1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 [IB_EVENT_DEVICE_SPEED_CHANGE] = "device speed change" 82 }; 83 84 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 85 { 86 size_t index = event; 87 88 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 89 ib_events[index] : "unrecognized event"; 90 } 91 EXPORT_SYMBOL(ib_event_msg); 92 93 static const char * const wc_statuses[] = { 94 [IB_WC_SUCCESS] = "success", 95 [IB_WC_LOC_LEN_ERR] = "local length error", 96 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 97 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 98 [IB_WC_LOC_PROT_ERR] = "local protection error", 99 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 100 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 101 [IB_WC_BAD_RESP_ERR] = "bad response error", 102 [IB_WC_LOC_ACCESS_ERR] = "local access error", 103 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 104 [IB_WC_REM_ACCESS_ERR] = "remote access error", 105 [IB_WC_REM_OP_ERR] = "remote operation error", 106 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 107 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 108 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 109 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 110 [IB_WC_REM_ABORT_ERR] = "operation aborted", 111 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 112 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 113 [IB_WC_FATAL_ERR] = "fatal error", 114 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 115 [IB_WC_GENERAL_ERR] = "general error", 116 }; 117 118 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 119 { 120 size_t index = status; 121 122 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 123 wc_statuses[index] : "unrecognized status"; 124 } 125 EXPORT_SYMBOL(ib_wc_status_msg); 126 127 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 128 { 129 switch (rate) { 130 case IB_RATE_2_5_GBPS: return 1; 131 case IB_RATE_5_GBPS: return 2; 132 case IB_RATE_10_GBPS: return 4; 133 case IB_RATE_20_GBPS: return 8; 134 case IB_RATE_30_GBPS: return 12; 135 case IB_RATE_40_GBPS: return 16; 136 case IB_RATE_60_GBPS: return 24; 137 case IB_RATE_80_GBPS: return 32; 138 case IB_RATE_120_GBPS: return 48; 139 case IB_RATE_14_GBPS: return 6; 140 case IB_RATE_56_GBPS: return 22; 141 case IB_RATE_112_GBPS: return 45; 142 case IB_RATE_168_GBPS: return 67; 143 case IB_RATE_25_GBPS: return 10; 144 case IB_RATE_100_GBPS: return 40; 145 case IB_RATE_200_GBPS: return 80; 146 case IB_RATE_300_GBPS: return 120; 147 case IB_RATE_28_GBPS: return 11; 148 case IB_RATE_50_GBPS: return 20; 149 case IB_RATE_400_GBPS: return 160; 150 case IB_RATE_600_GBPS: return 240; 151 case IB_RATE_800_GBPS: return 320; 152 case IB_RATE_1600_GBPS: return 640; 153 default: return -1; 154 } 155 } 156 EXPORT_SYMBOL(ib_rate_to_mult); 157 158 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 159 { 160 switch (mult) { 161 case 1: return IB_RATE_2_5_GBPS; 162 case 2: return IB_RATE_5_GBPS; 163 case 4: return IB_RATE_10_GBPS; 164 case 8: return IB_RATE_20_GBPS; 165 case 12: return IB_RATE_30_GBPS; 166 case 16: return IB_RATE_40_GBPS; 167 case 24: return IB_RATE_60_GBPS; 168 case 32: return IB_RATE_80_GBPS; 169 case 48: return IB_RATE_120_GBPS; 170 case 6: return IB_RATE_14_GBPS; 171 case 22: return IB_RATE_56_GBPS; 172 case 45: return IB_RATE_112_GBPS; 173 case 67: return IB_RATE_168_GBPS; 174 case 10: return IB_RATE_25_GBPS; 175 case 40: return IB_RATE_100_GBPS; 176 case 80: return IB_RATE_200_GBPS; 177 case 120: return IB_RATE_300_GBPS; 178 case 11: return IB_RATE_28_GBPS; 179 case 20: return IB_RATE_50_GBPS; 180 case 160: return IB_RATE_400_GBPS; 181 case 240: return IB_RATE_600_GBPS; 182 case 320: return IB_RATE_800_GBPS; 183 case 640: return IB_RATE_1600_GBPS; 184 default: return IB_RATE_PORT_CURRENT; 185 } 186 } 187 EXPORT_SYMBOL(mult_to_ib_rate); 188 189 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 190 { 191 switch (rate) { 192 case IB_RATE_2_5_GBPS: return 2500; 193 case IB_RATE_5_GBPS: return 5000; 194 case IB_RATE_10_GBPS: return 10000; 195 case IB_RATE_20_GBPS: return 20000; 196 case IB_RATE_30_GBPS: return 30000; 197 case IB_RATE_40_GBPS: return 40000; 198 case IB_RATE_60_GBPS: return 60000; 199 case IB_RATE_80_GBPS: return 80000; 200 case IB_RATE_120_GBPS: return 120000; 201 case IB_RATE_14_GBPS: return 14062; 202 case IB_RATE_56_GBPS: return 56250; 203 case IB_RATE_112_GBPS: return 112500; 204 case IB_RATE_168_GBPS: return 168750; 205 case IB_RATE_25_GBPS: return 25781; 206 case IB_RATE_100_GBPS: return 103125; 207 case IB_RATE_200_GBPS: return 206250; 208 case IB_RATE_300_GBPS: return 309375; 209 case IB_RATE_28_GBPS: return 28125; 210 case IB_RATE_50_GBPS: return 53125; 211 case IB_RATE_400_GBPS: return 425000; 212 case IB_RATE_600_GBPS: return 637500; 213 case IB_RATE_800_GBPS: return 850000; 214 case IB_RATE_1600_GBPS: return 1700000; 215 default: return -1; 216 } 217 } 218 EXPORT_SYMBOL(ib_rate_to_mbps); 219 220 struct ib_speed_attr { 221 const char *str; 222 int speed; 223 }; 224 225 #define IB_SPEED_ATTR(speed_type, _str, _speed) \ 226 [speed_type] = {.str = _str, .speed = _speed} 227 228 static const struct ib_speed_attr ib_speed_attrs[] = { 229 IB_SPEED_ATTR(IB_SPEED_SDR, " SDR", 25), 230 IB_SPEED_ATTR(IB_SPEED_DDR, " DDR", 50), 231 IB_SPEED_ATTR(IB_SPEED_QDR, " QDR", 100), 232 IB_SPEED_ATTR(IB_SPEED_FDR10, " FDR10", 100), 233 IB_SPEED_ATTR(IB_SPEED_FDR, " FDR", 140), 234 IB_SPEED_ATTR(IB_SPEED_EDR, " EDR", 250), 235 IB_SPEED_ATTR(IB_SPEED_HDR, " HDR", 500), 236 IB_SPEED_ATTR(IB_SPEED_NDR, " NDR", 1000), 237 IB_SPEED_ATTR(IB_SPEED_XDR, " XDR", 2000), 238 }; 239 240 int ib_port_attr_to_speed_info(struct ib_port_attr *attr, 241 struct ib_port_speed_info *speed_info) 242 { 243 int speed_idx = attr->active_speed; 244 245 switch (attr->active_speed) { 246 case IB_SPEED_DDR: 247 case IB_SPEED_QDR: 248 case IB_SPEED_FDR10: 249 case IB_SPEED_FDR: 250 case IB_SPEED_EDR: 251 case IB_SPEED_HDR: 252 case IB_SPEED_NDR: 253 case IB_SPEED_XDR: 254 case IB_SPEED_SDR: 255 break; 256 default: 257 speed_idx = IB_SPEED_SDR; /* Default to SDR for invalid rates */ 258 break; 259 } 260 261 speed_info->str = ib_speed_attrs[speed_idx].str; 262 speed_info->rate = ib_speed_attrs[speed_idx].speed; 263 speed_info->rate *= ib_width_enum_to_int(attr->active_width); 264 if (speed_info->rate < 0) 265 return -EINVAL; 266 267 return 0; 268 } 269 EXPORT_SYMBOL(ib_port_attr_to_speed_info); 270 271 __attribute_const__ enum rdma_transport_type 272 rdma_node_get_transport(unsigned int node_type) 273 { 274 275 if (node_type == RDMA_NODE_USNIC) 276 return RDMA_TRANSPORT_USNIC; 277 if (node_type == RDMA_NODE_USNIC_UDP) 278 return RDMA_TRANSPORT_USNIC_UDP; 279 if (node_type == RDMA_NODE_RNIC) 280 return RDMA_TRANSPORT_IWARP; 281 if (node_type == RDMA_NODE_UNSPECIFIED) 282 return RDMA_TRANSPORT_UNSPECIFIED; 283 284 return RDMA_TRANSPORT_IB; 285 } 286 EXPORT_SYMBOL(rdma_node_get_transport); 287 288 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 289 u32 port_num) 290 { 291 enum rdma_transport_type lt; 292 if (device->ops.get_link_layer) 293 return device->ops.get_link_layer(device, port_num); 294 295 lt = rdma_node_get_transport(device->node_type); 296 if (lt == RDMA_TRANSPORT_IB) 297 return IB_LINK_LAYER_INFINIBAND; 298 299 return IB_LINK_LAYER_ETHERNET; 300 } 301 EXPORT_SYMBOL(rdma_port_get_link_layer); 302 303 /* Protection domains */ 304 305 /** 306 * __ib_alloc_pd - Allocates an unused protection domain. 307 * @device: The device on which to allocate the protection domain. 308 * @flags: protection domain flags 309 * @caller: caller's build-time module name 310 * 311 * A protection domain object provides an association between QPs, shared 312 * receive queues, address handles, memory regions, and memory windows. 313 * 314 * Every PD has a local_dma_lkey which can be used as the lkey value for local 315 * memory operations. 316 */ 317 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 318 const char *caller) 319 { 320 struct ib_pd *pd; 321 int mr_access_flags = 0; 322 int ret; 323 324 pd = rdma_zalloc_drv_obj(device, ib_pd); 325 if (!pd) 326 return ERR_PTR(-ENOMEM); 327 328 pd->device = device; 329 pd->flags = flags; 330 331 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 332 rdma_restrack_set_name(&pd->res, caller); 333 334 ret = device->ops.alloc_pd(pd, NULL); 335 if (ret) { 336 rdma_restrack_put(&pd->res); 337 kfree(pd); 338 return ERR_PTR(ret); 339 } 340 rdma_restrack_add(&pd->res); 341 342 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY) 343 pd->local_dma_lkey = device->local_dma_lkey; 344 else 345 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 346 347 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 348 pr_warn("%s: enabling unsafe global rkey\n", caller); 349 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 350 } 351 352 if (mr_access_flags) { 353 struct ib_mr *mr; 354 355 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 356 if (IS_ERR(mr)) { 357 ib_dealloc_pd(pd); 358 return ERR_CAST(mr); 359 } 360 361 mr->device = pd->device; 362 mr->pd = pd; 363 mr->type = IB_MR_TYPE_DMA; 364 mr->uobject = NULL; 365 mr->need_inval = false; 366 367 pd->__internal_mr = mr; 368 369 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)) 370 pd->local_dma_lkey = pd->__internal_mr->lkey; 371 372 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 373 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 374 } 375 376 return pd; 377 } 378 EXPORT_SYMBOL(__ib_alloc_pd); 379 380 /** 381 * ib_dealloc_pd_user - Deallocates a protection domain. 382 * @pd: The protection domain to deallocate. 383 * @udata: Valid user data or NULL for kernel object 384 * 385 * It is an error to call this function while any resources in the pd still 386 * exist. The caller is responsible to synchronously destroy them and 387 * guarantee no new allocations will happen. 388 */ 389 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 390 { 391 int ret; 392 393 if (pd->__internal_mr) { 394 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 395 WARN_ON(ret); 396 pd->__internal_mr = NULL; 397 } 398 399 ret = pd->device->ops.dealloc_pd(pd, udata); 400 if (ret) 401 return ret; 402 403 rdma_restrack_del(&pd->res); 404 kfree(pd); 405 return ret; 406 } 407 EXPORT_SYMBOL(ib_dealloc_pd_user); 408 409 /* Address handles */ 410 411 /** 412 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 413 * @dest: Pointer to destination ah_attr. Contents of the destination 414 * pointer is assumed to be invalid and attribute are overwritten. 415 * @src: Pointer to source ah_attr. 416 */ 417 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 418 const struct rdma_ah_attr *src) 419 { 420 *dest = *src; 421 if (dest->grh.sgid_attr) 422 rdma_hold_gid_attr(dest->grh.sgid_attr); 423 } 424 EXPORT_SYMBOL(rdma_copy_ah_attr); 425 426 /** 427 * rdma_replace_ah_attr - Replace valid ah_attr with new one. 428 * @old: Pointer to existing ah_attr which needs to be replaced. 429 * old is assumed to be valid or zero'd 430 * @new: Pointer to the new ah_attr. 431 * 432 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 433 * old the ah_attr is valid; after that it copies the new attribute and holds 434 * the reference to the replaced ah_attr. 435 */ 436 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 437 const struct rdma_ah_attr *new) 438 { 439 rdma_destroy_ah_attr(old); 440 *old = *new; 441 if (old->grh.sgid_attr) 442 rdma_hold_gid_attr(old->grh.sgid_attr); 443 } 444 EXPORT_SYMBOL(rdma_replace_ah_attr); 445 446 /** 447 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 448 * @dest: Pointer to destination ah_attr to copy to. 449 * dest is assumed to be valid or zero'd 450 * @src: Pointer to the new ah_attr. 451 * 452 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 453 * if it is valid. This also transfers ownership of internal references from 454 * src to dest, making src invalid in the process. No new reference of the src 455 * ah_attr is taken. 