1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2023 Christoph Hellwig.
5 */
6 #include <linux/iomap.h>
7 #include <linux/buffer_head.h>
8 #include <linux/writeback.h>
9 #include <linux/swap.h>
10 #include <linux/migrate.h>
11 #include "trace.h"
12
13 #include "../internal.h"
14
15 /*
16 * Structure allocated for each folio to track per-block uptodate, dirty state
17 * and I/O completions.
18 */
19 struct iomap_folio_state {
20 spinlock_t state_lock;
21 unsigned int read_bytes_pending;
22 atomic_t write_bytes_pending;
23
24 /*
25 * Each block has two bits in this bitmap:
26 * Bits [0..blocks_per_folio) has the uptodate status.
27 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
28 */
29 unsigned long state[];
30 };
31
ifs_is_fully_uptodate(struct folio * folio,struct iomap_folio_state * ifs)32 static inline bool ifs_is_fully_uptodate(struct folio *folio,
33 struct iomap_folio_state *ifs)
34 {
35 struct inode *inode = folio->mapping->host;
36
37 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
38 }
39
ifs_block_is_uptodate(struct iomap_folio_state * ifs,unsigned int block)40 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
41 unsigned int block)
42 {
43 return test_bit(block, ifs->state);
44 }
45
ifs_set_range_uptodate(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)46 static bool ifs_set_range_uptodate(struct folio *folio,
47 struct iomap_folio_state *ifs, size_t off, size_t len)
48 {
49 struct inode *inode = folio->mapping->host;
50 unsigned int first_blk = off >> inode->i_blkbits;
51 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
52 unsigned int nr_blks = last_blk - first_blk + 1;
53
54 bitmap_set(ifs->state, first_blk, nr_blks);
55 return ifs_is_fully_uptodate(folio, ifs);
56 }
57
iomap_set_range_uptodate(struct folio * folio,size_t off,size_t len)58 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
59 size_t len)
60 {
61 struct iomap_folio_state *ifs = folio->private;
62 unsigned long flags;
63 bool uptodate = true;
64
65 if (folio_test_uptodate(folio))
66 return;
67
68 if (ifs) {
69 spin_lock_irqsave(&ifs->state_lock, flags);
70 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
71 spin_unlock_irqrestore(&ifs->state_lock, flags);
72 }
73
74 if (uptodate)
75 folio_mark_uptodate(folio);
76 }
77
ifs_block_is_dirty(struct folio * folio,struct iomap_folio_state * ifs,int block)78 static inline bool ifs_block_is_dirty(struct folio *folio,
79 struct iomap_folio_state *ifs, int block)
80 {
81 struct inode *inode = folio->mapping->host;
82 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
83
84 return test_bit(block + blks_per_folio, ifs->state);
85 }
86
ifs_find_dirty_range(struct folio * folio,struct iomap_folio_state * ifs,u64 * range_start,u64 range_end)87 static unsigned ifs_find_dirty_range(struct folio *folio,
88 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
89 {
90 struct inode *inode = folio->mapping->host;
91 unsigned start_blk =
92 offset_in_folio(folio, *range_start) >> inode->i_blkbits;
93 unsigned end_blk = min_not_zero(
94 offset_in_folio(folio, range_end) >> inode->i_blkbits,
95 i_blocks_per_folio(inode, folio));
96 unsigned nblks = 1;
97
98 while (!ifs_block_is_dirty(folio, ifs, start_blk))
99 if (++start_blk == end_blk)
100 return 0;
101
102 while (start_blk + nblks < end_blk) {
103 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
104 break;
105 nblks++;
106 }
107
108 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
109 return nblks << inode->i_blkbits;
110 }
111
iomap_find_dirty_range(struct folio * folio,u64 * range_start,u64 range_end)112 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
113 u64 range_end)
114 {
115 struct iomap_folio_state *ifs = folio->private;
116
117 if (*range_start >= range_end)
118 return 0;
119
120 if (ifs)
121 return ifs_find_dirty_range(folio, ifs, range_start, range_end);
122 return range_end - *range_start;
123 }
124
ifs_clear_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)125 static void ifs_clear_range_dirty(struct folio *folio,
126 struct iomap_folio_state *ifs, size_t off, size_t len)
127 {
128 struct inode *inode = folio->mapping->host;
129 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
130 unsigned int first_blk = (off >> inode->i_blkbits);
131 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
132 unsigned int nr_blks = last_blk - first_blk + 1;
133 unsigned long flags;
134
135 spin_lock_irqsave(&ifs->state_lock, flags);
136 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
137 spin_unlock_irqrestore(&ifs->state_lock, flags);
138 }
139
iomap_clear_range_dirty(struct folio * folio,size_t off,size_t len)140 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
141 {
142 struct iomap_folio_state *ifs = folio->private;
143
144 if (ifs)
145 ifs_clear_range_dirty(folio, ifs, off, len);
146 }
147
ifs_set_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)148 static void ifs_set_range_dirty(struct folio *folio,
149 struct iomap_folio_state *ifs, size_t off, size_t len)
150 {
151 struct inode *inode = folio->mapping->host;
152 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
153 unsigned int first_blk = (off >> inode->i_blkbits);
154 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
155 unsigned int nr_blks = last_blk - first_blk + 1;
156 unsigned long flags;
157
158 spin_lock_irqsave(&ifs->state_lock, flags);
159 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
160 spin_unlock_irqrestore(&ifs->state_lock, flags);
161 }
162
iomap_set_range_dirty(struct folio * folio,size_t off,size_t len)163 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
164 {
165 struct iomap_folio_state *ifs = folio->private;
166
167 if (ifs)
168 ifs_set_range_dirty(folio, ifs, off, len);
169 }
170
ifs_alloc(struct inode * inode,struct folio * folio,unsigned int flags)171 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
172 struct folio *folio, unsigned int flags)
173 {
174 struct iomap_folio_state *ifs = folio->private;
175 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
176 gfp_t gfp;
177
178 if (ifs || nr_blocks <= 1)
179 return ifs;
180
181 if (flags & IOMAP_NOWAIT)
182 gfp = GFP_NOWAIT;
183 else
184 gfp = GFP_NOFS | __GFP_NOFAIL;
185
186 /*
187 * ifs->state tracks two sets of state flags when the
188 * filesystem block size is smaller than the folio size.
189 * The first state tracks per-block uptodate and the
190 * second tracks per-block dirty state.
191 */
192 ifs = kzalloc(struct_size(ifs, state,
193 BITS_TO_LONGS(2 * nr_blocks)), gfp);
194 if (!ifs)
195 return ifs;
196
197 spin_lock_init(&ifs->state_lock);
198 if (folio_test_uptodate(folio))
199 bitmap_set(ifs->state, 0, nr_blocks);
200 if (folio_test_dirty(folio))
201 bitmap_set(ifs->state, nr_blocks, nr_blocks);
202 folio_attach_private(folio, ifs);
203
204 return ifs;
205 }
206
ifs_free(struct folio * folio)207 static void ifs_free(struct folio *folio)
208 {
209 struct iomap_folio_state *ifs = folio_detach_private(folio);
210
211 if (!ifs)
212 return;
213 WARN_ON_ONCE(ifs->read_bytes_pending != 0);
214 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
215 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
216 folio_test_uptodate(folio));
217 kfree(ifs);
218 }
219
220 /*
221 * Calculate the range inside the folio that we actually need to read.
