xref: /linux/drivers/infiniband/core/verbs.c (revision 311aa68319f6a3d64a1e6d940d885830c7acba4c)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54 
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57 
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 			       struct rdma_ah_attr *ah_attr);
60 
61 static const char * const ib_events[] = {
62 	[IB_EVENT_CQ_ERR]		= "CQ error",
63 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66 	[IB_EVENT_COMM_EST]		= "communication established",
67 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68 	[IB_EVENT_PATH_MIG]		= "path migration successful",
69 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71 	[IB_EVENT_PORT_ACTIVE]		= "port active",
72 	[IB_EVENT_PORT_ERR]		= "port error",
73 	[IB_EVENT_LID_CHANGE]		= "LID change",
74 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75 	[IB_EVENT_SM_CHANGE]		= "SM change",
76 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80 	[IB_EVENT_GID_CHANGE]		= "GID changed",
81 	[IB_EVENT_DEVICE_SPEED_CHANGE]  = "device speed change"
82 };
83 
84 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85 {
86 	size_t index = event;
87 
88 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
89 			ib_events[index] : "unrecognized event";
90 }
91 EXPORT_SYMBOL(ib_event_msg);
92 
93 static const char * const wc_statuses[] = {
94 	[IB_WC_SUCCESS]			= "success",
95 	[IB_WC_LOC_LEN_ERR]		= "local length error",
96 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
97 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
98 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
99 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
100 	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
101 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
102 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
103 	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
104 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
105 	[IB_WC_REM_OP_ERR]		= "remote operation error",
106 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
107 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
108 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
109 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
110 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
111 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
112 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
113 	[IB_WC_FATAL_ERR]		= "fatal error",
114 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
115 	[IB_WC_GENERAL_ERR]		= "general error",
116 };
117 
118 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 {
120 	size_t index = status;
121 
122 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
123 			wc_statuses[index] : "unrecognized status";
124 }
125 EXPORT_SYMBOL(ib_wc_status_msg);
126 
127 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
128 {
129 	switch (rate) {
130 	case IB_RATE_2_5_GBPS: return   1;
131 	case IB_RATE_5_GBPS:   return   2;
132 	case IB_RATE_10_GBPS:  return   4;
133 	case IB_RATE_20_GBPS:  return   8;
134 	case IB_RATE_30_GBPS:  return  12;
135 	case IB_RATE_40_GBPS:  return  16;
136 	case IB_RATE_60_GBPS:  return  24;
137 	case IB_RATE_80_GBPS:  return  32;
138 	case IB_RATE_120_GBPS: return  48;
139 	case IB_RATE_14_GBPS:  return   6;
140 	case IB_RATE_56_GBPS:  return  22;
141 	case IB_RATE_112_GBPS: return  45;
142 	case IB_RATE_168_GBPS: return  67;
143 	case IB_RATE_25_GBPS:  return  10;
144 	case IB_RATE_100_GBPS: return  40;
145 	case IB_RATE_200_GBPS: return  80;
146 	case IB_RATE_300_GBPS: return 120;
147 	case IB_RATE_28_GBPS:  return  11;
148 	case IB_RATE_50_GBPS:  return  20;
149 	case IB_RATE_400_GBPS: return 160;
150 	case IB_RATE_600_GBPS: return 240;
151 	case IB_RATE_800_GBPS: return 320;
152 	case IB_RATE_1600_GBPS: return 640;
153 	default:	       return  -1;
154 	}
155 }
156 EXPORT_SYMBOL(ib_rate_to_mult);
157 
158 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
159 {
160 	switch (mult) {
161 	case 1:   return IB_RATE_2_5_GBPS;
162 	case 2:   return IB_RATE_5_GBPS;
163 	case 4:   return IB_RATE_10_GBPS;
164 	case 8:   return IB_RATE_20_GBPS;
165 	case 12:  return IB_RATE_30_GBPS;
166 	case 16:  return IB_RATE_40_GBPS;
167 	case 24:  return IB_RATE_60_GBPS;
168 	case 32:  return IB_RATE_80_GBPS;
169 	case 48:  return IB_RATE_120_GBPS;
170 	case 6:   return IB_RATE_14_GBPS;
171 	case 22:  return IB_RATE_56_GBPS;
172 	case 45:  return IB_RATE_112_GBPS;
173 	case 67:  return IB_RATE_168_GBPS;
174 	case 10:  return IB_RATE_25_GBPS;
175 	case 40:  return IB_RATE_100_GBPS;
176 	case 80:  return IB_RATE_200_GBPS;
177 	case 120: return IB_RATE_300_GBPS;
178 	case 11:  return IB_RATE_28_GBPS;
179 	case 20:  return IB_RATE_50_GBPS;
180 	case 160: return IB_RATE_400_GBPS;
181 	case 240: return IB_RATE_600_GBPS;
182 	case 320: return IB_RATE_800_GBPS;
183 	case 640: return IB_RATE_1600_GBPS;
184 	default:  return IB_RATE_PORT_CURRENT;
185 	}
186 }
187 EXPORT_SYMBOL(mult_to_ib_rate);
188 
189 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
190 {
191 	switch (rate) {
192 	case IB_RATE_2_5_GBPS: return 2500;
193 	case IB_RATE_5_GBPS:   return 5000;
194 	case IB_RATE_10_GBPS:  return 10000;
195 	case IB_RATE_20_GBPS:  return 20000;
196 	case IB_RATE_30_GBPS:  return 30000;
197 	case IB_RATE_40_GBPS:  return 40000;
198 	case IB_RATE_60_GBPS:  return 60000;
199 	case IB_RATE_80_GBPS:  return 80000;
200 	case IB_RATE_120_GBPS: return 120000;
201 	case IB_RATE_14_GBPS:  return 14062;
202 	case IB_RATE_56_GBPS:  return 56250;
203 	case IB_RATE_112_GBPS: return 112500;
204 	case IB_RATE_168_GBPS: return 168750;
205 	case IB_RATE_25_GBPS:  return 25781;
206 	case IB_RATE_100_GBPS: return 103125;
207 	case IB_RATE_200_GBPS: return 206250;
208 	case IB_RATE_300_GBPS: return 309375;
209 	case IB_RATE_28_GBPS:  return 28125;
210 	case IB_RATE_50_GBPS:  return 53125;
211 	case IB_RATE_400_GBPS: return 425000;
212 	case IB_RATE_600_GBPS: return 637500;
213 	case IB_RATE_800_GBPS: return 850000;
214 	case IB_RATE_1600_GBPS: return 1700000;
215 	default:	       return -1;
216 	}
217 }
218 EXPORT_SYMBOL(ib_rate_to_mbps);
219 
220 struct ib_speed_attr {
221 	const char *str;
222 	int speed;
223 };
224 
225 #define IB_SPEED_ATTR(speed_type, _str, _speed) \
226 	[speed_type] = {.str = _str, .speed = _speed}
227 
228 static const struct ib_speed_attr ib_speed_attrs[] = {
229 	IB_SPEED_ATTR(IB_SPEED_SDR, " SDR", 25),
230 	IB_SPEED_ATTR(IB_SPEED_DDR, " DDR", 50),
231 	IB_SPEED_ATTR(IB_SPEED_QDR, " QDR", 100),
232 	IB_SPEED_ATTR(IB_SPEED_FDR10, " FDR10", 100),
233 	IB_SPEED_ATTR(IB_SPEED_FDR, " FDR", 140),
234 	IB_SPEED_ATTR(IB_SPEED_EDR, " EDR", 250),
235 	IB_SPEED_ATTR(IB_SPEED_HDR, " HDR", 500),
236 	IB_SPEED_ATTR(IB_SPEED_NDR, " NDR", 1000),
237 	IB_SPEED_ATTR(IB_SPEED_XDR, " XDR", 2000),
238 };
239 
240 int ib_port_attr_to_speed_info(struct ib_port_attr *attr,
241 			       struct ib_port_speed_info *speed_info)
242 {
243 	int speed_idx = attr->active_speed;
244 
245 	switch (attr->active_speed) {
246 	case IB_SPEED_DDR:
247 	case IB_SPEED_QDR:
248 	case IB_SPEED_FDR10:
249 	case IB_SPEED_FDR:
250 	case IB_SPEED_EDR:
251 	case IB_SPEED_HDR:
252 	case IB_SPEED_NDR:
253 	case IB_SPEED_XDR:
254 	case IB_SPEED_SDR:
255 		break;
256 	default:
257 		speed_idx = IB_SPEED_SDR; /* Default to SDR for invalid rates */
258 		break;
259 	}
260 
261 	speed_info->str = ib_speed_attrs[speed_idx].str;
262 	speed_info->rate = ib_speed_attrs[speed_idx].speed;
263 	speed_info->rate *= ib_width_enum_to_int(attr->active_width);
264 	if (speed_info->rate < 0)
265 		return -EINVAL;
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(ib_port_attr_to_speed_info);
270 
271 __attribute_const__ enum rdma_transport_type
272 rdma_node_get_transport(unsigned int node_type)
273 {
274 
275 	if (node_type == RDMA_NODE_USNIC)
276 		return RDMA_TRANSPORT_USNIC;
277 	if (node_type == RDMA_NODE_USNIC_UDP)
278 		return RDMA_TRANSPORT_USNIC_UDP;
279 	if (node_type == RDMA_NODE_RNIC)
280 		return RDMA_TRANSPORT_IWARP;
281 	if (node_type == RDMA_NODE_UNSPECIFIED)
282 		return RDMA_TRANSPORT_UNSPECIFIED;
283 
284 	return RDMA_TRANSPORT_IB;
285 }
286 EXPORT_SYMBOL(rdma_node_get_transport);
287 
288 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
289 					      u32 port_num)
290 {
291 	enum rdma_transport_type lt;
292 	if (device->ops.get_link_layer)
293 		return device->ops.get_link_layer(device, port_num);
294 
295 	lt = rdma_node_get_transport(device->node_type);
296 	if (lt == RDMA_TRANSPORT_IB)
297 		return IB_LINK_LAYER_INFINIBAND;
298 
299 	return IB_LINK_LAYER_ETHERNET;
300 }
301 EXPORT_SYMBOL(rdma_port_get_link_layer);
302 
303 /* Protection domains */
304 
305 /**
306  * __ib_alloc_pd - Allocates an unused protection domain.
307  * @device: The device on which to allocate the protection domain.
308  * @flags: protection domain flags
309  * @caller: caller's build-time module name
310  *
311  * A protection domain object provides an association between QPs, shared
312  * receive queues, address handles, memory regions, and memory windows.
313  *
314  * Every PD has a local_dma_lkey which can be used as the lkey value for local
315  * memory operations.
316  */
317 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
318 		const char *caller)
319 {
320 	struct ib_pd *pd;
321 	int mr_access_flags = 0;
322 	int ret;
323 
324 	pd = rdma_zalloc_drv_obj(device, ib_pd);
325 	if (!pd)
326 		return ERR_PTR(-ENOMEM);
327 
328 	pd->device = device;
329 	pd->flags = flags;
330 
331 	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
332 	rdma_restrack_set_name(&pd->res, caller);
333 
334 	ret = device->ops.alloc_pd(pd, NULL);
335 	if (ret) {
336 		rdma_restrack_put(&pd->res);
337 		kfree(pd);
338 		return ERR_PTR(ret);
339 	}
340 	rdma_restrack_add(&pd->res);
341 
342 	if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
343 		pd->local_dma_lkey = device->local_dma_lkey;
344 	else
345 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
346 
347 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
348 		pr_warn("%s: enabling unsafe global rkey\n", caller);
349 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
350 	}
351 
352 	if (mr_access_flags) {
353 		struct ib_mr *mr;
354 
355 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
356 		if (IS_ERR(mr)) {
357 			ib_dealloc_pd(pd);
358 			return ERR_CAST(mr);
359 		}
360 
361 		mr->device	= pd->device;
362 		mr->pd		= pd;
363 		mr->type        = IB_MR_TYPE_DMA;
364 		mr->uobject	= NULL;
365 		mr->need_inval	= false;
366 
367 		pd->__internal_mr = mr;
368 
369 		if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
370 			pd->local_dma_lkey = pd->__internal_mr->lkey;
371 
372 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
373 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
374 	}
375 
376 	return pd;
377 }
378 EXPORT_SYMBOL(__ib_alloc_pd);
379 
380 /**
381  * ib_dealloc_pd_user - Deallocates a protection domain.
382  * @pd: The protection domain to deallocate.
383  * @udata: Valid user data or NULL for kernel object
384  *
385  * It is an error to call this function while any resources in the pd still
386  * exist.  The caller is responsible to synchronously destroy them and
387  * guarantee no new allocations will happen.
