packets (eg SYNACK) */
172 	if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
173 		iph->frag_off = htons(IP_DF);
174 		iph->id = 0;
175 	} else {
176 		iph->frag_off = 0;
177 		/* TCP packets here are SYNACK with fat IPv4/TCP options.
178 		 * Avoid using the hashed IP ident generator.
179 		 */
180 		if (sk->sk_protocol == IPPROTO_TCP)
181 			iph->id = (__force __be16)get_random_u16();
182 		else
183 			__ip_select_ident(net, iph, 1);
184 	}
185 
186 	if (opt && opt->opt.optlen) {
187 		iph->ihl += opt->opt.optlen>>2;
188 		ip_options_build(skb, &opt->opt, daddr, rt);
189 	}
190 
191 	skb->priority = READ_ONCE(sk->sk_priority);
192 	if (!skb->mark)
193 		skb->mark = READ_ONCE(sk->sk_mark);
194 
195 	/* Send it out. */
196 	return ip_local_out(net, skb->sk, skb);
197 }
198 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
199 
200 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
201 {
202 	struct dst_entry *dst = skb_dst(skb);
203 	struct rtable *rt = dst_rtable(dst);
204 	struct net_device *dev = dst_dev(dst);
205 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
206 	struct neighbour *neigh;
207 	bool is_v6gw = false;
208 
209 	if (rt->rt_type == RTN_MULTICAST) {
210 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
211 	} else if (rt->rt_type == RTN_BROADCAST)
212 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
213 
214 	/* OUTOCTETS should be counted after fragment */
215 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
216 
217 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
218 		skb = skb_expand_head(skb, hh_len);
219 		if (!skb)
220 			return -ENOMEM;
221 	}
222 
223 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
224 		int res = lwtunnel_xmit(skb);
225 
226 		if (res != LWTUNNEL_XMIT_CONTINUE)
227 			return res;
228 	}
229 
230 	rcu_read_lock();
231 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
232 	if (!IS_ERR(neigh)) {
233 		int res;
234 
235 		sock_confirm_neigh(skb, neigh);
236 		/* if crossing protocols, can not use the cached header */
237 		res = neigh_output(neigh, skb, is_v6gw);
238 		rcu_read_unlock();
239 		return res;
240 	}
241 	rcu_read_unlock();
242 
243 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
244 			    __func__);
245 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
246 	return PTR_ERR(neigh);
247 }
248 
249 static int ip_finish_output_gso(struct net *net, struct sock *sk,
250 				struct sk_buff *skb, unsigned int mtu)
251 {
252 	struct sk_buff *segs, *nskb;
253 	netdev_features_t features;
254 	int ret = 0;
255 
256 	/* common case: seglen is <= mtu
257 	 */
258 	if (skb_gso_validate_network_len(skb, mtu))
259 		return ip_finish_output2(net, sk, skb);
260 
261 	/* Slowpath -  GSO segment length exceeds the egress MTU.
262 	 *
263 	 * This can happen in several cases:
264 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
265 	 *  - Forwarding of an skb that arrived on a virtualization interface
266 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
267 	 *    stack.
268 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
269 	 *    interface with a smaller MTU.
270 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
271 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
272 	 *    insufficient MTU.
273 	 */
274 	features = netif_skb_features(skb);
275 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
276 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
277 	if (IS_ERR_OR_NULL(segs)) {
278 		kfree_skb(skb);
279 		return -ENOMEM;
280 	}
281 
282 	consume_skb(skb);
283 
284 	skb_list_walk_safe(segs, segs, nskb) {
285 		int err;
286 
287 		skb_mark_not_on_list(segs);
288 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
289 
290 		if (err && ret == 0)
291 			ret = err;
292 	}
293 
294 	return ret;
295 }
296 
297 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
298 {
299 	unsigned int mtu;
300 
301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302 	/* Policy lookup after SNAT yielded a new policy */
303 	if (skb_dst(skb)->xfrm) {
304 		IPCB(skb)->flags |= IPSKB_REROUTED;
305 		return dst_output(net, sk, skb);
306 	}
307 #endif
308 	mtu = ip_skb_dst_mtu(sk, skb);
309 	if (skb_is_gso(skb))
310 		return ip_finish_output_gso(net, sk, skb, mtu);
311 
312 	if (skb->len > mtu || IPCB(skb)->frag_max_size)
313 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
314 
315 	return ip_finish_output2(net, sk, skb);
316 }
317 
318 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
319 {
320 	int ret;
321 
322 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
323 	switch (ret) {
324 	case NET_XMIT_SUCCESS:
325 		return __ip_finish_output(net, sk, skb);
326 	case NET_XMIT_CN:
327 		return __ip_finish_output(net, sk, skb) ? : ret;
328 	default:
329 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
330 		return ret;
331 	}
332 }
333 
334 static int ip_mc_finish_output(struct net *net, struct sock *sk,
335 			       struct sk_buff *skb)
336 {
337 	struct rtable *new_rt;
338 	bool do_cn = false;
339 	int ret, err;
340 
341 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
342 	switch (ret) {
343 	case NET_XMIT_CN:
344 		do_cn = true;
345 		fallthrough;
346 	case NET_XMIT_SUCCESS:
347 		break;
348 	default:
349 		kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
350 		return ret;
351 	}
352 
353 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
354 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
355 	 * see ipv4_pktinfo_prepare().
356 	 */
357 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
358 	if (new_rt) {
359 		new_rt->rt_iif = 0;
360 		skb_dst_drop(skb);
361 		skb_dst_set(skb, &new_rt->dst);
362 	}
363 
364 	err = dev_loopback_xmit(net, sk, skb);
365 	return (do_cn && err) ? ret : err;
366 }
367 
368 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
369 {
370 	struct rtable *rt = skb_rtable(skb);
371 	struct net_device *dev = rt->dst.dev;
372 
373 	/*
374 	 *	If the indicated interface is up and running, send the packet.
