1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_submit.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14
15 #include <drm/drm_managed.h>
16
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "regs/xe_lrc_layout.h"
21 #include "xe_assert.h"
22 #include "xe_devcoredump.h"
23 #include "xe_device.h"
24 #include "xe_exec_queue.h"
25 #include "xe_force_wake.h"
26 #include "xe_gpu_scheduler.h"
27 #include "xe_gt.h"
28 #include "xe_gt_clock.h"
29 #include "xe_gt_printk.h"
30 #include "xe_guc.h"
31 #include "xe_guc_capture.h"
32 #include "xe_guc_ct.h"
33 #include "xe_guc_exec_queue_types.h"
34 #include "xe_guc_id_mgr.h"
35 #include "xe_guc_submit_types.h"
36 #include "xe_hw_engine.h"
37 #include "xe_hw_fence.h"
38 #include "xe_lrc.h"
39 #include "xe_macros.h"
40 #include "xe_map.h"
41 #include "xe_mocs.h"
42 #include "xe_pm.h"
43 #include "xe_ring_ops_types.h"
44 #include "xe_sched_job.h"
45 #include "xe_trace.h"
46 #include "xe_vm.h"
47
48 static struct xe_guc *
exec_queue_to_guc(struct xe_exec_queue * q)49 exec_queue_to_guc(struct xe_exec_queue *q)
50 {
51 return &q->gt->uc.guc;
52 }
53
54 /*
55 * Helpers for engine state, using an atomic as some of the bits can transition
56 * as the same time (e.g. a suspend can be happning at the same time as schedule
57 * engine done being processed).
58 */
59 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0)
60 #define EXEC_QUEUE_STATE_ENABLED (1 << 1)
61 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2)
62 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3)
63 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4)
64 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5)
65 #define EXEC_QUEUE_STATE_RESET (1 << 6)
66 #define EXEC_QUEUE_STATE_KILLED (1 << 7)
67 #define EXEC_QUEUE_STATE_WEDGED (1 << 8)
68 #define EXEC_QUEUE_STATE_BANNED (1 << 9)
69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10)
70 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11)
71
exec_queue_registered(struct xe_exec_queue * q)72 static bool exec_queue_registered(struct xe_exec_queue *q)
73 {
74 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
75 }
76
set_exec_queue_registered(struct xe_exec_queue * q)77 static void set_exec_queue_registered(struct xe_exec_queue *q)
78 {
79 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
80 }
81
clear_exec_queue_registered(struct xe_exec_queue * q)82 static void clear_exec_queue_registered(struct xe_exec_queue *q)
83 {
84 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
85 }
86
exec_queue_enabled(struct xe_exec_queue * q)87 static bool exec_queue_enabled(struct xe_exec_queue *q)
88 {
89 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
90 }
91
set_exec_queue_enabled(struct xe_exec_queue * q)92 static void set_exec_queue_enabled(struct xe_exec_queue *q)
93 {
94 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
95 }
96
clear_exec_queue_enabled(struct xe_exec_queue * q)97 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
98 {
99 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
100 }
101
exec_queue_pending_enable(struct xe_exec_queue * q)102 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
103 {
104 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
105 }
106
set_exec_queue_pending_enable(struct xe_exec_queue * q)107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
108 {
109 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
110 }
111
clear_exec_queue_pending_enable(struct xe_exec_queue * q)112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
113 {
114 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
115 }
116
exec_queue_pending_disable(struct xe_exec_queue * q)117 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
118 {
119 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
120 }
121
set_exec_queue_pending_disable(struct xe_exec_queue * q)122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
123 {
124 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
125 }
126
clear_exec_queue_pending_disable(struct xe_exec_queue * q)127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
128 {
129 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
130 }
131
exec_queue_destroyed(struct xe_exec_queue * q)132 static bool exec_queue_destroyed(struct xe_exec_queue *q)
133 {
134 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
135 }
136
set_exec_queue_destroyed(struct xe_exec_queue * q)137 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
138 {
139 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
140 }
141
exec_queue_banned(struct xe_exec_queue * q)142 static bool exec_queue_banned(struct xe_exec_queue *q)
143 {
144 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
145 }
146
set_exec_queue_banned(struct xe_exec_queue * q)147 static void set_exec_queue_banned(struct xe_exec_queue *q)
148 {
149 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
150 }
151
exec_queue_suspended(struct xe_exec_queue * q)152 static bool exec_queue_suspended(struct xe_exec_queue *q)
153 {
154 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
155 }
156
set_exec_queue_suspended(struct xe_exec_queue * q)157 static void set_exec_queue_suspended(struct xe_exec_queue *q)
158 {
159 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
160 }
161
clear_exec_queue_suspended(struct xe_exec_queue * q)162 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
163 {
164 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
165 }
166
exec_queue_reset(struct xe_exec_queue * q)167 static bool exec_queue_reset(struct xe_exec_queue *q)
168 {
169 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
170 }
171
set_exec_queue_reset(struct xe_exec_queue * q)172 static void set_exec_queue_reset(struct xe_exec_queue *q)
173 {
174 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
175 }
176
exec_queue_killed(struct xe_exec_queue * q)177 static bool exec_queue_killed(struct xe_exec_queue *q)
178 {
179 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
180 }
181
set_exec_queue_killed(struct xe_exec_queue * q)182 static void set_exec_queue_killed(struct xe_exec_queue *q)
183 {
184 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
185 }
186
exec_queue_wedged(struct xe_exec_queue * q)187 static bool exec_queue_wedged(struct xe_exec_queue *q)
188 {
189 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
190 }
191
set_exec_queue_wedged(struct xe_exec_queue * q)192 static void set_exec_queue_wedged(struct xe_exec_queue *q)
193 {
194 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
195 }
196
exec_queue_check_timeout(struct xe_exec_queue * q)197 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
198 {
199 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
200 }
201
set_exec_queue_check_timeout(struct xe_exec_queue * q)202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
203 {
204 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
205 }
206
clear_exec_queue_check_timeout(struct xe_exec_queue * q)207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
208 {
209 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
210 }
211
exec_queue_extra_ref(struct xe_exec_queue * q)212 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
213 {
214 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
215 }
216
set_exec_queue_extra_ref(struct xe_exec_queue * q)217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
218 {
219 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
220 }
221
exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue * q)222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
223 {
224 return (atomic_read(&q->guc->state) &
225 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
226 EXEC_QUEUE_STATE_BANNED));
227 }
228
guc_submit_fini(struct drm_device * drm,void * arg)229 static void guc_submit_fini(struct drm_device *drm, void *arg)
230 {
231 struct xe_guc *guc = arg;
232 struct xe_device *xe = guc_to_xe(guc);
233 struct xe_gt *gt = guc_to_gt(guc);
234 int ret;
235
236 ret = wait_event_timeout(guc->submission_state.fini_wq,
237 xa_empty(&guc->submission_state.exec_queue_lookup),
238 HZ * 5);
239
240 drain_workqueue(xe->destroy_wq);
241
242 xe_gt_assert(gt, ret);
243
244 xa_destroy(&guc->submission_state.exec_queue_lookup);
245 }
246
guc_submit_wedged_fini(void * arg)247 static void guc_submit_wedged_fini(void *arg)
248 {
249 struct xe_guc *guc = arg;
250 struct xe_exec_queue *q;
251 unsigned long index;
252
253 mutex_lock(&guc->submission_state.lock);
254 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
255 if (exec_queue_wedged(q)) {
256 mutex_unlock(&guc->submission_state.lock);
257 xe_exec_queue_put(q);
258 mutex_lock(&guc->submission_state.lock);
259 }
260 }
261 mutex_unlock(&guc->submission_state.lock);
262 }
263
264 static const struct xe_exec_queue_ops guc_exec_queue_ops;
265
primelockdep(struct xe_guc * guc)266 static void primelockdep(struct xe_guc *guc)
267 {
268 if (!IS_ENABLED(CONFIG_LOCKDEP))
269 return;
270
271 fs_reclaim_acquire(GFP_KERNEL);
272
273 mutex_lock(&guc->submission_state.lock);
274 mutex_unlock(&guc->submission_state.lock);
275
276 fs_reclaim_release(GFP_KERNEL);
277 }
278
279 /**
280 * xe_guc_submit_init() - Initialize GuC submission.