456 */ 457 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 458 { 459 rdma_destroy_ah_attr(dest); 460 *dest = *src; 461 src->grh.sgid_attr = NULL; 462 } 463 EXPORT_SYMBOL(rdma_move_ah_attr); 464 465 /* 466 * Validate that the rdma_ah_attr is valid for the device before passing it 467 * off to the driver. 468 */ 469 static int rdma_check_ah_attr(struct ib_device *device, 470 struct rdma_ah_attr *ah_attr) 471 { 472 if (!rdma_is_port_valid(device, ah_attr->port_num)) 473 return -EINVAL; 474 475 if ((rdma_is_grh_required(device, ah_attr->port_num) || 476 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 477 !(ah_attr->ah_flags & IB_AH_GRH)) 478 return -EINVAL; 479 480 if (ah_attr->grh.sgid_attr) { 481 /* 482 * Make sure the passed sgid_attr is consistent with the 483 * parameters 484 */ 485 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 486 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 487 return -EINVAL; 488 } 489 return 0; 490 } 491 492 /* 493 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 494 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 495 */ 496 static int rdma_fill_sgid_attr(struct ib_device *device, 497 struct rdma_ah_attr *ah_attr, 498 const struct ib_gid_attr **old_sgid_attr) 499 { 500 const struct ib_gid_attr *sgid_attr; 501 struct ib_global_route *grh; 502 int ret; 503 504 *old_sgid_attr = ah_attr->grh.sgid_attr; 505 506 ret = rdma_check_ah_attr(device, ah_attr); 507 if (ret) 508 return ret; 509 510 if (!(ah_attr->ah_flags & IB_AH_GRH)) 511 return 0; 512 513 grh = rdma_ah_retrieve_grh(ah_attr); 514 if (grh->sgid_attr) 515 return 0; 516 517 sgid_attr = 518 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 519 if (IS_ERR(sgid_attr)) 520 return PTR_ERR(sgid_attr); 521 522 /* Move ownerhip of the kref into the ah_attr */ 523 grh->sgid_attr = sgid_attr; 524 return 0; 525 } 526 527 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 528 const struct ib_gid_attr *old_sgid_attr) 529 { 530 /* 531 * Fill didn't change anything, the caller retains ownership of 532 * whatever it passed 533 */ 534 if (ah_attr->grh.sgid_attr == old_sgid_attr) 535 return; 536 537 /* 538 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 539 * doesn't see any change in the rdma_ah_attr. If we get here 540 * old_sgid_attr is NULL. 541 */ 542 rdma_destroy_ah_attr(ah_attr); 543 } 544 545 static const struct ib_gid_attr * 546 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 547 const struct ib_gid_attr *old_attr) 548 { 549 if (old_attr) 550 rdma_put_gid_attr(old_attr); 551 if (ah_attr->ah_flags & IB_AH_GRH) { 552 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 553 return ah_attr->grh.sgid_attr; 554 } 555 return NULL; 556 } 557 558 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 559 struct rdma_ah_attr *ah_attr, 560 u32 flags, 561 struct ib_udata *udata, 562 struct net_device *xmit_slave) 563 { 564 struct rdma_ah_init_attr init_attr = {}; 565 struct ib_device *device = pd->device; 566 struct ib_ah *ah; 567 int ret; 568 569 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 570 571 if (!udata && !device->ops.create_ah) 572 return ERR_PTR(-EOPNOTSUPP); 573 574 ah = rdma_zalloc_drv_obj_gfp( 575 device, ib_ah, 576 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 577 if (!ah) 578 return ERR_PTR(-ENOMEM); 579 580 ah->device = device; 581 ah->pd = pd; 582 ah->type = ah_attr->type; 583 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 584 init_attr.ah_attr = ah_attr; 585 init_attr.flags = flags; 586 init_attr.xmit_slave = xmit_slave; 587 588 if (udata) 589 ret = device->ops.create_user_ah(ah, &init_attr, udata); 590 else 591 ret = device->ops.create_ah(ah, &init_attr, NULL); 592 if (ret) { 593 if (ah->sgid_attr) 594 rdma_put_gid_attr(ah->sgid_attr); 595 kfree(ah); 596 return ERR_PTR(ret); 597 } 598 599 atomic_inc(&pd->usecnt); 600 return ah; 601 } 602 603 /** 604 * rdma_create_ah - Creates an address handle for the 605 * given address vector. 606 * @pd: The protection domain associated with the address handle. 607 * @ah_attr: The attributes of the address vector. 608 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 609 * 610 * It returns 0 on success and returns appropriate error code on error. 611 * The address handle is used to reference a local or global destination 612 * in all UD QP post sends. 613 */ 614 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 615 u32 flags) 616 { 617 const struct ib_gid_attr *old_sgid_attr; 618 struct net_device *slave; 619 struct ib_ah *ah; 620 int ret; 621 622 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 623 if (ret) 624 return ERR_PTR(ret); 625 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 626 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 627 GFP_KERNEL : GFP_ATOMIC); 628 if (IS_ERR(slave)) { 629 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 630 return ERR_CAST(slave); 631 } 632 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 633 rdma_lag_put_ah_roce_slave(slave); 634 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 635 return ah; 636 } 637 EXPORT_SYMBOL(rdma_create_ah); 638 639 /** 640 * rdma_create_user_ah - Creates an address handle for the 641 * given address vector. 642 * It resolves destination mac address for ah attribute of RoCE type. 643 * @pd: The protection domain associated with the address handle. 644 * @ah_attr: The attributes of the address vector. 645 * @udata: pointer to user's input output buffer information need by 646 * provider driver. 647 * 648 * It returns 0 on success and returns appropriate error code on error. 649 * The address handle is used to reference a local or global destination 650 * in all UD QP post sends. 651 */ 652 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 653 struct rdma_ah_attr *ah_attr, 654 struct ib_udata *udata) 655 { 656 const struct ib_gid_attr *old_sgid_attr; 657 struct ib_ah *ah; 658 int err; 659 660 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 661 if (err) 662 return ERR_PTR(err); 663 664 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 665 err = ib_resolve_eth_dmac(pd->device, ah_attr); 666 if (err) { 667 ah = ERR_PTR(err); 668 goto out; 669 } 670 } 671 672 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 673 udata, NULL); 674 675 out: 676 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 677 return ah; 678 } 679 EXPORT_SYMBOL(rdma_create_user_ah); 680 681 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 682 { 683 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 684 struct iphdr ip4h_checked; 685 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 686 687 /* If it's IPv6, the version must be 6, otherwise, the first 688 * 20 bytes (before the IPv4 header) are garbled. 689 */ 690 if (ip6h->version != 6) 691 return (ip4h->version == 4) ? 4 : 0; 692 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 693 694 /* RoCE v2 requires no options, thus header length 695 * must be 5 words 696 */ 697 if (ip4h->ihl != 5) 698 return 6; 699 700 /* Verify checksum. 701 * We can't write on scattered buffers so we need to copy to 702 * temp buffer. 703 */ 704 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 705 ip4h_checked.check = 0; 706 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 707 /* if IPv4 header checksum is OK, believe it */ 708 if (ip4h->check == ip4h_checked.check) 709 return 4; 710 return 6; 711 } 712 EXPORT_SYMBOL(ib_get_rdma_header_version); 713 714 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 715 u32 port_num, 716 const struct ib_grh *grh) 717 { 718 int grh_version; 719 720 if (rdma_protocol_ib(device, port_num)) 721 return RDMA_NETWORK_IB; 722 723 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 724 725 if (grh_version == 4) 726 return RDMA_NETWORK_IPV4; 727 728 if (grh->next_hdr == IPPROTO_UDP) 729 return RDMA_NETWORK_IPV6; 730 731 return RDMA_NETWORK_ROCE_V1; 732 } 733 734 struct find_gid_index_context { 735 u16 vlan_id; 736 enum ib_gid_type gid_type; 737 }; 738 739 static bool find_gid_index(const union ib_gid *gid, 740 const struct ib_gid_attr *gid_attr, 741 void *context) 742 { 743 struct find_gid_index_context *ctx = context; 744 u16 vlan_id = 0xffff; 745 int ret; 746 747 if (ctx->gid_type != gid_attr->gid_type) 748 return false; 749 750 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 751 if (ret) 752 return false; 753 754 return ctx->vlan_id == vlan_id; 755 } 756 757 static const struct ib_gid_attr * 758 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 759 u16 vlan_id, const union ib_gid *sgid, 760 enum ib_gid_type gid_type) 761 { 762 struct find_gid_index_context context = {.vlan_id = vlan_id, 763 .gid_type = gid_type}; 764 765 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 766 &context); 767 } 768 769 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 770 enum rdma_network_type net_type, 771 union ib_gid *sgid, union ib_gid *dgid) 772 { 773 struct sockaddr_in src_in; 774 struct sockaddr_in dst_in; 775 __be32 src_saddr, dst_saddr; 776 777 if (!sgid || !dgid) 778 return -EINVAL; 779 780 if (net_type == RDMA_NETWORK_IPV4) { 781 memcpy(&src_in.sin_addr.s_addr, 782 &hdr->roce4grh.saddr, 4); 783 memcpy(&dst_in.sin_addr.s_addr, 784 &hdr->roce4grh.daddr, 4); 785 src_saddr = src_in.sin_addr.s_addr; 786 dst_saddr = dst_in.sin_addr.s_addr; 787 ipv6_addr_set_v4mapped(src_saddr, 788 (struct in6_addr *)sgid); 789 ipv6_addr_set_v4mapped(dst_saddr, 790 (struct in6_addr *)dgid); 791 return 0; 792 } else if (net_type == RDMA_NETWORK_IPV6 || 793 net_type == RDMA_NETWORK_IB || net_type == RDMA_NETWORK_ROCE_V1) { 794 *dgid = hdr->ibgrh.dgid; 795 *sgid = hdr->ibgrh.sgid; 796 return 0; 797 } else { 798 return -EINVAL; 799 } 800 } 801 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 802 803 /* Resolve destination mac address and hop limit for unicast destination 804 * GID entry, considering the source GID entry as well. 805 * ah_attribute must have valid port_num, sgid_index. 806 */ 807 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 808 struct rdma_ah_attr *ah_attr) 809 { 810 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 811 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 812 int hop_limit = 0xff; 813 int ret = 0; 814 815 /* If destination is link local and source GID is RoCEv1, 816 * IP stack is not used. 817 */ 818 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 819 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 820 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 821 ah_attr->roce.dmac); 822 return ret; 823 } 824 825 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 826 ah_attr->roce.dmac, 827 sgid_attr, &hop_limit); 828 829 grh->hop_limit = hop_limit; 830 return ret; 831 } 832 833 /* 834 * This function initializes address handle attributes from the incoming packet. 835 * Incoming packet has dgid of the receiver node on which this code is 836 * getting executed and, sgid contains the GID of the sender. 