375 	 */
376 	skb->dev = dev;
377 	skb->protocol = htons(ETH_P_IP);
378 
379 	/*
380 	 *	Multicasts are looped back for other local users
381 	 */
382 
383 	if (rt->rt_flags&RTCF_MULTICAST) {
384 		if (sk_mc_loop(sk)
385 #ifdef CONFIG_IP_MROUTE
386 		/* Small optimization: do not loopback not local frames,
387 		   which returned after forwarding; they will be  dropped
388 		   by ip_mr_input in any case.
389 		   Note, that local frames are looped back to be delivered
390 		   to local recipients.
391 
392 		   This check is duplicated in ip_mr_input at the moment.
393 		 */
394 		    &&
395 		    ((rt->rt_flags & RTCF_LOCAL) ||
396 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
397 #endif
398 		   ) {
399 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
400 			if (newskb)
401 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
402 					net, sk, newskb, NULL, newskb->dev,
403 					ip_mc_finish_output);
404 		}
405 
406 		/* Multicasts with ttl 0 must not go beyond the host */
407 
408 		if (ip_hdr(skb)->ttl == 0) {
409 			kfree_skb(skb);
410 			return 0;
411 		}
412 	}
413 
414 	if (rt->rt_flags&RTCF_BROADCAST) {
415 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
416 		if (newskb)
417 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 				net, sk, newskb, NULL, newskb->dev,
419 				ip_mc_finish_output);
420 	}
421 
422 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
423 			    net, sk, skb, NULL, skb->dev,
424 			    ip_finish_output,
425 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
426 }
427 
428 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
429 {
430 	struct net_device *dev, *indev = skb->dev;
431 	int ret_val;
432 
433 	rcu_read_lock();
434 	dev = skb_dst_dev_rcu(skb);
435 	skb->dev = dev;
436 	skb->protocol = htons(ETH_P_IP);
437 
438 	ret_val = NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
439 				net, sk, skb, indev, dev,
440 				ip_finish_output,
441 				!(IPCB(skb)->flags & IPSKB_REROUTED));
442 	rcu_read_unlock();
443 	return ret_val;
444 }
445 EXPORT_SYMBOL(ip_output);
446 
447 /*
448  * copy saddr and daddr, possibly using 64bit load/stores
449  * Equivalent to :
450  *   iph->saddr = fl4->saddr;
451  *   iph->daddr = fl4->daddr;
452  */
453 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
454 {
455 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
456 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
457 
458 	iph->saddr = fl4->saddr;
459 	iph->daddr = fl4->daddr;
460 }
461 
462 /* Note: skb->sk can be different from sk, in case of tunnels */
463 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
464 		    __u8 tos)
465 {
466 	struct inet_sock *inet = inet_sk(sk);
467 	struct net *net = sock_net(sk);
468 	struct ip_options_rcu *inet_opt;
469 	struct flowi4 *fl4;
470 	struct rtable *rt;
471 	struct iphdr *iph;
472 	int res;
473 
474 	/* Skip all of this if the packet is already routed,
475 	 * f.e. by something like SCTP.
476 	 */
477 	rcu_read_lock();
478 	inet_opt = rcu_dereference(inet->inet_opt);
479 	fl4 = &fl->u.ip4;
480 	rt = skb_rtable(skb);
481 	if (rt)
482 		goto packet_routed;
483 
484 	/* Make sure we can route this packet. */
485 	rt = dst_rtable(__sk_dst_check(sk, 0));
486 	if (!rt) {
487 		inet_sk_init_flowi4(inet, fl4);
488 
489 		/* sctp_v4_xmit() uses its own DSCP value */
490 		fl4->flowi4_dscp = inet_dsfield_to_dscp(tos);
491 
492 		/* If this fails, retransmit mechanism of transport layer will
493 		 * keep trying until route appears or the connection times
494 		 * itself out.
495 		 */
496 		rt = ip_route_output_flow(net, fl4, sk);
497 		if (IS_ERR(rt))
498 			goto no_route;
499 		sk_setup_caps(sk, &rt->dst);
500 	}
501 	skb_dst_set_noref(skb, &rt->dst);
502 
503 packet_routed:
504 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
505 		goto no_route;
506 
507 	/* OK, we know where to send it, allocate and build IP header. */
508 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
509 	skb_reset_network_header(skb);
510 	iph = ip_hdr(skb);
511 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
512 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
513 		iph->frag_off = htons(IP_DF);
514 	else
515 		iph->frag_off = 0;
516 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
517 	iph->protocol = sk->sk_protocol;
518 	ip_copy_addrs(iph, fl4);
519 
520 	/* Transport layer set skb->h.foo itself. */
521 
522 	if (inet_opt && inet_opt->opt.optlen) {
523 		iph->ihl += inet_opt->opt.optlen >> 2;
524 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
525 	}
526 
527 	ip_select_ident_segs(net, skb, sk,
528 			     skb_shinfo(skb)->gso_segs ?: 1);
529 
530 	/* TODO : should we use skb->sk here instead of sk ? */
531 	skb->priority = READ_ONCE(sk->sk_priority);
532 	skb->mark = READ_ONCE(sk->sk_mark);
533 
534 	res = ip_local_out(net, sk, skb);
535 	rcu_read_unlock();
536 	return res;
537 
538 no_route:
539 	rcu_read_unlock();
540 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
541 	kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
542 	return -EHOSTUNREACH;
543 }
544 EXPORT_SYMBOL(__ip_queue_xmit);
545 
546 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
547 {
548 	return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
549 }
550 EXPORT_SYMBOL(ip_queue_xmit);
551 
552 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
553 {
554 	to->pkt_type = from->pkt_type;
555 	to->priority = from->priority;
556 	to->protocol = from->protocol;
557 	to->skb_iif = from->skb_iif;
558 	skb_dst_drop(to);
559 	skb_dst_copy(to, from);
560 	to->dev = from->dev;
561 	to->mark = from->mark;
562 
563 	skb_copy_hash(to, from);
