1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 IO_REQ_CLEAN_FLAGS)
119
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
125
126 struct io_defer_entry {
127 struct list_head list;
128 struct io_kiocb *req;
129 u32 seq;
130 };
131
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135
136 /*
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
139 */
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct io_uring_task *tctx,
146 bool cancel_all);
147
148 static void io_queue_sqe(struct io_kiocb *req);
149
150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
151
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
168 },
169 {
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
175 },
176 };
177 #endif
178
__io_cqring_events(struct io_ring_ctx * ctx)179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183
__io_cqring_events_user(struct io_ring_ctx * ctx)184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188
io_match_linked(struct io_kiocb * head)189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 struct io_kiocb *req;
192
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
195 return true;
196 }
197 return false;
198 }
199
200 /*
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
203 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
205 bool cancel_all)
206 {
207 bool matched;
208
209 if (tctx && head->tctx != tctx)
210 return false;
211 if (cancel_all)
212 return true;
213
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
216
217 /* protect against races with linked timeouts */
218 raw_spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 raw_spin_unlock_irq(&ctx->timeout_lock);
221 } else {
222 matched = io_match_linked(head);
223 }
224 return matched;
225 }
226
req_fail_link_node(struct io_kiocb * req,int res)227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 req_set_fail(req);
230 io_req_set_res(req, res, 0);
231 }
232
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237
io_ring_ctx_ref_free(struct percpu_ref * ref)238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241
242 complete(&ctx->ref_comp);
243 }
244
io_fallback_req_func(struct work_struct * work)245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 fallback_work.work);
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
252
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
260 }
261
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 unsigned int hash_buckets;
265 int i;
266
267 do {
268 hash_buckets = 1U << bits;
269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
270 GFP_KERNEL_ACCOUNT);
271 if (table->hbs)
272 break;
273 if (bits == 1)
274 return -ENOMEM;
275 bits--;
276 } while (1);
277
278 table->hash_bits = bits;
279 for (i = 0; i < hash_buckets; i++)
280 INIT_HLIST_HEAD(&table->hbs[i].list);
281 return 0;
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288 bool ret;
289
290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 if (!ctx)
292 return NULL;
293
294 xa_init(&ctx->io_bl_xa);
295
296 /*
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
300 */
301 hash_bits = ilog2(p->cq_entries) - 5;
302 hash_bits = clamp(hash_bits, 1, 8);
303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 goto err;
305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 0, GFP_KERNEL))
307 goto err;
308
309 ctx->flags = p->flags;
310 ctx->hybrid_poll_time = LLONG_MAX;
311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 init_waitqueue_head(&ctx->sqo_sq_wait);
313 INIT_LIST_HEAD(&ctx->sqd_list);
314 INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 INIT_LIST_HEAD(&ctx->io_buffers_cache);
316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
317 sizeof(struct async_poll));
318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 sizeof(struct io_async_msghdr));
320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_rw));
322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
323 sizeof(struct io_uring_cmd_data));
324 spin_lock_init(&ctx->msg_lock);
325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
326 sizeof(struct io_kiocb));
327 ret |= io_futex_cache_init(ctx);
328 if (ret)
329 goto free_ref;
330 init_completion(&ctx->ref_comp);
331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 mutex_init(&ctx->uring_lock);
333 init_waitqueue_head(&ctx->cq_wait);
334 init_waitqueue_head(&ctx->poll_wq);
335 spin_lock_init(&ctx->completion_lock);
336 raw_spin_lock_init(&ctx->timeout_lock);
337 INIT_WQ_LIST(&ctx->iopoll_list);
338 INIT_LIST_HEAD(&ctx->io_buffers_comp);
339 INIT_LIST_HEAD(&ctx->defer_list);
340 INIT_LIST_HEAD(&ctx->timeout_list);
341 INIT_LIST_HEAD(&ctx->ltimeout_list);
342 init_llist_head(&ctx->work_llist);
343 INIT_LIST_HEAD(&ctx->tctx_list);
344 ctx->submit_state.free_list.next = NULL;
345 INIT_HLIST_HEAD(&ctx->waitid_list);
346 #ifdef CONFIG_FUTEX
347 INIT_HLIST_HEAD(&ctx->futex_list);
348 #endif
349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
352 io_napi_init(ctx);
353 mutex_init(&ctx->resize_lock);
354
355 return ctx;
356
357 free_ref:
358 percpu_ref_exit(&ctx->refs);
359 err:
360 io_alloc_cache_free(&ctx->apoll_cache, kfree);
361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
363 io_alloc_cache_free(&ctx->uring_cache, kfree);
364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
365 io_futex_cache_free(ctx);
366 kvfree(ctx->cancel_table.hbs);
367 xa_destroy(&ctx->io_bl_xa);
368 kfree(ctx);
369 return NULL;
370 }
371
io_account_cq_overflow(struct io_ring_ctx * ctx)372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
373 {
374 struct io_rings *r = ctx->rings;
375
376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
377 ctx->cq_extra--;
378 }
379
req_need_defer(struct io_kiocb * req,u32 seq)380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
381 {
382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
383 struct io_ring_ctx *ctx = req->ctx;
384
385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
386 }
387
388 return false;
389 }
390
io_clean_op(struct io_kiocb * req)391 static void io_clean_op(struct io_kiocb *req)
392 {
393 if (req->flags & REQ_F_BUFFER_SELECTED) {
394 spin_lock(&req->ctx->completion_lock);
395 io_kbuf_drop(req);
396 spin_unlock(&req->ctx->completion_lock);
397 }
398
399 if (req->flags & REQ_F_NEED_CLEANUP) {
400 const struct io_cold_def *def = &io_cold_defs[req->opcode];
401
402 if (def->cleanup)
403 def->cleanup(req);
404 }
405 if ((req->flags & REQ_F_POLLED) && req->apoll) {
406 kfree(req->apoll->double_poll);
407 kfree(req->apoll);
408 req->apoll = NULL;
409 }
410 if (req->flags & REQ_F_INFLIGHT)
411 atomic_dec(&req->tctx->inflight_tracked);
412 if (req->flags & REQ_F_CREDS)
413 put_cred(req->creds);
414 if (req->flags & REQ_F_ASYNC_DATA) {
415 kfree(req->async_data);
416 req->async_data = NULL;
417 }
418 req->flags &= ~IO_REQ_CLEAN_FLAGS;
419 }
420
io_req_track_inflight(struct io_kiocb * req)421 static inline void io_req_track_inflight(struct io_kiocb *req)
422 {
423 if (!(req->flags & REQ_F_INFLIGHT)) {
424 req->flags |= REQ_F_INFLIGHT;
425 atomic_inc(&req->tctx->inflight_tracked);
426 }
427 }
428
__io_prep_linked_timeout(struct io_kiocb * req)429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
430 {
431 if (WARN_ON_ONCE(!req->link))
432 return NULL;
433
434 req->flags &= ~REQ_F_ARM_LTIMEOUT;
435 req->flags |= REQ_F_LINK_TIMEOUT;
436
437 /* linked timeouts should have two refs once prep'ed */
438 io_req_set_refcount(req);
439 __io_req_set_refcount(req->link, 2);
440 return req->link;
441 }
442
io_prep_linked_timeout(struct io_kiocb * req)443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
444 {
445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
446 return NULL;
447 return __io_prep_linked_timeout(req);
448 }
449
__io_arm_ltimeout(struct io_kiocb * req)450 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
451 {
452 io_queue_linked_timeout(__io_prep_linked_timeout(req));
453 }
454
io_arm_ltimeout(struct io_kiocb * req)455 static inline void io_arm_ltimeout(struct io_kiocb *req)
456 {
457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
458 __io_arm_ltimeout(req);
459 }
460
io_prep_async_work(struct io_kiocb * req)461 static void io_prep_async_work(struct io_kiocb *req)
462 {
463 const struct io_issue_def *def = &io_issue_defs[req->opcode];
464 struct io_ring_ctx *ctx = req->ctx;
465
466 if (!(req->flags & REQ_F_CREDS)) {
467 req->flags |= REQ_F_CREDS;
468 req->creds = get_current_cred();
469 }
470
471 req->work.list.next = NULL;
472 atomic_set(&req->work.flags, 0);
473 if (req->flags & REQ_F_FORCE_ASYNC)
474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
475
476 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
477 req->flags |= io_file_get_flags(req->file);
478
479 if (req->file && (req->flags & REQ_F_ISREG)) {
480 bool should_hash = def->hash_reg_file;
481
482 /* don't serialize this request if the fs doesn't need it */
483 if (should_hash && (req->file->f_flags & O_DIRECT) &&
484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
485 should_hash = false;
486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
487 io_wq_hash_work(&req->work, file_inode(req->file));
488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
489 if (def->unbound_nonreg_file)
490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
491 }
492 }
493
io_prep_async_link(struct io_kiocb * req)494 static void io_prep_async_link(struct io_kiocb *req)
495 {
496 struct io_kiocb *cur;
497
498 if (req->flags & REQ_F_LINK_TIMEOUT) {
499 struct io_ring_ctx *ctx = req->ctx;
500
501 raw_spin_lock_irq(&ctx->timeout_lock);
502 io_for_each_link(cur, req)
503 io_prep_async_work(cur);
504 raw_spin_unlock_irq(&ctx->timeout_lock);
505 } else {
506 io_for_each_link(cur, req)
507 io_prep_async_work(cur);
508 }
509 }
510
io_queue_iowq(struct io_kiocb * req)511 static void io_queue_iowq(struct io_kiocb *req)
512 {
513 struct io_kiocb *link = io_prep_linked_timeout(req);
514 struct io_uring_task *tctx = req->tctx;
515
516 BUG_ON(!tctx);
517
518 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
519 io_req_task_queue_fail(req, -ECANCELED);
520 return;
521 }
522
523 /* init ->work of the whole link before punting */
524 io_prep_async_link(req);
525
526 /*
527 * Not expected to happen, but if we do have a bug where this _can_
528 * happen, catch it here and ensure the request is marked as
529 * canceled. That will make io-wq go through the usual work cancel
530 * procedure rather than attempt to run this request (or create a new
531 * worker for it).
532 */
533 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
534 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
535
536 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
537 io_wq_enqueue(tctx->io_wq, &req->work);
538 if (link)
539 io_queue_linked_timeout(link);
540 }
541
io_req_queue_iowq_tw(struct io_kiocb * req,struct io_tw_state * ts)542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
543 {
544 io_queue_iowq(req);
545 }
546
io_req_queue_iowq(struct io_kiocb * req)547 void io_req_queue_iowq(struct io_kiocb *req)
548 {
549 req->io_task_work.func = io_req_queue_iowq_tw;
550 io_req_task_work_add(req);
551 }
552
io_queue_deferred(struct io_ring_ctx * ctx)553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
554 {
555 while (!list_empty(&ctx->defer_list)) {
556 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557 struct io_defer_entry, list);
558
559 if (req_need_defer(de->req, de->seq))
560 break;
561 list_del_init(&de->list);
562 io_req_task_queue(de->req);
563 kfree(de);
564 }
565 }
566
__io_commit_cqring_flush(struct io_ring_ctx * ctx)567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
568 {
569 if (ctx->poll_activated)
570 io_poll_wq_wake(ctx);
571 if (ctx->off_timeout_used)
572 io_flush_timeouts(ctx);
573 if (ctx->drain_active) {
574 spin_lock(&ctx->completion_lock);
575 io_queue_deferred(ctx);
576 spin_unlock(&ctx->completion_lock);
577 }
578 if (ctx->has_evfd)
579 io_eventfd_flush_signal(ctx);
580 }
581
__io_cq_lock(struct io_ring_ctx * ctx)582 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
583 {
584 if (!ctx->lockless_cq)
585 spin_lock(&ctx->completion_lock);
586 }
587
io_cq_lock(struct io_ring_ctx * ctx)588 static inline void io_cq_lock(struct io_ring_ctx *ctx)
589 __acquires(ctx->completion_lock)
590 {
591 spin_lock(&ctx->completion_lock);
592 }
593
__io_cq_unlock_post(struct io_ring_ctx * ctx)594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
595 {
596 io_commit_cqring(ctx);
597 if (!ctx->task_complete) {
598 if (!ctx->lockless_cq)
599 spin_unlock(&ctx->completion_lock);
600 /* IOPOLL rings only need to wake up if it's also SQPOLL */
601 if (!ctx->syscall_iopoll)
602 io_cqring_wake(ctx);
603 }
604 io_commit_cqring_flush(ctx);
605 }
606
io_cq_unlock_post(struct io_ring_ctx * ctx)607 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
608 __releases(ctx->completion_lock)
609 {
610 io_commit_cqring(ctx);
611 spin_unlock(&ctx->completion_lock);
612 io_cqring_wake(ctx);
613 io_commit_cqring_flush(ctx);
614 }
615
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
617 {
618 size_t cqe_size = sizeof(struct io_uring_cqe);
619
620 lockdep_assert_held(&ctx->uring_lock);
621
622 /* don't abort if we're dying, entries must get freed */
623 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
624 return;
625
626 if (ctx->flags & IORING_SETUP_CQE32)
627 cqe_size <<= 1;
628
629 io_cq_lock(ctx);
630 while (!list_empty(&ctx->cq_overflow_list)) {
631 struct io_uring_cqe *cqe;
632 struct io_overflow_cqe *ocqe;
633
634 ocqe = list_first_entry(&ctx->cq_overflow_list,
635 struct io_overflow_cqe, list);
636
637 if (!dying) {
638 if (!io_get_cqe_overflow(ctx, &cqe, true))
639 break;
640 memcpy(cqe, &ocqe->cqe, cqe_size);
641 }
642 list_del(&ocqe->list);
643 kfree(ocqe);
644
645 /*
646 * For silly syzbot cases that deliberately overflow by huge
647 * amounts, check if we need to resched and drop and
648 * reacquire the locks if so. Nothing real would ever hit this.
