xref: /linux/io_uring/io_uring.c (revision 0537fbb6ecae857ee862e88a6ead1ff2f918b67f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101 
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107 
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 
111 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115 
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 				REQ_F_ASYNC_DATA)
119 
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 #define IO_COMPL_BATCH			32
126 #define IO_REQ_ALLOC_BATCH		8
127 #define IO_LOCAL_TW_DEFAULT_MAX		20
128 
129 struct io_defer_entry {
130 	struct list_head	list;
131 	struct io_kiocb		*req;
132 	u32			seq;
133 };
134 
135 /* requests with any of those set should undergo io_disarm_next() */
136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
137 
138 /*
139  * No waiters. It's larger than any valid value of the tw counter
140  * so that tests against ->cq_wait_nr would fail and skip wake_up().
141  */
142 #define IO_CQ_WAKE_INIT		(-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
145 
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 					 struct io_uring_task *tctx,
148 					 bool cancel_all,
149 					 bool is_sqpoll_thread);
150 
151 static void io_queue_sqe(struct io_kiocb *req);
152 
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154 
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157 
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160 
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 	{
164 		.procname	= "io_uring_disabled",
165 		.data		= &sysctl_io_uring_disabled,
166 		.maxlen		= sizeof(sysctl_io_uring_disabled),
167 		.mode		= 0644,
168 		.proc_handler	= proc_dointvec_minmax,
169 		.extra1		= SYSCTL_ZERO,
170 		.extra2		= SYSCTL_TWO,
171 	},
172 	{
173 		.procname	= "io_uring_group",
174 		.data		= &sysctl_io_uring_group,
175 		.maxlen		= sizeof(gid_t),
176 		.mode		= 0644,
177 		.proc_handler	= proc_dointvec,
178 	},
179 };
180 #endif
181 
__io_cqring_events(struct io_ring_ctx * ctx)182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186 
__io_cqring_events_user(struct io_ring_ctx * ctx)187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191 
io_match_linked(struct io_kiocb * head)192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 	struct io_kiocb *req;
195 
196 	io_for_each_link(req, head) {
197 		if (req->flags & REQ_F_INFLIGHT)
198 			return true;
199 	}
200 	return false;
201 }
202 
203 /*
204  * As io_match_task() but protected against racing with linked timeouts.
205  * User must not hold timeout_lock.
206  */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 			bool cancel_all)
209 {
210 	bool matched;
211 
212 	if (tctx && head->tctx != tctx)
213 		return false;
214 	if (cancel_all)
215 		return true;
216 
217 	if (head->flags & REQ_F_LINK_TIMEOUT) {
218 		struct io_ring_ctx *ctx = head->ctx;
219 
220 		/* protect against races with linked timeouts */
221 		raw_spin_lock_irq(&ctx->timeout_lock);
222 		matched = io_match_linked(head);
223 		raw_spin_unlock_irq(&ctx->timeout_lock);
224 	} else {
225 		matched = io_match_linked(head);
226 	}
227 	return matched;
228 }
229 
req_fail_link_node(struct io_kiocb * req,int res)230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 	req_set_fail(req);
233 	io_req_set_res(req, res, 0);
234 }
235 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240 
io_ring_ctx_ref_free(struct percpu_ref * ref)241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244 
245 	complete(&ctx->ref_comp);
246 }
247 
io_fallback_req_func(struct work_struct * work)248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 						fallback_work.work);
252 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 	struct io_kiocb *req, *tmp;
254 	struct io_tw_state ts = {};
255 
256 	percpu_ref_get(&ctx->refs);
257 	mutex_lock(&ctx->uring_lock);
258 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 		req->io_task_work.func(req, ts);
260 	io_submit_flush_completions(ctx);
261 	mutex_unlock(&ctx->uring_lock);
262 	percpu_ref_put(&ctx->refs);
263 }
264 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 	unsigned int hash_buckets;
268 	int i;
269 
270 	do {
271 		hash_buckets = 1U << bits;
272 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 						GFP_KERNEL_ACCOUNT);
274 		if (table->hbs)
275 			break;
276 		if (bits == 1)
277 			return -ENOMEM;
278 		bits--;
279 	} while (1);
280 
281 	table->hash_bits = bits;
282 	for (i = 0; i < hash_buckets; i++)
283 		INIT_HLIST_HEAD(&table->hbs[i].list);
284 	return 0;
285 }
286 
io_free_alloc_caches(struct io_ring_ctx * ctx)287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 	io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 	io_alloc_cache_free(&ctx->msg_cache, kfree);
294 	io_futex_cache_free(ctx);
295 	io_rsrc_cache_free(ctx);
296 }
297 
io_ring_ctx_alloc(struct io_uring_params * p)298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 	struct io_ring_ctx *ctx;
301 	int hash_bits;
302 	bool ret;
303 
304 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 	if (!ctx)
306 		return NULL;
307 
308 	xa_init(&ctx->io_bl_xa);
309 
310 	/*
311 	 * Use 5 bits less than the max cq entries, that should give us around
312 	 * 32 entries per hash list if totally full and uniformly spread, but
313 	 * don't keep too many buckets to not overconsume memory.
314 	 */
315 	hash_bits = ilog2(p->cq_entries) - 5;
316 	hash_bits = clamp(hash_bits, 1, 8);
317 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	ctx->hybrid_poll_time = LLONG_MAX;
325 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 	init_waitqueue_head(&ctx->sqo_sq_wait);
327 	INIT_LIST_HEAD(&ctx->sqd_list);
328 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 			    sizeof(struct async_poll), 0);
331 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct io_async_msghdr),
333 			    offsetof(struct io_async_msghdr, clear));
334 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 			    sizeof(struct io_async_rw),
336 			    offsetof(struct io_async_rw, clear));
337 	ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 			    sizeof(struct io_async_cmd),
339 			    sizeof(struct io_async_cmd));
340 	spin_lock_init(&ctx->msg_lock);
341 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 			    sizeof(struct io_kiocb), 0);
343 	ret |= io_futex_cache_init(ctx);
344 	ret |= io_rsrc_cache_init(ctx);
345 	if (ret)
346 		goto free_ref;
347 	init_completion(&ctx->ref_comp);
348 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 	mutex_init(&ctx->uring_lock);
350 	init_waitqueue_head(&ctx->cq_wait);
351 	init_waitqueue_head(&ctx->poll_wq);
352 	spin_lock_init(&ctx->completion_lock);
353 	raw_spin_lock_init(&ctx->timeout_lock);
354 	INIT_WQ_LIST(&ctx->iopoll_list);
355 	INIT_LIST_HEAD(&ctx->defer_list);
356 	INIT_LIST_HEAD(&ctx->timeout_list);
357 	INIT_LIST_HEAD(&ctx->ltimeout_list);
358 	init_llist_head(&ctx->work_llist);
359 	INIT_LIST_HEAD(&ctx->tctx_list);
360 	ctx->submit_state.free_list.next = NULL;
361 	INIT_HLIST_HEAD(&ctx->waitid_list);
362 #ifdef CONFIG_FUTEX
363 	INIT_HLIST_HEAD(&ctx->futex_list);
364 #endif
365 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
366 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
367 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
368 	io_napi_init(ctx);
369 	mutex_init(&ctx->mmap_lock);
370 
371 	return ctx;
372 
373 free_ref:
374 	percpu_ref_exit(&ctx->refs);
375 err:
376 	io_free_alloc_caches(ctx);
377 	kvfree(ctx->cancel_table.hbs);
378 	xa_destroy(&ctx->io_bl_xa);
379 	kfree(ctx);
380 	return NULL;
381 }
382 
io_account_cq_overflow(struct io_ring_ctx * ctx)383 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
384 {
385 	struct io_rings *r = ctx->rings;
386 
387 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
388 	ctx->cq_extra--;
389 }
390 
req_need_defer(struct io_kiocb * req,u32 seq)391 static bool req_need_defer(struct io_kiocb *req, u32 seq)
392 {
393 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
394 		struct io_ring_ctx *ctx = req->ctx;
395 
396 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
397 	}
398 
399 	return false;
400 }
401 
io_clean_op(struct io_kiocb * req)402 static void io_clean_op(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
405 		io_kbuf_drop_legacy(req);
406 
407 	if (req->flags & REQ_F_NEED_CLEANUP) {
408 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
409 
410 		if (def->cleanup)
411 			def->cleanup(req);
412 	}
413 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
414 		kfree(req->apoll->double_poll);
415 		kfree(req->apoll);
416 		req->apoll = NULL;
417 	}
418 	if (req->flags & REQ_F_INFLIGHT)
419 		atomic_dec(&req->tctx->inflight_tracked);
420 	if (req->flags & REQ_F_CREDS)
421 		put_cred(req->creds);
422 	if (req->flags & REQ_F_ASYNC_DATA) {
423 		kfree(req->async_data);
424 		req->async_data = NULL;
425 	}
426 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
427 }
428 
io_req_track_inflight(struct io_kiocb * req)429 static inline void io_req_track_inflight(struct io_kiocb *req)
430 {
431 	if (!(req->flags & REQ_F_INFLIGHT)) {
432 		req->flags |= REQ_F_INFLIGHT;
433 		atomic_inc(&req->tctx->inflight_tracked);
434 	}
435 }
436 
__io_prep_linked_timeout(struct io_kiocb * req)437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 	if (WARN_ON_ONCE(!req->link))
440 		return NULL;
441 
442 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
443 	req->flags |= REQ_F_LINK_TIMEOUT;
444 
445 	/* linked timeouts should have two refs once prep'ed */
446 	io_req_set_refcount(req);
447 	__io_req_set_refcount(req->link, 2);
448 	return req->link;
449 }
450 
io_prep_linked_timeout(struct io_kiocb * req)451 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
452 {
453 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
454 		return NULL;
455 	return __io_prep_linked_timeout(req);
456 }
457 
__io_arm_ltimeout(struct io_kiocb * req)458 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
459 {
460 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
461 }
462 
io_arm_ltimeout(struct io_kiocb * req)463 static inline void io_arm_ltimeout(struct io_kiocb *req)
464 {
465 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
466 		__io_arm_ltimeout(req);
467 }
468 
io_prep_async_work(struct io_kiocb * req)469 static void io_prep_async_work(struct io_kiocb *req)
470 {
471 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
472 	struct io_ring_ctx *ctx = req->ctx;
473 
474 	if (!(req->flags & REQ_F_CREDS)) {
475 		req->flags |= REQ_F_CREDS;
476 		req->creds = get_current_cred();
477 	}
478 
479 	req->work.list.next = NULL;
480 	atomic_set(&req->work.flags, 0);
481 	if (req->flags & REQ_F_FORCE_ASYNC)
482 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
483 
484 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
485 		req->flags |= io_file_get_flags(req->file);
486 
487 	if (req->file && (req->flags & REQ_F_ISREG)) {
488 		bool should_hash = def->hash_reg_file;
489 
490 		/* don't serialize this request if the fs doesn't need it */
491 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
492 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
493 			should_hash = false;
494 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
495 			io_wq_hash_work(&req->work, file_inode(req->file));
496 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
497 		if (def->unbound_nonreg_file)
498 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
499 	}
500 }
501 
io_prep_async_link(struct io_kiocb * req)502 static void io_prep_async_link(struct io_kiocb *req)
503 {
504 	struct io_kiocb *cur;
505 
506 	if (req->flags & REQ_F_LINK_TIMEOUT) {
507 		struct io_ring_ctx *ctx = req->ctx;
508 
509 		raw_spin_lock_irq(&ctx->timeout_lock);
510 		io_for_each_link(cur, req)
511 			io_prep_async_work(cur);
512 		raw_spin_unlock_irq(&ctx->timeout_lock);
513 	} else {
514 		io_for_each_link(cur, req)
515 			io_prep_async_work(cur);
516 	}
517 }
518 
io_queue_iowq(struct io_kiocb * req)519 static void io_queue_iowq(struct io_kiocb *req)
520 {
521 	struct io_kiocb *link = io_prep_linked_timeout(req);
522 	struct io_uring_task *tctx = req->tctx;
523 
524 	BUG_ON(!tctx);
525 
526 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
527 		io_req_task_queue_fail(req, -ECANCELED);
528 		return;
529 	}
530 
531 	/* init ->work of the whole link before punting */
532 	io_prep_async_link(req);
533 
534 	/*
535 	 * Not expected to happen, but if we do have a bug where this _can_
536 	 * happen, catch it here and ensure the request is marked as
537 	 * canceled. That will make io-wq go through the usual work cancel
538 	 * procedure rather than attempt to run this request (or create a new
539 	 * worker for it).
540 	 */
541 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
542 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
543 
544 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
545 	io_wq_enqueue(tctx->io_wq, &req->work);
546 	if (link)
547 		io_queue_linked_timeout(link);
548 }
549 
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)550 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
551 {
552 	io_queue_iowq(req);
553 }
554 
io_req_queue_iowq(struct io_kiocb * req)555 void io_req_queue_iowq(struct io_kiocb *req)
556 {
557 	req->io_task_work.func = io_req_queue_iowq_tw;
558 	io_req_task_work_add(req);
559 }
560 
io_queue_deferred(struct io_ring_ctx * ctx)561 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
562 {
563 	spin_lock(&ctx->completion_lock);
564 	while (!list_empty(&ctx->defer_list)) {
565 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
566 						struct io_defer_entry, list);
567 
568 		if (req_need_defer(de->req, de->seq))
569 			break;
570 		list_del_init(&de->list);
571 		io_req_task_queue(de->req);
572 		kfree(de);
573 	}
574 	spin_unlock(&ctx->completion_lock);
575 }
576 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)577 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
578 {
579 	if (ctx->poll_activated)
580 		io_poll_wq_wake(ctx);
581 	if (ctx->off_timeout_used)
582 		io_flush_timeouts(ctx);
583 	if (ctx->drain_active)
584 		io_queue_deferred(ctx);
585 	if (ctx->has_evfd)
586 		io_eventfd_flush_signal(ctx);
587 }
588 
__io_cq_lock(struct io_ring_ctx * ctx)589 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
590 {
591 	if (!ctx->lockless_cq)
592 		spin_lock(&ctx->completion_lock);
593 }
594 
io_cq_lock(struct io_ring_ctx * ctx)595 static inline void io_cq_lock(struct io_ring_ctx *ctx)
596 	__acquires(ctx->completion_lock)
597 {
598 	spin_lock(&ctx->completion_lock);
599 }
600 
__io_cq_unlock_post(struct io_ring_ctx * ctx)601 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
602 {
603 	io_commit_cqring(ctx);
604 	if (!ctx->task_complete) {
605 		if (!ctx->lockless_cq)
606 			spin_unlock(&ctx->completion_lock);
607 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
608 		if (!ctx->syscall_iopoll)
609 			io_cqring_wake(ctx);
610 	}
611 	io_commit_cqring_flush(ctx);
612 }
613 
io_cq_unlock_post(struct io_ring_ctx * ctx)614 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
615 	__releases(ctx->completion_lock)
616 {
617 	io_commit_cqring(ctx);
618 	spin_unlock(&ctx->completion_lock);
619 	io_cqring_wake(ctx);
620 	io_commit_cqring_flush(ctx);
621 }
622 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)623 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
624 {
625 	size_t cqe_size = sizeof(struct io_uring_cqe);
626 
627 	lockdep_assert_held(&ctx->uring_lock);
628 
629 	/* don't abort if we're dying, entries must get freed */
630 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
631 		return;
632 
633 	if (ctx->flags & IORING_SETUP_CQE32)
634 		cqe_size <<= 1;
635 
636 	io_cq_lock(ctx);
637 	while (!list_empty(&ctx->cq_overflow_list)) {
638 		struct io_uring_cqe *cqe;
639 		struct io_overflow_cqe *ocqe;
640 
641 		ocqe = list_first_entry(&ctx->cq_overflow_list,
642 					struct io_overflow_cqe, list);
643 
644 		if (!dying) {
645 			if (!io_get_cqe_overflow(ctx, &cqe, true))
646 				break;
647 			memcpy(cqe, &ocqe->cqe, cqe_size);
648 		}
649 		list_del(&ocqe->list);
650 		kfree(ocqe);
651 
652 		/*
653 		 * For silly syzbot cases that deliberately overflow by huge
654 		 * amounts, check if we need to resched and drop and
655 		 * reacquire the locks if so. Nothing real would ever hit this.