564 
565 #ifdef CONFIG_NET_SCHED
566 	to->tc_index = from->tc_index;
567 #endif
568 	nf_copy(to, from);
569 	skb_ext_copy(to, from);
570 #if IS_ENABLED(CONFIG_IP_VS)
571 	to->ipvs_property = from->ipvs_property;
572 #endif
573 	skb_copy_secmark(to, from);
574 }
575 
576 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
577 		       unsigned int mtu,
578 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
579 {
580 	struct iphdr *iph = ip_hdr(skb);
581 
582 	if ((iph->frag_off & htons(IP_DF)) == 0)
583 		return ip_do_fragment(net, sk, skb, output);
584 
585 	if (unlikely(!skb->ignore_df ||
586 		     (IPCB(skb)->frag_max_size &&
587 		      IPCB(skb)->frag_max_size > mtu))) {
588 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
589 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
590 			  htonl(mtu));
591 		kfree_skb(skb);
592 		return -EMSGSIZE;
593 	}
594 
595 	return ip_do_fragment(net, sk, skb, output);
596 }
597 
598 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
599 		      unsigned int hlen, struct ip_fraglist_iter *iter)
600 {
601 	unsigned int first_len = skb_pagelen(skb);
602 
603 	iter->frag = skb_shinfo(skb)->frag_list;
604 	skb_frag_list_init(skb);
605 
606 	iter->offset = 0;
607 	iter->iph = iph;
608 	iter->hlen = hlen;
609 
610 	skb->data_len = first_len - skb_headlen(skb);
611 	skb->len = first_len;
612 	iph->tot_len = htons(first_len);
613 	iph->frag_off = htons(IP_MF);
614 	ip_send_check(iph);
615 }
616 EXPORT_SYMBOL(ip_fraglist_init);
617 
618 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
619 {
620 	unsigned int hlen = iter->hlen;
621 	struct iphdr *iph = iter->iph;
622 	struct sk_buff *frag;
623 
624 	frag = iter->frag;
625 	frag->ip_summed = CHECKSUM_NONE;
626 	skb_reset_transport_header(frag);
627 	__skb_push(frag, hlen);
628 	skb_reset_network_header(frag);
629 	memcpy(skb_network_header(frag), iph, hlen);
630 	iter->iph = ip_hdr(frag);
631 	iph = iter->iph;
632 	iph->tot_len = htons(frag->len);
633 	ip_copy_metadata(frag, skb);
634 	iter->offset += skb->len - hlen;
635 	iph->frag_off = htons(iter->offset >> 3);
636 	if (frag->next)
637 		iph->frag_off |= htons(IP_MF);
638 	/* Ready, complete checksum */
639 	ip_send_check(iph);
640 }
641 EXPORT_SYMBOL(ip_fraglist_prepare);
642 
643 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
644 		  unsigned int ll_rs, unsigned int mtu, bool DF,
645 		  struct ip_frag_state *state)
646 {
647 	struct iphdr *iph = ip_hdr(skb);
648 
649 	state->DF = DF;
650 	state->hlen = hlen;
651 	state->ll_rs = ll_rs;
652 	state->mtu = mtu;
653 
654 	state->left = skb->len - hlen;	/* Space per frame */
655 	state->ptr = hlen;		/* Where to start from */
656 
657 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
658 	state->not_last_frag = iph->frag_off & htons(IP_MF);
659 }
660 EXPORT_SYMBOL(ip_frag_init);
661 
662 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
663 			 bool first_frag)
664 {
665 	/* Copy the flags to each fragment. */
666 	IPCB(to)->flags = IPCB(from)->flags;
667 
668 	/* ANK: dirty, but effective trick. Upgrade options only if
669 	 * the segment to be fragmented was THE FIRST (otherwise,
670 	 * options are already fixed) and make it ONCE
671 	 * on the initial skb, so that all the following fragments
672 	 * will inherit fixed options.
673 	 */
674 	if (first_frag)
675 		ip_options_fragment(from);
676 }
677 
678 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
679 {
680 	unsigned int len = state->left;
681 	struct sk_buff *skb2;
682 	struct iphdr *iph;
683 
684 	/* IF: it doesn't fit, use 'mtu' - the data space left */
685 	if (len > state->mtu)
686 		len = state->mtu;
687 	/* IF: we are not sending up to and including the packet end
688 	   then align the next start on an eight byte boundary */
689 	if (len < state->left)	{
690 		len &= ~7;
691 	}
692 
693 	/* Allocate buffer */
694 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
695 	if (!skb2)
696 		return ERR_PTR(-ENOMEM);
697 
698 	/*
699 	 *	Set up data on packet
700 	 */
701 
702 	ip_copy_metadata(skb2, skb);
703 	skb_reserve(skb2, state->ll_rs);
704 	skb_put(skb2, len + state->hlen);
705 	skb_reset_network_header(skb2);
706 	skb2->transport_header = skb2->network_header + state->hlen;
707 
708 	/*
709 	 *	Charge the memory for the fragment to any owner
710 	 *	it might possess
711 	 */
712 
713 	if (skb->sk)
714 		skb_set_owner_w(skb2, skb->sk);
715 
716 	/*
717 	 *	Copy the packet header into the new buffer.
718 	 */
719 
720 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
721 
722 	/*
723 	 *	Copy a block of the IP datagram.
724 	 */
725 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
726 		BUG();
727 	state->left -= len;
728 
729 	/*
730 	 *	Fill in the new header fields.
731 	 */
732 	iph = ip_hdr(skb2);
733 	iph->frag_off = htons((state->offset >> 3));
734 	if (state->DF)
735 		iph->frag_off |= htons(IP_DF);
736 
737 	/*
738 	 *	Added AC : If we are fragmenting a fragment that's not the
739 	 *		   last fragment then keep MF on each bit
740 	 */
741 	if (state->left > 0 || state->not_last_frag)
742 		iph->frag_off |= htons(IP_MF);
743 	state->ptr += len;
744 	state->offset += len;
745 
746 	iph->tot_len = htons(len + state->hlen);
747 
748 	ip_send_check(iph);
749 
750 	return skb2;
751 }
752 EXPORT_SYMBOL(ip_frag_next);
753 
754 /*
755  *	This IP datagram is too large to be sent in one piece.  Break it up into
756  *	smaller pieces (each of size equal to IP header plus
757  *	a block of the data of the original IP data part) that will yet fit in a
758  *	single device frame, and queue such a frame for sending.
