xref: /linux/io_uring/io_uring.c (revision 6d13760ea3a746c329d534b90d2b38a0ef7690d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101 
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107 
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 
111 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115 
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 				REQ_F_ASYNC_DATA)
119 
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 #define IO_COMPL_BATCH			32
126 #define IO_REQ_ALLOC_BATCH		8
127 #define IO_LOCAL_TW_DEFAULT_MAX		20
128 
129 struct io_defer_entry {
130 	struct list_head	list;
131 	struct io_kiocb		*req;
132 };
133 
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 
137 /*
138  * No waiters. It's larger than any valid value of the tw counter
139  * so that tests against ->cq_wait_nr would fail and skip wake_up().
140  */
141 #define IO_CQ_WAKE_INIT		(-1U)
142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
143 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct io_uring_task *tctx,
147 					 bool cancel_all,
148 					 bool is_sqpoll_thread);
149 
150 static void io_queue_sqe(struct io_kiocb *req);
151 static void __io_req_caches_free(struct io_ring_ctx *ctx);
152 
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154 
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157 
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160 
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 	{
164 		.procname	= "io_uring_disabled",
165 		.data		= &sysctl_io_uring_disabled,
166 		.maxlen		= sizeof(sysctl_io_uring_disabled),
167 		.mode		= 0644,
168 		.proc_handler	= proc_dointvec_minmax,
169 		.extra1		= SYSCTL_ZERO,
170 		.extra2		= SYSCTL_TWO,
171 	},
172 	{
173 		.procname	= "io_uring_group",
174 		.data		= &sysctl_io_uring_group,
175 		.maxlen		= sizeof(gid_t),
176 		.mode		= 0644,
177 		.proc_handler	= proc_dointvec,
178 	},
179 };
180 #endif
181 
__io_cqring_events(struct io_ring_ctx * ctx)182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186 
__io_cqring_events_user(struct io_ring_ctx * ctx)187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191 
io_match_linked(struct io_kiocb * head)192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 	struct io_kiocb *req;
195 
196 	io_for_each_link(req, head) {
197 		if (req->flags & REQ_F_INFLIGHT)
198 			return true;
199 	}
200 	return false;
201 }
202 
203 /*
204  * As io_match_task() but protected against racing with linked timeouts.
205  * User must not hold timeout_lock.
206  */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 			bool cancel_all)
209 {
210 	bool matched;
211 
212 	if (tctx && head->tctx != tctx)
213 		return false;
214 	if (cancel_all)
215 		return true;
216 
217 	if (head->flags & REQ_F_LINK_TIMEOUT) {
218 		struct io_ring_ctx *ctx = head->ctx;
219 
220 		/* protect against races with linked timeouts */
221 		raw_spin_lock_irq(&ctx->timeout_lock);
222 		matched = io_match_linked(head);
223 		raw_spin_unlock_irq(&ctx->timeout_lock);
224 	} else {
225 		matched = io_match_linked(head);
226 	}
227 	return matched;
228 }
229 
req_fail_link_node(struct io_kiocb * req,int res)230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 	req_set_fail(req);
233 	io_req_set_res(req, res, 0);
234 }
235 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240 
io_ring_ctx_ref_free(struct percpu_ref * ref)241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244 
245 	complete(&ctx->ref_comp);
246 }
247 
io_fallback_req_func(struct work_struct * work)248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 						fallback_work.work);
252 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 	struct io_kiocb *req, *tmp;
254 	struct io_tw_state ts = {};
255 
256 	percpu_ref_get(&ctx->refs);
257 	mutex_lock(&ctx->uring_lock);
258 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 		req->io_task_work.func(req, ts);
260 	io_submit_flush_completions(ctx);
261 	mutex_unlock(&ctx->uring_lock);
262 	percpu_ref_put(&ctx->refs);
263 }
264 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 	unsigned int hash_buckets;
268 	int i;
269 
270 	do {
271 		hash_buckets = 1U << bits;
272 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 						GFP_KERNEL_ACCOUNT);
274 		if (table->hbs)
275 			break;
276 		if (bits == 1)
277 			return -ENOMEM;
278 		bits--;
279 	} while (1);
280 
281 	table->hash_bits = bits;
282 	for (i = 0; i < hash_buckets; i++)
283 		INIT_HLIST_HEAD(&table->hbs[i].list);
284 	return 0;
285 }
286 
io_free_alloc_caches(struct io_ring_ctx * ctx)287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 	io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 	io_alloc_cache_free(&ctx->msg_cache, kfree);
294 	io_futex_cache_free(ctx);
295 	io_rsrc_cache_free(ctx);
296 }
297 
io_ring_ctx_alloc(struct io_uring_params * p)298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 	struct io_ring_ctx *ctx;
301 	int hash_bits;
302 	bool ret;
303 
304 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 	if (!ctx)
306 		return NULL;
307 
308 	xa_init(&ctx->io_bl_xa);
309 
310 	/*
311 	 * Use 5 bits less than the max cq entries, that should give us around
312 	 * 32 entries per hash list if totally full and uniformly spread, but
313 	 * don't keep too many buckets to not overconsume memory.
314 	 */
315 	hash_bits = ilog2(p->cq_entries) - 5;
316 	hash_bits = clamp(hash_bits, 1, 8);
317 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	ctx->hybrid_poll_time = LLONG_MAX;
325 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 	init_waitqueue_head(&ctx->sqo_sq_wait);
327 	INIT_LIST_HEAD(&ctx->sqd_list);
328 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 			    sizeof(struct async_poll), 0);
331 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct io_async_msghdr),
333 			    offsetof(struct io_async_msghdr, clear));
334 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 			    sizeof(struct io_async_rw),
336 			    offsetof(struct io_async_rw, clear));
337 	ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 			    sizeof(struct io_async_cmd),
339 			    sizeof(struct io_async_cmd));
340 	spin_lock_init(&ctx->msg_lock);
341 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 			    sizeof(struct io_kiocb), 0);
343 	ret |= io_futex_cache_init(ctx);
344 	ret |= io_rsrc_cache_init(ctx);
345 	if (ret)
346 		goto free_ref;
347 	init_completion(&ctx->ref_comp);
348 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 	mutex_init(&ctx->uring_lock);
350 	init_waitqueue_head(&ctx->cq_wait);
351 	init_waitqueue_head(&ctx->poll_wq);
352 	spin_lock_init(&ctx->completion_lock);
353 	raw_spin_lock_init(&ctx->timeout_lock);
354 	INIT_WQ_LIST(&ctx->iopoll_list);
355 	INIT_LIST_HEAD(&ctx->defer_list);
356 	INIT_LIST_HEAD(&ctx->timeout_list);
357 	INIT_LIST_HEAD(&ctx->ltimeout_list);
358 	init_llist_head(&ctx->work_llist);
359 	INIT_LIST_HEAD(&ctx->tctx_list);
360 	ctx->submit_state.free_list.next = NULL;
361 	INIT_HLIST_HEAD(&ctx->waitid_list);
362 	xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
363 #ifdef CONFIG_FUTEX
364 	INIT_HLIST_HEAD(&ctx->futex_list);
365 #endif
366 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
367 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
368 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
369 	io_napi_init(ctx);
370 	mutex_init(&ctx->mmap_lock);
371 
372 	return ctx;
373 
374 free_ref:
375 	percpu_ref_exit(&ctx->refs);
376 err:
377 	io_free_alloc_caches(ctx);
378 	kvfree(ctx->cancel_table.hbs);
379 	xa_destroy(&ctx->io_bl_xa);
380 	kfree(ctx);
381 	return NULL;
382 }
383 
io_clean_op(struct io_kiocb * req)384 static void io_clean_op(struct io_kiocb *req)
385 {
386 	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
387 		io_kbuf_drop_legacy(req);
388 
389 	if (req->flags & REQ_F_NEED_CLEANUP) {
390 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
391 
392 		if (def->cleanup)
393 			def->cleanup(req);
394 	}
395 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
396 		kfree(req->apoll->double_poll);
397 		kfree(req->apoll);
398 		req->apoll = NULL;
399 	}
400 	if (req->flags & REQ_F_INFLIGHT)
401 		atomic_dec(&req->tctx->inflight_tracked);
402 	if (req->flags & REQ_F_CREDS)
403 		put_cred(req->creds);
404 	if (req->flags & REQ_F_ASYNC_DATA) {
405 		kfree(req->async_data);
406 		req->async_data = NULL;
407 	}
408 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
409 }
410 
411 /*
412  * Mark the request as inflight, so that file cancelation will find it.
413  * Can be used if the file is an io_uring instance, or if the request itself
414  * relies on ->mm being alive for the duration of the request.
415  */
io_req_track_inflight(struct io_kiocb * req)416 inline void io_req_track_inflight(struct io_kiocb *req)
417 {
418 	if (!(req->flags & REQ_F_INFLIGHT)) {
419 		req->flags |= REQ_F_INFLIGHT;
420 		atomic_inc(&req->tctx->inflight_tracked);
421 	}
422 }
423 
__io_prep_linked_timeout(struct io_kiocb * req)424 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (WARN_ON_ONCE(!req->link))
427 		return NULL;
428 
429 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
430 	req->flags |= REQ_F_LINK_TIMEOUT;
431 
432 	/* linked timeouts should have two refs once prep'ed */
433 	io_req_set_refcount(req);
434 	__io_req_set_refcount(req->link, 2);
435 	return req->link;
436 }
437 
io_prep_async_work(struct io_kiocb * req)438 static void io_prep_async_work(struct io_kiocb *req)
439 {
440 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
441 	struct io_ring_ctx *ctx = req->ctx;
442 
443 	if (!(req->flags & REQ_F_CREDS)) {
444 		req->flags |= REQ_F_CREDS;
445 		req->creds = get_current_cred();
446 	}
447 
448 	req->work.list.next = NULL;
449 	atomic_set(&req->work.flags, 0);
450 	if (req->flags & REQ_F_FORCE_ASYNC)
451 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
452 
453 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
454 		req->flags |= io_file_get_flags(req->file);
455 
456 	if (req->file && (req->flags & REQ_F_ISREG)) {
457 		bool should_hash = def->hash_reg_file;
458 
459 		/* don't serialize this request if the fs doesn't need it */
460 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
461 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
462 			should_hash = false;
463 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
464 			io_wq_hash_work(&req->work, file_inode(req->file));
465 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
466 		if (def->unbound_nonreg_file)
467 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
468 	}
469 }
470 
io_prep_async_link(struct io_kiocb * req)471 static void io_prep_async_link(struct io_kiocb *req)
472 {
473 	struct io_kiocb *cur;
474 
475 	if (req->flags & REQ_F_LINK_TIMEOUT) {
476 		struct io_ring_ctx *ctx = req->ctx;
477 
478 		raw_spin_lock_irq(&ctx->timeout_lock);
479 		io_for_each_link(cur, req)
480 			io_prep_async_work(cur);
481 		raw_spin_unlock_irq(&ctx->timeout_lock);
482 	} else {
483 		io_for_each_link(cur, req)
484 			io_prep_async_work(cur);
485 	}
486 }
487 
io_queue_iowq(struct io_kiocb * req)488 static void io_queue_iowq(struct io_kiocb *req)
489 {
490 	struct io_uring_task *tctx = req->tctx;
491 
492 	BUG_ON(!tctx);
493 
494 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
495 		io_req_task_queue_fail(req, -ECANCELED);
496 		return;
497 	}
498 
499 	/* init ->work of the whole link before punting */
500 	io_prep_async_link(req);
501 
502 	/*
503 	 * Not expected to happen, but if we do have a bug where this _can_
504 	 * happen, catch it here and ensure the request is marked as
505 	 * canceled. That will make io-wq go through the usual work cancel
506 	 * procedure rather than attempt to run this request (or create a new
507 	 * worker for it).
508 	 */
509 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
510 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
511 
512 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
513 	io_wq_enqueue(tctx->io_wq, &req->work);
514 }
515 
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)516 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
517 {
518 	io_queue_iowq(req);
519 }
520 
io_req_queue_iowq(struct io_kiocb * req)521 void io_req_queue_iowq(struct io_kiocb *req)
522 {
523 	req->io_task_work.func = io_req_queue_iowq_tw;
524 	io_req_task_work_add(req);
525 }
526 
io_linked_nr(struct io_kiocb * req)527 static unsigned io_linked_nr(struct io_kiocb *req)
528 {
529 	struct io_kiocb *tmp;
530 	unsigned nr = 0;
531 
532 	io_for_each_link(tmp, req)
533 		nr++;
534 	return nr;
535 }
536 
io_queue_deferred(struct io_ring_ctx * ctx)537 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
538 {
539 	bool drain_seen = false, first = true;
540 
541 	lockdep_assert_held(&ctx->uring_lock);
542 	__io_req_caches_free(ctx);
543 
544 	while (!list_empty(&ctx->defer_list)) {
545 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
546 						struct io_defer_entry, list);
547 
548 		drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
549 		if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
550 			return;
551 
552 		list_del_init(&de->list);
553 		ctx->nr_drained -= io_linked_nr(de->req);
554 		io_req_task_queue(de->req);
555 		kfree(de);
556 		first = false;
557 	}
558 }
559 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)560 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
561 {
562 	if (ctx->poll_activated)
563 		io_poll_wq_wake(ctx);
564 	if (ctx->off_timeout_used)
565 		io_flush_timeouts(ctx);
566 	if (ctx->has_evfd)
567 		io_eventfd_signal(ctx, true);
568 }
569 
__io_cq_lock(struct io_ring_ctx * ctx)570 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
571 {
572 	if (!ctx->lockless_cq)
573 		spin_lock(&ctx->completion_lock);
574 }
575 
io_cq_lock(struct io_ring_ctx * ctx)576 static inline void io_cq_lock(struct io_ring_ctx *ctx)
577 	__acquires(ctx->completion_lock)
578 {
579 	spin_lock(&ctx->completion_lock);
580 }
581 
__io_cq_unlock_post(struct io_ring_ctx * ctx)582 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
583 {
584 	io_commit_cqring(ctx);
585 	if (!ctx->task_complete) {
586 		if (!ctx->lockless_cq)
587 			spin_unlock(&ctx->completion_lock);
588 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
589 		if (!ctx->syscall_iopoll)
590 			io_cqring_wake(ctx);
591 	}
592 	io_commit_cqring_flush(ctx);
593 }
594 
io_cq_unlock_post(struct io_ring_ctx * ctx)595 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
596 	__releases(ctx->completion_lock)
597 {
598 	io_commit_cqring(ctx);
599 	spin_unlock(&ctx->completion_lock);
600 	io_cqring_wake(ctx);
601 	io_commit_cqring_flush(ctx);
602 }
603 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)604 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
605 {
606 	size_t cqe_size = sizeof(struct io_uring_cqe);
607 
608 	lockdep_assert_held(&ctx->uring_lock);
609 
610 	/* don't abort if we're dying, entries must get freed */
611 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
612 		return;
613 
614 	if (ctx->flags & IORING_SETUP_CQE32)
615 		cqe_size <<= 1;
616 
617 	io_cq_lock(ctx);
618 	while (!list_empty(&ctx->cq_overflow_list)) {
619 		struct io_uring_cqe *cqe;
620 		struct io_overflow_cqe *ocqe;
621 
622 		ocqe = list_first_entry(&ctx->cq_overflow_list,
623 					struct io_overflow_cqe, list);
624 
625 		if (!dying) {
626 			if (!io_get_cqe_overflow(ctx, &cqe, true))
627 				break;
628 			memcpy(cqe, &ocqe->cqe, cqe_size);
629 		}
630 		list_del(&ocqe->list);
631 		kfree(ocqe);
632 
633 		/*
634 		 * For silly syzbot cases that deliberately overflow by huge
635 		 * amounts, check if we need to resched and drop and
636 		 * reacquire the locks if so. Nothing real would ever hit this.