388  */
389 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
390 {
391 	int ret;
392 
393 	if (pd->__internal_mr) {
394 		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
395 		WARN_ON(ret);
396 		pd->__internal_mr = NULL;
397 	}
398 
399 	ret = pd->device->ops.dealloc_pd(pd, udata);
400 	if (ret)
401 		return ret;
402 
403 	rdma_restrack_del(&pd->res);
404 	kfree(pd);
405 	return ret;
406 }
407 EXPORT_SYMBOL(ib_dealloc_pd_user);
408 
409 /* Address handles */
410 
411 /**
412  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
413  * @dest:       Pointer to destination ah_attr. Contents of the destination
414  *              pointer is assumed to be invalid and attribute are overwritten.
415  * @src:        Pointer to source ah_attr.
416  */
417 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
418 		       const struct rdma_ah_attr *src)
419 {
420 	*dest = *src;
421 	if (dest->grh.sgid_attr)
422 		rdma_hold_gid_attr(dest->grh.sgid_attr);
423 }
424 EXPORT_SYMBOL(rdma_copy_ah_attr);
425 
426 /**
427  * rdma_replace_ah_attr - Replace valid ah_attr with new one.
428  * @old:        Pointer to existing ah_attr which needs to be replaced.
429  *              old is assumed to be valid or zero'd
430  * @new:        Pointer to the new ah_attr.
431  *
432  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
433  * old the ah_attr is valid; after that it copies the new attribute and holds
434  * the reference to the replaced ah_attr.
435  */
436 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
437 			  const struct rdma_ah_attr *new)
438 {
439 	rdma_destroy_ah_attr(old);
440 	*old = *new;
441 	if (old->grh.sgid_attr)
442 		rdma_hold_gid_attr(old->grh.sgid_attr);
443 }
444 EXPORT_SYMBOL(rdma_replace_ah_attr);
445 
446 /**
447  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
448  * @dest:       Pointer to destination ah_attr to copy to.
449  *              dest is assumed to be valid or zero'd
450  * @src:        Pointer to the new ah_attr.
451  *
452  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
453  * if it is valid. This also transfers ownership of internal references from
454  * src to dest, making src invalid in the process. No new reference of the src
455  * ah_attr is taken.
456  */
457 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
458 {
459 	rdma_destroy_ah_attr(dest);
460 	*dest = *src;
461 	src->grh.sgid_attr = NULL;
462 }
463 EXPORT_SYMBOL(rdma_move_ah_attr);
464 
465 /*
466  * Validate that the rdma_ah_attr is valid for the device before passing it
467  * off to the driver.
468  */
469 static int rdma_check_ah_attr(struct ib_device *device,
470 			      struct rdma_ah_attr *ah_attr)
471 {
472 	if (!rdma_is_port_valid(device, ah_attr->port_num))
473 		return -EINVAL;
474 
475 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
476 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
477 	    !(ah_attr->ah_flags & IB_AH_GRH))
478 		return -EINVAL;
479 
480 	if (ah_attr->grh.sgid_attr) {
481 		/*
482 		 * Make sure the passed sgid_attr is consistent with the
483 		 * parameters
484 		 */
485 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
486 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
487 			return -EINVAL;
488 	}
489 	return 0;
490 }
491 
492 /*
493  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
494  * On success the caller is responsible to call rdma_unfill_sgid_attr().
495  */
496 static int rdma_fill_sgid_attr(struct ib_device *device,
497 			       struct rdma_ah_attr *ah_attr,
498 			       const struct ib_gid_attr **old_sgid_attr)
499 {
500 	const struct ib_gid_attr *sgid_attr;
501 	struct ib_global_route *grh;
502 	int ret;
503 
504 	*old_sgid_attr = ah_attr->grh.sgid_attr;
505 
506 	ret = rdma_check_ah_attr(device, ah_attr);
507 	if (ret)
508 		return ret;
509 
510 	if (!(ah_attr->ah_flags & IB_AH_GRH))
511 		return 0;
512 
513 	grh = rdma_ah_retrieve_grh(ah_attr);
514 	if (grh->sgid_attr)
515 		return 0;
516 
517 	sgid_attr =
518 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
519 	if (IS_ERR(sgid_attr))
520 		return PTR_ERR(sgid_attr);
521 
522 	/* Move ownerhip of the kref into the ah_attr */
523 	grh->sgid_attr = sgid_attr;
524 	return 0;
525 }
526 
527 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
528 				  const struct ib_gid_attr *old_sgid_attr)
529 {
530 	/*
531 	 * Fill didn't change anything, the caller retains ownership of
532 	 * whatever it passed
533 	 */
534 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
535 		return;
536 
537 	/*
538 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
539 	 * doesn't see any change in the rdma_ah_attr. If we get here
540 	 * old_sgid_attr is NULL.
541 	 */
542 	rdma_destroy_ah_attr(ah_attr);
543 }
544 
545 static const struct ib_gid_attr *
546 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
547 		      const struct ib_gid_attr *old_attr)
548 {
549 	if (old_attr)
550 		rdma_put_gid_attr(old_attr);
551 	if (ah_attr->ah_flags & IB_AH_GRH) {
552 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
553 		return ah_attr->grh.sgid_attr;
554 	}
555 	return NULL;
556 }
557 
558 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
559 				     struct rdma_ah_attr *ah_attr,
560 				     u32 flags,
561 				     struct ib_udata *udata,
562 				     struct net_device *xmit_slave)
563 {
564 	struct rdma_ah_init_attr init_attr = {};
565 	struct ib_device *device = pd->device;
566 	struct ib_ah *ah;
567 	int ret;
568 
569 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
570 
571 	if (!udata && !device->ops.create_ah)
572 		return ERR_PTR(-EOPNOTSUPP);
573 
574 	ah = rdma_zalloc_drv_obj_gfp(
575 		device, ib_ah,
576 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
577 	if (!ah)
578 		return ERR_PTR(-ENOMEM);
579 
580 	ah->device = device;
581 	ah->pd = pd;
582 	ah->type = ah_attr->type;
583 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
584 	init_attr.ah_attr = ah_attr;
585 	init_attr.flags = flags;
586 	init_attr.xmit_slave = xmit_slave;
587 
588 	if (udata)
589 		ret = device->ops.create_user_ah(ah, &init_attr, udata);
590 	else
591 		ret = device->ops.create_ah(ah, &init_attr, NULL);
592 	if (ret) {
593 		if (ah->sgid_attr)
594 			rdma_put_gid_attr(ah->sgid_attr);
595 		kfree(ah);
596 		return ERR_PTR(ret);
597 	}
598 
599 	atomic_inc(&pd->usecnt);
600 	return ah;
601 }
602 
603 /**
604  * rdma_create_ah - Creates an address handle for the
605  * given address vector.
606  * @pd: The protection domain associated with the address handle.
607  * @ah_attr: The attributes of the address vector.
608  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
609  *
610  * It returns 0 on success and returns appropriate error code on error.
611  * The address handle is used to reference a local or global destination
612  * in all UD QP post sends.
613  */
614 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
615 			     u32 flags)
616 {
617 	const struct ib_gid_attr *old_sgid_attr;
618 	struct net_device *slave;
619 	struct ib_ah *ah;
620 	int ret;
621 
622 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
623 	if (ret)
624 		return ERR_PTR(ret);
625 	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
626 					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
627 					   GFP_KERNEL : GFP_ATOMIC);
628 	if (IS_ERR(slave)) {
629 		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
630 		return ERR_CAST(slave);
631 	}
632 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
633 	rdma_lag_put_ah_roce_slave(slave);
634 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
635 	return ah;
636 }
637 EXPORT_SYMBOL(rdma_create_ah);
638 
639 /**
640  * rdma_create_user_ah - Creates an address handle for the
641  * given address vector.
642  * It resolves destination mac address for ah attribute of RoCE type.
643  * @pd: The protection domain associated with the address handle.
644  * @ah_attr: The attributes of the address vector.
645  * @udata: pointer to user's input output buffer information need by
646  *         provider driver.
647  *
648  * It returns 0 on success and returns appropriate error code on error.
649  * The address handle is used to reference a local or global destination
650  * in all UD QP post sends.
651  */
652 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
653 				  struct rdma_ah_attr *ah_attr,
654 				  struct ib_udata *udata)
655 {
656 	const struct ib_gid_attr *old_sgid_attr;
657 	struct ib_ah *ah;
658 	int err;
659 
660 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
661 	if (err)
662 		return ERR_PTR(err);
663 
664 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
665 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
666 		if (err) {
667 			ah = ERR_PTR(err);
668 			goto out;
669 		}
670 	}
671 
672 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
673 			     udata, NULL);
674 
675 out:
676 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
677 	return ah;
678 }
679 EXPORT_SYMBOL(rdma_create_user_ah);
680 
681 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
682 {
683 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
684 	struct iphdr ip4h_checked;
685 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
686 
687 	/* If it's IPv6, the version must be 6, otherwise, the first
688 	 * 20 bytes (before the IPv4 header) are garbled.
689 	 */
690 	if (ip6h->version != 6)
691 		return (ip4h->version == 4) ? 4 : 0;
692 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
693 
694 	/* RoCE v2 requires no options, thus header length
695 	 * must be 5 words
696 	 */
697 	if (ip4h->ihl != 5)
698 		return 6;
699 
700 	/* Verify checksum.
701 	 * We can't write on scattered buffers so we need to copy to
702 	 * temp buffer.
703 	 */
704 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
705 	ip4h_checked.check = 0;
706 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
707 	/* if IPv4 header checksum is OK, believe it */
708 	if (ip4h->check == ip4h_checked.check)
709 		return 4;
710 	return 6;
711 }
712 EXPORT_SYMBOL(ib_get_rdma_header_version);
713 
714 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
715 						     u32 port_num,
716 						     const struct ib_grh *grh)
717 {
718 	int grh_version;
719 
720 	if (rdma_protocol_ib(device, port_num))
721 		return RDMA_NETWORK_IB;
722 
723 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
724 
725 	if (grh_version == 4)
726 		return RDMA_NETWORK_IPV4;
727 
728 	if (grh->next_hdr == IPPROTO_UDP)
729 		return RDMA_NETWORK_IPV6;
730 
731 	return RDMA_NETWORK_ROCE_V1;
732 }
733 
734 struct find_gid_index_context {
735 	u16 vlan_id;
736 	enum ib_gid_type gid_type;
737 };
738 
739 static bool find_gid_index(const union ib_gid *gid,
740 			   const struct ib_gid_attr *gid_attr,
741 			   void *context)
742 {
743 	struct find_gid_index_context *ctx = context;
744 	u16 vlan_id = 0xffff;
745 	int ret;
746 
747 	if (ctx->gid_type != gid_attr->gid_type)
748 		return false;
749 
750 	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
751 	if (ret)
752 		return false;
753 
754 	return ctx->vlan_id == vlan_id;
755 }
756 
757 static const struct ib_gid_attr *
758 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
759 		       u16 vlan_id, const union ib_gid *sgid,
760 		       enum ib_gid_type gid_type)
761 {
762 	struct find_gid_index_context context = {.vlan_id = vlan_id,
763 						 .gid_type = gid_type};
764 
765 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
766 				       &context);
767 }
768 
769 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
770 			      enum rdma_network_type net_type,
771 			      union ib_gid *sgid, union ib_gid *dgid)
772 {
773 	struct sockaddr_in  src_in;
774 	struct sockaddr_in  dst_in;
775 	__be32 src_saddr, dst_saddr;
776 
777 	if (!sgid || !dgid)
778 		return -EINVAL;
779 
780 	if (net_type == RDMA_NETWORK_IPV4) {
781 		memcpy(&src_in.sin_addr.s_addr,
782 		       &hdr->roce4grh.saddr, 4);
783 		memcpy(&dst_in.sin_addr.s_addr,
784 		       &hdr->roce4grh.daddr, 4);
785 		src_saddr = src_in.sin_addr.s_addr;
786 		dst_saddr = dst_in.sin_addr.s_addr;
787 		ipv6_addr_set_v4mapped(src_saddr,
788 				       (struct in6_addr *)sgid);
789 		ipv6_addr_set_v4mapped(dst_saddr,
790 				       (struct in6_addr *)dgid);
791 		return 0;
792 	} else if (net_type == RDMA_NETWORK_IPV6 ||
793 		   net_type == RDMA_NETWORK_IB || net_type == RDMA_NETWORK_ROCE_V1) {
794 		*dgid = hdr->ibgrh.dgid;
795 		*sgid = hdr->ibgrh.sgid;
796 		return 0;
797 	} else {
798 		return -EINVAL;
799 	}
800 }
801 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
802 
803 /* Resolve destination mac address and hop limit for unicast destination
804  * GID entry, considering the source GID entry as well.
805  * ah_attribute must have valid port_num, sgid_index.
806  */
807 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
808 				       struct rdma_ah_attr *ah_attr)
809 {
810 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
811 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
812 	int hop_limit = 0xff;
813 	int ret = 0;
814 
815 	/* If destination is link local and source GID is RoCEv1,
816 	 * IP stack is not used.