656 		 * Ideally we'd have a non-posting unlock for this, but hard
657 		 * to care for a non-real case.
658 		 */
659 		if (need_resched()) {
660 			io_cq_unlock_post(ctx);
661 			mutex_unlock(&ctx->uring_lock);
662 			cond_resched();
663 			mutex_lock(&ctx->uring_lock);
664 			io_cq_lock(ctx);
665 		}
666 	}
667 
668 	if (list_empty(&ctx->cq_overflow_list)) {
669 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
670 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
671 	}
672 	io_cq_unlock_post(ctx);
673 }
674 
io_cqring_overflow_kill(struct io_ring_ctx * ctx)675 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
676 {
677 	if (ctx->rings)
678 		__io_cqring_overflow_flush(ctx, true);
679 }
680 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)681 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
682 {
683 	mutex_lock(&ctx->uring_lock);
684 	__io_cqring_overflow_flush(ctx, false);
685 	mutex_unlock(&ctx->uring_lock);
686 }
687 
688 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)689 static inline void io_put_task(struct io_kiocb *req)
690 {
691 	struct io_uring_task *tctx = req->tctx;
692 
693 	if (likely(tctx->task == current)) {
694 		tctx->cached_refs++;
695 	} else {
696 		percpu_counter_sub(&tctx->inflight, 1);
697 		if (unlikely(atomic_read(&tctx->in_cancel)))
698 			wake_up(&tctx->wait);
699 		put_task_struct(tctx->task);
700 	}
701 }
702 
io_task_refs_refill(struct io_uring_task * tctx)703 void io_task_refs_refill(struct io_uring_task *tctx)
704 {
705 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
706 
707 	percpu_counter_add(&tctx->inflight, refill);
708 	refcount_add(refill, &current->usage);
709 	tctx->cached_refs += refill;
710 }
711 
io_uring_drop_tctx_refs(struct task_struct * task)712 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
713 {
714 	struct io_uring_task *tctx = task->io_uring;
715 	unsigned int refs = tctx->cached_refs;
716 
717 	if (refs) {
718 		tctx->cached_refs = 0;
719 		percpu_counter_sub(&tctx->inflight, refs);
720 		put_task_struct_many(task, refs);
721 	}
722 }
723 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
725 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
726 {
727 	struct io_overflow_cqe *ocqe;
728 	size_t ocq_size = sizeof(struct io_overflow_cqe);
729 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
730 
731 	lockdep_assert_held(&ctx->completion_lock);
732 
733 	if (is_cqe32)
734 		ocq_size += sizeof(struct io_uring_cqe);
735 
736 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
737 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
738 	if (!ocqe) {
739 		/*
740 		 * If we're in ring overflow flush mode, or in task cancel mode,
741 		 * or cannot allocate an overflow entry, then we need to drop it
742 		 * on the floor.
743 		 */
744 		io_account_cq_overflow(ctx);
745 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
746 		return false;
747 	}
748 	if (list_empty(&ctx->cq_overflow_list)) {
749 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
750 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
751 
752 	}
753 	ocqe->cqe.user_data = user_data;
754 	ocqe->cqe.res = res;
755 	ocqe->cqe.flags = cflags;
756 	if (is_cqe32) {
757 		ocqe->cqe.big_cqe[0] = extra1;
758 		ocqe->cqe.big_cqe[1] = extra2;
759 	}
760 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
761 	return true;
762 }
763 
io_req_cqe_overflow(struct io_kiocb * req)764 static void io_req_cqe_overflow(struct io_kiocb *req)
765 {
766 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
767 				req->cqe.res, req->cqe.flags,
768 				req->big_cqe.extra1, req->big_cqe.extra2);
769 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
770 }
771 
772 /*
773  * writes to the cq entry need to come after reading head; the
774  * control dependency is enough as we're using WRITE_ONCE to
775  * fill the cq entry
776  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)777 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
778 {
779 	struct io_rings *rings = ctx->rings;
780 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
781 	unsigned int free, queued, len;
782 
783 	/*
784 	 * Posting into the CQ when there are pending overflowed CQEs may break
785 	 * ordering guarantees, which will affect links, F_MORE users and more.
786 	 * Force overflow the completion.
787 	 */
788 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
789 		return false;
790 
791 	/* userspace may cheat modifying the tail, be safe and do min */
792 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
793 	free = ctx->cq_entries - queued;
794 	/* we need a contiguous range, limit based on the current array offset */
795 	len = min(free, ctx->cq_entries - off);
796 	if (!len)
797 		return false;
798 
799 	if (ctx->flags & IORING_SETUP_CQE32) {
800 		off <<= 1;
801 		len <<= 1;
802 	}
803 
804 	ctx->cqe_cached = &rings->cqes[off];
805 	ctx->cqe_sentinel = ctx->cqe_cached + len;
806 	return true;
807 }
808 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)809 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
810 			      u32 cflags)
811 {
812 	struct io_uring_cqe *cqe;
813 
814 	ctx->cq_extra++;
815 
816 	/*
817 	 * If we can't get a cq entry, userspace overflowed the
818 	 * submission (by quite a lot). Increment the overflow count in
819 	 * the ring.
820 	 */
821 	if (likely(io_get_cqe(ctx, &cqe))) {
822 		WRITE_ONCE(cqe->user_data, user_data);
823 		WRITE_ONCE(cqe->res, res);
824 		WRITE_ONCE(cqe->flags, cflags);
825 
826 		if (ctx->flags & IORING_SETUP_CQE32) {
827 			WRITE_ONCE(cqe->big_cqe[0], 0);
828 			WRITE_ONCE(cqe->big_cqe[1], 0);
829 		}
830 
831 		trace_io_uring_complete(ctx, NULL, cqe);
832 		return true;
833 	}
834 	return false;
835 }
836 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
838 {
839 	bool filled;
840 
841 	io_cq_lock(ctx);
842 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
843 	if (!filled)
844 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
845 	io_cq_unlock_post(ctx);
846 	return filled;
847 }
848 
849 /*
850  * Must be called from inline task_work so we now a flush will happen later,
851  * and obviously with ctx->uring_lock held (tw always has that).
852  */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)853 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
854 {
855 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
856 		spin_lock(&ctx->completion_lock);
857 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
858 		spin_unlock(&ctx->completion_lock);
859 	}
860 	ctx->submit_state.cq_flush = true;
861 }
862 
863 /*
864  * A helper for multishot requests posting additional CQEs.
865  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
866  */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)867 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
868 {
869 	struct io_ring_ctx *ctx = req->ctx;
870 	bool posted;
871 
872 	lockdep_assert(!io_wq_current_is_worker());
873 	lockdep_assert_held(&ctx->uring_lock);
874 
875 	if (!ctx->lockless_cq) {
876 		spin_lock(&ctx->completion_lock);
877 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
878 		spin_unlock(&ctx->completion_lock);
879 	} else {
880 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
881 	}
882 
883 	ctx->submit_state.cq_flush = true;
884 	return posted;
885 }
886 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
888 {
889 	struct io_ring_ctx *ctx = req->ctx;
890 	bool completed = true;
891 
892 	/*
893 	 * All execution paths but io-wq use the deferred completions by
894 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
895 	 */
896 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
897 		return;
898 
899 	/*
900 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
901 	 * the submitter task context, IOPOLL protects with uring_lock.
902 	 */
903 	if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
904 defer_complete:
905 		req->io_task_work.func = io_req_task_complete;
906 		io_req_task_work_add(req);
907 		return;
908 	}
909 
910 	io_cq_lock(ctx);
911 	if (!(req->flags & REQ_F_CQE_SKIP))
912 		completed = io_fill_cqe_req(ctx, req);
913 	io_cq_unlock_post(ctx);
914 
915 	if (!completed)
916 		goto defer_complete;
917 
918 	/*
919 	 * We don't free the request here because we know it's called from
920 	 * io-wq only, which holds a reference, so it cannot be the last put.
921 	 */
922 	req_ref_put(req);
923 }
924 
io_req_defer_failed(struct io_kiocb * req,s32 res)925 void io_req_defer_failed(struct io_kiocb *req, s32 res)
926 	__must_hold(&ctx->uring_lock)
927 {
928 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
929 
930 	lockdep_assert_held(&req->ctx->uring_lock);
931 
932 	req_set_fail(req);
933 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
934 	if (def->fail)
935 		def->fail(req);
936 	io_req_complete_defer(req);
937 }
938 
939 /*
940  * Don't initialise the fields below on every allocation, but do that in
941  * advance and keep them valid across allocations.
942  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)943 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
944 {
945 	req->ctx = ctx;
946 	req->buf_node = NULL;
947 	req->file_node = NULL;
948 	req->link = NULL;
949 	req->async_data = NULL;
950 	/* not necessary, but safer to zero */
951 	memset(&req->cqe, 0, sizeof(req->cqe));
952 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
953 }
954 
955 /*
956  * A request might get retired back into the request caches even before opcode
957  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
958  * Because of that, io_alloc_req() should be called only under ->uring_lock
959  * and with extra caution to not get a request that is still worked on.
960  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)961 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
962 	__must_hold(&ctx->uring_lock)
963 {
964 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
965 	void *reqs[IO_REQ_ALLOC_BATCH];
966 	int ret;
967 
968 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
969 
970 	/*
971 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
972 	 * retry single alloc to be on the safe side.
973 	 */
974 	if (unlikely(ret <= 0)) {
975 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
976 		if (!reqs[0])
977 			return false;
978 		ret = 1;
979 	}
980 
981 	percpu_ref_get_many(&ctx->refs, ret);
982 	while (ret--) {
983 		struct io_kiocb *req = reqs[ret];
984 
985 		io_preinit_req(req, ctx);
986 		io_req_add_to_cache(req, ctx);
987 	}
988 	return true;
989 }
990 
io_free_req(struct io_kiocb * req)991 __cold void io_free_req(struct io_kiocb *req)
992 {
993 	/* refs were already put, restore them for io_req_task_complete() */
994 	req->flags &= ~REQ_F_REFCOUNT;
995 	/* we only want to free it, don't post CQEs */
996 	req->flags |= REQ_F_CQE_SKIP;
997 	req->io_task_work.func = io_req_task_complete;
998 	io_req_task_work_add(req);
999 }
1000 
__io_req_find_next_prep(struct io_kiocb * req)1001 static void __io_req_find_next_prep(struct io_kiocb *req)
1002 {
1003 	struct io_ring_ctx *ctx = req->ctx;
1004 
1005 	spin_lock(&ctx->completion_lock);
1006 	io_disarm_next(req);
1007 	spin_unlock(&ctx->completion_lock);
1008 }
1009 
io_req_find_next(struct io_kiocb * req)1010 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1011 {
1012 	struct io_kiocb *nxt;
1013 
1014 	/*
1015 	 * If LINK is set, we have dependent requests in this chain. If we
1016 	 * didn't fail this request, queue the first one up, moving any other
1017 	 * dependencies to the next request. In case of failure, fail the rest
1018 	 * of the chain.
1019 	 */
1020 	if (unlikely(req->flags & IO_DISARM_MASK))
1021 		__io_req_find_next_prep(req);
1022 	nxt = req->link;
1023 	req->link = NULL;
1024 	return nxt;
1025 }
1026 
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1027 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1028 {
1029 	if (!ctx)
1030 		return;
1031 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1032 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1033 
1034 	io_submit_flush_completions(ctx);
1035 	mutex_unlock(&ctx->uring_lock);
1036 	percpu_ref_put(&ctx->refs);
1037 }
1038 
1039 /*
1040  * Run queued task_work, returning the number of entries processed in *count.
1041  * If more entries than max_entries are available, stop processing once this
1042  * is reached and return the rest of the list.
