1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * HID-BPF support for Linux
5 *
6 * Copyright (c) 2022-2024 Benjamin Tissoires
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/bitops.h>
11 #include <linux/btf.h>
12 #include <linux/btf_ids.h>
13 #include <linux/filter.h>
14 #include <linux/hid.h>
15 #include <linux/hid_bpf.h>
16 #include <linux/init.h>
17 #include <linux/kfifo.h>
18 #include <linux/minmax.h>
19 #include <linux/module.h>
20 #include "hid_bpf_dispatch.h"
21
22 const struct hid_ops *hid_ops;
23 EXPORT_SYMBOL(hid_ops);
24
25 u8 *
dispatch_hid_bpf_device_event(struct hid_device * hdev,enum hid_report_type type,u8 * data,u32 * size,int interrupt,u64 source,bool from_bpf)26 dispatch_hid_bpf_device_event(struct hid_device *hdev, enum hid_report_type type, u8 *data,
27 u32 *size, int interrupt, u64 source, bool from_bpf)
28 {
29 struct hid_bpf_ctx_kern ctx_kern = {
30 .ctx = {
31 .hid = hdev,
32 .allocated_size = hdev->bpf.allocated_data,
33 .size = *size,
34 },
35 .data = hdev->bpf.device_data,
36 .from_bpf = from_bpf,
37 };
38 struct hid_bpf_ops *e;
39 int ret;
40
41 if (type >= HID_REPORT_TYPES)
42 return ERR_PTR(-EINVAL);
43
44 /* no program has been attached yet */
45 if (!hdev->bpf.device_data)
46 return data;
47
48 memset(ctx_kern.data, 0, hdev->bpf.allocated_data);
49 memcpy(ctx_kern.data, data, *size);
50
51 rcu_read_lock();
52 list_for_each_entry_rcu(e, &hdev->bpf.prog_list, list) {
53 if (e->hid_device_event) {
54 ret = e->hid_device_event(&ctx_kern.ctx, type, source);
55 if (ret < 0) {
56 rcu_read_unlock();
57 return ERR_PTR(ret);
58 }
59
60 if (ret)
61 ctx_kern.ctx.size = ret;
62 }
63 }
64 rcu_read_unlock();
65
66 ret = ctx_kern.ctx.size;
67 if (ret) {
68 if (ret > ctx_kern.ctx.allocated_size)
69 return ERR_PTR(-EINVAL);
70
71 *size = ret;
72 }
73
74 return ctx_kern.data;
75 }
76 EXPORT_SYMBOL_GPL(dispatch_hid_bpf_device_event);
77
dispatch_hid_bpf_raw_requests(struct hid_device * hdev,unsigned char reportnum,u8 * buf,u32 size,enum hid_report_type rtype,enum hid_class_request reqtype,u64 source,bool from_bpf)78 int dispatch_hid_bpf_raw_requests(struct hid_device *hdev,
79 unsigned char reportnum, u8 *buf,
80 u32 size, enum hid_report_type rtype,
81 enum hid_class_request reqtype,
82 u64 source, bool from_bpf)
83 {
84 struct hid_bpf_ctx_kern ctx_kern = {
85 .ctx = {
86 .hid = hdev,
87 .allocated_size = size,
88 .size = size,
89 },
90 .data = buf,
91 .from_bpf = from_bpf,
92 };
93 struct hid_bpf_ops *e;
94 int ret, idx;
95
96 if (rtype >= HID_REPORT_TYPES)
97 return -EINVAL;
98
99 idx = srcu_read_lock(&hdev->bpf.srcu);
100 list_for_each_entry_srcu(e, &hdev->bpf.prog_list, list,
101 srcu_read_lock_held(&hdev->bpf.srcu)) {
102 if (!e->hid_hw_request)
103 continue;
104
105 ret = e->hid_hw_request(&ctx_kern.ctx, reportnum, rtype, reqtype, source);
106 if (ret)
107 goto out;
108 }
109 ret = 0;
110
111 out:
112 srcu_read_unlock(&hdev->bpf.srcu, idx);
113 return ret;
114 }
115 EXPORT_SYMBOL_GPL(dispatch_hid_bpf_raw_requests);
116
dispatch_hid_bpf_output_report(struct hid_device * hdev,__u8 * buf,u32 size,u64 source,bool from_bpf)117 int dispatch_hid_bpf_output_report(struct hid_device *hdev,
118 __u8 *buf, u32 size, u64 source,
119 bool from_bpf)
120 {