649 * Ideally we'd have a non-posting unlock for this, but hard
650 * to care for a non-real case.
651 */
652 if (need_resched()) {
653 io_cq_unlock_post(ctx);
654 mutex_unlock(&ctx->uring_lock);
655 cond_resched();
656 mutex_lock(&ctx->uring_lock);
657 io_cq_lock(ctx);
658 }
659 }
660
661 if (list_empty(&ctx->cq_overflow_list)) {
662 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
663 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
664 }
665 io_cq_unlock_post(ctx);
666 }
667
io_cqring_overflow_kill(struct io_ring_ctx * ctx)668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
669 {
670 if (ctx->rings)
671 __io_cqring_overflow_flush(ctx, true);
672 }
673
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
675 {
676 mutex_lock(&ctx->uring_lock);
677 __io_cqring_overflow_flush(ctx, false);
678 mutex_unlock(&ctx->uring_lock);
679 }
680
681 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)682 static inline void io_put_task(struct io_kiocb *req)
683 {
684 struct io_uring_task *tctx = req->tctx;
685
686 if (likely(tctx->task == current)) {
687 tctx->cached_refs++;
688 } else {
689 percpu_counter_sub(&tctx->inflight, 1);
690 if (unlikely(atomic_read(&tctx->in_cancel)))
691 wake_up(&tctx->wait);
692 put_task_struct(tctx->task);
693 }
694 }
695
io_task_refs_refill(struct io_uring_task * tctx)696 void io_task_refs_refill(struct io_uring_task *tctx)
697 {
698 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
699
700 percpu_counter_add(&tctx->inflight, refill);
701 refcount_add(refill, ¤t->usage);
702 tctx->cached_refs += refill;
703 }
704
io_uring_drop_tctx_refs(struct task_struct * task)705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
706 {
707 struct io_uring_task *tctx = task->io_uring;
708 unsigned int refs = tctx->cached_refs;
709
710 if (refs) {
711 tctx->cached_refs = 0;
712 percpu_counter_sub(&tctx->inflight, refs);
713 put_task_struct_many(task, refs);
714 }
715 }
716
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
718 s32 res, u32 cflags, u64 extra1, u64 extra2)
719 {
720 struct io_overflow_cqe *ocqe;
721 size_t ocq_size = sizeof(struct io_overflow_cqe);
722 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
723
724 lockdep_assert_held(&ctx->completion_lock);
725
726 if (is_cqe32)
727 ocq_size += sizeof(struct io_uring_cqe);
728
729 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
730 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
731 if (!ocqe) {
732 /*
733 * If we're in ring overflow flush mode, or in task cancel mode,
734 * or cannot allocate an overflow entry, then we need to drop it
735 * on the floor.
736 */
737 io_account_cq_overflow(ctx);
738 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
739 return false;
740 }
741 if (list_empty(&ctx->cq_overflow_list)) {
742 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
743 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
744
745 }
746 ocqe->cqe.user_data = user_data;
747 ocqe->cqe.res = res;
748 ocqe->cqe.flags = cflags;
749 if (is_cqe32) {
750 ocqe->cqe.big_cqe[0] = extra1;
751 ocqe->cqe.big_cqe[1] = extra2;
752 }
753 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
754 return true;
755 }
756
io_req_cqe_overflow(struct io_kiocb * req)757 static void io_req_cqe_overflow(struct io_kiocb *req)
758 {
759 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
760 req->cqe.res, req->cqe.flags,
761 req->big_cqe.extra1, req->big_cqe.extra2);
762 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
763 }
764
765 /*
766 * writes to the cq entry need to come after reading head; the
767 * control dependency is enough as we're using WRITE_ONCE to
768 * fill the cq entry
769 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
771 {
772 struct io_rings *rings = ctx->rings;
773 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
774 unsigned int free, queued, len;
775
776 /*
777 * Posting into the CQ when there are pending overflowed CQEs may break
778 * ordering guarantees, which will affect links, F_MORE users and more.
779 * Force overflow the completion.
780 */
781 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
782 return false;
783
784 /* userspace may cheat modifying the tail, be safe and do min */
785 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
786 free = ctx->cq_entries - queued;
787 /* we need a contiguous range, limit based on the current array offset */
788 len = min(free, ctx->cq_entries - off);
789 if (!len)
790 return false;
791
792 if (ctx->flags & IORING_SETUP_CQE32) {
793 off <<= 1;
794 len <<= 1;
795 }
796
797 ctx->cqe_cached = &rings->cqes[off];
798 ctx->cqe_sentinel = ctx->cqe_cached + len;
799 return true;
800 }
801
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
803 u32 cflags)
804 {
805 struct io_uring_cqe *cqe;
806
807 ctx->cq_extra++;
808
809 /*
810 * If we can't get a cq entry, userspace overflowed the
811 * submission (by quite a lot). Increment the overflow count in
812 * the ring.
813 */
814 if (likely(io_get_cqe(ctx, &cqe))) {
815 WRITE_ONCE(cqe->user_data, user_data);
816 WRITE_ONCE(cqe->res, res);
817 WRITE_ONCE(cqe->flags, cflags);
818
819 if (ctx->flags & IORING_SETUP_CQE32) {
820 WRITE_ONCE(cqe->big_cqe[0], 0);
821 WRITE_ONCE(cqe->big_cqe[1], 0);
822 }
823
824 trace_io_uring_complete(ctx, NULL, cqe);
825 return true;
826 }
827 return false;
828 }
829
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
831 u32 cflags)
832 {
833 bool filled;
834
835 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
836 if (!filled)
837 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
838
839 return filled;
840 }
841
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
843 {
844 bool filled;
845
846 io_cq_lock(ctx);
847 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
848 io_cq_unlock_post(ctx);
849 return filled;
850 }
851
852 /*
853 * Must be called from inline task_work so we now a flush will happen later,
854 * and obviously with ctx->uring_lock held (tw always has that).
855 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
857 {
858 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
859 spin_lock(&ctx->completion_lock);
860 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
861 spin_unlock(&ctx->completion_lock);
862 }
863 ctx->submit_state.cq_flush = true;
864 }
865
866 /*
867 * A helper for multishot requests posting additional CQEs.
868 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
869 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
871 {
872 struct io_ring_ctx *ctx = req->ctx;
873 bool posted;
874
875 lockdep_assert(!io_wq_current_is_worker());
876 lockdep_assert_held(&ctx->uring_lock);
877
878 __io_cq_lock(ctx);
879 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
880 ctx->submit_state.cq_flush = true;
881 __io_cq_unlock_post(ctx);
882 return posted;
883 }
884
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
886 {
887 struct io_ring_ctx *ctx = req->ctx;
888
889 /*
890 * All execution paths but io-wq use the deferred completions by
891 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
892 */
893 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
894 return;
895
896 /*
897 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
898 * the submitter task context, IOPOLL protects with uring_lock.
899 */
900 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
901 req->io_task_work.func = io_req_task_complete;
902 io_req_task_work_add(req);
903 return;
904 }
905
906 io_cq_lock(ctx);
907 if (!(req->flags & REQ_F_CQE_SKIP)) {
908 if (!io_fill_cqe_req(ctx, req))
909 io_req_cqe_overflow(req);
910 }
911 io_cq_unlock_post(ctx);
912
913 /*
914 * We don't free the request here because we know it's called from
915 * io-wq only, which holds a reference, so it cannot be the last put.
916 */
917 req_ref_put(req);
918 }
919
io_req_defer_failed(struct io_kiocb * req,s32 res)920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 __must_hold(&ctx->uring_lock)
922 {
923 const struct io_cold_def *def = &io_cold_defs[req->opcode];
924
925 lockdep_assert_held(&req->ctx->uring_lock);
926
927 req_set_fail(req);
928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 if (def->fail)
930 def->fail(req);
931 io_req_complete_defer(req);
932 }
933
934 /*
935 * Don't initialise the fields below on every allocation, but do that in
936 * advance and keep them valid across allocations.
937 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 req->ctx = ctx;
941 req->buf_node = NULL;
942 req->file_node = NULL;
943 req->link = NULL;
944 req->async_data = NULL;
945 /* not necessary, but safer to zero */
946 memset(&req->cqe, 0, sizeof(req->cqe));
947 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949
950 /*
951 * A request might get retired back into the request caches even before opcode
952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953 * Because of that, io_alloc_req() should be called only under ->uring_lock
954 * and with extra caution to not get a request that is still worked on.
955 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 __must_hold(&ctx->uring_lock)
958 {
959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 void *reqs[IO_REQ_ALLOC_BATCH];
961 int ret;
962
963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964
965 /*
966 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 * retry single alloc to be on the safe side.
968 */
969 if (unlikely(ret <= 0)) {
970 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 if (!reqs[0])
972 return false;
973 ret = 1;
974 }
975
976 percpu_ref_get_many(&ctx->refs, ret);
977 while (ret--) {
978 struct io_kiocb *req = reqs[ret];
979
980 io_preinit_req(req, ctx);
981 io_req_add_to_cache(req, ctx);
982 }
983 return true;
984 }
985
io_free_req(struct io_kiocb * req)986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 /* refs were already put, restore them for io_req_task_complete() */
989 req->flags &= ~REQ_F_REFCOUNT;
990 /* we only want to free it, don't post CQEs */
991 req->flags |= REQ_F_CQE_SKIP;
992 req->io_task_work.func = io_req_task_complete;
993 io_req_task_work_add(req);
994 }
995
__io_req_find_next_prep(struct io_kiocb * req)996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 struct io_ring_ctx *ctx = req->ctx;
999
1000 spin_lock(&ctx->completion_lock);
1001 io_disarm_next(req);
1002 spin_unlock(&ctx->completion_lock);
1003 }
1004
io_req_find_next(struct io_kiocb * req)1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 struct io_kiocb *nxt;
1008
1009 /*
1010 * If LINK is set, we have dependent requests in this chain. If we
1011 * didn't fail this request, queue the first one up, moving any other
1012 * dependencies to the next request. In case of failure, fail the rest
1013 * of the chain.
1014 */
1015 if (unlikely(req->flags & IO_DISARM_MASK))
1016 __io_req_find_next_prep(req);
1017 nxt = req->link;
1018 req->link = NULL;
1019 return nxt;
1020 }
1021
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1023 {
1024 if (!ctx)
1025 return;
1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028
1029 io_submit_flush_completions(ctx);
1030 mutex_unlock(&ctx->uring_lock);
1031 percpu_ref_put(&ctx->refs);
1032 }
1033
1034 /*
1035 * Run queued task_work, returning the number of entries processed in *count.
1036 * If more entries than max_entries are available, stop processing once this
1037 * is reached and return the rest of the list.
1038 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 unsigned int *count,
1041 unsigned int max_entries)
1042 {
1043 struct io_ring_ctx *ctx = NULL;
1044 struct io_tw_state ts = { };
1045
1046 do {
1047 struct llist_node *next = node->next;
1048 struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 io_task_work.node);
1050
1051 if (req->ctx != ctx) {
1052 ctx_flush_and_put(ctx, &ts);
1053 ctx = req->ctx;
1054 mutex_lock(&ctx->uring_lock);
1055 percpu_ref_get(&ctx->refs);
1056 }
1057 INDIRECT_CALL_2(req->io_task_work.func,
1058 io_poll_task_func, io_req_rw_complete,
1059 req, &ts);
1060 node = next;
1061 (*count)++;
1062 if (unlikely(need_resched())) {
1063 ctx_flush_and_put(ctx, &ts);
1064 ctx = NULL;
1065 cond_resched();
1066 }
1067 } while (node && *count < max_entries);
1068
1069 ctx_flush_and_put(ctx, &ts);
1070 return node;
1071 }
1072
__io_fallback_tw(struct llist_node * node,bool sync)1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 struct io_ring_ctx *last_ctx = NULL;
1076 struct io_kiocb *req;
1077
1078 while (node) {
1079 req = container_of(node, struct io_kiocb, io_task_work.node);
1080 node = node->next;
1081 if (sync && last_ctx != req->ctx) {
1082 if (last_ctx) {
1083 flush_delayed_work(&last_ctx->fallback_work);
1084 percpu_ref_put(&last_ctx->refs);
1085 }
1086 last_ctx = req->ctx;
1087 percpu_ref_get(&last_ctx->refs);
1088 }
1089 if (llist_add(&req->io_task_work.node,
1090 &req->ctx->fallback_llist))
1091 schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 }
1093
1094 if (last_ctx) {
1095 flush_delayed_work(&last_ctx->fallback_work);
1096 percpu_ref_put(&last_ctx->refs);
1097 }
1098 }
1099
io_fallback_tw(struct io_uring_task * tctx,bool sync)1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 struct llist_node *node = llist_del_all(&tctx->task_list);
1103
1104 __io_fallback_tw(node, sync);
1105 }
1106
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 unsigned int max_entries,
1109 unsigned int *count)
1110 {
1111 struct llist_node *node;
1112
1113 if (unlikely(current->flags & PF_EXITING)) {
1114 io_fallback_tw(tctx, true);
1115 return NULL;
1116 }
1117
1118 node = llist_del_all(&tctx->task_list);
1119 if (node) {
1120 node = llist_reverse_order(node);
1121 node = io_handle_tw_list(node, count, max_entries);
1122 }
1123
1124 /* relaxed read is enough as only the task itself sets ->in_cancel */
1125 if (unlikely(atomic_read(&tctx->in_cancel)))
1126 io_uring_drop_tctx_refs(current);
1127
1128 trace_io_uring_task_work_run(tctx, *count);
1129 return node;
1130 }
1131
tctx_task_work(struct callback_head * cb)1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 struct io_uring_task *tctx;
1135 struct llist_node *ret;
1136 unsigned int count = 0;
1137
1138 tctx = container_of(cb, struct io_uring_task, task_work);
1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 /* can't happen */
1141 WARN_ON_ONCE(ret);
1142 }
1143
io_req_local_work_add(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 struct io_ring_ctx *ctx,
1146 unsigned flags)
1147 {
1148 unsigned nr_wait, nr_tw, nr_tw_prev;
1149 struct llist_node *head;
1150
1151 /* See comment above IO_CQ_WAKE_INIT */
1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153
1154 /*
1155 * We don't know how many reuqests is there in the link and whether
1156 * they can even be queued lazily, fall back to non-lazy.