222 */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)223 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
224 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
225 {
226 struct iomap_folio_state *ifs = folio->private;
227 loff_t orig_pos = *pos;
228 loff_t isize = i_size_read(inode);
229 unsigned block_bits = inode->i_blkbits;
230 unsigned block_size = (1 << block_bits);
231 size_t poff = offset_in_folio(folio, *pos);
232 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
233 size_t orig_plen = plen;
234 unsigned first = poff >> block_bits;
235 unsigned last = (poff + plen - 1) >> block_bits;
236
237 /*
238 * If the block size is smaller than the page size, we need to check the
239 * per-block uptodate status and adjust the offset and length if needed
240 * to avoid reading in already uptodate ranges.
241 */
242 if (ifs) {
243 unsigned int i;
244
245 /* move forward for each leading block marked uptodate */
246 for (i = first; i <= last; i++) {
247 if (!ifs_block_is_uptodate(ifs, i))
248 break;
249 *pos += block_size;
250 poff += block_size;
251 plen -= block_size;
252 first++;
253 }
254
255 /* truncate len if we find any trailing uptodate block(s) */
256 while (++i <= last) {
257 if (ifs_block_is_uptodate(ifs, i)) {
258 plen -= (last - i + 1) * block_size;
259 last = i - 1;
260 break;
261 }
262 }
263 }
264
265 /*
266 * If the extent spans the block that contains the i_size, we need to
267 * handle both halves separately so that we properly zero data in the
268 * page cache for blocks that are entirely outside of i_size.
269 */
270 if (orig_pos <= isize && orig_pos + orig_plen > isize) {
271 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
272
273 if (first <= end && last > end)
274 plen -= (last - end) * block_size;
275 }
276
277 *offp = poff;
278 *lenp = plen;
279 }
280
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)281 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
282 loff_t pos)
283 {
284 const struct iomap *srcmap = iomap_iter_srcmap(iter);
285
286 return srcmap->type != IOMAP_MAPPED ||
287 (srcmap->flags & IOMAP_F_NEW) ||
288 pos >= i_size_read(iter->inode);
289 }
290
291 /**
292 * iomap_read_inline_data - copy inline data into the page cache
293 * @iter: iteration structure
294 * @folio: folio to copy to
295 *
296 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
297 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
298 * Returns zero for success to complete the read, or the usual negative errno.
299 */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)300 static int iomap_read_inline_data(const struct iomap_iter *iter,
301 struct folio *folio)
302 {
303 const struct iomap *iomap = iomap_iter_srcmap(iter);
304 size_t size = i_size_read(iter->inode) - iomap->offset;
305 size_t offset = offset_in_folio(folio, iomap->offset);
306
307 if (WARN_ON_ONCE(!iomap->inline_data))
308 return -EIO;
309
310 if (folio_test_uptodate(folio))
311 return 0;
312
313 if (WARN_ON_ONCE(size > iomap->length))
314 return -EIO;
315 if (offset > 0)
316 ifs_alloc(iter->inode, folio, iter->flags);
317
318 folio_fill_tail(folio, offset, iomap->inline_data, size);
319 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
320 return 0;
321 }
322
323 #ifdef CONFIG_BLOCK
iomap_finish_folio_read(struct folio * folio,size_t off,size_t len,int error)324 static void iomap_finish_folio_read(struct folio *folio, size_t off,
325 size_t len, int error)
326 {
327 struct iomap_folio_state *ifs = folio->private;
328 bool uptodate = !error;
329 bool finished = true;
330
331 if (ifs) {
332 unsigned long flags;
333
334 spin_lock_irqsave(&ifs->state_lock, flags);
335 if (!error)
336 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
337 ifs->read_bytes_pending -= len;
338 finished = !ifs->read_bytes_pending;
339 spin_unlock_irqrestore(&ifs->state_lock, flags);
340 }
341
342 if (finished)
343 folio_end_read(folio, uptodate);
344 }
345
iomap_read_end_io(struct bio * bio)346 static void iomap_read_end_io(struct bio *bio)
347 {
348 int error = blk_status_to_errno(bio->bi_status);
349 struct folio_iter fi;
350
351 bio_for_each_folio_all(fi, bio)
352 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
353 bio_put(bio);
354 }
355
356 struct iomap_readpage_ctx {
357 struct folio *cur_folio;
358 bool cur_folio_in_bio;
359 struct bio *bio;
360 struct readahead_control *rac;
361 };
362
iomap_readpage_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)363 static int iomap_readpage_iter(struct iomap_iter *iter,
364 struct iomap_readpage_ctx *ctx)
365 {
366 const struct iomap *iomap = &iter->iomap;
367 loff_t pos = iter->pos;
368 loff_t length = iomap_length(iter);
369 struct folio *folio = ctx->cur_folio;
370 struct iomap_folio_state *ifs;
371 size_t poff, plen;
372 sector_t sector;
373 int ret;
374
375 if (iomap->type == IOMAP_INLINE) {
376 ret = iomap_read_inline_data(iter, folio);
377 if (ret)
378 return ret;
379 return iomap_iter_advance(iter, &length);
380 }
381
382 /* zero post-eof blocks as the page may be mapped */
383 ifs = ifs_alloc(iter->inode, folio, iter->flags);
384 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
385 if (plen == 0)
386 goto done;
387
388 if (iomap_block_needs_zeroing(iter, pos)) {
389 folio_zero_range(folio, poff, plen);
390 iomap_set_range_uptodate(folio, poff, plen);
391 goto done;
392 }
393
394 ctx->cur_folio_in_bio = true;
395 if (ifs) {
396 spin_lock_irq(&ifs->state_lock);
397 ifs->read_bytes_pending += plen;
398 spin_unlock_irq(&ifs->state_lock);
399 }
400
401 sector = iomap_sector(iomap, pos);
402 if (!ctx->bio ||
403 bio_end_sector(ctx->bio) != sector ||
404 !bio_add_folio(ctx->bio, folio, plen, poff)) {
405 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
406 gfp_t orig_gfp = gfp;
407 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
408
409 if (ctx->bio)
410 submit_bio(ctx->bio);
411
412 if (ctx->rac) /* same as readahead_gfp_mask */
413 gfp |= __GFP_NORETRY | __GFP_NOWARN;
414 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
415 REQ_OP_READ, gfp);
416 /*
417 * If the bio_alloc fails, try it again for a single page to
418 * avoid having to deal with partial page reads. This emulates
419 * what do_mpage_read_folio does.
420 */
421 if (!ctx->bio) {
422 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
423 orig_gfp);
424 }
425 if (ctx->rac)
426 ctx->bio->bi_opf |= REQ_RAHEAD;
427 ctx->bio->bi_iter.bi_sector = sector;
428 ctx->bio->bi_end_io = iomap_read_end_io;
429 bio_add_folio_nofail(ctx->bio, folio, plen, poff);
430 }
431
432 done:
433 /*
434 * Move the caller beyond our range so that it keeps making progress.
435 * For that, we have to include any leading non-uptodate ranges, but
436 * we can skip trailing ones as they will be handled in the next
437 * iteration.