817 	 */
818 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
819 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
820 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
821 				ah_attr->roce.dmac);
822 		return ret;
823 	}
824 
825 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
826 					   ah_attr->roce.dmac,
827 					   sgid_attr, &hop_limit);
828 
829 	grh->hop_limit = hop_limit;
830 	return ret;
831 }
832 
833 /*
834  * This function initializes address handle attributes from the incoming packet.
835  * Incoming packet has dgid of the receiver node on which this code is
836  * getting executed and, sgid contains the GID of the sender.
837  *
838  * When resolving mac address of destination, the arrived dgid is used
839  * as sgid and, sgid is used as dgid because sgid contains destinations
840  * GID whom to respond to.
841  *
842  * On success the caller is responsible to call rdma_destroy_ah_attr on the
843  * attr.
844  */
845 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
846 			    const struct ib_wc *wc, const struct ib_grh *grh,
847 			    struct rdma_ah_attr *ah_attr)
848 {
849 	u32 flow_class;
850 	int ret;
851 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
852 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
853 	const struct ib_gid_attr *sgid_attr;
854 	int hoplimit = 0xff;
855 	union ib_gid dgid;
856 	union ib_gid sgid;
857 
858 	might_sleep();
859 
860 	memset(ah_attr, 0, sizeof *ah_attr);
861 	ah_attr->type = rdma_ah_find_type(device, port_num);
862 	if (rdma_cap_eth_ah(device, port_num)) {
863 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
864 			net_type = wc->network_hdr_type;
865 		else
866 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
867 		gid_type = ib_network_to_gid_type(net_type);
868 	}
869 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
870 					&sgid, &dgid);
871 	if (ret)
872 		return ret;
873 
874 	rdma_ah_set_sl(ah_attr, wc->sl);
875 	rdma_ah_set_port_num(ah_attr, port_num);
876 
877 	if (rdma_protocol_roce(device, port_num)) {
878 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
879 				wc->vlan_id : 0xffff;
880 
881 		if (!(wc->wc_flags & IB_WC_GRH))
882 			return -EPROTOTYPE;
883 
884 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
885 						   vlan_id, &dgid,
886 						   gid_type);
887 		if (IS_ERR(sgid_attr))
888 			return PTR_ERR(sgid_attr);
889 
890 		flow_class = be32_to_cpu(grh->version_tclass_flow);
891 		rdma_move_grh_sgid_attr(ah_attr,
892 					&sgid,
893 					flow_class & 0xFFFFF,
894 					hoplimit,
895 					(flow_class >> 20) & 0xFF,
896 					sgid_attr);
897 
898 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
899 		if (ret)
900 			rdma_destroy_ah_attr(ah_attr);
901 
902 		return ret;
903 	} else {
904 		rdma_ah_set_dlid(ah_attr, wc->slid);
905 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
906 
907 		if ((wc->wc_flags & IB_WC_GRH) == 0)
908 			return 0;
909 
910 		if (dgid.global.interface_id !=
911 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
912 			sgid_attr = rdma_find_gid_by_port(
913 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
914 		} else
915 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
916 
917 		if (IS_ERR(sgid_attr))
918 			return PTR_ERR(sgid_attr);
919 		flow_class = be32_to_cpu(grh->version_tclass_flow);
920 		rdma_move_grh_sgid_attr(ah_attr,
921 					&sgid,
922 					flow_class & 0xFFFFF,
923 					hoplimit,
924 					(flow_class >> 20) & 0xFF,
925 					sgid_attr);
926 
927 		return 0;
928 	}
929 }
930 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
931 
932 /**
933  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
934  * of the reference
935  *
936  * @attr:	Pointer to AH attribute structure
937  * @dgid:	Destination GID
938  * @flow_label:	Flow label
939  * @hop_limit:	Hop limit
940  * @traffic_class: traffic class
941  * @sgid_attr:	Pointer to SGID attribute
942  *
943  * This takes ownership of the sgid_attr reference. The caller must ensure
944  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
945  * calling this function.
946  */
947 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
948 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
949 			     const struct ib_gid_attr *sgid_attr)
950 {
951 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
952 			traffic_class);
953 	attr->grh.sgid_attr = sgid_attr;
954 }
955 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
956 
957 /**
958  * rdma_destroy_ah_attr - Release reference to SGID attribute of
959  * ah attribute.
960  * @ah_attr: Pointer to ah attribute
961  *
962  * Release reference to the SGID attribute of the ah attribute if it is
963  * non NULL. It is safe to call this multiple times, and safe to call it on
964  * a zero initialized ah_attr.
965  */
966 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
967 {
968 	if (ah_attr->grh.sgid_attr) {
969 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
970 		ah_attr->grh.sgid_attr = NULL;
971 	}
972 }
973 EXPORT_SYMBOL(rdma_destroy_ah_attr);
974 
975 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
976 				   const struct ib_grh *grh, u32 port_num)
977 {
978 	struct rdma_ah_attr ah_attr;
979 	struct ib_ah *ah;
980 	int ret;
981 
982 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
983 	if (ret)
984 		return ERR_PTR(ret);
985 
986 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
987 
988 	rdma_destroy_ah_attr(&ah_attr);
989 	return ah;
990 }
991 EXPORT_SYMBOL(ib_create_ah_from_wc);
992 
993 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
994 {
995 	const struct ib_gid_attr *old_sgid_attr;
996 	int ret;
997 
998 	if (ah->type != ah_attr->type)
999 		return -EINVAL;
1000 
1001 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
1002 	if (ret)
1003 		return ret;
1004 
1005 	ret = ah->device->ops.modify_ah ?
1006 		ah->device->ops.modify_ah(ah, ah_attr) :
1007 		-EOPNOTSUPP;
1008 
1009 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
1010 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(rdma_modify_ah);
1014 
1015 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
1016 {
1017 	ah_attr->grh.sgid_attr = NULL;
1018 
1019 	return ah->device->ops.query_ah ?
1020 		ah->device->ops.query_ah(ah, ah_attr) :
1021 		-EOPNOTSUPP;
1022 }
1023 EXPORT_SYMBOL(rdma_query_ah);
1024 
1025 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
1026 {
1027 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
1028 	struct ib_pd *pd;
1029 	int ret;
1030 
1031 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
1032 
1033 	pd = ah->pd;
1034 
1035 	ret = ah->device->ops.destroy_ah(ah, flags);
1036 	if (ret)
1037 		return ret;
1038 
1039 	atomic_dec(&pd->usecnt);
1040 	if (sgid_attr)
1041 		rdma_put_gid_attr(sgid_attr);
1042 
1043 	kfree(ah);
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(rdma_destroy_ah_user);
1047 
1048 /* Shared receive queues */
1049 
1050 /**
1051  * ib_create_srq_user - Creates a SRQ associated with the specified protection
1052  *   domain.
1053  * @pd: The protection domain associated with the SRQ.
1054  * @srq_init_attr: A list of initial attributes required to create the
1055  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1056  *   the actual capabilities of the created SRQ.
1057  * @uobject: uobject pointer if this is not a kernel SRQ
1058  * @udata: udata pointer if this is not a kernel SRQ
1059  *
1060  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1061  * requested size of the SRQ, and set to the actual values allocated
1062  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1063  * will always be at least as large as the requested values.
1064  */
1065 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1066 				  struct ib_srq_init_attr *srq_init_attr,
1067 				  struct ib_usrq_object *uobject,
1068 				  struct ib_udata *udata)
1069 {
1070 	struct ib_srq *srq;
1071 	int ret;
1072 
1073 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1074 	if (!srq)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	srq->device = pd->device;
1078 	srq->pd = pd;
1079 	srq->event_handler = srq_init_attr->event_handler;
1080 	srq->srq_context = srq_init_attr->srq_context;
1081 	srq->srq_type = srq_init_attr->srq_type;
1082 	srq->uobject = uobject;
1083 
1084 	if (ib_srq_has_cq(srq->srq_type)) {
1085 		srq->ext.cq = srq_init_attr->ext.cq;
1086 		atomic_inc(&srq->ext.cq->usecnt);
1087 	}
1088 	if (srq->srq_type == IB_SRQT_XRC) {
1089 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1090 		if (srq->ext.xrc.xrcd)
1091 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1092 	}
1093 	atomic_inc(&pd->usecnt);
1094 
1095 	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1096 	rdma_restrack_parent_name(&srq->res, &pd->res);
1097 
1098 	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1099 	if (ret) {
1100 		rdma_restrack_put(&srq->res);
1101 		atomic_dec(&pd->usecnt);
1102 		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1103 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1104 		if (ib_srq_has_cq(srq->srq_type))
1105 			atomic_dec(&srq->ext.cq->usecnt);
1106 		kfree(srq);
1107 		return ERR_PTR(ret);
1108 	}
1109 
1110 	rdma_restrack_add(&srq->res);
1111 
1112 	return srq;
1113 }
1114 EXPORT_SYMBOL(ib_create_srq_user);
1115 
1116 int ib_modify_srq(struct ib_srq *srq,
1117 		  struct ib_srq_attr *srq_attr,
1118 		  enum ib_srq_attr_mask srq_attr_mask)
1119 {
1120 	return srq->device->ops.modify_srq ?
1121 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1122 					    NULL) : -EOPNOTSUPP;
1123 }
1124 EXPORT_SYMBOL(ib_modify_srq);
1125 
1126 int ib_query_srq(struct ib_srq *srq,
1127 		 struct ib_srq_attr *srq_attr)
1128 {
1129 	return srq->device->ops.query_srq ?
1130 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1131 }
1132 EXPORT_SYMBOL(ib_query_srq);
1133 
1134 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1135 {
1136 	int ret;
1137 
1138 	if (atomic_read(&srq->usecnt))
1139 		return -EBUSY;
1140 
1141 	ret = srq->device->ops.destroy_srq(srq, udata);
1142 	if (ret)
1143 		return ret;
1144 
1145 	atomic_dec(&srq->pd->usecnt);
1146 	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1147 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1148 	if (ib_srq_has_cq(srq->srq_type))
1149 		atomic_dec(&srq->ext.cq->usecnt);
1150 	rdma_restrack_del(&srq->res);
1151 	kfree(srq);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(ib_destroy_srq_user);
1156 
1157 /* Queue pairs */
1158 
1159 static void __ib_qp_event_handler(struct ib_event *event, void *context)
1160 {
1161 	struct ib_qp *qp = event->element.qp;
1162 
1163 	if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1164 		complete(&qp->srq_completion);
1165 	if (qp->registered_event_handler)
1166 		qp->registered_event_handler(event, qp->qp_context);
1167 }
1168 
1169 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1170 {
1171 	struct ib_qp *qp = context;
1172 	unsigned long flags;
1173 
1174 	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1175 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1176 		if (event->element.qp->event_handler)
1177 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1178 	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1179 }
1180 
1181 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1182 				  void (*event_handler)(struct ib_event *, void *),
1183 				  void *qp_context)
1184 {
1185 	struct ib_qp *qp;
1186 	unsigned long flags;
1187 	int err;
1188 
1189 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1190 	if (!qp)
1191 		return ERR_PTR(-ENOMEM);
1192 
1193 	qp->real_qp = real_qp;
1194 	err = ib_open_shared_qp_security(qp, real_qp->device);
1195 	if (err) {
1196 		kfree(qp);
1197 		return ERR_PTR(err);
1198 	}
1199 
1200 	qp->real_qp = real_qp;
1201 	atomic_inc(&real_qp->usecnt);
1202 	qp->device = real_qp->device;
1203 	qp->event_handler = event_handler;
1204 	qp->qp_context = qp_context;
1205 	qp->qp_num = real_qp->qp_num;
1206 	qp->qp_type = real_qp->qp_type;
1207 
1208 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1209 	list_add(&qp->open_list, &real_qp->open_list);
1210 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1211 
1212 	return qp;
1213 }
1214 
1215 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1216 			 struct ib_qp_open_attr *qp_open_attr)
1217 {
1218 	struct ib_qp *qp, *real_qp;
1219 
1220 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1221 		return ERR_PTR(-EINVAL);
1222 
1223 	down_read(&xrcd->tgt_qps_rwsem);
1224 	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1225 	if (!real_qp) {
1226 		up_read(&xrcd->tgt_qps_rwsem);
1227 		return ERR_PTR(-EINVAL);
1228 	}
1229 	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1230 			  qp_open_attr->qp_context);
1231 	up_read(&xrcd->tgt_qps_rwsem);
1232 	return qp;
1233 }
1234 EXPORT_SYMBOL(ib_open_qp);
1235 
1236 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1237 					struct ib_qp_init_attr *qp_init_attr)
1238 {
1239 	struct ib_qp *real_qp = qp;
1240 	int err;
1241 
1242 	qp->event_handler = __ib_shared_qp_event_handler;
1243 	qp->qp_context = qp;
1244 	qp->pd = NULL;
1245 	qp->send_cq = qp->recv_cq = NULL;
1246 	qp->srq = NULL;
1247 	qp->xrcd = qp_init_attr->xrcd;
1248 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1249 	INIT_LIST_HEAD(&qp->open_list);
1250 
1251 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1252 			  qp_init_attr->qp_context);
1253 	if (IS_ERR(qp))
1254 		return qp;
1255 
1256 	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1257 			      real_qp, GFP_KERNEL));
1258 	if (err) {
1259 		ib_close_qp(qp);
1260 		return ERR_PTR(err);
1261 	}
1262 	return qp;
1263 }
1264 
1265 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1266 			       struct ib_qp_init_attr *attr,
1267 			       struct ib_udata *udata,
1268 			       struct ib_uqp_object *uobj, const char *caller)
1269 {
1270 	struct ib_udata dummy = {};
1271 	struct ib_qp *qp;
1272 	int ret;
1273 
1274 	if (!dev->ops.create_qp)
1275 		return ERR_PTR(-EOPNOTSUPP);
1276 
1277 	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1278 	if (!qp)
1279 		return ERR_PTR(-ENOMEM);
1280 
1281 	qp->device = dev;
1282 	qp->pd = pd;
1283 	qp->uobject = uobj;
1284 	qp->real_qp = qp;
1285 
1286 	qp->qp_type = attr->qp_type;
1287 	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1288 	qp->srq = attr->srq;
1289 	qp->event_handler = __ib_qp_event_handler;
1290 	qp->registered_event_handler = attr->event_handler;
1291 	qp->port = attr->port_num;
1292 	qp->qp_context = attr->qp_context;
1293 
1294 	spin_lock_init(&qp->mr_lock);
1295 	INIT_LIST_HEAD(&qp->rdma_mrs);
1296 	INIT_LIST_HEAD(&qp->sig_mrs);
1297 	init_completion(&qp->srq_completion);
1298 
1299 	qp->send_cq = attr->send_cq;
1300 	qp->recv_cq = attr->recv_cq;
1301 
1302 	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1303 	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1304 	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1305 	ret = dev->ops.create_qp(qp, attr, udata);
1306 	if (ret)
1307 		goto err_create;
1308 
1309 	/*
1310 	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1311 	 * Unfortunately, it is not an easy task to fix that driver.