1157 */
1158 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160
1161 guard(rcu)();
1162
1163 head = READ_ONCE(ctx->work_llist.first);
1164 do {
1165 nr_tw_prev = 0;
1166 if (head) {
1167 struct io_kiocb *first_req = container_of(head,
1168 struct io_kiocb,
1169 io_task_work.node);
1170 /*
1171 * Might be executed at any moment, rely on
1172 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173 */
1174 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175 }
1176
1177 /*
1178 * Theoretically, it can overflow, but that's fine as one of
1179 * previous adds should've tried to wake the task.
1180 */
1181 nr_tw = nr_tw_prev + 1;
1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 nr_tw = IO_CQ_WAKE_FORCE;
1184
1185 req->nr_tw = nr_tw;
1186 req->io_task_work.node.next = head;
1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 &req->io_task_work.node));
1189
1190 /*
1191 * cmpxchg implies a full barrier, which pairs with the barrier
1192 * in set_current_state() on the io_cqring_wait() side. It's used
1193 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 * going to sleep will observe the work added to the list, which
1195 * is similar to the wait/wawke task state sync.
1196 */
1197
1198 if (!head) {
1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 if (ctx->has_evfd)
1202 io_eventfd_signal(ctx);
1203 }
1204
1205 nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 /* not enough or no one is waiting */
1207 if (nr_tw < nr_wait)
1208 return;
1209 /* the previous add has already woken it up */
1210 if (nr_tw_prev >= nr_wait)
1211 return;
1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213 }
1214
io_req_normal_work_add(struct io_kiocb * req)1215 static void io_req_normal_work_add(struct io_kiocb *req)
1216 {
1217 struct io_uring_task *tctx = req->tctx;
1218 struct io_ring_ctx *ctx = req->ctx;
1219
1220 /* task_work already pending, we're done */
1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222 return;
1223
1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226
1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 __set_notify_signal(tctx->task);
1230 return;
1231 }
1232
1233 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1234 return;
1235
1236 io_fallback_tw(tctx, false);
1237 }
1238
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240 {
1241 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1242 io_req_local_work_add(req, req->ctx, flags);
1243 else
1244 io_req_normal_work_add(req);
1245 }
1246
io_req_task_work_add_remote(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1248 unsigned flags)
1249 {
1250 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1251 return;
1252 io_req_local_work_add(req, ctx, flags);
1253 }
1254
io_move_task_work_from_local(struct io_ring_ctx * ctx)1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256 {
1257 struct llist_node *node = llist_del_all(&ctx->work_llist);
1258
1259 __io_fallback_tw(node, false);
1260 node = llist_del_all(&ctx->retry_llist);
1261 __io_fallback_tw(node, false);
1262 }
1263
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1265 int min_events)
1266 {
1267 if (!io_local_work_pending(ctx))
1268 return false;
1269 if (events < min_events)
1270 return true;
1271 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273 return false;
1274 }
1275
__io_run_local_work_loop(struct llist_node ** node,struct io_tw_state * ts,int events)1276 static int __io_run_local_work_loop(struct llist_node **node,
1277 struct io_tw_state *ts,
1278 int events)
1279 {
1280 int ret = 0;
1281
1282 while (*node) {
1283 struct llist_node *next = (*node)->next;
1284 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1285 io_task_work.node);
1286 INDIRECT_CALL_2(req->io_task_work.func,
1287 io_poll_task_func, io_req_rw_complete,
1288 req, ts);
1289 *node = next;
1290 if (++ret >= events)
1291 break;
1292 }
1293
1294 return ret;
1295 }
1296
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events,int max_events)1297 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1298 int min_events, int max_events)
1299 {
1300 struct llist_node *node;
1301 unsigned int loops = 0;
1302 int ret = 0;
1303
1304 if (WARN_ON_ONCE(ctx->submitter_task != current))
1305 return -EEXIST;
1306 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1307 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1308 again:
1309 min_events -= ret;
1310 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1311 if (ctx->retry_llist.first)
1312 goto retry_done;
1313
1314 /*
1315 * llists are in reverse order, flip it back the right way before
1316 * running the pending items.
1317 */
1318 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1319 ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1320 ctx->retry_llist.first = node;
1321 loops++;
1322
1323 if (io_run_local_work_continue(ctx, ret, min_events))
1324 goto again;
1325 retry_done:
1326 io_submit_flush_completions(ctx);
1327 if (io_run_local_work_continue(ctx, ret, min_events))
1328 goto again;
1329
1330 trace_io_uring_local_work_run(ctx, ret, loops);
1331 return ret;
1332 }
1333
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335 int min_events)
1336 {
1337 struct io_tw_state ts = {};
1338
1339 if (!io_local_work_pending(ctx))
1340 return 0;
1341 return __io_run_local_work(ctx, &ts, min_events,
1342 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1343 }
1344
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1346 int max_events)
1347 {
1348 struct io_tw_state ts = {};
1349 int ret;
1350
1351 mutex_lock(&ctx->uring_lock);
1352 ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1353 mutex_unlock(&ctx->uring_lock);
1354 return ret;
1355 }
1356
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1357 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1358 {
1359 io_tw_lock(req->ctx, ts);
1360 io_req_defer_failed(req, req->cqe.res);
1361 }
1362
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1363 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1364 {
1365 io_tw_lock(req->ctx, ts);
1366 if (unlikely(io_should_terminate_tw()))
1367 io_req_defer_failed(req, -EFAULT);
1368 else if (req->flags & REQ_F_FORCE_ASYNC)
1369 io_queue_iowq(req);
1370 else
1371 io_queue_sqe(req);
1372 }
1373
io_req_task_queue_fail(struct io_kiocb * req,int ret)1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 {
1376 io_req_set_res(req, ret, 0);
1377 req->io_task_work.func = io_req_task_cancel;
1378 io_req_task_work_add(req);
1379 }
1380
io_req_task_queue(struct io_kiocb * req)1381 void io_req_task_queue(struct io_kiocb *req)
1382 {
1383 req->io_task_work.func = io_req_task_submit;
1384 io_req_task_work_add(req);
1385 }
1386
io_queue_next(struct io_kiocb * req)1387 void io_queue_next(struct io_kiocb *req)
1388 {
1389 struct io_kiocb *nxt = io_req_find_next(req);
1390
1391 if (nxt)
1392 io_req_task_queue(nxt);
1393 }
1394
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1395 static void io_free_batch_list(struct io_ring_ctx *ctx,
1396 struct io_wq_work_node *node)
1397 __must_hold(&ctx->uring_lock)
1398 {
1399 do {
1400 struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 comp_list);
1402
1403 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1404 if (req->flags & REQ_F_REFCOUNT) {
1405 node = req->comp_list.next;
1406 if (!req_ref_put_and_test(req))
1407 continue;
1408 }
1409 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1410 struct async_poll *apoll = req->apoll;
1411
1412 if (apoll->double_poll)
1413 kfree(apoll->double_poll);
1414 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1415 kfree(apoll);
1416 req->flags &= ~REQ_F_POLLED;
1417 }
1418 if (req->flags & IO_REQ_LINK_FLAGS)
1419 io_queue_next(req);
1420 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1421 io_clean_op(req);
1422 }
1423 io_put_file(req);
1424 io_req_put_rsrc_nodes(req);
1425 io_put_task(req);
1426
1427 node = req->comp_list.next;
1428 io_req_add_to_cache(req, ctx);
1429 } while (node);
1430 }
1431
__io_submit_flush_completions(struct io_ring_ctx * ctx)1432 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1433 __must_hold(&ctx->uring_lock)
1434 {
1435 struct io_submit_state *state = &ctx->submit_state;
1436 struct io_wq_work_node *node;
1437
1438 __io_cq_lock(ctx);
1439 __wq_list_for_each(node, &state->compl_reqs) {
1440 struct io_kiocb *req = container_of(node, struct io_kiocb,
1441 comp_list);
1442
1443 if (!(req->flags & REQ_F_CQE_SKIP) &&
1444 unlikely(!io_fill_cqe_req(ctx, req))) {
1445 if (ctx->lockless_cq) {
1446 spin_lock(&ctx->completion_lock);
1447 io_req_cqe_overflow(req);
1448 spin_unlock(&ctx->completion_lock);
1449 } else {
1450 io_req_cqe_overflow(req);
1451 }
1452 }
1453 }
1454 __io_cq_unlock_post(ctx);
1455
1456 if (!wq_list_empty(&state->compl_reqs)) {
1457 io_free_batch_list(ctx, state->compl_reqs.first);
1458 INIT_WQ_LIST(&state->compl_reqs);
1459 }
1460 ctx->submit_state.cq_flush = false;
1461 }
1462
io_cqring_events(struct io_ring_ctx * ctx)1463 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1464 {
1465 /* See comment at the top of this file */
1466 smp_rmb();
1467 return __io_cqring_events(ctx);
1468 }
1469
1470 /*
1471 * We can't just wait for polled events to come to us, we have to actively
1472 * find and complete them.
1473 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1474 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1475 {
1476 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1477 return;
1478
1479 mutex_lock(&ctx->uring_lock);
1480 while (!wq_list_empty(&ctx->iopoll_list)) {
1481 /* let it sleep and repeat later if can't complete a request */
1482 if (io_do_iopoll(ctx, true) == 0)
1483 break;
1484 /*
1485 * Ensure we allow local-to-the-cpu processing to take place,
1486 * in this case we need to ensure that we reap all events.
1487 * Also let task_work, etc. to progress by releasing the mutex
1488 */
1489 if (need_resched()) {
1490 mutex_unlock(&ctx->uring_lock);
1491 cond_resched();
1492 mutex_lock(&ctx->uring_lock);
1493 }
1494 }
1495 mutex_unlock(&ctx->uring_lock);
1496 }
1497
io_iopoll_check(struct io_ring_ctx * ctx,long min)1498 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1499 {
1500 unsigned int nr_events = 0;
1501 unsigned long check_cq;
1502
1503 lockdep_assert_held(&ctx->uring_lock);
1504
1505 if (!io_allowed_run_tw(ctx))
1506 return -EEXIST;
1507
1508 check_cq = READ_ONCE(ctx->check_cq);
1509 if (unlikely(check_cq)) {
1510 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1511 __io_cqring_overflow_flush(ctx, false);
1512 /*
1513 * Similarly do not spin if we have not informed the user of any
1514 * dropped CQE.
1515 */
1516 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1517 return -EBADR;
1518 }
1519 /*
1520 * Don't enter poll loop if we already have events pending.
1521 * If we do, we can potentially be spinning for commands that
1522 * already triggered a CQE (eg in error).
1523 */
1524 if (io_cqring_events(ctx))
1525 return 0;
1526
1527 do {
1528 int ret = 0;
1529
1530 /*
1531 * If a submit got punted to a workqueue, we can have the
1532 * application entering polling for a command before it gets
1533 * issued. That app will hold the uring_lock for the duration
1534 * of the poll right here, so we need to take a breather every
1535 * now and then to ensure that the issue has a chance to add
1536 * the poll to the issued list. Otherwise we can spin here
1537 * forever, while the workqueue is stuck trying to acquire the
1538 * very same mutex.
1539 */
1540 if (wq_list_empty(&ctx->iopoll_list) ||
1541 io_task_work_pending(ctx)) {
1542 u32 tail = ctx->cached_cq_tail;
1543
1544 (void) io_run_local_work_locked(ctx, min);
1545
1546 if (task_work_pending(current) ||
1547 wq_list_empty(&ctx->iopoll_list)) {
1548 mutex_unlock(&ctx->uring_lock);
1549 io_run_task_work();
1550 mutex_lock(&ctx->uring_lock);
1551 }
1552 /* some requests don't go through iopoll_list */
1553 if (tail != ctx->cached_cq_tail ||
1554 wq_list_empty(&ctx->iopoll_list))
1555 break;
1556 }
1557 ret = io_do_iopoll(ctx, !min);
1558 if (unlikely(ret < 0))
1559 return ret;
1560
1561 if (task_sigpending(current))
1562 return -EINTR;
1563 if (need_resched())
1564 break;
1565
1566 nr_events += ret;
1567 } while (nr_events < min);
1568
1569 return 0;
1570 }
1571
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1572 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1573 {
1574 io_req_complete_defer(req);
1575 }
1576
1577 /*
1578 * After the iocb has been issued, it's safe to be found on the poll list.
1579 * Adding the kiocb to the list AFTER submission ensures that we don't
1580 * find it from a io_do_iopoll() thread before the issuer is done
1581 * accessing the kiocb cookie.
1582 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1583 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1584 {
1585 struct io_ring_ctx *ctx = req->ctx;
1586 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1587
1588 /* workqueue context doesn't hold uring_lock, grab it now */
1589 if (unlikely(needs_lock))
1590 mutex_lock(&ctx->uring_lock);
1591
1592 /*
1593 * Track whether we have multiple files in our lists. This will impact
1594 * how we do polling eventually, not spinning if we're on potentially
1595 * different devices.
1596 */
1597 if (wq_list_empty(&ctx->iopoll_list)) {
1598 ctx->poll_multi_queue = false;
1599 } else if (!ctx->poll_multi_queue) {
1600 struct io_kiocb *list_req;
1601
1602 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1603 comp_list);
1604 if (list_req->file != req->file)
1605 ctx->poll_multi_queue = true;
1606 }
1607
1608 /*
1609 * For fast devices, IO may have already completed. If it has, add
1610 * it to the front so we find it first.