1043  */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1044 struct llist_node *io_handle_tw_list(struct llist_node *node,
1045 				     unsigned int *count,
1046 				     unsigned int max_entries)
1047 {
1048 	struct io_ring_ctx *ctx = NULL;
1049 	struct io_tw_state ts = { };
1050 
1051 	do {
1052 		struct llist_node *next = node->next;
1053 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1054 						    io_task_work.node);
1055 
1056 		if (req->ctx != ctx) {
1057 			ctx_flush_and_put(ctx, ts);
1058 			ctx = req->ctx;
1059 			mutex_lock(&ctx->uring_lock);
1060 			percpu_ref_get(&ctx->refs);
1061 		}
1062 		INDIRECT_CALL_2(req->io_task_work.func,
1063 				io_poll_task_func, io_req_rw_complete,
1064 				req, ts);
1065 		node = next;
1066 		(*count)++;
1067 		if (unlikely(need_resched())) {
1068 			ctx_flush_and_put(ctx, ts);
1069 			ctx = NULL;
1070 			cond_resched();
1071 		}
1072 	} while (node && *count < max_entries);
1073 
1074 	ctx_flush_and_put(ctx, ts);
1075 	return node;
1076 }
1077 
__io_fallback_tw(struct llist_node * node,bool sync)1078 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1079 {
1080 	struct io_ring_ctx *last_ctx = NULL;
1081 	struct io_kiocb *req;
1082 
1083 	while (node) {
1084 		req = container_of(node, struct io_kiocb, io_task_work.node);
1085 		node = node->next;
1086 		if (last_ctx != req->ctx) {
1087 			if (last_ctx) {
1088 				if (sync)
1089 					flush_delayed_work(&last_ctx->fallback_work);
1090 				percpu_ref_put(&last_ctx->refs);
1091 			}
1092 			last_ctx = req->ctx;
1093 			percpu_ref_get(&last_ctx->refs);
1094 		}
1095 		if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1096 			schedule_delayed_work(&last_ctx->fallback_work, 1);
1097 	}
1098 
1099 	if (last_ctx) {
1100 		if (sync)
1101 			flush_delayed_work(&last_ctx->fallback_work);
1102 		percpu_ref_put(&last_ctx->refs);
1103 	}
1104 }
1105 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1106 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1107 {
1108 	struct llist_node *node = llist_del_all(&tctx->task_list);
1109 
1110 	__io_fallback_tw(node, sync);
1111 }
1112 
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1113 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1114 				      unsigned int max_entries,
1115 				      unsigned int *count)
1116 {
1117 	struct llist_node *node;
1118 
1119 	if (unlikely(current->flags & PF_EXITING)) {
1120 		io_fallback_tw(tctx, true);
1121 		return NULL;
1122 	}
1123 
1124 	node = llist_del_all(&tctx->task_list);
1125 	if (node) {
1126 		node = llist_reverse_order(node);
1127 		node = io_handle_tw_list(node, count, max_entries);
1128 	}
1129 
1130 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1131 	if (unlikely(atomic_read(&tctx->in_cancel)))
1132 		io_uring_drop_tctx_refs(current);
1133 
1134 	trace_io_uring_task_work_run(tctx, *count);
1135 	return node;
1136 }
1137 
tctx_task_work(struct callback_head * cb)1138 void tctx_task_work(struct callback_head *cb)
1139 {
1140 	struct io_uring_task *tctx;
1141 	struct llist_node *ret;
1142 	unsigned int count = 0;
1143 
1144 	tctx = container_of(cb, struct io_uring_task, task_work);
1145 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1146 	/* can't happen */
1147 	WARN_ON_ONCE(ret);
1148 }
1149 
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1150 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1151 {
1152 	struct io_ring_ctx *ctx = req->ctx;
1153 	unsigned nr_wait, nr_tw, nr_tw_prev;
1154 	struct llist_node *head;
1155 
1156 	/* See comment above IO_CQ_WAKE_INIT */
1157 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1158 
1159 	/*
1160 	 * We don't know how many reuqests is there in the link and whether
1161 	 * they can even be queued lazily, fall back to non-lazy.
1162 	 */
1163 	if (req->flags & IO_REQ_LINK_FLAGS)
1164 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1165 
1166 	guard(rcu)();
1167 
1168 	head = READ_ONCE(ctx->work_llist.first);
1169 	do {
1170 		nr_tw_prev = 0;
1171 		if (head) {
1172 			struct io_kiocb *first_req = container_of(head,
1173 							struct io_kiocb,
1174 							io_task_work.node);
1175 			/*
1176 			 * Might be executed at any moment, rely on
1177 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1178 			 */
1179 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1180 		}
1181 
1182 		/*
1183 		 * Theoretically, it can overflow, but that's fine as one of
1184 		 * previous adds should've tried to wake the task.
1185 		 */
1186 		nr_tw = nr_tw_prev + 1;
1187 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1188 			nr_tw = IO_CQ_WAKE_FORCE;
1189 
1190 		req->nr_tw = nr_tw;
1191 		req->io_task_work.node.next = head;
1192 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1193 			      &req->io_task_work.node));
1194 
1195 	/*
1196 	 * cmpxchg implies a full barrier, which pairs with the barrier
1197 	 * in set_current_state() on the io_cqring_wait() side. It's used
1198 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1199 	 * going to sleep will observe the work added to the list, which
1200 	 * is similar to the wait/wawke task state sync.
1201 	 */
1202 
1203 	if (!head) {
1204 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1205 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1206 		if (ctx->has_evfd)
1207 			io_eventfd_signal(ctx);
1208 	}
1209 
1210 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1211 	/* not enough or no one is waiting */
1212 	if (nr_tw < nr_wait)
1213 		return;
1214 	/* the previous add has already woken it up */
1215 	if (nr_tw_prev >= nr_wait)
1216 		return;
1217 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1218 }
1219 
io_req_normal_work_add(struct io_kiocb * req)1220 static void io_req_normal_work_add(struct io_kiocb *req)
1221 {
1222 	struct io_uring_task *tctx = req->tctx;
1223 	struct io_ring_ctx *ctx = req->ctx;
1224 
1225 	/* task_work already pending, we're done */
1226 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1227 		return;
1228 
1229 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1230 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1231 
1232 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1233 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1234 		__set_notify_signal(tctx->task);
1235 		return;
1236 	}
1237 
1238 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1239 		return;
1240 
1241 	io_fallback_tw(tctx, false);
1242 }
1243 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1244 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1245 {
1246 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1247 		io_req_local_work_add(req, flags);
1248 	else
1249 		io_req_normal_work_add(req);
1250 }
1251 
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1252 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1253 {
1254 	if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1255 		return;
1256 	__io_req_task_work_add(req, flags);
1257 }
1258 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1259 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1260 {
1261 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1262 
1263 	__io_fallback_tw(node, false);
1264 	node = llist_del_all(&ctx->retry_llist);
1265 	__io_fallback_tw(node, false);
1266 }
1267 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1268 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1269 				       int min_events)
1270 {
1271 	if (!io_local_work_pending(ctx))
1272 		return false;
1273 	if (events < min_events)
1274 		return true;
1275 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1276 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1277 	return false;
1278 }
1279 
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1280 static int __io_run_local_work_loop(struct llist_node **node,
1281 				    io_tw_token_t tw,
1282 				    int events)
1283 {
1284 	int ret = 0;
1285 
1286 	while (*node) {
1287 		struct llist_node *next = (*node)->next;
1288 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1289 						    io_task_work.node);
1290 		INDIRECT_CALL_2(req->io_task_work.func,
1291 				io_poll_task_func, io_req_rw_complete,
1292 				req, tw);
1293 		*node = next;
1294 		if (++ret >= events)
1295 			break;
1296 	}
1297 
1298 	return ret;
1299 }
1300 
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1301 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1302 			       int min_events, int max_events)
1303 {
1304 	struct llist_node *node;
1305 	unsigned int loops = 0;
1306 	int ret = 0;
1307 
1308 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1309 		return -EEXIST;
1310 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1311 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1312 again:
1313 	min_events -= ret;
1314 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1315 	if (ctx->retry_llist.first)
1316 		goto retry_done;
1317 
1318 	/*
1319 	 * llists are in reverse order, flip it back the right way before
1320 	 * running the pending items.
1321 	 */
1322 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1323 	ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1324 	ctx->retry_llist.first = node;
1325 	loops++;
1326 
1327 	if (io_run_local_work_continue(ctx, ret, min_events))
1328 		goto again;
1329 retry_done:
1330 	io_submit_flush_completions(ctx);
1331 	if (io_run_local_work_continue(ctx, ret, min_events))
1332 		goto again;
1333 
1334 	trace_io_uring_local_work_run(ctx, ret, loops);
1335 	return ret;
1336 }
1337 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1338 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1339 					   int min_events)
1340 {
1341 	struct io_tw_state ts = {};
1342 
1343 	if (!io_local_work_pending(ctx))
1344 		return 0;
1345 	return __io_run_local_work(ctx, ts, min_events,
1346 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1347 }
1348 
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1349 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1350 			     int max_events)
1351 {
1352 	struct io_tw_state ts = {};
1353 	int ret;
1354 
1355 	mutex_lock(&ctx->uring_lock);
1356 	ret = __io_run_local_work(ctx, ts, min_events, max_events);
1357 	mutex_unlock(&ctx->uring_lock);
1358 	return ret;
1359 }
1360 
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1361 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1362 {
1363 	io_tw_lock(req->ctx, tw);
1364 	io_req_defer_failed(req, req->cqe.res);
1365 }
1366 
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1367 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1368 {
1369 	io_tw_lock(req->ctx, tw);
1370 	if (unlikely(io_should_terminate_tw()))
1371 		io_req_defer_failed(req, -EFAULT);
1372 	else if (req->flags & REQ_F_FORCE_ASYNC)
1373 		io_queue_iowq(req);
1374 	else
1375 		io_queue_sqe(req);
1376 }
1377 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1378 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1379 {
1380 	io_req_set_res(req, ret, 0);
1381 	req->io_task_work.func = io_req_task_cancel;
1382 	io_req_task_work_add(req);
1383 }
1384 
io_req_task_queue(struct io_kiocb * req)1385 void io_req_task_queue(struct io_kiocb *req)
1386 {
1387 	req->io_task_work.func = io_req_task_submit;
1388 	io_req_task_work_add(req);
1389 }
1390 
io_queue_next(struct io_kiocb * req)1391 void io_queue_next(struct io_kiocb *req)
1392 {
1393 	struct io_kiocb *nxt = io_req_find_next(req);
1394 
1395 	if (nxt)
1396 		io_req_task_queue(nxt);
1397 }
1398 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1399 static void io_free_batch_list(struct io_ring_ctx *ctx,
1400 			       struct io_wq_work_node *node)
1401 	__must_hold(&ctx->uring_lock)
1402 {
1403 	do {
1404 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1405 						    comp_list);
1406 
1407 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1408 			if (req->flags & REQ_F_REISSUE) {
1409 				node = req->comp_list.next;
1410 				req->flags &= ~REQ_F_REISSUE;
1411 				io_queue_iowq(req);
1412 				continue;
1413 			}
1414 			if (req->flags & REQ_F_REFCOUNT) {
1415 				node = req->comp_list.next;
1416 				if (!req_ref_put_and_test(req))
1417 					continue;
1418 			}
1419 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1420 				struct async_poll *apoll = req->apoll;
1421 
1422 				if (apoll->double_poll)
1423 					kfree(apoll->double_poll);
1424 				io_cache_free(&ctx->apoll_cache, apoll);
1425 				req->flags &= ~REQ_F_POLLED;
1426 			}
1427 			if (req->flags & IO_REQ_LINK_FLAGS)
1428 				io_queue_next(req);
1429 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1430 				io_clean_op(req);
1431 		}
1432 		io_put_file(req);
1433 		io_req_put_rsrc_nodes(req);
1434 		io_put_task(req);
1435 
1436 		node = req->comp_list.next;
1437 		io_req_add_to_cache(req, ctx);
1438 	} while (node);
1439 }
1440 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1441 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1442 	__must_hold(&ctx->uring_lock)
1443 {
1444 	struct io_submit_state *state = &ctx->submit_state;
1445 	struct io_wq_work_node *node;
1446 
1447 	__io_cq_lock(ctx);
1448 	__wq_list_for_each(node, &state->compl_reqs) {
1449 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1450 					    comp_list);
1451 
1452 		/*
1453 		 * Requests marked with REQUEUE should not post a CQE, they
1454 		 * will go through the io-wq retry machinery and post one
1455 		 * later.
1456 		 */
1457 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1458 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1459 			if (ctx->lockless_cq) {
1460 				spin_lock(&ctx->completion_lock);
1461 				io_req_cqe_overflow(req);
1462 				spin_unlock(&ctx->completion_lock);
1463 			} else {
1464 				io_req_cqe_overflow(req);
1465 			}
1466 		}
1467 	}
1468 	__io_cq_unlock_post(ctx);
1469 
1470 	if (!wq_list_empty(&state->compl_reqs)) {
1471 		io_free_batch_list(ctx, state->compl_reqs.first);
1472 		INIT_WQ_LIST(&state->compl_reqs);
1473 	}
1474 	ctx->submit_state.cq_flush = false;
1475 }
1476 
io_cqring_events(struct io_ring_ctx * ctx)1477 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1478 {
1479 	/* See comment at the top of this file */
1480 	smp_rmb();
1481 	return __io_cqring_events(ctx);
1482 }
1483 
1484 /*
1485  * We can't just wait for polled events to come to us, we have to actively
1486  * find and complete them.
1487  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1488 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1489 {
1490 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1491 		return;
1492 
1493 	mutex_lock(&ctx->uring_lock);
1494 	while (!wq_list_empty(&ctx->iopoll_list)) {
1495 		/* let it sleep and repeat later if can't complete a request */
1496 		if (io_do_iopoll(ctx, true) == 0)
1497 			break;
1498 		/*
1499 		 * Ensure we allow local-to-the-cpu processing to take place,
1500 		 * in this case we need to ensure that we reap all events.
1501 		 * Also let task_work, etc. to progress by releasing the mutex
1502 		 */
1503 		if (need_resched()) {
1504 			mutex_unlock(&ctx->uring_lock);
1505 			cond_resched();
1506 			mutex_lock(&ctx->uring_lock);
1507 		}
1508 	}
1509 	mutex_unlock(&ctx->uring_lock);
1510 }
1511 
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1512 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1513 {
1514 	unsigned int nr_events = 0;
1515 	unsigned long check_cq;
1516 
1517 	min_events = min(min_events, ctx->cq_entries);
1518 
1519 	lockdep_assert_held(&ctx->uring_lock);
1520 
1521 	if (!io_allowed_run_tw(ctx))
1522 		return -EEXIST;
1523 
1524 	check_cq = READ_ONCE(ctx->check_cq);
1525 	if (unlikely(check_cq)) {
1526 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1527 			__io_cqring_overflow_flush(ctx, false);
1528 		/*
1529 		 * Similarly do not spin if we have not informed the user of any
1530 		 * dropped CQE.
1531 		 */
1532 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1533 			return -EBADR;
1534 	}
1535 	/*
1536 	 * Don't enter poll loop if we already have events pending.
1537 	 * If we do, we can potentially be spinning for commands that
1538 	 * already triggered a CQE (eg in error).
1539 	 */
1540 	if (io_cqring_events(ctx))
1541 		return 0;
1542 
1543 	do {
1544 		int ret = 0;
1545 
1546 		/*
1547 		 * If a submit got punted to a workqueue, we can have the
1548 		 * application entering polling for a command before it gets
1549 		 * issued. That app will hold the uring_lock for the duration
1550 		 * of the poll right here, so we need to take a breather every
1551 		 * now and then to ensure that the issue has a chance to add
1552 		 * the poll to the issued list. Otherwise we can spin here
1553 		 * forever, while the workqueue is stuck trying to acquire the
1554 		 * very same mutex.
1555 		 */
1556 		if (wq_list_empty(&ctx->iopoll_list) ||
1557 		    io_task_work_pending(ctx)) {
1558 			u32 tail = ctx->cached_cq_tail;
1559 
1560 			(void) io_run_local_work_locked(ctx, min_events);
1561 
1562 			if (task_work_pending(current) ||
1563 			    wq_list_empty(&ctx->iopoll_list)) {
1564 				mutex_unlock(&ctx->uring_lock);
1565 				io_run_task_work();
1566 				mutex_lock(&ctx->uring_lock);
1567 			}
1568 			/* some requests don't go through iopoll_list */
1569 			if (tail != ctx->cached_cq_tail ||
1570 			    wq_list_empty(&ctx->iopoll_list))
1571 				break;
1572 		}
1573 		ret = io_do_iopoll(ctx, !min_events);
1574 		if (unlikely(ret < 0))
1575 			return ret;
1576 
1577 		if (task_sigpending(current))
1578 			return -EINTR;
1579 		if (need_resched())
1580 			break;
1581 
1582 		nr_events += ret;
1583 	} while (nr_events < min_events);
1584 
1585 	return 0;
1586 }
1587 
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1588 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1589 {
1590 	io_req_complete_defer(req);
1591 }
1592 
1593 /*
1594  * After the iocb has been issued, it's safe to be found on the poll list.