281 * @guc: the &xe_guc to initialize
282 * @num_ids: number of GuC context IDs to use
283 *
284 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
285 * GuC context IDs supported by the GuC firmware should be used for submission.
286 *
287 * Only VF drivers will have to provide explicit number of GuC context IDs
288 * that they can use for submission.
289 *
290 * Return: 0 on success or a negative error code on failure.
291 */
xe_guc_submit_init(struct xe_guc * guc,unsigned int num_ids)292 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
293 {
294 struct xe_device *xe = guc_to_xe(guc);
295 struct xe_gt *gt = guc_to_gt(guc);
296 int err;
297
298 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
299 if (err)
300 return err;
301
302 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
303 if (err)
304 return err;
305
306 gt->exec_queue_ops = &guc_exec_queue_ops;
307
308 xa_init(&guc->submission_state.exec_queue_lookup);
309
310 init_waitqueue_head(&guc->submission_state.fini_wq);
311
312 primelockdep(guc);
313
314 guc->submission_state.initialized = true;
315
316 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
317 }
318
__release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q,u32 xa_count)319 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
320 {
321 int i;
322
323 lockdep_assert_held(&guc->submission_state.lock);
324
325 for (i = 0; i < xa_count; ++i)
326 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
327
328 xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
329 q->guc->id, q->width);
330
331 if (xa_empty(&guc->submission_state.exec_queue_lookup))
332 wake_up(&guc->submission_state.fini_wq);
333 }
334
alloc_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
336 {
337 int ret;
338 int i;
339
340 /*
341 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
342 * worse case user gets -ENOMEM on engine create and has to try again.
343 *
344 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
345 * failure.
346 */
347 lockdep_assert_held(&guc->submission_state.lock);
348
349 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
350 q->width);
351 if (ret < 0)
352 return ret;
353
354 q->guc->id = ret;
355
356 for (i = 0; i < q->width; ++i) {
357 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
358 q->guc->id + i, q, GFP_NOWAIT));
359 if (ret)
360 goto err_release;
361 }
362
363 return 0;
364
365 err_release:
366 __release_guc_id(guc, q, i);
367
368 return ret;
369 }
370
release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)371 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
372 {
373 mutex_lock(&guc->submission_state.lock);
374 __release_guc_id(guc, q, q->width);
375 mutex_unlock(&guc->submission_state.lock);
376 }
377
378 struct exec_queue_policy {
379 u32 count;
380 struct guc_update_exec_queue_policy h2g;
381 };
382
__guc_exec_queue_policy_action_size(struct exec_queue_policy * policy)383 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
384 {
385 size_t bytes = sizeof(policy->h2g.header) +
386 (sizeof(policy->h2g.klv[0]) * policy->count);
387
388 return bytes / sizeof(u32);
389 }
390
__guc_exec_queue_policy_start_klv(struct exec_queue_policy * policy,u16 guc_id)391 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
392 u16 guc_id)
393 {
394 policy->h2g.header.action =
395 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
396 policy->h2g.header.guc_id = guc_id;
397 policy->count = 0;
398 }
399
400 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
401 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
402 u32 data) \
403 { \
404 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
405 \
406 policy->h2g.klv[policy->count].kl = \
407 FIELD_PREP(GUC_KLV_0_KEY, \
408 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
409 FIELD_PREP(GUC_KLV_0_LEN, 1); \
410 policy->h2g.klv[policy->count].value = data; \
411 policy->count++; \
412 }
413
414 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
415 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
416 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
417 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY)
418 #undef MAKE_EXEC_QUEUE_POLICY_ADD
419
420 static const int xe_exec_queue_prio_to_guc[] = {
421 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
422 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
423 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
424 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
425 };
426
init_policies(struct xe_guc * guc,struct xe_exec_queue * q)427 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
428 {
429 struct exec_queue_policy policy;
430 enum xe_exec_queue_priority prio = q->sched_props.priority;
431 u32 timeslice_us = q->sched_props.timeslice_us;
432 u32 slpc_exec_queue_freq_req = 0;
433 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
434
435 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
436
437 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY)
438 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
439
440 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
441 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
442 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
443 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
444 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy,
445 slpc_exec_queue_freq_req);
446
447 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
448 __guc_exec_queue_policy_action_size(&policy), 0, 0);
449 }
450
set_min_preemption_timeout(struct xe_guc * guc,struct xe_exec_queue * q)451 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
452 {
453 struct exec_queue_policy policy;
454
455 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
456 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
457
458 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
459 __guc_exec_queue_policy_action_size(&policy), 0, 0);
460 }
461
462 #define parallel_read(xe_, map_, field_) \
463 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
464 field_)
465 #define parallel_write(xe_, map_, field_, val_) \
466 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
467 field_, val_)
468
__register_mlrc_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q,struct guc_ctxt_registration_info * info)469 static void __register_mlrc_exec_queue(struct xe_guc *guc,
470 struct xe_exec_queue *q,
471 struct guc_ctxt_registration_info *info)
472 {
473 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
474 u32 action[MAX_MLRC_REG_SIZE];
475 int len = 0;
476 int i;
477
478 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q));
479
480 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
481 action[len++] = info->flags;
482 action[len++] = info->context_idx;
483 action[len++] = info->engine_class;
484 action[len++] = info->engine_submit_mask;
485 action[len++] = info->wq_desc_lo;
486 action[len++] = info->wq_desc_hi;
487 action[len++] = info->wq_base_lo;
488 action[len++] = info->wq_base_hi;
489 action[len++] = info->wq_size;
490 action[len++] = q->width;
491 action[len++] = info->hwlrca_lo;
492 action[len++] = info->hwlrca_hi;
493
494 for (i = 1; i < q->width; ++i) {
495 struct xe_lrc *lrc = q->lrc[i];
496
497 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
498 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
499 }
500
501 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE);
502 #undef MAX_MLRC_REG_SIZE
503
504 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
505 }
506
__register_exec_queue(struct xe_guc * guc,struct guc_ctxt_registration_info * info)507 static void __register_exec_queue(struct xe_guc *guc,
508 struct guc_ctxt_registration_info *info)
509 {
510 u32 action[] = {
511 XE_GUC_ACTION_REGISTER_CONTEXT,
512 info->flags,
513 info->context_idx,
514 info->engine_class,
515 info->engine_submit_mask,
516 info->wq_desc_lo,
517 info->wq_desc_hi,
518 info->wq_base_lo,
519 info->wq_base_hi,
520 info->wq_size,
521 info->hwlrca_lo,
522 info->hwlrca_hi,
523 };
524
525 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
526 }
527
register_exec_queue(struct xe_exec_queue * q)528 static void register_exec_queue(struct xe_exec_queue *q)
529 {
530 struct xe_guc *guc = exec_queue_to_guc(q);
531 struct xe_device *xe = guc_to_xe(guc);
532 struct xe_lrc *lrc = q->lrc[0];
533 struct guc_ctxt_registration_info info;
534
535 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q));
536
537 memset(&info, 0, sizeof(info));
538 info.context_idx = q->guc->id;
539 info.engine_class = xe_engine_class_to_guc_class(q->class);
540 info.engine_submit_mask = q->logical_mask;
541 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
542 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
543 info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
544
545 if (xe_exec_queue_is_parallel(q)) {
546 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
547 struct iosys_map map = xe_lrc_parallel_map(lrc);
548
549 info.wq_desc_lo = lower_32_bits(ggtt_addr +
550 offsetof(struct guc_submit_parallel_scratch, wq_desc));
551 info.wq_desc_hi = upper_32_bits(ggtt_addr +
552 offsetof(struct guc_submit_parallel_scratch, wq_desc));
553 info.wq_base_lo = lower_32_bits(ggtt_addr +
554 offsetof(struct guc_submit_parallel_scratch, wq[0]));
555 info.wq_base_hi = upper_32_bits(ggtt_addr +
556 offsetof(struct guc_submit_parallel_scratch, wq[0]));
557 info.wq_size = WQ_SIZE;
558
559 q->guc->wqi_head = 0;
560 q->guc->wqi_tail = 0;
561 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
562 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
563 }
564
565 /*
566 * We must keep a reference for LR engines if engine is registered with
567 * the GuC as jobs signal immediately and can't destroy an engine if the
568 * GuC has a reference to it.
