xref: /linux/io_uring/rw.c (revision eff5f16bfd87ae48c56751741af41a825d5d4618)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "io_uring.h"
19 #include "opdef.h"
20 #include "kbuf.h"
21 #include "alloc_cache.h"
22 #include "rsrc.h"
23 #include "poll.h"
24 #include "rw.h"
25 
26 static void io_complete_rw(struct kiocb *kiocb, long res);
27 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
28 
29 struct io_rw {
30 	/* NOTE: kiocb has the file as the first member, so don't do it here */
31 	struct kiocb			kiocb;
32 	u64				addr;
33 	u32				len;
34 	rwf_t				flags;
35 };
36 
37 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
38 {
39 	/* If FMODE_NOWAIT is set for a file, we're golden */
40 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
41 		return true;
42 	/* No FMODE_NOWAIT, if we can poll, check the status */
43 	if (io_file_can_poll(req)) {
44 		struct poll_table_struct pt = { ._key = mask };
45 
46 		return vfs_poll(req->file, &pt) & mask;
47 	}
48 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
49 	return false;
50 }
51 
52 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
53 {
54 	struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
55 	struct compat_iovec iov;
56 
57 	if (copy_from_user(&iov, uiov, sizeof(iov)))
58 		return -EFAULT;
59 	rw->len = iov.iov_len;
60 	return 0;
61 }
62 
63 static int io_iov_buffer_select_prep(struct io_kiocb *req)
64 {
65 	struct iovec __user *uiov;
66 	struct iovec iov;
67 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
68 
69 	if (rw->len != 1)
70 		return -EINVAL;
71 
72 	if (io_is_compat(req->ctx))
73 		return io_iov_compat_buffer_select_prep(rw);
74 
75 	uiov = u64_to_user_ptr(rw->addr);
76 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
77 		return -EFAULT;
78 	rw->len = iov.iov_len;
79 	return 0;
80 }
81 
82 static int io_import_vec(int ddir, struct io_kiocb *req,
83 			 struct io_async_rw *io,
84 			 const struct iovec __user *uvec,
85 			 size_t uvec_segs)
86 {
87 	int ret, nr_segs;
88 	struct iovec *iov;
89 
90 	if (io->vec.iovec) {
91 		nr_segs = io->vec.nr;
92 		iov = io->vec.iovec;
93 	} else {
94 		nr_segs = 1;
95 		iov = &io->fast_iov;
96 	}
97 
98 	ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
99 			     io_is_compat(req->ctx));
100 	if (unlikely(ret < 0))
101 		return ret;
102 	if (iov) {
103 		req->flags |= REQ_F_NEED_CLEANUP;
104 		io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
105 	}
106 	return 0;
107 }
108 
109 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
110 			     struct io_async_rw *io,
111 			     unsigned int issue_flags)
112 {
113 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
114 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
115 	void __user *buf = u64_to_user_ptr(rw->addr);
116 	size_t sqe_len = rw->len;
117 
118 	if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
119 		return io_import_vec(ddir, req, io, buf, sqe_len);
120 
121 	if (io_do_buffer_select(req)) {
122 		buf = io_buffer_select(req, &sqe_len, issue_flags);
123 		if (!buf)
124 			return -ENOBUFS;
125 		rw->addr = (unsigned long) buf;
126 		rw->len = sqe_len;
127 	}
128 	return import_ubuf(ddir, buf, sqe_len, &io->iter);
129 }
130 
131 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
132 				      struct io_async_rw *io,
133 				      unsigned int issue_flags)
134 {
135 	int ret;
136 
137 	ret = __io_import_rw_buffer(rw, req, io, issue_flags);
138 	if (unlikely(ret < 0))
139 		return ret;
140 
141 	iov_iter_save_state(&io->iter, &io->iter_state);
142 	return 0;
143 }
144 
145 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
146 {
147 	struct io_async_rw *rw = req->async_data;
148 
149 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
150 		return;
151 
152 	io_alloc_cache_vec_kasan(&rw->vec);
153 	if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
154 		io_vec_free(&rw->vec);
155 
156 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
157 		req->async_data = NULL;
158 		req->flags &= ~REQ_F_ASYNC_DATA;
159 	}
160 }
161 
162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 	/*
165 	 * Disable quick recycling for anything that's gone through io-wq.
166 	 * In theory, this should be fine to cleanup. However, some read or
167 	 * write iter handling touches the iovec AFTER having called into the
168 	 * handler, eg to reexpand or revert. This means we can have:
169 	 *
170 	 * task			io-wq
171 	 *   issue
172 	 *     punt to io-wq
173 	 *			issue
174 	 *			  blkdev_write_iter()
175 	 *			    ->ki_complete()
176 	 *			      io_complete_rw()
177 	 *			        queue tw complete
178 	 *  run tw
179 	 *    req_rw_cleanup
180 	 *			iov_iter_count() <- look at iov_iter again
181 	 *
182 	 * which can lead to a UAF. This is only possible for io-wq offload
183 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 	 * just leave cleanup to the end.
185 	 *
186 	 * This is really a bug in the core code that does this, any issue
187 	 * path should assume that a successful (or -EIOCBQUEUED) return can
188 	 * mean that the underlying data can be gone at any time. But that
189 	 * should be fixed seperately, and then this check could be killed.