1312 	 */
1313 	qp->send_cq = attr->send_cq;
1314 	qp->recv_cq = attr->recv_cq;
1315 
1316 	ret = ib_create_qp_security(qp, dev);
1317 	if (ret)
1318 		goto err_security;
1319 
1320 	rdma_restrack_add(&qp->res);
1321 	return qp;
1322 
1323 err_security:
1324 	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1325 err_create:
1326 	rdma_restrack_put(&qp->res);
1327 	kfree(qp);
1328 	return ERR_PTR(ret);
1329 
1330 }
1331 
1332 /**
1333  * ib_create_qp_user - Creates a QP associated with the specified protection
1334  *   domain.
1335  * @dev: IB device
1336  * @pd: The protection domain associated with the QP.
1337  * @attr: A list of initial attributes required to create the
1338  *   QP.  If QP creation succeeds, then the attributes are updated to
1339  *   the actual capabilities of the created QP.
1340  * @udata: User data
1341  * @uobj: uverbs obect
1342  * @caller: caller's build-time module name
1343  */
1344 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1345 				struct ib_qp_init_attr *attr,
1346 				struct ib_udata *udata,
1347 				struct ib_uqp_object *uobj, const char *caller)
1348 {
1349 	struct ib_qp *qp, *xrc_qp;
1350 
1351 	if (attr->qp_type == IB_QPT_XRC_TGT)
1352 		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1353 	else
1354 		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1355 	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1356 		return qp;
1357 
1358 	xrc_qp = create_xrc_qp_user(qp, attr);
1359 	if (IS_ERR(xrc_qp)) {
1360 		ib_destroy_qp(qp);
1361 		return xrc_qp;
1362 	}
1363 
1364 	xrc_qp->uobject = uobj;
1365 	return xrc_qp;
1366 }
1367 EXPORT_SYMBOL(ib_create_qp_user);
1368 
1369 void ib_qp_usecnt_inc(struct ib_qp *qp)
1370 {
1371 	if (qp->pd)
1372 		atomic_inc(&qp->pd->usecnt);
1373 	if (qp->send_cq)
1374 		atomic_inc(&qp->send_cq->usecnt);
1375 	if (qp->recv_cq)
1376 		atomic_inc(&qp->recv_cq->usecnt);
1377 	if (qp->srq)
1378 		atomic_inc(&qp->srq->usecnt);
1379 	if (qp->rwq_ind_tbl)
1380 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1381 }
1382 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1383 
1384 void ib_qp_usecnt_dec(struct ib_qp *qp)
1385 {
1386 	if (qp->rwq_ind_tbl)
1387 		atomic_dec(&qp->rwq_ind_tbl->usecnt);
1388 	if (qp->srq)
1389 		atomic_dec(&qp->srq->usecnt);
1390 	if (qp->recv_cq)
1391 		atomic_dec(&qp->recv_cq->usecnt);
1392 	if (qp->send_cq)
1393 		atomic_dec(&qp->send_cq->usecnt);
1394 	if (qp->pd)
1395 		atomic_dec(&qp->pd->usecnt);
1396 }
1397 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1398 
1399 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1400 				  struct ib_qp_init_attr *qp_init_attr,
1401 				  const char *caller)
1402 {
1403 	struct ib_device *device = pd->device;
1404 	struct ib_qp *qp;
1405 	int ret;
1406 
1407 	/*
1408 	 * If the callers is using the RDMA API calculate the resources
1409 	 * needed for the RDMA READ/WRITE operations.
1410 	 *
1411 	 * Note that these callers need to pass in a port number.
1412 	 */
1413 	if (qp_init_attr->cap.max_rdma_ctxs)
1414 		rdma_rw_init_qp(device, qp_init_attr);
1415 
1416 	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1417 	if (IS_ERR(qp))
1418 		return qp;
1419 
1420 	ib_qp_usecnt_inc(qp);
1421 
1422 	if (qp_init_attr->cap.max_rdma_ctxs) {
1423 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1424 		if (ret)
1425 			goto err;
1426 	}
1427 
1428 	/*
1429 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1430 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1431 	 * max_send_sge <= max_sge_rd.
1432 	 */
1433 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1434 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1435 				 device->attrs.max_sge_rd);
1436 	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1437 		qp->integrity_en = true;
1438 
1439 	return qp;
1440 
1441 err:
1442 	ib_destroy_qp(qp);
1443 	return ERR_PTR(ret);
1444 
1445 }
1446 EXPORT_SYMBOL(ib_create_qp_kernel);
1447 
1448 static const struct {
1449 	int			valid;
1450 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1451 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1452 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1453 	[IB_QPS_RESET] = {
1454 		[IB_QPS_RESET] = { .valid = 1 },
1455 		[IB_QPS_INIT]  = {
1456 			.valid = 1,
1457 			.req_param = {
1458 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1459 						IB_QP_PORT			|
1460 						IB_QP_QKEY),
1461 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1462 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1463 						IB_QP_PORT			|
1464 						IB_QP_ACCESS_FLAGS),
1465 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1466 						IB_QP_PORT			|
1467 						IB_QP_ACCESS_FLAGS),
1468 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1469 						IB_QP_PORT			|
1470 						IB_QP_ACCESS_FLAGS),
1471 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1472 						IB_QP_PORT			|
1473 						IB_QP_ACCESS_FLAGS),
1474 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1475 						IB_QP_QKEY),
1476 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1477 						IB_QP_QKEY),
1478 			}
1479 		},
1480 	},
1481 	[IB_QPS_INIT]  = {
1482 		[IB_QPS_RESET] = { .valid = 1 },
1483 		[IB_QPS_ERR] =   { .valid = 1 },
1484 		[IB_QPS_INIT]  = {
1485 			.valid = 1,
1486 			.opt_param = {
1487 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1488 						IB_QP_PORT			|
1489 						IB_QP_QKEY),
1490 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1491 						IB_QP_PORT			|
1492 						IB_QP_ACCESS_FLAGS),
1493 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1494 						IB_QP_PORT			|
1495 						IB_QP_ACCESS_FLAGS),
1496 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1497 						IB_QP_PORT			|
1498 						IB_QP_ACCESS_FLAGS),
1499 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1500 						IB_QP_PORT			|
1501 						IB_QP_ACCESS_FLAGS),
1502 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1503 						IB_QP_QKEY),
1504 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1505 						IB_QP_QKEY),
1506 			}
1507 		},
1508 		[IB_QPS_RTR]   = {
1509 			.valid = 1,
1510 			.req_param = {
1511 				[IB_QPT_UC]  = (IB_QP_AV			|
1512 						IB_QP_PATH_MTU			|
1513 						IB_QP_DEST_QPN			|
1514 						IB_QP_RQ_PSN),
1515 				[IB_QPT_RC]  = (IB_QP_AV			|
1516 						IB_QP_PATH_MTU			|
1517 						IB_QP_DEST_QPN			|
1518 						IB_QP_RQ_PSN			|
1519 						IB_QP_MAX_DEST_RD_ATOMIC	|
1520 						IB_QP_MIN_RNR_TIMER),
1521 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1522 						IB_QP_PATH_MTU			|
1523 						IB_QP_DEST_QPN			|
1524 						IB_QP_RQ_PSN),
1525 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1526 						IB_QP_PATH_MTU			|
1527 						IB_QP_DEST_QPN			|
1528 						IB_QP_RQ_PSN			|
1529 						IB_QP_MAX_DEST_RD_ATOMIC	|
1530 						IB_QP_MIN_RNR_TIMER),
1531 			},
1532 			.opt_param = {
1533 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1534 						 IB_QP_QKEY),
1535 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1536 						 IB_QP_ACCESS_FLAGS		|
1537 						 IB_QP_PKEY_INDEX),
1538 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1539 						 IB_QP_ACCESS_FLAGS		|
1540 						 IB_QP_PKEY_INDEX		|
1541 						 IB_QP_RATE_LIMIT),
1542 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1543 						 IB_QP_ACCESS_FLAGS		|
1544 						 IB_QP_PKEY_INDEX),
1545 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1546 						 IB_QP_ACCESS_FLAGS		|
1547 						 IB_QP_PKEY_INDEX),
1548 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1549 						 IB_QP_QKEY),
1550 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1551 						 IB_QP_QKEY),
1552 			 },
1553 		},
1554 	},
1555 	[IB_QPS_RTR]   = {
1556 		[IB_QPS_RESET] = { .valid = 1 },
1557 		[IB_QPS_ERR] =   { .valid = 1 },
1558 		[IB_QPS_RTS]   = {
1559 			.valid = 1,
1560 			.req_param = {
1561 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1562 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1563 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1564 						IB_QP_RETRY_CNT			|
1565 						IB_QP_RNR_RETRY			|
1566 						IB_QP_SQ_PSN			|
1567 						IB_QP_MAX_QP_RD_ATOMIC),
1568 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1569 						IB_QP_RETRY_CNT			|
1570 						IB_QP_RNR_RETRY			|
1571 						IB_QP_SQ_PSN			|
1572 						IB_QP_MAX_QP_RD_ATOMIC),
1573 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1574 						IB_QP_SQ_PSN),
1575 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1576 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1577 			},
1578 			.opt_param = {
1579 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1580 						 IB_QP_QKEY),
1581 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1582 						 IB_QP_ALT_PATH			|
1583 						 IB_QP_ACCESS_FLAGS		|
1584 						 IB_QP_PATH_MIG_STATE),
1585 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1586 						 IB_QP_ALT_PATH			|
1587 						 IB_QP_ACCESS_FLAGS		|
1588 						 IB_QP_MIN_RNR_TIMER		|
1589 						 IB_QP_PATH_MIG_STATE		|
1590 						 IB_QP_RATE_LIMIT),
1591 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1592 						 IB_QP_ALT_PATH			|
1593 						 IB_QP_ACCESS_FLAGS		|
1594 						 IB_QP_PATH_MIG_STATE),
1595 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1596 						 IB_QP_ALT_PATH			|
1597 						 IB_QP_ACCESS_FLAGS		|
1598 						 IB_QP_MIN_RNR_TIMER		|
1599 						 IB_QP_PATH_MIG_STATE),
1600 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1601 						 IB_QP_QKEY),
1602 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1603 						 IB_QP_QKEY),
1604 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1605 			 }
1606 		}
1607 	},
1608 	[IB_QPS_RTS]   = {
1609 		[IB_QPS_RESET] = { .valid = 1 },
1610 		[IB_QPS_ERR] =   { .valid = 1 },
1611 		[IB_QPS_RTS]   = {
1612 			.valid = 1,
1613 			.opt_param = {
1614 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1615 						IB_QP_QKEY),
1616 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1617 						IB_QP_ACCESS_FLAGS		|
1618 						IB_QP_ALT_PATH			|
1619 						IB_QP_PATH_MIG_STATE),
1620 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1621 						IB_QP_ACCESS_FLAGS		|
1622 						IB_QP_ALT_PATH			|
1623 						IB_QP_PATH_MIG_STATE		|
1624 						IB_QP_MIN_RNR_TIMER		|
1625 						IB_QP_RATE_LIMIT),
1626 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1627 						IB_QP_ACCESS_FLAGS		|
1628 						IB_QP_ALT_PATH			|
1629 						IB_QP_PATH_MIG_STATE),
1630 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1631 						IB_QP_ACCESS_FLAGS		|
1632 						IB_QP_ALT_PATH			|