438 */
439 length = pos - iter->pos + plen;
440 return iomap_iter_advance(iter, &length);
441 }
442
iomap_read_folio_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)443 static int iomap_read_folio_iter(struct iomap_iter *iter,
444 struct iomap_readpage_ctx *ctx)
445 {
446 int ret;
447
448 while (iomap_length(iter)) {
449 ret = iomap_readpage_iter(iter, ctx);
450 if (ret)
451 return ret;
452 }
453
454 return 0;
455 }
456
iomap_read_folio(struct folio * folio,const struct iomap_ops * ops)457 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
458 {
459 struct iomap_iter iter = {
460 .inode = folio->mapping->host,
461 .pos = folio_pos(folio),
462 .len = folio_size(folio),
463 };
464 struct iomap_readpage_ctx ctx = {
465 .cur_folio = folio,
466 };
467 int ret;
468
469 trace_iomap_readpage(iter.inode, 1);
470
471 while ((ret = iomap_iter(&iter, ops)) > 0)
472 iter.status = iomap_read_folio_iter(&iter, &ctx);
473
474 if (ctx.bio) {
475 submit_bio(ctx.bio);
476 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
477 } else {
478 WARN_ON_ONCE(ctx.cur_folio_in_bio);
479 folio_unlock(folio);
480 }
481
482 /*
483 * Just like mpage_readahead and block_read_full_folio, we always
484 * return 0 and just set the folio error flag on errors. This
485 * should be cleaned up throughout the stack eventually.
486 */
487 return 0;
488 }
489 EXPORT_SYMBOL_GPL(iomap_read_folio);
490
iomap_readahead_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)491 static int iomap_readahead_iter(struct iomap_iter *iter,
492 struct iomap_readpage_ctx *ctx)
493 {
494 int ret;
495
496 while (iomap_length(iter)) {
497 if (ctx->cur_folio &&
498 offset_in_folio(ctx->cur_folio, iter->pos) == 0) {
499 if (!ctx->cur_folio_in_bio)
500 folio_unlock(ctx->cur_folio);
501 ctx->cur_folio = NULL;
502 }
503 if (!ctx->cur_folio) {
504 ctx->cur_folio = readahead_folio(ctx->rac);
505 ctx->cur_folio_in_bio = false;
506 }
507 ret = iomap_readpage_iter(iter, ctx);
508 if (ret)
509 return ret;
510 }
511
512 return 0;
513 }
514
515 /**
516 * iomap_readahead - Attempt to read pages from a file.
517 * @rac: Describes the pages to be read.
518 * @ops: The operations vector for the filesystem.
519 *
520 * This function is for filesystems to call to implement their readahead
521 * address_space operation.
522 *
523 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
524 * blocks from disc), and may wait for it. The caller may be trying to
525 * access a different page, and so sleeping excessively should be avoided.
526 * It may allocate memory, but should avoid costly allocations. This
527 * function is called with memalloc_nofs set, so allocations will not cause
528 * the filesystem to be reentered.
529 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)530 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
531 {
532 struct iomap_iter iter = {
533 .inode = rac->mapping->host,
534 .pos = readahead_pos(rac),
535 .len = readahead_length(rac),
536 };
537 struct iomap_readpage_ctx ctx = {
538 .rac = rac,
539 };
540
541 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
542
543 while (iomap_iter(&iter, ops) > 0)
544 iter.status = iomap_readahead_iter(&iter, &ctx);
545
546 if (ctx.bio)
547 submit_bio(ctx.bio);
548 if (ctx.cur_folio) {
549 if (!ctx.cur_folio_in_bio)
550 folio_unlock(ctx.cur_folio);
551 }
552 }
553 EXPORT_SYMBOL_GPL(iomap_readahead);
554
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)555 static int iomap_read_folio_range(const struct iomap_iter *iter,
556 struct folio *folio, loff_t pos, size_t len)
557 {
558 const struct iomap *srcmap = iomap_iter_srcmap(iter);
559 struct bio_vec bvec;
560 struct bio bio;
561
562 bio_init(&bio, srcmap->bdev, &bvec, 1, REQ_OP_READ);
563 bio.bi_iter.bi_sector = iomap_sector(srcmap, pos);
564 bio_add_folio_nofail(&bio, folio, len, offset_in_folio(folio, pos));
565 return submit_bio_wait(&bio);
566 }
567 #else
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)568 static int iomap_read_folio_range(const struct iomap_iter *iter,
569 struct folio *folio, loff_t pos, size_t len)
570 {
571 WARN_ON_ONCE(1);
572 return -EIO;
573 }
574 #endif /* CONFIG_BLOCK */
575
576 /*
577 * iomap_is_partially_uptodate checks whether blocks within a folio are
578 * uptodate or not.
579 *
580 * Returns true if all blocks which correspond to the specified part
581 * of the folio are uptodate.
582 */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)583 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
584 {
585 struct iomap_folio_state *ifs = folio->private;
586 struct inode *inode = folio->mapping->host;
587 unsigned first, last, i;
588
589 if (!ifs)
590 return false;
591
592 /* Caller's range may extend past the end of this folio */
593 count = min(folio_size(folio) - from, count);
594
595 /* First and last blocks in range within folio */
596 first = from >> inode->i_blkbits;
597 last = (from + count - 1) >> inode->i_blkbits;
598
599 for (i = first; i <= last; i++)
600 if (!ifs_block_is_uptodate(ifs, i))
601 return false;
602 return true;
603 }
604 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
605
606 /**
607 * iomap_get_folio - get a folio reference for writing
608 * @iter: iteration structure
609 * @pos: start offset of write
610 * @len: Suggested size of folio to create.
611 *
612 * Returns a locked reference to the folio at @pos, or an error pointer if the
613 * folio could not be obtained.
614 */
iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)615 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
616 {
617 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
618
619 if (iter->flags & IOMAP_NOWAIT)
620 fgp |= FGP_NOWAIT;
621 if (iter->flags & IOMAP_DONTCACHE)
622 fgp |= FGP_DONTCACHE;
623 fgp |= fgf_set_order(len);
624
625 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
626 fgp, mapping_gfp_mask(iter->inode->i_mapping));
627 }
628 EXPORT_SYMBOL_GPL(iomap_get_folio);
629
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)630 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
631 {
632 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
633 folio_size(folio));
634
635 /*
636 * If the folio is dirty, we refuse to release our metadata because
637 * it may be partially dirty. Once we track per-block dirty state,
638 * we can release the metadata if every block is dirty.
639 */
640 if (folio_test_dirty(folio))
641 return false;
642 ifs_free(folio);
643 return true;
644 }
645 EXPORT_SYMBOL_GPL(iomap_release_folio);
646
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)647 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
648 {
649 trace_iomap_invalidate_folio(folio->mapping->host,
650 folio_pos(folio) + offset, len);
651
652 /*
653 * If we're invalidating the entire folio, clear the dirty state
654 * from it and release it to avoid unnecessary buildup of the LRU.
655 */
656 if (offset == 0 && len == folio_size(folio)) {
657 WARN_ON_ONCE(folio_test_writeback(folio));
658 folio_cancel_dirty(folio);
659 ifs_free(folio);
660 }
661 }
662 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
663
iomap_dirty_folio(struct address_space * mapping,struct folio * folio)664 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
665 {
666 struct inode *inode = mapping->host;
667 size_t len = folio_size(folio);
668
669 ifs_alloc(inode, folio, 0);
670 iomap_set_range_dirty(folio, 0, len);
671 return filemap_dirty_folio(mapping, folio);
672 }
673 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
674
675 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)676 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
677 {
678 loff_t i_size = i_size_read(inode);
679
680 /*
681 * Only truncate newly allocated pages beyoned EOF, even if the
682 * write started inside the existing inode size.
683 */
684 if (pos + len > i_size)
685 truncate_pagecache_range(inode, max(pos, i_size),
686 pos + len - 1);
687 }
688
__iomap_write_begin(const struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len,struct folio * folio)689 static int __iomap_write_begin(const struct iomap_iter *iter,
690 const struct iomap_write_ops *write_ops, size_t len,
691 struct folio *folio)
692 {
693 struct iomap_folio_state *ifs;
694 loff_t pos = iter->pos;
695 loff_t block_size = i_blocksize(iter->inode);
696 loff_t block_start = round_down(pos, block_size);
697 loff_t block_end = round_up(pos + len, block_size);
698 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
699 size_t from = offset_in_folio(folio, pos), to = from + len;
700 size_t poff, plen;
701
702 /*
703 * If the write or zeroing completely overlaps the current folio, then
704 * entire folio will be dirtied so there is no need for
705 * per-block state tracking structures to be attached to this folio.