569 */
570 if (xe_exec_queue_is_lr(q))
571 xe_exec_queue_get(q);
572
573 set_exec_queue_registered(q);
574 trace_xe_exec_queue_register(q);
575 if (xe_exec_queue_is_parallel(q))
576 __register_mlrc_exec_queue(guc, q, &info);
577 else
578 __register_exec_queue(guc, &info);
579 init_policies(guc, q);
580 }
581
wq_space_until_wrap(struct xe_exec_queue * q)582 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
583 {
584 return (WQ_SIZE - q->guc->wqi_tail);
585 }
586
wq_wait_for_space(struct xe_exec_queue * q,u32 wqi_size)587 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
588 {
589 struct xe_guc *guc = exec_queue_to_guc(q);
590 struct xe_device *xe = guc_to_xe(guc);
591 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
592 unsigned int sleep_period_ms = 1;
593
594 #define AVAILABLE_SPACE \
595 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
596 if (wqi_size > AVAILABLE_SPACE) {
597 try_again:
598 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
599 if (wqi_size > AVAILABLE_SPACE) {
600 if (sleep_period_ms == 1024) {
601 xe_gt_reset_async(q->gt);
602 return -ENODEV;
603 }
604
605 msleep(sleep_period_ms);
606 sleep_period_ms <<= 1;
607 goto try_again;
608 }
609 }
610 #undef AVAILABLE_SPACE
611
612 return 0;
613 }
614
wq_noop_append(struct xe_exec_queue * q)615 static int wq_noop_append(struct xe_exec_queue *q)
616 {
617 struct xe_guc *guc = exec_queue_to_guc(q);
618 struct xe_device *xe = guc_to_xe(guc);
619 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
620 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
621
622 if (wq_wait_for_space(q, wq_space_until_wrap(q)))
623 return -ENODEV;
624
625 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw));
626
627 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
628 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
629 FIELD_PREP(WQ_LEN_MASK, len_dw));
630 q->guc->wqi_tail = 0;
631
632 return 0;
633 }
634
wq_item_append(struct xe_exec_queue * q)635 static void wq_item_append(struct xe_exec_queue *q)
636 {
637 struct xe_guc *guc = exec_queue_to_guc(q);
638 struct xe_device *xe = guc_to_xe(guc);
639 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
640 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */
641 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
642 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
643 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
644 int i = 0, j;
645
646 if (wqi_size > wq_space_until_wrap(q)) {
647 if (wq_noop_append(q))
648 return;
649 }
650 if (wq_wait_for_space(q, wqi_size))
651 return;
652
653 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
654 FIELD_PREP(WQ_LEN_MASK, len_dw);
655 wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
656 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
657 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
658 wqi[i++] = 0;
659 for (j = 1; j < q->width; ++j) {
660 struct xe_lrc *lrc = q->lrc[j];
661
662 wqi[i++] = lrc->ring.tail / sizeof(u64);
663 }
664
665 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32));
666
667 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
668 wq[q->guc->wqi_tail / sizeof(u32)]));
669 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
670 q->guc->wqi_tail += wqi_size;
671 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE);
672
673 xe_device_wmb(xe);
674
675 map = xe_lrc_parallel_map(q->lrc[0]);
676 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
677 }
678
679 #define RESUME_PENDING ~0x0ull
submit_exec_queue(struct xe_exec_queue * q)680 static void submit_exec_queue(struct xe_exec_queue *q)
681 {
682 struct xe_guc *guc = exec_queue_to_guc(q);
683 struct xe_lrc *lrc = q->lrc[0];
684 u32 action[3];
685 u32 g2h_len = 0;
686 u32 num_g2h = 0;
687 int len = 0;
688 bool extra_submit = false;
689
690 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
691
692 if (xe_exec_queue_is_parallel(q))
693 wq_item_append(q);
694 else
695 xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
696
697 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
698 return;
699
700 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
701 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
702 action[len++] = q->guc->id;
703 action[len++] = GUC_CONTEXT_ENABLE;
704 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
705 num_g2h = 1;
706 if (xe_exec_queue_is_parallel(q))
707 extra_submit = true;
708
709 q->guc->resume_time = RESUME_PENDING;
710 set_exec_queue_pending_enable(q);
711 set_exec_queue_enabled(q);
712 trace_xe_exec_queue_scheduling_enable(q);
713 } else {
714 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
715 action[len++] = q->guc->id;
716 trace_xe_exec_queue_submit(q);
717 }
718
719 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
720
721 if (extra_submit) {
722 len = 0;
723 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
724 action[len++] = q->guc->id;
725 trace_xe_exec_queue_submit(q);
726
727 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
728 }
729 }
730
731 static struct dma_fence *
guc_exec_queue_run_job(struct drm_sched_job * drm_job)732 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
733 {
734 struct xe_sched_job *job = to_xe_sched_job(drm_job);
735 struct xe_exec_queue *q = job->q;
736 struct xe_guc *guc = exec_queue_to_guc(q);
737 struct dma_fence *fence = NULL;
738 bool lr = xe_exec_queue_is_lr(q);
739
740 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
741 exec_queue_banned(q) || exec_queue_suspended(q));
742
743 trace_xe_sched_job_run(job);
744
745 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
746 if (!exec_queue_registered(q))
747 register_exec_queue(q);
748 if (!lr) /* LR jobs are emitted in the exec IOCTL */
749 q->ring_ops->emit_job(job);
750 submit_exec_queue(q);
751 }
752
753 if (lr) {
754 xe_sched_job_set_error(job, -EOPNOTSUPP);
755 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */
756 } else {
757 fence = job->fence;
758 }
759
760 return fence;
761 }
762
guc_exec_queue_free_job(struct drm_sched_job * drm_job)763 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
764 {
765 struct xe_sched_job *job = to_xe_sched_job(drm_job);
766
767 trace_xe_sched_job_free(job);
768 xe_sched_job_put(job);
769 }
770
xe_guc_read_stopped(struct xe_guc * guc)771 int xe_guc_read_stopped(struct xe_guc *guc)
772 {
773 return atomic_read(&guc->submission_state.stopped);
774 }
775
776 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \
777 u32 action[] = { \
778 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \
779 q->guc->id, \
780 GUC_CONTEXT_##enable_disable, \
781 }
782
disable_scheduling_deregister(struct xe_guc * guc,struct xe_exec_queue * q)783 static void disable_scheduling_deregister(struct xe_guc *guc,
784 struct xe_exec_queue *q)
785 {
786 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
787 int ret;
788
789 set_min_preemption_timeout(guc, q);
790 smp_rmb();
791 ret = wait_event_timeout(guc->ct.wq,
792 (!exec_queue_pending_enable(q) &&
793 !exec_queue_pending_disable(q)) ||
794 xe_guc_read_stopped(guc),
795 HZ * 5);
796 if (!ret) {
797 struct xe_gpu_scheduler *sched = &q->guc->sched;
798
799 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
800 xe_sched_submission_start(sched);
801 xe_gt_reset_async(q->gt);
802 xe_sched_tdr_queue_imm(sched);
803 return;
804 }
805
806 clear_exec_queue_enabled(q);
807 set_exec_queue_pending_disable(q);
808 set_exec_queue_destroyed(q);
809 trace_xe_exec_queue_scheduling_disable(q);
810
811 /*
812 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
813 * handler and we are not allowed to reserved G2H space in handlers.