759  */
760 
761 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
762 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
763 {
764 	struct iphdr *iph;
765 	struct sk_buff *skb2;
766 	u8 tstamp_type = skb->tstamp_type;
767 	struct rtable *rt = skb_rtable(skb);
768 	unsigned int mtu, hlen, ll_rs;
769 	struct ip_fraglist_iter iter;
770 	ktime_t tstamp = skb->tstamp;
771 	struct ip_frag_state state;
772 	int err = 0;
773 
774 	/* for offloaded checksums cleanup checksum before fragmentation */
775 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
776 	    (err = skb_checksum_help(skb)))
777 		goto fail;
778 
779 	/*
780 	 *	Point into the IP datagram header.
781 	 */
782 
783 	iph = ip_hdr(skb);
784 
785 	mtu = ip_skb_dst_mtu(sk, skb);
786 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
787 		mtu = IPCB(skb)->frag_max_size;
788 
789 	/*
790 	 *	Setup starting values.
791 	 */
792 
793 	hlen = iph->ihl * 4;
794 	mtu = mtu - hlen;	/* Size of data space */
795 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
796 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
797 
798 	/* When frag_list is given, use it. First, check its validity:
799 	 * some transformers could create wrong frag_list or break existing
800 	 * one, it is not prohibited. In this case fall back to copying.
801 	 *
802 	 * LATER: this step can be merged to real generation of fragments,
803 	 * we can switch to copy when see the first bad fragment.
804 	 */
805 	if (skb_has_frag_list(skb)) {
806 		struct sk_buff *frag, *frag2;
807 		unsigned int first_len = skb_pagelen(skb);
808 
809 		if (first_len - hlen > mtu ||
810 		    ((first_len - hlen) & 7) ||
811 		    ip_is_fragment(iph) ||
812 		    skb_cloned(skb) ||
813 		    skb_headroom(skb) < ll_rs)
814 			goto slow_path;
815 
816 		skb_walk_frags(skb, frag) {
817 			/* Correct geometry. */
818 			if (frag->len > mtu ||
819 			    ((frag->len & 7) && frag->next) ||
820 			    skb_headroom(frag) < hlen + ll_rs)
821 				goto slow_path_clean;
822 
823 			/* Partially cloned skb? */
824 			if (skb_shared(frag))
825 				goto slow_path_clean;
826 
827 			BUG_ON(frag->sk);
828 			if (skb->sk) {
829 				frag->sk = skb->sk;
830 				frag->destructor = sock_wfree;
831 			}
832 			skb->truesize -= frag->truesize;
833 		}
834 
835 		/* Everything is OK. Generate! */
836 		ip_fraglist_init(skb, iph, hlen, &iter);
837 
838 		for (;;) {
839 			/* Prepare header of the next frame,
840 			 * before previous one went down. */
841 			if (iter.frag) {
842 				bool first_frag = (iter.offset == 0);
843 
844 				IPCB(iter.frag)->flags = IPCB(skb)->flags;
845 				ip_fraglist_prepare(skb, &iter);
846 				if (first_frag && IPCB(skb)->opt.optlen) {
847 					/* ipcb->opt is not populated for frags
848 					 * coming from __ip_make_skb(),
849 					 * ip_options_fragment() needs optlen
850 					 */
851 					IPCB(iter.frag)->opt.optlen =
852 						IPCB(skb)->opt.optlen;
853 					ip_options_fragment(iter.frag);
854 					ip_send_check(iter.iph);
855 				}
856 			}
857 
858 			skb_set_delivery_time(skb, tstamp, tstamp_type);
859 			err = output(net, sk, skb);
860 
861 			if (!err)
862 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
863 			if (err || !iter.frag)
864 				break;
865 
866 			skb = ip_fraglist_next(&iter);
867 		}
868 
869 		if (err == 0) {
870 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
871 			return 0;
872 		}
873 
874 		kfree_skb_list(iter.frag);
875 
876 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
877 		return err;
878 
879 slow_path_clean:
880 		skb_walk_frags(skb, frag2) {
881 			if (frag2 == frag)
882 				break;
883 			frag2->sk = NULL;
884 			frag2->destructor = NULL;
885 			skb->truesize += frag2->truesize;
886 		}
887 	}
888 
889 slow_path:
890 	/*
891 	 *	Fragment the datagram.
892 	 */
893 
894 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
895 		     &state);
896 
897 	/*
898 	 *	Keep copying data until we run out.
899 	 */
900 
901 	while (state.left > 0) {
902 		bool first_frag = (state.offset == 0);
903 
904 		skb2 = ip_frag_next(skb, &state);
905 		if (IS_ERR(skb2)) {
906 			err = PTR_ERR(skb2);
907 			goto fail;
908 		}
909 		ip_frag_ipcb(skb, skb2, first_frag);
910 
911 		/*
912 		 *	Put this fragment into the sending queue.
913 		 */
914 		skb_set_delivery_time(skb2, tstamp, tstamp_type);
915 		err = output(net, sk, skb2);
916 		if (err)
917 			goto fail;
918 
919 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
920 	}
921 	consume_skb(skb);
922 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
923 	return err;
924 
925 fail:
926 	kfree_skb(skb);
927 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
928 	return err;
929 }
930 EXPORT_SYMBOL(ip_do_fragment);
931 
932 int
933 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
934 {
935 	struct msghdr *msg = from;
936 
937 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
938 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
939 			return -EFAULT;
940 	} else {
941 		__wsum csum = 0;
942 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
943 			return -EFAULT;
944 		skb->csum = csum_block_add(skb->csum, csum, odd);
945 	}
946 	return 0;
947 }
948 EXPORT_SYMBOL(ip_generic_getfrag);
949 
950 static int __ip_append_data(struct sock *sk,
951 			    struct flowi4 *fl4,
952 			    struct sk_buff_head *queue,
953 			    struct inet_cork *cork,
954 			    struct page_frag *pfrag,
955 			    int getfrag(void *from, char *to, int offset,
956 					int len, int odd, struct sk_buff *skb),
957 			    void *from, int length, int transhdrlen,
958 			    unsigned int flags)
959 {
960 	struct inet_sock *inet = inet_sk(sk);
961 	struct ubuf_info *uarg = NULL;
962 	struct sk_buff *skb;
963 	struct ip_options *opt = cork->opt;
964 	int hh_len;
965 	int exthdrlen;
966 	int mtu;
967 	int copy;
968 	int err;
969 	int offset = 0;
970 	bool zc = false;
971 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
972 	int csummode = CHECKSUM_NONE;
973 	struct rtable *rt = dst_rtable(cork->dst);
974 	bool paged, hold_tskey = false, extra_uref = false;
975 	unsigned int wmem_alloc_delta = 0;
976 	u32 tskey = 0;
977 
978 	skb = skb_peek_tail(queue);
979 
980 	exthdrlen = !skb ? rt->dst.header_len : 0;
981 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
982 	paged = !!cork->gso_size;
983 
984 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
985 
986 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
987 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
988 	maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
989 
990 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
991 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
992 			       mtu - (opt ? opt->optlen : 0));
993 		return -EMSGSIZE;
994 	}
995 
996 	/*
997 	 * transhdrlen > 0 means that this is the first fragment and we wish
998 	 * it won't be fragmented in the future.