706 * For the unshare case, we must read in the ondisk contents because we
707 * are not changing pagecache contents.
708 */
709 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
710 pos + len >= folio_pos(folio) + folio_size(folio))
711 return 0;
712
713 ifs = ifs_alloc(iter->inode, folio, iter->flags);
714 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
715 return -EAGAIN;
716
717 if (folio_test_uptodate(folio))
718 return 0;
719
720 do {
721 iomap_adjust_read_range(iter->inode, folio, &block_start,
722 block_end - block_start, &poff, &plen);
723 if (plen == 0)
724 break;
725
726 if (!(iter->flags & IOMAP_UNSHARE) &&
727 (from <= poff || from >= poff + plen) &&
728 (to <= poff || to >= poff + plen))
729 continue;
730
731 if (iomap_block_needs_zeroing(iter, block_start)) {
732 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
733 return -EIO;
734 folio_zero_segments(folio, poff, from, to, poff + plen);
735 } else {
736 int status;
737
738 if (iter->flags & IOMAP_NOWAIT)
739 return -EAGAIN;
740
741 if (write_ops && write_ops->read_folio_range)
742 status = write_ops->read_folio_range(iter,
743 folio, block_start, plen);
744 else
745 status = iomap_read_folio_range(iter,
746 folio, block_start, plen);
747 if (status)
748 return status;
749 }
750 iomap_set_range_uptodate(folio, poff, plen);
751 } while ((block_start += plen) < block_end);
752
753 return 0;
754 }
755
__iomap_get_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len)756 static struct folio *__iomap_get_folio(struct iomap_iter *iter,
757 const struct iomap_write_ops *write_ops, size_t len)
758 {
759 loff_t pos = iter->pos;
760
761 if (!mapping_large_folio_support(iter->inode->i_mapping))
762 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
763
764 if (write_ops && write_ops->get_folio)
765 return write_ops->get_folio(iter, pos, len);
766 return iomap_get_folio(iter, pos, len);
767 }
768
__iomap_put_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t ret,struct folio * folio)769 static void __iomap_put_folio(struct iomap_iter *iter,
770 const struct iomap_write_ops *write_ops, size_t ret,
771 struct folio *folio)
772 {
773 loff_t pos = iter->pos;
774
775 if (write_ops && write_ops->put_folio) {
776 write_ops->put_folio(iter->inode, pos, ret, folio);
777 } else {
778 folio_unlock(folio);
779 folio_put(folio);
780 }
781 }
782
783 /* trim pos and bytes to within a given folio */
iomap_trim_folio_range(struct iomap_iter * iter,struct folio * folio,size_t * offset,u64 * bytes)784 static loff_t iomap_trim_folio_range(struct iomap_iter *iter,
785 struct folio *folio, size_t *offset, u64 *bytes)
786 {
787 loff_t pos = iter->pos;
788 size_t fsize = folio_size(folio);
789
790 WARN_ON_ONCE(pos < folio_pos(folio));
791 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize);
792
793 *offset = offset_in_folio(folio, pos);
794 *bytes = min(*bytes, fsize - *offset);
795
796 return pos;
797 }
798
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)799 static int iomap_write_begin_inline(const struct iomap_iter *iter,
800 struct folio *folio)
801 {
802 /* needs more work for the tailpacking case; disable for now */
803 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
804 return -EIO;
805 return iomap_read_inline_data(iter, folio);
806 }
807
808 /*
809 * Grab and prepare a folio for write based on iter state. Returns the folio,
810 * offset, and length. Callers can optionally pass a max length *plen,
811 * otherwise init to zero.
812 */
iomap_write_begin(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,struct folio ** foliop,size_t * poffset,u64 * plen)813 static int iomap_write_begin(struct iomap_iter *iter,
814 const struct iomap_write_ops *write_ops, struct folio **foliop,
815 size_t *poffset, u64 *plen)
816 {
817 const struct iomap *srcmap = iomap_iter_srcmap(iter);
818 loff_t pos = iter->pos;
819 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter));
820 struct folio *folio;
821 int status = 0;
822
823 len = min_not_zero(len, *plen);
824 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
825 if (srcmap != &iter->iomap)
826 BUG_ON(pos + len > srcmap->offset + srcmap->length);
827
828 if (fatal_signal_pending(current))
829 return -EINTR;
830
831 folio = __iomap_get_folio(iter, write_ops, len);
832 if (IS_ERR(folio))
833 return PTR_ERR(folio);
834
835 /*
836 * Now we have a locked folio, before we do anything with it we need to
837 * check that the iomap we have cached is not stale. The inode extent
838 * mapping can change due to concurrent IO in flight (e.g.
839 * IOMAP_UNWRITTEN state can change and memory reclaim could have
840 * reclaimed a previously partially written page at this index after IO
841 * completion before this write reaches this file offset) and hence we
842 * could do the wrong thing here (zero a page range incorrectly or fail
843 * to zero) and corrupt data.
844 */
845 if (write_ops && write_ops->iomap_valid) {
846 bool iomap_valid = write_ops->iomap_valid(iter->inode,
847 &iter->iomap);
848 if (!iomap_valid) {
849 iter->iomap.flags |= IOMAP_F_STALE;
850 status = 0;
851 goto out_unlock;
852 }
853 }
854
855 pos = iomap_trim_folio_range(iter, folio, poffset, &len);
856
857 if (srcmap->type == IOMAP_INLINE)
858 status = iomap_write_begin_inline(iter, folio);
859 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
860 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
861 else
862 status = __iomap_write_begin(iter, write_ops, len, folio);
863
864 if (unlikely(status))
865 goto out_unlock;
866
867 *foliop = folio;
868 *plen = len;
869 return 0;
870
871 out_unlock:
872 __iomap_put_folio(iter, write_ops, 0, folio);
873 return status;
874 }
875
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)876 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
877 size_t copied, struct folio *folio)
878 {
879 flush_dcache_folio(folio);
880
881 /*
882 * The blocks that were entirely written will now be uptodate, so we
883 * don't have to worry about a read_folio reading them and overwriting a
884 * partial write. However, if we've encountered a short write and only
885 * partially written into a block, it will not be marked uptodate, so a
886 * read_folio might come in and destroy our partial write.
887 *
888 * Do the simplest thing and just treat any short write to a
889 * non-uptodate page as a zero-length write, and force the caller to
890 * redo the whole thing.
891 */
892 if (unlikely(copied < len && !folio_test_uptodate(folio)))
893 return false;
894 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
895 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
896 filemap_dirty_folio(inode->i_mapping, folio);
897 return true;
898 }
899
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)900 static bool iomap_write_end_inline(const struct iomap_iter *iter,
901 struct folio *folio, loff_t pos, size_t copied)
902 {
903 const struct iomap *iomap = &iter->iomap;
904 void *addr;
905
906 WARN_ON_ONCE(!folio_test_uptodate(folio));
907 BUG_ON(!iomap_inline_data_valid(iomap));
908
909 if (WARN_ON_ONCE(!iomap->inline_data))
910 return false;
911
912 flush_dcache_folio(folio);
913 addr = kmap_local_folio(folio, pos);
914 memcpy(iomap_inline_data(iomap, pos), addr, copied);
915 kunmap_local(addr);
916
917 mark_inode_dirty(iter->inode);
918 return true;
919 }
920
921 /*
922 * Returns true if all copied bytes have been written to the pagecache,
923 * otherwise return false.