1633 						IB_QP_PATH_MIG_STATE		|
1634 						IB_QP_MIN_RNR_TIMER),
1635 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1636 						IB_QP_QKEY),
1637 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1638 						IB_QP_QKEY),
1639 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1640 			}
1641 		},
1642 		[IB_QPS_SQD]   = {
1643 			.valid = 1,
1644 			.opt_param = {
1645 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1646 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1647 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1648 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1649 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1650 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1651 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1652 			}
1653 		},
1654 	},
1655 	[IB_QPS_SQD]   = {
1656 		[IB_QPS_RESET] = { .valid = 1 },
1657 		[IB_QPS_ERR] =   { .valid = 1 },
1658 		[IB_QPS_RTS]   = {
1659 			.valid = 1,
1660 			.opt_param = {
1661 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1662 						IB_QP_QKEY),
1663 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1664 						IB_QP_ALT_PATH			|
1665 						IB_QP_ACCESS_FLAGS		|
1666 						IB_QP_PATH_MIG_STATE),
1667 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1668 						IB_QP_ALT_PATH			|
1669 						IB_QP_ACCESS_FLAGS		|
1670 						IB_QP_MIN_RNR_TIMER		|
1671 						IB_QP_PATH_MIG_STATE),
1672 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1673 						IB_QP_ALT_PATH			|
1674 						IB_QP_ACCESS_FLAGS		|
1675 						IB_QP_PATH_MIG_STATE),
1676 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1677 						IB_QP_ALT_PATH			|
1678 						IB_QP_ACCESS_FLAGS		|
1679 						IB_QP_MIN_RNR_TIMER		|
1680 						IB_QP_PATH_MIG_STATE),
1681 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1682 						IB_QP_QKEY),
1683 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1684 						IB_QP_QKEY),
1685 			}
1686 		},
1687 		[IB_QPS_SQD]   = {
1688 			.valid = 1,
1689 			.opt_param = {
1690 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1691 						IB_QP_QKEY),
1692 				[IB_QPT_UC]  = (IB_QP_AV			|
1693 						IB_QP_ALT_PATH			|
1694 						IB_QP_ACCESS_FLAGS		|
1695 						IB_QP_PKEY_INDEX		|
1696 						IB_QP_PATH_MIG_STATE),
1697 				[IB_QPT_RC]  = (IB_QP_PORT			|
1698 						IB_QP_AV			|
1699 						IB_QP_TIMEOUT			|
1700 						IB_QP_RETRY_CNT			|
1701 						IB_QP_RNR_RETRY			|
1702 						IB_QP_MAX_QP_RD_ATOMIC		|
1703 						IB_QP_MAX_DEST_RD_ATOMIC	|
1704 						IB_QP_ALT_PATH			|
1705 						IB_QP_ACCESS_FLAGS		|
1706 						IB_QP_PKEY_INDEX		|
1707 						IB_QP_MIN_RNR_TIMER		|
1708 						IB_QP_PATH_MIG_STATE),
1709 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1710 						IB_QP_AV			|
1711 						IB_QP_TIMEOUT			|
1712 						IB_QP_RETRY_CNT			|
1713 						IB_QP_RNR_RETRY			|
1714 						IB_QP_MAX_QP_RD_ATOMIC		|
1715 						IB_QP_ALT_PATH			|
1716 						IB_QP_ACCESS_FLAGS		|
1717 						IB_QP_PKEY_INDEX		|
1718 						IB_QP_PATH_MIG_STATE),
1719 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1720 						IB_QP_AV			|
1721 						IB_QP_TIMEOUT			|
1722 						IB_QP_MAX_DEST_RD_ATOMIC	|
1723 						IB_QP_ALT_PATH			|
1724 						IB_QP_ACCESS_FLAGS		|
1725 						IB_QP_PKEY_INDEX		|
1726 						IB_QP_MIN_RNR_TIMER		|
1727 						IB_QP_PATH_MIG_STATE),
1728 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1729 						IB_QP_QKEY),
1730 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1731 						IB_QP_QKEY),
1732 			}
1733 		}
1734 	},
1735 	[IB_QPS_SQE]   = {
1736 		[IB_QPS_RESET] = { .valid = 1 },
1737 		[IB_QPS_ERR] =   { .valid = 1 },
1738 		[IB_QPS_RTS]   = {
1739 			.valid = 1,
1740 			.opt_param = {
1741 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1742 						IB_QP_QKEY),
1743 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1744 						IB_QP_ACCESS_FLAGS),
1745 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1746 						IB_QP_QKEY),
1747 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1748 						IB_QP_QKEY),
1749 			}
1750 		}
1751 	},
1752 	[IB_QPS_ERR] = {
1753 		[IB_QPS_RESET] = { .valid = 1 },
1754 		[IB_QPS_ERR] =   { .valid = 1 }
1755 	}
1756 };
1757 
1758 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1759 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1760 {
1761 	enum ib_qp_attr_mask req_param, opt_param;
1762 
1763 	if (mask & IB_QP_CUR_STATE  &&
1764 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1765 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1766 		return false;
1767 
1768 	if (!qp_state_table[cur_state][next_state].valid)
1769 		return false;
1770 
1771 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1772 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1773 
1774 	if ((mask & req_param) != req_param)
1775 		return false;
1776 
1777 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1778 		return false;
1779 
1780 	return true;
1781 }
1782 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1783 
1784 /**
1785  * ib_resolve_eth_dmac - Resolve destination mac address
1786  * @device:		Device to consider
1787  * @ah_attr:		address handle attribute which describes the
1788  *			source and destination parameters
1789  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1790  * returns 0 on success or appropriate error code. It initializes the
1791  * necessary ah_attr fields when call is successful.
1792  */
1793 static int ib_resolve_eth_dmac(struct ib_device *device,
1794 			       struct rdma_ah_attr *ah_attr)
1795 {
1796 	int ret = 0;
1797 
1798 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1799 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1800 			__be32 addr = 0;
1801 
1802 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1803 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1804 		} else {
1805 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1806 					(char *)ah_attr->roce.dmac);
1807 		}
1808 	} else {
1809 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1810 	}
1811 	return ret;
1812 }
1813 
1814 static bool is_qp_type_connected(const struct ib_qp *qp)
1815 {
1816 	return (qp->qp_type == IB_QPT_UC ||
1817 		qp->qp_type == IB_QPT_RC ||
1818 		qp->qp_type == IB_QPT_XRC_INI ||
1819 		qp->qp_type == IB_QPT_XRC_TGT);
1820 }
1821 
1822 /*
1823  * IB core internal function to perform QP attributes modification.
1824  */
1825 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1826 			 int attr_mask, struct ib_udata *udata)
1827 {
1828 	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1829 	const struct ib_gid_attr *old_sgid_attr_av;
1830 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1831 	int ret;
1832 
1833 	attr->xmit_slave = NULL;
1834 	if (attr_mask & IB_QP_AV) {
1835 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1836 					  &old_sgid_attr_av);
1837 		if (ret)
1838 			return ret;
1839 
1840 		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1841 		    is_qp_type_connected(qp)) {
1842 			struct net_device *slave;
1843 
1844 			/*
1845 			 * If the user provided the qp_attr then we have to
1846 			 * resolve it. Kerne users have to provide already
1847 			 * resolved rdma_ah_attr's.
1848 			 */
1849 			if (udata) {
1850 				ret = ib_resolve_eth_dmac(qp->device,
1851 							  &attr->ah_attr);
1852 				if (ret)
1853 					goto out_av;
1854 			}
1855 			slave = rdma_lag_get_ah_roce_slave(qp->device,
1856 							   &attr->ah_attr,
1857 							   GFP_KERNEL);
1858 			if (IS_ERR(slave)) {
1859 				ret = PTR_ERR(slave);
1860 				goto out_av;
1861 			}
1862 			attr->xmit_slave = slave;
1863 		}
1864 	}
1865 	if (attr_mask & IB_QP_ALT_PATH) {
1866 		/*
1867 		 * FIXME: This does not track the migration state, so if the
1868 		 * user loads a new alternate path after the HW has migrated
1869 		 * from primary->alternate we will keep the wrong
1870 		 * references. This is OK for IB because the reference
1871 		 * counting does not serve any functional purpose.
1872 		 */
1873 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1874 					  &old_sgid_attr_alt_av);
1875 		if (ret)
1876 			goto out_av;
1877 
1878 		/*
1879 		 * Today the core code can only handle alternate paths and APM
1880 		 * for IB. Ban them in roce mode.
1881 		 */
1882 		if (!(rdma_protocol_ib(qp->device,
1883 				       attr->alt_ah_attr.port_num) &&
1884 		      rdma_protocol_ib(qp->device, port))) {
1885 			ret = -EINVAL;
1886 			goto out;
1887 		}
1888 	}
1889 
1890 	if (rdma_ib_or_roce(qp->device, port)) {
1891 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1892 			dev_warn(&qp->device->dev,
1893 				 "%s rq_psn overflow, masking to 24 bits\n",
1894 				 __func__);
1895 			attr->rq_psn &= 0xffffff;
1896 		}
1897 
1898 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1899 			dev_warn(&qp->device->dev,
1900 				 " %s sq_psn overflow, masking to 24 bits\n",
1901 				 __func__);
1902 			attr->sq_psn &= 0xffffff;
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * Bind this qp to a counter automatically based on the rdma counter
1908 	 * rules. This only set in RST2INIT with port specified
1909 	 */
1910 	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1911 	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1912 		rdma_counter_bind_qp_auto(qp, attr->port_num);
1913 
1914 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1915 	if (ret)
1916 		goto out;
1917 
1918 	if (attr_mask & IB_QP_PORT)
1919 		qp->port = attr->port_num;
1920 	if (attr_mask & IB_QP_AV)
1921 		qp->av_sgid_attr =
1922 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1923 	if (attr_mask & IB_QP_ALT_PATH)
1924 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1925 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1926 
1927 out:
1928 	if (attr_mask & IB_QP_ALT_PATH)
1929 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1930 out_av:
1931 	if (attr_mask & IB_QP_AV) {
1932 		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1933 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1934 	}
1935 	return ret;
1936 }
1937 
1938 /**
1939  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1940  * @ib_qp: The QP to modify.
1941  * @attr: On input, specifies the QP attributes to modify.  On output,
1942  *   the current values of selected QP attributes are returned.
1943  * @attr_mask: A bit-mask used to specify which attributes of the QP
1944  *   are being modified.
1945  * @udata: pointer to user's input output buffer information
1946  *   are being modified.
1947  * It returns 0 on success and returns appropriate error code on error.