999 	 */
1000 	if (transhdrlen &&
1001 	    length + fragheaderlen <= mtu &&
1002 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1003 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1004 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1005 		csummode = CHECKSUM_PARTIAL;
1006 
1007 	if ((flags & MSG_ZEROCOPY) && length) {
1008 		struct msghdr *msg = from;
1009 
1010 		if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1011 			if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1012 				return -EINVAL;
1013 
1014 			/* Leave uarg NULL if can't zerocopy, callers should
1015 			 * be able to handle it.
1016 			 */
1017 			if ((rt->dst.dev->features & NETIF_F_SG) &&
1018 			    csummode == CHECKSUM_PARTIAL) {
1019 				paged = true;
1020 				zc = true;
1021 				uarg = msg->msg_ubuf;
1022 			}
1023 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1024 			uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb),
1025 						    false);
1026 			if (!uarg)
1027 				return -ENOBUFS;
1028 			extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1029 			if (rt->dst.dev->features & NETIF_F_SG &&
1030 			    csummode == CHECKSUM_PARTIAL) {
1031 				paged = true;
1032 				zc = true;
1033 			} else {
1034 				uarg_to_msgzc(uarg)->zerocopy = 0;
1035 				skb_zcopy_set(skb, uarg, &extra_uref);
1036 			}
1037 		}
1038 	} else if ((flags & MSG_SPLICE_PAGES) && length) {
1039 		if (inet_test_bit(HDRINCL, sk))
1040 			return -EPERM;
1041 		if (rt->dst.dev->features & NETIF_F_SG &&
1042 		    getfrag == ip_generic_getfrag)
1043 			/* We need an empty buffer to attach stuff to */
1044 			paged = true;
1045 		else
1046 			flags &= ~MSG_SPLICE_PAGES;
1047 	}
1048 
1049 	cork->length += length;
1050 
1051 	if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1052 	    READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1053 		if (cork->flags & IPCORK_TS_OPT_ID) {
1054 			tskey = cork->ts_opt_id;
1055 		} else {
1056 			tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1057 			hold_tskey = true;
1058 		}
1059 	}
1060 
1061 	/* So, what's going on in the loop below?
1062 	 *
1063 	 * We use calculated fragment length to generate chained skb,
1064 	 * each of segments is IP fragment ready for sending to network after
1065 	 * adding appropriate IP header.
1066 	 */
1067 
1068 	if (!skb)
1069 		goto alloc_new_skb;
1070 
1071 	while (length > 0) {
1072 		/* Check if the remaining data fits into current packet. */
1073 		copy = mtu - skb->len;
1074 		if (copy < length)
1075 			copy = maxfraglen - skb->len;
1076 		if (copy <= 0) {
1077 			char *data;
1078 			unsigned int datalen;
1079 			unsigned int fraglen;
1080 			unsigned int fraggap;
1081 			unsigned int alloclen, alloc_extra;
1082 			unsigned int pagedlen;
1083 			struct sk_buff *skb_prev;
1084 alloc_new_skb:
1085 			skb_prev = skb;
1086 			if (skb_prev)
1087 				fraggap = skb_prev->len - maxfraglen;
1088 			else
1089 				fraggap = 0;
1090 
1091 			/*
1092 			 * If remaining data exceeds the mtu,
1093 			 * we know we need more fragment(s).
1094 			 */
1095 			datalen = length + fraggap;
1096 			if (datalen > mtu - fragheaderlen)
1097 				datalen = maxfraglen - fragheaderlen;
1098 			fraglen = datalen + fragheaderlen;
1099 			pagedlen = 0;
1100 
1101 			alloc_extra = hh_len + 15;
1102 			alloc_extra += exthdrlen;
1103 
1104 			/* The last fragment gets additional space at tail.
1105 			 * Note, with MSG_MORE we overallocate on fragments,
1106 			 * because we have no idea what fragment will be
1107 			 * the last.
1108 			 */
1109 			if (datalen == length + fraggap)
1110 				alloc_extra += rt->dst.trailer_len;
1111 
1112 			if ((flags & MSG_MORE) &&
1113 			    !(rt->dst.dev->features&NETIF_F_SG))
1114 				alloclen = mtu;
1115 			else if (!paged &&
1116 				 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1117 				  !(rt->dst.dev->features & NETIF_F_SG)))
1118 				alloclen = fraglen;
1119 			else {
1120 				alloclen = fragheaderlen + transhdrlen;
1121 				pagedlen = datalen - transhdrlen;
1122 			}
1123 
1124 			alloclen += alloc_extra;
1125 
1126 			if (transhdrlen) {
1127 				skb = sock_alloc_send_skb(sk, alloclen,
1128 						(flags & MSG_DONTWAIT), &err);
1129 			} else {
1130 				skb = NULL;
1131 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1132 				    2 * sk->sk_sndbuf)
1133 					skb = alloc_skb(alloclen,
1134 							sk->sk_allocation);
1135 				if (unlikely(!skb))
1136 					err = -ENOBUFS;
1137 			}
1138 			if (!skb)
1139 				goto error;
1140 
1141 			/*
1142 			 *	Fill in the control structures
1143 			 */
1144 			skb->ip_summed = csummode;
1145 			skb->csum = 0;
1146 			skb_reserve(skb, hh_len);
1147 
1148 			/*
1149 			 *	Find where to start putting bytes.