190 	 */
191 	if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 		req->flags &= ~REQ_F_NEED_CLEANUP;
193 		io_rw_recycle(req, issue_flags);
194 	}
195 }
196 
197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 	struct io_ring_ctx *ctx = req->ctx;
200 	struct io_async_rw *rw;
201 
202 	rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 	if (!rw)
204 		return -ENOMEM;
205 	if (rw->vec.iovec)
206 		req->flags |= REQ_F_NEED_CLEANUP;
207 	rw->bytes_done = 0;
208 	return 0;
209 }
210 
211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 	io->meta_state.seed = io->meta.seed;
214 	iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216 
217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 	if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 		io->meta.seed = io->meta_state.seed;
221 		iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 	}
223 }
224 
225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 			 u64 attr_ptr, u64 attr_type_mask)
227 {
228 	struct io_uring_attr_pi pi_attr;
229 	struct io_async_rw *io;
230 	int ret;
231 
232 	if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 	    sizeof(pi_attr)))
234 		return -EFAULT;
235 
236 	if (pi_attr.rsvd)
237 		return -EINVAL;
238 
239 	io = req->async_data;
240 	io->meta.flags = pi_attr.flags;
241 	io->meta.app_tag = pi_attr.app_tag;
242 	io->meta.seed = pi_attr.seed;
243 	ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 			  pi_attr.len, &io->meta.iter);
245 	if (unlikely(ret < 0))
246 		return ret;
247 	req->flags |= REQ_F_HAS_METADATA;
248 	io_meta_save_state(io);
249 	return ret;
250 }
251 
252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 			int ddir)
254 {
255 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 	unsigned ioprio;
257 	u64 attr_type_mask;
258 	int ret;
259 
260 	if (io_rw_alloc_async(req))
261 		return -ENOMEM;
262 
263 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
264 	/* used for fixed read/write too - just read unconditionally */
265 	req->buf_index = READ_ONCE(sqe->buf_index);
266 
267 	ioprio = READ_ONCE(sqe->ioprio);
268 	if (ioprio) {
269 		ret = ioprio_check_cap(ioprio);
270 		if (ret)
271 			return ret;
272 
273 		rw->kiocb.ki_ioprio = ioprio;
274 	} else {
275 		rw->kiocb.ki_ioprio = get_current_ioprio();
276 	}
277 	rw->kiocb.dio_complete = NULL;
278 	rw->kiocb.ki_flags = 0;
279 
280 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
281 		rw->kiocb.ki_complete = io_complete_rw_iopoll;
282 	else
283 		rw->kiocb.ki_complete = io_complete_rw;
284 
285 	rw->addr = READ_ONCE(sqe->addr);
286 	rw->len = READ_ONCE(sqe->len);
287 	rw->flags = READ_ONCE(sqe->rw_flags);
288 
289 	attr_type_mask = READ_ONCE(sqe->attr_type_mask);
290 	if (attr_type_mask) {
291 		u64 attr_ptr;
292 
293 		/* only PI attribute is supported currently */
294 		if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
295 			return -EINVAL;
296 
297 		attr_ptr = READ_ONCE(sqe->attr_ptr);
298 		return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
299 	}
300 	return 0;
301 }
302 
303 static int io_rw_do_import(struct io_kiocb *req, int ddir)
304 {
305 	if (io_do_buffer_select(req))
306 		return 0;
307 
308 	return io_import_rw_buffer(ddir, req, req->async_data, 0);
309 }
310 
311 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
312 		      int ddir)
313 {
314 	int ret;
315 
316 	ret = __io_prep_rw(req, sqe, ddir);
317 	if (unlikely(ret))
318 		return ret;
319 
320 	return io_rw_do_import(req, ddir);
321 }
322 
323 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
324 {
325 	return io_prep_rw(req, sqe, ITER_DEST);
326 }
327 
328 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
329 {
330 	return io_prep_rw(req, sqe, ITER_SOURCE);
331 }
332 
333 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
334 		       int ddir)
335 {
336 	int ret;
337 
338 	ret = io_prep_rw(req, sqe, ddir);
339 	if (unlikely(ret))
340 		return ret;
341 	if (!(req->flags & REQ_F_BUFFER_SELECT))
342 		return 0;
343 
344 	/*
345 	 * Have to do this validation here, as this is in io_read() rw->len
346 	 * might have chanaged due to buffer selection
347 	 */
348 	return io_iov_buffer_select_prep(req);
349 }
350 
351 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
352 {
353 	return io_prep_rwv(req, sqe, ITER_DEST);
354 }
355 
356 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
357 {
358 	return io_prep_rwv(req, sqe, ITER_SOURCE);