1595  * Adding the kiocb to the list AFTER submission ensures that we don't
1596  * find it from a io_do_iopoll() thread before the issuer is done
1597  * accessing the kiocb cookie.
1598  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1599 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1600 {
1601 	struct io_ring_ctx *ctx = req->ctx;
1602 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1603 
1604 	/* workqueue context doesn't hold uring_lock, grab it now */
1605 	if (unlikely(needs_lock))
1606 		mutex_lock(&ctx->uring_lock);
1607 
1608 	/*
1609 	 * Track whether we have multiple files in our lists. This will impact
1610 	 * how we do polling eventually, not spinning if we're on potentially
1611 	 * different devices.
1612 	 */
1613 	if (wq_list_empty(&ctx->iopoll_list)) {
1614 		ctx->poll_multi_queue = false;
1615 	} else if (!ctx->poll_multi_queue) {
1616 		struct io_kiocb *list_req;
1617 
1618 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1619 					comp_list);
1620 		if (list_req->file != req->file)
1621 			ctx->poll_multi_queue = true;
1622 	}
1623 
1624 	/*
1625 	 * For fast devices, IO may have already completed. If it has, add
1626 	 * it to the front so we find it first.
1627 	 */
1628 	if (READ_ONCE(req->iopoll_completed))
1629 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1630 	else
1631 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1632 
1633 	if (unlikely(needs_lock)) {
1634 		/*
1635 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1636 		 * in sq thread task context or in io worker task context. If
1637 		 * current task context is sq thread, we don't need to check
1638 		 * whether should wake up sq thread.
1639 		 */
1640 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1641 		    wq_has_sleeper(&ctx->sq_data->wait))
1642 			wake_up(&ctx->sq_data->wait);
1643 
1644 		mutex_unlock(&ctx->uring_lock);
1645 	}
1646 }
1647 
io_file_get_flags(struct file * file)1648 io_req_flags_t io_file_get_flags(struct file *file)
1649 {
1650 	io_req_flags_t res = 0;
1651 
1652 	BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1653 
1654 	if (S_ISREG(file_inode(file)->i_mode))
1655 		res |= REQ_F_ISREG;
1656 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1657 		res |= REQ_F_SUPPORT_NOWAIT;
1658 	return res;
1659 }
1660 
io_get_sequence(struct io_kiocb * req)1661 static u32 io_get_sequence(struct io_kiocb *req)
1662 {
1663 	u32 seq = req->ctx->cached_sq_head;
1664 	struct io_kiocb *cur;
1665 
1666 	/* need original cached_sq_head, but it was increased for each req */
1667 	io_for_each_link(cur, req)
1668 		seq--;
1669 	return seq;
1670 }
1671 
io_drain_req(struct io_kiocb * req)1672 static __cold void io_drain_req(struct io_kiocb *req)
1673 	__must_hold(&ctx->uring_lock)
1674 {
1675 	struct io_ring_ctx *ctx = req->ctx;
1676 	struct io_defer_entry *de;
1677 	int ret;
1678 	u32 seq = io_get_sequence(req);
1679 
1680 	/* Still need defer if there is pending req in defer list. */
1681 	spin_lock(&ctx->completion_lock);
1682 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1683 		spin_unlock(&ctx->completion_lock);
1684 queue:
1685 		ctx->drain_active = false;
1686 		io_req_task_queue(req);
1687 		return;
1688 	}
1689 	spin_unlock(&ctx->completion_lock);
1690 
1691 	io_prep_async_link(req);
1692 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1693 	if (!de) {
1694 		ret = -ENOMEM;
1695 		io_req_defer_failed(req, ret);
1696 		return;
1697 	}
1698 
1699 	spin_lock(&ctx->completion_lock);
1700 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1701 		spin_unlock(&ctx->completion_lock);
1702 		kfree(de);
1703 		goto queue;
1704 	}
1705 
1706 	trace_io_uring_defer(req);
1707 	de->req = req;
1708 	de->seq = seq;
1709 	list_add_tail(&de->list, &ctx->defer_list);
1710 	spin_unlock(&ctx->completion_lock);
1711 }
1712 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1713 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1714 			   unsigned int issue_flags)
1715 {
1716 	if (req->file || !def->needs_file)
1717 		return true;
1718 
1719 	if (req->flags & REQ_F_FIXED_FILE)
1720 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1721 	else
1722 		req->file = io_file_get_normal(req, req->cqe.fd);
1723 
1724 	return !!req->file;
1725 }
1726 
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1727 static inline int __io_issue_sqe(struct io_kiocb *req,
1728 				 unsigned int issue_flags,
1729 				 const struct io_issue_def *def)
1730 {
1731 	const struct cred *creds = NULL;
1732 	int ret;
1733 
1734 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1735 		creds = override_creds(req->creds);
1736 
1737 	if (!def->audit_skip)
1738 		audit_uring_entry(req->opcode);
1739 
1740 	ret = def->issue(req, issue_flags);
1741 
1742 	if (!def->audit_skip)
1743 		audit_uring_exit(!ret, ret);
1744 
1745 	if (creds)
1746 		revert_creds(creds);
1747 
1748 	return ret;
1749 }
1750 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1751 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1752 {
1753 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1754 	int ret;
1755 
1756 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1757 		return -EBADF;
1758 
1759 	ret = __io_issue_sqe(req, issue_flags, def);
1760 
1761 	if (ret == IOU_OK) {
1762 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1763 			io_req_complete_defer(req);
1764 		else
1765 			io_req_complete_post(req, issue_flags);
1766 
1767 		return 0;
1768 	}
1769 
1770 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1771 		ret = 0;
1772 		io_arm_ltimeout(req);
1773 
1774 		/* If the op doesn't have a file, we're not polling for it */
1775 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1776 			io_iopoll_req_issued(req, issue_flags);
1777 	}
1778 	return ret;
1779 }
1780 
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1781 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1782 {
1783 	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1784 					 IO_URING_F_MULTISHOT |
1785 					 IO_URING_F_COMPLETE_DEFER;
1786 	int ret;
1787 
1788 	io_tw_lock(req->ctx, tw);
1789 
1790 	WARN_ON_ONCE(!req->file);
1791 	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1792 		return -EFAULT;
1793 
1794 	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1795 
1796 	WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1797 	return ret;
1798 }
1799 
io_wq_free_work(struct io_wq_work * work)1800 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1801 {
1802 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1803 	struct io_kiocb *nxt = NULL;
1804 
1805 	if (req_ref_put_and_test_atomic(req)) {
1806 		if (req->flags & IO_REQ_LINK_FLAGS)
1807 			nxt = io_req_find_next(req);
1808 		io_free_req(req);
1809 	}
1810 	return nxt ? &nxt->work : NULL;
1811 }
1812 
io_wq_submit_work(struct io_wq_work * work)1813 void io_wq_submit_work(struct io_wq_work *work)
1814 {
1815 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1816 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1817 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1818 	bool needs_poll = false;
1819 	int ret = 0, err = -ECANCELED;
1820 
1821 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1822 	if (!(req->flags & REQ_F_REFCOUNT))
1823 		__io_req_set_refcount(req, 2);
1824 	else
1825 		req_ref_get(req);
1826 
1827 	io_arm_ltimeout(req);
1828 
1829 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1830 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1831 fail:
1832 		io_req_task_queue_fail(req, err);
1833 		return;
1834 	}
1835 	if (!io_assign_file(req, def, issue_flags)) {
1836 		err = -EBADF;
1837 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1838 		goto fail;
1839 	}
1840 
1841 	/*
1842 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1843 	 * submitter task context. Final request completions are handed to the
1844 	 * right context, however this is not the case of auxiliary CQEs,
1845 	 * which is the main mean of operation for multishot requests.
1846 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1847 	 * than necessary and also cleaner.
1848 	 */
1849 	if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1850 		err = -EBADFD;
1851 		if (!io_file_can_poll(req))
1852 			goto fail;
1853 		if (req->file->f_flags & O_NONBLOCK ||
1854 		    req->file->f_mode & FMODE_NOWAIT) {
1855 			err = -ECANCELED;
1856 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1857 				goto fail;
1858 			return;
1859 		} else {
1860 			req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1861 		}
1862 	}
1863 
1864 	if (req->flags & REQ_F_FORCE_ASYNC) {
1865 		bool opcode_poll = def->pollin || def->pollout;
1866 
1867 		if (opcode_poll && io_file_can_poll(req)) {
1868 			needs_poll = true;
1869 			issue_flags |= IO_URING_F_NONBLOCK;
1870 		}
1871 	}
1872 
1873 	do {
1874 		ret = io_issue_sqe(req, issue_flags);
1875 		if (ret != -EAGAIN)
1876 			break;
1877 
1878 		/*
1879 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1880 		 * poll. -EAGAIN is final for that case.
1881 		 */
1882 		if (req->flags & REQ_F_NOWAIT)
1883 			break;
1884 
1885 		/*
1886 		 * We can get EAGAIN for iopolled IO even though we're
1887 		 * forcing a sync submission from here, since we can't
1888 		 * wait for request slots on the block side.
1889 		 */
1890 		if (!needs_poll) {
1891 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1892 				break;
1893 			if (io_wq_worker_stopped())
1894 				break;
1895 			cond_resched();
1896 			continue;
1897 		}
1898 
1899 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1900 			return;
1901 		/* aborted or ready, in either case retry blocking */
1902 		needs_poll = false;
1903 		issue_flags &= ~IO_URING_F_NONBLOCK;
1904 	} while (1);
1905 
1906 	/* avoid locking problems by failing it from a clean context */
1907 	if (ret)
1908 		io_req_task_queue_fail(req, ret);
1909 }
1910 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1911 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1912 				      unsigned int issue_flags)
1913 {
1914 	struct io_ring_ctx *ctx = req->ctx;
1915 	struct io_rsrc_node *node;
1916 	struct file *file = NULL;
1917 
1918 	io_ring_submit_lock(ctx, issue_flags);
1919 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1920 	if (node) {
1921 		io_req_assign_rsrc_node(&req->file_node, node);
1922 		req->flags |= io_slot_flags(node);
1923 		file = io_slot_file(node);
1924 	}
1925 	io_ring_submit_unlock(ctx, issue_flags);
1926 	return file;
1927 }
1928 
io_file_get_normal(struct io_kiocb * req,int fd)1929 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1930 {
1931 	struct file *file = fget(fd);
1932 
1933 	trace_io_uring_file_get(req, fd);
1934 
1935 	/* we don't allow fixed io_uring files */
1936 	if (file && io_is_uring_fops(file))
1937 		io_req_track_inflight(req);
1938 	return file;
1939 }
1940 
io_queue_async(struct io_kiocb * req,int ret)1941 static void io_queue_async(struct io_kiocb *req, int ret)
1942 	__must_hold(&req->ctx->uring_lock)
1943 {
1944 	struct io_kiocb *linked_timeout;
1945 
1946 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1947 		io_req_defer_failed(req, ret);
1948 		return;
1949 	}
1950 
1951 	linked_timeout = io_prep_linked_timeout(req);
1952 
1953 	switch (io_arm_poll_handler(req, 0)) {
1954 	case IO_APOLL_READY:
1955 		io_kbuf_recycle(req, 0);
1956 		io_req_task_queue(req);
1957 		break;
1958 	case IO_APOLL_ABORTED:
1959 		io_kbuf_recycle(req, 0);
1960 		io_queue_iowq(req);
1961 		break;
1962 	case IO_APOLL_OK:
1963 		break;
1964 	}
1965 
1966 	if (linked_timeout)
1967 		io_queue_linked_timeout(linked_timeout);
1968 }
1969 
io_queue_sqe(struct io_kiocb * req)1970 static inline void io_queue_sqe(struct io_kiocb *req)
1971 	__must_hold(&req->ctx->uring_lock)
1972 {
1973 	int ret;
1974 
1975 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1976 
1977 	/*
1978 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1979 	 * doesn't support non-blocking read/write attempts
1980 	 */
1981 	if (unlikely(ret))
1982 		io_queue_async(req, ret);
1983 }
1984 
io_queue_sqe_fallback(struct io_kiocb * req)1985 static void io_queue_sqe_fallback(struct io_kiocb *req)
1986 	__must_hold(&req->ctx->uring_lock)
1987 {
1988 	if (unlikely(req->flags & REQ_F_FAIL)) {
1989 		/*
1990 		 * We don't submit, fail them all, for that replace hardlinks
1991 		 * with normal links. Extra REQ_F_LINK is tolerated.
1992 		 */
1993 		req->flags &= ~REQ_F_HARDLINK;
1994 		req->flags |= REQ_F_LINK;
1995 		io_req_defer_failed(req, req->cqe.res);
1996 	} else {
1997 		if (unlikely(req->ctx->drain_active))
1998 			io_drain_req(req);
1999 		else
2000 			io_queue_iowq(req);
2001 	}
2002 }
2003 
2004 /*
2005  * Check SQE restrictions (opcode and flags).
2006  *
2007  * Returns 'true' if SQE is allowed, 'false' otherwise.
2008  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2009 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2010 					struct io_kiocb *req,
2011 					unsigned int sqe_flags)
2012 {
2013 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2014 		return false;
2015 
2016 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2017 	    ctx->restrictions.sqe_flags_required)
2018 		return false;
2019 
2020 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2021 			  ctx->restrictions.sqe_flags_required))
2022 		return false;
2023 
2024 	return true;
2025 }
2026 
io_init_drain(struct io_ring_ctx * ctx)2027 static void io_init_drain(struct io_ring_ctx *ctx)
2028 {
2029 	struct io_kiocb *head = ctx->submit_state.link.head;
2030 
2031 	ctx->drain_active = true;
2032 	if (head) {
2033 		/*
2034 		 * If we need to drain a request in the middle of a link, drain
2035 		 * the head request and the next request/link after the current
2036 		 * link. Considering sequential execution of links,
2037 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2038 		 * link.