121 struct hid_bpf_ctx_kern ctx_kern = {
122 .ctx = {
123 .hid = hdev,
124 .allocated_size = size,
125 .size = size,
126 },
127 .data = buf,
128 .from_bpf = from_bpf,
129 };
130 struct hid_bpf_ops *e;
131 int ret, idx;
132
133 idx = srcu_read_lock(&hdev->bpf.srcu);
134 list_for_each_entry_srcu(e, &hdev->bpf.prog_list, list,
135 srcu_read_lock_held(&hdev->bpf.srcu)) {
136 if (!e->hid_hw_output_report)
137 continue;
138
139 ret = e->hid_hw_output_report(&ctx_kern.ctx, source);
140 if (ret)
141 goto out;
142 }
143 ret = 0;
144
145 out:
146 srcu_read_unlock(&hdev->bpf.srcu, idx);
147 return ret;
148 }
149 EXPORT_SYMBOL_GPL(dispatch_hid_bpf_output_report);
150
call_hid_bpf_rdesc_fixup(struct hid_device * hdev,const u8 * rdesc,unsigned int * size)151 const u8 *call_hid_bpf_rdesc_fixup(struct hid_device *hdev, const u8 *rdesc, unsigned int *size)
152 {
153 int ret;
154 struct hid_bpf_ctx_kern ctx_kern = {
155 .ctx = {
156 .hid = hdev,
157 .size = *size,
158 .allocated_size = HID_MAX_DESCRIPTOR_SIZE,
159 },
160 };
161
162 if (!hdev->bpf.rdesc_ops)
163 goto ignore_bpf;
164
165 ctx_kern.data = kzalloc(ctx_kern.ctx.allocated_size, GFP_KERNEL);
166 if (!ctx_kern.data)
167 goto ignore_bpf;
168
169 memcpy(ctx_kern.data, rdesc, min_t(unsigned int, *size, HID_MAX_DESCRIPTOR_SIZE));
170
171 ret = hdev->bpf.rdesc_ops->hid_rdesc_fixup(&ctx_kern.ctx);
172 if (ret < 0)
173 goto ignore_bpf;
174
175 if (ret) {
176 if (ret > ctx_kern.ctx.allocated_size)
177 goto ignore_bpf;
178
179 *size = ret;
180 }
181
182 return krealloc(ctx_kern.data, *size, GFP_KERNEL);
183
184 ignore_bpf:
185 kfree(ctx_kern.data);
186 return rdesc;
187 }
188 EXPORT_SYMBOL_GPL(call_hid_bpf_rdesc_fixup);
189
device_match_id(struct device * dev,const void * id)190 static int device_match_id(struct device *dev, const void *id)
191 {
192 struct hid_device *hdev = to_hid_device(dev);
193
194 return hdev->id == *(int *)id;
195 }
196
hid_get_device(unsigned int hid_id)197 struct hid_device *hid_get_device(unsigned int hid_id)
198 {
199 struct device *dev;
200
201 if (!hid_ops)
202 return ERR_PTR(-EINVAL);
203
204 dev = bus_find_device(hid_ops->bus_type, NULL, &hid_id, device_match_id);
205 if (!dev)
206 return ERR_PTR(-EINVAL);
207
208 return to_hid_device(dev);
209 }
210
hid_put_device(struct hid_device * hid)211 void hid_put_device(struct hid_device *hid)
212 {
213 put_device(&hid->dev);
214 }
215
__hid_bpf_allocate_data(struct hid_device * hdev,u8 ** data,u32 * size)216 static int __hid_bpf_allocate_data(struct hid_device *hdev, u8 **data, u32 *size)
217 {
218 u8 *alloc_data;
219 unsigned int i, j, max_report_len = 0;
220 size_t alloc_size = 0;
221
222 /* compute the maximum report length for this device */
223 for (i = 0; i < HID_REPORT_TYPES; i++) {
224 struct hid_report_enum *report_enum = hdev->report_enum + i;
225
226 for (j = 0; j < HID_MAX_IDS; j++) {
227 struct hid_report *report = report_enum->report_id_hash[j];
228
229 if (report)
230 max_report_len = max(max_report_len, hid_report_len(report));
231 }
232 }
233
234 /*
235 * Give us a little bit of extra space and some predictability in the
236 * buffer length we create. This way, we can tell users that they can
237 * work on chunks of 64 bytes of memory without having the bpf verifier
238 * scream at them.