1150 			 */
1151 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1152 			skb_set_network_header(skb, exthdrlen);
1153 			skb->transport_header = (skb->network_header +
1154 						 fragheaderlen);
1155 			data += fragheaderlen + exthdrlen;
1156 
1157 			if (fraggap) {
1158 				skb->csum = skb_copy_and_csum_bits(
1159 					skb_prev, maxfraglen,
1160 					data + transhdrlen, fraggap);
1161 				skb_prev->csum = csum_sub(skb_prev->csum,
1162 							  skb->csum);
1163 				data += fraggap;
1164 				pskb_trim_unique(skb_prev, maxfraglen);
1165 			}
1166 
1167 			copy = datalen - transhdrlen - fraggap - pagedlen;
1168 			/* [!] NOTE: copy will be negative if pagedlen>0
1169 			 * because then the equation reduces to -fraggap.
1170 			 */
1171 			if (copy > 0 &&
1172 			    INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1173 					    from, data + transhdrlen, offset,
1174 					    copy, fraggap, skb) < 0) {
1175 				err = -EFAULT;
1176 				kfree_skb(skb);
1177 				goto error;
1178 			} else if (flags & MSG_SPLICE_PAGES) {
1179 				copy = 0;
1180 			}
1181 
1182 			offset += copy;
1183 			length -= copy + transhdrlen;
1184 			transhdrlen = 0;
1185 			exthdrlen = 0;
1186 			csummode = CHECKSUM_NONE;
1187 
1188 			/* only the initial fragment is time stamped */
1189 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1190 			cork->tx_flags = 0;
1191 			skb_shinfo(skb)->tskey = tskey;
1192 			tskey = 0;
1193 			skb_zcopy_set(skb, uarg, &extra_uref);
1194 
1195 			if ((flags & MSG_CONFIRM) && !skb_prev)
1196 				skb_set_dst_pending_confirm(skb, 1);
1197 
1198 			/*
1199 			 * Put the packet on the pending queue.
1200 			 */
1201 			if (!skb->destructor) {
1202 				skb->destructor = sock_wfree;
1203 				skb->sk = sk;
1204 				wmem_alloc_delta += skb->truesize;
1205 			}
1206 			__skb_queue_tail(queue, skb);
1207 			continue;
1208 		}
1209 
1210 		if (copy > length)
1211 			copy = length;
1212 
1213 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1214 		    skb_tailroom(skb) >= copy) {
1215 			unsigned int off;
1216 
1217 			off = skb->len;
1218 			if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1219 					    from, skb_put(skb, copy),
1220 					    offset, copy, off, skb) < 0) {
1221 				__skb_trim(skb, off);
1222 				err = -EFAULT;
1223 				goto error;
1224 			}
1225 		} else if (flags & MSG_SPLICE_PAGES) {
1226 			struct msghdr *msg = from;
1227 
1228 			err = -EIO;
1229 			if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1230 				goto error;
1231 
1232 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1233 			if (err < 0)
1234 				goto error;
1235 			copy = err;
1236 			wmem_alloc_delta += copy;
1237 		} else if (!zc) {
1238 			int i = skb_shinfo(skb)->nr_frags;
1239 
1240 			err = -ENOMEM;
1241 			if (!sk_page_frag_refill(sk, pfrag))
1242 				goto error;
1243 
1244 			skb_zcopy_downgrade_managed(skb);
1245 			if (!skb_can_coalesce(skb, i, pfrag->page,
1246 					      pfrag->offset)) {
1247 				err = -EMSGSIZE;
1248 				if (i == MAX_SKB_FRAGS)
1249 					goto error;
1250 
1251 				__skb_fill_page_desc(skb, i, pfrag->page,
1252 						     pfrag->offset, 0);
1253 				skb_shinfo(skb)->nr_frags = ++i;
1254 				get_page(pfrag->page);
1255 			}
1256 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1257 			if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1258 				    from,
1259 				    page_address(pfrag->page) + pfrag->offset,
1260 				    offset, copy, skb->len, skb) < 0)
1261 				goto error_efault;
1262 
1263 			pfrag->offset += copy;
1264 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1265 			skb_len_add(skb, copy);
1266 			wmem_alloc_delta += copy;
1267 		} else {
1268 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1269 			if (err < 0)
1270 				goto error;
1271 		}
1272 		offset += copy;
1273 		length -= copy;
1274 	}
1275 
1276 	if (wmem_alloc_delta)
1277 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1278 	return 0;
1279 
1280 error_efault:
1281 	err = -EFAULT;
1282 error:
1283 	net_zcopy_put_abort(uarg, extra_uref);
1284 	cork->length -= length;
1285 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1286 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1287 	if (hold_tskey)
1288 		atomic_dec(&sk->sk_tskey);
1289 	return err;
1290 }
1291 
1292 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1293 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1294 {
1295 	struct ip_options_rcu *opt;
1296 	struct rtable *rt;
1297 
1298 	rt = *rtp;
1299 	if (unlikely(!rt))
1300 		return -EFAULT;
1301 
1302 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1303 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1304 
1305 	if (!inetdev_valid_mtu(cork->fragsize))
1306 		return -ENETUNREACH;
1307 
1308 	/*
1309 	 * setup for corking.
1310 	 */
1311 	opt = ipc->opt;
1312 	if (opt) {
1313 		if (!cork->opt) {
1314 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1315 					    sk->sk_allocation);
1316 			if (unlikely(!cork->opt))
1317 				return -ENOBUFS;
1318 		}
1319 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1320 		cork->flags |= IPCORK_OPT;
1321 		cork->addr = ipc->addr;
1322 	}
1323 
1324 	cork->gso_size = ipc->gso_size;
1325 
1326 	cork->dst = &rt->dst;
1327 	/* We stole this route, caller should not release it. */
1328 	*rtp = NULL;
1329 
1330 	cork->length = 0;
1331 	cork->ttl = ipc->ttl;
1332 	cork->tos = ipc->tos;
1333 	cork->mark = ipc->sockc.mark;
1334 	cork->priority = ipc->sockc.priority;
1335 	cork->transmit_time = ipc->sockc.transmit_time;
1336 	cork->tx_flags = 0;
1337 	sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1338 	if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1339 		cork->flags |= IPCORK_TS_OPT_ID;
1340 		cork->ts_opt_id = ipc->sockc.ts_opt_id;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  *	ip_append_data() can make one large IP datagram from many pieces of
1348  *	data.  Each piece will be held on the socket until
1349  *	ip_push_pending_frames() is called. Each piece can be a page or
1350  *	non-page data.