1611 */
1612 if (READ_ONCE(req->iopoll_completed))
1613 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1614 else
1615 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1616
1617 if (unlikely(needs_lock)) {
1618 /*
1619 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1620 * in sq thread task context or in io worker task context. If
1621 * current task context is sq thread, we don't need to check
1622 * whether should wake up sq thread.
1623 */
1624 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1625 wq_has_sleeper(&ctx->sq_data->wait))
1626 wake_up(&ctx->sq_data->wait);
1627
1628 mutex_unlock(&ctx->uring_lock);
1629 }
1630 }
1631
io_file_get_flags(struct file * file)1632 io_req_flags_t io_file_get_flags(struct file *file)
1633 {
1634 io_req_flags_t res = 0;
1635
1636 if (S_ISREG(file_inode(file)->i_mode))
1637 res |= REQ_F_ISREG;
1638 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1639 res |= REQ_F_SUPPORT_NOWAIT;
1640 return res;
1641 }
1642
io_alloc_async_data(struct io_kiocb * req)1643 bool io_alloc_async_data(struct io_kiocb *req)
1644 {
1645 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1646
1647 WARN_ON_ONCE(!def->async_size);
1648 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1649 if (req->async_data) {
1650 req->flags |= REQ_F_ASYNC_DATA;
1651 return false;
1652 }
1653 return true;
1654 }
1655
io_get_sequence(struct io_kiocb * req)1656 static u32 io_get_sequence(struct io_kiocb *req)
1657 {
1658 u32 seq = req->ctx->cached_sq_head;
1659 struct io_kiocb *cur;
1660
1661 /* need original cached_sq_head, but it was increased for each req */
1662 io_for_each_link(cur, req)
1663 seq--;
1664 return seq;
1665 }
1666
io_drain_req(struct io_kiocb * req)1667 static __cold void io_drain_req(struct io_kiocb *req)
1668 __must_hold(&ctx->uring_lock)
1669 {
1670 struct io_ring_ctx *ctx = req->ctx;
1671 struct io_defer_entry *de;
1672 int ret;
1673 u32 seq = io_get_sequence(req);
1674
1675 /* Still need defer if there is pending req in defer list. */
1676 spin_lock(&ctx->completion_lock);
1677 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678 spin_unlock(&ctx->completion_lock);
1679 queue:
1680 ctx->drain_active = false;
1681 io_req_task_queue(req);
1682 return;
1683 }
1684 spin_unlock(&ctx->completion_lock);
1685
1686 io_prep_async_link(req);
1687 de = kmalloc(sizeof(*de), GFP_KERNEL);
1688 if (!de) {
1689 ret = -ENOMEM;
1690 io_req_defer_failed(req, ret);
1691 return;
1692 }
1693
1694 spin_lock(&ctx->completion_lock);
1695 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696 spin_unlock(&ctx->completion_lock);
1697 kfree(de);
1698 goto queue;
1699 }
1700
1701 trace_io_uring_defer(req);
1702 de->req = req;
1703 de->seq = seq;
1704 list_add_tail(&de->list, &ctx->defer_list);
1705 spin_unlock(&ctx->completion_lock);
1706 }
1707
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709 unsigned int issue_flags)
1710 {
1711 if (req->file || !def->needs_file)
1712 return true;
1713
1714 if (req->flags & REQ_F_FIXED_FILE)
1715 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716 else
1717 req->file = io_file_get_normal(req, req->cqe.fd);
1718
1719 return !!req->file;
1720 }
1721
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 const struct cred *creds = NULL;
1726 int ret;
1727
1728 if (unlikely(!io_assign_file(req, def, issue_flags)))
1729 return -EBADF;
1730
1731 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732 creds = override_creds(req->creds);
1733
1734 if (!def->audit_skip)
1735 audit_uring_entry(req->opcode);
1736
1737 ret = def->issue(req, issue_flags);
1738
1739 if (!def->audit_skip)
1740 audit_uring_exit(!ret, ret);
1741
1742 if (creds)
1743 revert_creds(creds);
1744
1745 if (ret == IOU_OK) {
1746 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747 io_req_complete_defer(req);
1748 else
1749 io_req_complete_post(req, issue_flags);
1750
1751 return 0;
1752 }
1753
1754 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755 ret = 0;
1756 io_arm_ltimeout(req);
1757
1758 /* If the op doesn't have a file, we're not polling for it */
1759 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760 io_iopoll_req_issued(req, issue_flags);
1761 }
1762 return ret;
1763 }
1764
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 {
1767 io_tw_lock(req->ctx, ts);
1768 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769 IO_URING_F_COMPLETE_DEFER);
1770 }
1771
io_wq_free_work(struct io_wq_work * work)1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 {
1774 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775 struct io_kiocb *nxt = NULL;
1776
1777 if (req_ref_put_and_test(req)) {
1778 if (req->flags & IO_REQ_LINK_FLAGS)
1779 nxt = io_req_find_next(req);
1780 io_free_req(req);
1781 }
1782 return nxt ? &nxt->work : NULL;
1783 }
1784
io_wq_submit_work(struct io_wq_work * work)1785 void io_wq_submit_work(struct io_wq_work *work)
1786 {
1787 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790 bool needs_poll = false;
1791 int ret = 0, err = -ECANCELED;
1792
1793 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 if (!(req->flags & REQ_F_REFCOUNT))
1795 __io_req_set_refcount(req, 2);
1796 else
1797 req_ref_get(req);
1798
1799 io_arm_ltimeout(req);
1800
1801 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803 fail:
1804 io_req_task_queue_fail(req, err);
1805 return;
1806 }
1807 if (!io_assign_file(req, def, issue_flags)) {
1808 err = -EBADF;
1809 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810 goto fail;
1811 }
1812
1813 /*
1814 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 * submitter task context. Final request completions are handed to the
1816 * right context, however this is not the case of auxiliary CQEs,
1817 * which is the main mean of operation for multishot requests.
1818 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 * than necessary and also cleaner.
1820 */
1821 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822 err = -EBADFD;
1823 if (!io_file_can_poll(req))
1824 goto fail;
1825 if (req->file->f_flags & O_NONBLOCK ||
1826 req->file->f_mode & FMODE_NOWAIT) {
1827 err = -ECANCELED;
1828 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829 goto fail;
1830 return;
1831 } else {
1832 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833 }
1834 }
1835
1836 if (req->flags & REQ_F_FORCE_ASYNC) {
1837 bool opcode_poll = def->pollin || def->pollout;
1838
1839 if (opcode_poll && io_file_can_poll(req)) {
1840 needs_poll = true;
1841 issue_flags |= IO_URING_F_NONBLOCK;
1842 }
1843 }
1844
1845 do {
1846 ret = io_issue_sqe(req, issue_flags);
1847 if (ret != -EAGAIN)
1848 break;
1849
1850 /*
1851 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 * poll. -EAGAIN is final for that case.
1853 */
1854 if (req->flags & REQ_F_NOWAIT)
1855 break;
1856
1857 /*
1858 * We can get EAGAIN for iopolled IO even though we're
1859 * forcing a sync submission from here, since we can't
1860 * wait for request slots on the block side.
1861 */
1862 if (!needs_poll) {
1863 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864 break;
1865 if (io_wq_worker_stopped())
1866 break;
1867 cond_resched();
1868 continue;
1869 }
1870
1871 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872 return;
1873 /* aborted or ready, in either case retry blocking */
1874 needs_poll = false;
1875 issue_flags &= ~IO_URING_F_NONBLOCK;
1876 } while (1);
1877
1878 /* avoid locking problems by failing it from a clean context */
1879 if (ret)
1880 io_req_task_queue_fail(req, ret);
1881 }
1882
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884 unsigned int issue_flags)
1885 {
1886 struct io_ring_ctx *ctx = req->ctx;
1887 struct io_rsrc_node *node;
1888 struct file *file = NULL;
1889
1890 io_ring_submit_lock(ctx, issue_flags);
1891 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892 if (node) {
1893 io_req_assign_rsrc_node(&req->file_node, node);
1894 req->flags |= io_slot_flags(node);
1895 file = io_slot_file(node);
1896 }
1897 io_ring_submit_unlock(ctx, issue_flags);
1898 return file;
1899 }
1900
io_file_get_normal(struct io_kiocb * req,int fd)1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 {
1903 struct file *file = fget(fd);
1904
1905 trace_io_uring_file_get(req, fd);
1906
1907 /* we don't allow fixed io_uring files */
1908 if (file && io_is_uring_fops(file))
1909 io_req_track_inflight(req);
1910 return file;
1911 }
1912
io_queue_async(struct io_kiocb * req,int ret)1913 static void io_queue_async(struct io_kiocb *req, int ret)
1914 __must_hold(&req->ctx->uring_lock)
1915 {
1916 struct io_kiocb *linked_timeout;
1917
1918 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919 io_req_defer_failed(req, ret);
1920 return;
1921 }
1922
1923 linked_timeout = io_prep_linked_timeout(req);
1924
1925 switch (io_arm_poll_handler(req, 0)) {
1926 case IO_APOLL_READY:
1927 io_kbuf_recycle(req, 0);
1928 io_req_task_queue(req);
1929 break;
1930 case IO_APOLL_ABORTED:
1931 io_kbuf_recycle(req, 0);
1932 io_queue_iowq(req);
1933 break;
1934 case IO_APOLL_OK:
1935 break;
1936 }
1937
1938 if (linked_timeout)
1939 io_queue_linked_timeout(linked_timeout);
1940 }
1941
io_queue_sqe(struct io_kiocb * req)1942 static inline void io_queue_sqe(struct io_kiocb *req)
1943 __must_hold(&req->ctx->uring_lock)
1944 {
1945 int ret;
1946
1947 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948
1949 /*
1950 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 * doesn't support non-blocking read/write attempts
1952 */
1953 if (unlikely(ret))
1954 io_queue_async(req, ret);
1955 }
1956
io_queue_sqe_fallback(struct io_kiocb * req)1957 static void io_queue_sqe_fallback(struct io_kiocb *req)
1958 __must_hold(&req->ctx->uring_lock)
1959 {
1960 if (unlikely(req->flags & REQ_F_FAIL)) {
1961 /*
1962 * We don't submit, fail them all, for that replace hardlinks
1963 * with normal links. Extra REQ_F_LINK is tolerated.
1964 */
1965 req->flags &= ~REQ_F_HARDLINK;
1966 req->flags |= REQ_F_LINK;
1967 io_req_defer_failed(req, req->cqe.res);
1968 } else {
1969 if (unlikely(req->ctx->drain_active))
1970 io_drain_req(req);
1971 else
1972 io_queue_iowq(req);
1973 }
1974 }
1975
1976 /*
1977 * Check SQE restrictions (opcode and flags).
1978 *
1979 * Returns 'true' if SQE is allowed, 'false' otherwise.
1980 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982 struct io_kiocb *req,
1983 unsigned int sqe_flags)
1984 {
1985 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986 return false;
1987
1988 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989 ctx->restrictions.sqe_flags_required)
1990 return false;
1991
1992 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993 ctx->restrictions.sqe_flags_required))
1994 return false;
1995
1996 return true;
1997 }
1998
io_init_req_drain(struct io_kiocb * req)1999 static void io_init_req_drain(struct io_kiocb *req)
2000 {
2001 struct io_ring_ctx *ctx = req->ctx;
2002 struct io_kiocb *head = ctx->submit_state.link.head;
2003
2004 ctx->drain_active = true;
2005 if (head) {
2006 /*
2007 * If we need to drain a request in the middle of a link, drain
2008 * the head request and the next request/link after the current
2009 * link. Considering sequential execution of links,
2010 * REQ_F_IO_DRAIN will be maintained for every request of our
2011 * link.
2012 */
2013 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014 ctx->drain_next = true;
2015 }
2016 }
2017
io_init_fail_req(struct io_kiocb * req,int err)2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 {
2020 /* ensure per-opcode data is cleared if we fail before prep */
2021 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022 return err;
2023 }
2024
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 const struct io_uring_sqe *sqe)
2027 __must_hold(&ctx->uring_lock)
2028 {
2029 const struct io_issue_def *def;
2030 unsigned int sqe_flags;
2031 int personality;
2032 u8 opcode;
2033
2034 /* req is partially pre-initialised, see io_preinit_req() */
2035 req->opcode = opcode = READ_ONCE(sqe->opcode);
2036 /* same numerical values with corresponding REQ_F_*, safe to copy */
2037 sqe_flags = READ_ONCE(sqe->flags);
2038 req->flags = (__force io_req_flags_t) sqe_flags;
2039 req->cqe.user_data = READ_ONCE(sqe->user_data);
2040 req->file = NULL;
2041 req->tctx = current->io_uring;
2042 req->cancel_seq_set = false;
2043
2044 if (unlikely(opcode >= IORING_OP_LAST)) {
2045 req->opcode = 0;
2046 return io_init_fail_req(req, -EINVAL);
2047 }
2048 def = &io_issue_defs[opcode];
2049 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2050 /* enforce forwards compatibility on users */
2051 if (sqe_flags & ~SQE_VALID_FLAGS)
2052 return io_init_fail_req(req, -EINVAL);
2053 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2054 if (!def->buffer_select)
2055 return io_init_fail_req(req, -EOPNOTSUPP);
2056 req->buf_index = READ_ONCE(sqe->buf_group);
2057 }
2058 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2059 ctx->drain_disabled = true;
2060 if (sqe_flags & IOSQE_IO_DRAIN) {
2061 if (ctx->drain_disabled)
2062 return io_init_fail_req(req, -EOPNOTSUPP);
2063 io_init_req_drain(req);
2064 }
2065 }
2066 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2067 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2068 return io_init_fail_req(req, -EACCES);
2069 /* knock it to the slow queue path, will be drained there */
2070 if (ctx->drain_active)
2071 req->flags |= REQ_F_FORCE_ASYNC;
2072 /* if there is no link, we're at "next" request and need to drain */
2073 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2074 ctx->drain_next = false;
2075 ctx->drain_active = true;
2076 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2077 }
2078 }
2079
2080 if (!def->ioprio && sqe->ioprio)
2081 return io_init_fail_req(req, -EINVAL);
2082 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2083 return io_init_fail_req(req, -EINVAL);
2084
2085 if (def->needs_file) {
2086 struct io_submit_state *state = &ctx->submit_state;
2087
2088 req->cqe.fd = READ_ONCE(sqe->fd);
2089
2090 /*
2091 * Plug now if we have more than 2 IO left after this, and the
2092 * target is potentially a read/write to block based storage.