359 }
360 
361 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
362 			    int ddir)
363 {
364 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
365 	struct io_async_rw *io = req->async_data;
366 	int ret;
367 
368 	if (io->bytes_done)
369 		return 0;
370 
371 	ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
372 				issue_flags);
373 	iov_iter_save_state(&io->iter, &io->iter_state);
374 	return ret;
375 }
376 
377 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
378 {
379 	return __io_prep_rw(req, sqe, ITER_DEST);
380 }
381 
382 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
383 {
384 	return __io_prep_rw(req, sqe, ITER_SOURCE);
385 }
386 
387 static int io_rw_import_reg_vec(struct io_kiocb *req,
388 				struct io_async_rw *io,
389 				int ddir, unsigned int issue_flags)
390 {
391 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
392 	unsigned uvec_segs = rw->len;
393 	int ret;
394 
395 	ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
396 				uvec_segs, issue_flags);
397 	if (unlikely(ret))
398 		return ret;
399 	iov_iter_save_state(&io->iter, &io->iter_state);
400 	req->flags &= ~REQ_F_IMPORT_BUFFER;
401 	return 0;
402 }
403 
404 static int io_rw_prep_reg_vec(struct io_kiocb *req)
405 {
406 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
407 	struct io_async_rw *io = req->async_data;
408 	const struct iovec __user *uvec;
409 
410 	uvec = u64_to_user_ptr(rw->addr);
411 	return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
412 }
413 
414 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
415 {
416 	int ret;
417 
418 	ret = __io_prep_rw(req, sqe, ITER_DEST);
419 	if (unlikely(ret))
420 		return ret;
421 	return io_rw_prep_reg_vec(req);
422 }
423 
424 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
425 {
426 	int ret;
427 
428 	ret = __io_prep_rw(req, sqe, ITER_SOURCE);
429 	if (unlikely(ret))
430 		return ret;
431 	return io_rw_prep_reg_vec(req);
432 }
433 
434 /*
435  * Multishot read is prepared just like a normal read/write request, only
436  * difference is that we set the MULTISHOT flag.
437  */
438 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
439 {
440 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
441 	int ret;
442 
443 	/* must be used with provided buffers */
444 	if (!(req->flags & REQ_F_BUFFER_SELECT))
445 		return -EINVAL;
446 
447 	ret = __io_prep_rw(req, sqe, ITER_DEST);
448 	if (unlikely(ret))
449 		return ret;
450 
451 	if (rw->addr || rw->len)
452 		return -EINVAL;
453 
454 	req->flags |= REQ_F_APOLL_MULTISHOT;
455 	return 0;
456 }
457 
458 void io_readv_writev_cleanup(struct io_kiocb *req)
459 {
460 	lockdep_assert_held(&req->ctx->uring_lock);
461 	io_rw_recycle(req, 0);
462 }
463 
464 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
465 {
466 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
467 
468 	if (rw->kiocb.ki_pos != -1)
469 		return &rw->kiocb.ki_pos;
470 
471 	if (!(req->file->f_mode & FMODE_STREAM)) {
472 		req->flags |= REQ_F_CUR_POS;
473 		rw->kiocb.ki_pos = req->file->f_pos;
474 		return &rw->kiocb.ki_pos;
475 	}
476 
477 	rw->kiocb.ki_pos = 0;
478 	return NULL;
479 }
480 
481 static bool io_rw_should_reissue(struct io_kiocb *req)
482 {
483 #ifdef CONFIG_BLOCK
484 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
485 	umode_t mode = file_inode(req->file)->i_mode;
486 	struct io_async_rw *io = req->async_data;
487 	struct io_ring_ctx *ctx = req->ctx;
488 
489 	if (!S_ISBLK(mode) && !S_ISREG(mode))
490 		return false;
491 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
492 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
493 		return false;
494 	/*
495 	 * If ref is dying, we might be running poll reap from the exit work.
496 	 * Don't attempt to reissue from that path, just let it fail with
497 	 * -EAGAIN.
498 	 */
499 	if (percpu_ref_is_dying(&ctx->refs))
500 		return false;
501 
502 	io_meta_restore(io, &rw->kiocb);
503 	iov_iter_restore(&io->iter, &io->iter_state);
504 	return true;
505 #else
506 	return false;
507 #endif
508 }
509 
510 static void io_req_end_write(struct io_kiocb *req)
511 {
512 	if (req->flags & REQ_F_ISREG) {
513 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
514 
515 		kiocb_end_write(&rw->kiocb);
516 	}
517 }
518 
519 /*
520  * Trigger the notifications after having done some IO, and finish the write
521  * accounting, if any.