1351  *
1352  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1353  *	this interface potentially.
1354  *
1355  *	LATER: length must be adjusted by pad at tail, when it is required.
1356  */
1357 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1358 		   int getfrag(void *from, char *to, int offset, int len,
1359 			       int odd, struct sk_buff *skb),
1360 		   void *from, int length, int transhdrlen,
1361 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1362 		   unsigned int flags)
1363 {
1364 	struct inet_sock *inet = inet_sk(sk);
1365 	int err;
1366 
1367 	if (flags&MSG_PROBE)
1368 		return 0;
1369 
1370 	if (skb_queue_empty(&sk->sk_write_queue)) {
1371 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1372 		if (err)
1373 			return err;
1374 	} else {
1375 		transhdrlen = 0;
1376 	}
1377 
1378 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1379 				sk_page_frag(sk), getfrag,
1380 				from, length, transhdrlen, flags);
1381 }
1382 
1383 static void ip_cork_release(struct inet_cork *cork)
1384 {
1385 	cork->flags &= ~IPCORK_OPT;
1386 	kfree(cork->opt);
1387 	cork->opt = NULL;
1388 	dst_release(cork->dst);
1389 	cork->dst = NULL;
1390 }
1391 
1392 /*
1393  *	Combined all pending IP fragments on the socket as one IP datagram
1394  *	and push them out.
1395  */
1396 struct sk_buff *__ip_make_skb(struct sock *sk,
1397 			      struct flowi4 *fl4,
1398 			      struct sk_buff_head *queue,
1399 			      struct inet_cork *cork)
1400 {
1401 	struct sk_buff *skb, *tmp_skb;
1402 	struct sk_buff **tail_skb;
1403 	struct inet_sock *inet = inet_sk(sk);
1404 	struct net *net = sock_net(sk);
1405 	struct ip_options *opt = NULL;
1406 	struct rtable *rt = dst_rtable(cork->dst);
1407 	struct iphdr *iph;
1408 	u8 pmtudisc, ttl;
1409 	__be16 df = 0;
1410 
1411 	skb = __skb_dequeue(queue);
1412 	if (!skb)
1413 		goto out;
1414 	tail_skb = &(skb_shinfo(skb)->frag_list);
1415 
1416 	/* move skb->data to ip header from ext header */
1417 	if (skb->data < skb_network_header(skb))
1418 		__skb_pull(skb, skb_network_offset(skb));
1419 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1420 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1421 		*tail_skb = tmp_skb;
1422 		tail_skb = &(tmp_skb->next);
1423 		skb->len += tmp_skb->len;
1424 		skb->data_len += tmp_skb->len;
1425 		skb->truesize += tmp_skb->truesize;
1426 		tmp_skb->destructor = NULL;
1427 		tmp_skb->sk = NULL;
1428 	}
1429 
1430 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1431 	 * to fragment the frame generated here. No matter, what transforms
1432 	 * how transforms change size of the packet, it will come out.
1433 	 */
1434 	skb->ignore_df = ip_sk_ignore_df(sk);
1435 
1436 	/* DF bit is set when we want to see DF on outgoing frames.
1437 	 * If ignore_df is set too, we still allow to fragment this frame
1438 	 * locally. */
1439 	pmtudisc = READ_ONCE(inet->pmtudisc);
1440 	if (pmtudisc == IP_PMTUDISC_DO ||
1441 	    pmtudisc == IP_PMTUDISC_PROBE ||
1442 	    (skb->len <= dst_mtu(&rt->dst) &&
1443 	     ip_dont_fragment(sk, &rt->dst)))
1444 		df = htons(IP_DF);
1445 
1446 	if (cork->flags & IPCORK_OPT)
1447 		opt = cork->opt;
1448 
1449 	if (cork->ttl != 0)
1450 		ttl = cork->ttl;
1451 	else if (rt->rt_type == RTN_MULTICAST)
1452 		ttl = READ_ONCE(inet->mc_ttl);
1453 	else
1454 		ttl = ip_select_ttl(inet, &rt->dst);
1455 
1456 	iph = ip_hdr(skb);
1457 	iph->version = 4;
1458 	iph->ihl = 5;
1459 	iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1460 	iph->frag_off = df;
1461 	iph->ttl = ttl;
1462 	iph->protocol = sk->sk_protocol;
1463 	ip_copy_addrs(iph, fl4);
1464 	ip_select_ident(net, skb, sk);
1465 
1466 	if (opt) {
1467 		iph->ihl += opt->optlen >> 2;
1468 		ip_options_build(skb, opt, cork->addr, rt);
1469 	}
1470 
1471 	skb->priority = cork->priority;
1472 	skb->mark = cork->mark;
1473 	if (sk_is_tcp(sk))
1474 		skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1475 	else
1476 		skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1477 	/*
1478 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1479 	 * on dst refcount
1480 	 */
1481 	cork->dst = NULL;
1482 	skb_dst_set(skb, &rt->dst);
1483 
1484 	if (iph->protocol == IPPROTO_ICMP) {
1485 		u8 icmp_type;
1486 
1487 		/* For such sockets, transhdrlen is zero when do ip_append_data(),
1488 		 * so icmphdr does not in skb linear region and can not get icmp_type
1489 		 * by icmp_hdr(skb)->type.