2093 */
2094 if (state->need_plug && def->plug) {
2095 state->plug_started = true;
2096 state->need_plug = false;
2097 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2098 }
2099 }
2100
2101 personality = READ_ONCE(sqe->personality);
2102 if (personality) {
2103 int ret;
2104
2105 req->creds = xa_load(&ctx->personalities, personality);
2106 if (!req->creds)
2107 return io_init_fail_req(req, -EINVAL);
2108 get_cred(req->creds);
2109 ret = security_uring_override_creds(req->creds);
2110 if (ret) {
2111 put_cred(req->creds);
2112 return io_init_fail_req(req, ret);
2113 }
2114 req->flags |= REQ_F_CREDS;
2115 }
2116
2117 return def->prep(req, sqe);
2118 }
2119
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2120 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2121 struct io_kiocb *req, int ret)
2122 {
2123 struct io_ring_ctx *ctx = req->ctx;
2124 struct io_submit_link *link = &ctx->submit_state.link;
2125 struct io_kiocb *head = link->head;
2126
2127 trace_io_uring_req_failed(sqe, req, ret);
2128
2129 /*
2130 * Avoid breaking links in the middle as it renders links with SQPOLL
2131 * unusable. Instead of failing eagerly, continue assembling the link if
2132 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2133 * should find the flag and handle the rest.
2134 */
2135 req_fail_link_node(req, ret);
2136 if (head && !(head->flags & REQ_F_FAIL))
2137 req_fail_link_node(head, -ECANCELED);
2138
2139 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2140 if (head) {
2141 link->last->link = req;
2142 link->head = NULL;
2143 req = head;
2144 }
2145 io_queue_sqe_fallback(req);
2146 return ret;
2147 }
2148
2149 if (head)
2150 link->last->link = req;
2151 else
2152 link->head = req;
2153 link->last = req;
2154 return 0;
2155 }
2156
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2157 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158 const struct io_uring_sqe *sqe)
2159 __must_hold(&ctx->uring_lock)
2160 {
2161 struct io_submit_link *link = &ctx->submit_state.link;
2162 int ret;
2163
2164 ret = io_init_req(ctx, req, sqe);
2165 if (unlikely(ret))
2166 return io_submit_fail_init(sqe, req, ret);
2167
2168 trace_io_uring_submit_req(req);
2169
2170 /*
2171 * If we already have a head request, queue this one for async
2172 * submittal once the head completes. If we don't have a head but
2173 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2174 * submitted sync once the chain is complete. If none of those
2175 * conditions are true (normal request), then just queue it.
2176 */
2177 if (unlikely(link->head)) {
2178 trace_io_uring_link(req, link->last);
2179 link->last->link = req;
2180 link->last = req;
2181
2182 if (req->flags & IO_REQ_LINK_FLAGS)
2183 return 0;
2184 /* last request of the link, flush it */
2185 req = link->head;
2186 link->head = NULL;
2187 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2188 goto fallback;
2189
2190 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2191 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2192 if (req->flags & IO_REQ_LINK_FLAGS) {
2193 link->head = req;
2194 link->last = req;
2195 } else {
2196 fallback:
2197 io_queue_sqe_fallback(req);
2198 }
2199 return 0;
2200 }
2201
2202 io_queue_sqe(req);
2203 return 0;
2204 }
2205
2206 /*
2207 * Batched submission is done, ensure local IO is flushed out.
2208 */
io_submit_state_end(struct io_ring_ctx * ctx)2209 static void io_submit_state_end(struct io_ring_ctx *ctx)
2210 {
2211 struct io_submit_state *state = &ctx->submit_state;
2212
2213 if (unlikely(state->link.head))
2214 io_queue_sqe_fallback(state->link.head);
2215 /* flush only after queuing links as they can generate completions */
2216 io_submit_flush_completions(ctx);
2217 if (state->plug_started)
2218 blk_finish_plug(&state->plug);
2219 }
2220
2221 /*
2222 * Start submission side cache.
2223 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2224 static void io_submit_state_start(struct io_submit_state *state,
2225 unsigned int max_ios)
2226 {
2227 state->plug_started = false;
2228 state->need_plug = max_ios > 2;
2229 state->submit_nr = max_ios;
2230 /* set only head, no need to init link_last in advance */
2231 state->link.head = NULL;
2232 }
2233
io_commit_sqring(struct io_ring_ctx * ctx)2234 static void io_commit_sqring(struct io_ring_ctx *ctx)
2235 {
2236 struct io_rings *rings = ctx->rings;
2237
2238 /*
2239 * Ensure any loads from the SQEs are done at this point,
2240 * since once we write the new head, the application could
2241 * write new data to them.
2242 */
2243 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2244 }
2245
2246 /*
2247 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2248 * that is mapped by userspace. This means that care needs to be taken to
2249 * ensure that reads are stable, as we cannot rely on userspace always
2250 * being a good citizen. If members of the sqe are validated and then later
2251 * used, it's important that those reads are done through READ_ONCE() to
2252 * prevent a re-load down the line.
2253 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2254 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2255 {
2256 unsigned mask = ctx->sq_entries - 1;
2257 unsigned head = ctx->cached_sq_head++ & mask;
2258
2259 if (static_branch_unlikely(&io_key_has_sqarray) &&
2260 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2261 head = READ_ONCE(ctx->sq_array[head]);
2262 if (unlikely(head >= ctx->sq_entries)) {
2263 /* drop invalid entries */
2264 spin_lock(&ctx->completion_lock);
2265 ctx->cq_extra--;
2266 spin_unlock(&ctx->completion_lock);
2267 WRITE_ONCE(ctx->rings->sq_dropped,
2268 READ_ONCE(ctx->rings->sq_dropped) + 1);
2269 return false;
2270 }
2271 head = array_index_nospec(head, ctx->sq_entries);
2272 }
2273
2274 /*
2275 * The cached sq head (or cq tail) serves two purposes:
2276 *
2277 * 1) allows us to batch the cost of updating the user visible
2278 * head updates.
2279 * 2) allows the kernel side to track the head on its own, even
2280 * though the application is the one updating it.
2281 */
2282
2283 /* double index for 128-byte SQEs, twice as long */
2284 if (ctx->flags & IORING_SETUP_SQE128)
2285 head <<= 1;
2286 *sqe = &ctx->sq_sqes[head];
2287 return true;
2288 }
2289
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2290 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2291 __must_hold(&ctx->uring_lock)
2292 {
2293 unsigned int entries = io_sqring_entries(ctx);
2294 unsigned int left;
2295 int ret;
2296
2297 if (unlikely(!entries))
2298 return 0;
2299 /* make sure SQ entry isn't read before tail */
2300 ret = left = min(nr, entries);
2301 io_get_task_refs(left);
2302 io_submit_state_start(&ctx->submit_state, left);
2303
2304 do {
2305 const struct io_uring_sqe *sqe;
2306 struct io_kiocb *req;
2307
2308 if (unlikely(!io_alloc_req(ctx, &req)))
2309 break;
2310 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2311 io_req_add_to_cache(req, ctx);
2312 break;
2313 }
2314
2315 /*
2316 * Continue submitting even for sqe failure if the
2317 * ring was setup with IORING_SETUP_SUBMIT_ALL
2318 */
2319 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2320 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2321 left--;
2322 break;
2323 }
2324 } while (--left);
2325
2326 if (unlikely(left)) {
2327 ret -= left;
2328 /* try again if it submitted nothing and can't allocate a req */
2329 if (!ret && io_req_cache_empty(ctx))
2330 ret = -EAGAIN;
2331 current->io_uring->cached_refs += left;
2332 }
2333
2334 io_submit_state_end(ctx);
2335 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2336 io_commit_sqring(ctx);
2337 return ret;
2338 }
2339
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2340 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2341 int wake_flags, void *key)
2342 {
2343 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2344
2345 /*
2346 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2347 * the task, and the next invocation will do it.
2348 */
2349 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2350 return autoremove_wake_function(curr, mode, wake_flags, key);
2351 return -1;
2352 }
2353
io_run_task_work_sig(struct io_ring_ctx * ctx)2354 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2355 {
2356 if (io_local_work_pending(ctx)) {
2357 __set_current_state(TASK_RUNNING);
2358 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2359 return 0;
2360 }
2361 if (io_run_task_work() > 0)
2362 return 0;
2363 if (task_sigpending(current))
2364 return -EINTR;
2365 return 0;
2366 }
2367
current_pending_io(void)2368 static bool current_pending_io(void)
2369 {
2370 struct io_uring_task *tctx = current->io_uring;
2371
2372 if (!tctx)
2373 return false;
2374 return percpu_counter_read_positive(&tctx->inflight);
2375 }
2376
io_cqring_timer_wakeup(struct hrtimer * timer)2377 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2378 {
2379 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2380
2381 WRITE_ONCE(iowq->hit_timeout, 1);
2382 iowq->min_timeout = 0;
2383 wake_up_process(iowq->wq.private);
2384 return HRTIMER_NORESTART;
2385 }
2386
2387 /*
2388 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2389 * wake up. If not, and we have a normal timeout, switch to that and keep
2390 * sleeping.
2391 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2392 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2393 {
2394 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2395 struct io_ring_ctx *ctx = iowq->ctx;
2396
2397 /* no general timeout, or shorter (or equal), we are done */
2398 if (iowq->timeout == KTIME_MAX ||
2399 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2400 goto out_wake;
2401 /* work we may need to run, wake function will see if we need to wake */
2402 if (io_has_work(ctx))
2403 goto out_wake;
2404 /* got events since we started waiting, min timeout is done */
2405 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2406 goto out_wake;
2407 /* if we have any events and min timeout expired, we're done */
2408 if (io_cqring_events(ctx))
2409 goto out_wake;
2410
2411 /*
2412 * If using deferred task_work running and application is waiting on
2413 * more than one request, ensure we reset it now where we are switching
2414 * to normal sleeps. Any request completion post min_wait should wake
2415 * the task and return.
2416 */
2417 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2418 atomic_set(&ctx->cq_wait_nr, 1);
2419 smp_mb();
2420 if (!llist_empty(&ctx->work_llist))
2421 goto out_wake;
2422 }
2423
2424 iowq->t.function = io_cqring_timer_wakeup;
2425 hrtimer_set_expires(timer, iowq->timeout);
2426 return HRTIMER_RESTART;
2427 out_wake:
2428 return io_cqring_timer_wakeup(timer);
2429 }
2430
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2431 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2432 clockid_t clock_id, ktime_t start_time)
2433 {
2434 ktime_t timeout;
2435
2436 if (iowq->min_timeout) {
2437 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2438 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2439 HRTIMER_MODE_ABS);
2440 } else {
2441 timeout = iowq->timeout;
2442 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2443 HRTIMER_MODE_ABS);
2444 }
2445
2446 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2447 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2448
2449 if (!READ_ONCE(iowq->hit_timeout))
2450 schedule();
2451
2452 hrtimer_cancel(&iowq->t);
2453 destroy_hrtimer_on_stack(&iowq->t);
2454 __set_current_state(TASK_RUNNING);
2455
2456 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2457 }
2458
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2459 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2460 struct io_wait_queue *iowq,
2461 ktime_t start_time)
2462 {
2463 int ret = 0;
2464
2465 /*
2466 * Mark us as being in io_wait if we have pending requests, so cpufreq
2467 * can take into account that the task is waiting for IO - turns out
2468 * to be important for low QD IO.
2469 */
2470 if (current_pending_io())
2471 current->in_iowait = 1;
2472 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2473 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2474 else
2475 schedule();
2476 current->in_iowait = 0;
2477 return ret;
2478 }
2479
2480 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2482 struct io_wait_queue *iowq,
2483 ktime_t start_time)
2484 {
2485 if (unlikely(READ_ONCE(ctx->check_cq)))
2486 return 1;
2487 if (unlikely(io_local_work_pending(ctx)))
2488 return 1;
2489 if (unlikely(task_work_pending(current)))
2490 return 1;
2491 if (unlikely(task_sigpending(current)))
2492 return -EINTR;
2493 if (unlikely(io_should_wake(iowq)))
2494 return 0;
2495
2496 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2497 }
2498
2499 struct ext_arg {
2500 size_t argsz;
2501 struct timespec64 ts;
2502 const sigset_t __user *sig;
2503 ktime_t min_time;
2504 bool ts_set;
2505 };
2506
2507 /*
2508 * Wait until events become available, if we don't already have some. The
2509 * application must reap them itself, as they reside on the shared cq ring.