522  */
523 static void io_req_io_end(struct io_kiocb *req)
524 {
525 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
526 
527 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
528 		io_req_end_write(req);
529 		fsnotify_modify(req->file);
530 	} else {
531 		fsnotify_access(req->file);
532 	}
533 }
534 
535 static void __io_complete_rw_common(struct io_kiocb *req, long res)
536 {
537 	if (res == req->cqe.res)
538 		return;
539 	if (res == -EAGAIN && io_rw_should_reissue(req)) {
540 		req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
541 	} else {
542 		req_set_fail(req);
543 		req->cqe.res = res;
544 	}
545 }
546 
547 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
548 {
549 	struct io_async_rw *io = req->async_data;
550 
551 	/* add previously done IO, if any */
552 	if (req_has_async_data(req) && io->bytes_done > 0) {
553 		if (res < 0)
554 			res = io->bytes_done;
555 		else
556 			res += io->bytes_done;
557 	}
558 	return res;
559 }
560 
561 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw)
562 {
563 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
564 	struct kiocb *kiocb = &rw->kiocb;
565 
566 	if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
567 		long res = kiocb->dio_complete(rw->kiocb.private);
568 
569 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
570 	}
571 
572 	io_req_io_end(req);
573 
574 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
575 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
576 
577 	io_req_rw_cleanup(req, 0);
578 	io_req_task_complete(req, tw);
579 }
580 
581 static void io_complete_rw(struct kiocb *kiocb, long res)
582 {
583 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
584 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
585 
586 	if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
587 		__io_complete_rw_common(req, res);
588 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
589 	}
590 	req->io_task_work.func = io_req_rw_complete;
591 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
592 }
593 
594 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
595 {
596 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
597 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
598 
599 	if (kiocb->ki_flags & IOCB_WRITE)
600 		io_req_end_write(req);
601 	if (unlikely(res != req->cqe.res)) {
602 		if (res == -EAGAIN && io_rw_should_reissue(req))
603 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
604 		else
605 			req->cqe.res = res;
606 	}
607 
608 	/* order with io_iopoll_complete() checking ->iopoll_completed */
609 	smp_store_release(&req->iopoll_completed, 1);
610 }
611 
612 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
613 {
614 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
615 
616 	/* IO was queued async, completion will happen later */
617 	if (ret == -EIOCBQUEUED)
618 		return;
619 
620 	/* transform internal restart error codes */
621 	if (unlikely(ret < 0)) {
622 		switch (ret) {
623 		case -ERESTARTSYS:
624 		case -ERESTARTNOINTR:
625 		case -ERESTARTNOHAND:
626 		case -ERESTART_RESTARTBLOCK:
627 			/*
628 			 * We can't just restart the syscall, since previously
629 			 * submitted sqes may already be in progress. Just fail
630 			 * this IO with EINTR.
631 			 */
632 			ret = -EINTR;
633 			break;
634 		}
635 	}
636 
637 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
638 		io_complete_rw_iopoll(&rw->kiocb, ret);
639 	else
640 		io_complete_rw(&rw->kiocb, ret);
641 }
642 
643 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
644 		       unsigned int issue_flags)
645 {
646 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
647 	unsigned final_ret = io_fixup_rw_res(req, ret);
648 
649 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
650 		req->file->f_pos = rw->kiocb.ki_pos;
651 	if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
652 		__io_complete_rw_common(req, ret);
653 		/*
654 		 * Safe to call io_end from here as we're inline
655 		 * from the submission path.
656 		 */
657 		io_req_io_end(req);
658 		io_req_set_res(req, final_ret, io_put_kbuf(req, ret, issue_flags));
659 		io_req_rw_cleanup(req, issue_flags);
660 		return IOU_OK;
661 	} else {
662 		io_rw_done(req, ret);
663 	}
664 
665 	return IOU_ISSUE_SKIP_COMPLETE;
666 }
667 
668 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
669 {
670 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
671 }
672 
673 /*
674  * For files that don't have ->read_iter() and ->write_iter(), handle them
675  * by looping over ->read() or ->write() manually.
676  */
677 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
678 {
679 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
680 	struct kiocb *kiocb = &rw->kiocb;
681 	struct file *file = kiocb->ki_filp;
682 	ssize_t ret = 0;
683 	loff_t *ppos;
684 
685 	/*
686 	 * Don't support polled IO through this interface, and we can't
687 	 * support non-blocking either. For the latter, this just causes
688 	 * the kiocb to be handled from an async context.
689 	 */
690 	if (kiocb->ki_flags & IOCB_HIPRI)
691 		return -EOPNOTSUPP;
692 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
693 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
694 		return -EAGAIN;
695 	if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
696 		return -EFAULT;
697 
698 	ppos = io_kiocb_ppos(kiocb);
699 
700 	while (iov_iter_count(iter)) {
701 		void __user *addr;
702 		size_t len;
703 		ssize_t nr;
704 
705 		if (iter_is_ubuf(iter)) {
706 			addr = iter->ubuf + iter->iov_offset;
707 			len = iov_iter_count(iter);
708 		} else if (!iov_iter_is_bvec(iter)) {
709 			addr = iter_iov_addr(iter);
710 			len = iter_iov_len(iter);
711 		} else {
712 			addr = u64_to_user_ptr(rw->addr);
713 			len = rw->len;
714 		}
715 
716 		if (ddir == READ)
717 			nr = file->f_op->read(file, addr, len, ppos);
718 		else
719 			nr = file->f_op->write(file, addr, len, ppos);
720 
721 		if (nr < 0) {
722 			if (!ret)
723 				ret = nr;
724 			break;
725 		}
726 		ret += nr;
727 		if (!iov_iter_is_bvec(iter)) {
728 			iov_iter_advance(iter, nr);
729 		} else {
730 			rw->addr += nr;
731 			rw->len -= nr;
732 			if (!rw->len)
733 				break;
734 		}
735 		if (nr != len)
736 			break;
737 	}
738 
739 	return ret;
740 }
741 
742 /*
743  * This is our waitqueue callback handler, registered through __folio_lock_async()
744  * when we initially tried to do the IO with the iocb armed our waitqueue.