1490 		 */
1491 		if (sk->sk_type == SOCK_RAW &&
1492 		    !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1493 			icmp_type = fl4->fl4_icmp_type;
1494 		else
1495 			icmp_type = icmp_hdr(skb)->type;
1496 		icmp_out_count(net, icmp_type);
1497 	}
1498 
1499 	ip_cork_release(cork);
1500 out:
1501 	return skb;
1502 }
1503 
1504 int ip_send_skb(struct net *net, struct sk_buff *skb)
1505 {
1506 	int err;
1507 
1508 	err = ip_local_out(net, skb->sk, skb);
1509 	if (err) {
1510 		if (err > 0)
1511 			err = net_xmit_errno(err);
1512 		if (err)
1513 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1514 	}
1515 
1516 	return err;
1517 }
1518 
1519 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1520 {
1521 	struct sk_buff *skb;
1522 
1523 	skb = ip_finish_skb(sk, fl4);
1524 	if (!skb)
1525 		return 0;
1526 
1527 	/* Netfilter gets whole the not fragmented skb. */
1528 	return ip_send_skb(sock_net(sk), skb);
1529 }
1530 
1531 /*
1532  *	Throw away all pending data on the socket.
1533  */
1534 static void __ip_flush_pending_frames(struct sock *sk,
1535 				      struct sk_buff_head *queue,
1536 				      struct inet_cork *cork)
1537 {
1538 	struct sk_buff *skb;
1539 
1540 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1541 		kfree_skb(skb);
1542 
1543 	ip_cork_release(cork);
1544 }
1545 
1546 void ip_flush_pending_frames(struct sock *sk)
1547 {
1548 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1549 }
1550 
1551 struct sk_buff *ip_make_skb(struct sock *sk,
1552 			    struct flowi4 *fl4,
1553 			    int getfrag(void *from, char *to, int offset,
1554 					int len, int odd, struct sk_buff *skb),
1555 			    void *from, int length, int transhdrlen,
1556 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1557 			    struct inet_cork *cork, unsigned int flags)
1558 {
1559 	struct sk_buff_head queue;
1560 	int err;
1561 
1562 	if (flags & MSG_PROBE)
1563 		return NULL;
1564 
1565 	__skb_queue_head_init(&queue);
1566 
1567 	cork->flags = 0;
1568 	cork->addr = 0;
1569 	cork->opt = NULL;
1570 	err = ip_setup_cork(sk, cork, ipc, rtp);
1571 	if (err)
1572 		return ERR_PTR(err);
1573 
1574 	err = __ip_append_data(sk, fl4, &queue, cork,
1575 			       &current->task_frag, getfrag,
1576 			       from, length, transhdrlen, flags);
1577 	if (err) {
1578 		__ip_flush_pending_frames(sk, &queue, cork);
1579 		return ERR_PTR(err);
1580 	}
1581 
1582 	return __ip_make_skb(sk, fl4, &queue, cork);
1583 }
1584 
1585 /*
1586  *	Fetch data from kernel space and fill in checksum if needed.
1587  */
1588 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1589 			      int len, int odd, struct sk_buff *skb)
1590 {
1591 	__wsum csum;
1592 
1593 	csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1594 	skb->csum = csum_block_add(skb->csum, csum, odd);
1595 	return 0;
1596 }
1597 
1598 /*
1599  *	Generic function to send a packet as reply to another packet.
1600  *	Used to send some TCP resets/acks so far.
1601  */
1602 void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk,
1603 			   struct sk_buff *skb,
1604 			   const struct ip_options *sopt,
1605 			   __be32 daddr, __be32 saddr,
1606 			   const struct ip_reply_arg *arg,
1607 			   unsigned int len, u64 transmit_time, u32 txhash)
1608 {
1609 	struct ip_options_data replyopts;
1610 	struct ipcm_cookie ipc;
1611 	struct flowi4 fl4;
1612 	struct rtable *rt = skb_rtable(skb);
1613 	struct net *net = sock_net(sk);
1614 	struct sk_buff *nskb;
1615 	int err;
1616 	int oif;
1617 
1618 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1619 		return;
1620 
1621 	ipcm_init(&ipc);
1622 	ipc.addr = daddr;
1623 	ipc.sockc.transmit_time = transmit_time;
1624 
1625 	if (replyopts.opt.opt.optlen) {
1626 		ipc.opt = &replyopts.opt;
1627 
1628 		if (replyopts.opt.opt.srr)
1629 			daddr = replyopts.opt.opt.faddr;
1630 	}
1631 
1632 	oif = arg->bound_dev_if;
1633 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1634 		oif = skb->skb_iif;
1635 
1636 	flowi4_init_output(&fl4, oif,
1637 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1638 			   arg->tos & INET_DSCP_MASK,
1639 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1640 			   ip_reply_arg_flowi_flags(arg),
1641 			   daddr, saddr,
1642 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1643 			   arg->uid);
1644 	security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1645 	rt = ip_route_output_flow(net, &fl4, sk);
1646 	if (IS_ERR(rt))
1647 		return;
1648 
1649 	inet_sk(sk)->tos = arg->tos;
1650 
1651 	sk->sk_protocol = ip_hdr(skb)->protocol;
1652 	sk->sk_bound_dev_if = arg->bound_dev_if;
1653 	sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1654 	ipc.sockc.mark = fl4.flowi4_mark;
1655 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1656 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1657 	if (unlikely(err)) {
1658 		ip_flush_pending_frames(sk);
1659 		goto out;
1660 	}
1661 
1662 	nskb = skb_peek(&sk->sk_write_queue);
1663 	if (nskb) {
1664 		if (arg->csumoffset >= 0)
1665 			*((__sum16 *)skb_transport_header(nskb) +
1666 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1667 								arg->csum));
1668 		nskb->ip_summed = CHECKSUM_NONE;
1669 		if (orig_sk) {
1670 			skb_set_owner_edemux(nskb, (struct sock *)orig_sk);
1671 			psp_reply_set_decrypted(nskb);
1672 		}
1673 		if (transmit_time)
1674 			nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1675 		if (txhash)
1676 			skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1677 		ip_push_pending_frames(sk, &fl4);
1678 	}
1679 out:
1680 	ip_rt_put(rt);
1681 }
1682 
1683 void __init ip_init(void)
1684 {
1685 	ip_rt_init();
1686 	inet_initpeers();
1687 
1688 #if defined(CONFIG_IP_MULTICAST)
1689 	igmp_mc_init();
1690 #endif
1691 }
1692