837 * 838 * When resolving mac address of destination, the arrived dgid is used 839 * as sgid and, sgid is used as dgid because sgid contains destinations 840 * GID whom to respond to. 841 * 842 * On success the caller is responsible to call rdma_destroy_ah_attr on the 843 * attr. 844 */ 845 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 846 const struct ib_wc *wc, const struct ib_grh *grh, 847 struct rdma_ah_attr *ah_attr) 848 { 849 u32 flow_class; 850 int ret; 851 enum rdma_network_type net_type = RDMA_NETWORK_IB; 852 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 853 const struct ib_gid_attr *sgid_attr; 854 int hoplimit = 0xff; 855 union ib_gid dgid; 856 union ib_gid sgid; 857 858 might_sleep(); 859 860 memset(ah_attr, 0, sizeof *ah_attr); 861 ah_attr->type = rdma_ah_find_type(device, port_num); 862 if (rdma_cap_eth_ah(device, port_num)) { 863 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 864 net_type = wc->network_hdr_type; 865 else 866 net_type = ib_get_net_type_by_grh(device, port_num, grh); 867 gid_type = ib_network_to_gid_type(net_type); 868 } 869 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 870 &sgid, &dgid); 871 if (ret) 872 return ret; 873 874 rdma_ah_set_sl(ah_attr, wc->sl); 875 rdma_ah_set_port_num(ah_attr, port_num); 876 877 if (rdma_protocol_roce(device, port_num)) { 878 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 879 wc->vlan_id : 0xffff; 880 881 if (!(wc->wc_flags & IB_WC_GRH)) 882 return -EPROTOTYPE; 883 884 sgid_attr = get_sgid_attr_from_eth(device, port_num, 885 vlan_id, &dgid, 886 gid_type); 887 if (IS_ERR(sgid_attr)) 888 return PTR_ERR(sgid_attr); 889 890 flow_class = be32_to_cpu(grh->version_tclass_flow); 891 rdma_move_grh_sgid_attr(ah_attr, 892 &sgid, 893 flow_class & 0xFFFFF, 894 hoplimit, 895 (flow_class >> 20) & 0xFF, 896 sgid_attr); 897 898 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 899 if (ret) 900 rdma_destroy_ah_attr(ah_attr); 901 902 return ret; 903 } else { 904 rdma_ah_set_dlid(ah_attr, wc->slid); 905 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 906 907 if ((wc->wc_flags & IB_WC_GRH) == 0) 908 return 0; 909 910 if (dgid.global.interface_id != 911 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 912 sgid_attr = rdma_find_gid_by_port( 913 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 914 } else 915 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 916 917 if (IS_ERR(sgid_attr)) 918 return PTR_ERR(sgid_attr); 919 flow_class = be32_to_cpu(grh->version_tclass_flow); 920 rdma_move_grh_sgid_attr(ah_attr, 921 &sgid, 922 flow_class & 0xFFFFF, 923 hoplimit, 924 (flow_class >> 20) & 0xFF, 925 sgid_attr); 926 927 return 0; 928 } 929 } 930 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 931 932 /** 933 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 934 * of the reference 935 * 936 * @attr: Pointer to AH attribute structure 937 * @dgid: Destination GID 938 * @flow_label: Flow label 939 * @hop_limit: Hop limit 940 * @traffic_class: traffic class 941 * @sgid_attr: Pointer to SGID attribute 942 * 943 * This takes ownership of the sgid_attr reference. The caller must ensure 944 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 945 * calling this function. 946 */ 947 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 948 u32 flow_label, u8 hop_limit, u8 traffic_class, 949 const struct ib_gid_attr *sgid_attr) 950 { 951 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 952 traffic_class); 953 attr->grh.sgid_attr = sgid_attr; 954 } 955 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 956 957 /** 958 * rdma_destroy_ah_attr - Release reference to SGID attribute of 959 * ah attribute. 960 * @ah_attr: Pointer to ah attribute 961 * 962 * Release reference to the SGID attribute of the ah attribute if it is 963 * non NULL. It is safe to call this multiple times, and safe to call it on 964 * a zero initialized ah_attr. 965 */ 966 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 967 { 968 if (ah_attr->grh.sgid_attr) { 969 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 970 ah_attr->grh.sgid_attr = NULL; 971 } 972 } 973 EXPORT_SYMBOL(rdma_destroy_ah_attr); 974 975 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 976 const struct ib_grh *grh, u32 port_num) 977 { 978 struct rdma_ah_attr ah_attr; 979 struct ib_ah *ah; 980 int ret; 981 982 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 983 if (ret) 984 return ERR_PTR(ret); 985 986 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 987 988 rdma_destroy_ah_attr(&ah_attr); 989 return ah; 990 } 991 EXPORT_SYMBOL(ib_create_ah_from_wc); 992 993 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 994 { 995 const struct ib_gid_attr *old_sgid_attr; 996 int ret; 997 998 if (ah->type != ah_attr->type) 999 return -EINVAL; 1000 1001 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 1002 if (ret) 1003 return ret; 1004 1005 ret = ah->device->ops.modify_ah ? 1006 ah->device->ops.modify_ah(ah, ah_attr) : 1007 -EOPNOTSUPP; 1008 1009 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 1010 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(rdma_modify_ah); 1014 1015 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 1016 { 1017 ah_attr->grh.sgid_attr = NULL; 1018 1019 return ah->device->ops.query_ah ? 1020 ah->device->ops.query_ah(ah, ah_attr) : 1021 -EOPNOTSUPP; 1022 } 1023 EXPORT_SYMBOL(rdma_query_ah); 1024 1025 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 1026 { 1027 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 1028 struct ib_pd *pd; 1029 int ret; 1030 1031 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 1032 1033 pd = ah->pd; 1034 1035 ret = ah->device->ops.destroy_ah(ah, flags); 1036 if (ret) 1037 return ret; 1038 1039 atomic_dec(&pd->usecnt); 1040 if (sgid_attr) 1041 rdma_put_gid_attr(sgid_attr); 1042 1043 kfree(ah); 1044 return ret; 1045 } 1046 EXPORT_SYMBOL(rdma_destroy_ah_user); 1047 1048 /* Shared receive queues */ 1049 1050 /** 1051 * ib_create_srq_user - Creates a SRQ associated with the specified protection 1052 * domain. 1053 * @pd: The protection domain associated with the SRQ. 1054 * @srq_init_attr: A list of initial attributes required to create the 1055 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1056 * the actual capabilities of the created SRQ. 1057 * @uobject: uobject pointer if this is not a kernel SRQ 1058 * @udata: udata pointer if this is not a kernel SRQ 1059 * 1060 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1061 * requested size of the SRQ, and set to the actual values allocated 1062 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1063 * will always be at least as large as the requested values. 1064 */ 1065 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1066 struct ib_srq_init_attr *srq_init_attr, 1067 struct ib_usrq_object *uobject, 1068 struct ib_udata *udata) 1069 { 1070 struct ib_srq *srq; 1071 int ret; 1072 1073 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1074 if (!srq) 1075 return ERR_PTR(-ENOMEM); 1076 1077 srq->device = pd->device; 1078 srq->pd = pd; 1079 srq->event_handler = srq_init_attr->event_handler; 1080 srq->srq_context = srq_init_attr->srq_context; 1081 srq->srq_type = srq_init_attr->srq_type; 1082 srq->uobject = uobject; 1083 1084 if (ib_srq_has_cq(srq->srq_type)) { 1085 srq->ext.cq = srq_init_attr->ext.cq; 1086 atomic_inc(&srq->ext.cq->usecnt); 1087 } 1088 if (srq->srq_type == IB_SRQT_XRC) { 1089 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1090 if (srq->ext.xrc.xrcd) 1091 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1092 } 1093 atomic_inc(&pd->usecnt); 1094 1095 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1096 rdma_restrack_parent_name(&srq->res, &pd->res); 1097 1098 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1099 if (ret) { 1100 rdma_restrack_put(&srq->res); 1101 atomic_dec(&pd->usecnt); 1102 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1103 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1104 if (ib_srq_has_cq(srq->srq_type)) 1105 atomic_dec(&srq->ext.cq->usecnt); 1106 kfree(srq); 1107 return ERR_PTR(ret); 1108 } 1109 1110 rdma_restrack_add(&srq->res); 1111 1112 return srq; 1113 } 1114 EXPORT_SYMBOL(ib_create_srq_user); 1115 1116 int ib_modify_srq(struct ib_srq *srq, 1117 struct ib_srq_attr *srq_attr, 1118 enum ib_srq_attr_mask srq_attr_mask) 1119 { 1120 return srq->device->ops.modify_srq ? 1121 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1122 NULL) : -EOPNOTSUPP; 1123 } 1124 EXPORT_SYMBOL(ib_modify_srq); 1125 1126 int ib_query_srq(struct ib_srq *srq, 1127 struct ib_srq_attr *srq_attr) 1128 { 1129 return srq->device->ops.query_srq ? 1130 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1131 } 1132 EXPORT_SYMBOL(ib_query_srq); 1133 1134 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1135 { 1136 int ret; 1137 1138 if (atomic_read(&srq->usecnt)) 1139 return -EBUSY; 1140 1141 ret = srq->device->ops.destroy_srq(srq, udata); 1142 if (ret) 1143 return ret; 1144 1145 atomic_dec(&srq->pd->usecnt); 1146 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1147 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1148 if (ib_srq_has_cq(srq->srq_type)) 1149 atomic_dec(&srq->ext.cq->usecnt); 1150 rdma_restrack_del(&srq->res); 1151 kfree(srq); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(ib_destroy_srq_user); 1156 1157 /* Queue pairs */ 1158 1159 static void __ib_qp_event_handler(struct ib_event *event, void *context) 1160 { 1161 struct ib_qp *qp = event->element.qp; 1162 1163 if (event->event == IB_EVENT_QP_LAST_WQE_REACHED) 1164 complete(&qp->srq_completion); 1165 if (qp->registered_event_handler) 1166 qp->registered_event_handler(event, qp->qp_context); 1167 } 1168 1169 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1170 { 1171 struct ib_qp *qp = context; 1172 unsigned long flags; 1173 1174 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1175 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1176 if (event->element.qp->event_handler) 1177 event->element.qp->event_handler(event, event->element.qp->qp_context); 1178 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1179 } 1180 1181 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1182 void (*event_handler)(struct ib_event *, void *), 1183 void *qp_context) 1184 { 1185 struct ib_qp *qp; 1186 unsigned long flags; 1187 int err; 1188 1189 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1190 if (!qp) 1191 return ERR_PTR(-ENOMEM); 1192 1193 qp->real_qp = real_qp; 1194 err = ib_open_shared_qp_security(qp, real_qp->device); 1195 if (err) { 1196 kfree(qp); 1197 return ERR_PTR(err); 1198 } 1199 1200 qp->real_qp = real_qp; 1201 atomic_inc(&real_qp->usecnt); 1202 qp->device = real_qp->device; 1203 qp->event_handler = event_handler; 1204 qp->qp_context = qp_context; 1205 qp->qp_num = real_qp->qp_num; 1206 qp->qp_type = real_qp->qp_type; 1207 1208 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1209 list_add(&qp->open_list, &real_qp->open_list); 1210 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1211 1212 return qp; 1213 } 1214 1215 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1216 struct ib_qp_open_attr *qp_open_attr) 1217 { 1218 struct ib_qp *qp, *real_qp; 1219 1220 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1221 return ERR_PTR(-EINVAL); 1222 1223 down_read(&xrcd->tgt_qps_rwsem); 1224 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1225 if (!real_qp) { 1226 up_read(&xrcd->tgt_qps_rwsem); 1227 return ERR_PTR(-EINVAL); 1228 } 1229 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1230 qp_open_attr->qp_context); 1231 up_read(&xrcd->tgt_qps_rwsem); 1232 return qp; 1233 } 1234 EXPORT_SYMBOL(ib_open_qp); 