239 */
240 alloc_size = DIV_ROUND_UP(max_report_len, 64) * 64;
241
242 alloc_data = kzalloc(alloc_size, GFP_KERNEL);
243 if (!alloc_data)
244 return -ENOMEM;
245
246 *data = alloc_data;
247 *size = alloc_size;
248
249 return 0;
250 }
251
hid_bpf_allocate_event_data(struct hid_device * hdev)252 int hid_bpf_allocate_event_data(struct hid_device *hdev)
253 {
254 /* hdev->bpf.device_data is already allocated, abort */
255 if (hdev->bpf.device_data)
256 return 0;
257
258 return __hid_bpf_allocate_data(hdev, &hdev->bpf.device_data, &hdev->bpf.allocated_data);
259 }
260
hid_bpf_reconnect(struct hid_device * hdev)261 int hid_bpf_reconnect(struct hid_device *hdev)
262 {
263 if (!test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) {
264 /* trigger call to call_hid_bpf_rdesc_fixup() during the next probe */
265 hdev->bpf_rsize = 0;
266 return device_reprobe(&hdev->dev);
267 }
268
269 return 0;
270 }
271
272 /* Disables missing prototype warnings */
273 __bpf_kfunc_start_defs();
274
275 /**
276 * hid_bpf_get_data - Get the kernel memory pointer associated with the context @ctx
277 *
278 * @ctx: The HID-BPF context
279 * @offset: The offset within the memory
280 * @rdwr_buf_size: the const size of the buffer
281 *
282 * @returns %NULL on error, an %__u8 memory pointer on success
283 */
284 __bpf_kfunc __u8 *
hid_bpf_get_data(struct hid_bpf_ctx * ctx,unsigned int offset,const size_t rdwr_buf_size)285 hid_bpf_get_data(struct hid_bpf_ctx *ctx, unsigned int offset, const size_t rdwr_buf_size)
286 {
287 struct hid_bpf_ctx_kern *ctx_kern;
288
289 if (!ctx)
290 return NULL;
291
292 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
293
294 if (rdwr_buf_size + offset > ctx->allocated_size)
295 return NULL;
296
297 return ctx_kern->data + offset;
298 }
299
300 /**
301 * hid_bpf_allocate_context - Allocate a context to the given HID device
302 *
303 * @hid_id: the system unique identifier of the HID device
304 *
305 * @returns A pointer to &struct hid_bpf_ctx on success, %NULL on error.
306 */
307 __bpf_kfunc struct hid_bpf_ctx *
hid_bpf_allocate_context(unsigned int hid_id)308 hid_bpf_allocate_context(unsigned int hid_id)
309 {
310 struct hid_device *hdev;
311 struct hid_bpf_ctx_kern *ctx_kern = NULL;
312
313 hdev = hid_get_device(hid_id);
314 if (IS_ERR(hdev))
315 return NULL;
316
317 ctx_kern = kzalloc(sizeof(*ctx_kern), GFP_KERNEL);
318 if (!ctx_kern) {
319 hid_put_device(hdev);
320 return NULL;
321 }
322
323 ctx_kern->ctx.hid = hdev;
324
325 return &ctx_kern->ctx;
326 }
327
328 /**
329 * hid_bpf_release_context - Release the previously allocated context @ctx
330 *
331 * @ctx: the HID-BPF context to release
332 *
333 */
334 __bpf_kfunc void
hid_bpf_release_context(struct hid_bpf_ctx * ctx)335 hid_bpf_release_context(struct hid_bpf_ctx *ctx)
336 {
337 struct hid_bpf_ctx_kern *ctx_kern;
338 struct hid_device *hid;
339
340 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
341 hid = (struct hid_device *)ctx_kern->ctx.hid; /* ignore const */
342
343 kfree(ctx_kern);
344
345 /* get_device() is called by bus_find_device() */