2510 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2512 struct ext_arg *ext_arg)
2513 {
2514 struct io_wait_queue iowq;
2515 struct io_rings *rings = ctx->rings;
2516 ktime_t start_time;
2517 int ret;
2518
2519 if (!io_allowed_run_tw(ctx))
2520 return -EEXIST;
2521 if (io_local_work_pending(ctx))
2522 io_run_local_work(ctx, min_events,
2523 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2524 io_run_task_work();
2525
2526 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2527 io_cqring_do_overflow_flush(ctx);
2528 if (__io_cqring_events_user(ctx) >= min_events)
2529 return 0;
2530
2531 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2532 iowq.wq.private = current;
2533 INIT_LIST_HEAD(&iowq.wq.entry);
2534 iowq.ctx = ctx;
2535 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2536 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2537 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2538 iowq.hit_timeout = 0;
2539 iowq.min_timeout = ext_arg->min_time;
2540 iowq.timeout = KTIME_MAX;
2541 start_time = io_get_time(ctx);
2542
2543 if (ext_arg->ts_set) {
2544 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2545 if (!(flags & IORING_ENTER_ABS_TIMER))
2546 iowq.timeout = ktime_add(iowq.timeout, start_time);
2547 }
2548
2549 if (ext_arg->sig) {
2550 #ifdef CONFIG_COMPAT
2551 if (in_compat_syscall())
2552 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2553 ext_arg->argsz);
2554 else
2555 #endif
2556 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2557
2558 if (ret)
2559 return ret;
2560 }
2561
2562 io_napi_busy_loop(ctx, &iowq);
2563
2564 trace_io_uring_cqring_wait(ctx, min_events);
2565 do {
2566 unsigned long check_cq;
2567 int nr_wait;
2568
2569 /* if min timeout has been hit, don't reset wait count */
2570 if (!iowq.hit_timeout)
2571 nr_wait = (int) iowq.cq_tail -
2572 READ_ONCE(ctx->rings->cq.tail);
2573 else
2574 nr_wait = 1;
2575
2576 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2577 atomic_set(&ctx->cq_wait_nr, nr_wait);
2578 set_current_state(TASK_INTERRUPTIBLE);
2579 } else {
2580 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2581 TASK_INTERRUPTIBLE);
2582 }
2583
2584 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2585 __set_current_state(TASK_RUNNING);
2586 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2587
2588 /*
2589 * Run task_work after scheduling and before io_should_wake().
2590 * If we got woken because of task_work being processed, run it
2591 * now rather than let the caller do another wait loop.
2592 */
2593 if (io_local_work_pending(ctx))
2594 io_run_local_work(ctx, nr_wait, nr_wait);
2595 io_run_task_work();
2596
2597 /*
2598 * Non-local task_work will be run on exit to userspace, but
2599 * if we're using DEFER_TASKRUN, then we could have waited
2600 * with a timeout for a number of requests. If the timeout
2601 * hits, we could have some requests ready to process. Ensure
2602 * this break is _after_ we have run task_work, to avoid
2603 * deferring running potentially pending requests until the
2604 * next time we wait for events.
2605 */
2606 if (ret < 0)
2607 break;
2608
2609 check_cq = READ_ONCE(ctx->check_cq);
2610 if (unlikely(check_cq)) {
2611 /* let the caller flush overflows, retry */
2612 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2613 io_cqring_do_overflow_flush(ctx);
2614 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2615 ret = -EBADR;
2616 break;
2617 }
2618 }
2619
2620 if (io_should_wake(&iowq)) {
2621 ret = 0;
2622 break;
2623 }
2624 cond_resched();
2625 } while (1);
2626
2627 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2628 finish_wait(&ctx->cq_wait, &iowq.wq);
2629 restore_saved_sigmask_unless(ret == -EINTR);
2630
2631 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2632 }
2633
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2634 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2635 size_t size)
2636 {
2637 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2638 size);
2639 }
2640
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2641 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2642 size_t size)
2643 {
2644 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2645 size);
2646 }
2647
io_rings_free(struct io_ring_ctx * ctx)2648 static void io_rings_free(struct io_ring_ctx *ctx)
2649 {
2650 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2651 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2652 true);
2653 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2654 true);
2655 } else {
2656 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2657 ctx->n_ring_pages = 0;
2658 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2659 ctx->n_sqe_pages = 0;
2660 vunmap(ctx->rings);
2661 vunmap(ctx->sq_sqes);
2662 }
2663
2664 ctx->rings = NULL;
2665 ctx->sq_sqes = NULL;
2666 }
2667
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2668 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2669 unsigned int cq_entries, size_t *sq_offset)
2670 {
2671 struct io_rings *rings;
2672 size_t off, sq_array_size;
2673
2674 off = struct_size(rings, cqes, cq_entries);
2675 if (off == SIZE_MAX)
2676 return SIZE_MAX;
2677 if (flags & IORING_SETUP_CQE32) {
2678 if (check_shl_overflow(off, 1, &off))
2679 return SIZE_MAX;
2680 }
2681
2682 #ifdef CONFIG_SMP
2683 off = ALIGN(off, SMP_CACHE_BYTES);
2684 if (off == 0)
2685 return SIZE_MAX;
2686 #endif
2687
2688 if (flags & IORING_SETUP_NO_SQARRAY) {
2689 *sq_offset = SIZE_MAX;
2690 return off;
2691 }
2692
2693 *sq_offset = off;
2694
2695 sq_array_size = array_size(sizeof(u32), sq_entries);
2696 if (sq_array_size == SIZE_MAX)
2697 return SIZE_MAX;
2698
2699 if (check_add_overflow(off, sq_array_size, &off))
2700 return SIZE_MAX;
2701
2702 return off;
2703 }
2704
io_req_caches_free(struct io_ring_ctx * ctx)2705 static void io_req_caches_free(struct io_ring_ctx *ctx)
2706 {
2707 struct io_kiocb *req;
2708 int nr = 0;
2709
2710 mutex_lock(&ctx->uring_lock);
2711
2712 while (!io_req_cache_empty(ctx)) {
2713 req = io_extract_req(ctx);
2714 kmem_cache_free(req_cachep, req);
2715 nr++;
2716 }
2717 if (nr)
2718 percpu_ref_put_many(&ctx->refs, nr);
2719 mutex_unlock(&ctx->uring_lock);
2720 }
2721
io_ring_ctx_free(struct io_ring_ctx * ctx)2722 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2723 {
2724 io_sq_thread_finish(ctx);
2725
2726 mutex_lock(&ctx->uring_lock);
2727 io_sqe_buffers_unregister(ctx);
2728 io_sqe_files_unregister(ctx);
2729 io_cqring_overflow_kill(ctx);
2730 io_eventfd_unregister(ctx);
2731 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2732 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2733 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2734 io_alloc_cache_free(&ctx->uring_cache, kfree);
2735 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2736 io_futex_cache_free(ctx);
2737 io_destroy_buffers(ctx);
2738 io_free_region(ctx, &ctx->param_region);
2739 mutex_unlock(&ctx->uring_lock);
2740 if (ctx->sq_creds)
2741 put_cred(ctx->sq_creds);
2742 if (ctx->submitter_task)
2743 put_task_struct(ctx->submitter_task);
2744
2745 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2746
2747 if (ctx->mm_account) {
2748 mmdrop(ctx->mm_account);
2749 ctx->mm_account = NULL;
2750 }
2751 io_rings_free(ctx);
2752
2753 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2754 static_branch_dec(&io_key_has_sqarray);
2755
2756 percpu_ref_exit(&ctx->refs);
2757 free_uid(ctx->user);
2758 io_req_caches_free(ctx);
2759 if (ctx->hash_map)
2760 io_wq_put_hash(ctx->hash_map);
2761 io_napi_free(ctx);
2762 kvfree(ctx->cancel_table.hbs);
2763 xa_destroy(&ctx->io_bl_xa);
2764 kfree(ctx);
2765 }
2766
io_activate_pollwq_cb(struct callback_head * cb)2767 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2768 {
2769 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2770 poll_wq_task_work);
2771
2772 mutex_lock(&ctx->uring_lock);
2773 ctx->poll_activated = true;
2774 mutex_unlock(&ctx->uring_lock);
2775
2776 /*
2777 * Wake ups for some events between start of polling and activation
2778 * might've been lost due to loose synchronisation.
2779 */
2780 wake_up_all(&ctx->poll_wq);
2781 percpu_ref_put(&ctx->refs);
2782 }
2783
io_activate_pollwq(struct io_ring_ctx * ctx)2784 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2785 {
2786 spin_lock(&ctx->completion_lock);
2787 /* already activated or in progress */
2788 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2789 goto out;
2790 if (WARN_ON_ONCE(!ctx->task_complete))
2791 goto out;
2792 if (!ctx->submitter_task)
2793 goto out;
2794 /*
2795 * with ->submitter_task only the submitter task completes requests, we
2796 * only need to sync with it, which is done by injecting a tw
2797 */
2798 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2799 percpu_ref_get(&ctx->refs);
2800 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2801 percpu_ref_put(&ctx->refs);
2802 out:
2803 spin_unlock(&ctx->completion_lock);
2804 }
2805
io_uring_poll(struct file * file,poll_table * wait)2806 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2807 {
2808 struct io_ring_ctx *ctx = file->private_data;
2809 __poll_t mask = 0;
2810
2811 if (unlikely(!ctx->poll_activated))
2812 io_activate_pollwq(ctx);
2813 /*
2814 * provides mb() which pairs with barrier from wq_has_sleeper
2815 * call in io_commit_cqring
2816 */
2817 poll_wait(file, &ctx->poll_wq, wait);
2818
2819 if (!io_sqring_full(ctx))
2820 mask |= EPOLLOUT | EPOLLWRNORM;
2821
2822 /*
2823 * Don't flush cqring overflow list here, just do a simple check.
2824 * Otherwise there could possible be ABBA deadlock:
2825 * CPU0 CPU1
2826 * ---- ----
2827 * lock(&ctx->uring_lock);
2828 * lock(&ep->mtx);
2829 * lock(&ctx->uring_lock);
2830 * lock(&ep->mtx);
2831 *
2832 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2833 * pushes them to do the flush.
2834 */
2835
2836 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2837 mask |= EPOLLIN | EPOLLRDNORM;
2838
2839 return mask;
2840 }
2841
2842 struct io_tctx_exit {
2843 struct callback_head task_work;
2844 struct completion completion;
2845 struct io_ring_ctx *ctx;
2846 };
2847
io_tctx_exit_cb(struct callback_head * cb)2848 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2849 {
2850 struct io_uring_task *tctx = current->io_uring;
2851 struct io_tctx_exit *work;
2852
2853 work = container_of(cb, struct io_tctx_exit, task_work);
2854 /*
2855 * When @in_cancel, we're in cancellation and it's racy to remove the
2856 * node. It'll be removed by the end of cancellation, just ignore it.
2857 * tctx can be NULL if the queueing of this task_work raced with
2858 * work cancelation off the exec path.
2859 */
2860 if (tctx && !atomic_read(&tctx->in_cancel))
2861 io_uring_del_tctx_node((unsigned long)work->ctx);
2862 complete(&work->completion);
2863 }
2864
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2865 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2866 {
2867 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2868
2869 return req->ctx == data;
2870 }
2871
io_ring_exit_work(struct work_struct * work)2872 static __cold void io_ring_exit_work(struct work_struct *work)
2873 {
2874 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2875 unsigned long timeout = jiffies + HZ * 60 * 5;
2876 unsigned long interval = HZ / 20;
2877 struct io_tctx_exit exit;
2878 struct io_tctx_node *node;
2879 int ret;
2880
2881 /*
2882 * If we're doing polled IO and end up having requests being
2883 * submitted async (out-of-line), then completions can come in while
2884 * we're waiting for refs to drop. We need to reap these manually,
2885 * as nobody else will be looking for them.
2886 */
2887 do {
2888 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2889 mutex_lock(&ctx->uring_lock);
2890 io_cqring_overflow_kill(ctx);
2891 mutex_unlock(&ctx->uring_lock);
2892 }
2893
2894 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2895 io_move_task_work_from_local(ctx);
2896
2897 while (io_uring_try_cancel_requests(ctx, NULL, true))
2898 cond_resched();
2899
2900 if (ctx->sq_data) {
2901 struct io_sq_data *sqd = ctx->sq_data;
2902 struct task_struct *tsk;
2903
2904 io_sq_thread_park(sqd);
2905 tsk = sqd->thread;
2906 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2907 io_wq_cancel_cb(tsk->io_uring->io_wq,
2908 io_cancel_ctx_cb, ctx, true);
2909 io_sq_thread_unpark(sqd);
2910 }
2911
2912 io_req_caches_free(ctx);
2913
2914 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2915 /* there is little hope left, don't run it too often */
2916 interval = HZ * 60;
2917 }
2918 /*
2919 * This is really an uninterruptible wait, as it has to be
2920 * complete. But it's also run from a kworker, which doesn't
2921 * take signals, so it's fine to make it interruptible. This
2922 * avoids scenarios where we knowingly can wait much longer
2923 * on completions, for example if someone does a SIGSTOP on
2924 * a task that needs to finish task_work to make this loop
2925 * complete. That's a synthetic situation that should not
2926 * cause a stuck task backtrace, and hence a potential panic
2927 * on stuck tasks if that is enabled.
2928 */
2929 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2930
2931 init_completion(&exit.completion);
2932 init_task_work(&exit.task_work, io_tctx_exit_cb);
2933 exit.ctx = ctx;
2934
2935 mutex_lock(&ctx->uring_lock);
2936 while (!list_empty(&ctx->tctx_list)) {
2937 WARN_ON_ONCE(time_after(jiffies, timeout));
2938
2939 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2940 ctx_node);
2941 /* don't spin on a single task if cancellation failed */
2942 list_rotate_left(&ctx->tctx_list);
2943 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2944 if (WARN_ON_ONCE(ret))
2945 continue;
2946
2947 mutex_unlock(&ctx->uring_lock);
2948 /*
2949 * See comment above for
2950 * wait_for_completion_interruptible_timeout() on why this
2951 * wait is marked as interruptible.