745  * This gets called when the page is unlocked, and we generally expect that to
746  * happen when the page IO is completed and the page is now uptodate. This will
747  * queue a task_work based retry of the operation, attempting to copy the data
748  * again. If the latter fails because the page was NOT uptodate, then we will
749  * do a thread based blocking retry of the operation. That's the unexpected
750  * slow path.
751  */
752 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
753 			     int sync, void *arg)
754 {
755 	struct wait_page_queue *wpq;
756 	struct io_kiocb *req = wait->private;
757 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
758 	struct wait_page_key *key = arg;
759 
760 	wpq = container_of(wait, struct wait_page_queue, wait);
761 
762 	if (!wake_page_match(wpq, key))
763 		return 0;
764 
765 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
766 	list_del_init(&wait->entry);
767 	io_req_task_queue(req);
768 	return 1;
769 }
770 
771 /*
772  * This controls whether a given IO request should be armed for async page
773  * based retry. If we return false here, the request is handed to the async
774  * worker threads for retry. If we're doing buffered reads on a regular file,
775  * we prepare a private wait_page_queue entry and retry the operation. This
776  * will either succeed because the page is now uptodate and unlocked, or it
777  * will register a callback when the page is unlocked at IO completion. Through
778  * that callback, io_uring uses task_work to setup a retry of the operation.
779  * That retry will attempt the buffered read again. The retry will generally
780  * succeed, or in rare cases where it fails, we then fall back to using the
781  * async worker threads for a blocking retry.
782  */
783 static bool io_rw_should_retry(struct io_kiocb *req)
784 {
785 	struct io_async_rw *io = req->async_data;
786 	struct wait_page_queue *wait = &io->wpq;
787 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
788 	struct kiocb *kiocb = &rw->kiocb;
789 
790 	/*
791 	 * Never retry for NOWAIT or a request with metadata, we just complete
792 	 * with -EAGAIN.
793 	 */
794 	if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
795 		return false;
796 
797 	/* Only for buffered IO */
798 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
799 		return false;
800 
801 	/*
802 	 * just use poll if we can, and don't attempt if the fs doesn't
803 	 * support callback based unlocks
804 	 */
805 	if (io_file_can_poll(req) ||
806 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
807 		return false;
808 
809 	wait->wait.func = io_async_buf_func;
810 	wait->wait.private = req;
811 	wait->wait.flags = 0;
812 	INIT_LIST_HEAD(&wait->wait.entry);
813 	kiocb->ki_flags |= IOCB_WAITQ;
814 	kiocb->ki_flags &= ~IOCB_NOWAIT;
815 	kiocb->ki_waitq = wait;
816 	return true;
817 }
818 
819 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
820 {
821 	struct file *file = rw->kiocb.ki_filp;
822 
823 	if (likely(file->f_op->read_iter))
824 		return file->f_op->read_iter(&rw->kiocb, iter);
825 	else if (file->f_op->read)
826 		return loop_rw_iter(READ, rw, iter);
827 	else
828 		return -EINVAL;
829 }
830 
831 static bool need_complete_io(struct io_kiocb *req)
832 {
833 	return req->flags & REQ_F_ISREG ||
834 		S_ISBLK(file_inode(req->file)->i_mode);
835 }
836 
837 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
838 {
839 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
840 	struct kiocb *kiocb = &rw->kiocb;
841 	struct io_ring_ctx *ctx = req->ctx;
842 	struct file *file = req->file;
843 	int ret;
844 
845 	if (unlikely(!(file->f_mode & mode)))
846 		return -EBADF;
847 
848 	if (!(req->flags & REQ_F_FIXED_FILE))
849 		req->flags |= io_file_get_flags(file);
850 
851 	kiocb->ki_flags = file->f_iocb_flags;
852 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
853 	if (unlikely(ret))
854 		return ret;
855 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
856 
857 	/*
858 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
859 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
860 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
861 	 */
862 	if (kiocb->ki_flags & IOCB_NOWAIT ||
863 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
864 		req->flags |= REQ_F_NOWAIT;
865 
866 	if (ctx->flags & IORING_SETUP_IOPOLL) {
867 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
868 			return -EOPNOTSUPP;
869 		kiocb->private = NULL;
870 		kiocb->ki_flags |= IOCB_HIPRI;
871 		req->iopoll_completed = 0;
872 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
873 			/* make sure every req only blocks once*/
874 			req->flags &= ~REQ_F_IOPOLL_STATE;
875 			req->iopoll_start = ktime_get_ns();
876 		}
877 	} else {
878 		if (kiocb->ki_flags & IOCB_HIPRI)
879 			return -EINVAL;
880 	}
881 
882 	if (req->flags & REQ_F_HAS_METADATA) {
883 		struct io_async_rw *io = req->async_data;
884 
885 		/*
886 		 * We have a union of meta fields with wpq used for buffered-io
887 		 * in io_async_rw, so fail it here.