637 		 * Ideally we'd have a non-posting unlock for this, but hard
638 		 * to care for a non-real case.
639 		 */
640 		if (need_resched()) {
641 			ctx->cqe_sentinel = ctx->cqe_cached;
642 			io_cq_unlock_post(ctx);
643 			mutex_unlock(&ctx->uring_lock);
644 			cond_resched();
645 			mutex_lock(&ctx->uring_lock);
646 			io_cq_lock(ctx);
647 		}
648 	}
649 
650 	if (list_empty(&ctx->cq_overflow_list)) {
651 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
652 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
653 	}
654 	io_cq_unlock_post(ctx);
655 }
656 
io_cqring_overflow_kill(struct io_ring_ctx * ctx)657 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
658 {
659 	if (ctx->rings)
660 		__io_cqring_overflow_flush(ctx, true);
661 }
662 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)663 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
664 {
665 	mutex_lock(&ctx->uring_lock);
666 	__io_cqring_overflow_flush(ctx, false);
667 	mutex_unlock(&ctx->uring_lock);
668 }
669 
670 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)671 static inline void io_put_task(struct io_kiocb *req)
672 {
673 	struct io_uring_task *tctx = req->tctx;
674 
675 	if (likely(tctx->task == current)) {
676 		tctx->cached_refs++;
677 	} else {
678 		percpu_counter_sub(&tctx->inflight, 1);
679 		if (unlikely(atomic_read(&tctx->in_cancel)))
680 			wake_up(&tctx->wait);
681 		put_task_struct(tctx->task);
682 	}
683 }
684 
io_task_refs_refill(struct io_uring_task * tctx)685 void io_task_refs_refill(struct io_uring_task *tctx)
686 {
687 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
688 
689 	percpu_counter_add(&tctx->inflight, refill);
690 	refcount_add(refill, &current->usage);
691 	tctx->cached_refs += refill;
692 }
693 
io_uring_drop_tctx_refs(struct task_struct * task)694 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
695 {
696 	struct io_uring_task *tctx = task->io_uring;
697 	unsigned int refs = tctx->cached_refs;
698 
699 	if (refs) {
700 		tctx->cached_refs = 0;
701 		percpu_counter_sub(&tctx->inflight, refs);
702 		put_task_struct_many(task, refs);
703 	}
704 }
705 
io_cqring_add_overflow(struct io_ring_ctx * ctx,struct io_overflow_cqe * ocqe)706 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
707 					  struct io_overflow_cqe *ocqe)
708 {
709 	lockdep_assert_held(&ctx->completion_lock);
710 
711 	if (!ocqe) {
712 		struct io_rings *r = ctx->rings;
713 
714 		/*
715 		 * If we're in ring overflow flush mode, or in task cancel mode,
716 		 * or cannot allocate an overflow entry, then we need to drop it
717 		 * on the floor.
718 		 */
719 		WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
720 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
721 		return false;
722 	}
723 	if (list_empty(&ctx->cq_overflow_list)) {
724 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
725 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
726 
727 	}
728 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
729 	return true;
730 }
731 
io_alloc_ocqe(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe,gfp_t gfp)732 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
733 					     struct io_cqe *cqe,
734 					     struct io_big_cqe *big_cqe, gfp_t gfp)
735 {
736 	struct io_overflow_cqe *ocqe;
737 	size_t ocq_size = sizeof(struct io_overflow_cqe);
738 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
739 
740 	if (is_cqe32)
741 		ocq_size += sizeof(struct io_uring_cqe);
742 
743 	ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
744 	trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
745 	if (ocqe) {
746 		ocqe->cqe.user_data = cqe->user_data;
747 		ocqe->cqe.res = cqe->res;
748 		ocqe->cqe.flags = cqe->flags;
749 		if (is_cqe32 && big_cqe) {
750 			ocqe->cqe.big_cqe[0] = big_cqe->extra1;
751 			ocqe->cqe.big_cqe[1] = big_cqe->extra2;
752 		}
753 	}
754 	if (big_cqe)
755 		big_cqe->extra1 = big_cqe->extra2 = 0;
756 	return ocqe;
757 }
758 
759 /*
760  * writes to the cq entry need to come after reading head; the
761  * control dependency is enough as we're using WRITE_ONCE to
762  * fill the cq entry
763  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)764 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
765 {
766 	struct io_rings *rings = ctx->rings;
767 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
768 	unsigned int free, queued, len;
769 
770 	/*
771 	 * Posting into the CQ when there are pending overflowed CQEs may break
772 	 * ordering guarantees, which will affect links, F_MORE users and more.
773 	 * Force overflow the completion.
774 	 */
775 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
776 		return false;
777 
778 	/* userspace may cheat modifying the tail, be safe and do min */
779 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
780 	free = ctx->cq_entries - queued;
781 	/* we need a contiguous range, limit based on the current array offset */
782 	len = min(free, ctx->cq_entries - off);
783 	if (!len)
784 		return false;
785 
786 	if (ctx->flags & IORING_SETUP_CQE32) {
787 		off <<= 1;
788 		len <<= 1;
789 	}
790 
791 	ctx->cqe_cached = &rings->cqes[off];
792 	ctx->cqe_sentinel = ctx->cqe_cached + len;
793 	return true;
794 }
795 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)796 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
797 			      u32 cflags)
798 {
799 	struct io_uring_cqe *cqe;
800 
801 	if (likely(io_get_cqe(ctx, &cqe))) {
802 		WRITE_ONCE(cqe->user_data, user_data);
803 		WRITE_ONCE(cqe->res, res);
804 		WRITE_ONCE(cqe->flags, cflags);
805 
806 		if (ctx->flags & IORING_SETUP_CQE32) {
807 			WRITE_ONCE(cqe->big_cqe[0], 0);
808 			WRITE_ONCE(cqe->big_cqe[1], 0);
809 		}
810 
811 		trace_io_uring_complete(ctx, NULL, cqe);
812 		return true;
813 	}
814 	return false;
815 }
816 
io_init_cqe(u64 user_data,s32 res,u32 cflags)817 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
818 {
819 	return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
820 }
821 
io_cqe_overflow(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)822 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
823 			           struct io_big_cqe *big_cqe)
824 {
825 	struct io_overflow_cqe *ocqe;
826 
827 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
828 	spin_lock(&ctx->completion_lock);
829 	io_cqring_add_overflow(ctx, ocqe);
830 	spin_unlock(&ctx->completion_lock);
831 }
832 
io_cqe_overflow_locked(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)833 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
834 					  struct io_cqe *cqe,
835 					  struct io_big_cqe *big_cqe)
836 {
837 	struct io_overflow_cqe *ocqe;
838 
839 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
840 	return io_cqring_add_overflow(ctx, ocqe);
841 }
842 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)843 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
844 {
845 	bool filled;
846 
847 	io_cq_lock(ctx);
848 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
849 	if (unlikely(!filled)) {
850 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
851 
852 		filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
853 	}
854 	io_cq_unlock_post(ctx);
855 	return filled;
856 }
857 
858 /*
859  * Must be called from inline task_work so we now a flush will happen later,
860  * and obviously with ctx->uring_lock held (tw always has that).
861  */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)862 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
863 {
864 	lockdep_assert_held(&ctx->uring_lock);
865 	lockdep_assert(ctx->lockless_cq);
866 
867 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
868 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
869 
870 		io_cqe_overflow(ctx, &cqe, NULL);
871 	}
872 	ctx->submit_state.cq_flush = true;
873 }
874 
875 /*
876  * A helper for multishot requests posting additional CQEs.
877  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
878  */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)879 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
880 {
881 	struct io_ring_ctx *ctx = req->ctx;
882 	bool posted;
883 
884 	/*
885 	 * If multishot has already posted deferred completions, ensure that
886 	 * those are flushed first before posting this one. If not, CQEs
887 	 * could get reordered.
888 	 */
889 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
890 		__io_submit_flush_completions(ctx);
891 
892 	lockdep_assert(!io_wq_current_is_worker());
893 	lockdep_assert_held(&ctx->uring_lock);
894 
895 	if (!ctx->lockless_cq) {
896 		spin_lock(&ctx->completion_lock);
897 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
898 		spin_unlock(&ctx->completion_lock);
899 	} else {
900 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
901 	}
902 
903 	ctx->submit_state.cq_flush = true;
904 	return posted;
905 }
906 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)907 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
908 {
909 	struct io_ring_ctx *ctx = req->ctx;
910 	bool completed = true;
911 
912 	/*
913 	 * All execution paths but io-wq use the deferred completions by
914 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
915 	 */
916 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
917 		return;
918 
919 	/*
920 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
921 	 * the submitter task context, IOPOLL protects with uring_lock.
922 	 */
923 	if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
924 defer_complete:
925 		req->io_task_work.func = io_req_task_complete;
926 		io_req_task_work_add(req);
927 		return;
928 	}
929 
930 	io_cq_lock(ctx);
931 	if (!(req->flags & REQ_F_CQE_SKIP))
932 		completed = io_fill_cqe_req(ctx, req);
933 	io_cq_unlock_post(ctx);
934 
935 	if (!completed)
936 		goto defer_complete;
937 
938 	/*
939 	 * We don't free the request here because we know it's called from
940 	 * io-wq only, which holds a reference, so it cannot be the last put.
941 	 */
942 	req_ref_put(req);
943 }
944 
io_req_defer_failed(struct io_kiocb * req,s32 res)945 void io_req_defer_failed(struct io_kiocb *req, s32 res)
946 	__must_hold(&ctx->uring_lock)
947 {
948 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
949 
950 	lockdep_assert_held(&req->ctx->uring_lock);
951 
952 	req_set_fail(req);
953 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
954 	if (def->fail)
955 		def->fail(req);
956 	io_req_complete_defer(req);
957 }
958 
959 /*
960  * A request might get retired back into the request caches even before opcode
961  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
962  * Because of that, io_alloc_req() should be called only under ->uring_lock
963  * and with extra caution to not get a request that is still worked on.
964  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)965 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
966 	__must_hold(&ctx->uring_lock)
967 {
968 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
969 	void *reqs[IO_REQ_ALLOC_BATCH];
970 	int ret;
971 
972 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
973 
974 	/*
975 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
976 	 * retry single alloc to be on the safe side.
977 	 */
978 	if (unlikely(ret <= 0)) {
979 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
980 		if (!reqs[0])
981 			return false;
982 		ret = 1;
983 	}
984 
985 	percpu_ref_get_many(&ctx->refs, ret);
986 	ctx->nr_req_allocated += ret;
987 
988 	while (ret--) {
989 		struct io_kiocb *req = reqs[ret];
990 
991 		io_req_add_to_cache(req, ctx);
992 	}
993 	return true;
994 }
995 
io_free_req(struct io_kiocb * req)996 __cold void io_free_req(struct io_kiocb *req)
997 {
998 	/* refs were already put, restore them for io_req_task_complete() */
999 	req->flags &= ~REQ_F_REFCOUNT;
1000 	/* we only want to free it, don't post CQEs */
1001 	req->flags |= REQ_F_CQE_SKIP;
1002 	req->io_task_work.func = io_req_task_complete;
1003 	io_req_task_work_add(req);
1004 }
1005 
__io_req_find_next_prep(struct io_kiocb * req)1006 static void __io_req_find_next_prep(struct io_kiocb *req)
1007 {
1008 	struct io_ring_ctx *ctx = req->ctx;
1009 
1010 	spin_lock(&ctx->completion_lock);
1011 	io_disarm_next(req);
1012 	spin_unlock(&ctx->completion_lock);
1013 }
1014 
io_req_find_next(struct io_kiocb * req)1015 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1016 {
1017 	struct io_kiocb *nxt;
1018 
1019 	/*
1020 	 * If LINK is set, we have dependent requests in this chain. If we
1021 	 * didn't fail this request, queue the first one up, moving any other
1022 	 * dependencies to the next request. In case of failure, fail the rest
1023 	 * of the chain.
1024 	 */
1025 	if (unlikely(req->flags & IO_DISARM_MASK))
1026 		__io_req_find_next_prep(req);
1027 	nxt = req->link;
1028 	req->link = NULL;
1029 	return nxt;
1030 }
1031 
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1032 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1033 {
1034 	if (!ctx)
1035 		return;
1036 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1037 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1038 
1039 	io_submit_flush_completions(ctx);
1040 	mutex_unlock(&ctx->uring_lock);
1041 	percpu_ref_put(&ctx->refs);
1042 }
1043 
1044 /*
1045  * Run queued task_work, returning the number of entries processed in *count.
1046  * If more entries than max_entries are available, stop processing once this
1047  * is reached and return the rest of the list.