1948  */
1949 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1950 			    int attr_mask, struct ib_udata *udata)
1951 {
1952 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1953 }
1954 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1955 
1956 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1957 				   u16 *speed, u8 *width)
1958 {
1959 	if (!lanes) {
1960 		if (netdev_speed <= SPEED_1000) {
1961 			*width = IB_WIDTH_1X;
1962 			*speed = IB_SPEED_SDR;
1963 		} else if (netdev_speed <= SPEED_10000) {
1964 			*width = IB_WIDTH_1X;
1965 			*speed = IB_SPEED_FDR10;
1966 		} else if (netdev_speed <= SPEED_20000) {
1967 			*width = IB_WIDTH_4X;
1968 			*speed = IB_SPEED_DDR;
1969 		} else if (netdev_speed <= SPEED_25000) {
1970 			*width = IB_WIDTH_1X;
1971 			*speed = IB_SPEED_EDR;
1972 		} else if (netdev_speed <= SPEED_40000) {
1973 			*width = IB_WIDTH_4X;
1974 			*speed = IB_SPEED_FDR10;
1975 		} else if (netdev_speed <= SPEED_50000) {
1976 			*width = IB_WIDTH_2X;
1977 			*speed = IB_SPEED_EDR;
1978 		} else if (netdev_speed <= SPEED_100000) {
1979 			*width = IB_WIDTH_4X;
1980 			*speed = IB_SPEED_EDR;
1981 		} else if (netdev_speed <= SPEED_200000) {
1982 			*width = IB_WIDTH_4X;
1983 			*speed = IB_SPEED_HDR;
1984 		} else {
1985 			*width = IB_WIDTH_4X;
1986 			*speed = IB_SPEED_NDR;
1987 		}
1988 
1989 		return;
1990 	}
1991 
1992 	switch (lanes) {
1993 	case 1:
1994 		*width = IB_WIDTH_1X;
1995 		break;
1996 	case 2:
1997 		*width = IB_WIDTH_2X;
1998 		break;
1999 	case 4:
2000 		*width = IB_WIDTH_4X;
2001 		break;
2002 	case 8:
2003 		*width = IB_WIDTH_8X;
2004 		break;
2005 	case 12:
2006 		*width = IB_WIDTH_12X;
2007 		break;
2008 	default:
2009 		*width = IB_WIDTH_1X;
2010 	}
2011 
2012 	switch (netdev_speed / lanes) {
2013 	case SPEED_2500:
2014 		*speed = IB_SPEED_SDR;
2015 		break;
2016 	case SPEED_5000:
2017 		*speed = IB_SPEED_DDR;
2018 		break;
2019 	case SPEED_10000:
2020 		*speed = IB_SPEED_FDR10;
2021 		break;
2022 	case SPEED_14000:
2023 		*speed = IB_SPEED_FDR;
2024 		break;
2025 	case SPEED_25000:
2026 		*speed = IB_SPEED_EDR;
2027 		break;
2028 	case SPEED_50000:
2029 		*speed = IB_SPEED_HDR;
2030 		break;
2031 	case SPEED_100000:
2032 		*speed = IB_SPEED_NDR;
2033 		break;
2034 	default:
2035 		*speed = IB_SPEED_SDR;
2036 	}
2037 }
2038 
2039 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
2040 {
2041 	int rc;
2042 	u32 netdev_speed;
2043 	struct net_device *netdev;
2044 	struct ethtool_link_ksettings lksettings = {};
2045 
2046 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
2047 		return -EINVAL;
2048 
2049 	netdev = ib_device_get_netdev(dev, port_num);
2050 	if (!netdev)
2051 		return -ENODEV;
2052 
2053 	rtnl_lock();
2054 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
2055 	rtnl_unlock();
2056 
2057 	dev_put(netdev);
2058 
2059 	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2060 		netdev_speed = lksettings.base.speed;
2061 	} else {
2062 		netdev_speed = SPEED_1000;
2063 		if (rc)
2064 			pr_warn("%s speed is unknown, defaulting to %u\n",
2065 				netdev->name, netdev_speed);
2066 	}
2067 
2068 	ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2069 			       speed, width);
2070 
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL(ib_get_eth_speed);
2074 
2075 int ib_modify_qp(struct ib_qp *qp,
2076 		 struct ib_qp_attr *qp_attr,
2077 		 int qp_attr_mask)
2078 {
2079 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2080 }
2081 EXPORT_SYMBOL(ib_modify_qp);
2082 
2083 int ib_query_qp(struct ib_qp *qp,
2084 		struct ib_qp_attr *qp_attr,
2085 		int qp_attr_mask,
2086 		struct ib_qp_init_attr *qp_init_attr)
2087 {
2088 	qp_attr->ah_attr.grh.sgid_attr = NULL;
2089 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2090 
2091 	return qp->device->ops.query_qp ?
2092 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2093 					 qp_init_attr) : -EOPNOTSUPP;
2094 }
2095 EXPORT_SYMBOL(ib_query_qp);
2096 
2097 int ib_close_qp(struct ib_qp *qp)
2098 {
2099 	struct ib_qp *real_qp;
2100 	unsigned long flags;
2101 
2102 	real_qp = qp->real_qp;
2103 	if (real_qp == qp)
2104 		return -EINVAL;
2105 
2106 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2107 	list_del(&qp->open_list);
2108 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2109 
2110 	atomic_dec(&real_qp->usecnt);
2111 	if (qp->qp_sec)
2112 		ib_close_shared_qp_security(qp->qp_sec);
2113 	kfree(qp);
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL(ib_close_qp);
2118 
2119 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2120 {
2121 	struct ib_xrcd *xrcd;
2122 	struct ib_qp *real_qp;
2123 	int ret;
2124 
2125 	real_qp = qp->real_qp;
2126 	xrcd = real_qp->xrcd;
2127 	down_write(&xrcd->tgt_qps_rwsem);
2128 	ib_close_qp(qp);
2129 	if (atomic_read(&real_qp->usecnt) == 0)
2130 		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2131 	else
2132 		real_qp = NULL;
2133 	up_write(&xrcd->tgt_qps_rwsem);
2134 
2135 	if (real_qp) {
2136 		ret = ib_destroy_qp(real_qp);
2137 		if (!ret)
2138 			atomic_dec(&xrcd->usecnt);
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2145 {
2146 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2147 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2148 	struct ib_qp_security *sec;
2149 	int ret;
2150 
2151 	WARN_ON_ONCE(qp->mrs_used > 0);
2152 
2153 	if (atomic_read(&qp->usecnt))
2154 		return -EBUSY;
2155 
2156 	if (qp->real_qp != qp)
2157 		return __ib_destroy_shared_qp(qp);
2158 
2159 	sec  = qp->qp_sec;
2160 	if (sec)
2161 		ib_destroy_qp_security_begin(sec);
2162 
2163 	if (!qp->uobject)
2164 		rdma_rw_cleanup_mrs(qp);
2165 
2166 	rdma_counter_unbind_qp(qp, qp->port, true);
2167 	ret = qp->device->ops.destroy_qp(qp, udata);
2168 	if (ret) {
2169 		if (sec)
2170 			ib_destroy_qp_security_abort(sec);
2171 		return ret;
2172 	}
2173 
2174 	if (alt_path_sgid_attr)
2175 		rdma_put_gid_attr(alt_path_sgid_attr);
2176 	if (av_sgid_attr)
2177 		rdma_put_gid_attr(av_sgid_attr);
2178 
2179 	ib_qp_usecnt_dec(qp);
2180 	if (sec)
2181 		ib_destroy_qp_security_end(sec);
2182 
2183 	rdma_restrack_del(&qp->res);
2184 	kfree(qp);
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL(ib_destroy_qp_user);
2188 
2189 /* Completion queues */
2190 
2191 struct ib_cq *__ib_create_cq(struct ib_device *device,
2192 			     ib_comp_handler comp_handler,
2193 			     void (*event_handler)(struct ib_event *, void *),
2194 			     void *cq_context,
2195 			     const struct ib_cq_init_attr *cq_attr,
2196 			     const char *caller)
2197 {
2198 	struct ib_cq *cq;
2199 	int ret;
2200 
2201 	cq = rdma_zalloc_drv_obj(device, ib_cq);
2202 	if (!cq)
2203 		return ERR_PTR(-ENOMEM);
2204 
2205 	cq->device = device;
2206 	cq->uobject = NULL;
2207 	cq->comp_handler = comp_handler;
2208 	cq->event_handler = event_handler;
2209 	cq->cq_context = cq_context;
2210 	atomic_set(&cq->usecnt, 0);
2211 
2212 	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2213 	rdma_restrack_set_name(&cq->res, caller);
2214 
2215 	ret = device->ops.create_cq(cq, cq_attr, NULL);
2216 	if (ret) {
2217 		rdma_restrack_put(&cq->res);
2218 		kfree(cq);
2219 		return ERR_PTR(ret);
2220 	}
2221 
2222 	rdma_restrack_add(&cq->res);
2223 	return cq;
2224 }
2225 EXPORT_SYMBOL(__ib_create_cq);
2226 
2227 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2228 {
2229 	if (cq->shared)
2230 		return -EOPNOTSUPP;
2231 
2232 	return cq->device->ops.modify_cq ?
2233 		cq->device->ops.modify_cq(cq, cq_count,
2234 					  cq_period) : -EOPNOTSUPP;
2235 }
2236 EXPORT_SYMBOL(rdma_set_cq_moderation);
2237 
2238 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2239 {
2240 	int ret;
2241 
2242 	if (WARN_ON_ONCE(cq->shared))
2243 		return -EOPNOTSUPP;
2244 
2245 	if (atomic_read(&cq->usecnt))
2246 		return -EBUSY;
2247 
2248 	ret = cq->device->ops.destroy_cq(cq, udata);
2249 	if (ret)
2250 		return ret;
2251 
2252 	rdma_restrack_del(&cq->res);
2253 	kfree(cq);
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL(ib_destroy_cq_user);
2257 
2258 int ib_resize_cq(struct ib_cq *cq, int cqe)
2259 {
2260 	if (cq->shared)
2261 		return -EOPNOTSUPP;
2262 
2263 	return cq->device->ops.resize_cq ?
2264 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(ib_resize_cq);
2267 
2268 /* Memory regions */
2269 
2270 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2271 			     u64 virt_addr, int access_flags)
2272 {
2273 	struct ib_mr *mr;
2274 
2275 	if (access_flags & IB_ACCESS_ON_DEMAND) {
2276 		if (!(pd->device->attrs.kernel_cap_flags &
2277 		      IBK_ON_DEMAND_PAGING)) {
2278 			pr_debug("ODP support not available\n");
2279 			return ERR_PTR(-EINVAL);
2280 		}
2281 	}
2282 
2283 	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2284 					 access_flags, NULL, NULL);
2285 
2286 	if (IS_ERR(mr))
2287 		return mr;
2288 
2289 	mr->device = pd->device;
2290 	mr->type = IB_MR_TYPE_USER;
2291 	mr->pd = pd;
2292 	mr->dm = NULL;
2293 	atomic_inc(&pd->usecnt);
2294 	mr->iova =  virt_addr;
2295 	mr->length = length;
2296 
2297 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2298 	rdma_restrack_parent_name(&mr->res, &pd->res);
2299 	rdma_restrack_add(&mr->res);
2300 
2301 	return mr;
2302 }
2303 EXPORT_SYMBOL(ib_reg_user_mr);
2304 
2305 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2306 		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2307 {
2308 	if (!pd->device->ops.advise_mr)
2309 		return -EOPNOTSUPP;
2310 
2311 	if (!num_sge)
2312 		return 0;
2313 
2314 	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2315 					 NULL);
2316 }
2317 EXPORT_SYMBOL(ib_advise_mr);
2318 
2319 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2320 {
2321 	struct ib_pd *pd = mr->pd;
2322 	struct ib_dm *dm = mr->dm;
2323 	struct ib_dmah *dmah = mr->dmah;
2324 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2325 	int ret;
2326 
2327 	trace_mr_dereg(mr);
2328 	rdma_restrack_del(&mr->res);
2329 	ret = mr->device->ops.dereg_mr(mr, udata);
2330 	if (!ret) {
2331 		atomic_dec(&pd->usecnt);
2332 		if (dm)
2333 			atomic_dec(&dm->usecnt);
2334 		if (dmah)
2335 			atomic_dec(&dmah->usecnt);
2336 		kfree(sig_attrs);
2337 	}
2338 
2339 	return ret;
2340 }
2341 EXPORT_SYMBOL(ib_dereg_mr_user);
2342 
2343 /**
2344  * ib_alloc_mr() - Allocates a memory region
2345  * @pd:            protection domain associated with the region
2346  * @mr_type:       memory region type
2347  * @max_num_sg:    maximum sg entries available for registration.
2348  *
2349  * Notes:
2350  * Memory registeration page/sg lists must not exceed max_num_sg.
2351  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2352  * max_num_sg * used_page_size.
2353  *
2354  */
2355 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2356 			  u32 max_num_sg)
2357 {
2358 	struct ib_mr *mr;
2359 
2360 	if (!pd->device->ops.alloc_mr) {
2361 		mr = ERR_PTR(-EOPNOTSUPP);
2362 		goto out;
2363 	}
2364 
2365 	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2366 		WARN_ON_ONCE(1);
2367 		mr = ERR_PTR(-EINVAL);
2368 		goto out;
2369 	}
2370 
2371 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2372 	if (IS_ERR(mr))
2373 		goto out;
2374 
2375 	mr->device = pd->device;
2376 	mr->pd = pd;
2377 	mr->dm = NULL;
2378 	mr->uobject = NULL;
2379 	atomic_inc(&pd->usecnt);
2380 	mr->need_inval = false;
2381 	mr->type = mr_type;
2382 	mr->sig_attrs = NULL;
2383 
2384 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2385 	rdma_restrack_parent_name(&mr->res, &pd->res);
2386 	rdma_restrack_add(&mr->res);
2387 out:
2388 	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2389 	return mr;
2390 }
2391 EXPORT_SYMBOL(ib_alloc_mr);
2392 
2393 /**
2394  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2395  * @pd:                      protection domain associated with the region
2396  * @max_num_data_sg:         maximum data sg entries available for registration
2397  * @max_num_meta_sg:         maximum metadata sg entries available for
2398  *                           registration
2399  *
2400  * Notes:
2401  * Memory registration page/sg lists must not exceed max_num_sg,
2402  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2403  *
2404  */
2405 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2406 				    u32 max_num_data_sg,
2407 				    u32 max_num_meta_sg)
2408 {
2409 	struct ib_mr *mr;
2410 	struct ib_sig_attrs *sig_attrs;
2411 
2412 	if (!pd->device->ops.alloc_mr_integrity ||
2413 	    !pd->device->ops.map_mr_sg_pi) {
2414 		mr = ERR_PTR(-EOPNOTSUPP);
2415 		goto out;
2416 	}
2417 
2418 	if (!max_num_meta_sg) {
2419 		mr = ERR_PTR(-EINVAL);
2420 		goto out;
2421 	}
2422 
2423 	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2424 	if (!sig_attrs) {
2425 		mr = ERR_PTR(-ENOMEM);
2426 		goto out;
2427 	}
2428 
2429 	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2430 						max_num_meta_sg);
2431 	if (IS_ERR(mr)) {
2432 		kfree(sig_attrs);
2433 		goto out;
2434 	}
2435 
2436 	mr->device = pd->device;
2437 	mr->pd = pd;
2438 	mr->dm = NULL;
2439 	mr->uobject = NULL;
2440 	atomic_inc(&pd->usecnt);
2441 	mr->need_inval = false;
2442 	mr->type = IB_MR_TYPE_INTEGRITY;
2443 	mr->sig_attrs = sig_attrs;
2444 
2445 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2446 	rdma_restrack_parent_name(&mr->res, &pd->res);
2447 	rdma_restrack_add(&mr->res);
2448 out:
2449 	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2450 	return mr;
2451 }
2452 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2453 
2454 /* Multicast groups */
2455 
2456 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2457 {
2458 	struct ib_qp_init_attr init_attr = {};
2459 	struct ib_qp_attr attr = {};
2460 	int num_eth_ports = 0;
2461 	unsigned int port;
2462 
2463 	/* If QP state >= init, it is assigned to a port and we can check this
2464 	 * port only.