1235 1236 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1237 struct ib_qp_init_attr *qp_init_attr) 1238 { 1239 struct ib_qp *real_qp = qp; 1240 int err; 1241 1242 qp->event_handler = __ib_shared_qp_event_handler; 1243 qp->qp_context = qp; 1244 qp->pd = NULL; 1245 qp->send_cq = qp->recv_cq = NULL; 1246 qp->srq = NULL; 1247 qp->xrcd = qp_init_attr->xrcd; 1248 atomic_inc(&qp_init_attr->xrcd->usecnt); 1249 INIT_LIST_HEAD(&qp->open_list); 1250 1251 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1252 qp_init_attr->qp_context); 1253 if (IS_ERR(qp)) 1254 return qp; 1255 1256 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1257 real_qp, GFP_KERNEL)); 1258 if (err) { 1259 ib_close_qp(qp); 1260 return ERR_PTR(err); 1261 } 1262 return qp; 1263 } 1264 1265 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1266 struct ib_qp_init_attr *attr, 1267 struct ib_udata *udata, 1268 struct ib_uqp_object *uobj, const char *caller) 1269 { 1270 struct ib_udata dummy = {}; 1271 struct ib_qp *qp; 1272 int ret; 1273 1274 if (!dev->ops.create_qp) 1275 return ERR_PTR(-EOPNOTSUPP); 1276 1277 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1278 if (!qp) 1279 return ERR_PTR(-ENOMEM); 1280 1281 qp->device = dev; 1282 qp->pd = pd; 1283 qp->uobject = uobj; 1284 qp->real_qp = qp; 1285 1286 qp->qp_type = attr->qp_type; 1287 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1288 qp->srq = attr->srq; 1289 qp->event_handler = __ib_qp_event_handler; 1290 qp->registered_event_handler = attr->event_handler; 1291 qp->port = attr->port_num; 1292 qp->qp_context = attr->qp_context; 1293 1294 spin_lock_init(&qp->mr_lock); 1295 INIT_LIST_HEAD(&qp->rdma_mrs); 1296 INIT_LIST_HEAD(&qp->sig_mrs); 1297 init_completion(&qp->srq_completion); 1298 1299 qp->send_cq = attr->send_cq; 1300 qp->recv_cq = attr->recv_cq; 1301 1302 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1303 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1304 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1305 ret = dev->ops.create_qp(qp, attr, udata); 1306 if (ret) 1307 goto err_create; 1308 1309 /* 1310 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1311 * Unfortunately, it is not an easy task to fix that driver. 1312 */ 1313 qp->send_cq = attr->send_cq; 1314 qp->recv_cq = attr->recv_cq; 1315 1316 ret = ib_create_qp_security(qp, dev); 1317 if (ret) 1318 goto err_security; 1319 1320 rdma_restrack_add(&qp->res); 1321 return qp; 1322 1323 err_security: 1324 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1325 err_create: 1326 rdma_restrack_put(&qp->res); 1327 kfree(qp); 1328 return ERR_PTR(ret); 1329 1330 } 1331 1332 /** 1333 * ib_create_qp_user - Creates a QP associated with the specified protection 1334 * domain. 1335 * @dev: IB device 1336 * @pd: The protection domain associated with the QP. 1337 * @attr: A list of initial attributes required to create the 1338 * QP. If QP creation succeeds, then the attributes are updated to 1339 * the actual capabilities of the created QP. 1340 * @udata: User data 1341 * @uobj: uverbs obect 1342 * @caller: caller's build-time module name 1343 */ 1344 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1345 struct ib_qp_init_attr *attr, 1346 struct ib_udata *udata, 1347 struct ib_uqp_object *uobj, const char *caller) 1348 { 1349 struct ib_qp *qp, *xrc_qp; 1350 1351 if (attr->qp_type == IB_QPT_XRC_TGT) 1352 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1353 else 1354 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1355 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1356 return qp; 1357 1358 xrc_qp = create_xrc_qp_user(qp, attr); 1359 if (IS_ERR(xrc_qp)) { 1360 ib_destroy_qp(qp); 1361 return xrc_qp; 1362 } 1363 1364 xrc_qp->uobject = uobj; 1365 return xrc_qp; 1366 } 1367 EXPORT_SYMBOL(ib_create_qp_user); 1368 1369 void ib_qp_usecnt_inc(struct ib_qp *qp) 1370 { 1371 if (qp->pd) 1372 atomic_inc(&qp->pd->usecnt); 1373 if (qp->send_cq) 1374 atomic_inc(&qp->send_cq->usecnt); 1375 if (qp->recv_cq) 1376 atomic_inc(&qp->recv_cq->usecnt); 1377 if (qp->srq) 1378 atomic_inc(&qp->srq->usecnt); 1379 if (qp->rwq_ind_tbl) 1380 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1381 } 1382 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1383 1384 void ib_qp_usecnt_dec(struct ib_qp *qp) 1385 { 1386 if (qp->rwq_ind_tbl) 1387 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1388 if (qp->srq) 1389 atomic_dec(&qp->srq->usecnt); 1390 if (qp->recv_cq) 1391 atomic_dec(&qp->recv_cq->usecnt); 1392 if (qp->send_cq) 1393 atomic_dec(&qp->send_cq->usecnt); 1394 if (qp->pd) 1395 atomic_dec(&qp->pd->usecnt); 1396 } 1397 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1398 1399 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1400 struct ib_qp_init_attr *qp_init_attr, 1401 const char *caller) 1402 { 1403 struct ib_device *device = pd->device; 1404 struct ib_qp *qp; 1405 int ret; 1406 1407 /* 1408 * If the callers is using the RDMA API calculate the resources 1409 * needed for the RDMA READ/WRITE operations. 1410 * 1411 * Note that these callers need to pass in a port number. 1412 */ 1413 if (qp_init_attr->cap.max_rdma_ctxs) 1414 rdma_rw_init_qp(device, qp_init_attr); 1415 1416 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1417 if (IS_ERR(qp)) 1418 return qp; 1419 1420 ib_qp_usecnt_inc(qp); 1421 1422 if (qp_init_attr->cap.max_rdma_ctxs) { 1423 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1424 if (ret) 1425 goto err; 1426 } 1427 1428 /* 1429 * Note: all hw drivers guarantee that max_send_sge is lower than 1430 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1431 * max_send_sge <= max_sge_rd. 1432 */ 1433 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1434 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1435 device->attrs.max_sge_rd); 1436 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1437 qp->integrity_en = true; 1438 1439 return qp; 1440 1441 err: 1442 ib_destroy_qp(qp); 1443 return ERR_PTR(ret); 1444 1445 } 1446 EXPORT_SYMBOL(ib_create_qp_kernel); 1447 1448 static const struct { 1449 int valid; 1450 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1451 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1452 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1453 [IB_QPS_RESET] = { 1454 [IB_QPS_RESET] = { .valid = 1 }, 1455 [IB_QPS_INIT] = { 1456 .valid = 1, 1457 .req_param = { 1458 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1459 IB_QP_PORT | 1460 IB_QP_QKEY), 1461 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1462 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1463 IB_QP_PORT | 1464 IB_QP_ACCESS_FLAGS), 1465 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1466 IB_QP_PORT | 1467 IB_QP_ACCESS_FLAGS), 1468 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1469 IB_QP_PORT | 1470 IB_QP_ACCESS_FLAGS), 1471 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1472 IB_QP_PORT | 1473 IB_QP_ACCESS_FLAGS), 1474 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1475 IB_QP_QKEY), 1476 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1477 IB_QP_QKEY), 1478 } 1479 }, 1480 }, 1481 [IB_QPS_INIT] = { 1482 [IB_QPS_RESET] = { .valid = 1 }, 1483 [IB_QPS_ERR] = { .valid = 1 }, 1484 [IB_QPS_INIT] = { 1485 .valid = 1, 1486 .opt_param = { 1487 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1488 IB_QP_PORT | 1489 IB_QP_QKEY), 1490 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1491 IB_QP_PORT | 1492 IB_QP_ACCESS_FLAGS), 1493 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1494 IB_QP_PORT | 1495 IB_QP_ACCESS_FLAGS), 1496 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1497 IB_QP_PORT | 1498 IB_QP_ACCESS_FLAGS), 1499 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1500 IB_QP_PORT | 1501 IB_QP_ACCESS_FLAGS), 1502 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1503 IB_QP_QKEY), 1504 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1505 IB_QP_QKEY), 1506 } 1507 }, 1508 [IB_QPS_RTR] = { 1509 .valid = 1, 1510 .req_param = { 1511 [IB_QPT_UC] = (IB_QP_AV | 1512 IB_QP_PATH_MTU | 1513 IB_QP_DEST_QPN | 1514 IB_QP_RQ_PSN), 1515 [IB_QPT_RC] = (IB_QP_AV | 1516 IB_QP_PATH_MTU | 1517 IB_QP_DEST_QPN | 1518 IB_QP_RQ_PSN | 1519 IB_QP_MAX_DEST_RD_ATOMIC | 1520 IB_QP_MIN_RNR_TIMER), 1521 [IB_QPT_XRC_INI] = (IB_QP_AV | 1522 IB_QP_PATH_MTU | 1523 IB_QP_DEST_QPN | 1524 IB_QP_RQ_PSN), 1525 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1526 IB_QP_PATH_MTU | 1527 IB_QP_DEST_QPN | 1528 IB_QP_RQ_PSN | 1529 IB_QP_MAX_DEST_RD_ATOMIC | 1530 IB_QP_MIN_RNR_TIMER), 1531 }, 1532 .opt_param = { 1533 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1534 IB_QP_QKEY), 1535 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1536 IB_QP_ACCESS_FLAGS | 1537 IB_QP_PKEY_INDEX), 1538 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1539 IB_QP_ACCESS_FLAGS | 1540 IB_QP_PKEY_INDEX | 1541 IB_QP_RATE_LIMIT), 1542 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1543 IB_QP_ACCESS_FLAGS | 1544 IB_QP_PKEY_INDEX), 1545 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1546 IB_QP_ACCESS_FLAGS | 1547 IB_QP_PKEY_INDEX), 1548 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1549 IB_QP_QKEY), 1550 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1551 IB_QP_QKEY), 1552 }, 1553 }, 1554 }, 1555 [IB_QPS_RTR] = { 1556 [IB_QPS_RESET] = { .valid = 1 }, 1557 [IB_QPS_ERR] = { .valid = 1 }, 1558 [IB_QPS_RTS] = { 1559 .valid = 1, 1560 .req_param = { 1561 [IB_QPT_UD] = IB_QP_SQ_PSN, 1562 [IB_QPT_UC] = IB_QP_SQ_PSN, 1563 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1564 IB_QP_RETRY_CNT | 1565 IB_QP_RNR_RETRY | 1566 IB_QP_SQ_PSN | 1567 IB_QP_MAX_QP_RD_ATOMIC), 1568 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1569 IB_QP_RETRY_CNT | 1570 IB_QP_RNR_RETRY | 1571 IB_QP_SQ_PSN | 1572 IB_QP_MAX_QP_RD_ATOMIC), 1573 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1574 IB_QP_SQ_PSN), 1575 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1576 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1577 }, 1578 .opt_param = { 1579 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1580 IB_QP_QKEY), 1581 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1582 IB_QP_ALT_PATH | 1583 IB_QP_ACCESS_FLAGS | 1584 IB_QP_PATH_MIG_STATE), 1585 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1586 IB_QP_ALT_PATH | 1587 IB_QP_ACCESS_FLAGS | 1588 IB_QP_MIN_RNR_TIMER | 1589 IB_QP_PATH_MIG_STATE | 1590 IB_QP_RATE_LIMIT), 1591 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1592 IB_QP_ALT_PATH | 1593 IB_QP_ACCESS_FLAGS | 1594 IB_QP_PATH_MIG_STATE), 1595 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1596 IB_QP_ALT_PATH | 1597 IB_QP_ACCESS_FLAGS | 1598 IB_QP_MIN_RNR_TIMER | 1599 IB_QP_PATH_MIG_STATE), 1600 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1601 IB_QP_QKEY), 1602 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1603 IB_QP_QKEY), 1604 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1605 } 1606 } 1607 }, 1608 [IB_QPS_RTS] = { 1609 [IB_QPS_RESET] = { .valid = 1 }, 1610 [IB_QPS_ERR] = { .valid = 1 }, 1611 [IB_QPS_RTS] = { 1612 .valid = 1, 1613 .opt_param = { 1614 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1615 IB_QP_QKEY), 1616 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1617 IB_QP_ACCESS_FLAGS | 1618 IB_QP_ALT_PATH | 1619 IB_QP_PATH_MIG_STATE), 1620 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1621 IB_QP_ACCESS_FLAGS | 1622 IB_QP_ALT_PATH | 1623 IB_QP_PATH_MIG_STATE | 1624 IB_QP_MIN_RNR_TIMER | 1625 IB_QP_RATE_LIMIT), 1626 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1627 