2952 */
2953 wait_for_completion_interruptible(&exit.completion);
2954 mutex_lock(&ctx->uring_lock);
2955 }
2956 mutex_unlock(&ctx->uring_lock);
2957 spin_lock(&ctx->completion_lock);
2958 spin_unlock(&ctx->completion_lock);
2959
2960 /* pairs with RCU read section in io_req_local_work_add() */
2961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2962 synchronize_rcu();
2963
2964 io_ring_ctx_free(ctx);
2965 }
2966
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2967 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2968 {
2969 unsigned long index;
2970 struct creds *creds;
2971
2972 mutex_lock(&ctx->uring_lock);
2973 percpu_ref_kill(&ctx->refs);
2974 xa_for_each(&ctx->personalities, index, creds)
2975 io_unregister_personality(ctx, index);
2976 mutex_unlock(&ctx->uring_lock);
2977
2978 flush_delayed_work(&ctx->fallback_work);
2979
2980 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2981 /*
2982 * Use system_unbound_wq to avoid spawning tons of event kworkers
2983 * if we're exiting a ton of rings at the same time. It just adds
2984 * noise and overhead, there's no discernable change in runtime
2985 * over using system_wq.
2986 */
2987 queue_work(iou_wq, &ctx->exit_work);
2988 }
2989
io_uring_release(struct inode * inode,struct file * file)2990 static int io_uring_release(struct inode *inode, struct file *file)
2991 {
2992 struct io_ring_ctx *ctx = file->private_data;
2993
2994 file->private_data = NULL;
2995 io_ring_ctx_wait_and_kill(ctx);
2996 return 0;
2997 }
2998
2999 struct io_task_cancel {
3000 struct io_uring_task *tctx;
3001 bool all;
3002 };
3003
io_cancel_task_cb(struct io_wq_work * work,void * data)3004 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3005 {
3006 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3007 struct io_task_cancel *cancel = data;
3008
3009 return io_match_task_safe(req, cancel->tctx, cancel->all);
3010 }
3011
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3012 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3013 struct io_uring_task *tctx,
3014 bool cancel_all)
3015 {
3016 struct io_defer_entry *de;
3017 LIST_HEAD(list);
3018
3019 spin_lock(&ctx->completion_lock);
3020 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3021 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3022 list_cut_position(&list, &ctx->defer_list, &de->list);
3023 break;
3024 }
3025 }
3026 spin_unlock(&ctx->completion_lock);
3027 if (list_empty(&list))
3028 return false;
3029
3030 while (!list_empty(&list)) {
3031 de = list_first_entry(&list, struct io_defer_entry, list);
3032 list_del_init(&de->list);
3033 io_req_task_queue_fail(de->req, -ECANCELED);
3034 kfree(de);
3035 }
3036 return true;
3037 }
3038
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3039 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3040 {
3041 struct io_tctx_node *node;
3042 enum io_wq_cancel cret;
3043 bool ret = false;
3044
3045 mutex_lock(&ctx->uring_lock);
3046 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3047 struct io_uring_task *tctx = node->task->io_uring;
3048
3049 /*
3050 * io_wq will stay alive while we hold uring_lock, because it's
3051 * killed after ctx nodes, which requires to take the lock.
3052 */
3053 if (!tctx || !tctx->io_wq)
3054 continue;
3055 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3056 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3057 }
3058 mutex_unlock(&ctx->uring_lock);
3059
3060 return ret;
3061 }
3062
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3063 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3064 struct io_uring_task *tctx,
3065 bool cancel_all)
3066 {
3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3068 enum io_wq_cancel cret;
3069 bool ret = false;
3070
3071 /* set it so io_req_local_work_add() would wake us up */
3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3073 atomic_set(&ctx->cq_wait_nr, 1);
3074 smp_mb();
3075 }
3076
3077 /* failed during ring init, it couldn't have issued any requests */
3078 if (!ctx->rings)
3079 return false;
3080
3081 if (!tctx) {
3082 ret |= io_uring_try_cancel_iowq(ctx);
3083 } else if (tctx->io_wq) {
3084 /*
3085 * Cancels requests of all rings, not only @ctx, but
3086 * it's fine as the task is in exit/exec.
3087 */
3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3089 &cancel, true);
3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3091 }
3092
3093 /* SQPOLL thread does its own polling */
3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3095 (ctx->sq_data && ctx->sq_data->thread == current)) {
3096 while (!wq_list_empty(&ctx->iopoll_list)) {
3097 io_iopoll_try_reap_events(ctx);
3098 ret = true;
3099 cond_resched();
3100 }
3101 }
3102
3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3104 io_allowed_defer_tw_run(ctx))
3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3107 mutex_lock(&ctx->uring_lock);
3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3112 mutex_unlock(&ctx->uring_lock);
3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3114 if (tctx)
3115 ret |= io_run_task_work() > 0;
3116 else
3117 ret |= flush_delayed_work(&ctx->fallback_work);
3118 return ret;
3119 }
3120
tctx_inflight(struct io_uring_task * tctx,bool tracked)3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3122 {
3123 if (tracked)
3124 return atomic_read(&tctx->inflight_tracked);
3125 return percpu_counter_sum(&tctx->inflight);
3126 }
3127
3128 /*
3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3131 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3133 {
3134 struct io_uring_task *tctx = current->io_uring;
3135 struct io_ring_ctx *ctx;
3136 struct io_tctx_node *node;
3137 unsigned long index;
3138 s64 inflight;
3139 DEFINE_WAIT(wait);
3140
3141 WARN_ON_ONCE(sqd && sqd->thread != current);
3142
3143 if (!current->io_uring)
3144 return;
3145 if (tctx->io_wq)
3146 io_wq_exit_start(tctx->io_wq);
3147
3148 atomic_inc(&tctx->in_cancel);
3149 do {
3150 bool loop = false;
3151
3152 io_uring_drop_tctx_refs(current);
3153 if (!tctx_inflight(tctx, !cancel_all))
3154 break;
3155
3156 /* read completions before cancelations */
3157 inflight = tctx_inflight(tctx, false);
3158 if (!inflight)
3159 break;
3160
3161 if (!sqd) {
3162 xa_for_each(&tctx->xa, index, node) {
3163 /* sqpoll task will cancel all its requests */
3164 if (node->ctx->sq_data)
3165 continue;
3166 loop |= io_uring_try_cancel_requests(node->ctx,
3167 current->io_uring,
3168 cancel_all);
3169 }
3170 } else {
3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3172 loop |= io_uring_try_cancel_requests(ctx,
3173 current->io_uring,
3174 cancel_all);
3175 }
3176
3177 if (loop) {
3178 cond_resched();
3179 continue;
3180 }
3181
3182 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3183 io_run_task_work();
3184 io_uring_drop_tctx_refs(current);
3185 xa_for_each(&tctx->xa, index, node) {
3186 if (io_local_work_pending(node->ctx)) {
3187 WARN_ON_ONCE(node->ctx->submitter_task &&
3188 node->ctx->submitter_task != current);
3189 goto end_wait;
3190 }
3191 }
3192 /*
3193 * If we've seen completions, retry without waiting. This
3194 * avoids a race where a completion comes in before we did
3195 * prepare_to_wait().
3196 */
3197 if (inflight == tctx_inflight(tctx, !cancel_all))
3198 schedule();
3199 end_wait:
3200 finish_wait(&tctx->wait, &wait);
3201 } while (1);
3202
3203 io_uring_clean_tctx(tctx);
3204 if (cancel_all) {
3205 /*
3206 * We shouldn't run task_works after cancel, so just leave
3207 * ->in_cancel set for normal exit.
3208 */
3209 atomic_dec(&tctx->in_cancel);
3210 /* for exec all current's requests should be gone, kill tctx */
3211 __io_uring_free(current);
3212 }
3213 }
3214
__io_uring_cancel(bool cancel_all)3215 void __io_uring_cancel(bool cancel_all)
3216 {
3217 io_uring_unreg_ringfd();
3218 io_uring_cancel_generic(cancel_all, NULL);
3219 }
3220
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3221 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3222 const struct io_uring_getevents_arg __user *uarg)
3223 {
3224 unsigned long size = sizeof(struct io_uring_reg_wait);
3225 unsigned long offset = (uintptr_t)uarg;
3226 unsigned long end;
3227
3228 if (unlikely(offset % sizeof(long)))
3229 return ERR_PTR(-EFAULT);
3230
3231 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3232 if (unlikely(check_add_overflow(offset, size, &end) ||
3233 end > ctx->cq_wait_size))
3234 return ERR_PTR(-EFAULT);
3235
3236 return ctx->cq_wait_arg + offset;
3237 }
3238
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3239 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3240 const void __user *argp, size_t argsz)
3241 {
3242 struct io_uring_getevents_arg arg;
3243
3244 if (!(flags & IORING_ENTER_EXT_ARG))
3245 return 0;
3246 if (flags & IORING_ENTER_EXT_ARG_REG)
3247 return -EINVAL;
3248 if (argsz != sizeof(arg))
3249 return -EINVAL;
3250 if (copy_from_user(&arg, argp, sizeof(arg)))
3251 return -EFAULT;
3252 return 0;
3253 }
3254
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3255 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3256 const void __user *argp, struct ext_arg *ext_arg)
3257 {
3258 const struct io_uring_getevents_arg __user *uarg = argp;
3259 struct io_uring_getevents_arg arg;
3260
3261 /*
3262 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3263 * is just a pointer to the sigset_t.
3264 */
3265 if (!(flags & IORING_ENTER_EXT_ARG)) {
3266 ext_arg->sig = (const sigset_t __user *) argp;
3267 return 0;
3268 }
3269
3270 if (flags & IORING_ENTER_EXT_ARG_REG) {
3271 struct io_uring_reg_wait *w;
3272
3273 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3274 return -EINVAL;
3275 w = io_get_ext_arg_reg(ctx, argp);
3276 if (IS_ERR(w))
3277 return PTR_ERR(w);
3278
3279 if (w->flags & ~IORING_REG_WAIT_TS)
3280 return -EINVAL;
3281 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3282 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3283 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3284 if (w->flags & IORING_REG_WAIT_TS) {
3285 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3286 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3287 ext_arg->ts_set = true;
3288 }
3289 return 0;
3290 }
3291
3292 /*
3293 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3294 * timespec and sigset_t pointers if good.
3295 */
3296 if (ext_arg->argsz != sizeof(arg))
3297 return -EINVAL;
3298 #ifdef CONFIG_64BIT
3299 if (!user_access_begin(uarg, sizeof(*uarg)))
3300 return -EFAULT;
3301 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3302 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3303 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3304 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3305 user_access_end();
3306 #else
3307 if (copy_from_user(&arg, uarg, sizeof(arg)))
3308 return -EFAULT;
3309 #endif
3310 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3311 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3312 ext_arg->argsz = arg.sigmask_sz;
3313 if (arg.ts) {
3314 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3315 return -EFAULT;
3316 ext_arg->ts_set = true;
3317 }
3318 return 0;
3319 #ifdef CONFIG_64BIT
3320 uaccess_end:
3321 user_access_end();
3322 return -EFAULT;
3323 #endif
3324 }
3325
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3326 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3327 u32, min_complete, u32, flags, const void __user *, argp,
3328 size_t, argsz)
3329 {
3330 struct io_ring_ctx *ctx;
3331 struct file *file;
3332 long ret;
3333
3334 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3335 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3336 IORING_ENTER_REGISTERED_RING |
3337 IORING_ENTER_ABS_TIMER |
3338 IORING_ENTER_EXT_ARG_REG)))
3339 return -EINVAL;
3340
3341 /*
3342 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3343 * need only dereference our task private array to find it.
3344 */
3345 if (flags & IORING_ENTER_REGISTERED_RING) {
3346 struct io_uring_task *tctx = current->io_uring;
3347
3348 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3349 return -EINVAL;
3350 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3351 file = tctx->registered_rings[fd];
3352 if (unlikely(!file))
3353 return -EBADF;
3354 } else {
3355 file = fget(fd);
3356 if (unlikely(!file))
3357 return -EBADF;
3358 ret = -EOPNOTSUPP;
3359 if (unlikely(!io_is_uring_fops(file)))
3360 goto out;
3361 }
3362
3363 ctx = file->private_data;
3364 ret = -EBADFD;
3365 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3366 goto out;
3367
3368 /*
3369 * For SQ polling, the thread will do all submissions and completions.
3370 * Just return the requested submit count, and wake the thread if
3371 * we were asked to.
3372 */
3373 ret = 0;
3374 if (ctx->flags & IORING_SETUP_SQPOLL) {
3375 if (unlikely(ctx->sq_data->thread == NULL)) {
3376 ret = -EOWNERDEAD;
3377 goto out;
3378 }
3379 if (flags & IORING_ENTER_SQ_WAKEUP)
3380 wake_up(&ctx->sq_data->wait);
3381 if (flags & IORING_ENTER_SQ_WAIT)
3382 io_sqpoll_wait_sq(ctx);
3383
3384 ret = to_submit;
3385 } else if (to_submit) {
3386 ret = io_uring_add_tctx_node(ctx);
3387 if (unlikely(ret))
3388 goto out;
3389
3390 mutex_lock(&ctx->uring_lock);
3391 ret = io_submit_sqes(ctx, to_submit);
3392 if (ret != to_submit) {
3393 mutex_unlock(&ctx->uring_lock);
3394 goto out;
3395 }
3396 if (flags & IORING_ENTER_GETEVENTS) {
3397 if (ctx->syscall_iopoll)
3398 goto iopoll_locked;
3399 /*
3400 * Ignore errors, we'll soon call io_cqring_wait() and
3401 * it should handle ownership problems if any.
3402 */
3403 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3404 (void)io_run_local_work_locked(ctx, min_complete);
3405 }
3406 mutex_unlock(&ctx->uring_lock);
3407 }
3408
3409 if (flags & IORING_ENTER_GETEVENTS) {
3410 int ret2;
3411
3412 if (ctx->syscall_iopoll) {
3413 /*
3414 * We disallow the app entering submit/complete with
3415 * polling, but we still need to lock the ring to
3416 * prevent racing with polled issue that got punted to
3417 * a workqueue.