2039 		 */
2040 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2041 		ctx->drain_next = true;
2042 	}
2043 }
2044 
io_init_fail_req(struct io_kiocb * req,int err)2045 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2046 {
2047 	/* ensure per-opcode data is cleared if we fail before prep */
2048 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2049 	return err;
2050 }
2051 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2052 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2053 		       const struct io_uring_sqe *sqe)
2054 	__must_hold(&ctx->uring_lock)
2055 {
2056 	const struct io_issue_def *def;
2057 	unsigned int sqe_flags;
2058 	int personality;
2059 	u8 opcode;
2060 
2061 	/* req is partially pre-initialised, see io_preinit_req() */
2062 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2063 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2064 	sqe_flags = READ_ONCE(sqe->flags);
2065 	req->flags = (__force io_req_flags_t) sqe_flags;
2066 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2067 	req->file = NULL;
2068 	req->tctx = current->io_uring;
2069 	req->cancel_seq_set = false;
2070 
2071 	if (unlikely(opcode >= IORING_OP_LAST)) {
2072 		req->opcode = 0;
2073 		return io_init_fail_req(req, -EINVAL);
2074 	}
2075 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2076 
2077 	def = &io_issue_defs[opcode];
2078 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2079 		/* enforce forwards compatibility on users */
2080 		if (sqe_flags & ~SQE_VALID_FLAGS)
2081 			return io_init_fail_req(req, -EINVAL);
2082 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2083 			if (!def->buffer_select)
2084 				return io_init_fail_req(req, -EOPNOTSUPP);
2085 			req->buf_index = READ_ONCE(sqe->buf_group);
2086 		}
2087 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2088 			ctx->drain_disabled = true;
2089 		if (sqe_flags & IOSQE_IO_DRAIN) {
2090 			if (ctx->drain_disabled)
2091 				return io_init_fail_req(req, -EOPNOTSUPP);
2092 			io_init_drain(ctx);
2093 		}
2094 	}
2095 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2096 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2097 			return io_init_fail_req(req, -EACCES);
2098 		/* knock it to the slow queue path, will be drained there */
2099 		if (ctx->drain_active)
2100 			req->flags |= REQ_F_FORCE_ASYNC;
2101 		/* if there is no link, we're at "next" request and need to drain */
2102 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2103 			ctx->drain_next = false;
2104 			ctx->drain_active = true;
2105 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2106 		}
2107 	}
2108 
2109 	if (!def->ioprio && sqe->ioprio)
2110 		return io_init_fail_req(req, -EINVAL);
2111 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2112 		return io_init_fail_req(req, -EINVAL);
2113 
2114 	if (def->needs_file) {
2115 		struct io_submit_state *state = &ctx->submit_state;
2116 
2117 		req->cqe.fd = READ_ONCE(sqe->fd);
2118 
2119 		/*
2120 		 * Plug now if we have more than 2 IO left after this, and the
2121 		 * target is potentially a read/write to block based storage.
2122 		 */
2123 		if (state->need_plug && def->plug) {
2124 			state->plug_started = true;
2125 			state->need_plug = false;
2126 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2127 		}
2128 	}
2129 
2130 	personality = READ_ONCE(sqe->personality);
2131 	if (personality) {
2132 		int ret;
2133 
2134 		req->creds = xa_load(&ctx->personalities, personality);
2135 		if (!req->creds)
2136 			return io_init_fail_req(req, -EINVAL);
2137 		get_cred(req->creds);
2138 		ret = security_uring_override_creds(req->creds);
2139 		if (ret) {
2140 			put_cred(req->creds);
2141 			return io_init_fail_req(req, ret);
2142 		}
2143 		req->flags |= REQ_F_CREDS;
2144 	}
2145 
2146 	return def->prep(req, sqe);
2147 }
2148 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2149 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2150 				      struct io_kiocb *req, int ret)
2151 {
2152 	struct io_ring_ctx *ctx = req->ctx;
2153 	struct io_submit_link *link = &ctx->submit_state.link;
2154 	struct io_kiocb *head = link->head;
2155 
2156 	trace_io_uring_req_failed(sqe, req, ret);
2157 
2158 	/*
2159 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2160 	 * unusable. Instead of failing eagerly, continue assembling the link if
2161 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2162 	 * should find the flag and handle the rest.
2163 	 */
2164 	req_fail_link_node(req, ret);
2165 	if (head && !(head->flags & REQ_F_FAIL))
2166 		req_fail_link_node(head, -ECANCELED);
2167 
2168 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2169 		if (head) {
2170 			link->last->link = req;
2171 			link->head = NULL;
2172 			req = head;
2173 		}
2174 		io_queue_sqe_fallback(req);
2175 		return ret;
2176 	}
2177 
2178 	if (head)
2179 		link->last->link = req;
2180 	else
2181 		link->head = req;
2182 	link->last = req;
2183 	return 0;
2184 }
2185 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2186 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2187 			 const struct io_uring_sqe *sqe)
2188 	__must_hold(&ctx->uring_lock)
2189 {
2190 	struct io_submit_link *link = &ctx->submit_state.link;
2191 	int ret;
2192 
2193 	ret = io_init_req(ctx, req, sqe);
2194 	if (unlikely(ret))
2195 		return io_submit_fail_init(sqe, req, ret);
2196 
2197 	trace_io_uring_submit_req(req);
2198 
2199 	/*
2200 	 * If we already have a head request, queue this one for async
2201 	 * submittal once the head completes. If we don't have a head but
2202 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2203 	 * submitted sync once the chain is complete. If none of those
2204 	 * conditions are true (normal request), then just queue it.
2205 	 */
2206 	if (unlikely(link->head)) {
2207 		trace_io_uring_link(req, link->last);
2208 		link->last->link = req;
2209 		link->last = req;
2210 
2211 		if (req->flags & IO_REQ_LINK_FLAGS)
2212 			return 0;
2213 		/* last request of the link, flush it */
2214 		req = link->head;
2215 		link->head = NULL;
2216 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2217 			goto fallback;
2218 
2219 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2220 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2221 		if (req->flags & IO_REQ_LINK_FLAGS) {
2222 			link->head = req;
2223 			link->last = req;
2224 		} else {
2225 fallback:
2226 			io_queue_sqe_fallback(req);
2227 		}
2228 		return 0;
2229 	}
2230 
2231 	io_queue_sqe(req);
2232 	return 0;
2233 }
2234 
2235 /*
2236  * Batched submission is done, ensure local IO is flushed out.
2237  */
io_submit_state_end(struct io_ring_ctx * ctx)2238 static void io_submit_state_end(struct io_ring_ctx *ctx)
2239 {
2240 	struct io_submit_state *state = &ctx->submit_state;
2241 
2242 	if (unlikely(state->link.head))
2243 		io_queue_sqe_fallback(state->link.head);
2244 	/* flush only after queuing links as they can generate completions */
2245 	io_submit_flush_completions(ctx);
2246 	if (state->plug_started)
2247 		blk_finish_plug(&state->plug);
2248 }
2249 
2250 /*
2251  * Start submission side cache.
2252  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2253 static void io_submit_state_start(struct io_submit_state *state,
2254 				  unsigned int max_ios)
2255 {
2256 	state->plug_started = false;
2257 	state->need_plug = max_ios > 2;
2258 	state->submit_nr = max_ios;
2259 	/* set only head, no need to init link_last in advance */
2260 	state->link.head = NULL;
2261 }
2262 
io_commit_sqring(struct io_ring_ctx * ctx)2263 static void io_commit_sqring(struct io_ring_ctx *ctx)
2264 {
2265 	struct io_rings *rings = ctx->rings;
2266 
2267 	/*
2268 	 * Ensure any loads from the SQEs are done at this point,
2269 	 * since once we write the new head, the application could
2270 	 * write new data to them.
2271 	 */
2272 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2273 }
2274 
2275 /*
2276  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2277  * that is mapped by userspace. This means that care needs to be taken to
2278  * ensure that reads are stable, as we cannot rely on userspace always
2279  * being a good citizen. If members of the sqe are validated and then later
2280  * used, it's important that those reads are done through READ_ONCE() to
2281  * prevent a re-load down the line.
2282  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2283 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2284 {
2285 	unsigned mask = ctx->sq_entries - 1;
2286 	unsigned head = ctx->cached_sq_head++ & mask;
2287 
2288 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2289 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2290 		head = READ_ONCE(ctx->sq_array[head]);
2291 		if (unlikely(head >= ctx->sq_entries)) {
2292 			/* drop invalid entries */
2293 			spin_lock(&ctx->completion_lock);
2294 			ctx->cq_extra--;
2295 			spin_unlock(&ctx->completion_lock);
2296 			WRITE_ONCE(ctx->rings->sq_dropped,
2297 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2298 			return false;
2299 		}
2300 		head = array_index_nospec(head, ctx->sq_entries);
2301 	}
2302 
2303 	/*
2304 	 * The cached sq head (or cq tail) serves two purposes:
2305 	 *
2306 	 * 1) allows us to batch the cost of updating the user visible
2307 	 *    head updates.
2308 	 * 2) allows the kernel side to track the head on its own, even
2309 	 *    though the application is the one updating it.
2310 	 */
2311 
2312 	/* double index for 128-byte SQEs, twice as long */
2313 	if (ctx->flags & IORING_SETUP_SQE128)
2314 		head <<= 1;
2315 	*sqe = &ctx->sq_sqes[head];
2316 	return true;
2317 }
2318 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2319 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2320 	__must_hold(&ctx->uring_lock)
2321 {
2322 	unsigned int entries = io_sqring_entries(ctx);
2323 	unsigned int left;
2324 	int ret;
2325 
2326 	if (unlikely(!entries))
2327 		return 0;
2328 	/* make sure SQ entry isn't read before tail */
2329 	ret = left = min(nr, entries);
2330 	io_get_task_refs(left);
2331 	io_submit_state_start(&ctx->submit_state, left);
2332 
2333 	do {
2334 		const struct io_uring_sqe *sqe;
2335 		struct io_kiocb *req;
2336 
2337 		if (unlikely(!io_alloc_req(ctx, &req)))
2338 			break;
2339 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2340 			io_req_add_to_cache(req, ctx);
2341 			break;
2342 		}
2343 
2344 		/*
2345 		 * Continue submitting even for sqe failure if the
2346 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2347 		 */
2348 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2349 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2350 			left--;
2351 			break;
2352 		}
2353 	} while (--left);
2354 
2355 	if (unlikely(left)) {
2356 		ret -= left;
2357 		/* try again if it submitted nothing and can't allocate a req */
2358 		if (!ret && io_req_cache_empty(ctx))
2359 			ret = -EAGAIN;
2360 		current->io_uring->cached_refs += left;
2361 	}
2362 
2363 	io_submit_state_end(ctx);
2364 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2365 	io_commit_sqring(ctx);
2366 	return ret;
2367 }
2368 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2369 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2370 			    int wake_flags, void *key)
2371 {
2372 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2373 
2374 	/*
2375 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2376 	 * the task, and the next invocation will do it.
2377 	 */
2378 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2379 		return autoremove_wake_function(curr, mode, wake_flags, key);
2380 	return -1;
2381 }
2382 
io_run_task_work_sig(struct io_ring_ctx * ctx)2383 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2384 {
2385 	if (io_local_work_pending(ctx)) {
2386 		__set_current_state(TASK_RUNNING);
2387 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2388 			return 0;
2389 	}
2390 	if (io_run_task_work() > 0)
2391 		return 0;
2392 	if (task_sigpending(current))
2393 		return -EINTR;
2394 	return 0;
2395 }
2396 
current_pending_io(void)2397 static bool current_pending_io(void)
2398 {
2399 	struct io_uring_task *tctx = current->io_uring;
2400 
2401 	if (!tctx)
2402 		return false;
2403 	return percpu_counter_read_positive(&tctx->inflight);
2404 }
2405 
io_cqring_timer_wakeup(struct hrtimer * timer)2406 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2407 {
2408 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2409 
2410 	WRITE_ONCE(iowq->hit_timeout, 1);
2411 	iowq->min_timeout = 0;
2412 	wake_up_process(iowq->wq.private);
2413 	return HRTIMER_NORESTART;
2414 }
2415 
2416 /*
2417  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2418  * wake up. If not, and we have a normal timeout, switch to that and keep
2419  * sleeping.
2420  */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2421 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2422 {
2423 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2424 	struct io_ring_ctx *ctx = iowq->ctx;
2425 
2426 	/* no general timeout, or shorter (or equal), we are done */
2427 	if (iowq->timeout == KTIME_MAX ||
2428 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2429 		goto out_wake;
2430 	/* work we may need to run, wake function will see if we need to wake */
2431 	if (io_has_work(ctx))
2432 		goto out_wake;
2433 	/* got events since we started waiting, min timeout is done */
2434 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2435 		goto out_wake;
2436 	/* if we have any events and min timeout expired, we're done */
2437 	if (io_cqring_events(ctx))
2438 		goto out_wake;
2439 
2440 	/*
2441 	 * If using deferred task_work running and application is waiting on
2442 	 * more than one request, ensure we reset it now where we are switching
2443 	 * to normal sleeps. Any request completion post min_wait should wake
2444 	 * the task and return.
2445 	 */
2446 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2447 		atomic_set(&ctx->cq_wait_nr, 1);
2448 		smp_mb();
2449 		if (!llist_empty(&ctx->work_llist))
2450 			goto out_wake;
2451 	}
2452 
2453 	hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2454 	hrtimer_set_expires(timer, iowq->timeout);
2455 	return HRTIMER_RESTART;
2456 out_wake:
2457 	return io_cqring_timer_wakeup(timer);
2458 }
2459 
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2460 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2461 				      clockid_t clock_id, ktime_t start_time)
2462 {
2463 	ktime_t timeout;
2464 
2465 	if (iowq->min_timeout) {
2466 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2467 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2468 				       HRTIMER_MODE_ABS);
2469 	} else {
2470 		timeout = iowq->timeout;
2471 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2472 				       HRTIMER_MODE_ABS);
2473 	}
2474 
2475 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2476 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2477 
2478 	if (!READ_ONCE(iowq->hit_timeout))
2479 		schedule();
2480 
2481 	hrtimer_cancel(&iowq->t);
2482 	destroy_hrtimer_on_stack(&iowq->t);
2483 	__set_current_state(TASK_RUNNING);
2484 
2485 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2486 }
2487 
2488 struct ext_arg {
2489 	size_t argsz;
2490 	struct timespec64 ts;
2491 	const sigset_t __user *sig;
2492 	ktime_t min_time;
2493 	bool ts_set;
2494 	bool iowait;
2495 };
2496 
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2497 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2498 				     struct io_wait_queue *iowq,
2499 				     struct ext_arg *ext_arg,
2500 				     ktime_t start_time)
2501 {
2502 	int ret = 0;
2503 
2504 	/*
2505 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2506 	 * can take into account that the task is waiting for IO - turns out
2507 	 * to be important for low QD IO.