IB_QP_ACCESS_FLAGS | 1628 IB_QP_ALT_PATH | 1629 IB_QP_PATH_MIG_STATE), 1630 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1631 IB_QP_ACCESS_FLAGS | 1632 IB_QP_ALT_PATH | 1633 IB_QP_PATH_MIG_STATE | 1634 IB_QP_MIN_RNR_TIMER), 1635 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1636 IB_QP_QKEY), 1637 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1638 IB_QP_QKEY), 1639 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1640 } 1641 }, 1642 [IB_QPS_SQD] = { 1643 .valid = 1, 1644 .opt_param = { 1645 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1646 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1647 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1648 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1649 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1650 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1651 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1652 } 1653 }, 1654 }, 1655 [IB_QPS_SQD] = { 1656 [IB_QPS_RESET] = { .valid = 1 }, 1657 [IB_QPS_ERR] = { .valid = 1 }, 1658 [IB_QPS_RTS] = { 1659 .valid = 1, 1660 .opt_param = { 1661 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1662 IB_QP_QKEY), 1663 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1664 IB_QP_ALT_PATH | 1665 IB_QP_ACCESS_FLAGS | 1666 IB_QP_PATH_MIG_STATE), 1667 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1668 IB_QP_ALT_PATH | 1669 IB_QP_ACCESS_FLAGS | 1670 IB_QP_MIN_RNR_TIMER | 1671 IB_QP_PATH_MIG_STATE), 1672 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1673 IB_QP_ALT_PATH | 1674 IB_QP_ACCESS_FLAGS | 1675 IB_QP_PATH_MIG_STATE), 1676 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1677 IB_QP_ALT_PATH | 1678 IB_QP_ACCESS_FLAGS | 1679 IB_QP_MIN_RNR_TIMER | 1680 IB_QP_PATH_MIG_STATE), 1681 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1682 IB_QP_QKEY), 1683 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1684 IB_QP_QKEY), 1685 } 1686 }, 1687 [IB_QPS_SQD] = { 1688 .valid = 1, 1689 .opt_param = { 1690 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1691 IB_QP_QKEY), 1692 [IB_QPT_UC] = (IB_QP_AV | 1693 IB_QP_ALT_PATH | 1694 IB_QP_ACCESS_FLAGS | 1695 IB_QP_PKEY_INDEX | 1696 IB_QP_PATH_MIG_STATE), 1697 [IB_QPT_RC] = (IB_QP_PORT | 1698 IB_QP_AV | 1699 IB_QP_TIMEOUT | 1700 IB_QP_RETRY_CNT | 1701 IB_QP_RNR_RETRY | 1702 IB_QP_MAX_QP_RD_ATOMIC | 1703 IB_QP_MAX_DEST_RD_ATOMIC | 1704 IB_QP_ALT_PATH | 1705 IB_QP_ACCESS_FLAGS | 1706 IB_QP_PKEY_INDEX | 1707 IB_QP_MIN_RNR_TIMER | 1708 IB_QP_PATH_MIG_STATE), 1709 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1710 IB_QP_AV | 1711 IB_QP_TIMEOUT | 1712 IB_QP_RETRY_CNT | 1713 IB_QP_RNR_RETRY | 1714 IB_QP_MAX_QP_RD_ATOMIC | 1715 IB_QP_ALT_PATH | 1716 IB_QP_ACCESS_FLAGS | 1717 IB_QP_PKEY_INDEX | 1718 IB_QP_PATH_MIG_STATE), 1719 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1720 IB_QP_AV | 1721 IB_QP_TIMEOUT | 1722 IB_QP_MAX_DEST_RD_ATOMIC | 1723 IB_QP_ALT_PATH | 1724 IB_QP_ACCESS_FLAGS | 1725 IB_QP_PKEY_INDEX | 1726 IB_QP_MIN_RNR_TIMER | 1727 IB_QP_PATH_MIG_STATE), 1728 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1729 IB_QP_QKEY), 1730 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1731 IB_QP_QKEY), 1732 } 1733 } 1734 }, 1735 [IB_QPS_SQE] = { 1736 [IB_QPS_RESET] = { .valid = 1 }, 1737 [IB_QPS_ERR] = { .valid = 1 }, 1738 [IB_QPS_RTS] = { 1739 .valid = 1, 1740 .opt_param = { 1741 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1742 IB_QP_QKEY), 1743 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1744 IB_QP_ACCESS_FLAGS), 1745 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1746 IB_QP_QKEY), 1747 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1748 IB_QP_QKEY), 1749 } 1750 } 1751 }, 1752 [IB_QPS_ERR] = { 1753 [IB_QPS_RESET] = { .valid = 1 }, 1754 [IB_QPS_ERR] = { .valid = 1 } 1755 } 1756 }; 1757 1758 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1759 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1760 { 1761 enum ib_qp_attr_mask req_param, opt_param; 1762 1763 if (mask & IB_QP_CUR_STATE && 1764 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1765 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1766 return false; 1767 1768 if (!qp_state_table[cur_state][next_state].valid) 1769 return false; 1770 1771 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1772 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1773 1774 if ((mask & req_param) != req_param) 1775 return false; 1776 1777 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1778 return false; 1779 1780 return true; 1781 } 1782 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1783 1784 /** 1785 * ib_resolve_eth_dmac - Resolve destination mac address 1786 * @device: Device to consider 1787 * @ah_attr: address handle attribute which describes the 1788 * source and destination parameters 1789 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1790 * returns 0 on success or appropriate error code. It initializes the 1791 * necessary ah_attr fields when call is successful. 1792 */ 1793 static int ib_resolve_eth_dmac(struct ib_device *device, 1794 struct rdma_ah_attr *ah_attr) 1795 { 1796 int ret = 0; 1797 1798 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1799 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1800 __be32 addr = 0; 1801 1802 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1803 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1804 } else { 1805 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1806 (char *)ah_attr->roce.dmac); 1807 } 1808 } else { 1809 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1810 } 1811 return ret; 1812 } 1813 1814 static bool is_qp_type_connected(const struct ib_qp *qp) 1815 { 1816 return (qp->qp_type == IB_QPT_UC || 1817 qp->qp_type == IB_QPT_RC || 1818 qp->qp_type == IB_QPT_XRC_INI || 1819 qp->qp_type == IB_QPT_XRC_TGT); 1820 } 1821 1822 /* 1823 * IB core internal function to perform QP attributes modification. 1824 */ 1825 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1826 int attr_mask, struct ib_udata *udata) 1827 { 1828 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1829 const struct ib_gid_attr *old_sgid_attr_av; 1830 const struct ib_gid_attr *old_sgid_attr_alt_av; 1831 int ret; 1832 1833 attr->xmit_slave = NULL; 1834 if (attr_mask & IB_QP_AV) { 1835 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1836 &old_sgid_attr_av); 1837 if (ret) 1838 return ret; 1839 1840 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1841 is_qp_type_connected(qp)) { 1842 struct net_device *slave; 1843 1844 /* 1845 * If the user provided the qp_attr then we have to 1846 * resolve it. Kerne users have to provide already 1847 * resolved rdma_ah_attr's. 1848 */ 1849 if (udata) { 1850 ret = ib_resolve_eth_dmac(qp->device, 1851 &attr->ah_attr); 1852 if (ret) 1853 goto out_av; 1854 } 1855 slave = rdma_lag_get_ah_roce_slave(qp->device, 1856 &attr->ah_attr, 1857 GFP_KERNEL); 1858 if (IS_ERR(slave)) { 1859 ret = PTR_ERR(slave); 1860 goto out_av; 1861 } 1862 attr->xmit_slave = slave; 1863 } 1864 } 1865 if (attr_mask & IB_QP_ALT_PATH) { 1866 /* 1867 * FIXME: This does not track the migration state, so if the 1868 * user loads a new alternate path after the HW has migrated 1869 * from primary->alternate we will keep the wrong 1870 * references. This is OK for IB because the reference 1871 * counting does not serve any functional purpose. 1872 */ 1873 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1874 &old_sgid_attr_alt_av); 1875 if (ret) 1876 goto out_av; 1877 1878 /* 1879 * Today the core code can only handle alternate paths and APM 1880 * for IB. Ban them in roce mode. 1881 */ 1882 if (!(rdma_protocol_ib(qp->device, 1883 attr->alt_ah_attr.port_num) && 1884 rdma_protocol_ib(qp->device, port))) { 1885 ret = -EINVAL; 1886 goto out; 1887 } 1888 } 1889 1890 if (rdma_ib_or_roce(qp->device, port)) { 1891 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1892 dev_warn(&qp->device->dev, 1893 "%s rq_psn overflow, masking to 24 bits\n", 1894 __func__); 1895 attr->rq_psn &= 0xffffff; 1896 } 1897 1898 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1899 dev_warn(&qp->device->dev, 1900 " %s sq_psn overflow, masking to 24 bits\n", 1901 __func__); 1902 attr->sq_psn &= 0xffffff; 1903 } 1904 } 1905 1906 /* 1907 * Bind this qp to a counter automatically based on the rdma counter 1908 * rules. This only set in RST2INIT with port specified 1909 */ 1910 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1911 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1912 rdma_counter_bind_qp_auto(qp, attr->port_num); 1913 1914 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1915 if (ret) 1916 goto out; 1917 1918 if (attr_mask & IB_QP_PORT) 1919 qp->port = attr->port_num; 1920 if (attr_mask & IB_QP_AV) 1921 qp->av_sgid_attr = 1922 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1923 if (attr_mask & IB_QP_ALT_PATH) 1924 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1925 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1926 1927 out: 1928 if (attr_mask & IB_QP_ALT_PATH) 1929 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1930 out_av: 1931 if (attr_mask & IB_QP_AV) { 1932 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1933 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1934 } 1935 return ret; 1936 } 1937 1938 /** 1939 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1940 * @ib_qp: The QP to modify. 1941 * @attr: On input, specifies the QP attributes to modify. On output, 1942 * the current values of selected QP attributes are returned. 1943 * @attr_mask: A bit-mask used to specify which attributes of the QP 1944 * are being modified. 1945 * @udata: pointer to user's input output buffer information 1946 * are being modified. 1947 * It returns 0 on success and returns appropriate error code on error. 