1048  */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1049 struct llist_node *io_handle_tw_list(struct llist_node *node,
1050 				     unsigned int *count,
1051 				     unsigned int max_entries)
1052 {
1053 	struct io_ring_ctx *ctx = NULL;
1054 	struct io_tw_state ts = { };
1055 
1056 	do {
1057 		struct llist_node *next = node->next;
1058 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1059 						    io_task_work.node);
1060 
1061 		if (req->ctx != ctx) {
1062 			ctx_flush_and_put(ctx, ts);
1063 			ctx = req->ctx;
1064 			mutex_lock(&ctx->uring_lock);
1065 			percpu_ref_get(&ctx->refs);
1066 		}
1067 		INDIRECT_CALL_2(req->io_task_work.func,
1068 				io_poll_task_func, io_req_rw_complete,
1069 				req, ts);
1070 		node = next;
1071 		(*count)++;
1072 		if (unlikely(need_resched())) {
1073 			ctx_flush_and_put(ctx, ts);
1074 			ctx = NULL;
1075 			cond_resched();
1076 		}
1077 	} while (node && *count < max_entries);
1078 
1079 	ctx_flush_and_put(ctx, ts);
1080 	return node;
1081 }
1082 
__io_fallback_tw(struct llist_node * node,bool sync)1083 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1084 {
1085 	struct io_ring_ctx *last_ctx = NULL;
1086 	struct io_kiocb *req;
1087 
1088 	while (node) {
1089 		req = container_of(node, struct io_kiocb, io_task_work.node);
1090 		node = node->next;
1091 		if (last_ctx != req->ctx) {
1092 			if (last_ctx) {
1093 				if (sync)
1094 					flush_delayed_work(&last_ctx->fallback_work);
1095 				percpu_ref_put(&last_ctx->refs);
1096 			}
1097 			last_ctx = req->ctx;
1098 			percpu_ref_get(&last_ctx->refs);
1099 		}
1100 		if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1101 			schedule_delayed_work(&last_ctx->fallback_work, 1);
1102 	}
1103 
1104 	if (last_ctx) {
1105 		if (sync)
1106 			flush_delayed_work(&last_ctx->fallback_work);
1107 		percpu_ref_put(&last_ctx->refs);
1108 	}
1109 }
1110 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1111 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1112 {
1113 	struct llist_node *node = llist_del_all(&tctx->task_list);
1114 
1115 	__io_fallback_tw(node, sync);
1116 }
1117 
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1118 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1119 				      unsigned int max_entries,
1120 				      unsigned int *count)
1121 {
1122 	struct llist_node *node;
1123 
1124 	if (unlikely(current->flags & PF_EXITING)) {
1125 		io_fallback_tw(tctx, true);
1126 		return NULL;
1127 	}
1128 
1129 	node = llist_del_all(&tctx->task_list);
1130 	if (node) {
1131 		node = llist_reverse_order(node);
1132 		node = io_handle_tw_list(node, count, max_entries);
1133 	}
1134 
1135 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1136 	if (unlikely(atomic_read(&tctx->in_cancel)))
1137 		io_uring_drop_tctx_refs(current);
1138 
1139 	trace_io_uring_task_work_run(tctx, *count);
1140 	return node;
1141 }
1142 
tctx_task_work(struct callback_head * cb)1143 void tctx_task_work(struct callback_head *cb)
1144 {
1145 	struct io_uring_task *tctx;
1146 	struct llist_node *ret;
1147 	unsigned int count = 0;
1148 
1149 	tctx = container_of(cb, struct io_uring_task, task_work);
1150 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1151 	/* can't happen */
1152 	WARN_ON_ONCE(ret);
1153 }
1154 
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1155 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1156 {
1157 	struct io_ring_ctx *ctx = req->ctx;
1158 	unsigned nr_wait, nr_tw, nr_tw_prev;
1159 	struct llist_node *head;
1160 
1161 	/* See comment above IO_CQ_WAKE_INIT */
1162 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1163 
1164 	/*
1165 	 * We don't know how many reuqests is there in the link and whether
1166 	 * they can even be queued lazily, fall back to non-lazy.
1167 	 */
1168 	if (req->flags & IO_REQ_LINK_FLAGS)
1169 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1170 
1171 	guard(rcu)();
1172 
1173 	head = READ_ONCE(ctx->work_llist.first);
1174 	do {
1175 		nr_tw_prev = 0;
1176 		if (head) {
1177 			struct io_kiocb *first_req = container_of(head,
1178 							struct io_kiocb,
1179 							io_task_work.node);
1180 			/*
1181 			 * Might be executed at any moment, rely on
1182 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1183 			 */
1184 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1185 		}
1186 
1187 		/*
1188 		 * Theoretically, it can overflow, but that's fine as one of
1189 		 * previous adds should've tried to wake the task.
1190 		 */
1191 		nr_tw = nr_tw_prev + 1;
1192 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1193 			nr_tw = IO_CQ_WAKE_FORCE;
1194 
1195 		req->nr_tw = nr_tw;
1196 		req->io_task_work.node.next = head;
1197 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1198 			      &req->io_task_work.node));
1199 
1200 	/*
1201 	 * cmpxchg implies a full barrier, which pairs with the barrier
1202 	 * in set_current_state() on the io_cqring_wait() side. It's used
1203 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1204 	 * going to sleep will observe the work added to the list, which
1205 	 * is similar to the wait/wawke task state sync.
1206 	 */
1207 
1208 	if (!head) {
1209 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1210 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1211 		if (ctx->has_evfd)
1212 			io_eventfd_signal(ctx, false);
1213 	}
1214 
1215 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1216 	/* not enough or no one is waiting */
1217 	if (nr_tw < nr_wait)
1218 		return;
1219 	/* the previous add has already woken it up */
1220 	if (nr_tw_prev >= nr_wait)
1221 		return;
1222 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1223 }
1224 
io_req_normal_work_add(struct io_kiocb * req)1225 static void io_req_normal_work_add(struct io_kiocb *req)
1226 {
1227 	struct io_uring_task *tctx = req->tctx;
1228 	struct io_ring_ctx *ctx = req->ctx;
1229 
1230 	/* task_work already pending, we're done */
1231 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1232 		return;
1233 
1234 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1235 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1236 
1237 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1238 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1239 		__set_notify_signal(tctx->task);
1240 		return;
1241 	}
1242 
1243 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1244 		return;
1245 
1246 	io_fallback_tw(tctx, false);
1247 }
1248 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1249 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1250 {
1251 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1252 		io_req_local_work_add(req, flags);
1253 	else
1254 		io_req_normal_work_add(req);
1255 }
1256 
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1257 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1258 {
1259 	if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1260 		return;
1261 	__io_req_task_work_add(req, flags);
1262 }
1263 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1264 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1265 {
1266 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1267 
1268 	__io_fallback_tw(node, false);
1269 	node = llist_del_all(&ctx->retry_llist);
1270 	__io_fallback_tw(node, false);
1271 }
1272 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1273 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1274 				       int min_events)
1275 {
1276 	if (!io_local_work_pending(ctx))
1277 		return false;
1278 	if (events < min_events)
1279 		return true;
1280 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1281 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1282 	return false;
1283 }
1284 
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1285 static int __io_run_local_work_loop(struct llist_node **node,
1286 				    io_tw_token_t tw,
1287 				    int events)
1288 {
1289 	int ret = 0;
1290 
1291 	while (*node) {
1292 		struct llist_node *next = (*node)->next;
1293 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1294 						    io_task_work.node);
1295 		INDIRECT_CALL_2(req->io_task_work.func,
1296 				io_poll_task_func, io_req_rw_complete,
1297 				req, tw);
1298 		*node = next;
1299 		if (++ret >= events)
1300 			break;
1301 	}
1302 
1303 	return ret;
1304 }
1305 
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1306 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1307 			       int min_events, int max_events)
1308 {
1309 	struct llist_node *node;
1310 	unsigned int loops = 0;
1311 	int ret = 0;
1312 
1313 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1314 		return -EEXIST;
1315 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1316 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1317 again:
1318 	min_events -= ret;
1319 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1320 	if (ctx->retry_llist.first)
1321 		goto retry_done;
1322 
1323 	/*
1324 	 * llists are in reverse order, flip it back the right way before
1325 	 * running the pending items.
1326 	 */
1327 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1328 	ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1329 	ctx->retry_llist.first = node;
1330 	loops++;
1331 
1332 	if (io_run_local_work_continue(ctx, ret, min_events))
1333 		goto again;
1334 retry_done:
1335 	io_submit_flush_completions(ctx);
1336 	if (io_run_local_work_continue(ctx, ret, min_events))
1337 		goto again;
1338 
1339 	trace_io_uring_local_work_run(ctx, ret, loops);
1340 	return ret;
1341 }
1342 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1343 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1344 					   int min_events)
1345 {
1346 	struct io_tw_state ts = {};
1347 
1348 	if (!io_local_work_pending(ctx))
1349 		return 0;
1350 	return __io_run_local_work(ctx, ts, min_events,
1351 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1352 }
1353 
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1354 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1355 			     int max_events)
1356 {
1357 	struct io_tw_state ts = {};
1358 	int ret;
1359 
1360 	mutex_lock(&ctx->uring_lock);
1361 	ret = __io_run_local_work(ctx, ts, min_events, max_events);
1362 	mutex_unlock(&ctx->uring_lock);
1363 	return ret;
1364 }
1365 
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1366 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1367 {
1368 	io_tw_lock(req->ctx, tw);
1369 	io_req_defer_failed(req, req->cqe.res);
1370 }
1371 
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1372 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1373 {
1374 	io_tw_lock(req->ctx, tw);
1375 	if (unlikely(io_should_terminate_tw()))
1376 		io_req_defer_failed(req, -EFAULT);
1377 	else if (req->flags & REQ_F_FORCE_ASYNC)
1378 		io_queue_iowq(req);
1379 	else
1380 		io_queue_sqe(req);
1381 }
1382 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1383 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1384 {
1385 	io_req_set_res(req, ret, 0);
1386 	req->io_task_work.func = io_req_task_cancel;
1387 	io_req_task_work_add(req);
1388 }
1389 
io_req_task_queue(struct io_kiocb * req)1390 void io_req_task_queue(struct io_kiocb *req)
1391 {
1392 	req->io_task_work.func = io_req_task_submit;
1393 	io_req_task_work_add(req);
1394 }
1395 
io_queue_next(struct io_kiocb * req)1396 void io_queue_next(struct io_kiocb *req)
1397 {
1398 	struct io_kiocb *nxt = io_req_find_next(req);
1399 
1400 	if (nxt)
1401 		io_req_task_queue(nxt);
1402 }
1403 
io_req_put_rsrc_nodes(struct io_kiocb * req)1404 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1405 {
1406 	if (req->file_node) {
1407 		io_put_rsrc_node(req->ctx, req->file_node);
1408 		req->file_node = NULL;
1409 	}
1410 	if (req->flags & REQ_F_BUF_NODE)
1411 		io_put_rsrc_node(req->ctx, req->buf_node);
1412 }
1413 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1414 static void io_free_batch_list(struct io_ring_ctx *ctx,
1415 			       struct io_wq_work_node *node)
1416 	__must_hold(&ctx->uring_lock)
1417 {
1418 	do {
1419 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1420 						    comp_list);
1421 
1422 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1423 			if (req->flags & REQ_F_REISSUE) {
1424 				node = req->comp_list.next;
1425 				req->flags &= ~REQ_F_REISSUE;
1426 				io_queue_iowq(req);
1427 				continue;
1428 			}
1429 			if (req->flags & REQ_F_REFCOUNT) {
1430 				node = req->comp_list.next;
1431 				if (!req_ref_put_and_test(req))
1432 					continue;
1433 			}
1434 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1435 				struct async_poll *apoll = req->apoll;
1436 
1437 				if (apoll->double_poll)
1438 					kfree(apoll->double_poll);
1439 				io_cache_free(&ctx->apoll_cache, apoll);
1440 				req->flags &= ~REQ_F_POLLED;
1441 			}
1442 			if (req->flags & IO_REQ_LINK_FLAGS)
1443 				io_queue_next(req);
1444 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1445 				io_clean_op(req);
1446 		}
1447 		io_put_file(req);
1448 		io_req_put_rsrc_nodes(req);
1449 		io_put_task(req);
1450 
1451 		node = req->comp_list.next;
1452 		io_req_add_to_cache(req, ctx);
1453 	} while (node);
1454 }
1455 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1456 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1457 	__must_hold(&ctx->uring_lock)
1458 {
1459 	struct io_submit_state *state = &ctx->submit_state;
1460 	struct io_wq_work_node *node;
1461 
1462 	__io_cq_lock(ctx);
1463 	__wq_list_for_each(node, &state->compl_reqs) {
1464 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1465 					    comp_list);
1466 
1467 		/*
1468 		 * Requests marked with REQUEUE should not post a CQE, they
1469 		 * will go through the io-wq retry machinery and post one
1470 		 * later.
1471 		 */
1472 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1473 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1474 			if (ctx->lockless_cq)
1475 				io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1476 			else
1477 				io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1478 		}
1479 	}
1480 	__io_cq_unlock_post(ctx);
1481 
1482 	if (!wq_list_empty(&state->compl_reqs)) {
1483 		io_free_batch_list(ctx, state->compl_reqs.first);
1484 		INIT_WQ_LIST(&state->compl_reqs);
1485 	}
1486 
1487 	if (unlikely(ctx->drain_active))
1488 		io_queue_deferred(ctx);
1489 
1490 	ctx->submit_state.cq_flush = false;
1491 }
1492 
io_cqring_events(struct io_ring_ctx * ctx)1493 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1494 {
1495 	/* See comment at the top of this file */
1496 	smp_rmb();
1497 	return __io_cqring_events(ctx);
1498 }
1499 
1500 /*
1501  * We can't just wait for polled events to come to us, we have to actively
1502  * find and complete them.
1503  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1504 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1505 {
1506 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1507 		return;
1508 
1509 	mutex_lock(&ctx->uring_lock);
1510 	while (!wq_list_empty(&ctx->iopoll_list)) {
1511 		/* let it sleep and repeat later if can't complete a request */
1512 		if (io_do_iopoll(ctx, true) == 0)
1513 			break;
1514 		/*
1515 		 * Ensure we allow local-to-the-cpu processing to take place,
1516 		 * in this case we need to ensure that we reap all events.
1517 		 * Also let task_work, etc. to progress by releasing the mutex
1518 		 */
1519 		if (need_resched()) {
1520 			mutex_unlock(&ctx->uring_lock);
1521 			cond_resched();
1522 			mutex_lock(&ctx->uring_lock);
1523 		}
1524 	}
1525 	mutex_unlock(&ctx->uring_lock);
1526 
1527 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1528 		io_move_task_work_from_local(ctx);
1529 }
1530 
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1531 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1532 {
1533 	unsigned int nr_events = 0;
1534 	unsigned long check_cq;
1535 
1536 	min_events = min(min_events, ctx->cq_entries);
1537 
1538 	lockdep_assert_held(&ctx->uring_lock);
1539 
1540 	if (!io_allowed_run_tw(ctx))
1541 		return -EEXIST;
1542 
1543 	check_cq = READ_ONCE(ctx->check_cq);
1544 	if (unlikely(check_cq)) {
1545 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1546 			__io_cqring_overflow_flush(ctx, false);
1547 		/*
1548 		 * Similarly do not spin if we have not informed the user of any
1549 		 * dropped CQE.
1550 		 */
1551 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1552 			return -EBADR;
1553 	}
1554 	/*
1555 	 * Don't enter poll loop if we already have events pending.
1556 	 * If we do, we can potentially be spinning for commands that
1557 	 * already triggered a CQE (eg in error).
1558 	 */
1559 	if (io_cqring_events(ctx))
1560 		return 0;
1561 
1562 	do {
1563 		int ret = 0;
1564 
1565 		/*
1566 		 * If a submit got punted to a workqueue, we can have the
1567 		 * application entering polling for a command before it gets
1568 		 * issued. That app will hold the uring_lock for the duration
1569 		 * of the poll right here, so we need to take a breather every
1570 		 * now and then to ensure that the issue has a chance to add
1571 		 * the poll to the issued list. Otherwise we can spin here
1572 		 * forever, while the workqueue is stuck trying to acquire the
1573 		 * very same mutex.