924 */
iomap_write_end(struct iomap_iter * iter,size_t len,size_t copied,struct folio * folio)925 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied,
926 struct folio *folio)
927 {
928 const struct iomap *srcmap = iomap_iter_srcmap(iter);
929 loff_t pos = iter->pos;
930
931 if (srcmap->type == IOMAP_INLINE)
932 return iomap_write_end_inline(iter, folio, pos, copied);
933
934 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
935 size_t bh_written;
936
937 bh_written = block_write_end(pos, len, copied, folio);
938 WARN_ON_ONCE(bh_written != copied && bh_written != 0);
939 return bh_written == copied;
940 }
941
942 return __iomap_write_end(iter->inode, pos, len, copied, folio);
943 }
944
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i,const struct iomap_write_ops * write_ops)945 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i,
946 const struct iomap_write_ops *write_ops)
947 {
948 ssize_t total_written = 0;
949 int status = 0;
950 struct address_space *mapping = iter->inode->i_mapping;
951 size_t chunk = mapping_max_folio_size(mapping);
952 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
953
954 do {
955 struct folio *folio;
956 loff_t old_size;
957 size_t offset; /* Offset into folio */
958 u64 bytes; /* Bytes to write to folio */
959 size_t copied; /* Bytes copied from user */
960 u64 written; /* Bytes have been written */
961 loff_t pos;
962
963 bytes = iov_iter_count(i);
964 retry:
965 offset = iter->pos & (chunk - 1);
966 bytes = min(chunk - offset, bytes);
967 status = balance_dirty_pages_ratelimited_flags(mapping,
968 bdp_flags);
969 if (unlikely(status))
970 break;
971
972 if (bytes > iomap_length(iter))
973 bytes = iomap_length(iter);
974
975 /*
976 * Bring in the user page that we'll copy from _first_.
977 * Otherwise there's a nasty deadlock on copying from the
978 * same page as we're writing to, without it being marked
979 * up-to-date.
980 *
981 * For async buffered writes the assumption is that the user
982 * page has already been faulted in. This can be optimized by
983 * faulting the user page.
984 */
985 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
986 status = -EFAULT;
987 break;
988 }
989
990 status = iomap_write_begin(iter, write_ops, &folio, &offset,
991 &bytes);
992 if (unlikely(status)) {
993 iomap_write_failed(iter->inode, iter->pos, bytes);
994 break;
995 }
996 if (iter->iomap.flags & IOMAP_F_STALE)
997 break;
998
999 pos = iter->pos;
1000
1001 if (mapping_writably_mapped(mapping))
1002 flush_dcache_folio(folio);
1003
1004 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
1005 written = iomap_write_end(iter, bytes, copied, folio) ?
1006 copied : 0;
1007
1008 /*
1009 * Update the in-memory inode size after copying the data into
1010 * the page cache. It's up to the file system to write the
1011 * updated size to disk, preferably after I/O completion so that
1012 * no stale data is exposed. Only once that's done can we
1013 * unlock and release the folio.
1014 */
1015 old_size = iter->inode->i_size;
1016 if (pos + written > old_size) {
1017 i_size_write(iter->inode, pos + written);
1018 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
1019 }
1020 __iomap_put_folio(iter, write_ops, written, folio);
1021
1022 if (old_size < pos)
1023 pagecache_isize_extended(iter->inode, old_size, pos);
1024
1025 cond_resched();
1026 if (unlikely(written == 0)) {
1027 /*
1028 * A short copy made iomap_write_end() reject the
1029 * thing entirely. Might be memory poisoning
1030 * halfway through, might be a race with munmap,
1031 * might be severe memory pressure.
1032 */
1033 iomap_write_failed(iter->inode, pos, bytes);
1034 iov_iter_revert(i, copied);
1035
1036 if (chunk > PAGE_SIZE)
1037 chunk /= 2;
1038 if (copied) {
1039 bytes = copied;
1040 goto retry;
1041 }
1042 } else {
1043 total_written += written;
1044 iomap_iter_advance(iter, &written);
1045 }
1046 } while (iov_iter_count(i) && iomap_length(iter));
1047
1048 return total_written ? 0 : status;
1049 }
1050
1051 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1052 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1053 const struct iomap_ops *ops,
1054 const struct iomap_write_ops *write_ops, void *private)
1055 {
1056 struct iomap_iter iter = {
1057 .inode = iocb->ki_filp->f_mapping->host,
1058 .pos = iocb->ki_pos,
1059 .len = iov_iter_count(i),
1060 .flags = IOMAP_WRITE,
1061 .private = private,
1062 };
1063 ssize_t ret;
1064
1065 if (iocb->ki_flags & IOCB_NOWAIT)
1066 iter.flags |= IOMAP_NOWAIT;
1067 if (iocb->ki_flags & IOCB_DONTCACHE)
1068 iter.flags |= IOMAP_DONTCACHE;
1069
1070 while ((ret = iomap_iter(&iter, ops)) > 0)
1071 iter.status = iomap_write_iter(&iter, i, write_ops);
1072
1073 if (unlikely(iter.pos == iocb->ki_pos))
1074 return ret;
1075 ret = iter.pos - iocb->ki_pos;
1076 iocb->ki_pos = iter.pos;
1077 return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1080
iomap_write_delalloc_ifs_punch(struct inode * inode,struct folio * folio,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1081 static void iomap_write_delalloc_ifs_punch(struct inode *inode,
1082 struct folio *folio, loff_t start_byte, loff_t end_byte,
1083 struct iomap *iomap, iomap_punch_t punch)
1084 {
1085 unsigned int first_blk, last_blk, i;
1086 loff_t last_byte;
1087 u8 blkbits = inode->i_blkbits;
1088 struct iomap_folio_state *ifs;
1089
1090 /*
1091 * When we have per-block dirty tracking, there can be
1092 * blocks within a folio which are marked uptodate
1093 * but not dirty. In that case it is necessary to punch
1094 * out such blocks to avoid leaking any delalloc blocks.
1095 */
1096 ifs = folio->private;
1097 if (!ifs)
1098 return;
1099
1100 last_byte = min_t(loff_t, end_byte - 1,
1101 folio_pos(folio) + folio_size(folio) - 1);
1102 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1103 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1104 for (i = first_blk; i <= last_blk; i++) {
1105 if (!ifs_block_is_dirty(folio, ifs, i))
1106 punch(inode, folio_pos(folio) + (i << blkbits),
1107 1 << blkbits, iomap);
1108 }
1109 }
1110
iomap_write_delalloc_punch(struct inode * inode,struct folio * folio,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1111 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1112 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1113 struct iomap *iomap, iomap_punch_t punch)
1114 {
1115 if (!folio_test_dirty(folio))
1116 return;
1117
1118 /* if dirty, punch up to offset */
1119 if (start_byte > *punch_start_byte) {
1120 punch(inode, *punch_start_byte, start_byte - *punch_start_byte,
1121 iomap);
1122 }
1123
1124 /* Punch non-dirty blocks within folio */
1125 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte,
1126 iomap, punch);
1127
1128 /*
1129 * Make sure the next punch start is correctly bound to
1130 * the end of this data range, not the end of the folio.
1131 */
1132 *punch_start_byte = min_t(loff_t, end_byte,
1133 folio_pos(folio) + folio_size(folio));
1134 }
1135
1136 /*
1137 * Scan the data range passed to us for dirty page cache folios. If we find a
1138 * dirty folio, punch out the preceding range and update the offset from which
1139 * the next punch will start from.