3418 */
3419 mutex_lock(&ctx->uring_lock);
3420 iopoll_locked:
3421 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3422 if (likely(!ret2)) {
3423 min_complete = min(min_complete,
3424 ctx->cq_entries);
3425 ret2 = io_iopoll_check(ctx, min_complete);
3426 }
3427 mutex_unlock(&ctx->uring_lock);
3428 } else {
3429 struct ext_arg ext_arg = { .argsz = argsz };
3430
3431 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3432 if (likely(!ret2)) {
3433 min_complete = min(min_complete,
3434 ctx->cq_entries);
3435 ret2 = io_cqring_wait(ctx, min_complete, flags,
3436 &ext_arg);
3437 }
3438 }
3439
3440 if (!ret) {
3441 ret = ret2;
3442
3443 /*
3444 * EBADR indicates that one or more CQE were dropped.
3445 * Once the user has been informed we can clear the bit
3446 * as they are obviously ok with those drops.
3447 */
3448 if (unlikely(ret2 == -EBADR))
3449 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3450 &ctx->check_cq);
3451 }
3452 }
3453 out:
3454 if (!(flags & IORING_ENTER_REGISTERED_RING))
3455 fput(file);
3456 return ret;
3457 }
3458
3459 static const struct file_operations io_uring_fops = {
3460 .release = io_uring_release,
3461 .mmap = io_uring_mmap,
3462 .get_unmapped_area = io_uring_get_unmapped_area,
3463 #ifndef CONFIG_MMU
3464 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3465 #endif
3466 .poll = io_uring_poll,
3467 #ifdef CONFIG_PROC_FS
3468 .show_fdinfo = io_uring_show_fdinfo,
3469 #endif
3470 };
3471
io_is_uring_fops(struct file * file)3472 bool io_is_uring_fops(struct file *file)
3473 {
3474 return file->f_op == &io_uring_fops;
3475 }
3476
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3477 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3478 struct io_uring_params *p)
3479 {
3480 struct io_rings *rings;
3481 size_t size, sq_array_offset;
3482 void *ptr;
3483
3484 /* make sure these are sane, as we already accounted them */
3485 ctx->sq_entries = p->sq_entries;
3486 ctx->cq_entries = p->cq_entries;
3487
3488 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3489 &sq_array_offset);
3490 if (size == SIZE_MAX)
3491 return -EOVERFLOW;
3492
3493 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3494 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3495 else
3496 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3497
3498 if (IS_ERR(rings))
3499 return PTR_ERR(rings);
3500
3501 ctx->rings = rings;
3502 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3503 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3504 rings->sq_ring_mask = p->sq_entries - 1;
3505 rings->cq_ring_mask = p->cq_entries - 1;
3506 rings->sq_ring_entries = p->sq_entries;
3507 rings->cq_ring_entries = p->cq_entries;
3508
3509 if (p->flags & IORING_SETUP_SQE128)
3510 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3511 else
3512 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3513 if (size == SIZE_MAX) {
3514 io_rings_free(ctx);
3515 return -EOVERFLOW;
3516 }
3517
3518 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3519 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3520 else
3521 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3522
3523 if (IS_ERR(ptr)) {
3524 io_rings_free(ctx);
3525 return PTR_ERR(ptr);
3526 }
3527
3528 ctx->sq_sqes = ptr;
3529 return 0;
3530 }
3531
io_uring_install_fd(struct file * file)3532 static int io_uring_install_fd(struct file *file)
3533 {
3534 int fd;
3535
3536 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3537 if (fd < 0)
3538 return fd;
3539 fd_install(fd, file);
3540 return fd;
3541 }
3542
3543 /*
3544 * Allocate an anonymous fd, this is what constitutes the application
3545 * visible backing of an io_uring instance. The application mmaps this
3546 * fd to gain access to the SQ/CQ ring details.
3547 */
io_uring_get_file(struct io_ring_ctx * ctx)3548 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3549 {
3550 /* Create a new inode so that the LSM can block the creation. */
3551 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3552 O_RDWR | O_CLOEXEC, NULL);
3553 }
3554
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3555 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3556 {
3557 if (!entries)
3558 return -EINVAL;
3559 if (entries > IORING_MAX_ENTRIES) {
3560 if (!(p->flags & IORING_SETUP_CLAMP))
3561 return -EINVAL;
3562 entries = IORING_MAX_ENTRIES;
3563 }
3564
3565 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3566 && !(p->flags & IORING_SETUP_NO_MMAP))
3567 return -EINVAL;
3568
3569 /*
3570 * Use twice as many entries for the CQ ring. It's possible for the
3571 * application to drive a higher depth than the size of the SQ ring,
3572 * since the sqes are only used at submission time. This allows for
3573 * some flexibility in overcommitting a bit. If the application has
3574 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3575 * of CQ ring entries manually.
3576 */
3577 p->sq_entries = roundup_pow_of_two(entries);
3578 if (p->flags & IORING_SETUP_CQSIZE) {
3579 /*
3580 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3581 * to a power-of-two, if it isn't already. We do NOT impose
3582 * any cq vs sq ring sizing.
3583 */
3584 if (!p->cq_entries)
3585 return -EINVAL;
3586 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3587 if (!(p->flags & IORING_SETUP_CLAMP))
3588 return -EINVAL;
3589 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3590 }
3591 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3592 if (p->cq_entries < p->sq_entries)
3593 return -EINVAL;
3594 } else {
3595 p->cq_entries = 2 * p->sq_entries;
3596 }
3597
3598 p->sq_off.head = offsetof(struct io_rings, sq.head);
3599 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3600 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3601 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3602 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3603 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3604 p->sq_off.resv1 = 0;
3605 if (!(p->flags & IORING_SETUP_NO_MMAP))
3606 p->sq_off.user_addr = 0;
3607
3608 p->cq_off.head = offsetof(struct io_rings, cq.head);
3609 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3610 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3611 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3612 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3613 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3614 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3615 p->cq_off.resv1 = 0;
3616 if (!(p->flags & IORING_SETUP_NO_MMAP))
3617 p->cq_off.user_addr = 0;
3618
3619 return 0;
3620 }
3621
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3622 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3623 struct io_uring_params __user *params)
3624 {
3625 struct io_ring_ctx *ctx;
3626 struct io_uring_task *tctx;
3627 struct file *file;
3628 int ret;
3629
3630 ret = io_uring_fill_params(entries, p);
3631 if (unlikely(ret))
3632 return ret;
3633
3634 ctx = io_ring_ctx_alloc(p);
3635 if (!ctx)
3636 return -ENOMEM;
3637
3638 ctx->clockid = CLOCK_MONOTONIC;
3639 ctx->clock_offset = 0;
3640
3641 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3642 static_branch_inc(&io_key_has_sqarray);
3643
3644 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3645 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3646 !(ctx->flags & IORING_SETUP_SQPOLL))
3647 ctx->task_complete = true;
3648
3649 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3650 ctx->lockless_cq = true;
3651
3652 /*
3653 * lazy poll_wq activation relies on ->task_complete for synchronisation
3654 * purposes, see io_activate_pollwq()
3655 */
3656 if (!ctx->task_complete)
3657 ctx->poll_activated = true;
3658
3659 /*
3660 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3661 * space applications don't need to do io completion events
3662 * polling again, they can rely on io_sq_thread to do polling
3663 * work, which can reduce cpu usage and uring_lock contention.
3664 */
3665 if (ctx->flags & IORING_SETUP_IOPOLL &&
3666 !(ctx->flags & IORING_SETUP_SQPOLL))
3667 ctx->syscall_iopoll = 1;
3668
3669 ctx->compat = in_compat_syscall();
3670 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3671 ctx->user = get_uid(current_user());
3672
3673 /*
3674 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3675 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3676 */
3677 ret = -EINVAL;
3678 if (ctx->flags & IORING_SETUP_SQPOLL) {
3679 /* IPI related flags don't make sense with SQPOLL */
3680 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3681 IORING_SETUP_TASKRUN_FLAG |
3682 IORING_SETUP_DEFER_TASKRUN))
3683 goto err;
3684 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3685 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3686 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3687 } else {
3688 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3689 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3690 goto err;
3691 ctx->notify_method = TWA_SIGNAL;
3692 }
3693
3694 /* HYBRID_IOPOLL only valid with IOPOLL */
3695 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3696 IORING_SETUP_HYBRID_IOPOLL)
3697 goto err;
3698
3699 /*
3700 * For DEFER_TASKRUN we require the completion task to be the same as the
3701 * submission task. This implies that there is only one submitter, so enforce
3702 * that.
3703 */
3704 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3705 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3706 goto err;
3707 }
3708
3709 /*
3710 * This is just grabbed for accounting purposes. When a process exits,
3711 * the mm is exited and dropped before the files, hence we need to hang
3712 * on to this mm purely for the purposes of being able to unaccount
3713 * memory (locked/pinned vm). It's not used for anything else.
3714 */
3715 mmgrab(current->mm);
3716 ctx->mm_account = current->mm;
3717
3718 ret = io_allocate_scq_urings(ctx, p);
3719 if (ret)
3720 goto err;
3721
3722 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3723 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3724
3725 ret = io_sq_offload_create(ctx, p);
3726 if (ret)
3727 goto err;
3728
3729 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3730 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3731 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3732 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3733 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3734 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3735 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3736 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3737
3738 if (copy_to_user(params, p, sizeof(*p))) {
3739 ret = -EFAULT;
3740 goto err;
3741 }
3742
3743 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3744 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3745 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3746
3747 file = io_uring_get_file(ctx);
3748 if (IS_ERR(file)) {
3749 ret = PTR_ERR(file);
3750 goto err;
3751 }
3752
3753 ret = __io_uring_add_tctx_node(ctx);
3754 if (ret)
3755 goto err_fput;
3756 tctx = current->io_uring;
3757
3758 /*
3759 * Install ring fd as the very last thing, so we don't risk someone
3760 * having closed it before we finish setup
3761 */
3762 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3763 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3764 else
3765 ret = io_uring_install_fd(file);
3766 if (ret < 0)
3767 goto err_fput;
3768
3769 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3770 return ret;
3771 err:
3772 io_ring_ctx_wait_and_kill(ctx);
3773 return ret;
3774 err_fput:
3775 fput(file);
3776 return ret;
3777 }
3778
3779 /*
3780 * Sets up an aio uring context, and returns the fd. Applications asks for a
3781 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3782 * params structure passed in.
3783 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3784 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3785 {
3786 struct io_uring_params p;
3787 int i;
3788
3789 if (copy_from_user(&p, params, sizeof(p)))
3790 return -EFAULT;
3791 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3792 if (p.resv[i])
3793 return -EINVAL;
3794 }
3795
3796 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3797 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3798 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3799 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3800 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3801 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3802 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3803 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3804 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3805 return -EINVAL;
3806
3807 return io_uring_create(entries, &p, params);
3808 }
3809
io_uring_allowed(void)3810 static inline bool io_uring_allowed(void)
3811 {
3812 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3813 kgid_t io_uring_group;
3814
3815 if (disabled == 2)
3816 return false;
3817
3818 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3819 return true;
3820
3821 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3822 if (!gid_valid(io_uring_group))
3823 return false;
3824
3825 return in_group_p(io_uring_group);
3826 }
3827
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3828 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3829 struct io_uring_params __user *, params)
3830 {
3831 if (!io_uring_allowed())
3832 return -EPERM;
3833
3834 return io_uring_setup(entries, params);
3835 }
3836
io_uring_init(void)3837 static int __init io_uring_init(void)
3838 {
3839 struct kmem_cache_args kmem_args = {
3840 .useroffset = offsetof(struct io_kiocb, cmd.data),
3841 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3842 .freeptr_offset = offsetof(struct io_kiocb, work),
3843 .use_freeptr_offset = true,
3844 };
3845
3846 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3847 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3848 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3849 } while (0)
3850
3851 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3852 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3853 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3854 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3855 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3856 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3857 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3858 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3859 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3860 BUILD_BUG_SQE_ELEM(8, __u64, off);
3861 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3862 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3863 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3864 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3865 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3866 BUILD_BUG_SQE_ELEM(24, __u32, len);
3867 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3868 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3869 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3870 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3871 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3872 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3873 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3874 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3875 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3876 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3877 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3878 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3879 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3880 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3881 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3882 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3883 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3884 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3885 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3886 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3887 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3888 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3889 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3890 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3891 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3892 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3893 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3894 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3895 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3896 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3897 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3898
3899 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3900 sizeof(struct io_uring_rsrc_update));
3901 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3902 sizeof(struct io_uring_rsrc_update2));
3903
3904 /* ->buf_index is u16 */
3905 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3906 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3907 offsetof(struct io_uring_buf_ring, tail));
3908
3909 /* should fit into one byte */
3910 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3911 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3912 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3913
3914 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3915
3916 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3917
3918 /* top 8bits are for internal use */
3919 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3920
3921 io_uring_optable_init();
3922
3923 /*
3924 * Allow user copy in the per-command field, which starts after the
3925 * file in io_kiocb and until the opcode field. The openat2 handling
3926 * requires copying in user memory into the io_kiocb object in that
3927 * range, and HARDENED_USERCOPY will complain if we haven't
3928 * correctly annotated this range.
3929 */
3930 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3931 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3932 SLAB_TYPESAFE_BY_RCU);
3933 io_buf_cachep = KMEM_CACHE(io_buffer,
3934 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3935
3936 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3937
3938 #ifdef CONFIG_SYSCTL
3939 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3940 #endif
3941
3942 return 0;
3943 };
3944 __initcall(io_uring_init);
3945