1574 		 */
1575 		if (wq_list_empty(&ctx->iopoll_list) ||
1576 		    io_task_work_pending(ctx)) {
1577 			u32 tail = ctx->cached_cq_tail;
1578 
1579 			(void) io_run_local_work_locked(ctx, min_events);
1580 
1581 			if (task_work_pending(current) ||
1582 			    wq_list_empty(&ctx->iopoll_list)) {
1583 				mutex_unlock(&ctx->uring_lock);
1584 				io_run_task_work();
1585 				mutex_lock(&ctx->uring_lock);
1586 			}
1587 			/* some requests don't go through iopoll_list */
1588 			if (tail != ctx->cached_cq_tail ||
1589 			    wq_list_empty(&ctx->iopoll_list))
1590 				break;
1591 		}
1592 		ret = io_do_iopoll(ctx, !min_events);
1593 		if (unlikely(ret < 0))
1594 			return ret;
1595 
1596 		if (task_sigpending(current))
1597 			return -EINTR;
1598 		if (need_resched())
1599 			break;
1600 
1601 		nr_events += ret;
1602 	} while (nr_events < min_events);
1603 
1604 	return 0;
1605 }
1606 
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1607 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1608 {
1609 	io_req_complete_defer(req);
1610 }
1611 
1612 /*
1613  * After the iocb has been issued, it's safe to be found on the poll list.
1614  * Adding the kiocb to the list AFTER submission ensures that we don't
1615  * find it from a io_do_iopoll() thread before the issuer is done
1616  * accessing the kiocb cookie.
1617  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1618 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1619 {
1620 	struct io_ring_ctx *ctx = req->ctx;
1621 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1622 
1623 	/* workqueue context doesn't hold uring_lock, grab it now */
1624 	if (unlikely(needs_lock))
1625 		mutex_lock(&ctx->uring_lock);
1626 
1627 	/*
1628 	 * Track whether we have multiple files in our lists. This will impact
1629 	 * how we do polling eventually, not spinning if we're on potentially
1630 	 * different devices.
1631 	 */
1632 	if (wq_list_empty(&ctx->iopoll_list)) {
1633 		ctx->poll_multi_queue = false;
1634 	} else if (!ctx->poll_multi_queue) {
1635 		struct io_kiocb *list_req;
1636 
1637 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1638 					comp_list);
1639 		if (list_req->file != req->file)
1640 			ctx->poll_multi_queue = true;
1641 	}
1642 
1643 	/*
1644 	 * For fast devices, IO may have already completed. If it has, add
1645 	 * it to the front so we find it first.
1646 	 */
1647 	if (READ_ONCE(req->iopoll_completed))
1648 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1649 	else
1650 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1651 
1652 	if (unlikely(needs_lock)) {
1653 		/*
1654 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1655 		 * in sq thread task context or in io worker task context. If
1656 		 * current task context is sq thread, we don't need to check
1657 		 * whether should wake up sq thread.
1658 		 */
1659 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1660 		    wq_has_sleeper(&ctx->sq_data->wait))
1661 			wake_up(&ctx->sq_data->wait);
1662 
1663 		mutex_unlock(&ctx->uring_lock);
1664 	}
1665 }
1666 
io_file_get_flags(struct file * file)1667 io_req_flags_t io_file_get_flags(struct file *file)
1668 {
1669 	io_req_flags_t res = 0;
1670 
1671 	BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1672 
1673 	if (S_ISREG(file_inode(file)->i_mode))
1674 		res |= REQ_F_ISREG;
1675 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1676 		res |= REQ_F_SUPPORT_NOWAIT;
1677 	return res;
1678 }
1679 
io_drain_req(struct io_kiocb * req)1680 static __cold void io_drain_req(struct io_kiocb *req)
1681 	__must_hold(&ctx->uring_lock)
1682 {
1683 	struct io_ring_ctx *ctx = req->ctx;
1684 	bool drain = req->flags & IOSQE_IO_DRAIN;
1685 	struct io_defer_entry *de;
1686 
1687 	de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1688 	if (!de) {
1689 		io_req_defer_failed(req, -ENOMEM);
1690 		return;
1691 	}
1692 
1693 	io_prep_async_link(req);
1694 	trace_io_uring_defer(req);
1695 	de->req = req;
1696 
1697 	ctx->nr_drained += io_linked_nr(req);
1698 	list_add_tail(&de->list, &ctx->defer_list);
1699 	io_queue_deferred(ctx);
1700 	if (!drain && list_empty(&ctx->defer_list))
1701 		ctx->drain_active = false;
1702 }
1703 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1704 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1705 			   unsigned int issue_flags)
1706 {
1707 	if (req->file || !def->needs_file)
1708 		return true;
1709 
1710 	if (req->flags & REQ_F_FIXED_FILE)
1711 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1712 	else
1713 		req->file = io_file_get_normal(req, req->cqe.fd);
1714 
1715 	return !!req->file;
1716 }
1717 
1718 #define REQ_ISSUE_SLOW_FLAGS	(REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1719 
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1720 static inline int __io_issue_sqe(struct io_kiocb *req,
1721 				 unsigned int issue_flags,
1722 				 const struct io_issue_def *def)
1723 {
1724 	const struct cred *creds = NULL;
1725 	struct io_kiocb *link = NULL;
1726 	int ret;
1727 
1728 	if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1729 		if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1730 			creds = override_creds(req->creds);
1731 		if (req->flags & REQ_F_ARM_LTIMEOUT)
1732 			link = __io_prep_linked_timeout(req);
1733 	}
1734 
1735 	if (!def->audit_skip)
1736 		audit_uring_entry(req->opcode);
1737 
1738 	ret = def->issue(req, issue_flags);
1739 
1740 	if (!def->audit_skip)
1741 		audit_uring_exit(!ret, ret);
1742 
1743 	if (unlikely(creds || link)) {
1744 		if (creds)
1745 			revert_creds(creds);
1746 		if (link)
1747 			io_queue_linked_timeout(link);
1748 	}
1749 
1750 	return ret;
1751 }
1752 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1753 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1754 {
1755 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1756 	int ret;
1757 
1758 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1759 		return -EBADF;
1760 
1761 	ret = __io_issue_sqe(req, issue_flags, def);
1762 
1763 	if (ret == IOU_COMPLETE) {
1764 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1765 			io_req_complete_defer(req);
1766 		else
1767 			io_req_complete_post(req, issue_flags);
1768 
1769 		return 0;
1770 	}
1771 
1772 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1773 		ret = 0;
1774 
1775 		/* If the op doesn't have a file, we're not polling for it */
1776 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1777 			io_iopoll_req_issued(req, issue_flags);
1778 	}
1779 	return ret;
1780 }
1781 
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1782 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1783 {
1784 	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1785 					 IO_URING_F_MULTISHOT |
1786 					 IO_URING_F_COMPLETE_DEFER;
1787 	int ret;
1788 
1789 	io_tw_lock(req->ctx, tw);
1790 
1791 	WARN_ON_ONCE(!req->file);
1792 	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1793 		return -EFAULT;
1794 
1795 	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1796 
1797 	WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1798 	return ret;
1799 }
1800 
io_wq_free_work(struct io_wq_work * work)1801 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1802 {
1803 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1804 	struct io_kiocb *nxt = NULL;
1805 
1806 	if (req_ref_put_and_test_atomic(req)) {
1807 		if (req->flags & IO_REQ_LINK_FLAGS)
1808 			nxt = io_req_find_next(req);
1809 		io_free_req(req);
1810 	}
1811 	return nxt ? &nxt->work : NULL;
1812 }
1813 
io_wq_submit_work(struct io_wq_work * work)1814 void io_wq_submit_work(struct io_wq_work *work)
1815 {
1816 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1817 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1818 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1819 	bool needs_poll = false;
1820 	int ret = 0, err = -ECANCELED;
1821 
1822 	/* one will be dropped by io_wq_free_work() after returning to io-wq */
1823 	if (!(req->flags & REQ_F_REFCOUNT))
1824 		__io_req_set_refcount(req, 2);
1825 	else
1826 		req_ref_get(req);
1827 
1828 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1829 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1830 fail:
1831 		io_req_task_queue_fail(req, err);
1832 		return;
1833 	}
1834 	if (!io_assign_file(req, def, issue_flags)) {
1835 		err = -EBADF;
1836 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1837 		goto fail;
1838 	}
1839 
1840 	/*
1841 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1842 	 * submitter task context. Final request completions are handed to the
1843 	 * right context, however this is not the case of auxiliary CQEs,
1844 	 * which is the main mean of operation for multishot requests.
1845 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1846 	 * than necessary and also cleaner.
1847 	 */
1848 	if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1849 		err = -EBADFD;
1850 		if (!io_file_can_poll(req))
1851 			goto fail;
1852 		if (req->file->f_flags & O_NONBLOCK ||
1853 		    req->file->f_mode & FMODE_NOWAIT) {
1854 			err = -ECANCELED;
1855 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1856 				goto fail;
1857 			return;
1858 		} else {
1859 			req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1860 		}
1861 	}
1862 
1863 	if (req->flags & REQ_F_FORCE_ASYNC) {
1864 		bool opcode_poll = def->pollin || def->pollout;
1865 
1866 		if (opcode_poll && io_file_can_poll(req)) {
1867 			needs_poll = true;
1868 			issue_flags |= IO_URING_F_NONBLOCK;
1869 		}
1870 	}
1871 
1872 	do {
1873 		ret = io_issue_sqe(req, issue_flags);
1874 		if (ret != -EAGAIN)
1875 			break;
1876 
1877 		/*
1878 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1879 		 * poll. -EAGAIN is final for that case.
1880 		 */
1881 		if (req->flags & REQ_F_NOWAIT)
1882 			break;
1883 
1884 		/*
1885 		 * We can get EAGAIN for iopolled IO even though we're
1886 		 * forcing a sync submission from here, since we can't
1887 		 * wait for request slots on the block side.
1888 		 */
1889 		if (!needs_poll) {
1890 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1891 				break;
1892 			if (io_wq_worker_stopped())
1893 				break;
1894 			cond_resched();
1895 			continue;
1896 		}
1897 
1898 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1899 			return;
1900 		/* aborted or ready, in either case retry blocking */
1901 		needs_poll = false;
1902 		issue_flags &= ~IO_URING_F_NONBLOCK;
1903 	} while (1);
1904 
1905 	/* avoid locking problems by failing it from a clean context */
1906 	if (ret)
1907 		io_req_task_queue_fail(req, ret);
1908 }
1909 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1910 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1911 				      unsigned int issue_flags)
1912 {
1913 	struct io_ring_ctx *ctx = req->ctx;
1914 	struct io_rsrc_node *node;
1915 	struct file *file = NULL;
1916 
1917 	io_ring_submit_lock(ctx, issue_flags);
1918 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1919 	if (node) {
1920 		node->refs++;
1921 		req->file_node = node;
1922 		req->flags |= io_slot_flags(node);
1923 		file = io_slot_file(node);
1924 	}
1925 	io_ring_submit_unlock(ctx, issue_flags);
1926 	return file;
1927 }
1928 
io_file_get_normal(struct io_kiocb * req,int fd)1929 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1930 {
1931 	struct file *file = fget(fd);
1932 
1933 	trace_io_uring_file_get(req, fd);
1934 
1935 	/* we don't allow fixed io_uring files */
1936 	if (file && io_is_uring_fops(file))
1937 		io_req_track_inflight(req);
1938 	return file;
1939 }
1940 
io_queue_async(struct io_kiocb * req,int ret)1941 static void io_queue_async(struct io_kiocb *req, int ret)
1942 	__must_hold(&req->ctx->uring_lock)
1943 {
1944 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1945 		io_req_defer_failed(req, ret);
1946 		return;
1947 	}
1948 
1949 	switch (io_arm_poll_handler(req, 0)) {
1950 	case IO_APOLL_READY:
1951 		io_kbuf_recycle(req, 0);
1952 		io_req_task_queue(req);
1953 		break;
1954 	case IO_APOLL_ABORTED:
1955 		io_kbuf_recycle(req, 0);
1956 		io_queue_iowq(req);
1957 		break;
1958 	case IO_APOLL_OK:
1959 		break;
1960 	}
1961 }
1962 
io_queue_sqe(struct io_kiocb * req)1963 static inline void io_queue_sqe(struct io_kiocb *req)
1964 	__must_hold(&req->ctx->uring_lock)
1965 {
1966 	int ret;
1967 
1968 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1969 
1970 	/*
1971 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1972 	 * doesn't support non-blocking read/write attempts
1973 	 */
1974 	if (unlikely(ret))
1975 		io_queue_async(req, ret);
1976 }
1977 
io_queue_sqe_fallback(struct io_kiocb * req)1978 static void io_queue_sqe_fallback(struct io_kiocb *req)
1979 	__must_hold(&req->ctx->uring_lock)
1980 {
1981 	if (unlikely(req->flags & REQ_F_FAIL)) {
1982 		/*
1983 		 * We don't submit, fail them all, for that replace hardlinks
1984 		 * with normal links. Extra REQ_F_LINK is tolerated.
1985 		 */
1986 		req->flags &= ~REQ_F_HARDLINK;
1987 		req->flags |= REQ_F_LINK;
1988 		io_req_defer_failed(req, req->cqe.res);
1989 	} else {
1990 		if (unlikely(req->ctx->drain_active))
1991 			io_drain_req(req);
1992 		else
1993 			io_queue_iowq(req);
1994 	}
1995 }
1996 
1997 /*
1998  * Check SQE restrictions (opcode and flags).
1999  *
2000  * Returns 'true' if SQE is allowed, 'false' otherwise.
2001  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2002 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2003 					struct io_kiocb *req,
2004 					unsigned int sqe_flags)
2005 {
2006 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2007 		return false;
2008 
2009 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2010 	    ctx->restrictions.sqe_flags_required)
2011 		return false;
2012 
2013 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2014 			  ctx->restrictions.sqe_flags_required))
2015 		return false;
2016 
2017 	return true;
2018 }
2019 
io_init_drain(struct io_ring_ctx * ctx)2020 static void io_init_drain(struct io_ring_ctx *ctx)
2021 {
2022 	struct io_kiocb *head = ctx->submit_state.link.head;
2023 
2024 	ctx->drain_active = true;
2025 	if (head) {
2026 		/*
2027 		 * If we need to drain a request in the middle of a link, drain
2028 		 * the head request and the next request/link after the current
2029 		 * link. Considering sequential execution of links,
2030 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2031 		 * link.