1140 *
1141 * We can punch out storage reservations under clean pages because they either
1142 * contain data that has been written back - in which case the delalloc punch
1143 * over that range is a no-op - or they have been read faults in which case they
1144 * contain zeroes and we can remove the delalloc backing range and any new
1145 * writes to those pages will do the normal hole filling operation...
1146 *
1147 * This makes the logic simple: we only need to keep the delalloc extents only
1148 * over the dirty ranges of the page cache.
1149 *
1150 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1151 * simplify range iterations.
1152 */
iomap_write_delalloc_scan(struct inode * inode,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1153 static void iomap_write_delalloc_scan(struct inode *inode,
1154 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1155 struct iomap *iomap, iomap_punch_t punch)
1156 {
1157 while (start_byte < end_byte) {
1158 struct folio *folio;
1159
1160 /* grab locked page */
1161 folio = filemap_lock_folio(inode->i_mapping,
1162 start_byte >> PAGE_SHIFT);
1163 if (IS_ERR(folio)) {
1164 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1165 PAGE_SIZE;
1166 continue;
1167 }
1168
1169 iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1170 start_byte, end_byte, iomap, punch);
1171
1172 /* move offset to start of next folio in range */
1173 start_byte = folio_pos(folio) + folio_size(folio);
1174 folio_unlock(folio);
1175 folio_put(folio);
1176 }
1177 }
1178
1179 /*
1180 * When a short write occurs, the filesystem might need to use ->iomap_end
1181 * to remove space reservations created in ->iomap_begin.
1182 *
1183 * For filesystems that use delayed allocation, there can be dirty pages over
1184 * the delalloc extent outside the range of a short write but still within the
1185 * delalloc extent allocated for this iomap if the write raced with page
1186 * faults.
1187 *
1188 * Punch out all the delalloc blocks in the range given except for those that
1189 * have dirty data still pending in the page cache - those are going to be
1190 * written and so must still retain the delalloc backing for writeback.
1191 *
1192 * The punch() callback *must* only punch delalloc extents in the range passed
1193 * to it. It must skip over all other types of extents in the range and leave
1194 * them completely unchanged. It must do this punch atomically with respect to
1195 * other extent modifications.
1196 *
1197 * The punch() callback may be called with a folio locked to prevent writeback
1198 * extent allocation racing at the edge of the range we are currently punching.
1199 * The locked folio may or may not cover the range being punched, so it is not
1200 * safe for the punch() callback to lock folios itself.
1201 *
1202 * Lock order is:
1203 *
1204 * inode->i_rwsem (shared or exclusive)
1205 * inode->i_mapping->invalidate_lock (exclusive)
1206 * folio_lock()
1207 * ->punch
1208 * internal filesystem allocation lock
1209 *
1210 * As we are scanning the page cache for data, we don't need to reimplement the
1211 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1212 * start and end of data ranges correctly even for sub-folio block sizes. This
1213 * byte range based iteration is especially convenient because it means we
1214 * don't have to care about variable size folios, nor where the start or end of
1215 * the data range lies within a folio, if they lie within the same folio or even
1216 * if there are multiple discontiguous data ranges within the folio.
1217 *
1218 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1219 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1220 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1221 * date. A write page fault can then mark it dirty. If we then fail a write()
1222 * beyond EOF into that up to date cached range, we allocate a delalloc block
1223 * beyond EOF and then have to punch it out. Because the range is up to date,
1224 * mapping_seek_hole_data() will return it, and we will skip the punch because
1225 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1226 * beyond EOF in this case as writeback will never write back and covert that
1227 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1228 * resulting in always punching out the range from the EOF to the end of the
1229 * range the iomap spans.
1230 *
1231 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1232 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1233 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1234 * returns the end of the data range (data_end). Using closed intervals would
1235 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1236 * the code to subtle off-by-one bugs....
1237 */
iomap_write_delalloc_release(struct inode * inode,loff_t start_byte,loff_t end_byte,unsigned flags,struct iomap * iomap,iomap_punch_t punch)1238 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte,
1239 loff_t end_byte, unsigned flags, struct iomap *iomap,
1240 iomap_punch_t punch)
1241 {
1242 loff_t punch_start_byte = start_byte;
1243 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1244
1245 /*
1246 * The caller must hold invalidate_lock to avoid races with page faults
1247 * re-instantiating folios and dirtying them via ->page_mkwrite whilst
1248 * we walk the cache and perform delalloc extent removal. Failing to do
1249 * this can leave dirty pages with no space reservation in the cache.
1250 */
1251 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock);
1252
1253 while (start_byte < scan_end_byte) {
1254 loff_t data_end;
1255
1256 start_byte = mapping_seek_hole_data(inode->i_mapping,
1257 start_byte, scan_end_byte, SEEK_DATA);
1258 /*
1259 * If there is no more data to scan, all that is left is to
1260 * punch out the remaining range.
1261 *
1262 * Note that mapping_seek_hole_data is only supposed to return
1263 * either an offset or -ENXIO, so WARN on any other error as
1264 * that would be an API change without updating the callers.
1265 */
1266 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1267 break;
1268 if (WARN_ON_ONCE(start_byte < 0))
1269 return;
1270 WARN_ON_ONCE(start_byte < punch_start_byte);
1271 WARN_ON_ONCE(start_byte > scan_end_byte);
1272
1273 /*
1274 * We find the end of this contiguous cached data range by
1275 * seeking from start_byte to the beginning of the next hole.
1276 */
1277 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1278 scan_end_byte, SEEK_HOLE);
1279 if (WARN_ON_ONCE(data_end < 0))
1280 return;
1281
1282 /*
1283 * If we race with post-direct I/O invalidation of the page cache,
1284 * there might be no data left at start_byte.
1285 */
1286 if (data_end == start_byte)
1287 continue;
1288
1289 WARN_ON_ONCE(data_end < start_byte);
1290 WARN_ON_ONCE(data_end > scan_end_byte);
1291
1292 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte,
1293 data_end, iomap, punch);
1294
1295 /* The next data search starts at the end of this one. */
1296 start_byte = data_end;
1297 }
1298
1299 if (punch_start_byte < end_byte)
1300 punch(inode, punch_start_byte, end_byte - punch_start_byte,
1301 iomap);
1302 }
1303 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release);
1304
iomap_unshare_iter(struct iomap_iter * iter,const struct iomap_write_ops * write_ops)1305 static int iomap_unshare_iter(struct iomap_iter *iter,
1306 const struct iomap_write_ops *write_ops)
1307 {
1308 struct iomap *iomap = &iter->iomap;
1309 u64 bytes = iomap_length(iter);
1310 int status;
1311
1312 if (!iomap_want_unshare_iter(iter))
1313 return iomap_iter_advance(iter, &bytes);
1314
1315 do {
1316 struct folio *folio;
1317 size_t offset;
1318 bool ret;
1319
1320 bytes = min_t(u64, SIZE_MAX, bytes);
1321 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1322 &bytes);
1323 if (unlikely(status))
1324 return status;
1325 if (iomap->flags & IOMAP_F_STALE)
1326 break;
1327
1328 ret = iomap_write_end(iter, bytes, bytes, folio);
1329 __iomap_put_folio(iter, write_ops, bytes, folio);
1330 if (WARN_ON_ONCE(!ret))
1331 return -EIO;
1332
1333 cond_resched();
1334
1335 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1336
1337 status = iomap_iter_advance(iter, &bytes);
1338 if (status)
1339 break;
1340 } while (bytes > 0);
1341
1342 return status;
1343 }
1344
1345 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops)1346 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1347 const struct iomap_ops *ops,
1348 const struct iomap_write_ops *write_ops)
1349 {
1350 struct iomap_iter iter = {
1351 .inode = inode,
1352 .pos = pos,
1353 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1354 };
1355 loff_t size = i_size_read(inode);
1356 int ret;
1357
1358 if (pos < 0 || pos >= size)
1359 return 0;
1360
1361 iter.len = min(len, size - pos);
1362 while ((ret = iomap_iter(&iter, ops)) > 0)
1363 iter.status = iomap_unshare_iter(&iter, write_ops);
1364 return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1367
1368 /*
1369 * Flush the remaining range of the iter and mark the current mapping stale.