814 */
815 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
816 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
817 G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
818 }
819
xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue * q)820 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
821 {
822 struct xe_guc *guc = exec_queue_to_guc(q);
823 struct xe_device *xe = guc_to_xe(guc);
824
825 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
826 wake_up_all(&xe->ufence_wq);
827
828 if (xe_exec_queue_is_lr(q))
829 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
830 else
831 xe_sched_tdr_queue_imm(&q->guc->sched);
832 }
833
834 /**
835 * xe_guc_submit_wedge() - Wedge GuC submission
836 * @guc: the GuC object
837 *
838 * Save exec queue's registered with GuC state by taking a ref to each queue.
839 * Register a DRMM handler to drop refs upon driver unload.
840 */
xe_guc_submit_wedge(struct xe_guc * guc)841 void xe_guc_submit_wedge(struct xe_guc *guc)
842 {
843 struct xe_gt *gt = guc_to_gt(guc);
844 struct xe_exec_queue *q;
845 unsigned long index;
846 int err;
847
848 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
849
850 /*
851 * If device is being wedged even before submission_state is
852 * initialized, there's nothing to do here.
853 */
854 if (!guc->submission_state.initialized)
855 return;
856
857 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
858 guc_submit_wedged_fini, guc);
859 if (err) {
860 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; "
861 "Although device is wedged.\n");
862 return;
863 }
864
865 mutex_lock(&guc->submission_state.lock);
866 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
867 if (xe_exec_queue_get_unless_zero(q))
868 set_exec_queue_wedged(q);
869 mutex_unlock(&guc->submission_state.lock);
870 }
871
guc_submit_hint_wedged(struct xe_guc * guc)872 static bool guc_submit_hint_wedged(struct xe_guc *guc)
873 {
874 struct xe_device *xe = guc_to_xe(guc);
875
876 if (xe->wedged.mode != 2)
877 return false;
878
879 if (xe_device_wedged(xe))
880 return true;
881
882 xe_device_declare_wedged(xe);
883
884 return true;
885 }
886
xe_guc_exec_queue_lr_cleanup(struct work_struct * w)887 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
888 {
889 struct xe_guc_exec_queue *ge =
890 container_of(w, struct xe_guc_exec_queue, lr_tdr);
891 struct xe_exec_queue *q = ge->q;
892 struct xe_guc *guc = exec_queue_to_guc(q);
893 struct xe_gpu_scheduler *sched = &ge->sched;
894 bool wedged;
895
896 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q));
897 trace_xe_exec_queue_lr_cleanup(q);
898
899 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
900
901 /* Kill the run_job / process_msg entry points */
902 xe_sched_submission_stop(sched);
903
904 /*
905 * Engine state now mostly stable, disable scheduling / deregister if
906 * needed. This cleanup routine might be called multiple times, where
907 * the actual async engine deregister drops the final engine ref.
908 * Calling disable_scheduling_deregister will mark the engine as
909 * destroyed and fire off the CT requests to disable scheduling /
910 * deregister, which we only want to do once. We also don't want to mark
911 * the engine as pending_disable again as this may race with the
912 * xe_guc_deregister_done_handler() which treats it as an unexpected
913 * state.
914 */
915 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
916 struct xe_guc *guc = exec_queue_to_guc(q);
917 int ret;
918
919 set_exec_queue_banned(q);
920 disable_scheduling_deregister(guc, q);
921
922 /*
923 * Must wait for scheduling to be disabled before signalling
924 * any fences, if GT broken the GT reset code should signal us.
925 */
926 ret = wait_event_timeout(guc->ct.wq,
927 !exec_queue_pending_disable(q) ||
928 xe_guc_read_stopped(guc), HZ * 5);
929 if (!ret) {
930 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n",
931 q->guc->id);
932 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n",
933 q->guc->id);
934 xe_sched_submission_start(sched);
935 xe_gt_reset_async(q->gt);
936 return;
937 }
938 }
939
940 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0]))
941 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id);
942
943 xe_sched_submission_start(sched);
944 }
945
946 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100)
947
check_timeout(struct xe_exec_queue * q,struct xe_sched_job * job)948 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
949 {
950 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
951 u32 ctx_timestamp, ctx_job_timestamp;
952 u32 timeout_ms = q->sched_props.job_timeout_ms;
953 u32 diff;
954 u64 running_time_ms;
955
956 if (!xe_sched_job_started(job)) {
957 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
958 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
959 q->guc->id);
960
961 return xe_sched_invalidate_job(job, 2);
962 }
963
964 ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0]));
965 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
966
967 /*
968 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
969 * possible overflows with a high timeout.