2032 		 */
2033 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2034 		ctx->drain_next = true;
2035 	}
2036 }
2037 
io_init_fail_req(struct io_kiocb * req,int err)2038 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2039 {
2040 	/* ensure per-opcode data is cleared if we fail before prep */
2041 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2042 	return err;
2043 }
2044 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2045 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2046 		       const struct io_uring_sqe *sqe)
2047 	__must_hold(&ctx->uring_lock)
2048 {
2049 	const struct io_issue_def *def;
2050 	unsigned int sqe_flags;
2051 	int personality;
2052 	u8 opcode;
2053 
2054 	req->ctx = ctx;
2055 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2056 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2057 	sqe_flags = READ_ONCE(sqe->flags);
2058 	req->flags = (__force io_req_flags_t) sqe_flags;
2059 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2060 	req->file = NULL;
2061 	req->tctx = current->io_uring;
2062 	req->cancel_seq_set = false;
2063 
2064 	if (unlikely(opcode >= IORING_OP_LAST)) {
2065 		req->opcode = 0;
2066 		return io_init_fail_req(req, -EINVAL);
2067 	}
2068 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2069 
2070 	def = &io_issue_defs[opcode];
2071 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2072 		/* enforce forwards compatibility on users */
2073 		if (sqe_flags & ~SQE_VALID_FLAGS)
2074 			return io_init_fail_req(req, -EINVAL);
2075 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2076 			if (!def->buffer_select)
2077 				return io_init_fail_req(req, -EOPNOTSUPP);
2078 			req->buf_index = READ_ONCE(sqe->buf_group);
2079 		}
2080 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2081 			ctx->drain_disabled = true;
2082 		if (sqe_flags & IOSQE_IO_DRAIN) {
2083 			if (ctx->drain_disabled)
2084 				return io_init_fail_req(req, -EOPNOTSUPP);
2085 			io_init_drain(ctx);
2086 		}
2087 	}
2088 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2089 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2090 			return io_init_fail_req(req, -EACCES);
2091 		/* knock it to the slow queue path, will be drained there */
2092 		if (ctx->drain_active)
2093 			req->flags |= REQ_F_FORCE_ASYNC;
2094 		/* if there is no link, we're at "next" request and need to drain */
2095 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2096 			ctx->drain_next = false;
2097 			ctx->drain_active = true;
2098 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2099 		}
2100 	}
2101 
2102 	if (!def->ioprio && sqe->ioprio)
2103 		return io_init_fail_req(req, -EINVAL);
2104 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2105 		return io_init_fail_req(req, -EINVAL);
2106 
2107 	if (def->needs_file) {
2108 		struct io_submit_state *state = &ctx->submit_state;
2109 
2110 		req->cqe.fd = READ_ONCE(sqe->fd);
2111 
2112 		/*
2113 		 * Plug now if we have more than 2 IO left after this, and the
2114 		 * target is potentially a read/write to block based storage.
2115 		 */
2116 		if (state->need_plug && def->plug) {
2117 			state->plug_started = true;
2118 			state->need_plug = false;
2119 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2120 		}
2121 	}
2122 
2123 	personality = READ_ONCE(sqe->personality);
2124 	if (personality) {
2125 		int ret;
2126 
2127 		req->creds = xa_load(&ctx->personalities, personality);
2128 		if (!req->creds)
2129 			return io_init_fail_req(req, -EINVAL);
2130 		get_cred(req->creds);
2131 		ret = security_uring_override_creds(req->creds);
2132 		if (ret) {
2133 			put_cred(req->creds);
2134 			return io_init_fail_req(req, ret);
2135 		}
2136 		req->flags |= REQ_F_CREDS;
2137 	}
2138 
2139 	return def->prep(req, sqe);
2140 }
2141 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2142 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2143 				      struct io_kiocb *req, int ret)
2144 {
2145 	struct io_ring_ctx *ctx = req->ctx;
2146 	struct io_submit_link *link = &ctx->submit_state.link;
2147 	struct io_kiocb *head = link->head;
2148 
2149 	trace_io_uring_req_failed(sqe, req, ret);
2150 
2151 	/*
2152 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2153 	 * unusable. Instead of failing eagerly, continue assembling the link if
2154 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2155 	 * should find the flag and handle the rest.
2156 	 */
2157 	req_fail_link_node(req, ret);
2158 	if (head && !(head->flags & REQ_F_FAIL))
2159 		req_fail_link_node(head, -ECANCELED);
2160 
2161 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2162 		if (head) {
2163 			link->last->link = req;
2164 			link->head = NULL;
2165 			req = head;
2166 		}
2167 		io_queue_sqe_fallback(req);
2168 		return ret;
2169 	}
2170 
2171 	if (head)
2172 		link->last->link = req;
2173 	else
2174 		link->head = req;
2175 	link->last = req;
2176 	return 0;
2177 }
2178 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2179 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2180 			 const struct io_uring_sqe *sqe)
2181 	__must_hold(&ctx->uring_lock)
2182 {
2183 	struct io_submit_link *link = &ctx->submit_state.link;
2184 	int ret;
2185 
2186 	ret = io_init_req(ctx, req, sqe);
2187 	if (unlikely(ret))
2188 		return io_submit_fail_init(sqe, req, ret);
2189 
2190 	trace_io_uring_submit_req(req);
2191 
2192 	/*
2193 	 * If we already have a head request, queue this one for async
2194 	 * submittal once the head completes. If we don't have a head but
2195 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2196 	 * submitted sync once the chain is complete. If none of those
2197 	 * conditions are true (normal request), then just queue it.
2198 	 */
2199 	if (unlikely(link->head)) {
2200 		trace_io_uring_link(req, link->last);
2201 		link->last->link = req;
2202 		link->last = req;
2203 
2204 		if (req->flags & IO_REQ_LINK_FLAGS)
2205 			return 0;
2206 		/* last request of the link, flush it */
2207 		req = link->head;
2208 		link->head = NULL;
2209 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2210 			goto fallback;
2211 
2212 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2213 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2214 		if (req->flags & IO_REQ_LINK_FLAGS) {
2215 			link->head = req;
2216 			link->last = req;
2217 		} else {
2218 fallback:
2219 			io_queue_sqe_fallback(req);
2220 		}
2221 		return 0;
2222 	}
2223 
2224 	io_queue_sqe(req);
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Batched submission is done, ensure local IO is flushed out.
2230  */
io_submit_state_end(struct io_ring_ctx * ctx)2231 static void io_submit_state_end(struct io_ring_ctx *ctx)
2232 {
2233 	struct io_submit_state *state = &ctx->submit_state;
2234 
2235 	if (unlikely(state->link.head))
2236 		io_queue_sqe_fallback(state->link.head);
2237 	/* flush only after queuing links as they can generate completions */
2238 	io_submit_flush_completions(ctx);
2239 	if (state->plug_started)
2240 		blk_finish_plug(&state->plug);
2241 }
2242 
2243 /*
2244  * Start submission side cache.
2245  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2246 static void io_submit_state_start(struct io_submit_state *state,
2247 				  unsigned int max_ios)
2248 {
2249 	state->plug_started = false;
2250 	state->need_plug = max_ios > 2;
2251 	state->submit_nr = max_ios;
2252 	/* set only head, no need to init link_last in advance */
2253 	state->link.head = NULL;
2254 }
2255 
io_commit_sqring(struct io_ring_ctx * ctx)2256 static void io_commit_sqring(struct io_ring_ctx *ctx)
2257 {
2258 	struct io_rings *rings = ctx->rings;
2259 
2260 	/*
2261 	 * Ensure any loads from the SQEs are done at this point,
2262 	 * since once we write the new head, the application could
2263 	 * write new data to them.
2264 	 */
2265 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2266 }
2267 
2268 /*
2269  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2270  * that is mapped by userspace. This means that care needs to be taken to
2271  * ensure that reads are stable, as we cannot rely on userspace always
2272  * being a good citizen. If members of the sqe are validated and then later
2273  * used, it's important that those reads are done through READ_ONCE() to
2274  * prevent a re-load down the line.
2275  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2276 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2277 {
2278 	unsigned mask = ctx->sq_entries - 1;
2279 	unsigned head = ctx->cached_sq_head++ & mask;
2280 
2281 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2282 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2283 		head = READ_ONCE(ctx->sq_array[head]);
2284 		if (unlikely(head >= ctx->sq_entries)) {
2285 			WRITE_ONCE(ctx->rings->sq_dropped,
2286 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2287 			return false;
2288 		}
2289 		head = array_index_nospec(head, ctx->sq_entries);
2290 	}
2291 
2292 	/*
2293 	 * The cached sq head (or cq tail) serves two purposes:
2294 	 *
2295 	 * 1) allows us to batch the cost of updating the user visible
2296 	 *    head updates.
2297 	 * 2) allows the kernel side to track the head on its own, even
2298 	 *    though the application is the one updating it.
2299 	 */
2300 
2301 	/* double index for 128-byte SQEs, twice as long */
2302 	if (ctx->flags & IORING_SETUP_SQE128)
2303 		head <<= 1;
2304 	*sqe = &ctx->sq_sqes[head];
2305 	return true;
2306 }
2307 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2308 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2309 	__must_hold(&ctx->uring_lock)
2310 {
2311 	unsigned int entries = io_sqring_entries(ctx);
2312 	unsigned int left;
2313 	int ret;
2314 
2315 	if (unlikely(!entries))
2316 		return 0;
2317 	/* make sure SQ entry isn't read before tail */
2318 	ret = left = min(nr, entries);
2319 	io_get_task_refs(left);
2320 	io_submit_state_start(&ctx->submit_state, left);
2321 
2322 	do {
2323 		const struct io_uring_sqe *sqe;
2324 		struct io_kiocb *req;
2325 
2326 		if (unlikely(!io_alloc_req(ctx, &req)))
2327 			break;
2328 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2329 			io_req_add_to_cache(req, ctx);
2330 			break;
2331 		}
2332 
2333 		/*
2334 		 * Continue submitting even for sqe failure if the
2335 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2336 		 */
2337 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2338 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2339 			left--;
2340 			break;
2341 		}
2342 	} while (--left);
2343 
2344 	if (unlikely(left)) {
2345 		ret -= left;
2346 		/* try again if it submitted nothing and can't allocate a req */
2347 		if (!ret && io_req_cache_empty(ctx))
2348 			ret = -EAGAIN;
2349 		current->io_uring->cached_refs += left;
2350 	}
2351 
2352 	io_submit_state_end(ctx);
2353 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2354 	io_commit_sqring(ctx);
2355 	return ret;
2356 }
2357 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2358 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2359 			    int wake_flags, void *key)
2360 {
2361 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2362 
2363 	/*
2364 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2365 	 * the task, and the next invocation will do it.
2366 	 */
2367 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2368 		return autoremove_wake_function(curr, mode, wake_flags, key);
2369 	return -1;
2370 }
2371 
io_run_task_work_sig(struct io_ring_ctx * ctx)2372 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2373 {
2374 	if (io_local_work_pending(ctx)) {
2375 		__set_current_state(TASK_RUNNING);
2376 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2377 			return 0;
2378 	}
2379 	if (io_run_task_work() > 0)
2380 		return 0;
2381 	if (task_sigpending(current))
2382 		return -EINTR;
2383 	return 0;
2384 }
2385 
current_pending_io(void)2386 static bool current_pending_io(void)
2387 {
2388 	struct io_uring_task *tctx = current->io_uring;
2389 
2390 	if (!tctx)
2391 		return false;
2392 	return percpu_counter_read_positive(&tctx->inflight);
2393 }
2394 
io_cqring_timer_wakeup(struct hrtimer * timer)2395 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2396 {
2397 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2398 
2399 	WRITE_ONCE(iowq->hit_timeout, 1);
2400 	iowq->min_timeout = 0;
2401 	wake_up_process(iowq->wq.private);
2402 	return HRTIMER_NORESTART;
2403 }
2404 
2405 /*
2406  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2407  * wake up. If not, and we have a normal timeout, switch to that and keep
2408  * sleeping.
2409  */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2410 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2411 {
2412 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2413 	struct io_ring_ctx *ctx = iowq->ctx;
2414 
2415 	/* no general timeout, or shorter (or equal), we are done */
2416 	if (iowq->timeout == KTIME_MAX ||
2417 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2418 		goto out_wake;
2419 	/* work we may need to run, wake function will see if we need to wake */
2420 	if (io_has_work(ctx))
2421 		goto out_wake;
2422 	/* got events since we started waiting, min timeout is done */
2423 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2424 		goto out_wake;
2425 	/* if we have any events and min timeout expired, we're done */
2426 	if (io_cqring_events(ctx))
2427 		goto out_wake;
2428 
2429 	/*
2430 	 * If using deferred task_work running and application is waiting on
2431 	 * more than one request, ensure we reset it now where we are switching
2432 	 * to normal sleeps. Any request completion post min_wait should wake
2433 	 * the task and return.
2434 	 */
2435 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2436 		atomic_set(&ctx->cq_wait_nr, 1);
2437 		smp_mb();
2438 		if (!llist_empty(&ctx->work_llist))
2439 			goto out_wake;
2440 	}
2441 
2442 	hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2443 	hrtimer_set_expires(timer, iowq->timeout);
2444 	return HRTIMER_RESTART;
2445 out_wake:
2446 	return io_cqring_timer_wakeup(timer);
2447 }
2448 
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2449 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2450 				      clockid_t clock_id, ktime_t start_time)
2451 {
2452 	ktime_t timeout;
2453 
2454 	if (iowq->min_timeout) {
2455 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2456 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2457 				       HRTIMER_MODE_ABS);
2458 	} else {
2459 		timeout = iowq->timeout;
2460 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2461 				       HRTIMER_MODE_ABS);
2462 	}
2463 
2464 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2465 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2466 
2467 	if (!READ_ONCE(iowq->hit_timeout))
2468 		schedule();
2469 
2470 	hrtimer_cancel(&iowq->t);
2471 	destroy_hrtimer_on_stack(&iowq->t);
2472 	__set_current_state(TASK_RUNNING);
2473 
2474 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2475 }
2476 
2477 struct ext_arg {
2478 	size_t argsz;
2479 	struct timespec64 ts;
2480 	const sigset_t __user *sig;
2481 	ktime_t min_time;
2482 	bool ts_set;
2483 	bool iowait;
2484 };
2485 
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2486 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2487 				     struct io_wait_queue *iowq,
2488 				     struct ext_arg *ext_arg,
2489 				     ktime_t start_time)
2490 {
2491 	int ret = 0;
2492 
2493 	/*
2494 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2495 	 * can take into account that the task is waiting for IO - turns out
2496 	 * to be important for low QD IO.
2497 	 */
2498 	if (ext_arg->iowait && current_pending_io())
2499 		current->in_iowait = 1;
2500 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2501 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2502 	else
2503 		schedule();
2504 	current->in_iowait = 0;
2505 	return ret;
2506 }
2507 
2508 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2509 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2510 					  struct io_wait_queue *iowq,
2511 					  struct ext_arg *ext_arg,
2512 					  ktime_t start_time)
2513 {
2514 	if (unlikely(READ_ONCE(ctx->check_cq)))
2515 		return 1;
2516 	if (unlikely(io_local_work_pending(ctx)))
2517 		return 1;
2518 	if (unlikely(task_work_pending(current)))
2519 		return 1;
2520 	if (unlikely(task_sigpending(current)))
2521 		return -EINTR;
2522 	if (unlikely(io_should_wake(iowq)))
2523 		return 0;
2524 
2525 	return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2526 }
2527 
2528 /*
2529  * Wait until events become available, if we don't already have some. The
2530  * application must reap them itself, as they reside on the shared cq ring.