888 		 */
889 		if (!(req->file->f_flags & O_DIRECT))
890 			return -EOPNOTSUPP;
891 		kiocb->ki_flags |= IOCB_HAS_METADATA;
892 		kiocb->private = &io->meta;
893 	}
894 
895 	return 0;
896 }
897 
898 static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
899 {
900 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
901 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
902 	struct io_async_rw *io = req->async_data;
903 	struct kiocb *kiocb = &rw->kiocb;
904 	ssize_t ret;
905 	loff_t *ppos;
906 
907 	if (req->flags & REQ_F_IMPORT_BUFFER) {
908 		ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
909 		if (unlikely(ret))
910 			return ret;
911 	} else if (io_do_buffer_select(req)) {
912 		ret = io_import_rw_buffer(ITER_DEST, req, io, issue_flags);
913 		if (unlikely(ret < 0))
914 			return ret;
915 	}
916 	ret = io_rw_init_file(req, FMODE_READ, READ);
917 	if (unlikely(ret))
918 		return ret;
919 	req->cqe.res = iov_iter_count(&io->iter);
920 
921 	if (force_nonblock) {
922 		/* If the file doesn't support async, just async punt */
923 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
924 			return -EAGAIN;
925 		kiocb->ki_flags |= IOCB_NOWAIT;
926 	} else {
927 		/* Ensure we clear previously set non-block flag */
928 		kiocb->ki_flags &= ~IOCB_NOWAIT;
929 	}
930 
931 	ppos = io_kiocb_update_pos(req);
932 
933 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
934 	if (unlikely(ret))
935 		return ret;
936 
937 	ret = io_iter_do_read(rw, &io->iter);
938 
939 	/*
940 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
941 	 * issue, even though they should be returning -EAGAIN. To be safe,
942 	 * retry from blocking context for either.
943 	 */
944 	if (ret == -EOPNOTSUPP && force_nonblock)
945 		ret = -EAGAIN;
946 
947 	if (ret == -EAGAIN) {
948 		/* If we can poll, just do that. */
949 		if (io_file_can_poll(req))
950 			return -EAGAIN;
951 		/* IOPOLL retry should happen for io-wq threads */
952 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
953 			goto done;
954 		/* no retry on NONBLOCK nor RWF_NOWAIT */
955 		if (req->flags & REQ_F_NOWAIT)
956 			goto done;
957 		ret = 0;
958 	} else if (ret == -EIOCBQUEUED) {
959 		return IOU_ISSUE_SKIP_COMPLETE;
960 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
961 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
962 		   (issue_flags & IO_URING_F_MULTISHOT)) {
963 		/* read all, failed, already did sync or don't want to retry */
964 		goto done;
965 	}
966 
967 	/*
968 	 * Don't depend on the iter state matching what was consumed, or being
969 	 * untouched in case of error. Restore it and we'll advance it
970 	 * manually if we need to.
971 	 */
972 	iov_iter_restore(&io->iter, &io->iter_state);
973 	io_meta_restore(io, kiocb);
974 
975 	do {
976 		/*
977 		 * We end up here because of a partial read, either from
978 		 * above or inside this loop. Advance the iter by the bytes
979 		 * that were consumed.
980 		 */
981 		iov_iter_advance(&io->iter, ret);
982 		if (!iov_iter_count(&io->iter))
983 			break;
984 		io->bytes_done += ret;
985 		iov_iter_save_state(&io->iter, &io->iter_state);
986 
987 		/* if we can retry, do so with the callbacks armed */
988 		if (!io_rw_should_retry(req)) {
989 			kiocb->ki_flags &= ~IOCB_WAITQ;
990 			return -EAGAIN;
991 		}
992 
993 		req->cqe.res = iov_iter_count(&io->iter);
994 		/*
995 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
996 		 * we get -EIOCBQUEUED, then we'll get a notification when the
997 		 * desired page gets unlocked. We can also get a partial read
998 		 * here, and if we do, then just retry at the new offset.
999 		 */
1000 		ret = io_iter_do_read(rw, &io->iter);
1001 		if (ret == -EIOCBQUEUED)
1002 			return IOU_ISSUE_SKIP_COMPLETE;
1003 		/* we got some bytes, but not all. retry. */
1004 		kiocb->ki_flags &= ~IOCB_WAITQ;
1005 		iov_iter_restore(&io->iter, &io->iter_state);
1006 	} while (ret > 0);
1007 done:
1008 	/* it's faster to check here then delegate to kfree */
1009 	return ret;
1010 }
1011 
1012 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1013 {
1014 	int ret;
1015 
1016 	ret = __io_read(req, issue_flags);
1017 	if (ret >= 0)
1018 		return kiocb_done(req, ret, issue_flags);
1019 
1020 	return ret;
1021 }
1022 
1023 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1024 {
1025 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1026 	unsigned int cflags = 0;
1027 	int ret;
1028 
1029 	/*
1030 	 * Multishot MUST be used on a pollable file
1031 	 */
1032 	if (!io_file_can_poll(req))
1033 		return -EBADFD;
1034 
1035 	/* make it sync, multishot doesn't support async execution */
1036 	rw->kiocb.ki_complete = NULL;
1037 	ret = __io_read(req, issue_flags);
1038 
1039 	/*
1040 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
1041 	 * handling arm it.
1042 	 */
1043 	if (ret == -EAGAIN) {
1044 		/*
1045 		 * Reset rw->len to 0 again to avoid clamping future mshot
1046 		 * reads, in case the buffer size varies.