1948 */ 1949 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1950 int attr_mask, struct ib_udata *udata) 1951 { 1952 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1953 } 1954 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1955 1956 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes, 1957 u16 *speed, u8 *width) 1958 { 1959 if (!lanes) { 1960 if (netdev_speed <= SPEED_1000) { 1961 *width = IB_WIDTH_1X; 1962 *speed = IB_SPEED_SDR; 1963 } else if (netdev_speed <= SPEED_10000) { 1964 *width = IB_WIDTH_1X; 1965 *speed = IB_SPEED_FDR10; 1966 } else if (netdev_speed <= SPEED_20000) { 1967 *width = IB_WIDTH_4X; 1968 *speed = IB_SPEED_DDR; 1969 } else if (netdev_speed <= SPEED_25000) { 1970 *width = IB_WIDTH_1X; 1971 *speed = IB_SPEED_EDR; 1972 } else if (netdev_speed <= SPEED_40000) { 1973 *width = IB_WIDTH_4X; 1974 *speed = IB_SPEED_FDR10; 1975 } else if (netdev_speed <= SPEED_50000) { 1976 *width = IB_WIDTH_2X; 1977 *speed = IB_SPEED_EDR; 1978 } else if (netdev_speed <= SPEED_100000) { 1979 *width = IB_WIDTH_4X; 1980 *speed = IB_SPEED_EDR; 1981 } else if (netdev_speed <= SPEED_200000) { 1982 *width = IB_WIDTH_4X; 1983 *speed = IB_SPEED_HDR; 1984 } else { 1985 *width = IB_WIDTH_4X; 1986 *speed = IB_SPEED_NDR; 1987 } 1988 1989 return; 1990 } 1991 1992 switch (lanes) { 1993 case 1: 1994 *width = IB_WIDTH_1X; 1995 break; 1996 case 2: 1997 *width = IB_WIDTH_2X; 1998 break; 1999 case 4: 2000 *width = IB_WIDTH_4X; 2001 break; 2002 case 8: 2003 *width = IB_WIDTH_8X; 2004 break; 2005 case 12: 2006 *width = IB_WIDTH_12X; 2007 break; 2008 default: 2009 *width = IB_WIDTH_1X; 2010 } 2011 2012 switch (netdev_speed / lanes) { 2013 case SPEED_2500: 2014 *speed = IB_SPEED_SDR; 2015 break; 2016 case SPEED_5000: 2017 *speed = IB_SPEED_DDR; 2018 break; 2019 case SPEED_10000: 2020 *speed = IB_SPEED_FDR10; 2021 break; 2022 case SPEED_14000: 2023 *speed = IB_SPEED_FDR; 2024 break; 2025 case SPEED_25000: 2026 *speed = IB_SPEED_EDR; 2027 break; 2028 case SPEED_50000: 2029 *speed = IB_SPEED_HDR; 2030 break; 2031 case SPEED_100000: 2032 *speed = IB_SPEED_NDR; 2033 break; 2034 default: 2035 *speed = IB_SPEED_SDR; 2036 } 2037 } 2038 2039 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 2040 { 2041 int rc; 2042 u32 netdev_speed; 2043 struct net_device *netdev; 2044 struct ethtool_link_ksettings lksettings = {}; 2045 2046 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 2047 return -EINVAL; 2048 2049 netdev = ib_device_get_netdev(dev, port_num); 2050 if (!netdev) 2051 return -ENODEV; 2052 2053 rtnl_lock(); 2054 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 2055 rtnl_unlock(); 2056 2057 dev_put(netdev); 2058 2059 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 2060 netdev_speed = lksettings.base.speed; 2061 } else { 2062 netdev_speed = SPEED_1000; 2063 if (rc) 2064 pr_warn("%s speed is unknown, defaulting to %u\n", 2065 netdev->name, netdev_speed); 2066 } 2067 2068 ib_get_width_and_speed(netdev_speed, lksettings.lanes, 2069 speed, width); 2070 2071 return 0; 2072 } 2073 EXPORT_SYMBOL(ib_get_eth_speed); 2074 2075 int ib_modify_qp(struct ib_qp *qp, 2076 struct ib_qp_attr *qp_attr, 2077 int qp_attr_mask) 2078 { 2079 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 2080 } 2081 EXPORT_SYMBOL(ib_modify_qp); 2082 2083 int ib_query_qp(struct ib_qp *qp, 2084 struct ib_qp_attr *qp_attr, 2085 int qp_attr_mask, 2086 struct ib_qp_init_attr *qp_init_attr) 2087 { 2088 qp_attr->ah_attr.grh.sgid_attr = NULL; 2089 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 2090 2091 return qp->device->ops.query_qp ? 2092 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 2093 qp_init_attr) : -EOPNOTSUPP; 2094 } 2095 EXPORT_SYMBOL(ib_query_qp); 2096 2097 int ib_close_qp(struct ib_qp *qp) 2098 { 2099 struct ib_qp *real_qp; 2100 unsigned long flags; 2101 2102 real_qp = qp->real_qp; 2103 if (real_qp == qp) 2104 return -EINVAL; 2105 2106 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 2107 list_del(&qp->open_list); 2108 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 2109 2110 atomic_dec(&real_qp->usecnt); 2111 if (qp->qp_sec) 2112 ib_close_shared_qp_security(qp->qp_sec); 2113 kfree(qp); 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL(ib_close_qp); 2118 2119 static int __ib_destroy_shared_qp(struct ib_qp *qp) 2120 { 2121 struct ib_xrcd *xrcd; 2122 struct ib_qp *real_qp; 2123 int ret; 2124 2125 real_qp = qp->real_qp; 2126 xrcd = real_qp->xrcd; 2127 down_write(&xrcd->tgt_qps_rwsem); 2128 ib_close_qp(qp); 2129 if (atomic_read(&real_qp->usecnt) == 0) 2130 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 2131 else 2132 real_qp = NULL; 2133 up_write(&xrcd->tgt_qps_rwsem); 2134 2135 if (real_qp) { 2136 ret = ib_destroy_qp(real_qp); 2137 if (!ret) 2138 atomic_dec(&xrcd->usecnt); 2139 } 2140 2141 return 0; 2142 } 2143 2144 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2145 { 2146 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2147 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2148 struct ib_qp_security *sec; 2149 int ret; 2150 2151 WARN_ON_ONCE(qp->mrs_used > 0); 2152 2153 if (atomic_read(&qp->usecnt)) 2154 return -EBUSY; 2155 2156 if (qp->real_qp != qp) 2157 return __ib_destroy_shared_qp(qp); 2158 2159 sec = qp->qp_sec; 2160 if (sec) 2161 ib_destroy_qp_security_begin(sec); 2162 2163 if (!qp->uobject) 2164 rdma_rw_cleanup_mrs(qp); 2165 2166 rdma_counter_unbind_qp(qp, qp->port, true); 2167 ret = qp->device->ops.destroy_qp(qp, udata); 2168 if (ret) { 2169 if (sec) 2170 ib_destroy_qp_security_abort(sec); 2171 return ret; 2172 } 2173 2174 if (alt_path_sgid_attr) 2175 rdma_put_gid_attr(alt_path_sgid_attr); 2176 if (av_sgid_attr) 2177 rdma_put_gid_attr(av_sgid_attr); 2178 2179 ib_qp_usecnt_dec(qp); 2180 if (sec) 2181 ib_destroy_qp_security_end(sec); 2182 2183 rdma_restrack_del(&qp->res); 2184 kfree(qp); 2185 return ret; 2186 } 2187 EXPORT_SYMBOL(ib_destroy_qp_user); 2188 2189 /* Completion queues */ 2190 2191 struct ib_cq *__ib_create_cq(struct ib_device *device, 2192 ib_comp_handler comp_handler, 2193 void (*event_handler)(struct ib_event *, void *), 2194 void *cq_context, 2195 const struct ib_cq_init_attr *cq_attr, 2196 const char *caller) 2197 { 2198 struct ib_cq *cq; 2199 int ret; 2200 2201 cq = rdma_zalloc_drv_obj(device, ib_cq); 2202 if (!cq) 2203 return ERR_PTR(-ENOMEM); 2204 2205 cq->device = device; 2206 cq->uobject = NULL; 2207 cq->comp_handler = comp_handler; 2208 cq->event_handler = event_handler; 2209 cq->cq_context = cq_context; 2210 atomic_set(&cq->usecnt, 0); 2211 2212 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2213 rdma_restrack_set_name(&cq->res, caller); 2214 2215 ret = device->ops.create_cq(cq, cq_attr, NULL); 2216 if (ret) { 2217 rdma_restrack_put(&cq->res); 2218 kfree(cq); 2219 return ERR_PTR(ret); 2220 } 2221 2222 rdma_restrack_add(&cq->res); 2223 return cq; 2224 } 2225 EXPORT_SYMBOL(__ib_create_cq); 2226 2227 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2228 { 2229 if (cq->shared) 2230 return -EOPNOTSUPP; 2231 2232 return cq->device->ops.modify_cq ? 2233 cq->device->ops.modify_cq(cq, cq_count, 2234 cq_period) : -EOPNOTSUPP; 2235 } 2236 EXPORT_SYMBOL(rdma_set_cq_moderation); 2237 2238 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2239 { 2240 int ret; 2241 2242 if (WARN_ON_ONCE(cq->shared)) 2243 return -EOPNOTSUPP; 2244 2245 if (atomic_read(&cq->usecnt)) 2246 return -EBUSY; 2247 2248 ret = cq->device->ops.destroy_cq(cq, udata); 2249 if (ret) 2250 return ret; 2251 2252 rdma_restrack_del(&cq->res); 2253 kfree(cq); 2254 return ret; 2255 } 2256 EXPORT_SYMBOL(ib_destroy_cq_user); 2257 2258 int ib_resize_cq(struct ib_cq *cq, int cqe) 2259 { 2260 if (cq->shared) 2261 return -EOPNOTSUPP; 2262 2263 return cq->device->ops.resize_cq ? 2264 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2265 } 2266 EXPORT_SYMBOL(ib_resize_cq); 2267 2268 /* Memory regions */ 2269 2270 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2271 u64 virt_addr, int access_flags) 2272 { 2273 struct ib_mr *mr; 2274 2275 if (access_flags & IB_ACCESS_ON_DEMAND) { 2276 if (!(pd->device->attrs.kernel_cap_flags & 2277 IBK_ON_DEMAND_PAGING)) { 2278 pr_debug("ODP support not available\n"); 2279 return ERR_PTR(-EINVAL); 2280 } 2281 } 2282 2283 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2284 access_flags, NULL, NULL); 2285 2286 if (IS_ERR(mr)) 2287 return mr; 2288 2289 mr->device = pd->device; 2290 mr->type = IB_MR_TYPE_USER; 2291 mr->pd = pd; 2292 mr->dm = NULL; 2293 atomic_inc(&pd->usecnt); 2294 mr->iova = virt_addr; 2295 mr->length = length; 2296 2297 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2298 rdma_restrack_parent_name(&mr->res, &pd->res); 2299 rdma_restrack_add(&mr->res); 2300 2301 return mr; 2302 } 2303 EXPORT_SYMBOL(ib_reg_user_mr); 2304 2305 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2306 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2307 { 2308 if (!pd->device->ops.advise_mr) 2309 return -EOPNOTSUPP; 2310 2311 if (!num_sge) 2312 return 0; 2313 2314 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2315 NULL); 2316 } 2317 EXPORT_SYMBOL(ib_advise_mr); 2318 2319 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2320 { 2321 struct ib_pd *pd = mr->pd; 2322 struct ib_dm *dm = mr->dm; 2323 struct ib_dmah *dmah = mr->dmah; 2324 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2325 int ret; 2326 2327 trace_mr_dereg(mr); 2328 rdma_restrack_del(&mr->res); 2329 ret = mr->device->ops.dereg_mr(mr, udata); 2330 if (!ret) { 2331 atomic_dec(&pd->usecnt); 2332 if (dm) 2333 atomic_dec(&dm->usecnt); 2334 if (dmah) 2335 atomic_dec(&dmah->usecnt); 2336 kfree(sig_attrs); 2337 } 2338 2339 return ret; 2340 } 2341 EXPORT_SYMBOL(ib_dereg_mr_user); 2342 2343 /** 2344 * ib_alloc_mr() - Allocates a memory region 2345 * @pd: protection domain associated with the region 2346 * @mr_type: memory region type 2347 * @max_num_sg: maximum sg entries available for registration. 2348 * 2349 * Notes: 2350 * Memory registeration page/sg lists must not exceed max_num_sg. 2351 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2352 * max_num_sg * used_page_size. 2353 * 2354 */ 2355 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2356 u32 max_num_sg) 2357 { 2358 struct ib_mr *mr; 2359 2360 if (!pd->device->ops.alloc_mr) { 2361 mr = ERR_PTR(-EOPNOTSUPP); 2362 goto out; 2363 } 2364 2365 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2366 WARN_ON_ONCE(1); 2367 mr = ERR_PTR(-EINVAL); 2368 goto out; 2369 } 2370 2371 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2372 if (IS_ERR(mr)) 2373 goto out; 2374 2375 mr->device = pd->device; 2376 mr->pd = pd; 2377 mr->dm = NULL; 2378 mr->uobject = NULL; 2379 atomic_inc(&pd->usecnt); 2380 mr->need_inval = false; 2381 mr->type = mr_type; 2382 mr->sig_attrs = NULL; 2383 2384 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2385 rdma_restrack_parent_name(&mr->res, &pd->res); 2386 rdma_restrack_add(&mr->res); 2387 out: 2388 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2389 return mr; 2390 } 2391 EXPORT_SYMBOL(ib_alloc_mr); 2392 2393 /** 2394 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2395 * @pd: protection domain associated with the region 2396 * @max_num_data_sg: maximum data sg entries available for registration 2397 * @max_num_meta_sg: maximum metadata sg entries available for 2398 * registration 2399 * 2400 * Notes: 2401 * Memory registration page/sg lists must not exceed max_num_sg, 2402 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2403 * 2404 */ 2405 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2406 u32 max_num_data_sg, 2407 u32 max_num_meta_sg) 2408 { 2409 struct ib_mr *mr; 2410 struct ib_sig_attrs *sig_attrs; 2411 2412 if (!pd->device->ops.alloc_mr_integrity || 2413 !pd->device->ops.map_mr_sg_pi) { 2414 mr = ERR_PTR(-EOPNOTSUPP); 2415 goto out; 2416 } 2417 2418 if (!max_num_meta_sg) { 2419 mr = ERR_PTR(-EINVAL); 2420 goto out; 2421 } 2422 2423 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2424 if (!sig_attrs) { 2425 mr = ERR_PTR(-ENOMEM); 2426 goto out; 2427 } 2428 2429 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2430 max_num_meta_sg); 2431 if (IS_ERR(mr)) { 2432 kfree(sig_attrs); 2433 goto out; 2434 } 2435 2436 mr->device = pd->device; 2437 mr->pd = pd; 2438 mr->dm = NULL; 2439 mr->uobject = NULL; 2440 atomic_inc(&pd->usecnt); 2441 mr->need_inval = false; 2442 mr->type = IB_MR_TYPE_INTEGRITY; 2443 mr->sig_attrs = sig_attrs; 2444 2445 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2446 rdma_restrack_parent_name(&mr->res, &pd->res); 2447 rdma_restrack_add(&mr->res); 2448 out: 2449 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2450 return mr; 2451 } 2452 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2453 2454 /* Multicast groups */ 2455 2456 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2457 { 2458 struct ib_qp_init_attr init_attr = {}; 2459 struct ib_qp_attr attr = {}; 2460 int num_eth_ports = 0; 2461 unsigned int port; 2462 2463 /* If QP state >= init, it is assigned to a port and we can check this 2464 * port only. 2465 */ 2466 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2467 if (attr.qp_state >= IB_QPS_INIT) { 2468 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2469 IB_LINK_LAYER_INFINIBAND) 2470 return true; 2471 goto lid_check; 2472 } 2473 } 2474 2475 /* Can't get a quick answer, iterate over all ports */ 2476 rdma_for_each_port(qp->device, port) 2477 if (rdma_port_get_link_layer(qp->device, port) != 2478 IB_LINK_LAYER_INFINIBAND) 2479 num_eth_ports++; 2480 2481 /* If we have at lease one Ethernet port, RoCE annex declares that 2482 * multicast LID should be ignored. We can't tell at this step if the 2483 * QP belongs to an IB or Ethernet port. 2484 */ 2485 if (num_eth_ports) 2486 return true; 2487 2488 /* If all the ports are IB, we can check according to IB spec. */ 2489 lid_check: 2490 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2491 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2492 } 2493 2494 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2495 { 2496 int ret; 2497 2498 if (!qp->device->ops.attach_mcast) 2499 return -EOPNOTSUPP; 2500 2501 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2502 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2503 return -EINVAL; 2504 2505 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2506 if (!ret) 2507 atomic_inc(&qp->usecnt); 2508 return ret; 2509 } 2510 EXPORT_SYMBOL(ib_attach_mcast); 2511 2512 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2513 { 2514 int ret; 2515 2516 if (!qp->device->ops.detach_mcast) 2517 return -EOPNOTSUPP; 2518 2519 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2520 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2521 return -EINVAL; 2522 2523 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2524 if (!ret) 2525 atomic_dec(&qp->usecnt); 2526 return ret; 2527 } 2528 EXPORT_SYMBOL(ib_detach_mcast); 2529 2530 /** 2531 * ib_alloc_xrcd_user - Allocates an XRC domain. 