970 */
971 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
972
973 if (ctx_timestamp < ctx_job_timestamp)
974 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
975 else
976 diff = ctx_timestamp - ctx_job_timestamp;
977
978 /*
979 * Ensure timeout is within 5% to account for an GuC scheduling latency
980 */
981 running_time_ms =
982 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
983
984 xe_gt_dbg(gt,
985 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
986 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
987 q->guc->id, running_time_ms, timeout_ms, diff);
988
989 return running_time_ms >= timeout_ms;
990 }
991
enable_scheduling(struct xe_exec_queue * q)992 static void enable_scheduling(struct xe_exec_queue *q)
993 {
994 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
995 struct xe_guc *guc = exec_queue_to_guc(q);
996 int ret;
997
998 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
999 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1000 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1001 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1002
1003 set_exec_queue_pending_enable(q);
1004 set_exec_queue_enabled(q);
1005 trace_xe_exec_queue_scheduling_enable(q);
1006
1007 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1008 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1009
1010 ret = wait_event_timeout(guc->ct.wq,
1011 !exec_queue_pending_enable(q) ||
1012 xe_guc_read_stopped(guc), HZ * 5);
1013 if (!ret || xe_guc_read_stopped(guc)) {
1014 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
1015 set_exec_queue_banned(q);
1016 xe_gt_reset_async(q->gt);
1017 xe_sched_tdr_queue_imm(&q->guc->sched);
1018 }
1019 }
1020
disable_scheduling(struct xe_exec_queue * q,bool immediate)1021 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1022 {
1023 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1024 struct xe_guc *guc = exec_queue_to_guc(q);
1025
1026 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1027 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1028 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1029
1030 if (immediate)
1031 set_min_preemption_timeout(guc, q);
1032 clear_exec_queue_enabled(q);
1033 set_exec_queue_pending_disable(q);
1034 trace_xe_exec_queue_scheduling_disable(q);
1035
1036 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1037 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1038 }
1039
__deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1040 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1041 {
1042 u32 action[] = {
1043 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1044 q->guc->id,
1045 };
1046
1047 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1048 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1049 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1050 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1051
1052 set_exec_queue_destroyed(q);
1053 trace_xe_exec_queue_deregister(q);
1054
1055 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1056 G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1057 }
1058
1059 static enum drm_gpu_sched_stat
guc_exec_queue_timedout_job(struct drm_sched_job * drm_job)1060 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1061 {
1062 struct xe_sched_job *job = to_xe_sched_job(drm_job);
1063 struct xe_sched_job *tmp_job;
1064 struct xe_exec_queue *q = job->q;
1065 struct xe_gpu_scheduler *sched = &q->guc->sched;
1066 struct xe_guc *guc = exec_queue_to_guc(q);
1067 const char *process_name = "no process";
1068 struct xe_device *xe = guc_to_xe(guc);
1069 unsigned int fw_ref;
1070 int err = -ETIME;
1071 pid_t pid = -1;
1072 int i = 0;
1073 bool wedged, skip_timeout_check;
1074
1075 /*
1076 * TDR has fired before free job worker. Common if exec queue
1077 * immediately closed after last fence signaled. Add back to pending
1078 * list so job can be freed and kick scheduler ensuring free job is not
1079 * lost.
1080 */
1081 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1082 xe_sched_add_pending_job(sched, job);
1083 xe_sched_submission_start(sched);
1084
1085 return DRM_GPU_SCHED_STAT_NOMINAL;
1086 }
1087
1088 /* Kill the run_job entry point */
1089 xe_sched_submission_stop(sched);
1090
1091 /* Must check all state after stopping scheduler */
1092 skip_timeout_check = exec_queue_reset(q) ||
1093 exec_queue_killed_or_banned_or_wedged(q) ||
1094 exec_queue_destroyed(q);
1095
1096 /*
1097 * If devcoredump not captured and GuC capture for the job is not ready
1098 * do manual capture first and decide later if we need to use it
1099 */
1100 if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1101 !xe_guc_capture_get_matching_and_lock(q)) {
1102 /* take force wake before engine register manual capture */
1103 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1104 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1105 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1106
1107 xe_engine_snapshot_capture_for_queue(q);
1108
1109 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1110 }
1111
1112 /*
1113 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1114 * modify scheduling state to read timestamp. We could read the
1115 * timestamp from a register to accumulate current running time but this
1116 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1117 * genuine timeouts.
1118 */
1119 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1120
1121 /* Engine state now stable, disable scheduling to check timestamp */
1122 if (!wedged && exec_queue_registered(q)) {
1123 int ret;
1124
1125 if (exec_queue_reset(q))
1126 err = -EIO;
1127
1128 if (!exec_queue_destroyed(q)) {
1129 /*
1130 * Wait for any pending G2H to flush out before
1131 * modifying state
1132 */
1133 ret = wait_event_timeout(guc->ct.wq,
1134 (!exec_queue_pending_enable(q) &&
1135 !exec_queue_pending_disable(q)) ||
1136 xe_guc_read_stopped(guc), HZ * 5);
1137 if (!ret || xe_guc_read_stopped(guc))
1138 goto trigger_reset;
1139
1140 /*
1141 * Flag communicates to G2H handler that schedule
1142 * disable originated from a timeout check. The G2H then
1143 * avoid triggering cleanup or deregistering the exec
1144 * queue.
1145 */
1146 set_exec_queue_check_timeout(q);
1147 disable_scheduling(q, skip_timeout_check);
1148 }
1149
1150 /*
1151 * Must wait for scheduling to be disabled before signalling
1152 * any fences, if GT broken the GT reset code should signal us.
1153 *
1154 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1155 * error) messages which can cause the schedule disable to get
1156 * lost. If this occurs, trigger a GT reset to recover.
1157 */
1158 smp_rmb();
1159 ret = wait_event_timeout(guc->ct.wq,
1160 !exec_queue_pending_disable(q) ||
1161 xe_guc_read_stopped(guc), HZ * 5);
1162 if (!ret || xe_guc_read_stopped(guc)) {
1163 trigger_reset:
1164 if (!ret)
1165 xe_gt_warn(guc_to_gt(guc),
1166 "Schedule disable failed to respond, guc_id=%d",
1167 q->guc->id);
1168 xe_devcoredump(q, job,
1169 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d",
1170 q->guc->id, ret, xe_guc_read_stopped(guc));
1171 set_exec_queue_extra_ref(q);
1172 xe_exec_queue_get(q); /* GT reset owns this */
1173 set_exec_queue_banned(q);
1174 xe_gt_reset_async(q->gt);
1175 xe_sched_tdr_queue_imm(sched);
1176 goto rearm;
1177 }
1178 }
1179
1180 /*
1181 * Check if job is actually timed out, if so restart job execution and TDR
1182 */
1183 if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1184 !exec_queue_reset(q) && exec_queue_registered(q)) {
1185 clear_exec_queue_check_timeout(q);
1186 goto sched_enable;
1187 }
1188
1189 if (q->vm && q->vm->xef) {
1190 process_name = q->vm->xef->process_name;
1191 pid = q->vm->xef->pid;
1192 }
1193
1194 if (!exec_queue_killed(q))
1195 xe_gt_notice(guc_to_gt(guc),
1196 "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1197 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1198 q->guc->id, q->flags, process_name, pid);
1199
1200 trace_xe_sched_job_timedout(job);
1201
1202 if (!exec_queue_killed(q))
1203 xe_devcoredump(q, job,
1204 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx",
1205 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1206 q->guc->id, q->flags);
1207
1208 /*
1209 * Kernel jobs should never fail, nor should VM jobs if they do
1210 * somethings has gone wrong and the GT needs a reset
1211 */
1212 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1213 "Kernel-submitted job timed out\n");
1214 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1215 "VM job timed out on non-killed execqueue\n");
1216 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1217 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1218 if (!xe_sched_invalidate_job(job, 2)) {
1219 clear_exec_queue_check_timeout(q);
1220 xe_gt_reset_async(q->gt);
1221 goto rearm;
1222 }
1223 }
1224
1225 /* Finish cleaning up exec queue via deregister */
1226 set_exec_queue_banned(q);
1227 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1228 set_exec_queue_extra_ref(q);
1229 xe_exec_queue_get(q);
1230 __deregister_exec_queue(guc, q);
1231 }
1232
1233 /* Stop fence signaling */
1234 xe_hw_fence_irq_stop(q->fence_irq);
1235
1236 /*
1237 * Fence state now stable, stop / start scheduler which cleans up any
1238 * fences that are complete
1239 */
1240 xe_sched_add_pending_job(sched, job);
1241 xe_sched_submission_start(sched);
1242
1243 xe_guc_exec_queue_trigger_cleanup(q);
1244
1245 /* Mark all outstanding jobs as bad, thus completing them */
1246 spin_lock(&sched->base.job_list_lock);
1247 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1248 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1249 spin_unlock(&sched->base.job_list_lock);
1250
1251 /* Start fence signaling */
1252 xe_hw_fence_irq_start(q->fence_irq);
1253
1254 return DRM_GPU_SCHED_STAT_NOMINAL;
1255
1256 sched_enable:
1257 enable_scheduling(q);
1258 rearm:
1259 /*
1260 * XXX: Ideally want to adjust timeout based on current execution time
1261 * but there is not currently an easy way to do in DRM scheduler. With
1262 * some thought, do this in a follow up.