2531  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2532 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2533 			  struct ext_arg *ext_arg)
2534 {
2535 	struct io_wait_queue iowq;
2536 	struct io_rings *rings = ctx->rings;
2537 	ktime_t start_time;
2538 	int ret;
2539 
2540 	min_events = min_t(int, min_events, ctx->cq_entries);
2541 
2542 	if (!io_allowed_run_tw(ctx))
2543 		return -EEXIST;
2544 	if (io_local_work_pending(ctx))
2545 		io_run_local_work(ctx, min_events,
2546 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2547 	io_run_task_work();
2548 
2549 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2550 		io_cqring_do_overflow_flush(ctx);
2551 	if (__io_cqring_events_user(ctx) >= min_events)
2552 		return 0;
2553 
2554 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2555 	iowq.wq.private = current;
2556 	INIT_LIST_HEAD(&iowq.wq.entry);
2557 	iowq.ctx = ctx;
2558 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2559 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2560 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2561 	iowq.hit_timeout = 0;
2562 	iowq.min_timeout = ext_arg->min_time;
2563 	iowq.timeout = KTIME_MAX;
2564 	start_time = io_get_time(ctx);
2565 
2566 	if (ext_arg->ts_set) {
2567 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2568 		if (!(flags & IORING_ENTER_ABS_TIMER))
2569 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2570 	}
2571 
2572 	if (ext_arg->sig) {
2573 #ifdef CONFIG_COMPAT
2574 		if (in_compat_syscall())
2575 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2576 						      ext_arg->argsz);
2577 		else
2578 #endif
2579 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2580 
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	io_napi_busy_loop(ctx, &iowq);
2586 
2587 	trace_io_uring_cqring_wait(ctx, min_events);
2588 	do {
2589 		unsigned long check_cq;
2590 		int nr_wait;
2591 
2592 		/* if min timeout has been hit, don't reset wait count */
2593 		if (!iowq.hit_timeout)
2594 			nr_wait = (int) iowq.cq_tail -
2595 					READ_ONCE(ctx->rings->cq.tail);
2596 		else
2597 			nr_wait = 1;
2598 
2599 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2600 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2601 			set_current_state(TASK_INTERRUPTIBLE);
2602 		} else {
2603 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2604 							TASK_INTERRUPTIBLE);
2605 		}
2606 
2607 		ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2608 		__set_current_state(TASK_RUNNING);
2609 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2610 
2611 		/*
2612 		 * Run task_work after scheduling and before io_should_wake().
2613 		 * If we got woken because of task_work being processed, run it
2614 		 * now rather than let the caller do another wait loop.
2615 		 */
2616 		if (io_local_work_pending(ctx))
2617 			io_run_local_work(ctx, nr_wait, nr_wait);
2618 		io_run_task_work();
2619 
2620 		/*
2621 		 * Non-local task_work will be run on exit to userspace, but
2622 		 * if we're using DEFER_TASKRUN, then we could have waited
2623 		 * with a timeout for a number of requests. If the timeout
2624 		 * hits, we could have some requests ready to process. Ensure
2625 		 * this break is _after_ we have run task_work, to avoid
2626 		 * deferring running potentially pending requests until the
2627 		 * next time we wait for events.
2628 		 */
2629 		if (ret < 0)
2630 			break;
2631 
2632 		check_cq = READ_ONCE(ctx->check_cq);
2633 		if (unlikely(check_cq)) {
2634 			/* let the caller flush overflows, retry */
2635 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2636 				io_cqring_do_overflow_flush(ctx);
2637 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2638 				ret = -EBADR;
2639 				break;
2640 			}
2641 		}
2642 
2643 		if (io_should_wake(&iowq)) {
2644 			ret = 0;
2645 			break;
2646 		}
2647 		cond_resched();
2648 	} while (1);
2649 
2650 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2651 		finish_wait(&ctx->cq_wait, &iowq.wq);
2652 	restore_saved_sigmask_unless(ret == -EINTR);
2653 
2654 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2655 }
2656 
io_rings_free(struct io_ring_ctx * ctx)2657 static void io_rings_free(struct io_ring_ctx *ctx)
2658 {
2659 	io_free_region(ctx, &ctx->sq_region);
2660 	io_free_region(ctx, &ctx->ring_region);
2661 	ctx->rings = NULL;
2662 	ctx->sq_sqes = NULL;
2663 }
2664 
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2665 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2666 			 unsigned int cq_entries, size_t *sq_offset)
2667 {
2668 	struct io_rings *rings;
2669 	size_t off, sq_array_size;
2670 
2671 	off = struct_size(rings, cqes, cq_entries);
2672 	if (off == SIZE_MAX)
2673 		return SIZE_MAX;
2674 	if (flags & IORING_SETUP_CQE32) {
2675 		if (check_shl_overflow(off, 1, &off))
2676 			return SIZE_MAX;
2677 	}
2678 
2679 #ifdef CONFIG_SMP
2680 	off = ALIGN(off, SMP_CACHE_BYTES);
2681 	if (off == 0)
2682 		return SIZE_MAX;
2683 #endif
2684 
2685 	if (flags & IORING_SETUP_NO_SQARRAY) {
2686 		*sq_offset = SIZE_MAX;
2687 		return off;
2688 	}
2689 
2690 	*sq_offset = off;
2691 
2692 	sq_array_size = array_size(sizeof(u32), sq_entries);
2693 	if (sq_array_size == SIZE_MAX)
2694 		return SIZE_MAX;
2695 
2696 	if (check_add_overflow(off, sq_array_size, &off))
2697 		return SIZE_MAX;
2698 
2699 	return off;
2700 }
2701 
__io_req_caches_free(struct io_ring_ctx * ctx)2702 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2703 {
2704 	struct io_kiocb *req;
2705 	int nr = 0;
2706 
2707 	while (!io_req_cache_empty(ctx)) {
2708 		req = io_extract_req(ctx);
2709 		kmem_cache_free(req_cachep, req);
2710 		nr++;
2711 	}
2712 	if (nr) {
2713 		ctx->nr_req_allocated -= nr;
2714 		percpu_ref_put_many(&ctx->refs, nr);
2715 	}
2716 }
2717 
io_req_caches_free(struct io_ring_ctx * ctx)2718 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2719 {
2720 	guard(mutex)(&ctx->uring_lock);
2721 	__io_req_caches_free(ctx);
2722 }
2723 
io_ring_ctx_free(struct io_ring_ctx * ctx)2724 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2725 {
2726 	io_sq_thread_finish(ctx);
2727 
2728 	mutex_lock(&ctx->uring_lock);
2729 	io_sqe_buffers_unregister(ctx);
2730 	io_sqe_files_unregister(ctx);
2731 	io_unregister_zcrx_ifqs(ctx);
2732 	io_cqring_overflow_kill(ctx);
2733 	io_eventfd_unregister(ctx);
2734 	io_free_alloc_caches(ctx);
2735 	io_destroy_buffers(ctx);
2736 	io_free_region(ctx, &ctx->param_region);
2737 	mutex_unlock(&ctx->uring_lock);
2738 	if (ctx->sq_creds)
2739 		put_cred(ctx->sq_creds);
2740 	if (ctx->submitter_task)
2741 		put_task_struct(ctx->submitter_task);
2742 
2743 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2744 
2745 	if (ctx->mm_account) {
2746 		mmdrop(ctx->mm_account);
2747 		ctx->mm_account = NULL;
2748 	}
2749 	io_rings_free(ctx);
2750 
2751 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2752 		static_branch_dec(&io_key_has_sqarray);
2753 
2754 	percpu_ref_exit(&ctx->refs);
2755 	free_uid(ctx->user);
2756 	io_req_caches_free(ctx);
2757 
2758 	WARN_ON_ONCE(ctx->nr_req_allocated);
2759 
2760 	if (ctx->hash_map)
2761 		io_wq_put_hash(ctx->hash_map);
2762 	io_napi_free(ctx);
2763 	kvfree(ctx->cancel_table.hbs);
2764 	xa_destroy(&ctx->io_bl_xa);
2765 	kfree(ctx);
2766 }
2767 
io_activate_pollwq_cb(struct callback_head * cb)2768 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2769 {
2770 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2771 					       poll_wq_task_work);
2772 
2773 	mutex_lock(&ctx->uring_lock);
2774 	ctx->poll_activated = true;
2775 	mutex_unlock(&ctx->uring_lock);
2776 
2777 	/*
2778 	 * Wake ups for some events between start of polling and activation
2779 	 * might've been lost due to loose synchronisation.
2780 	 */
2781 	wake_up_all(&ctx->poll_wq);
2782 	percpu_ref_put(&ctx->refs);
2783 }
2784 
io_activate_pollwq(struct io_ring_ctx * ctx)2785 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2786 {
2787 	spin_lock(&ctx->completion_lock);
2788 	/* already activated or in progress */
2789 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2790 		goto out;
2791 	if (WARN_ON_ONCE(!ctx->task_complete))
2792 		goto out;
2793 	if (!ctx->submitter_task)
2794 		goto out;
2795 	/*
2796 	 * with ->submitter_task only the submitter task completes requests, we
2797 	 * only need to sync with it, which is done by injecting a tw
2798 	 */
2799 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2800 	percpu_ref_get(&ctx->refs);
2801 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2802 		percpu_ref_put(&ctx->refs);
2803 out:
2804 	spin_unlock(&ctx->completion_lock);
2805 }
2806 
io_uring_poll(struct file * file,poll_table * wait)2807 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2808 {
2809 	struct io_ring_ctx *ctx = file->private_data;
2810 	__poll_t mask = 0;
2811 
2812 	if (unlikely(!ctx->poll_activated))
2813 		io_activate_pollwq(ctx);
2814 	/*
2815 	 * provides mb() which pairs with barrier from wq_has_sleeper
2816 	 * call in io_commit_cqring
2817 	 */
2818 	poll_wait(file, &ctx->poll_wq, wait);
2819 
2820 	if (!io_sqring_full(ctx))
2821 		mask |= EPOLLOUT | EPOLLWRNORM;
2822 
2823 	/*
2824 	 * Don't flush cqring overflow list here, just do a simple check.
2825 	 * Otherwise there could possible be ABBA deadlock:
2826 	 *      CPU0                    CPU1
2827 	 *      ----                    ----
2828 	 * lock(&ctx->uring_lock);
2829 	 *                              lock(&ep->mtx);
2830 	 *                              lock(&ctx->uring_lock);
2831 	 * lock(&ep->mtx);
2832 	 *
2833 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2834 	 * pushes them to do the flush.
2835 	 */
2836 
2837 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2838 		mask |= EPOLLIN | EPOLLRDNORM;
2839 
2840 	return mask;
2841 }
2842 
2843 struct io_tctx_exit {
2844 	struct callback_head		task_work;
2845 	struct completion		completion;
2846 	struct io_ring_ctx		*ctx;
2847 };
2848 
io_tctx_exit_cb(struct callback_head * cb)2849 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2850 {
2851 	struct io_uring_task *tctx = current->io_uring;
2852 	struct io_tctx_exit *work;
2853 
2854 	work = container_of(cb, struct io_tctx_exit, task_work);
2855 	/*
2856 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2857 	 * node. It'll be removed by the end of cancellation, just ignore it.
2858 	 * tctx can be NULL if the queueing of this task_work raced with
2859 	 * work cancelation off the exec path.
2860 	 */
2861 	if (tctx && !atomic_read(&tctx->in_cancel))
2862 		io_uring_del_tctx_node((unsigned long)work->ctx);
2863 	complete(&work->completion);
2864 }
2865 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2866 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2867 {
2868 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2869 
2870 	return req->ctx == data;
2871 }
2872 
io_ring_exit_work(struct work_struct * work)2873 static __cold void io_ring_exit_work(struct work_struct *work)
2874 {
2875 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2876 	unsigned long timeout = jiffies + HZ * 60 * 5;
2877 	unsigned long interval = HZ / 20;
2878 	struct io_tctx_exit exit;
2879 	struct io_tctx_node *node;
2880 	int ret;
2881 
2882 	/*
2883 	 * If we're doing polled IO and end up having requests being
2884 	 * submitted async (out-of-line), then completions can come in while
2885 	 * we're waiting for refs to drop. We need to reap these manually,
2886 	 * as nobody else will be looking for them.
2887 	 */
2888 	do {
2889 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2890 			mutex_lock(&ctx->uring_lock);
2891 			io_cqring_overflow_kill(ctx);
2892 			mutex_unlock(&ctx->uring_lock);
2893 		}
2894 		if (!xa_empty(&ctx->zcrx_ctxs)) {
2895 			mutex_lock(&ctx->uring_lock);
2896 			io_shutdown_zcrx_ifqs(ctx);
2897 			mutex_unlock(&ctx->uring_lock);
2898 		}
2899 
2900 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2901 			io_move_task_work_from_local(ctx);
2902 
2903 		/* The SQPOLL thread never reaches this path */
2904 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2905 			cond_resched();
2906 
2907 		if (ctx->sq_data) {
2908 			struct io_sq_data *sqd = ctx->sq_data;
2909 			struct task_struct *tsk;
2910 
2911 			io_sq_thread_park(sqd);
2912 			tsk = sqpoll_task_locked(sqd);
2913 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2914 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2915 						io_cancel_ctx_cb, ctx, true);
2916 			io_sq_thread_unpark(sqd);
2917 		}
2918 
2919 		io_req_caches_free(ctx);
2920 
2921 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2922 			/* there is little hope left, don't run it too often */
2923 			interval = HZ * 60;
2924 		}
2925 		/*
2926 		 * This is really an uninterruptible wait, as it has to be
2927 		 * complete. But it's also run from a kworker, which doesn't
2928 		 * take signals, so it's fine to make it interruptible. This
2929 		 * avoids scenarios where we knowingly can wait much longer
2930 		 * on completions, for example if someone does a SIGSTOP on
2931 		 * a task that needs to finish task_work to make this loop
2932 		 * complete. That's a synthetic situation that should not
2933 		 * cause a stuck task backtrace, and hence a potential panic
2934 		 * on stuck tasks if that is enabled.
2935 		 */
2936 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2937 
2938 	init_completion(&exit.completion);
2939 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2940 	exit.ctx = ctx;
2941 
2942 	mutex_lock(&ctx->uring_lock);
2943 	while (!list_empty(&ctx->tctx_list)) {
2944 		WARN_ON_ONCE(time_after(jiffies, timeout));
2945 
2946 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2947 					ctx_node);
2948 		/* don't spin on a single task if cancellation failed */
2949 		list_rotate_left(&ctx->tctx_list);
2950 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2951 		if (WARN_ON_ONCE(ret))
2952 			continue;
2953 
2954 		mutex_unlock(&ctx->uring_lock);
2955 		/*
2956 		 * See comment above for
2957 		 * wait_for_completion_interruptible_timeout() on why this
2958 		 * wait is marked as interruptible.