2532 * @device: The device on which to allocate the XRC domain. 2533 * @inode: inode to connect XRCD 2534 * @udata: Valid user data or NULL for kernel object 2535 */ 2536 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2537 struct inode *inode, struct ib_udata *udata) 2538 { 2539 struct ib_xrcd *xrcd; 2540 int ret; 2541 2542 if (!device->ops.alloc_xrcd) 2543 return ERR_PTR(-EOPNOTSUPP); 2544 2545 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2546 if (!xrcd) 2547 return ERR_PTR(-ENOMEM); 2548 2549 xrcd->device = device; 2550 xrcd->inode = inode; 2551 atomic_set(&xrcd->usecnt, 0); 2552 init_rwsem(&xrcd->tgt_qps_rwsem); 2553 xa_init(&xrcd->tgt_qps); 2554 2555 ret = device->ops.alloc_xrcd(xrcd, udata); 2556 if (ret) 2557 goto err; 2558 return xrcd; 2559 err: 2560 kfree(xrcd); 2561 return ERR_PTR(ret); 2562 } 2563 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2564 2565 /** 2566 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2567 * @xrcd: The XRC domain to deallocate. 2568 * @udata: Valid user data or NULL for kernel object 2569 */ 2570 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2571 { 2572 int ret; 2573 2574 if (atomic_read(&xrcd->usecnt)) 2575 return -EBUSY; 2576 2577 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2578 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2579 if (ret) 2580 return ret; 2581 kfree(xrcd); 2582 return ret; 2583 } 2584 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2585 2586 /** 2587 * ib_create_wq - Creates a WQ associated with the specified protection 2588 * domain. 2589 * @pd: The protection domain associated with the WQ. 2590 * @wq_attr: A list of initial attributes required to create the 2591 * WQ. If WQ creation succeeds, then the attributes are updated to 2592 * the actual capabilities of the created WQ. 2593 * 2594 * wq_attr->max_wr and wq_attr->max_sge determine 2595 * the requested size of the WQ, and set to the actual values allocated 2596 * on return. 2597 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2598 * at least as large as the requested values. 2599 */ 2600 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2601 struct ib_wq_init_attr *wq_attr) 2602 { 2603 struct ib_wq *wq; 2604 2605 if (!pd->device->ops.create_wq) 2606 return ERR_PTR(-EOPNOTSUPP); 2607 2608 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2609 if (!IS_ERR(wq)) { 2610 wq->event_handler = wq_attr->event_handler; 2611 wq->wq_context = wq_attr->wq_context; 2612 wq->wq_type = wq_attr->wq_type; 2613 wq->cq = wq_attr->cq; 2614 wq->device = pd->device; 2615 wq->pd = pd; 2616 wq->uobject = NULL; 2617 atomic_inc(&pd->usecnt); 2618 atomic_inc(&wq_attr->cq->usecnt); 2619 atomic_set(&wq->usecnt, 0); 2620 } 2621 return wq; 2622 } 2623 EXPORT_SYMBOL(ib_create_wq); 2624 2625 /** 2626 * ib_destroy_wq_user - Destroys the specified user WQ. 2627 * @wq: The WQ to destroy. 2628 * @udata: Valid user data 2629 */ 2630 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2631 { 2632 struct ib_cq *cq = wq->cq; 2633 struct ib_pd *pd = wq->pd; 2634 int ret; 2635 2636 if (atomic_read(&wq->usecnt)) 2637 return -EBUSY; 2638 2639 ret = wq->device->ops.destroy_wq(wq, udata); 2640 if (ret) 2641 return ret; 2642 2643 atomic_dec(&pd->usecnt); 2644 atomic_dec(&cq->usecnt); 2645 return ret; 2646 } 2647 EXPORT_SYMBOL(ib_destroy_wq_user); 2648 2649 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2650 struct ib_mr_status *mr_status) 2651 { 2652 if (!mr->device->ops.check_mr_status) 2653 return -EOPNOTSUPP; 2654 2655 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2656 } 2657 EXPORT_SYMBOL(ib_check_mr_status); 2658 2659 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2660 int state) 2661 { 2662 if (!device->ops.set_vf_link_state) 2663 return -EOPNOTSUPP; 2664 2665 return device->ops.set_vf_link_state(device, vf, port, state); 2666 } 2667 EXPORT_SYMBOL(ib_set_vf_link_state); 2668 2669 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2670 struct ifla_vf_info *info) 2671 { 2672 if (!device->ops.get_vf_config) 2673 return -EOPNOTSUPP; 2674 2675 return device->ops.get_vf_config(device, vf, port, info); 2676 } 2677 EXPORT_SYMBOL(ib_get_vf_config); 2678 2679 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2680 struct ifla_vf_stats *stats) 2681 { 2682 if (!device->ops.get_vf_stats) 2683 return -EOPNOTSUPP; 2684 2685 return device->ops.get_vf_stats(device, vf, port, stats); 2686 } 2687 EXPORT_SYMBOL(ib_get_vf_stats); 2688 2689 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2690 int type) 2691 { 2692 if (!device->ops.set_vf_guid) 2693 return -EOPNOTSUPP; 2694 2695 return device->ops.set_vf_guid(device, vf, port, guid, type); 2696 } 2697 EXPORT_SYMBOL(ib_set_vf_guid); 2698 2699 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2700 struct ifla_vf_guid *node_guid, 2701 struct ifla_vf_guid *port_guid) 2702 { 2703 if (!device->ops.get_vf_guid) 2704 return -EOPNOTSUPP; 2705 2706 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2707 } 2708 EXPORT_SYMBOL(ib_get_vf_guid); 2709 /** 2710 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2711 * information) and set an appropriate memory region for registration. 2712 * @mr: memory region 2713 * @data_sg: dma mapped scatterlist for data 2714 * @data_sg_nents: number of entries in data_sg 2715 * @data_sg_offset: offset in bytes into data_sg 2716 * @meta_sg: dma mapped scatterlist for metadata 2717 * @meta_sg_nents: number of entries in meta_sg 2718 * @meta_sg_offset: offset in bytes into meta_sg 2719 * @page_size: page vector desired page size 2720 * 2721 * Constraints: 2722 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2723 * 2724 * Return: 0 on success. 2725 * 2726 * After this completes successfully, the memory region 2727 * is ready for registration. 2728 */ 2729 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2730 int data_sg_nents, unsigned int *data_sg_offset, 2731 struct scatterlist *meta_sg, int meta_sg_nents, 2732 unsigned int *meta_sg_offset, unsigned int page_size) 2733 { 2734 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2735 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2736 return -EOPNOTSUPP; 2737 2738 mr->page_size = page_size; 2739 2740 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2741 data_sg_offset, meta_sg, 2742 meta_sg_nents, meta_sg_offset); 2743 } 2744 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2745 2746 /** 2747 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2748 * and set it the memory region. 2749 * @mr: memory region 2750 * @sg: dma mapped scatterlist 2751 * @sg_nents: number of entries in sg 2752 * @sg_offset: offset in bytes into sg 2753 * @page_size: page vector desired page size 2754 * 2755 * Constraints: 2756 * 2757 * - The first sg element is allowed to have an offset. 2758 * - Each sg element must either be aligned to page_size or virtually 2759 * contiguous to the previous element. In case an sg element has a 2760 * non-contiguous offset, the mapping prefix will not include it. 2761 * - The last sg element is allowed to have length less than page_size. 2762 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2763 * then only max_num_sg entries will be mapped. 2764 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2765 * constraints holds and the page_size argument is ignored. 2766 * 2767 * Returns the number of sg elements that were mapped to the memory region. 2768 * 2769 * After this completes successfully, the memory region 2770 * is ready for registration. 2771 */ 2772 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2773 unsigned int *sg_offset, unsigned int page_size) 2774 { 2775 if (unlikely(!mr->device->ops.map_mr_sg)) 2776 return -EOPNOTSUPP; 2777 2778 mr->page_size = page_size; 2779 2780 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2781 } 2782 EXPORT_SYMBOL(ib_map_mr_sg); 2783 2784 /** 2785 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2786 * to a page vector 2787 * @mr: memory region 2788 * @sgl: dma mapped scatterlist 2789 * @sg_nents: number of entries in sg 2790 * @sg_offset_p: ==== ======================================================= 2791 * IN start offset in bytes into sg 2792 * OUT offset in bytes for element n of the sg of the first 2793 * byte that has not been processed where n is the return 2794 * value of this function. 2795 * ==== ======================================================= 2796 * @set_page: driver page assignment function pointer 2797 * 2798 * Core service helper for drivers to convert the largest 2799 * prefix of given sg list to a page vector. The sg list 2800 * prefix converted is the prefix that meet the requirements 2801 * of ib_map_mr_sg. 2802 * 2803 * Returns the number of sg elements that were assigned to 2804 * a page vector. 2805 */ 2806 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2807 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2808 { 2809 struct scatterlist *sg; 2810 u64 last_end_dma_addr = 0; 2811 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2812 unsigned int last_page_off = 0; 2813 u64 page_mask = ~((u64)mr->page_size - 1); 2814 int i, ret; 2815 2816 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2817 return -EINVAL; 2818 2819 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2820 mr->length = 0; 2821 2822 for_each_sg(sgl, sg, sg_nents, i) { 2823 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2824 u64 prev_addr = dma_addr; 2825 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2826 u64 end_dma_addr = dma_addr + dma_len; 2827 u64 page_addr = dma_addr & page_mask; 2828 2829 /* 2830 * For the second and later elements, check whether either the 2831 * end of element i-1 or the start of element i is not aligned 2832 * on a page boundary. 