1263 */
1264 xe_sched_add_pending_job(sched, job);
1265 xe_sched_submission_start(sched);
1266
1267 return DRM_GPU_SCHED_STAT_NOMINAL;
1268 }
1269
__guc_exec_queue_fini_async(struct work_struct * w)1270 static void __guc_exec_queue_fini_async(struct work_struct *w)
1271 {
1272 struct xe_guc_exec_queue *ge =
1273 container_of(w, struct xe_guc_exec_queue, fini_async);
1274 struct xe_exec_queue *q = ge->q;
1275 struct xe_guc *guc = exec_queue_to_guc(q);
1276
1277 xe_pm_runtime_get(guc_to_xe(guc));
1278 trace_xe_exec_queue_destroy(q);
1279
1280 release_guc_id(guc, q);
1281 if (xe_exec_queue_is_lr(q))
1282 cancel_work_sync(&ge->lr_tdr);
1283 /* Confirm no work left behind accessing device structures */
1284 cancel_delayed_work_sync(&ge->sched.base.work_tdr);
1285 xe_sched_entity_fini(&ge->entity);
1286 xe_sched_fini(&ge->sched);
1287
1288 kfree(ge);
1289 xe_exec_queue_fini(q);
1290 xe_pm_runtime_put(guc_to_xe(guc));
1291 }
1292
guc_exec_queue_fini_async(struct xe_exec_queue * q)1293 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1294 {
1295 struct xe_guc *guc = exec_queue_to_guc(q);
1296 struct xe_device *xe = guc_to_xe(guc);
1297
1298 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1299
1300 /* We must block on kernel engines so slabs are empty on driver unload */
1301 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1302 __guc_exec_queue_fini_async(&q->guc->fini_async);
1303 else
1304 queue_work(xe->destroy_wq, &q->guc->fini_async);
1305 }
1306
__guc_exec_queue_fini(struct xe_guc * guc,struct xe_exec_queue * q)1307 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1308 {
1309 /*
1310 * Might be done from within the GPU scheduler, need to do async as we
1311 * fini the scheduler when the engine is fini'd, the scheduler can't
1312 * complete fini within itself (circular dependency). Async resolves
1313 * this we and don't really care when everything is fini'd, just that it
1314 * is.
1315 */
1316 guc_exec_queue_fini_async(q);
1317 }
1318
__guc_exec_queue_process_msg_cleanup(struct xe_sched_msg * msg)1319 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1320 {
1321 struct xe_exec_queue *q = msg->private_data;
1322 struct xe_guc *guc = exec_queue_to_guc(q);
1323
1324 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1325 trace_xe_exec_queue_cleanup_entity(q);
1326
1327 if (exec_queue_registered(q))
1328 disable_scheduling_deregister(guc, q);
1329 else
1330 __guc_exec_queue_fini(guc, q);
1331 }
1332
guc_exec_queue_allowed_to_change_state(struct xe_exec_queue * q)1333 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1334 {
1335 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1336 }
1337
__guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg * msg)1338 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1339 {
1340 struct xe_exec_queue *q = msg->private_data;
1341 struct xe_guc *guc = exec_queue_to_guc(q);
1342
1343 if (guc_exec_queue_allowed_to_change_state(q))
1344 init_policies(guc, q);
1345 kfree(msg);
1346 }
1347
__suspend_fence_signal(struct xe_exec_queue * q)1348 static void __suspend_fence_signal(struct xe_exec_queue *q)
1349 {
1350 if (!q->guc->suspend_pending)
1351 return;
1352
1353 WRITE_ONCE(q->guc->suspend_pending, false);
1354 wake_up(&q->guc->suspend_wait);
1355 }
1356
suspend_fence_signal(struct xe_exec_queue * q)1357 static void suspend_fence_signal(struct xe_exec_queue *q)
1358 {
1359 struct xe_guc *guc = exec_queue_to_guc(q);
1360
1361 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) ||
1362 xe_guc_read_stopped(guc));
1363 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending);
1364
1365 __suspend_fence_signal(q);
1366 }
1367
__guc_exec_queue_process_msg_suspend(struct xe_sched_msg * msg)1368 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1369 {
1370 struct xe_exec_queue *q = msg->private_data;
1371 struct xe_guc *guc = exec_queue_to_guc(q);
1372
1373 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1374 exec_queue_enabled(q)) {
1375 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1376 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1377
1378 if (!xe_guc_read_stopped(guc)) {
1379 s64 since_resume_ms =
1380 ktime_ms_delta(ktime_get(),
1381 q->guc->resume_time);
1382 s64 wait_ms = q->vm->preempt.min_run_period_ms -
1383 since_resume_ms;
1384
1385 if (wait_ms > 0 && q->guc->resume_time)
1386 msleep(wait_ms);
1387
1388 set_exec_queue_suspended(q);
1389 disable_scheduling(q, false);
1390 }
1391 } else if (q->guc->suspend_pending) {
1392 set_exec_queue_suspended(q);
1393 suspend_fence_signal(q);
1394 }
1395 }
1396
__guc_exec_queue_process_msg_resume(struct xe_sched_msg * msg)1397 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1398 {
1399 struct xe_exec_queue *q = msg->private_data;
1400
1401 if (guc_exec_queue_allowed_to_change_state(q)) {
1402 clear_exec_queue_suspended(q);
1403 if (!exec_queue_enabled(q)) {
1404 q->guc->resume_time = RESUME_PENDING;
1405 enable_scheduling(q);
1406 }
1407 } else {
1408 clear_exec_queue_suspended(q);
1409 }
1410 }
1411
1412 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */
1413 #define SET_SCHED_PROPS 2
1414 #define SUSPEND 3
1415 #define RESUME 4
1416 #define OPCODE_MASK 0xf
1417 #define MSG_LOCKED BIT(8)
1418
guc_exec_queue_process_msg(struct xe_sched_msg * msg)1419 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1420 {
1421 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1422
1423 trace_xe_sched_msg_recv(msg);
1424
1425 switch (msg->opcode) {
1426 case CLEANUP:
1427 __guc_exec_queue_process_msg_cleanup(msg);
1428 break;
1429 case SET_SCHED_PROPS:
1430 __guc_exec_queue_process_msg_set_sched_props(msg);
1431 break;
1432 case SUSPEND:
1433 __guc_exec_queue_process_msg_suspend(msg);
1434 break;
1435 case RESUME:
1436 __guc_exec_queue_process_msg_resume(msg);
1437 break;
1438 default:
1439 XE_WARN_ON("Unknown message type");
1440 }
1441
1442 xe_pm_runtime_put(xe);
1443 }
1444
1445 static const struct drm_sched_backend_ops drm_sched_ops = {
1446 .run_job = guc_exec_queue_run_job,
1447 .free_job = guc_exec_queue_free_job,
1448 .timedout_job = guc_exec_queue_timedout_job,
1449 };
1450
1451 static const struct xe_sched_backend_ops xe_sched_ops = {
1452 .process_msg = guc_exec_queue_process_msg,
1453 };
1454
guc_exec_queue_init(struct xe_exec_queue * q)1455 static int guc_exec_queue_init(struct xe_exec_queue *q)
1456 {
1457 struct xe_gpu_scheduler *sched;
1458 struct xe_guc *guc = exec_queue_to_guc(q);
1459 struct xe_guc_exec_queue *ge;
1460 long timeout;
1461 int err, i;
1462
1463 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc)));
1464
1465 ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1466 if (!ge)
1467 return -ENOMEM;
1468
1469 q->guc = ge;
1470 ge->q = q;
1471 init_waitqueue_head(&ge->suspend_wait);
1472