1047 		 */
1048 		if (io_kbuf_recycle(req, issue_flags))
1049 			rw->len = 0;
1050 		return IOU_RETRY;
1051 	} else if (ret <= 0) {
1052 		io_kbuf_recycle(req, issue_flags);
1053 		if (ret < 0)
1054 			req_set_fail(req);
1055 	} else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1056 		cflags = io_put_kbuf(req, ret, issue_flags);
1057 	} else {
1058 		/*
1059 		 * Any successful return value will keep the multishot read
1060 		 * armed, if it's still set. Put our buffer and post a CQE. If
1061 		 * we fail to post a CQE, or multishot is no longer set, then
1062 		 * jump to the termination path. This request is then done.
1063 		 */
1064 		cflags = io_put_kbuf(req, ret, issue_flags);
1065 		rw->len = 0; /* similarly to above, reset len to 0 */
1066 
1067 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1068 			if (issue_flags & IO_URING_F_MULTISHOT)
1069 				/*
1070 				 * Force retry, as we might have more data to
1071 				 * be read and otherwise it won't get retried
1072 				 * until (if ever) another poll is triggered.
1073 				 */
1074 				io_poll_multishot_retry(req);
1075 
1076 			return IOU_RETRY;
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Either an error, or we've hit overflow posting the CQE. For any
1082 	 * multishot request, hitting overflow will terminate it.
1083 	 */
1084 	io_req_set_res(req, ret, cflags);
1085 	io_req_rw_cleanup(req, issue_flags);
1086 	return IOU_COMPLETE;
1087 }
1088 
1089 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1090 {
1091 	struct inode *inode;
1092 	bool ret;
1093 
1094 	if (!(req->flags & REQ_F_ISREG))
1095 		return true;
1096 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1097 		kiocb_start_write(kiocb);
1098 		return true;
1099 	}
1100 
1101 	inode = file_inode(kiocb->ki_filp);
1102 	ret = sb_start_write_trylock(inode->i_sb);
1103 	if (ret)
1104 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1105 	return ret;
1106 }
1107 
1108 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1109 {
1110 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1111 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1112 	struct io_async_rw *io = req->async_data;
1113 	struct kiocb *kiocb = &rw->kiocb;
1114 	ssize_t ret, ret2;
1115 	loff_t *ppos;
1116 
1117 	if (req->flags & REQ_F_IMPORT_BUFFER) {
1118 		ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1119 		if (unlikely(ret))
1120 			return ret;
1121 	}
1122 
1123 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1124 	if (unlikely(ret))
1125 		return ret;
1126 	req->cqe.res = iov_iter_count(&io->iter);
1127 
1128 	if (force_nonblock) {
1129 		/* If the file doesn't support async, just async punt */
1130 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1131 			goto ret_eagain;
1132 
1133 		/* Check if we can support NOWAIT. */
1134 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1135 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1136 		    (req->flags & REQ_F_ISREG))
1137 			goto ret_eagain;
1138 
1139 		kiocb->ki_flags |= IOCB_NOWAIT;
1140 	} else {
1141 		/* Ensure we clear previously set non-block flag */
1142 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1143 	}
1144 
1145 	ppos = io_kiocb_update_pos(req);
1146 
1147 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1148 	if (unlikely(ret))
1149 		return ret;
1150 
1151 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1152 		return -EAGAIN;
1153 	kiocb->ki_flags |= IOCB_WRITE;
1154 
1155 	if (likely(req->file->f_op->write_iter))
1156 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1157 	else if (req->file->f_op->write)
1158 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1159 	else
1160 		ret2 = -EINVAL;
1161 
1162 	/*
1163 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1164 	 * retry them without IOCB_NOWAIT.
1165 	 */
1166 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1167 		ret2 = -EAGAIN;
1168 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1169 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1170 		goto done;
1171 	if (!force_nonblock || ret2 != -EAGAIN) {
1172 		/* IOPOLL retry should happen for io-wq threads */
1173 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1174 			goto ret_eagain;
1175 
1176 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1177 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1178 						req->cqe.res, ret2);
1179 
1180 			/* This is a partial write. The file pos has already been
1181 			 * updated, setup the async struct to complete the request
1182 			 * in the worker. Also update bytes_done to account for
1183 			 * the bytes already written.