2833 */ 2834 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2835 /* Stop mapping if there is a gap. */ 2836 if (last_end_dma_addr != dma_addr) 2837 break; 2838 2839 /* 2840 * Coalesce this element with the last. If it is small 2841 * enough just update mr->length. Otherwise start 2842 * mapping from the next page. 2843 */ 2844 goto next_page; 2845 } 2846 2847 do { 2848 ret = set_page(mr, page_addr); 2849 if (unlikely(ret < 0)) { 2850 sg_offset = prev_addr - sg_dma_address(sg); 2851 mr->length += prev_addr - dma_addr; 2852 if (sg_offset_p) 2853 *sg_offset_p = sg_offset; 2854 return i || sg_offset ? i : ret; 2855 } 2856 prev_addr = page_addr; 2857 next_page: 2858 page_addr += mr->page_size; 2859 } while (page_addr < end_dma_addr); 2860 2861 mr->length += dma_len; 2862 last_end_dma_addr = end_dma_addr; 2863 last_page_off = end_dma_addr & ~page_mask; 2864 2865 sg_offset = 0; 2866 } 2867 2868 if (sg_offset_p) 2869 *sg_offset_p = 0; 2870 return i; 2871 } 2872 EXPORT_SYMBOL(ib_sg_to_pages); 2873 2874 struct ib_drain_cqe { 2875 struct ib_cqe cqe; 2876 struct completion done; 2877 }; 2878 2879 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2880 { 2881 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2882 cqe); 2883 2884 complete(&cqe->done); 2885 } 2886 2887 /* 2888 * Post a WR and block until its completion is reaped for the SQ. 2889 */ 2890 static void __ib_drain_sq(struct ib_qp *qp) 2891 { 2892 struct ib_cq *cq = qp->send_cq; 2893 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2894 struct ib_drain_cqe sdrain; 2895 struct ib_rdma_wr swr = { 2896 .wr = { 2897 .next = NULL, 2898 { .wr_cqe = &sdrain.cqe, }, 2899 .opcode = IB_WR_RDMA_WRITE, 2900 }, 2901 }; 2902 int ret; 2903 2904 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2905 if (ret) { 2906 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2907 return; 2908 } 2909 2910 sdrain.cqe.done = ib_drain_qp_done; 2911 init_completion(&sdrain.done); 2912 2913 ret = ib_post_send(qp, &swr.wr, NULL); 2914 if (ret) { 2915 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2916 return; 2917 } 2918 2919 if (cq->poll_ctx == IB_POLL_DIRECT) 2920 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2921 ib_process_cq_direct(cq, -1); 2922 else 2923 wait_for_completion(&sdrain.done); 2924 } 2925 2926 /* 2927 * Post a WR and block until its completion is reaped for the RQ. 2928 */ 2929 static void __ib_drain_rq(struct ib_qp *qp) 2930 { 2931 struct ib_cq *cq = qp->recv_cq; 2932 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2933 struct ib_drain_cqe rdrain; 2934 struct ib_recv_wr rwr = {}; 2935 int ret; 2936 2937 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2938 if (ret) { 2939 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2940 return; 2941 } 2942 2943 rwr.wr_cqe = &rdrain.cqe; 2944 rdrain.cqe.done = ib_drain_qp_done; 2945 init_completion(&rdrain.done); 2946 2947 ret = ib_post_recv(qp, &rwr, NULL); 2948 if (ret) { 2949 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2950 return; 2951 } 2952 2953 if (cq->poll_ctx == IB_POLL_DIRECT) 2954 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2955 ib_process_cq_direct(cq, -1); 2956 else 2957 wait_for_completion(&rdrain.done); 2958 } 2959 2960 /* 2961 * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout 2962 * expires. 2963 * @qp: queue pair associated with SRQ to drain 2964 * 2965 * Quoting 10.3.1 Queue Pair and EE Context States: 2966 * 2967 * Note, for QPs that are associated with an SRQ, the Consumer should take the 2968 * QP through the Error State before invoking a Destroy QP or a Modify QP to the 2969 * Reset State. The Consumer may invoke the Destroy QP without first performing 2970 * a Modify QP to the Error State and waiting for the Affiliated Asynchronous 2971 * Last WQE Reached Event. However, if the Consumer does not wait for the 2972 * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment 2973 * leakage may occur. Therefore, it is good programming practice to tear down a 2974 * QP that is associated with an SRQ by using the following process: 2975 * 2976 * - Put the QP in the Error State 2977 * - Wait for the Affiliated Asynchronous Last WQE Reached Event; 2978 * - either: 2979 * drain the CQ by invoking the Poll CQ verb and either wait for CQ 2980 * to be empty or the number of Poll CQ operations has exceeded 2981 * CQ capacity size; 2982 * - or 2983 * post another WR that completes on the same CQ and wait for this 2984 * WR to return as a WC; 2985 * - and then invoke a Destroy QP or Reset QP. 2986 * 2987 * We use the first option. 2988 */ 2989 static void __ib_drain_srq(struct ib_qp *qp) 2990 { 2991 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2992 struct ib_cq *cq; 2993 int n, polled = 0; 2994 int ret; 2995 2996 if (!qp->srq) { 2997 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp); 2998 return; 2999 } 3000 3001 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 3002 if (ret) { 3003 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret); 3004 return; 3005 } 3006 3007 if (ib_srq_has_cq(qp->srq->srq_type)) { 3008 cq = qp->srq->ext.cq; 3009 } else if (qp->recv_cq) { 3010 cq = qp->recv_cq; 3011 } else { 3012 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp); 3013 return; 3014 } 3015 3016 if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) { 3017 while (polled != cq->cqe) { 3018 n = ib_process_cq_direct(cq, cq->cqe - polled); 3019 if (!n) 3020 return; 3021 polled += n; 3022 } 3023 } 3024 } 3025 3026 /** 3027 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 3028 * application. 3029 * @qp: queue pair to drain 3030 * 3031 * If the device has a provider-specific drain function, then 3032 * call that. Otherwise call the generic drain function 3033 * __ib_drain_sq(). 3034 * 3035 * The caller must: 3036 * 3037 * ensure there is room in the CQ and SQ for the drain work request and 3038 * completion. 3039 * 3040 * allocate the CQ using ib_alloc_cq(). 3041 * 3042 * ensure that there are no other contexts that are posting WRs concurrently. 3043 * Otherwise the drain is not guaranteed. 3044 */ 3045 void ib_drain_sq(struct ib_qp *qp) 3046 { 3047 if (qp->device->ops.drain_sq) 3048 qp->device->ops.drain_sq(qp); 3049 else 3050 __ib_drain_sq(qp); 3051 trace_cq_drain_complete(qp->send_cq); 3052 } 3053 EXPORT_SYMBOL(ib_drain_sq); 3054 3055 /** 3056 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 3057 * application. 3058 * @qp: queue pair to drain 3059 * 3060 * If the device has a provider-specific drain function, then 3061 * call that. Otherwise call the generic drain function 3062 * __ib_drain_rq(). 3063 * 3064 * The caller must: 3065 * 3066 * ensure there is room in the CQ and RQ for the drain work request and 3067 * completion. 3068 * 3069 * allocate the CQ using ib_alloc_cq(). 3070 * 3071 * ensure that there are no other contexts that are posting WRs concurrently. 3072 * Otherwise the drain is not guaranteed. 3073 */ 3074 void ib_drain_rq(struct ib_qp *qp) 3075 { 3076 if (qp->device->ops.drain_rq) 3077 qp->device->ops.drain_rq(qp); 3078 else 3079 __ib_drain_rq(qp); 3080 trace_cq_drain_complete(qp->recv_cq); 3081 } 3082 EXPORT_SYMBOL(ib_drain_rq); 3083 3084 /** 3085 * ib_drain_qp() - Block until all CQEs have been consumed by the 3086 * application on both the RQ and SQ. 3087 * @qp: queue pair to drain 3088 * 3089 * The caller must: 3090 * 3091 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 3092 * and completions. 3093 * 3094 * allocate the CQs using ib_alloc_cq(). 3095 * 3096 * ensure that there are no other contexts that are posting WRs concurrently. 3097 * Otherwise the drain is not guaranteed. 3098 */ 3099 void ib_drain_qp(struct ib_qp *qp) 3100 { 3101 ib_drain_sq(qp); 3102 if (!qp->srq) 3103 ib_drain_rq(qp); 3104 else 3105 __ib_drain_srq(qp); 3106 } 3107 EXPORT_SYMBOL(ib_drain_qp); 3108 3109 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 3110 enum rdma_netdev_t type, const char *name, 3111 unsigned char name_assign_type, 3112 void (*setup)(struct net_device *)) 3113 { 3114 struct rdma_netdev_alloc_params params; 3115 struct net_device *netdev; 3116 int rc; 3117 3118 if (!device->ops.rdma_netdev_get_params) 3119 return ERR_PTR(-EOPNOTSUPP); 3120 3121 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 3122 ¶ms); 3123 if (rc) 3124 return ERR_PTR(rc); 3125 3126 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 3127 setup, params.txqs, params.rxqs); 3128 if (!netdev) 3129 return ERR_PTR(-ENOMEM); 3130 3131 return netdev; 3132 } 3133 EXPORT_SYMBOL(rdma_alloc_netdev); 3134 3135 int rdma_init_netdev(struct ib_device *device, u32 port_num, 3136 enum rdma_netdev_t type, const char *name, 3137 unsigned char name_assign_type, 3138 void (*setup)(struct net_device *), 3139 struct net_device *netdev) 3140 { 3141 struct rdma_netdev_alloc_params params; 3142 int rc; 3143 3144 if (!device->ops.rdma_netdev_get_params) 3145 return -EOPNOTSUPP; 3146 3147 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 3148 ¶ms); 3149 if (rc) 3150 return rc; 3151 3152 return params.initialize_rdma_netdev(device, port_num, 3153 netdev, params.param); 3154 } 3155 EXPORT_SYMBOL(rdma_init_netdev); 3156 3157 void __rdma_block_iter_start(struct ib_block_iter *biter, 3158 struct scatterlist *sglist, unsigned int nents, 3159 unsigned long pgsz) 3160 { 3161 memset(biter, 0, sizeof(struct ib_block_iter)); 3162 biter->__sg = sglist; 3163 biter->__sg_nents = nents; 3164 3165 /* Driver provides best block size to use */ 3166 biter->__pg_bit = __fls(pgsz); 3167 } 3168 EXPORT_SYMBOL(__rdma_block_iter_start); 3169 3170 bool __rdma_block_iter_next(struct ib_block_iter *biter) 3171 { 3172 unsigned int block_offset; 3173 unsigned int delta; 3174 3175 if (!biter->__sg_nents || !biter->__sg) 3176 return false; 3177 3178 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 3179 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 3180 delta = BIT_ULL(biter->__pg_bit) - block_offset; 3181 3182 while (biter->__sg_nents && biter->__sg && 3183 sg_dma_len(biter->__sg) - biter->__sg_advance <= delta) { 3184 delta -= sg_dma_len(biter->__sg) - biter->__sg_advance; 3185 biter->__sg_advance = 0; 3186 biter->__sg = sg_next(biter->__sg); 3187 biter->__sg_nents--; 3188 } 3189 biter->__sg_advance += delta; 3190 3191 return true; 3192 } 3193 EXPORT_SYMBOL(__rdma_block_iter_next); 3194 3195 /** 3196 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 3197 * for the drivers. 3198 * @descs: array of static descriptors 3199 * @num_counters: number of elements in array 3200 * @lifespan: milliseconds between updates 3201 */ 3202 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 3203 const struct rdma_stat_desc *descs, int num_counters, 3204 unsigned long lifespan) 3205 { 3206 struct rdma_hw_stats *stats; 3207 3208 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 3209 if (!stats) 3210 return NULL; 3211 3212 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 3213 sizeof(*stats->is_disabled), GFP_KERNEL); 3214 if (!stats->is_disabled) 3215 goto err; 3216 3217 stats->descs = descs; 3218 stats->num_counters = num_counters; 3219 stats->lifespan = msecs_to_jiffies(lifespan); 3220 mutex_init(&stats->lock); 3221 3222 return stats; 3223 3224 err: 3225 kfree(stats); 3226 return NULL; 3227 } 3228 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3229 3230 /** 3231 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3232 * @stats: statistics to release 3233 */ 3234 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3235 { 3236 if (!stats) 3237 return; 3238 3239 kfree(stats->is_disabled); 3240 kfree(stats); 3241 } 3242 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3243