1473 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1474 INIT_LIST_HEAD(&ge->static_msgs[i].link);
1475
1476 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1477 msecs_to_jiffies(q->sched_props.job_timeout_ms);
1478 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1479 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1480 timeout, guc_to_gt(guc)->ordered_wq, NULL,
1481 q->name, gt_to_xe(q->gt)->drm.dev);
1482 if (err)
1483 goto err_free;
1484
1485 sched = &ge->sched;
1486 err = xe_sched_entity_init(&ge->entity, sched);
1487 if (err)
1488 goto err_sched;
1489
1490 if (xe_exec_queue_is_lr(q))
1491 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1492
1493 mutex_lock(&guc->submission_state.lock);
1494
1495 err = alloc_guc_id(guc, q);
1496 if (err)
1497 goto err_entity;
1498
1499 q->entity = &ge->entity;
1500
1501 if (xe_guc_read_stopped(guc))
1502 xe_sched_stop(sched);
1503
1504 mutex_unlock(&guc->submission_state.lock);
1505
1506 xe_exec_queue_assign_name(q, q->guc->id);
1507
1508 trace_xe_exec_queue_create(q);
1509
1510 return 0;
1511
1512 err_entity:
1513 mutex_unlock(&guc->submission_state.lock);
1514 xe_sched_entity_fini(&ge->entity);
1515 err_sched:
1516 xe_sched_fini(&ge->sched);
1517 err_free:
1518 kfree(ge);
1519
1520 return err;
1521 }
1522
guc_exec_queue_kill(struct xe_exec_queue * q)1523 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1524 {
1525 trace_xe_exec_queue_kill(q);
1526 set_exec_queue_killed(q);
1527 __suspend_fence_signal(q);
1528 xe_guc_exec_queue_trigger_cleanup(q);
1529 }
1530
guc_exec_queue_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1531 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1532 u32 opcode)
1533 {
1534 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1535
1536 INIT_LIST_HEAD(&msg->link);
1537 msg->opcode = opcode & OPCODE_MASK;
1538 msg->private_data = q;
1539
1540 trace_xe_sched_msg_add(msg);
1541 if (opcode & MSG_LOCKED)
1542 xe_sched_add_msg_locked(&q->guc->sched, msg);
1543 else
1544 xe_sched_add_msg(&q->guc->sched, msg);
1545 }
1546
guc_exec_queue_try_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1547 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1548 struct xe_sched_msg *msg,
1549 u32 opcode)
1550 {
1551 if (!list_empty(&msg->link))
1552 return false;
1553
1554 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1555
1556 return true;
1557 }
1558
1559 #define STATIC_MSG_CLEANUP 0
1560 #define STATIC_MSG_SUSPEND 1
1561 #define STATIC_MSG_RESUME 2
guc_exec_queue_fini(struct xe_exec_queue * q)1562 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1563 {
1564 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1565
1566 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1567 guc_exec_queue_add_msg(q, msg, CLEANUP);
1568 else
1569 __guc_exec_queue_fini(exec_queue_to_guc(q), q);
1570 }
1571
guc_exec_queue_set_priority(struct xe_exec_queue * q,enum xe_exec_queue_priority priority)1572 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1573 enum xe_exec_queue_priority priority)
1574 {
1575 struct xe_sched_msg *msg;
1576
1577 if (q->sched_props.priority == priority ||
1578 exec_queue_killed_or_banned_or_wedged(q))
1579 return 0;
1580
1581 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1582 if (!msg)
1583 return -ENOMEM;
1584
1585 q->sched_props.priority = priority;
1586 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1587
1588 return 0;
1589 }
1590
guc_exec_queue_set_timeslice(struct xe_exec_queue * q,u32 timeslice_us)1591 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1592 {
1593 struct xe_sched_msg *msg;
1594
1595 if (q->sched_props.timeslice_us == timeslice_us ||
1596 exec_queue_killed_or_banned_or_wedged(q))
1597 return 0;
1598
1599 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1600 if (!msg)
1601 return -ENOMEM;
1602
1603 q->sched_props.timeslice_us = timeslice_us;
1604 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1605
1606 return 0;
1607 }
1608
guc_exec_queue_set_preempt_timeout(struct xe_exec_queue * q,u32 preempt_timeout_us)1609 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1610 u32 preempt_timeout_us)
1611 {
1612 struct xe_sched_msg *msg;
1613
1614 if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1615 exec_queue_killed_or_banned_or_wedged(q))
1616 return 0;
1617
1618 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1619 if (!msg)
1620 return -ENOMEM;
1621
1622 q->sched_props.preempt_timeout_us = preempt_timeout_us;
1623 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1624
1625 return 0;
1626 }
1627
guc_exec_queue_suspend(struct xe_exec_queue * q)1628 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1629 {
1630 struct xe_gpu_scheduler *sched = &q->guc->sched;
1631 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1632
1633 if (exec_queue_killed_or_banned_or_wedged(q))
1634 return -EINVAL;
1635
1636 xe_sched_msg_lock(sched);
1637 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1638 q->guc->suspend_pending = true;
1639 xe_sched_msg_unlock(sched);
1640
1641 return 0;
1642 }
1643
guc_exec_queue_suspend_wait(struct xe_exec_queue * q)1644 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1645 {
1646 struct xe_guc *guc = exec_queue_to_guc(q);
1647 int ret;
1648
1649 /*
1650 * Likely don't need to check exec_queue_killed() as we clear
1651 * suspend_pending upon kill but to be paranoid but races in which
1652 * suspend_pending is set after kill also check kill here.
1653 */
1654 ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1655 !READ_ONCE(q->guc->suspend_pending) ||
1656 exec_queue_killed(q) ||
1657 xe_guc_read_stopped(guc),
1658 HZ * 5);
1659
1660 if (!ret) {
1661 xe_gt_warn(guc_to_gt(guc),
1662 "Suspend fence, guc_id=%d, failed to respond",
1663 q->guc->id);
1664 /* XXX: Trigger GT reset? */
1665 return -ETIME;
1666 }
1667
1668 return ret < 0 ? ret : 0;
1669 }
1670
guc_exec_queue_resume(struct xe_exec_queue * q)1671 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1672 {
1673 struct xe_gpu_scheduler *sched = &q->guc->sched;
1674 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1675 struct xe_guc *guc = exec_queue_to_guc(q);
1676
1677 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending);
1678
1679 xe_sched_msg_lock(sched);
1680 guc_exec_queue_try_add_msg(q, msg, RESUME);
1681 xe_sched_msg_unlock(sched);
1682 }
1683
guc_exec_queue_reset_status(struct xe_exec_queue * q)1684 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1685 {
1686 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1687 }
1688
1689 /*
1690 * All of these functions are an abstraction layer which other parts of XE can
1691 * use to trap into the GuC backend. All of these functions, aside from init,
1692 * really shouldn't do much other than trap into the DRM scheduler which
1693 * synchronizes these operations.