1370 * This is used when zero range sees an unwritten mapping that may have had
1371 * dirty pagecache over it.
1372 */
iomap_zero_iter_flush_and_stale(struct iomap_iter * i)1373 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i)
1374 {
1375 struct address_space *mapping = i->inode->i_mapping;
1376 loff_t end = i->pos + i->len - 1;
1377
1378 i->iomap.flags |= IOMAP_F_STALE;
1379 return filemap_write_and_wait_range(mapping, i->pos, end);
1380 }
1381
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero,const struct iomap_write_ops * write_ops)1382 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero,
1383 const struct iomap_write_ops *write_ops)
1384 {
1385 u64 bytes = iomap_length(iter);
1386 int status;
1387
1388 do {
1389 struct folio *folio;
1390 size_t offset;
1391 bool ret;
1392
1393 bytes = min_t(u64, SIZE_MAX, bytes);
1394 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1395 &bytes);
1396 if (status)
1397 return status;
1398 if (iter->iomap.flags & IOMAP_F_STALE)
1399 break;
1400
1401 /* warn about zeroing folios beyond eof that won't write back */
1402 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size);
1403
1404 trace_iomap_zero_iter(iter->inode, folio_pos(folio) + offset,
1405 bytes);
1406
1407 folio_zero_range(folio, offset, bytes);
1408 folio_mark_accessed(folio);
1409
1410 ret = iomap_write_end(iter, bytes, bytes, folio);
1411 __iomap_put_folio(iter, write_ops, bytes, folio);
1412 if (WARN_ON_ONCE(!ret))
1413 return -EIO;
1414
1415 status = iomap_iter_advance(iter, &bytes);
1416 if (status)
1417 break;
1418 } while (bytes > 0);
1419
1420 if (did_zero)
1421 *did_zero = true;
1422 return status;
1423 }
1424
1425 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1426 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1427 const struct iomap_ops *ops,
1428 const struct iomap_write_ops *write_ops, void *private)
1429 {
1430 struct iomap_iter iter = {
1431 .inode = inode,
1432 .pos = pos,
1433 .len = len,
1434 .flags = IOMAP_ZERO,
1435 .private = private,
1436 };
1437 struct address_space *mapping = inode->i_mapping;
1438 unsigned int blocksize = i_blocksize(inode);
1439 unsigned int off = pos & (blocksize - 1);
1440 loff_t plen = min_t(loff_t, len, blocksize - off);
1441 int ret;
1442 bool range_dirty;
1443
1444 /*
1445 * Zero range can skip mappings that are zero on disk so long as
1446 * pagecache is clean. If pagecache was dirty prior to zero range, the
1447 * mapping converts on writeback completion and so must be zeroed.
1448 *
1449 * The simplest way to deal with this across a range is to flush
1450 * pagecache and process the updated mappings. To avoid excessive
1451 * flushing on partial eof zeroing, special case it to zero the
1452 * unaligned start portion if already dirty in pagecache.
1453 */
1454 if (off &&
1455 filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) {
1456 iter.len = plen;
1457 while ((ret = iomap_iter(&iter, ops)) > 0)
1458 iter.status = iomap_zero_iter(&iter, did_zero,
1459 write_ops);
1460
1461 iter.len = len - (iter.pos - pos);
1462 if (ret || !iter.len)
1463 return ret;
1464 }
1465
1466 /*
1467 * To avoid an unconditional flush, check pagecache state and only flush
1468 * if dirty and the fs returns a mapping that might convert on
1469 * writeback.
1470 */
1471 range_dirty = filemap_range_needs_writeback(inode->i_mapping,
1472 iter.pos, iter.pos + iter.len - 1);
1473 while ((ret = iomap_iter(&iter, ops)) > 0) {
1474 const struct iomap *srcmap = iomap_iter_srcmap(&iter);
1475
1476 if (srcmap->type == IOMAP_HOLE ||
1477 srcmap->type == IOMAP_UNWRITTEN) {
1478 s64 status;
1479
1480 if (range_dirty) {
1481 range_dirty = false;
1482 status = iomap_zero_iter_flush_and_stale(&iter);
1483 } else {
1484 status = iomap_iter_advance_full(&iter);
1485 }
1486 iter.status = status;
1487 continue;
1488 }
1489
1490 iter.status = iomap_zero_iter(&iter, did_zero, write_ops);
1491 }
1492 return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(iomap_zero_range);
1495
1496 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1497 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1498 const struct iomap_ops *ops,
1499 const struct iomap_write_ops *write_ops, void *private)
1500 {
1501 unsigned int blocksize = i_blocksize(inode);
1502 unsigned int off = pos & (blocksize - 1);
1503
1504 /* Block boundary? Nothing to do */
1505 if (!off)
1506 return 0;
1507 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops,
1508 write_ops, private);
1509 }
1510 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1511
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)1512 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1513 struct folio *folio)
1514 {
1515 loff_t length = iomap_length(iter);
1516 int ret;
1517
1518 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1519 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1520 &iter->iomap);
1521 if (ret)
1522 return ret;
1523 block_commit_write(folio, 0, length);
1524 } else {
1525 WARN_ON_ONCE(!folio_test_uptodate(folio));
1526 folio_mark_dirty(folio);
1527 }
1528
1529 return iomap_iter_advance(iter, &length);
1530 }
1531
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops,void * private)1532 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops,
1533 void *private)
1534 {
1535 struct iomap_iter iter = {
1536 .inode = file_inode(vmf->vma->vm_file),
1537 .flags = IOMAP_WRITE | IOMAP_FAULT,
1538 .private = private,
1539 };
1540 struct folio *folio = page_folio(vmf->page);
1541 ssize_t ret;
1542
1543 folio_lock(folio);
1544 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1545 if (ret < 0)
1546 goto out_unlock;
1547 iter.pos = folio_pos(folio);
1548 iter.len = ret;
1549 while ((ret = iomap_iter(&iter, ops)) > 0)
1550 iter.status = iomap_folio_mkwrite_iter(&iter, folio);
1551
1552 if (ret < 0)
1553 goto out_unlock;
1554 folio_wait_stable(folio);
1555 return VM_FAULT_LOCKED;
1556 out_unlock:
1557 folio_unlock(folio);
1558 return vmf_fs_error(ret);
1559 }
1560 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1561
iomap_start_folio_write(struct inode * inode,struct folio * folio,size_t len)1562 void iomap_start_folio_write(struct inode *inode, struct folio *folio,
1563 size_t len)
1564 {
1565 struct iomap_folio_state *ifs = folio->private;
1566
1567 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1568 if (ifs)
1569 atomic_add(len, &ifs->write_bytes_pending);
1570 }
1571 EXPORT_SYMBOL_GPL(iomap_start_folio_write);
1572
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len)1573 void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1574 size_t len)
1575 {
1576 struct iomap_folio_state *ifs = folio->private;
1577
1578 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1579 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1580
1581 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1582 folio_end_writeback(folio);
1583 }
1584 EXPORT_SYMBOL_GPL(iomap_finish_folio_write);
1585
iomap_writeback_range(struct iomap_writepage_ctx * wpc,struct folio * folio,u64 pos,u32 rlen,u64 end_pos,bool * wb_pending)1586 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc,
1587 struct folio *folio, u64 pos, u32 rlen, u64 end_pos,
1588 bool *wb_pending)
1589 {
1590 do {
1591 ssize_t ret;
1592
1593 ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos);
1594 if (WARN_ON_ONCE(ret == 0 || ret > rlen))
1595 return -EIO;
1596 if (ret < 0)
1597 return ret;
1598 rlen -= ret;
1599 pos += ret;
1600
1601 /*
1602 * Holes are not be written back by ->writeback_range, so track
1603 * if we did handle anything that is not a hole here.