2508 	 */
2509 	if (ext_arg->iowait && current_pending_io())
2510 		current->in_iowait = 1;
2511 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2512 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2513 	else
2514 		schedule();
2515 	current->in_iowait = 0;
2516 	return ret;
2517 }
2518 
2519 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2520 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2521 					  struct io_wait_queue *iowq,
2522 					  struct ext_arg *ext_arg,
2523 					  ktime_t start_time)
2524 {
2525 	if (unlikely(READ_ONCE(ctx->check_cq)))
2526 		return 1;
2527 	if (unlikely(io_local_work_pending(ctx)))
2528 		return 1;
2529 	if (unlikely(task_work_pending(current)))
2530 		return 1;
2531 	if (unlikely(task_sigpending(current)))
2532 		return -EINTR;
2533 	if (unlikely(io_should_wake(iowq)))
2534 		return 0;
2535 
2536 	return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2537 }
2538 
2539 /*
2540  * Wait until events become available, if we don't already have some. The
2541  * application must reap them itself, as they reside on the shared cq ring.
2542  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2543 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2544 			  struct ext_arg *ext_arg)
2545 {
2546 	struct io_wait_queue iowq;
2547 	struct io_rings *rings = ctx->rings;
2548 	ktime_t start_time;
2549 	int ret;
2550 
2551 	min_events = min_t(int, min_events, ctx->cq_entries);
2552 
2553 	if (!io_allowed_run_tw(ctx))
2554 		return -EEXIST;
2555 	if (io_local_work_pending(ctx))
2556 		io_run_local_work(ctx, min_events,
2557 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2558 	io_run_task_work();
2559 
2560 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2561 		io_cqring_do_overflow_flush(ctx);
2562 	if (__io_cqring_events_user(ctx) >= min_events)
2563 		return 0;
2564 
2565 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2566 	iowq.wq.private = current;
2567 	INIT_LIST_HEAD(&iowq.wq.entry);
2568 	iowq.ctx = ctx;
2569 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2570 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2571 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2572 	iowq.hit_timeout = 0;
2573 	iowq.min_timeout = ext_arg->min_time;
2574 	iowq.timeout = KTIME_MAX;
2575 	start_time = io_get_time(ctx);
2576 
2577 	if (ext_arg->ts_set) {
2578 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2579 		if (!(flags & IORING_ENTER_ABS_TIMER))
2580 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2581 	}
2582 
2583 	if (ext_arg->sig) {
2584 #ifdef CONFIG_COMPAT
2585 		if (in_compat_syscall())
2586 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2587 						      ext_arg->argsz);
2588 		else
2589 #endif
2590 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2591 
2592 		if (ret)
2593 			return ret;
2594 	}
2595 
2596 	io_napi_busy_loop(ctx, &iowq);
2597 
2598 	trace_io_uring_cqring_wait(ctx, min_events);
2599 	do {
2600 		unsigned long check_cq;
2601 		int nr_wait;
2602 
2603 		/* if min timeout has been hit, don't reset wait count */
2604 		if (!iowq.hit_timeout)
2605 			nr_wait = (int) iowq.cq_tail -
2606 					READ_ONCE(ctx->rings->cq.tail);
2607 		else
2608 			nr_wait = 1;
2609 
2610 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2611 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2612 			set_current_state(TASK_INTERRUPTIBLE);
2613 		} else {
2614 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2615 							TASK_INTERRUPTIBLE);
2616 		}
2617 
2618 		ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2619 		__set_current_state(TASK_RUNNING);
2620 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2621 
2622 		/*
2623 		 * Run task_work after scheduling and before io_should_wake().
2624 		 * If we got woken because of task_work being processed, run it
2625 		 * now rather than let the caller do another wait loop.
2626 		 */
2627 		if (io_local_work_pending(ctx))
2628 			io_run_local_work(ctx, nr_wait, nr_wait);
2629 		io_run_task_work();
2630 
2631 		/*
2632 		 * Non-local task_work will be run on exit to userspace, but
2633 		 * if we're using DEFER_TASKRUN, then we could have waited
2634 		 * with a timeout for a number of requests. If the timeout
2635 		 * hits, we could have some requests ready to process. Ensure
2636 		 * this break is _after_ we have run task_work, to avoid
2637 		 * deferring running potentially pending requests until the
2638 		 * next time we wait for events.
2639 		 */
2640 		if (ret < 0)
2641 			break;
2642 
2643 		check_cq = READ_ONCE(ctx->check_cq);
2644 		if (unlikely(check_cq)) {
2645 			/* let the caller flush overflows, retry */
2646 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2647 				io_cqring_do_overflow_flush(ctx);
2648 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2649 				ret = -EBADR;
2650 				break;
2651 			}
2652 		}
2653 
2654 		if (io_should_wake(&iowq)) {
2655 			ret = 0;
2656 			break;
2657 		}
2658 		cond_resched();
2659 	} while (1);
2660 
2661 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2662 		finish_wait(&ctx->cq_wait, &iowq.wq);
2663 	restore_saved_sigmask_unless(ret == -EINTR);
2664 
2665 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2666 }
2667 
io_rings_free(struct io_ring_ctx * ctx)2668 static void io_rings_free(struct io_ring_ctx *ctx)
2669 {
2670 	io_free_region(ctx, &ctx->sq_region);
2671 	io_free_region(ctx, &ctx->ring_region);
2672 	ctx->rings = NULL;
2673 	ctx->sq_sqes = NULL;
2674 }
2675 
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2676 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2677 			 unsigned int cq_entries, size_t *sq_offset)
2678 {
2679 	struct io_rings *rings;
2680 	size_t off, sq_array_size;
2681 
2682 	off = struct_size(rings, cqes, cq_entries);
2683 	if (off == SIZE_MAX)
2684 		return SIZE_MAX;
2685 	if (flags & IORING_SETUP_CQE32) {
2686 		if (check_shl_overflow(off, 1, &off))
2687 			return SIZE_MAX;
2688 	}
2689 
2690 #ifdef CONFIG_SMP
2691 	off = ALIGN(off, SMP_CACHE_BYTES);
2692 	if (off == 0)
2693 		return SIZE_MAX;
2694 #endif
2695 
2696 	if (flags & IORING_SETUP_NO_SQARRAY) {
2697 		*sq_offset = SIZE_MAX;
2698 		return off;
2699 	}
2700 
2701 	*sq_offset = off;
2702 
2703 	sq_array_size = array_size(sizeof(u32), sq_entries);
2704 	if (sq_array_size == SIZE_MAX)
2705 		return SIZE_MAX;
2706 
2707 	if (check_add_overflow(off, sq_array_size, &off))
2708 		return SIZE_MAX;
2709 
2710 	return off;
2711 }
2712 
io_req_caches_free(struct io_ring_ctx * ctx)2713 static void io_req_caches_free(struct io_ring_ctx *ctx)
2714 {
2715 	struct io_kiocb *req;
2716 	int nr = 0;
2717 
2718 	mutex_lock(&ctx->uring_lock);
2719 
2720 	while (!io_req_cache_empty(ctx)) {
2721 		req = io_extract_req(ctx);
2722 		kmem_cache_free(req_cachep, req);
2723 		nr++;
2724 	}
2725 	if (nr)
2726 		percpu_ref_put_many(&ctx->refs, nr);
2727 	mutex_unlock(&ctx->uring_lock);
2728 }
2729 
io_ring_ctx_free(struct io_ring_ctx * ctx)2730 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2731 {
2732 	io_sq_thread_finish(ctx);
2733 
2734 	mutex_lock(&ctx->uring_lock);
2735 	io_sqe_buffers_unregister(ctx);
2736 	io_sqe_files_unregister(ctx);
2737 	io_unregister_zcrx_ifqs(ctx);
2738 	io_cqring_overflow_kill(ctx);
2739 	io_eventfd_unregister(ctx);
2740 	io_free_alloc_caches(ctx);
2741 	io_destroy_buffers(ctx);
2742 	io_free_region(ctx, &ctx->param_region);
2743 	mutex_unlock(&ctx->uring_lock);
2744 	if (ctx->sq_creds)
2745 		put_cred(ctx->sq_creds);
2746 	if (ctx->submitter_task)
2747 		put_task_struct(ctx->submitter_task);
2748 
2749 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2750 
2751 	if (ctx->mm_account) {
2752 		mmdrop(ctx->mm_account);
2753 		ctx->mm_account = NULL;
2754 	}
2755 	io_rings_free(ctx);
2756 
2757 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2758 		static_branch_dec(&io_key_has_sqarray);
2759 
2760 	percpu_ref_exit(&ctx->refs);
2761 	free_uid(ctx->user);
2762 	io_req_caches_free(ctx);
2763 	if (ctx->hash_map)
2764 		io_wq_put_hash(ctx->hash_map);
2765 	io_napi_free(ctx);
2766 	kvfree(ctx->cancel_table.hbs);
2767 	xa_destroy(&ctx->io_bl_xa);
2768 	kfree(ctx);
2769 }
2770 
io_activate_pollwq_cb(struct callback_head * cb)2771 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2772 {
2773 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2774 					       poll_wq_task_work);
2775 
2776 	mutex_lock(&ctx->uring_lock);
2777 	ctx->poll_activated = true;
2778 	mutex_unlock(&ctx->uring_lock);
2779 
2780 	/*
2781 	 * Wake ups for some events between start of polling and activation
2782 	 * might've been lost due to loose synchronisation.
2783 	 */
2784 	wake_up_all(&ctx->poll_wq);
2785 	percpu_ref_put(&ctx->refs);
2786 }
2787 
io_activate_pollwq(struct io_ring_ctx * ctx)2788 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2789 {
2790 	spin_lock(&ctx->completion_lock);
2791 	/* already activated or in progress */
2792 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2793 		goto out;
2794 	if (WARN_ON_ONCE(!ctx->task_complete))
2795 		goto out;
2796 	if (!ctx->submitter_task)
2797 		goto out;
2798 	/*
2799 	 * with ->submitter_task only the submitter task completes requests, we
2800 	 * only need to sync with it, which is done by injecting a tw
2801 	 */
2802 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2803 	percpu_ref_get(&ctx->refs);
2804 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2805 		percpu_ref_put(&ctx->refs);
2806 out:
2807 	spin_unlock(&ctx->completion_lock);
2808 }
2809 
io_uring_poll(struct file * file,poll_table * wait)2810 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2811 {
2812 	struct io_ring_ctx *ctx = file->private_data;
2813 	__poll_t mask = 0;
2814 
2815 	if (unlikely(!ctx->poll_activated))
2816 		io_activate_pollwq(ctx);
2817 	/*
2818 	 * provides mb() which pairs with barrier from wq_has_sleeper
2819 	 * call in io_commit_cqring
2820 	 */
2821 	poll_wait(file, &ctx->poll_wq, wait);
2822 
2823 	if (!io_sqring_full(ctx))
2824 		mask |= EPOLLOUT | EPOLLWRNORM;
2825 
2826 	/*
2827 	 * Don't flush cqring overflow list here, just do a simple check.
2828 	 * Otherwise there could possible be ABBA deadlock:
2829 	 *      CPU0                    CPU1
2830 	 *      ----                    ----
2831 	 * lock(&ctx->uring_lock);
2832 	 *                              lock(&ep->mtx);
2833 	 *                              lock(&ctx->uring_lock);
2834 	 * lock(&ep->mtx);
2835 	 *
2836 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2837 	 * pushes them to do the flush.
2838 	 */
2839 
2840 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2841 		mask |= EPOLLIN | EPOLLRDNORM;
2842 
2843 	return mask;
2844 }
2845 
2846 struct io_tctx_exit {
2847 	struct callback_head		task_work;
2848 	struct completion		completion;
2849 	struct io_ring_ctx		*ctx;
2850 };
2851 
io_tctx_exit_cb(struct callback_head * cb)2852 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2853 {
2854 	struct io_uring_task *tctx = current->io_uring;
2855 	struct io_tctx_exit *work;
2856 
2857 	work = container_of(cb, struct io_tctx_exit, task_work);
2858 	/*
2859 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2860 	 * node. It'll be removed by the end of cancellation, just ignore it.
2861 	 * tctx can be NULL if the queueing of this task_work raced with
2862 	 * work cancelation off the exec path.
2863 	 */
2864 	if (tctx && !atomic_read(&tctx->in_cancel))
2865 		io_uring_del_tctx_node((unsigned long)work->ctx);
2866 	complete(&work->completion);
2867 }
2868 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2869 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2870 {
2871 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2872 
2873 	return req->ctx == data;
2874 }
2875 
io_ring_exit_work(struct work_struct * work)2876 static __cold void io_ring_exit_work(struct work_struct *work)
2877 {
2878 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2879 	unsigned long timeout = jiffies + HZ * 60 * 5;
2880 	unsigned long interval = HZ / 20;
2881 	struct io_tctx_exit exit;
2882 	struct io_tctx_node *node;
2883 	int ret;
2884 
2885 	/*
2886 	 * If we're doing polled IO and end up having requests being
2887 	 * submitted async (out-of-line), then completions can come in while
2888 	 * we're waiting for refs to drop. We need to reap these manually,
2889 	 * as nobody else will be looking for them.
2890 	 */
2891 	do {
2892 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2893 			mutex_lock(&ctx->uring_lock);
2894 			io_cqring_overflow_kill(ctx);
2895 			mutex_unlock(&ctx->uring_lock);
2896 		}
2897 		if (ctx->ifq) {
2898 			mutex_lock(&ctx->uring_lock);
2899 			io_shutdown_zcrx_ifqs(ctx);
2900 			mutex_unlock(&ctx->uring_lock);
2901 		}
2902 
2903 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2904 			io_move_task_work_from_local(ctx);
2905 
2906 		/* The SQPOLL thread never reaches this path */
2907 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2908 			cond_resched();
2909 
2910 		if (ctx->sq_data) {
2911 			struct io_sq_data *sqd = ctx->sq_data;
2912 			struct task_struct *tsk;
2913 
2914 			io_sq_thread_park(sqd);
2915 			tsk = sqd->thread;
2916 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2917 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2918 						io_cancel_ctx_cb, ctx, true);
2919 			io_sq_thread_unpark(sqd);
2920 		}
2921 
2922 		io_req_caches_free(ctx);
2923 
2924 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2925 			/* there is little hope left, don't run it too often */
2926 			interval = HZ * 60;
2927 		}
2928 		/*
2929 		 * This is really an uninterruptible wait, as it has to be
2930 		 * complete. But it's also run from a kworker, which doesn't
2931 		 * take signals, so it's fine to make it interruptible. This
2932 		 * avoids scenarios where we knowingly can wait much longer
2933 		 * on completions, for example if someone does a SIGSTOP on
2934 		 * a task that needs to finish task_work to make this loop
2935 		 * complete. That's a synthetic situation that should not
2936 		 * cause a stuck task backtrace, and hence a potential panic
2937 		 * on stuck tasks if that is enabled.
2938 		 */
2939 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2940 
2941 	init_completion(&exit.completion);
2942 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2943 	exit.ctx = ctx;
2944 
2945 	mutex_lock(&ctx->uring_lock);
2946 	while (!list_empty(&ctx->tctx_list)) {
2947 		WARN_ON_ONCE(time_after(jiffies, timeout));
2948 
2949 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2950 					ctx_node);
2951 		/* don't spin on a single task if cancellation failed */
2952 		list_rotate_left(&ctx->tctx_list);
2953 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2954 		if (WARN_ON_ONCE(ret))
2955 			continue;
2956 
2957 		mutex_unlock(&ctx->uring_lock);
2958 		/*
2959 		 * See comment above for
2960 		 * wait_for_completion_interruptible_timeout() on why this
2961 		 * wait is marked as interruptible.