1184 			 */
1185 			iov_iter_save_state(&io->iter, &io->iter_state);
1186 			io->bytes_done += ret2;
1187 
1188 			if (kiocb->ki_flags & IOCB_WRITE)
1189 				io_req_end_write(req);
1190 			return -EAGAIN;
1191 		}
1192 done:
1193 		return kiocb_done(req, ret2, issue_flags);
1194 	} else {
1195 ret_eagain:
1196 		iov_iter_restore(&io->iter, &io->iter_state);
1197 		io_meta_restore(io, kiocb);
1198 		if (kiocb->ki_flags & IOCB_WRITE)
1199 			io_req_end_write(req);
1200 		return -EAGAIN;
1201 	}
1202 }
1203 
1204 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1205 {
1206 	int ret;
1207 
1208 	ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1209 	if (unlikely(ret))
1210 		return ret;
1211 
1212 	return io_read(req, issue_flags);
1213 }
1214 
1215 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1216 {
1217 	int ret;
1218 
1219 	ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1220 	if (unlikely(ret))
1221 		return ret;
1222 
1223 	return io_write(req, issue_flags);
1224 }
1225 
1226 void io_rw_fail(struct io_kiocb *req)
1227 {
1228 	int res;
1229 
1230 	res = io_fixup_rw_res(req, req->cqe.res);
1231 	io_req_set_res(req, res, req->cqe.flags);
1232 }
1233 
1234 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1235 				unsigned int poll_flags)
1236 {
1237 	struct file *file = req->file;
1238 
1239 	if (req->opcode == IORING_OP_URING_CMD) {
1240 		struct io_uring_cmd *ioucmd;
1241 
1242 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1243 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1244 	} else {
1245 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1246 
1247 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1248 	}
1249 }
1250 
1251 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1252 {
1253 	struct hrtimer_sleeper timer;
1254 	enum hrtimer_mode mode;
1255 	ktime_t kt;
1256 	u64 sleep_time;
1257 
1258 	if (req->flags & REQ_F_IOPOLL_STATE)
1259 		return 0;
1260 
1261 	if (ctx->hybrid_poll_time == LLONG_MAX)
1262 		return 0;
1263 
1264 	/* Using half the running time to do schedule */
1265 	sleep_time = ctx->hybrid_poll_time / 2;
1266 
1267 	kt = ktime_set(0, sleep_time);
1268 	req->flags |= REQ_F_IOPOLL_STATE;
1269 
1270 	mode = HRTIMER_MODE_REL;
1271 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1272 	hrtimer_set_expires(&timer.timer, kt);
1273 	set_current_state(TASK_INTERRUPTIBLE);
1274 	hrtimer_sleeper_start_expires(&timer, mode);
1275 
1276 	if (timer.task)
1277 		io_schedule();
1278 
1279 	hrtimer_cancel(&timer.timer);
1280 	__set_current_state(TASK_RUNNING);
1281 	destroy_hrtimer_on_stack(&timer.timer);
1282 	return sleep_time;
1283 }
1284 
1285 static int io_uring_hybrid_poll(struct io_kiocb *req,
1286 				struct io_comp_batch *iob, unsigned int poll_flags)
1287 {
1288 	struct io_ring_ctx *ctx = req->ctx;
1289 	u64 runtime, sleep_time;
1290 	int ret;
1291 
1292 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1293 	ret = io_uring_classic_poll(req, iob, poll_flags);
1294 	runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1295 
1296 	/*
1297 	 * Use minimum sleep time if we're polling devices with different
1298 	 * latencies. We could get more completions from the faster ones.
1299 	 */
1300 	if (ctx->hybrid_poll_time > runtime)
1301 		ctx->hybrid_poll_time = runtime;
1302 
1303 	return ret;
1304 }
1305 
1306 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1307 {
1308 	struct io_wq_work_node *pos, *start, *prev;
1309 	unsigned int poll_flags = 0;
1310 	DEFINE_IO_COMP_BATCH(iob);
1311 	int nr_events = 0;
1312 
1313 	/*
1314 	 * Only spin for completions if we don't have multiple devices hanging
1315 	 * off our complete list.
1316 	 */
1317 	if (ctx->poll_multi_queue || force_nonspin)
1318 		poll_flags |= BLK_POLL_ONESHOT;
1319 
1320 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1321 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1322 		int ret;
1323 
1324 		/*
1325 		 * Move completed and retryable entries to our local lists.
1326 		 * If we find a request that requires polling, break out
1327 		 * and complete those lists first, if we have entries there.
1328 		 */
1329 		if (READ_ONCE(req->iopoll_completed))
1330 			break;
1331 
1332 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1333 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1334 		else
1335 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1336 
1337 		if (unlikely(ret < 0))
1338 			return ret;
1339 		else if (ret)
1340 			poll_flags |= BLK_POLL_ONESHOT;
1341 
1342 		/* iopoll may have completed current req */
1343 		if (!rq_list_empty(&iob.req_list) ||
1344 		    READ_ONCE(req->iopoll_completed))
1345 			break;
1346 	}
1347 
1348 	if (!rq_list_empty(&iob.req_list))
1349 		iob.complete(&iob);
1350 	else if (!pos)
1351 		return 0;
1352 
1353 	prev = start;
1354 	wq_list_for_each_resume(pos, prev) {
1355 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1356 
1357 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1358 		if (!smp_load_acquire(&req->iopoll_completed))
1359 			break;
1360 		nr_events++;
1361 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
1362 		if (req->opcode != IORING_OP_URING_CMD)
1363 			io_req_rw_cleanup(req, 0);
1364 	}
1365 	if (unlikely(!nr_events))
1366 		return 0;
1367 
1368 	pos = start ? start->next : ctx->iopoll_list.first;
1369 	wq_list_cut(&ctx->iopoll_list, prev, start);
1370 
1371 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1372 		return 0;
1373 	ctx->submit_state.compl_reqs.first = pos;
1374 	__io_submit_flush_completions(ctx);
1375 	return nr_events;
1376 }
1377 
1378 void io_rw_cache_free(const void *entry)
1379 {
1380 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1381 
1382 	io_vec_free(&rw->vec);
1383 	kfree(rw);
1384 }
1385