1604 */
1605 if (wpc->iomap.type != IOMAP_HOLE)
1606 *wb_pending = true;
1607 } while (rlen);
1608
1609 return 0;
1610 }
1611
1612 /*
1613 * Check interaction of the folio with the file end.
1614 *
1615 * If the folio is entirely beyond i_size, return false. If it straddles
1616 * i_size, adjust end_pos and zero all data beyond i_size.
1617 */
iomap_writeback_handle_eof(struct folio * folio,struct inode * inode,u64 * end_pos)1618 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode,
1619 u64 *end_pos)
1620 {
1621 u64 isize = i_size_read(inode);
1622
1623 if (*end_pos > isize) {
1624 size_t poff = offset_in_folio(folio, isize);
1625 pgoff_t end_index = isize >> PAGE_SHIFT;
1626
1627 /*
1628 * If the folio is entirely ouside of i_size, skip it.
1629 *
1630 * This can happen due to a truncate operation that is in
1631 * progress and in that case truncate will finish it off once
1632 * we've dropped the folio lock.
1633 *
1634 * Note that the pgoff_t used for end_index is an unsigned long.
1635 * If the given offset is greater than 16TB on a 32-bit system,
1636 * then if we checked if the folio is fully outside i_size with
1637 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1638 * overflow and evaluate to 0. Hence this folio would be
1639 * redirtied and written out repeatedly, which would result in
1640 * an infinite loop; the user program performing this operation
1641 * would hang. Instead, we can detect this situation by
1642 * checking if the folio is totally beyond i_size or if its
1643 * offset is just equal to the EOF.
1644 */
1645 if (folio->index > end_index ||
1646 (folio->index == end_index && poff == 0))
1647 return false;
1648
1649 /*
1650 * The folio straddles i_size.
1651 *
1652 * It must be zeroed out on each and every writepage invocation
1653 * because it may be mmapped:
1654 *
1655 * A file is mapped in multiples of the page size. For a
1656 * file that is not a multiple of the page size, the
1657 * remaining memory is zeroed when mapped, and writes to that
1658 * region are not written out to the file.
1659 *
1660 * Also adjust the end_pos to the end of file and skip writeback
1661 * for all blocks entirely beyond i_size.
1662 */
1663 folio_zero_segment(folio, poff, folio_size(folio));
1664 *end_pos = isize;
1665 }
1666
1667 return true;
1668 }
1669
iomap_writeback_folio(struct iomap_writepage_ctx * wpc,struct folio * folio)1670 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio)
1671 {
1672 struct iomap_folio_state *ifs = folio->private;
1673 struct inode *inode = wpc->inode;
1674 u64 pos = folio_pos(folio);
1675 u64 end_pos = pos + folio_size(folio);
1676 u64 end_aligned = 0;
1677 bool wb_pending = false;
1678 int error = 0;
1679 u32 rlen;
1680
1681 WARN_ON_ONCE(!folio_test_locked(folio));
1682 WARN_ON_ONCE(folio_test_dirty(folio));
1683 WARN_ON_ONCE(folio_test_writeback(folio));
1684
1685 trace_iomap_writeback_folio(inode, pos, folio_size(folio));
1686
1687 if (!iomap_writeback_handle_eof(folio, inode, &end_pos))
1688 return 0;
1689 WARN_ON_ONCE(end_pos <= pos);
1690
1691 if (i_blocks_per_folio(inode, folio) > 1) {
1692 if (!ifs) {
1693 ifs = ifs_alloc(inode, folio, 0);
1694 iomap_set_range_dirty(folio, 0, end_pos - pos);
1695 }
1696
1697 /*
1698 * Keep the I/O completion handler from clearing the writeback
1699 * bit until we have submitted all blocks by adding a bias to
1700 * ifs->write_bytes_pending, which is dropped after submitting
1701 * all blocks.
1702 */
1703 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1704 iomap_start_folio_write(inode, folio, 1);
1705 }
1706
1707 /*
1708 * Set the writeback bit ASAP, as the I/O completion for the single
1709 * block per folio case happen hit as soon as we're submitting the bio.
1710 */
1711 folio_start_writeback(folio);
1712
1713 /*
1714 * Walk through the folio to find dirty areas to write back.
1715 */
1716 end_aligned = round_up(end_pos, i_blocksize(inode));
1717 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) {
1718 error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos,
1719 &wb_pending);
1720 if (error)
1721 break;
1722 pos += rlen;
1723 }
1724
1725 if (wb_pending)
1726 wpc->nr_folios++;
1727
1728 /*
1729 * We can have dirty bits set past end of file in page_mkwrite path
1730 * while mapping the last partial folio. Hence it's better to clear
1731 * all the dirty bits in the folio here.
1732 */
1733 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1734
1735 /*
1736 * Usually the writeback bit is cleared by the I/O completion handler.
1737 * But we may end up either not actually writing any blocks, or (when
1738 * there are multiple blocks in a folio) all I/O might have finished
1739 * already at this point. In that case we need to clear the writeback
1740 * bit ourselves right after unlocking the page.
1741 */
1742 if (ifs) {
1743 if (atomic_dec_and_test(&ifs->write_bytes_pending))
1744 folio_end_writeback(folio);
1745 } else {
1746 if (!wb_pending)
1747 folio_end_writeback(folio);
1748 }
1749 mapping_set_error(inode->i_mapping, error);
1750 return error;
1751 }
1752 EXPORT_SYMBOL_GPL(iomap_writeback_folio);
1753
1754 int
iomap_writepages(struct iomap_writepage_ctx * wpc)1755 iomap_writepages(struct iomap_writepage_ctx *wpc)
1756 {
1757 struct address_space *mapping = wpc->inode->i_mapping;
1758 struct folio *folio = NULL;
1759 int error;
1760
1761 /*
1762 * Writeback from reclaim context should never happen except in the case
1763 * of a VM regression so warn about it and refuse to write the data.
1764 */
1765 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1766 PF_MEMALLOC))
1767 return -EIO;
1768
1769 while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) {
1770 error = iomap_writeback_folio(wpc, folio);
1771 folio_unlock(folio);
1772 }
1773
1774 /*
1775 * If @error is non-zero, it means that we have a situation where some
1776 * part of the submission process has failed after we've marked pages
1777 * for writeback.
1778 *
1779 * We cannot cancel the writeback directly in that case, so always call
1780 * ->writeback_submit to run the I/O completion handler to clear the
1781 * writeback bit and let the file system proess the errors.
1782 */
1783 if (wpc->wb_ctx)
1784 return wpc->ops->writeback_submit(wpc, error);
1785 return error;
1786 }
1787 EXPORT_SYMBOL_GPL(iomap_writepages);
1788