2959 		 */
2960 		wait_for_completion_interruptible(&exit.completion);
2961 		mutex_lock(&ctx->uring_lock);
2962 	}
2963 	mutex_unlock(&ctx->uring_lock);
2964 	spin_lock(&ctx->completion_lock);
2965 	spin_unlock(&ctx->completion_lock);
2966 
2967 	/* pairs with RCU read section in io_req_local_work_add() */
2968 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2969 		synchronize_rcu();
2970 
2971 	io_ring_ctx_free(ctx);
2972 }
2973 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2974 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2975 {
2976 	unsigned long index;
2977 	struct creds *creds;
2978 
2979 	mutex_lock(&ctx->uring_lock);
2980 	percpu_ref_kill(&ctx->refs);
2981 	xa_for_each(&ctx->personalities, index, creds)
2982 		io_unregister_personality(ctx, index);
2983 	mutex_unlock(&ctx->uring_lock);
2984 
2985 	flush_delayed_work(&ctx->fallback_work);
2986 
2987 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2988 	/*
2989 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2990 	 * if we're exiting a ton of rings at the same time. It just adds
2991 	 * noise and overhead, there's no discernable change in runtime
2992 	 * over using system_wq.
2993 	 */
2994 	queue_work(iou_wq, &ctx->exit_work);
2995 }
2996 
io_uring_release(struct inode * inode,struct file * file)2997 static int io_uring_release(struct inode *inode, struct file *file)
2998 {
2999 	struct io_ring_ctx *ctx = file->private_data;
3000 
3001 	file->private_data = NULL;
3002 	io_ring_ctx_wait_and_kill(ctx);
3003 	return 0;
3004 }
3005 
3006 struct io_task_cancel {
3007 	struct io_uring_task *tctx;
3008 	bool all;
3009 };
3010 
io_cancel_task_cb(struct io_wq_work * work,void * data)3011 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3012 {
3013 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3014 	struct io_task_cancel *cancel = data;
3015 
3016 	return io_match_task_safe(req, cancel->tctx, cancel->all);
3017 }
3018 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3019 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3020 					 struct io_uring_task *tctx,
3021 					 bool cancel_all)
3022 {
3023 	struct io_defer_entry *de;
3024 	LIST_HEAD(list);
3025 
3026 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3027 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3028 			list_cut_position(&list, &ctx->defer_list, &de->list);
3029 			break;
3030 		}
3031 	}
3032 	if (list_empty(&list))
3033 		return false;
3034 
3035 	while (!list_empty(&list)) {
3036 		de = list_first_entry(&list, struct io_defer_entry, list);
3037 		list_del_init(&de->list);
3038 		ctx->nr_drained -= io_linked_nr(de->req);
3039 		io_req_task_queue_fail(de->req, -ECANCELED);
3040 		kfree(de);
3041 	}
3042 	return true;
3043 }
3044 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3045 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3046 {
3047 	struct io_tctx_node *node;
3048 	enum io_wq_cancel cret;
3049 	bool ret = false;
3050 
3051 	mutex_lock(&ctx->uring_lock);
3052 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3053 		struct io_uring_task *tctx = node->task->io_uring;
3054 
3055 		/*
3056 		 * io_wq will stay alive while we hold uring_lock, because it's
3057 		 * killed after ctx nodes, which requires to take the lock.
3058 		 */
3059 		if (!tctx || !tctx->io_wq)
3060 			continue;
3061 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3062 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3063 	}
3064 	mutex_unlock(&ctx->uring_lock);
3065 
3066 	return ret;
3067 }
3068 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3069 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3070 						struct io_uring_task *tctx,
3071 						bool cancel_all,
3072 						bool is_sqpoll_thread)
3073 {
3074 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3075 	enum io_wq_cancel cret;
3076 	bool ret = false;
3077 
3078 	/* set it so io_req_local_work_add() would wake us up */
3079 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3080 		atomic_set(&ctx->cq_wait_nr, 1);
3081 		smp_mb();
3082 	}
3083 
3084 	/* failed during ring init, it couldn't have issued any requests */
3085 	if (!ctx->rings)
3086 		return false;
3087 
3088 	if (!tctx) {
3089 		ret |= io_uring_try_cancel_iowq(ctx);
3090 	} else if (tctx->io_wq) {
3091 		/*
3092 		 * Cancels requests of all rings, not only @ctx, but
3093 		 * it's fine as the task is in exit/exec.
3094 		 */
3095 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3096 				       &cancel, true);
3097 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3098 	}
3099 
3100 	/* SQPOLL thread does its own polling */
3101 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3102 	    is_sqpoll_thread) {
3103 		while (!wq_list_empty(&ctx->iopoll_list)) {
3104 			io_iopoll_try_reap_events(ctx);
3105 			ret = true;
3106 			cond_resched();
3107 		}
3108 	}
3109 
3110 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3111 	    io_allowed_defer_tw_run(ctx))
3112 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3113 	mutex_lock(&ctx->uring_lock);
3114 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3115 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3116 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3117 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3118 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3119 	mutex_unlock(&ctx->uring_lock);
3120 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3121 	if (tctx)
3122 		ret |= io_run_task_work() > 0;
3123 	else
3124 		ret |= flush_delayed_work(&ctx->fallback_work);
3125 	return ret;
3126 }
3127 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3128 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3129 {
3130 	if (tracked)
3131 		return atomic_read(&tctx->inflight_tracked);
3132 	return percpu_counter_sum(&tctx->inflight);
3133 }
3134 
3135 /*
3136  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3137  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3138  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3139 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3140 {
3141 	struct io_uring_task *tctx = current->io_uring;
3142 	struct io_ring_ctx *ctx;
3143 	struct io_tctx_node *node;
3144 	unsigned long index;
3145 	s64 inflight;
3146 	DEFINE_WAIT(wait);
3147 
3148 	WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3149 
3150 	if (!current->io_uring)
3151 		return;
3152 	if (tctx->io_wq)
3153 		io_wq_exit_start(tctx->io_wq);
3154 
3155 	atomic_inc(&tctx->in_cancel);
3156 	do {
3157 		bool loop = false;
3158 
3159 		io_uring_drop_tctx_refs(current);
3160 		if (!tctx_inflight(tctx, !cancel_all))
3161 			break;
3162 
3163 		/* read completions before cancelations */
3164 		inflight = tctx_inflight(tctx, false);
3165 		if (!inflight)
3166 			break;
3167 
3168 		if (!sqd) {
3169 			xa_for_each(&tctx->xa, index, node) {
3170 				/* sqpoll task will cancel all its requests */
3171 				if (node->ctx->sq_data)
3172 					continue;
3173 				loop |= io_uring_try_cancel_requests(node->ctx,
3174 							current->io_uring,
3175 							cancel_all,
3176 							false);
3177 			}
3178 		} else {
3179 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3180 				loop |= io_uring_try_cancel_requests(ctx,
3181 								     current->io_uring,
3182 								     cancel_all,
3183 								     true);
3184 		}
3185 
3186 		if (loop) {
3187 			cond_resched();
3188 			continue;
3189 		}
3190 
3191 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3192 		io_run_task_work();
3193 		io_uring_drop_tctx_refs(current);
3194 		xa_for_each(&tctx->xa, index, node) {
3195 			if (io_local_work_pending(node->ctx)) {
3196 				WARN_ON_ONCE(node->ctx->submitter_task &&
3197 					     node->ctx->submitter_task != current);
3198 				goto end_wait;
3199 			}
3200 		}
3201 		/*
3202 		 * If we've seen completions, retry without waiting. This
3203 		 * avoids a race where a completion comes in before we did
3204 		 * prepare_to_wait().
3205 		 */
3206 		if (inflight == tctx_inflight(tctx, !cancel_all))
3207 			schedule();
3208 end_wait:
3209 		finish_wait(&tctx->wait, &wait);
3210 	} while (1);
3211 
3212 	io_uring_clean_tctx(tctx);
3213 	if (cancel_all) {
3214 		/*
3215 		 * We shouldn't run task_works after cancel, so just leave
3216 		 * ->in_cancel set for normal exit.
3217 		 */
3218 		atomic_dec(&tctx->in_cancel);
3219 		/* for exec all current's requests should be gone, kill tctx */
3220 		__io_uring_free(current);
3221 	}
3222 }
3223 
__io_uring_cancel(bool cancel_all)3224 void __io_uring_cancel(bool cancel_all)
3225 {
3226 	io_uring_unreg_ringfd();
3227 	io_uring_cancel_generic(cancel_all, NULL);
3228 }
3229 
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3230 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3231 			const struct io_uring_getevents_arg __user *uarg)
3232 {
3233 	unsigned long size = sizeof(struct io_uring_reg_wait);
3234 	unsigned long offset = (uintptr_t)uarg;
3235 	unsigned long end;
3236 
3237 	if (unlikely(offset % sizeof(long)))
3238 		return ERR_PTR(-EFAULT);
3239 
3240 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3241 	if (unlikely(check_add_overflow(offset, size, &end) ||
3242 		     end > ctx->cq_wait_size))
3243 		return ERR_PTR(-EFAULT);
3244 
3245 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3246 	return ctx->cq_wait_arg + offset;
3247 }
3248 
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3249 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3250 			       const void __user *argp, size_t argsz)
3251 {
3252 	struct io_uring_getevents_arg arg;
3253 
3254 	if (!(flags & IORING_ENTER_EXT_ARG))
3255 		return 0;
3256 	if (flags & IORING_ENTER_EXT_ARG_REG)
3257 		return -EINVAL;
3258 	if (argsz != sizeof(arg))
3259 		return -EINVAL;
3260 	if (copy_from_user(&arg, argp, sizeof(arg)))
3261 		return -EFAULT;
3262 	return 0;
3263 }
3264 
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3265 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3266 			  const void __user *argp, struct ext_arg *ext_arg)
3267 {
3268 	const struct io_uring_getevents_arg __user *uarg = argp;
3269 	struct io_uring_getevents_arg arg;
3270 
3271 	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3272 
3273 	/*
3274 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3275 	 * is just a pointer to the sigset_t.
3276 	 */
3277 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3278 		ext_arg->sig = (const sigset_t __user *) argp;
3279 		return 0;
3280 	}
3281 
3282 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3283 		struct io_uring_reg_wait *w;
3284 
3285 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3286 			return -EINVAL;
3287 		w = io_get_ext_arg_reg(ctx, argp);
3288 		if (IS_ERR(w))
3289 			return PTR_ERR(w);
3290 
3291 		if (w->flags & ~IORING_REG_WAIT_TS)
3292 			return -EINVAL;
3293 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3294 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3295 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3296 		if (w->flags & IORING_REG_WAIT_TS) {
3297 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3298 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3299 			ext_arg->ts_set = true;
3300 		}
3301 		return 0;
3302 	}
3303 
3304 	/*
3305 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3306 	 * timespec and sigset_t pointers if good.
3307 	 */
3308 	if (ext_arg->argsz != sizeof(arg))
3309 		return -EINVAL;
3310 #ifdef CONFIG_64BIT
3311 	if (!user_access_begin(uarg, sizeof(*uarg)))
3312 		return -EFAULT;
3313 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3314 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3315 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3316 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3317 	user_access_end();
3318 #else
3319 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3320 		return -EFAULT;
3321 #endif
3322 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3323 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3324 	ext_arg->argsz = arg.sigmask_sz;
3325 	if (arg.ts) {
3326 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3327 			return -EFAULT;
3328 		ext_arg->ts_set = true;
3329 	}
3330 	return 0;
3331 #ifdef CONFIG_64BIT
3332 uaccess_end:
3333 	user_access_end();
3334 	return -EFAULT;
3335 #endif
3336 }
3337 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3338 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3339 		u32, min_complete, u32, flags, const void __user *, argp,
3340 		size_t, argsz)
3341 {
3342 	struct io_ring_ctx *ctx;
3343 	struct file *file;
3344 	long ret;
3345 
3346 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3347 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3348 			       IORING_ENTER_REGISTERED_RING |
3349 			       IORING_ENTER_ABS_TIMER |
3350 			       IORING_ENTER_EXT_ARG_REG |
3351 			       IORING_ENTER_NO_IOWAIT)))
3352 		return -EINVAL;
3353 
3354 	/*
3355 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3356 	 * need only dereference our task private array to find it.
3357 	 */
3358 	if (flags & IORING_ENTER_REGISTERED_RING) {
3359 		struct io_uring_task *tctx = current->io_uring;
3360 
3361 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3362 			return -EINVAL;
3363 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3364 		file = tctx->registered_rings[fd];
3365 		if (unlikely(!file))
3366 			return -EBADF;
3367 	} else {
3368 		file = fget(fd);
3369 		if (unlikely(!file))
3370 			return -EBADF;
3371 		ret = -EOPNOTSUPP;
3372 		if (unlikely(!io_is_uring_fops(file)))
3373 			goto out;
3374 	}
3375 
3376 	ctx = file->private_data;
3377 	ret = -EBADFD;
3378 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3379 		goto out;
3380 
3381 	/*
3382 	 * For SQ polling, the thread will do all submissions and completions.
3383 	 * Just return the requested submit count, and wake the thread if
3384 	 * we were asked to.
3385 	 */
3386 	ret = 0;
3387 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3388 		if (unlikely(ctx->sq_data->thread == NULL)) {
3389 			ret = -EOWNERDEAD;
3390 			goto out;
3391 		}
3392 		if (flags & IORING_ENTER_SQ_WAKEUP)
3393 			wake_up(&ctx->sq_data->wait);
3394 		if (flags & IORING_ENTER_SQ_WAIT)
3395 			io_sqpoll_wait_sq(ctx);
3396 
3397 		ret = to_submit;
3398 	} else if (to_submit) {
3399 		ret = io_uring_add_tctx_node(ctx);
3400 		if (unlikely(ret))
3401 			goto out;
3402 
3403 		mutex_lock(&ctx->uring_lock);
3404 		ret = io_submit_sqes(ctx, to_submit);
3405 		if (ret != to_submit) {
3406 			mutex_unlock(&ctx->uring_lock);
3407 			goto out;
3408 		}
3409 		if (flags & IORING_ENTER_GETEVENTS) {
3410 			if (ctx->syscall_iopoll)
3411 				goto iopoll_locked;
3412 			/*
3413 			 * Ignore errors, we'll soon call io_cqring_wait() and
3414 			 * it should handle ownership problems if any.
3415 			 */
3416 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3417 				(void)io_run_local_work_locked(ctx, min_complete);
3418 		}
3419 		mutex_unlock(&ctx->uring_lock);
3420 	}
3421 
3422 	if (flags & IORING_ENTER_GETEVENTS) {
3423 		int ret2;
3424 
3425 		if (ctx->syscall_iopoll) {
3426 			/*
3427 			 * We disallow the app entering submit/complete with
3428 			 * polling, but we still need to lock the ring to
3429 			 * prevent racing with polled issue that got punted to
3430 			 * a workqueue.