346 hid_put_device(hid);
347 }
348
349 static int
__hid_bpf_hw_check_params(struct hid_bpf_ctx * ctx,__u8 * buf,size_t * buf__sz,enum hid_report_type rtype)350 __hid_bpf_hw_check_params(struct hid_bpf_ctx *ctx, __u8 *buf, size_t *buf__sz,
351 enum hid_report_type rtype)
352 {
353 struct hid_report_enum *report_enum;
354 struct hid_report *report;
355 u32 report_len;
356
357 /* check arguments */
358 if (!ctx || !hid_ops || !buf)
359 return -EINVAL;
360
361 switch (rtype) {
362 case HID_INPUT_REPORT:
363 case HID_OUTPUT_REPORT:
364 case HID_FEATURE_REPORT:
365 break;
366 default:
367 return -EINVAL;
368 }
369
370 if (*buf__sz < 1)
371 return -EINVAL;
372
373 report_enum = ctx->hid->report_enum + rtype;
374 report = hid_ops->hid_get_report(report_enum, buf);
375 if (!report)
376 return -EINVAL;
377
378 report_len = hid_report_len(report);
379
380 if (*buf__sz > report_len)
381 *buf__sz = report_len;
382
383 return 0;
384 }
385
386 /**
387 * hid_bpf_hw_request - Communicate with a HID device
388 *
389 * @ctx: the HID-BPF context previously allocated in hid_bpf_allocate_context()
390 * @buf: a %PTR_TO_MEM buffer
391 * @buf__sz: the size of the data to transfer
392 * @rtype: the type of the report (%HID_INPUT_REPORT, %HID_FEATURE_REPORT, %HID_OUTPUT_REPORT)
393 * @reqtype: the type of the request (%HID_REQ_GET_REPORT, %HID_REQ_SET_REPORT, ...)
394 *
395 * @returns %0 on success, a negative error code otherwise.
396 */
397 __bpf_kfunc int
hid_bpf_hw_request(struct hid_bpf_ctx * ctx,__u8 * buf,size_t buf__sz,enum hid_report_type rtype,enum hid_class_request reqtype)398 hid_bpf_hw_request(struct hid_bpf_ctx *ctx, __u8 *buf, size_t buf__sz,
399 enum hid_report_type rtype, enum hid_class_request reqtype)
400 {
401 struct hid_bpf_ctx_kern *ctx_kern;
402 size_t size = buf__sz;
403 u8 *dma_data;
404 int ret;
405
406 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
407
408 if (ctx_kern->from_bpf)
409 return -EDEADLOCK;
410
411 /* check arguments */
412 ret = __hid_bpf_hw_check_params(ctx, buf, &size, rtype);
413 if (ret)
414 return ret;
415
416 switch (reqtype) {
417 case HID_REQ_GET_REPORT:
418 case HID_REQ_GET_IDLE:
419 case HID_REQ_GET_PROTOCOL:
420 case HID_REQ_SET_REPORT:
421 case HID_REQ_SET_IDLE:
422 case HID_REQ_SET_PROTOCOL:
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 dma_data = kmemdup(buf, size, GFP_KERNEL);
429 if (!dma_data)
430 return -ENOMEM;
431
432 ret = hid_ops->hid_hw_raw_request(ctx->hid,
433 dma_data[0],
434 dma_data,
435 size,
436 rtype,
437 reqtype,
438 (u64)(long)ctx,
439 true); /* prevent infinite recursions */
440
441 if (ret > 0)
442 memcpy(buf, dma_data, ret);
443
444 kfree(dma_data);
445 return ret;
446 }
447
448 /**
449 * hid_bpf_hw_output_report - Send an output report to a HID device
450 *
451 * @ctx: the HID-BPF context previously allocated in hid_bpf_allocate_context()
452 * @buf: a %PTR_TO_MEM buffer
453 * @buf__sz: the size of the data to transfer
454 *
455 * Returns the number of bytes transferred on success, a negative error code otherwise.