2465 	 */
2466 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2467 		if (attr.qp_state >= IB_QPS_INIT) {
2468 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2469 			    IB_LINK_LAYER_INFINIBAND)
2470 				return true;
2471 			goto lid_check;
2472 		}
2473 	}
2474 
2475 	/* Can't get a quick answer, iterate over all ports */
2476 	rdma_for_each_port(qp->device, port)
2477 		if (rdma_port_get_link_layer(qp->device, port) !=
2478 		    IB_LINK_LAYER_INFINIBAND)
2479 			num_eth_ports++;
2480 
2481 	/* If we have at lease one Ethernet port, RoCE annex declares that
2482 	 * multicast LID should be ignored. We can't tell at this step if the
2483 	 * QP belongs to an IB or Ethernet port.
2484 	 */
2485 	if (num_eth_ports)
2486 		return true;
2487 
2488 	/* If all the ports are IB, we can check according to IB spec. */
2489 lid_check:
2490 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2491 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2492 }
2493 
2494 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2495 {
2496 	int ret;
2497 
2498 	if (!qp->device->ops.attach_mcast)
2499 		return -EOPNOTSUPP;
2500 
2501 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2502 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2503 		return -EINVAL;
2504 
2505 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2506 	if (!ret)
2507 		atomic_inc(&qp->usecnt);
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL(ib_attach_mcast);
2511 
2512 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2513 {
2514 	int ret;
2515 
2516 	if (!qp->device->ops.detach_mcast)
2517 		return -EOPNOTSUPP;
2518 
2519 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2520 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2521 		return -EINVAL;
2522 
2523 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2524 	if (!ret)
2525 		atomic_dec(&qp->usecnt);
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL(ib_detach_mcast);
2529 
2530 /**
2531  * ib_alloc_xrcd_user - Allocates an XRC domain.
2532  * @device: The device on which to allocate the XRC domain.
2533  * @inode: inode to connect XRCD
2534  * @udata: Valid user data or NULL for kernel object
2535  */
2536 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2537 				   struct inode *inode, struct ib_udata *udata)
2538 {
2539 	struct ib_xrcd *xrcd;
2540 	int ret;
2541 
2542 	if (!device->ops.alloc_xrcd)
2543 		return ERR_PTR(-EOPNOTSUPP);
2544 
2545 	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2546 	if (!xrcd)
2547 		return ERR_PTR(-ENOMEM);
2548 
2549 	xrcd->device = device;
2550 	xrcd->inode = inode;
2551 	atomic_set(&xrcd->usecnt, 0);
2552 	init_rwsem(&xrcd->tgt_qps_rwsem);
2553 	xa_init(&xrcd->tgt_qps);
2554 
2555 	ret = device->ops.alloc_xrcd(xrcd, udata);
2556 	if (ret)
2557 		goto err;
2558 	return xrcd;
2559 err:
2560 	kfree(xrcd);
2561 	return ERR_PTR(ret);
2562 }
2563 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2564 
2565 /**
2566  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2567  * @xrcd: The XRC domain to deallocate.
2568  * @udata: Valid user data or NULL for kernel object
2569  */
2570 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2571 {
2572 	int ret;
2573 
2574 	if (atomic_read(&xrcd->usecnt))
2575 		return -EBUSY;
2576 
2577 	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2578 	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2579 	if (ret)
2580 		return ret;
2581 	kfree(xrcd);
2582 	return ret;
2583 }
2584 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2585 
2586 /**
2587  * ib_create_wq - Creates a WQ associated with the specified protection
2588  * domain.
2589  * @pd: The protection domain associated with the WQ.
2590  * @wq_attr: A list of initial attributes required to create the
2591  * WQ. If WQ creation succeeds, then the attributes are updated to
2592  * the actual capabilities of the created WQ.
2593  *
2594  * wq_attr->max_wr and wq_attr->max_sge determine
2595  * the requested size of the WQ, and set to the actual values allocated
2596  * on return.
2597  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2598  * at least as large as the requested values.
2599  */
2600 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2601 			   struct ib_wq_init_attr *wq_attr)
2602 {
2603 	struct ib_wq *wq;
2604 
2605 	if (!pd->device->ops.create_wq)
2606 		return ERR_PTR(-EOPNOTSUPP);
2607 
2608 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2609 	if (!IS_ERR(wq)) {
2610 		wq->event_handler = wq_attr->event_handler;
2611 		wq->wq_context = wq_attr->wq_context;
2612 		wq->wq_type = wq_attr->wq_type;
2613 		wq->cq = wq_attr->cq;
2614 		wq->device = pd->device;
2615 		wq->pd = pd;
2616 		wq->uobject = NULL;
2617 		atomic_inc(&pd->usecnt);
2618 		atomic_inc(&wq_attr->cq->usecnt);
2619 		atomic_set(&wq->usecnt, 0);
2620 	}
2621 	return wq;
2622 }
2623 EXPORT_SYMBOL(ib_create_wq);
2624 
2625 /**
2626  * ib_destroy_wq_user - Destroys the specified user WQ.
2627  * @wq: The WQ to destroy.
2628  * @udata: Valid user data
2629  */
2630 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2631 {
2632 	struct ib_cq *cq = wq->cq;
2633 	struct ib_pd *pd = wq->pd;
2634 	int ret;
2635 
2636 	if (atomic_read(&wq->usecnt))
2637 		return -EBUSY;
2638 
2639 	ret = wq->device->ops.destroy_wq(wq, udata);
2640 	if (ret)
2641 		return ret;
2642 
2643 	atomic_dec(&pd->usecnt);
2644 	atomic_dec(&cq->usecnt);
2645 	return ret;
2646 }
2647 EXPORT_SYMBOL(ib_destroy_wq_user);
2648 
2649 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2650 		       struct ib_mr_status *mr_status)
2651 {
2652 	if (!mr->device->ops.check_mr_status)
2653 		return -EOPNOTSUPP;
2654 
2655 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2656 }
2657 EXPORT_SYMBOL(ib_check_mr_status);
2658 
2659 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2660 			 int state)
2661 {
2662 	if (!device->ops.set_vf_link_state)
2663 		return -EOPNOTSUPP;
2664 
2665 	return device->ops.set_vf_link_state(device, vf, port, state);
2666 }
2667 EXPORT_SYMBOL(ib_set_vf_link_state);
2668 
2669 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2670 		     struct ifla_vf_info *info)
2671 {
2672 	if (!device->ops.get_vf_config)
2673 		return -EOPNOTSUPP;
2674 
2675 	return device->ops.get_vf_config(device, vf, port, info);
2676 }
2677 EXPORT_SYMBOL(ib_get_vf_config);
2678 
2679 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2680 		    struct ifla_vf_stats *stats)
2681 {
2682 	if (!device->ops.get_vf_stats)
2683 		return -EOPNOTSUPP;
2684 
2685 	return device->ops.get_vf_stats(device, vf, port, stats);
2686 }
2687 EXPORT_SYMBOL(ib_get_vf_stats);
2688 
2689 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2690 		   int type)
2691 {
2692 	if (!device->ops.set_vf_guid)
2693 		return -EOPNOTSUPP;
2694 
2695 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2696 }
2697 EXPORT_SYMBOL(ib_set_vf_guid);
2698 
2699 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2700 		   struct ifla_vf_guid *node_guid,
2701 		   struct ifla_vf_guid *port_guid)
2702 {
2703 	if (!device->ops.get_vf_guid)
2704 		return -EOPNOTSUPP;
2705 
2706 	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2707 }
2708 EXPORT_SYMBOL(ib_get_vf_guid);
2709 /**
2710  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2711  *     information) and set an appropriate memory region for registration.
2712  * @mr:             memory region
2713  * @data_sg:        dma mapped scatterlist for data
2714  * @data_sg_nents:  number of entries in data_sg
2715  * @data_sg_offset: offset in bytes into data_sg
2716  * @meta_sg:        dma mapped scatterlist for metadata
2717  * @meta_sg_nents:  number of entries in meta_sg
2718  * @meta_sg_offset: offset in bytes into meta_sg
2719  * @page_size:      page vector desired page size
2720  *
2721  * Constraints:
2722  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2723  *
2724  * Return: 0 on success.
2725  *
2726  * After this completes successfully, the  memory region
2727  * is ready for registration.
2728  */
2729 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2730 		    int data_sg_nents, unsigned int *data_sg_offset,
2731 		    struct scatterlist *meta_sg, int meta_sg_nents,
2732 		    unsigned int *meta_sg_offset, unsigned int page_size)
2733 {
2734 	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2735 		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2736 		return -EOPNOTSUPP;
2737 
2738 	mr->page_size = page_size;
2739 
2740 	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2741 					    data_sg_offset, meta_sg,
2742 					    meta_sg_nents, meta_sg_offset);
2743 }
2744 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2745 
2746 /**
2747  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2748  *     and set it the memory region.
2749  * @mr:            memory region
2750  * @sg:            dma mapped scatterlist
2751  * @sg_nents:      number of entries in sg
2752  * @sg_offset:     offset in bytes into sg
2753  * @page_size:     page vector desired page size
2754  *
2755  * Constraints:
2756  *
2757  * - The first sg element is allowed to have an offset.
2758  * - Each sg element must either be aligned to page_size or virtually
2759  *   contiguous to the previous element. In case an sg element has a
2760  *   non-contiguous offset, the mapping prefix will not include it.
2761  * - The last sg element is allowed to have length less than page_size.
2762  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2763  *   then only max_num_sg entries will be mapped.
2764  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2765  *   constraints holds and the page_size argument is ignored.
2766  *
2767  * Returns the number of sg elements that were mapped to the memory region.
2768  *
2769  * After this completes successfully, the  memory region
2770  * is ready for registration.
2771  */
2772 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2773 		 unsigned int *sg_offset, unsigned int page_size)
2774 {
2775 	if (unlikely(!mr->device->ops.map_mr_sg))
2776 		return -EOPNOTSUPP;
2777 
2778 	mr->page_size = page_size;
2779 
2780 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2781 }
2782 EXPORT_SYMBOL(ib_map_mr_sg);
2783 
2784 /**
2785  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2786  *     to a page vector
2787  * @mr:            memory region
2788  * @sgl:           dma mapped scatterlist
2789  * @sg_nents:      number of entries in sg
2790  * @sg_offset_p:   ==== =======================================================
2791  *                 IN   start offset in bytes into sg
2792  *                 OUT  offset in bytes for element n of the sg of the first
2793  *                      byte that has not been processed where n is the return
2794  *                      value of this function.
2795  *                 ==== =======================================================
2796  * @set_page:      driver page assignment function pointer
2797  *
2798  * Core service helper for drivers to convert the largest
2799  * prefix of given sg list to a page vector. The sg list
2800  * prefix converted is the prefix that meet the requirements
2801  * of ib_map_mr_sg.
2802  *
2803  * Returns the number of sg elements that were assigned to
2804  * a page vector.
2805  */
2806 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2807 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2808 {
2809 	struct scatterlist *sg;
2810 	u64 last_end_dma_addr = 0;
2811 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2812 	unsigned int last_page_off = 0;
2813 	u64 page_mask = ~((u64)mr->page_size - 1);
2814 	int i, ret;
2815 
2816 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2817 		return -EINVAL;
2818 
2819 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2820 	mr->length = 0;
2821 
2822 	for_each_sg(sgl, sg, sg_nents, i) {
2823 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2824 		u64 prev_addr = dma_addr;
2825 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2826 		u64 end_dma_addr = dma_addr + dma_len;
2827 		u64 page_addr = dma_addr & page_mask;
2828 
2829 		/*
2830 		 * For the second and later elements, check whether either the
2831 		 * end of element i-1 or the start of element i is not aligned
2832 		 * on a page boundary.