2962 		 */
2963 		wait_for_completion_interruptible(&exit.completion);
2964 		mutex_lock(&ctx->uring_lock);
2965 	}
2966 	mutex_unlock(&ctx->uring_lock);
2967 	spin_lock(&ctx->completion_lock);
2968 	spin_unlock(&ctx->completion_lock);
2969 
2970 	/* pairs with RCU read section in io_req_local_work_add() */
2971 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2972 		synchronize_rcu();
2973 
2974 	io_ring_ctx_free(ctx);
2975 }
2976 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2977 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2978 {
2979 	unsigned long index;
2980 	struct creds *creds;
2981 
2982 	mutex_lock(&ctx->uring_lock);
2983 	percpu_ref_kill(&ctx->refs);
2984 	xa_for_each(&ctx->personalities, index, creds)
2985 		io_unregister_personality(ctx, index);
2986 	mutex_unlock(&ctx->uring_lock);
2987 
2988 	flush_delayed_work(&ctx->fallback_work);
2989 
2990 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2991 	/*
2992 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2993 	 * if we're exiting a ton of rings at the same time. It just adds
2994 	 * noise and overhead, there's no discernable change in runtime
2995 	 * over using system_wq.
2996 	 */
2997 	queue_work(iou_wq, &ctx->exit_work);
2998 }
2999 
io_uring_release(struct inode * inode,struct file * file)3000 static int io_uring_release(struct inode *inode, struct file *file)
3001 {
3002 	struct io_ring_ctx *ctx = file->private_data;
3003 
3004 	file->private_data = NULL;
3005 	io_ring_ctx_wait_and_kill(ctx);
3006 	return 0;
3007 }
3008 
3009 struct io_task_cancel {
3010 	struct io_uring_task *tctx;
3011 	bool all;
3012 };
3013 
io_cancel_task_cb(struct io_wq_work * work,void * data)3014 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3015 {
3016 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3017 	struct io_task_cancel *cancel = data;
3018 
3019 	return io_match_task_safe(req, cancel->tctx, cancel->all);
3020 }
3021 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3022 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3023 					 struct io_uring_task *tctx,
3024 					 bool cancel_all)
3025 {
3026 	struct io_defer_entry *de;
3027 	LIST_HEAD(list);
3028 
3029 	spin_lock(&ctx->completion_lock);
3030 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3031 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3032 			list_cut_position(&list, &ctx->defer_list, &de->list);
3033 			break;
3034 		}
3035 	}
3036 	spin_unlock(&ctx->completion_lock);
3037 	if (list_empty(&list))
3038 		return false;
3039 
3040 	while (!list_empty(&list)) {
3041 		de = list_first_entry(&list, struct io_defer_entry, list);
3042 		list_del_init(&de->list);
3043 		io_req_task_queue_fail(de->req, -ECANCELED);
3044 		kfree(de);
3045 	}
3046 	return true;
3047 }
3048 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3049 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3050 {
3051 	struct io_tctx_node *node;
3052 	enum io_wq_cancel cret;
3053 	bool ret = false;
3054 
3055 	mutex_lock(&ctx->uring_lock);
3056 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3057 		struct io_uring_task *tctx = node->task->io_uring;
3058 
3059 		/*
3060 		 * io_wq will stay alive while we hold uring_lock, because it's
3061 		 * killed after ctx nodes, which requires to take the lock.
3062 		 */
3063 		if (!tctx || !tctx->io_wq)
3064 			continue;
3065 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3066 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3067 	}
3068 	mutex_unlock(&ctx->uring_lock);
3069 
3070 	return ret;
3071 }
3072 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3073 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3074 						struct io_uring_task *tctx,
3075 						bool cancel_all,
3076 						bool is_sqpoll_thread)
3077 {
3078 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3079 	enum io_wq_cancel cret;
3080 	bool ret = false;
3081 
3082 	/* set it so io_req_local_work_add() would wake us up */
3083 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3084 		atomic_set(&ctx->cq_wait_nr, 1);
3085 		smp_mb();
3086 	}
3087 
3088 	/* failed during ring init, it couldn't have issued any requests */
3089 	if (!ctx->rings)
3090 		return false;
3091 
3092 	if (!tctx) {
3093 		ret |= io_uring_try_cancel_iowq(ctx);
3094 	} else if (tctx->io_wq) {
3095 		/*
3096 		 * Cancels requests of all rings, not only @ctx, but
3097 		 * it's fine as the task is in exit/exec.
3098 		 */
3099 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3100 				       &cancel, true);
3101 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3102 	}
3103 
3104 	/* SQPOLL thread does its own polling */
3105 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3106 	    is_sqpoll_thread) {
3107 		while (!wq_list_empty(&ctx->iopoll_list)) {
3108 			io_iopoll_try_reap_events(ctx);
3109 			ret = true;
3110 			cond_resched();
3111 		}
3112 	}
3113 
3114 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3115 	    io_allowed_defer_tw_run(ctx))
3116 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3117 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3118 	mutex_lock(&ctx->uring_lock);
3119 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3120 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3121 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3122 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3123 	mutex_unlock(&ctx->uring_lock);
3124 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3125 	if (tctx)
3126 		ret |= io_run_task_work() > 0;
3127 	else
3128 		ret |= flush_delayed_work(&ctx->fallback_work);
3129 	return ret;
3130 }
3131 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3132 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3133 {
3134 	if (tracked)
3135 		return atomic_read(&tctx->inflight_tracked);
3136 	return percpu_counter_sum(&tctx->inflight);
3137 }
3138 
3139 /*
3140  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3141  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3142  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3143 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3144 {
3145 	struct io_uring_task *tctx = current->io_uring;
3146 	struct io_ring_ctx *ctx;
3147 	struct io_tctx_node *node;
3148 	unsigned long index;
3149 	s64 inflight;
3150 	DEFINE_WAIT(wait);
3151 
3152 	WARN_ON_ONCE(sqd && sqd->thread != current);
3153 
3154 	if (!current->io_uring)
3155 		return;
3156 	if (tctx->io_wq)
3157 		io_wq_exit_start(tctx->io_wq);
3158 
3159 	atomic_inc(&tctx->in_cancel);
3160 	do {
3161 		bool loop = false;
3162 
3163 		io_uring_drop_tctx_refs(current);
3164 		if (!tctx_inflight(tctx, !cancel_all))
3165 			break;
3166 
3167 		/* read completions before cancelations */
3168 		inflight = tctx_inflight(tctx, false);
3169 		if (!inflight)
3170 			break;
3171 
3172 		if (!sqd) {
3173 			xa_for_each(&tctx->xa, index, node) {
3174 				/* sqpoll task will cancel all its requests */
3175 				if (node->ctx->sq_data)
3176 					continue;
3177 				loop |= io_uring_try_cancel_requests(node->ctx,
3178 							current->io_uring,
3179 							cancel_all,
3180 							false);
3181 			}
3182 		} else {
3183 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3184 				loop |= io_uring_try_cancel_requests(ctx,
3185 								     current->io_uring,
3186 								     cancel_all,
3187 								     true);
3188 		}
3189 
3190 		if (loop) {
3191 			cond_resched();
3192 			continue;
3193 		}
3194 
3195 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3196 		io_run_task_work();
3197 		io_uring_drop_tctx_refs(current);
3198 		xa_for_each(&tctx->xa, index, node) {
3199 			if (io_local_work_pending(node->ctx)) {
3200 				WARN_ON_ONCE(node->ctx->submitter_task &&
3201 					     node->ctx->submitter_task != current);
3202 				goto end_wait;
3203 			}
3204 		}
3205 		/*
3206 		 * If we've seen completions, retry without waiting. This
3207 		 * avoids a race where a completion comes in before we did
3208 		 * prepare_to_wait().
3209 		 */
3210 		if (inflight == tctx_inflight(tctx, !cancel_all))
3211 			schedule();
3212 end_wait:
3213 		finish_wait(&tctx->wait, &wait);
3214 	} while (1);
3215 
3216 	io_uring_clean_tctx(tctx);
3217 	if (cancel_all) {
3218 		/*
3219 		 * We shouldn't run task_works after cancel, so just leave
3220 		 * ->in_cancel set for normal exit.
3221 		 */
3222 		atomic_dec(&tctx->in_cancel);
3223 		/* for exec all current's requests should be gone, kill tctx */
3224 		__io_uring_free(current);
3225 	}
3226 }
3227 
__io_uring_cancel(bool cancel_all)3228 void __io_uring_cancel(bool cancel_all)
3229 {
3230 	io_uring_unreg_ringfd();
3231 	io_uring_cancel_generic(cancel_all, NULL);
3232 }
3233 
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3234 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3235 			const struct io_uring_getevents_arg __user *uarg)
3236 {
3237 	unsigned long size = sizeof(struct io_uring_reg_wait);
3238 	unsigned long offset = (uintptr_t)uarg;
3239 	unsigned long end;
3240 
3241 	if (unlikely(offset % sizeof(long)))
3242 		return ERR_PTR(-EFAULT);
3243 
3244 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3245 	if (unlikely(check_add_overflow(offset, size, &end) ||
3246 		     end > ctx->cq_wait_size))
3247 		return ERR_PTR(-EFAULT);
3248 
3249 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3250 	return ctx->cq_wait_arg + offset;
3251 }
3252 
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3253 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3254 			       const void __user *argp, size_t argsz)
3255 {
3256 	struct io_uring_getevents_arg arg;
3257 
3258 	if (!(flags & IORING_ENTER_EXT_ARG))
3259 		return 0;
3260 	if (flags & IORING_ENTER_EXT_ARG_REG)
3261 		return -EINVAL;
3262 	if (argsz != sizeof(arg))
3263 		return -EINVAL;
3264 	if (copy_from_user(&arg, argp, sizeof(arg)))
3265 		return -EFAULT;
3266 	return 0;
3267 }
3268 
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3269 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3270 			  const void __user *argp, struct ext_arg *ext_arg)
3271 {
3272 	const struct io_uring_getevents_arg __user *uarg = argp;
3273 	struct io_uring_getevents_arg arg;
3274 
3275 	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3276 
3277 	/*
3278 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3279 	 * is just a pointer to the sigset_t.
3280 	 */
3281 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3282 		ext_arg->sig = (const sigset_t __user *) argp;
3283 		return 0;
3284 	}
3285 
3286 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3287 		struct io_uring_reg_wait *w;
3288 
3289 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3290 			return -EINVAL;
3291 		w = io_get_ext_arg_reg(ctx, argp);
3292 		if (IS_ERR(w))
3293 			return PTR_ERR(w);
3294 
3295 		if (w->flags & ~IORING_REG_WAIT_TS)
3296 			return -EINVAL;
3297 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3298 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3299 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3300 		if (w->flags & IORING_REG_WAIT_TS) {
3301 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3302 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3303 			ext_arg->ts_set = true;
3304 		}
3305 		return 0;
3306 	}
3307 
3308 	/*
3309 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3310 	 * timespec and sigset_t pointers if good.
3311 	 */
3312 	if (ext_arg->argsz != sizeof(arg))
3313 		return -EINVAL;
3314 #ifdef CONFIG_64BIT
3315 	if (!user_access_begin(uarg, sizeof(*uarg)))
3316 		return -EFAULT;
3317 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3318 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3319 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3320 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3321 	user_access_end();
3322 #else
3323 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3324 		return -EFAULT;
3325 #endif
3326 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3327 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3328 	ext_arg->argsz = arg.sigmask_sz;
3329 	if (arg.ts) {
3330 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3331 			return -EFAULT;
3332 		ext_arg->ts_set = true;
3333 	}
3334 	return 0;
3335 #ifdef CONFIG_64BIT
3336 uaccess_end:
3337 	user_access_end();
3338 	return -EFAULT;
3339 #endif
3340 }
3341 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3342 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3343 		u32, min_complete, u32, flags, const void __user *, argp,
3344 		size_t, argsz)
3345 {
3346 	struct io_ring_ctx *ctx;
3347 	struct file *file;
3348 	long ret;
3349 
3350 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3351 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3352 			       IORING_ENTER_REGISTERED_RING |
3353 			       IORING_ENTER_ABS_TIMER |
3354 			       IORING_ENTER_EXT_ARG_REG |
3355 			       IORING_ENTER_NO_IOWAIT)))
3356 		return -EINVAL;
3357 
3358 	/*
3359 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3360 	 * need only dereference our task private array to find it.
3361 	 */
3362 	if (flags & IORING_ENTER_REGISTERED_RING) {
3363 		struct io_uring_task *tctx = current->io_uring;
3364 
3365 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3366 			return -EINVAL;
3367 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3368 		file = tctx->registered_rings[fd];
3369 		if (unlikely(!file))
3370 			return -EBADF;
3371 	} else {
3372 		file = fget(fd);
3373 		if (unlikely(!file))
3374 			return -EBADF;
3375 		ret = -EOPNOTSUPP;
3376 		if (unlikely(!io_is_uring_fops(file)))
3377 			goto out;
3378 	}
3379 
3380 	ctx = file->private_data;
3381 	ret = -EBADFD;
3382 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3383 		goto out;
3384 
3385 	/*
3386 	 * For SQ polling, the thread will do all submissions and completions.
3387 	 * Just return the requested submit count, and wake the thread if
3388 	 * we were asked to.
3389 	 */
3390 	ret = 0;
3391 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3392 		if (unlikely(ctx->sq_data->thread == NULL)) {
3393 			ret = -EOWNERDEAD;
3394 			goto out;
3395 		}
3396 		if (flags & IORING_ENTER_SQ_WAKEUP)
3397 			wake_up(&ctx->sq_data->wait);
3398 		if (flags & IORING_ENTER_SQ_WAIT)
3399 			io_sqpoll_wait_sq(ctx);
3400 
3401 		ret = to_submit;
3402 	} else if (to_submit) {
3403 		ret = io_uring_add_tctx_node(ctx);
3404 		if (unlikely(ret))
3405 			goto out;
3406 
3407 		mutex_lock(&ctx->uring_lock);
3408 		ret = io_submit_sqes(ctx, to_submit);
3409 		if (ret != to_submit) {
3410 			mutex_unlock(&ctx->uring_lock);
3411 			goto out;
3412 		}
3413 		if (flags & IORING_ENTER_GETEVENTS) {
3414 			if (ctx->syscall_iopoll)
3415 				goto iopoll_locked;
3416 			/*
3417 			 * Ignore errors, we'll soon call io_cqring_wait() and
3418 			 * it should handle ownership problems if any.