456 */
457 __bpf_kfunc int
hid_bpf_hw_output_report(struct hid_bpf_ctx * ctx,__u8 * buf,size_t buf__sz)458 hid_bpf_hw_output_report(struct hid_bpf_ctx *ctx, __u8 *buf, size_t buf__sz)
459 {
460 struct hid_bpf_ctx_kern *ctx_kern;
461 size_t size = buf__sz;
462 u8 *dma_data;
463 int ret;
464
465 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
466 if (ctx_kern->from_bpf)
467 return -EDEADLOCK;
468
469 /* check arguments */
470 ret = __hid_bpf_hw_check_params(ctx, buf, &size, HID_OUTPUT_REPORT);
471 if (ret)
472 return ret;
473
474 dma_data = kmemdup(buf, size, GFP_KERNEL);
475 if (!dma_data)
476 return -ENOMEM;
477
478 ret = hid_ops->hid_hw_output_report(ctx->hid, dma_data, size, (u64)(long)ctx, true);
479
480 kfree(dma_data);
481 return ret;
482 }
483
484 static int
__hid_bpf_input_report(struct hid_bpf_ctx * ctx,enum hid_report_type type,u8 * buf,size_t size,bool lock_already_taken)485 __hid_bpf_input_report(struct hid_bpf_ctx *ctx, enum hid_report_type type, u8 *buf,
486 size_t size, bool lock_already_taken)
487 {
488 struct hid_bpf_ctx_kern *ctx_kern;
489 int ret;
490
491 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
492 if (ctx_kern->from_bpf)
493 return -EDEADLOCK;
494
495 /* check arguments */
496 ret = __hid_bpf_hw_check_params(ctx, buf, &size, type);
497 if (ret)
498 return ret;
499
500 return hid_ops->hid_input_report(ctx->hid, type, buf, size, 0, (u64)(long)ctx, true,
501 lock_already_taken);
502 }
503
504 /**
505 * hid_bpf_try_input_report - Inject a HID report in the kernel from a HID device
506 *
507 * @ctx: the HID-BPF context previously allocated in hid_bpf_allocate_context()
508 * @type: the type of the report (%HID_INPUT_REPORT, %HID_FEATURE_REPORT, %HID_OUTPUT_REPORT)
509 * @buf: a %PTR_TO_MEM buffer
510 * @buf__sz: the size of the data to transfer
511 *
512 * Returns %0 on success, a negative error code otherwise. This function will immediately
513 * fail if the device is not available, thus can be safely used in IRQ context.
514 */
515 __bpf_kfunc int
hid_bpf_try_input_report(struct hid_bpf_ctx * ctx,enum hid_report_type type,u8 * buf,const size_t buf__sz)516 hid_bpf_try_input_report(struct hid_bpf_ctx *ctx, enum hid_report_type type, u8 *buf,
517 const size_t buf__sz)
518 {
519 struct hid_bpf_ctx_kern *ctx_kern;
520 bool from_hid_event_hook;
521
522 ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
523 from_hid_event_hook = ctx_kern->data && ctx_kern->data == ctx->hid->bpf.device_data;
524
525 return __hid_bpf_input_report(ctx, type, buf, buf__sz, from_hid_event_hook);
526 }
527
528 /**
529 * hid_bpf_input_report - Inject a HID report in the kernel from a HID device
530 *
531 * @ctx: the HID-BPF context previously allocated in hid_bpf_allocate_context()
532 * @type: the type of the report (%HID_INPUT_REPORT, %HID_FEATURE_REPORT, %HID_OUTPUT_REPORT)
533 * @buf: a %PTR_TO_MEM buffer
534 * @buf__sz: the size of the data to transfer
535 *
536 * Returns %0 on success, a negative error code otherwise. This function will wait for the
537 * device to be available before injecting the event, thus needs to be called in sleepable
538 * context.
539 */
540 __bpf_kfunc int
hid_bpf_input_report(struct hid_bpf_ctx * ctx,enum hid_report_type type,u8 * buf,const size_t buf__sz)541 hid_bpf_input_report(struct hid_bpf_ctx *ctx, enum hid_report_type type, u8 *buf,
542 const size_t buf__sz)
543 {
544 int ret;
545
546 ret = down_interruptible(&ctx->hid->driver_input_lock);
547 if (ret)
548 return ret;
549
550 /* check arguments */
551 ret = __hid_bpf_input_report(ctx, type, buf, buf__sz, true /* lock_already_taken */);
552
553 up(&ctx->hid->driver_input_lock);
554
555 return ret;
556 }
557 __bpf_kfunc_end_defs();
558
559 /*
560 * The following set contains all functions we agree BPF programs
561 * can use.