2833 		 */
2834 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2835 			/* Stop mapping if there is a gap. */
2836 			if (last_end_dma_addr != dma_addr)
2837 				break;
2838 
2839 			/*
2840 			 * Coalesce this element with the last. If it is small
2841 			 * enough just update mr->length. Otherwise start
2842 			 * mapping from the next page.
2843 			 */
2844 			goto next_page;
2845 		}
2846 
2847 		do {
2848 			ret = set_page(mr, page_addr);
2849 			if (unlikely(ret < 0)) {
2850 				sg_offset = prev_addr - sg_dma_address(sg);
2851 				mr->length += prev_addr - dma_addr;
2852 				if (sg_offset_p)
2853 					*sg_offset_p = sg_offset;
2854 				return i || sg_offset ? i : ret;
2855 			}
2856 			prev_addr = page_addr;
2857 next_page:
2858 			page_addr += mr->page_size;
2859 		} while (page_addr < end_dma_addr);
2860 
2861 		mr->length += dma_len;
2862 		last_end_dma_addr = end_dma_addr;
2863 		last_page_off = end_dma_addr & ~page_mask;
2864 
2865 		sg_offset = 0;
2866 	}
2867 
2868 	if (sg_offset_p)
2869 		*sg_offset_p = 0;
2870 	return i;
2871 }
2872 EXPORT_SYMBOL(ib_sg_to_pages);
2873 
2874 struct ib_drain_cqe {
2875 	struct ib_cqe cqe;
2876 	struct completion done;
2877 };
2878 
2879 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2880 {
2881 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2882 						cqe);
2883 
2884 	complete(&cqe->done);
2885 }
2886 
2887 /*
2888  * Post a WR and block until its completion is reaped for the SQ.
2889  */
2890 static void __ib_drain_sq(struct ib_qp *qp)
2891 {
2892 	struct ib_cq *cq = qp->send_cq;
2893 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2894 	struct ib_drain_cqe sdrain;
2895 	struct ib_rdma_wr swr = {
2896 		.wr = {
2897 			.next = NULL,
2898 			{ .wr_cqe	= &sdrain.cqe, },
2899 			.opcode	= IB_WR_RDMA_WRITE,
2900 		},
2901 	};
2902 	int ret;
2903 
2904 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2905 	if (ret) {
2906 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2907 		return;
2908 	}
2909 
2910 	sdrain.cqe.done = ib_drain_qp_done;
2911 	init_completion(&sdrain.done);
2912 
2913 	ret = ib_post_send(qp, &swr.wr, NULL);
2914 	if (ret) {
2915 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2916 		return;
2917 	}
2918 
2919 	if (cq->poll_ctx == IB_POLL_DIRECT)
2920 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2921 			ib_process_cq_direct(cq, -1);
2922 	else
2923 		wait_for_completion(&sdrain.done);
2924 }
2925 
2926 /*
2927  * Post a WR and block until its completion is reaped for the RQ.
2928  */
2929 static void __ib_drain_rq(struct ib_qp *qp)
2930 {
2931 	struct ib_cq *cq = qp->recv_cq;
2932 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2933 	struct ib_drain_cqe rdrain;
2934 	struct ib_recv_wr rwr = {};
2935 	int ret;
2936 
2937 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2938 	if (ret) {
2939 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2940 		return;
2941 	}
2942 
2943 	rwr.wr_cqe = &rdrain.cqe;
2944 	rdrain.cqe.done = ib_drain_qp_done;
2945 	init_completion(&rdrain.done);
2946 
2947 	ret = ib_post_recv(qp, &rwr, NULL);
2948 	if (ret) {
2949 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2950 		return;
2951 	}
2952 
2953 	if (cq->poll_ctx == IB_POLL_DIRECT)
2954 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2955 			ib_process_cq_direct(cq, -1);
2956 	else
2957 		wait_for_completion(&rdrain.done);
2958 }
2959 
2960 /*
2961  * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2962  *                    expires.
2963  * @qp:               queue pair associated with SRQ to drain
2964  *
2965  * Quoting 10.3.1 Queue Pair and EE Context States:
2966  *
2967  * Note, for QPs that are associated with an SRQ, the Consumer should take the
2968  * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2969  * Reset State.  The Consumer may invoke the Destroy QP without first performing
2970  * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2971  * Last WQE Reached Event. However, if the Consumer does not wait for the
2972  * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2973  * leakage may occur. Therefore, it is good programming practice to tear down a
2974  * QP that is associated with an SRQ by using the following process:
2975  *
2976  * - Put the QP in the Error State
2977  * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2978  * - either:
2979  *       drain the CQ by invoking the Poll CQ verb and either wait for CQ
2980  *       to be empty or the number of Poll CQ operations has exceeded
2981  *       CQ capacity size;
2982  * - or
2983  *       post another WR that completes on the same CQ and wait for this
2984  *       WR to return as a WC;
2985  * - and then invoke a Destroy QP or Reset QP.
2986  *
2987  * We use the first option.
2988  */
2989 static void __ib_drain_srq(struct ib_qp *qp)
2990 {
2991 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2992 	struct ib_cq *cq;
2993 	int n, polled = 0;
2994 	int ret;
2995 
2996 	if (!qp->srq) {
2997 		WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2998 		return;
2999 	}
3000 
3001 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
3002 	if (ret) {
3003 		WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
3004 		return;
3005 	}
3006 
3007 	if (ib_srq_has_cq(qp->srq->srq_type)) {
3008 		cq = qp->srq->ext.cq;
3009 	} else if (qp->recv_cq) {
3010 		cq = qp->recv_cq;
3011 	} else {
3012 		WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
3013 		return;
3014 	}
3015 
3016 	if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
3017 		while (polled != cq->cqe) {
3018 			n = ib_process_cq_direct(cq, cq->cqe - polled);
3019 			if (!n)
3020 				return;
3021 			polled += n;
3022 		}
3023 	}
3024 }
3025 
3026 /**
3027  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
3028  *		   application.
3029  * @qp:            queue pair to drain
3030  *
3031  * If the device has a provider-specific drain function, then
3032  * call that.  Otherwise call the generic drain function
3033  * __ib_drain_sq().
3034  *
3035  * The caller must:
3036  *
3037  * ensure there is room in the CQ and SQ for the drain work request and
3038  * completion.
3039  *
3040  * allocate the CQ using ib_alloc_cq().
3041  *
3042  * ensure that there are no other contexts that are posting WRs concurrently.
3043  * Otherwise the drain is not guaranteed.
3044  */
3045 void ib_drain_sq(struct ib_qp *qp)
3046 {
3047 	if (qp->device->ops.drain_sq)
3048 		qp->device->ops.drain_sq(qp);
3049 	else
3050 		__ib_drain_sq(qp);
3051 	trace_cq_drain_complete(qp->send_cq);
3052 }
3053 EXPORT_SYMBOL(ib_drain_sq);
3054 
3055 /**
3056  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
3057  *		   application.
3058  * @qp:            queue pair to drain
3059  *
3060  * If the device has a provider-specific drain function, then
3061  * call that.  Otherwise call the generic drain function
3062  * __ib_drain_rq().
3063  *
3064  * The caller must:
3065  *
3066  * ensure there is room in the CQ and RQ for the drain work request and
3067  * completion.
3068  *
3069  * allocate the CQ using ib_alloc_cq().
3070  *
3071  * ensure that there are no other contexts that are posting WRs concurrently.
3072  * Otherwise the drain is not guaranteed.
3073  */
3074 void ib_drain_rq(struct ib_qp *qp)
3075 {
3076 	if (qp->device->ops.drain_rq)
3077 		qp->device->ops.drain_rq(qp);
3078 	else
3079 		__ib_drain_rq(qp);
3080 	trace_cq_drain_complete(qp->recv_cq);
3081 }
3082 EXPORT_SYMBOL(ib_drain_rq);
3083 
3084 /**
3085  * ib_drain_qp() - Block until all CQEs have been consumed by the
3086  *		   application on both the RQ and SQ.
3087  * @qp:            queue pair to drain
3088  *
3089  * The caller must:
3090  *
3091  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3092  * and completions.
3093  *
3094  * allocate the CQs using ib_alloc_cq().
3095  *
3096  * ensure that there are no other contexts that are posting WRs concurrently.
3097  * Otherwise the drain is not guaranteed.
3098  */
3099 void ib_drain_qp(struct ib_qp *qp)
3100 {
3101 	ib_drain_sq(qp);
3102 	if (!qp->srq)
3103 		ib_drain_rq(qp);
3104 	else
3105 		__ib_drain_srq(qp);
3106 }
3107 EXPORT_SYMBOL(ib_drain_qp);
3108 
3109 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3110 				     enum rdma_netdev_t type, const char *name,
3111 				     unsigned char name_assign_type,
3112 				     void (*setup)(struct net_device *))
3113 {
3114 	struct rdma_netdev_alloc_params params;
3115 	struct net_device *netdev;
3116 	int rc;
3117 
3118 	if (!device->ops.rdma_netdev_get_params)
3119 		return ERR_PTR(-EOPNOTSUPP);
3120 
3121 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3122 						&params);
3123 	if (rc)
3124 		return ERR_PTR(rc);
3125 
3126 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3127 				  setup, params.txqs, params.rxqs);
3128 	if (!netdev)
3129 		return ERR_PTR(-ENOMEM);
3130 
3131 	return netdev;
3132 }
3133 EXPORT_SYMBOL(rdma_alloc_netdev);
3134 
3135 int rdma_init_netdev(struct ib_device *device, u32 port_num,
3136 		     enum rdma_netdev_t type, const char *name,
3137 		     unsigned char name_assign_type,
3138 		     void (*setup)(struct net_device *),
3139 		     struct net_device *netdev)
3140 {
3141 	struct rdma_netdev_alloc_params params;
3142 	int rc;
3143 
3144 	if (!device->ops.rdma_netdev_get_params)
3145 		return -EOPNOTSUPP;
3146 
3147 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3148 						&params);
3149 	if (rc)
3150 		return rc;
3151 
3152 	return params.initialize_rdma_netdev(device, port_num,
3153 					     netdev, params.param);
3154 }
3155 EXPORT_SYMBOL(rdma_init_netdev);
3156 
3157 void __rdma_block_iter_start(struct ib_block_iter *biter,
3158 			     struct scatterlist *sglist, unsigned int nents,
3159 			     unsigned long pgsz)
3160 {
3161 	memset(biter, 0, sizeof(struct ib_block_iter));
3162 	biter->__sg = sglist;
3163 	biter->__sg_nents = nents;
3164 
3165 	/* Driver provides best block size to use */
3166 	biter->__pg_bit = __fls(pgsz);
3167 }
3168 EXPORT_SYMBOL(__rdma_block_iter_start);
3169 
3170 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3171 {
3172 	unsigned int block_offset;
3173 	unsigned int delta;
3174 
3175 	if (!biter->__sg_nents || !biter->__sg)
3176 		return false;
3177 
3178 	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3179 	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3180 	delta = BIT_ULL(biter->__pg_bit) - block_offset;
3181 
3182 	while (biter->__sg_nents && biter->__sg &&
3183 	       sg_dma_len(biter->__sg) - biter->__sg_advance <= delta) {
3184 		delta -= sg_dma_len(biter->__sg) - biter->__sg_advance;
3185 		biter->__sg_advance = 0;
3186 		biter->__sg = sg_next(biter->__sg);
3187 		biter->__sg_nents--;
3188 	}
3189 	biter->__sg_advance += delta;
3190 
3191 	return true;
3192 }
3193 EXPORT_SYMBOL(__rdma_block_iter_next);
3194 
3195 /**
3196  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3197  *   for the drivers.
3198  * @descs: array of static descriptors
3199  * @num_counters: number of elements in array
3200  * @lifespan: milliseconds between updates
3201  */
3202 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3203 	const struct rdma_stat_desc *descs, int num_counters,
3204 	unsigned long lifespan)
3205 {
3206 	struct rdma_hw_stats *stats;
3207 
3208 	stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3209 	if (!stats)
3210 		return NULL;
3211 
3212 	stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3213 				     sizeof(*stats->is_disabled), GFP_KERNEL);
3214 	if (!stats->is_disabled)
3215 		goto err;
3216 
3217 	stats->descs = descs;
3218 	stats->num_counters = num_counters;
3219 	stats->lifespan = msecs_to_jiffies(lifespan);
3220 	mutex_init(&stats->lock);
3221 
3222 	return stats;
3223 
3224 err:
3225 	kfree(stats);
3226 	return NULL;
3227 }
3228 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3229 
3230 /**
3231  * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3232  * @stats: statistics to release
3233  */
3234 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3235 {
3236 	if (!stats)
3237 		return;
3238 
3239 	kfree(stats->is_disabled);
3240 	kfree(stats);
3241 }
3242 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3243