3419 			 */
3420 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3421 				(void)io_run_local_work_locked(ctx, min_complete);
3422 		}
3423 		mutex_unlock(&ctx->uring_lock);
3424 	}
3425 
3426 	if (flags & IORING_ENTER_GETEVENTS) {
3427 		int ret2;
3428 
3429 		if (ctx->syscall_iopoll) {
3430 			/*
3431 			 * We disallow the app entering submit/complete with
3432 			 * polling, but we still need to lock the ring to
3433 			 * prevent racing with polled issue that got punted to
3434 			 * a workqueue.
3435 			 */
3436 			mutex_lock(&ctx->uring_lock);
3437 iopoll_locked:
3438 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3439 			if (likely(!ret2))
3440 				ret2 = io_iopoll_check(ctx, min_complete);
3441 			mutex_unlock(&ctx->uring_lock);
3442 		} else {
3443 			struct ext_arg ext_arg = { .argsz = argsz };
3444 
3445 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3446 			if (likely(!ret2))
3447 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3448 						      &ext_arg);
3449 		}
3450 
3451 		if (!ret) {
3452 			ret = ret2;
3453 
3454 			/*
3455 			 * EBADR indicates that one or more CQE were dropped.
3456 			 * Once the user has been informed we can clear the bit
3457 			 * as they are obviously ok with those drops.
3458 			 */
3459 			if (unlikely(ret2 == -EBADR))
3460 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3461 					  &ctx->check_cq);
3462 		}
3463 	}
3464 out:
3465 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3466 		fput(file);
3467 	return ret;
3468 }
3469 
3470 static const struct file_operations io_uring_fops = {
3471 	.release	= io_uring_release,
3472 	.mmap		= io_uring_mmap,
3473 	.get_unmapped_area = io_uring_get_unmapped_area,
3474 #ifndef CONFIG_MMU
3475 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3476 #endif
3477 	.poll		= io_uring_poll,
3478 #ifdef CONFIG_PROC_FS
3479 	.show_fdinfo	= io_uring_show_fdinfo,
3480 #endif
3481 };
3482 
io_is_uring_fops(struct file * file)3483 bool io_is_uring_fops(struct file *file)
3484 {
3485 	return file->f_op == &io_uring_fops;
3486 }
3487 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3488 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3489 					 struct io_uring_params *p)
3490 {
3491 	struct io_uring_region_desc rd;
3492 	struct io_rings *rings;
3493 	size_t size, sq_array_offset;
3494 	int ret;
3495 
3496 	/* make sure these are sane, as we already accounted them */
3497 	ctx->sq_entries = p->sq_entries;
3498 	ctx->cq_entries = p->cq_entries;
3499 
3500 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3501 			  &sq_array_offset);
3502 	if (size == SIZE_MAX)
3503 		return -EOVERFLOW;
3504 
3505 	memset(&rd, 0, sizeof(rd));
3506 	rd.size = PAGE_ALIGN(size);
3507 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3508 		rd.user_addr = p->cq_off.user_addr;
3509 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3510 	}
3511 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3512 	if (ret)
3513 		return ret;
3514 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3515 
3516 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3517 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3518 	rings->sq_ring_mask = p->sq_entries - 1;
3519 	rings->cq_ring_mask = p->cq_entries - 1;
3520 	rings->sq_ring_entries = p->sq_entries;
3521 	rings->cq_ring_entries = p->cq_entries;
3522 
3523 	if (p->flags & IORING_SETUP_SQE128)
3524 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3525 	else
3526 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3527 	if (size == SIZE_MAX) {
3528 		io_rings_free(ctx);
3529 		return -EOVERFLOW;
3530 	}
3531 
3532 	memset(&rd, 0, sizeof(rd));
3533 	rd.size = PAGE_ALIGN(size);
3534 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3535 		rd.user_addr = p->sq_off.user_addr;
3536 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3537 	}
3538 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3539 	if (ret) {
3540 		io_rings_free(ctx);
3541 		return ret;
3542 	}
3543 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3544 	return 0;
3545 }
3546 
io_uring_install_fd(struct file * file)3547 static int io_uring_install_fd(struct file *file)
3548 {
3549 	int fd;
3550 
3551 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3552 	if (fd < 0)
3553 		return fd;
3554 	fd_install(fd, file);
3555 	return fd;
3556 }
3557 
3558 /*
3559  * Allocate an anonymous fd, this is what constitutes the application
3560  * visible backing of an io_uring instance. The application mmaps this
3561  * fd to gain access to the SQ/CQ ring details.
3562  */
io_uring_get_file(struct io_ring_ctx * ctx)3563 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3564 {
3565 	/* Create a new inode so that the LSM can block the creation.  */
3566 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3567 					 O_RDWR | O_CLOEXEC, NULL);
3568 }
3569 
io_uring_sanitise_params(struct io_uring_params * p)3570 static int io_uring_sanitise_params(struct io_uring_params *p)
3571 {
3572 	unsigned flags = p->flags;
3573 
3574 	/* There is no way to mmap rings without a real fd */
3575 	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3576 	    !(flags & IORING_SETUP_NO_MMAP))
3577 		return -EINVAL;
3578 
3579 	if (flags & IORING_SETUP_SQPOLL) {
3580 		/* IPI related flags don't make sense with SQPOLL */
3581 		if (flags & (IORING_SETUP_COOP_TASKRUN |
3582 			     IORING_SETUP_TASKRUN_FLAG |
3583 			     IORING_SETUP_DEFER_TASKRUN))
3584 			return -EINVAL;
3585 	}
3586 
3587 	if (flags & IORING_SETUP_TASKRUN_FLAG) {
3588 		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3589 			       IORING_SETUP_DEFER_TASKRUN)))
3590 			return -EINVAL;
3591 	}
3592 
3593 	/* HYBRID_IOPOLL only valid with IOPOLL */
3594 	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3595 		return -EINVAL;
3596 
3597 	/*
3598 	 * For DEFER_TASKRUN we require the completion task to be the same as
3599 	 * the submission task. This implies that there is only one submitter.
3600 	 */
3601 	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3602 	    !(flags & IORING_SETUP_SINGLE_ISSUER))
3603 		return -EINVAL;
3604 
3605 	return 0;
3606 }
3607 
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3608 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3609 {
3610 	if (!entries)
3611 		return -EINVAL;
3612 	if (entries > IORING_MAX_ENTRIES) {
3613 		if (!(p->flags & IORING_SETUP_CLAMP))
3614 			return -EINVAL;
3615 		entries = IORING_MAX_ENTRIES;
3616 	}
3617 
3618 	/*
3619 	 * Use twice as many entries for the CQ ring. It's possible for the
3620 	 * application to drive a higher depth than the size of the SQ ring,
3621 	 * since the sqes are only used at submission time. This allows for
3622 	 * some flexibility in overcommitting a bit. If the application has
3623 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3624 	 * of CQ ring entries manually.
3625 	 */
3626 	p->sq_entries = roundup_pow_of_two(entries);
3627 	if (p->flags & IORING_SETUP_CQSIZE) {
3628 		/*
3629 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3630 		 * to a power-of-two, if it isn't already. We do NOT impose
3631 		 * any cq vs sq ring sizing.
3632 		 */
3633 		if (!p->cq_entries)
3634 			return -EINVAL;
3635 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3636 			if (!(p->flags & IORING_SETUP_CLAMP))
3637 				return -EINVAL;
3638 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3639 		}
3640 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3641 		if (p->cq_entries < p->sq_entries)
3642 			return -EINVAL;
3643 	} else {
3644 		p->cq_entries = 2 * p->sq_entries;
3645 	}
3646 
3647 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3648 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3649 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3650 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3651 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3652 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3653 	p->sq_off.resv1 = 0;
3654 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3655 		p->sq_off.user_addr = 0;
3656 
3657 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3658 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3659 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3660 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3661 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3662 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3663 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3664 	p->cq_off.resv1 = 0;
3665 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3666 		p->cq_off.user_addr = 0;
3667 
3668 	return 0;
3669 }
3670 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3671 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3672 				  struct io_uring_params __user *params)
3673 {
3674 	struct io_ring_ctx *ctx;
3675 	struct io_uring_task *tctx;
3676 	struct file *file;
3677 	int ret;
3678 
3679 	ret = io_uring_sanitise_params(p);
3680 	if (ret)
3681 		return ret;
3682 
3683 	ret = io_uring_fill_params(entries, p);
3684 	if (unlikely(ret))
3685 		return ret;
3686 
3687 	ctx = io_ring_ctx_alloc(p);
3688 	if (!ctx)
3689 		return -ENOMEM;
3690 
3691 	ctx->clockid = CLOCK_MONOTONIC;
3692 	ctx->clock_offset = 0;
3693 
3694 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3695 		static_branch_inc(&io_key_has_sqarray);
3696 
3697 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3698 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3699 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3700 		ctx->task_complete = true;
3701 
3702 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3703 		ctx->lockless_cq = true;
3704 
3705 	/*
3706 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3707 	 * purposes, see io_activate_pollwq()
3708 	 */
3709 	if (!ctx->task_complete)
3710 		ctx->poll_activated = true;
3711 
3712 	/*
3713 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3714 	 * space applications don't need to do io completion events
3715 	 * polling again, they can rely on io_sq_thread to do polling
3716 	 * work, which can reduce cpu usage and uring_lock contention.
3717 	 */
3718 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3719 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3720 		ctx->syscall_iopoll = 1;
3721 
3722 	ctx->compat = in_compat_syscall();
3723 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3724 		ctx->user = get_uid(current_user());
3725 
3726 	/*
3727 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3728 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3729 	 */
3730 	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3731 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3732 	else
3733 		ctx->notify_method = TWA_SIGNAL;
3734 
3735 	/*
3736 	 * This is just grabbed for accounting purposes. When a process exits,
3737 	 * the mm is exited and dropped before the files, hence we need to hang
3738 	 * on to this mm purely for the purposes of being able to unaccount
3739 	 * memory (locked/pinned vm). It's not used for anything else.
3740 	 */
3741 	mmgrab(current->mm);
3742 	ctx->mm_account = current->mm;
3743 
3744 	ret = io_allocate_scq_urings(ctx, p);
3745 	if (ret)
3746 		goto err;
3747 
3748 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3749 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3750 
3751 	ret = io_sq_offload_create(ctx, p);
3752 	if (ret)
3753 		goto err;
3754 
3755 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3756 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3757 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3758 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3759 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3760 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3761 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3762 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3763 			IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3764 
3765 	if (copy_to_user(params, p, sizeof(*p))) {
3766 		ret = -EFAULT;
3767 		goto err;
3768 	}
3769 
3770 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3771 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3772 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3773 
3774 	file = io_uring_get_file(ctx);
3775 	if (IS_ERR(file)) {
3776 		ret = PTR_ERR(file);
3777 		goto err;
3778 	}
3779 
3780 	ret = __io_uring_add_tctx_node(ctx);
3781 	if (ret)
3782 		goto err_fput;
3783 	tctx = current->io_uring;
3784 
3785 	/*
3786 	 * Install ring fd as the very last thing, so we don't risk someone
3787 	 * having closed it before we finish setup
3788 	 */
3789 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3790 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3791 	else
3792 		ret = io_uring_install_fd(file);
3793 	if (ret < 0)
3794 		goto err_fput;
3795 
3796 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3797 	return ret;
3798 err:
3799 	io_ring_ctx_wait_and_kill(ctx);
3800 	return ret;
3801 err_fput:
3802 	fput(file);
3803 	return ret;
3804 }
3805 
3806 /*
3807  * Sets up an aio uring context, and returns the fd. Applications asks for a
3808  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3809  * params structure passed in.
3810  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3811 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3812 {
3813 	struct io_uring_params p;
3814 	int i;
3815 
3816 	if (copy_from_user(&p, params, sizeof(p)))
3817 		return -EFAULT;
3818 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3819 		if (p.resv[i])
3820 			return -EINVAL;
3821 	}
3822 
3823 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3824 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3825 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3826 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3827 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3828 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3829 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3830 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3831 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3832 		return -EINVAL;
3833 
3834 	return io_uring_create(entries, &p, params);
3835 }
3836 
io_uring_allowed(void)3837 static inline int io_uring_allowed(void)
3838 {
3839 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3840 	kgid_t io_uring_group;
3841 
3842 	if (disabled == 2)
3843 		return -EPERM;
3844 
3845 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3846 		goto allowed_lsm;
3847 
3848 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3849 	if (!gid_valid(io_uring_group))
3850 		return -EPERM;
3851 
3852 	if (!in_group_p(io_uring_group))
3853 		return -EPERM;
3854 
3855 allowed_lsm:
3856 	return security_uring_allowed();
3857 }
3858 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3859 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3860 		struct io_uring_params __user *, params)
3861 {
3862 	int ret;
3863 
3864 	ret = io_uring_allowed();
3865 	if (ret)
3866 		return ret;
3867 
3868 	return io_uring_setup(entries, params);
3869 }
3870 
io_uring_init(void)3871 static int __init io_uring_init(void)
3872 {
3873 	struct kmem_cache_args kmem_args = {
3874 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3875 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3876 		.freeptr_offset = offsetof(struct io_kiocb, work),
3877 		.use_freeptr_offset = true,
3878 	};
3879 
3880 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3881 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3882 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3883 } while (0)
3884 
3885 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3886 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3887 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3888 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3889 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3890 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3891 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3892 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3893 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3894 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3895 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3896 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3897 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3898 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3899 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3900 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3901 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3902 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3903 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3904 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3905 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3906 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3907 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3908 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3909 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3910 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3911 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3912 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3913 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3914 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3915 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3916 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3917 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3918 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3919 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3920 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3921 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3922 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3923 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3924 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3925 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3926 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3927 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3928 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3929 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3930 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3931 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3932 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3933 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3934 
3935 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3936 		     sizeof(struct io_uring_rsrc_update));
3937 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3938 		     sizeof(struct io_uring_rsrc_update2));
3939 
3940 	/* ->buf_index is u16 */
3941 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3942 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3943 		     offsetof(struct io_uring_buf_ring, tail));
3944 
3945 	/* should fit into one byte */
3946 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3947 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3948 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3949 
3950 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3951 
3952 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3953 
3954 	/* top 8bits are for internal use */
3955 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3956 
3957 	io_uring_optable_init();
3958 
3959 	/* imu->dir is u8 */
3960 	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3961 
3962 	/*
3963 	 * Allow user copy in the per-command field, which starts after the
3964 	 * file in io_kiocb and until the opcode field. The openat2 handling
3965 	 * requires copying in user memory into the io_kiocb object in that
3966 	 * range, and HARDENED_USERCOPY will complain if we haven't
3967 	 * correctly annotated this range.
3968 	 */
3969 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3970 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3971 				SLAB_TYPESAFE_BY_RCU);
3972 
3973 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3974 	BUG_ON(!iou_wq);
3975 
3976 #ifdef CONFIG_SYSCTL
3977 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3978 #endif
3979 
3980 	return 0;
3981 };
3982 __initcall(io_uring_init);
3983