3431 			 */
3432 			mutex_lock(&ctx->uring_lock);
3433 iopoll_locked:
3434 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3435 			if (likely(!ret2))
3436 				ret2 = io_iopoll_check(ctx, min_complete);
3437 			mutex_unlock(&ctx->uring_lock);
3438 		} else {
3439 			struct ext_arg ext_arg = { .argsz = argsz };
3440 
3441 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3442 			if (likely(!ret2))
3443 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3444 						      &ext_arg);
3445 		}
3446 
3447 		if (!ret) {
3448 			ret = ret2;
3449 
3450 			/*
3451 			 * EBADR indicates that one or more CQE were dropped.
3452 			 * Once the user has been informed we can clear the bit
3453 			 * as they are obviously ok with those drops.
3454 			 */
3455 			if (unlikely(ret2 == -EBADR))
3456 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3457 					  &ctx->check_cq);
3458 		}
3459 	}
3460 out:
3461 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3462 		fput(file);
3463 	return ret;
3464 }
3465 
3466 static const struct file_operations io_uring_fops = {
3467 	.release	= io_uring_release,
3468 	.mmap		= io_uring_mmap,
3469 	.get_unmapped_area = io_uring_get_unmapped_area,
3470 #ifndef CONFIG_MMU
3471 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3472 #endif
3473 	.poll		= io_uring_poll,
3474 #ifdef CONFIG_PROC_FS
3475 	.show_fdinfo	= io_uring_show_fdinfo,
3476 #endif
3477 };
3478 
io_is_uring_fops(struct file * file)3479 bool io_is_uring_fops(struct file *file)
3480 {
3481 	return file->f_op == &io_uring_fops;
3482 }
3483 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3484 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3485 					 struct io_uring_params *p)
3486 {
3487 	struct io_uring_region_desc rd;
3488 	struct io_rings *rings;
3489 	size_t size, sq_array_offset;
3490 	int ret;
3491 
3492 	/* make sure these are sane, as we already accounted them */
3493 	ctx->sq_entries = p->sq_entries;
3494 	ctx->cq_entries = p->cq_entries;
3495 
3496 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3497 			  &sq_array_offset);
3498 	if (size == SIZE_MAX)
3499 		return -EOVERFLOW;
3500 
3501 	memset(&rd, 0, sizeof(rd));
3502 	rd.size = PAGE_ALIGN(size);
3503 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3504 		rd.user_addr = p->cq_off.user_addr;
3505 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3506 	}
3507 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3508 	if (ret)
3509 		return ret;
3510 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3511 
3512 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3513 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3514 	rings->sq_ring_mask = p->sq_entries - 1;
3515 	rings->cq_ring_mask = p->cq_entries - 1;
3516 	rings->sq_ring_entries = p->sq_entries;
3517 	rings->cq_ring_entries = p->cq_entries;
3518 
3519 	if (p->flags & IORING_SETUP_SQE128)
3520 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3521 	else
3522 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3523 	if (size == SIZE_MAX) {
3524 		io_rings_free(ctx);
3525 		return -EOVERFLOW;
3526 	}
3527 
3528 	memset(&rd, 0, sizeof(rd));
3529 	rd.size = PAGE_ALIGN(size);
3530 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3531 		rd.user_addr = p->sq_off.user_addr;
3532 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3533 	}
3534 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3535 	if (ret) {
3536 		io_rings_free(ctx);
3537 		return ret;
3538 	}
3539 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3540 	return 0;
3541 }
3542 
io_uring_install_fd(struct file * file)3543 static int io_uring_install_fd(struct file *file)
3544 {
3545 	int fd;
3546 
3547 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3548 	if (fd < 0)
3549 		return fd;
3550 	fd_install(fd, file);
3551 	return fd;
3552 }
3553 
3554 /*
3555  * Allocate an anonymous fd, this is what constitutes the application
3556  * visible backing of an io_uring instance. The application mmaps this
3557  * fd to gain access to the SQ/CQ ring details.
3558  */
io_uring_get_file(struct io_ring_ctx * ctx)3559 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3560 {
3561 	/* Create a new inode so that the LSM can block the creation.  */
3562 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3563 					 O_RDWR | O_CLOEXEC, NULL);
3564 }
3565 
io_uring_sanitise_params(struct io_uring_params * p)3566 static int io_uring_sanitise_params(struct io_uring_params *p)
3567 {
3568 	unsigned flags = p->flags;
3569 
3570 	/* There is no way to mmap rings without a real fd */
3571 	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3572 	    !(flags & IORING_SETUP_NO_MMAP))
3573 		return -EINVAL;
3574 
3575 	if (flags & IORING_SETUP_SQPOLL) {
3576 		/* IPI related flags don't make sense with SQPOLL */
3577 		if (flags & (IORING_SETUP_COOP_TASKRUN |
3578 			     IORING_SETUP_TASKRUN_FLAG |
3579 			     IORING_SETUP_DEFER_TASKRUN))
3580 			return -EINVAL;
3581 	}
3582 
3583 	if (flags & IORING_SETUP_TASKRUN_FLAG) {
3584 		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3585 			       IORING_SETUP_DEFER_TASKRUN)))
3586 			return -EINVAL;
3587 	}
3588 
3589 	/* HYBRID_IOPOLL only valid with IOPOLL */
3590 	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3591 		return -EINVAL;
3592 
3593 	/*
3594 	 * For DEFER_TASKRUN we require the completion task to be the same as
3595 	 * the submission task. This implies that there is only one submitter.
3596 	 */
3597 	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3598 	    !(flags & IORING_SETUP_SINGLE_ISSUER))
3599 		return -EINVAL;
3600 
3601 	return 0;
3602 }
3603 
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3604 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3605 {
3606 	if (!entries)
3607 		return -EINVAL;
3608 	if (entries > IORING_MAX_ENTRIES) {
3609 		if (!(p->flags & IORING_SETUP_CLAMP))
3610 			return -EINVAL;
3611 		entries = IORING_MAX_ENTRIES;
3612 	}
3613 
3614 	/*
3615 	 * Use twice as many entries for the CQ ring. It's possible for the
3616 	 * application to drive a higher depth than the size of the SQ ring,
3617 	 * since the sqes are only used at submission time. This allows for
3618 	 * some flexibility in overcommitting a bit. If the application has
3619 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3620 	 * of CQ ring entries manually.
3621 	 */
3622 	p->sq_entries = roundup_pow_of_two(entries);
3623 	if (p->flags & IORING_SETUP_CQSIZE) {
3624 		/*
3625 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3626 		 * to a power-of-two, if it isn't already. We do NOT impose
3627 		 * any cq vs sq ring sizing.
3628 		 */
3629 		if (!p->cq_entries)
3630 			return -EINVAL;
3631 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3632 			if (!(p->flags & IORING_SETUP_CLAMP))
3633 				return -EINVAL;
3634 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3635 		}
3636 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3637 		if (p->cq_entries < p->sq_entries)
3638 			return -EINVAL;
3639 	} else {
3640 		p->cq_entries = 2 * p->sq_entries;
3641 	}
3642 
3643 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3644 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3645 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3646 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3647 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3648 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3649 	p->sq_off.resv1 = 0;
3650 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3651 		p->sq_off.user_addr = 0;
3652 
3653 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3654 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3655 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3656 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3657 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3658 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3659 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3660 	p->cq_off.resv1 = 0;
3661 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3662 		p->cq_off.user_addr = 0;
3663 
3664 	return 0;
3665 }
3666 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3667 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3668 				  struct io_uring_params __user *params)
3669 {
3670 	struct io_ring_ctx *ctx;
3671 	struct io_uring_task *tctx;
3672 	struct file *file;
3673 	int ret;
3674 
3675 	ret = io_uring_sanitise_params(p);
3676 	if (ret)
3677 		return ret;
3678 
3679 	ret = io_uring_fill_params(entries, p);
3680 	if (unlikely(ret))
3681 		return ret;
3682 
3683 	ctx = io_ring_ctx_alloc(p);
3684 	if (!ctx)
3685 		return -ENOMEM;
3686 
3687 	ctx->clockid = CLOCK_MONOTONIC;
3688 	ctx->clock_offset = 0;
3689 
3690 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3691 		static_branch_inc(&io_key_has_sqarray);
3692 
3693 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3694 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3695 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3696 		ctx->task_complete = true;
3697 
3698 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3699 		ctx->lockless_cq = true;
3700 
3701 	/*
3702 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3703 	 * purposes, see io_activate_pollwq()
3704 	 */
3705 	if (!ctx->task_complete)
3706 		ctx->poll_activated = true;
3707 
3708 	/*
3709 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3710 	 * space applications don't need to do io completion events
3711 	 * polling again, they can rely on io_sq_thread to do polling
3712 	 * work, which can reduce cpu usage and uring_lock contention.
3713 	 */
3714 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3715 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3716 		ctx->syscall_iopoll = 1;
3717 
3718 	ctx->compat = in_compat_syscall();
3719 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3720 		ctx->user = get_uid(current_user());
3721 
3722 	/*
3723 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3724 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3725 	 */
3726 	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3727 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3728 	else
3729 		ctx->notify_method = TWA_SIGNAL;
3730 
3731 	/*
3732 	 * This is just grabbed for accounting purposes. When a process exits,
3733 	 * the mm is exited and dropped before the files, hence we need to hang
3734 	 * on to this mm purely for the purposes of being able to unaccount
3735 	 * memory (locked/pinned vm). It's not used for anything else.
3736 	 */
3737 	mmgrab(current->mm);
3738 	ctx->mm_account = current->mm;
3739 
3740 	ret = io_allocate_scq_urings(ctx, p);
3741 	if (ret)
3742 		goto err;
3743 
3744 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3745 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3746 
3747 	ret = io_sq_offload_create(ctx, p);
3748 	if (ret)
3749 		goto err;
3750 
3751 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3752 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3753 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3754 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3755 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3756 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3757 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3758 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3759 			IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3760 
3761 	if (copy_to_user(params, p, sizeof(*p))) {
3762 		ret = -EFAULT;
3763 		goto err;
3764 	}
3765 
3766 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3767 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3768 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3769 
3770 	file = io_uring_get_file(ctx);
3771 	if (IS_ERR(file)) {
3772 		ret = PTR_ERR(file);
3773 		goto err;
3774 	}
3775 
3776 	ret = __io_uring_add_tctx_node(ctx);
3777 	if (ret)
3778 		goto err_fput;
3779 	tctx = current->io_uring;
3780 
3781 	/*
3782 	 * Install ring fd as the very last thing, so we don't risk someone
3783 	 * having closed it before we finish setup
3784 	 */
3785 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3786 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3787 	else
3788 		ret = io_uring_install_fd(file);
3789 	if (ret < 0)
3790 		goto err_fput;
3791 
3792 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3793 	return ret;
3794 err:
3795 	io_ring_ctx_wait_and_kill(ctx);
3796 	return ret;
3797 err_fput:
3798 	fput(file);
3799 	return ret;
3800 }
3801 
3802 /*
3803  * Sets up an aio uring context, and returns the fd. Applications asks for a
3804  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3805  * params structure passed in.
3806  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3807 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3808 {
3809 	struct io_uring_params p;
3810 	int i;
3811 
3812 	if (copy_from_user(&p, params, sizeof(p)))
3813 		return -EFAULT;
3814 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3815 		if (p.resv[i])
3816 			return -EINVAL;
3817 	}
3818 
3819 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3820 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3821 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3822 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3823 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3824 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3825 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3826 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3827 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3828 		return -EINVAL;
3829 
3830 	return io_uring_create(entries, &p, params);
3831 }
3832 
io_uring_allowed(void)3833 static inline int io_uring_allowed(void)
3834 {
3835 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3836 	kgid_t io_uring_group;
3837 
3838 	if (disabled == 2)
3839 		return -EPERM;
3840 
3841 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3842 		goto allowed_lsm;
3843 
3844 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3845 	if (!gid_valid(io_uring_group))
3846 		return -EPERM;
3847 
3848 	if (!in_group_p(io_uring_group))
3849 		return -EPERM;
3850 
3851 allowed_lsm:
3852 	return security_uring_allowed();
3853 }
3854 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3855 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3856 		struct io_uring_params __user *, params)
3857 {
3858 	int ret;
3859 
3860 	ret = io_uring_allowed();
3861 	if (ret)
3862 		return ret;
3863 
3864 	return io_uring_setup(entries, params);
3865 }
3866 
io_uring_init(void)3867 static int __init io_uring_init(void)
3868 {
3869 	struct kmem_cache_args kmem_args = {
3870 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3871 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3872 		.freeptr_offset = offsetof(struct io_kiocb, work),
3873 		.use_freeptr_offset = true,
3874 	};
3875 
3876 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3877 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3878 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3879 } while (0)
3880 
3881 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3882 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3883 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3884 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3885 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3886 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3887 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3888 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3889 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3890 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3891 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3892 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3893 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3894 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3895 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3896 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3897 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3898 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3899 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3900 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3901 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3902 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3903 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3904 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3905 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3906 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3907 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3908 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3909 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3910 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3911 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3912 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3913 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3914 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3915 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3916 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3917 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3918 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3919 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3920 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3921 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3922 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3923 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3924 	BUILD_BUG_SQE_ELEM(44, __u8,   write_stream);
3925 	BUILD_BUG_SQE_ELEM(45, __u8,   __pad4[0]);
3926 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3927 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3928 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3929 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3930 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3931 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3932 
3933 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3934 		     sizeof(struct io_uring_rsrc_update));
3935 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3936 		     sizeof(struct io_uring_rsrc_update2));
3937 
3938 	/* ->buf_index is u16 */
3939 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3940 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3941 		     offsetof(struct io_uring_buf_ring, tail));
3942 
3943 	/* should fit into one byte */
3944 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3945 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3946 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3947 
3948 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3949 
3950 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3951 
3952 	/* top 8bits are for internal use */
3953 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3954 
3955 	io_uring_optable_init();
3956 
3957 	/* imu->dir is u8 */
3958 	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3959 
3960 	/*
3961 	 * Allow user copy in the per-command field, which starts after the
3962 	 * file in io_kiocb and until the opcode field. The openat2 handling
3963 	 * requires copying in user memory into the io_kiocb object in that
3964 	 * range, and HARDENED_USERCOPY will complain if we haven't
3965 	 * correctly annotated this range.
3966 	 */
3967 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3968 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3969 				SLAB_TYPESAFE_BY_RCU);
3970 
3971 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3972 	BUG_ON(!iou_wq);
3973 
3974 #ifdef CONFIG_SYSCTL
3975 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3976 #endif
3977 
3978 	return 0;
3979 };
3980 __initcall(io_uring_init);
3981