562 */
563 BTF_KFUNCS_START(hid_bpf_kfunc_ids)
564 BTF_ID_FLAGS(func, hid_bpf_get_data, KF_RET_NULL)
565 BTF_ID_FLAGS(func, hid_bpf_allocate_context, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
566 BTF_ID_FLAGS(func, hid_bpf_release_context, KF_RELEASE | KF_SLEEPABLE)
567 BTF_ID_FLAGS(func, hid_bpf_hw_request, KF_SLEEPABLE)
568 BTF_ID_FLAGS(func, hid_bpf_hw_output_report, KF_SLEEPABLE)
569 BTF_ID_FLAGS(func, hid_bpf_input_report, KF_SLEEPABLE)
570 BTF_ID_FLAGS(func, hid_bpf_try_input_report)
571 BTF_KFUNCS_END(hid_bpf_kfunc_ids)
572
573 static const struct btf_kfunc_id_set hid_bpf_kfunc_set = {
574 .owner = THIS_MODULE,
575 .set = &hid_bpf_kfunc_ids,
576 };
577
578 /* for syscall HID-BPF */
579 BTF_KFUNCS_START(hid_bpf_syscall_kfunc_ids)
580 BTF_ID_FLAGS(func, hid_bpf_allocate_context, KF_ACQUIRE | KF_RET_NULL)
581 BTF_ID_FLAGS(func, hid_bpf_release_context, KF_RELEASE)
582 BTF_ID_FLAGS(func, hid_bpf_hw_request)
583 BTF_ID_FLAGS(func, hid_bpf_hw_output_report)
584 BTF_ID_FLAGS(func, hid_bpf_input_report)
585 BTF_KFUNCS_END(hid_bpf_syscall_kfunc_ids)
586
587 static const struct btf_kfunc_id_set hid_bpf_syscall_kfunc_set = {
588 .owner = THIS_MODULE,
589 .set = &hid_bpf_syscall_kfunc_ids,
590 };
591
hid_bpf_connect_device(struct hid_device * hdev)592 int hid_bpf_connect_device(struct hid_device *hdev)
593 {
594 bool need_to_allocate = false;
595 struct hid_bpf_ops *e;
596
597 rcu_read_lock();
598 list_for_each_entry_rcu(e, &hdev->bpf.prog_list, list) {
599 if (e->hid_device_event) {
600 need_to_allocate = true;
601 break;
602 }
603 }
604 rcu_read_unlock();
605
606 /* only allocate BPF data if there are programs attached */
607 if (!need_to_allocate)
608 return 0;
609
610 return hid_bpf_allocate_event_data(hdev);
611 }
612 EXPORT_SYMBOL_GPL(hid_bpf_connect_device);
613
hid_bpf_disconnect_device(struct hid_device * hdev)614 void hid_bpf_disconnect_device(struct hid_device *hdev)
615 {
616 kfree(hdev->bpf.device_data);
617 hdev->bpf.device_data = NULL;
618 hdev->bpf.allocated_data = 0;
619 }
620 EXPORT_SYMBOL_GPL(hid_bpf_disconnect_device);
621
hid_bpf_destroy_device(struct hid_device * hdev)622 void hid_bpf_destroy_device(struct hid_device *hdev)
623 {
624 if (!hdev)
625 return;
626
627 /* mark the device as destroyed in bpf so we don't reattach it */
628 hdev->bpf.destroyed = true;
629
630 __hid_bpf_ops_destroy_device(hdev);
631
632 synchronize_srcu(&hdev->bpf.srcu);
633 cleanup_srcu_struct(&hdev->bpf.srcu);
634 }
635 EXPORT_SYMBOL_GPL(hid_bpf_destroy_device);
636
hid_bpf_device_init(struct hid_device * hdev)637 int hid_bpf_device_init(struct hid_device *hdev)
638 {
639 INIT_LIST_HEAD(&hdev->bpf.prog_list);
640 mutex_init(&hdev->bpf.prog_list_lock);
641 return init_srcu_struct(&hdev->bpf.srcu);
642 }
643 EXPORT_SYMBOL_GPL(hid_bpf_device_init);
644
hid_bpf_init(void)645 static int __init hid_bpf_init(void)
646 {
647 int err;
648
649 /* Note: if we exit with an error any time here, we would entirely break HID, which
650 * is probably not something we want. So we log an error and return success.
651 *
652 * This is not a big deal: nobody will be able to use the functionality.
653 */
654
655 err = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &hid_bpf_kfunc_set);
656 if (err) {
657 pr_warn("error while setting HID BPF tracing kfuncs: %d", err);
658 return 0;
659 }
660
661 err = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &hid_bpf_syscall_kfunc_set);
662 if (err) {
663 pr_warn("error while setting HID BPF syscall kfuncs: %d", err);
664 return 0;
665 }
666
667 return 0;
668 }
669
670 late_initcall(hid_bpf_init);
671 MODULE_AUTHOR("Benjamin Tissoires");
672 MODULE_LICENSE("GPL");
673