1694 */
1695 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1696 .init = guc_exec_queue_init,
1697 .kill = guc_exec_queue_kill,
1698 .fini = guc_exec_queue_fini,
1699 .set_priority = guc_exec_queue_set_priority,
1700 .set_timeslice = guc_exec_queue_set_timeslice,
1701 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1702 .suspend = guc_exec_queue_suspend,
1703 .suspend_wait = guc_exec_queue_suspend_wait,
1704 .resume = guc_exec_queue_resume,
1705 .reset_status = guc_exec_queue_reset_status,
1706 };
1707
guc_exec_queue_stop(struct xe_guc * guc,struct xe_exec_queue * q)1708 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1709 {
1710 struct xe_gpu_scheduler *sched = &q->guc->sched;
1711
1712 /* Stop scheduling + flush any DRM scheduler operations */
1713 xe_sched_submission_stop(sched);
1714
1715 /* Clean up lost G2H + reset engine state */
1716 if (exec_queue_registered(q)) {
1717 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1718 xe_exec_queue_put(q);
1719 else if (exec_queue_destroyed(q))
1720 __guc_exec_queue_fini(guc, q);
1721 }
1722 if (q->guc->suspend_pending) {
1723 set_exec_queue_suspended(q);
1724 suspend_fence_signal(q);
1725 }
1726 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1727 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1728 EXEC_QUEUE_STATE_SUSPENDED,
1729 &q->guc->state);
1730 q->guc->resume_time = 0;
1731 trace_xe_exec_queue_stop(q);
1732
1733 /*
1734 * Ban any engine (aside from kernel and engines used for VM ops) with a
1735 * started but not complete job or if a job has gone through a GT reset
1736 * more than twice.
1737 */
1738 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1739 struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1740 bool ban = false;
1741
1742 if (job) {
1743 if ((xe_sched_job_started(job) &&
1744 !xe_sched_job_completed(job)) ||
1745 xe_sched_invalidate_job(job, 2)) {
1746 trace_xe_sched_job_ban(job);
1747 ban = true;
1748 }
1749 } else if (xe_exec_queue_is_lr(q) &&
1750 !xe_lrc_ring_is_idle(q->lrc[0])) {
1751 ban = true;
1752 }
1753
1754 if (ban) {
1755 set_exec_queue_banned(q);
1756 xe_guc_exec_queue_trigger_cleanup(q);
1757 }
1758 }
1759 }
1760
xe_guc_submit_reset_prepare(struct xe_guc * guc)1761 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1762 {
1763 int ret;
1764
1765 if (!guc->submission_state.initialized)
1766 return 0;
1767
1768 /*
1769 * Using an atomic here rather than submission_state.lock as this
1770 * function can be called while holding the CT lock (engine reset
1771 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1772 * Atomic is not ideal, but it works to prevent against concurrent reset
1773 * and releasing any TDRs waiting on guc->submission_state.stopped.
1774 */
1775 ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1776 smp_wmb();
1777 wake_up_all(&guc->ct.wq);
1778
1779 return ret;
1780 }
1781
xe_guc_submit_reset_wait(struct xe_guc * guc)1782 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1783 {
1784 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1785 !xe_guc_read_stopped(guc));
1786 }
1787
xe_guc_submit_stop(struct xe_guc * guc)1788 void xe_guc_submit_stop(struct xe_guc *guc)
1789 {
1790 struct xe_exec_queue *q;
1791 unsigned long index;
1792
1793 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1794
1795 mutex_lock(&guc->submission_state.lock);
1796
1797 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1798 /* Prevent redundant attempts to stop parallel queues */
1799 if (q->guc->id != index)
1800 continue;
1801
1802 guc_exec_queue_stop(guc, q);
1803 }
1804
1805 mutex_unlock(&guc->submission_state.lock);
1806
1807 /*
1808 * No one can enter the backend at this point, aside from new engine
1809 * creation which is protected by guc->submission_state.lock.
1810 */
1811
1812 }
1813
guc_exec_queue_start(struct xe_exec_queue * q)1814 static void guc_exec_queue_start(struct xe_exec_queue *q)
1815 {
1816 struct xe_gpu_scheduler *sched = &q->guc->sched;
1817
1818 if (!exec_queue_killed_or_banned_or_wedged(q)) {
1819 int i;
1820
1821 trace_xe_exec_queue_resubmit(q);
1822 for (i = 0; i < q->width; ++i)
1823 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1824 xe_sched_resubmit_jobs(sched);
1825 }
1826
1827 xe_sched_submission_start(sched);
1828 xe_sched_submission_resume_tdr(sched);
1829 }
1830
xe_guc_submit_start(struct xe_guc * guc)1831 int xe_guc_submit_start(struct xe_guc *guc)
1832 {
1833 struct xe_exec_queue *q;
1834 unsigned long index;
1835
1836 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1837
1838 mutex_lock(&guc->submission_state.lock);
1839 atomic_dec(&guc->submission_state.stopped);
1840 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1841 /* Prevent redundant attempts to start parallel queues */
1842 if (q->guc->id != index)
1843 continue;
1844
1845 guc_exec_queue_start(q);
1846 }
1847 mutex_unlock(&guc->submission_state.lock);
1848
1849 wake_up_all(&guc->ct.wq);
1850
1851 return 0;
1852 }
1853
1854 static struct xe_exec_queue *
g2h_exec_queue_lookup(struct xe_guc * guc,u32 guc_id)1855 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1856 {
1857 struct xe_gt *gt = guc_to_gt(guc);
1858 struct xe_exec_queue *q;
1859
1860 if (unlikely(guc_id >= GUC_ID_MAX)) {
1861 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id);
1862 return NULL;
1863 }
1864
1865 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1866 if (unlikely(!q)) {
1867 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id);
1868 return NULL;
1869 }
1870
1871 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id);
1872 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width));
1873
1874 return q;
1875 }
1876
deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1877 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1878 {
1879 u32 action[] = {
1880 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1881 q->guc->id,
1882 };
1883
1884 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1885 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1886 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1887 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1888
1889 trace_xe_exec_queue_deregister(q);
1890
1891 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1892 }
1893
handle_sched_done(struct xe_guc * guc,struct xe_exec_queue * q,u32 runnable_state)1894 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1895 u32 runnable_state)
1896 {
1897 trace_xe_exec_queue_scheduling_done(q);
1898
1899 if (runnable_state == 1) {
1900 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1901
1902 q->guc->resume_time = ktime_get();
1903 clear_exec_queue_pending_enable(q);
1904 smp_wmb();
1905 wake_up_all(&guc->ct.wq);
1906 } else {
1907 bool check_timeout = exec_queue_check_timeout(q);
1908
1909 xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1910 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1911
1912 if (q->guc->suspend_pending) {
1913 suspend_fence_signal(q);
1914 clear_exec_queue_pending_disable(q);
1915 } else {
1916 if (exec_queue_banned(q) || check_timeout) {
1917 smp_wmb();
1918 wake_up_all(&guc->ct.wq);
1919 }
1920 if (!check_timeout && exec_queue_destroyed(q)) {
1921 /*
1922 * Make sure to clear the pending_disable only
1923 * after sampling the destroyed state. We want
1924 * to ensure we don't trigger the unregister too
1925 * early with something intending to only
1926 * disable scheduling. The caller doing the
1927 * destroy must wait for an ongoing
1928 * pending_disable before marking as destroyed.
1929 */
1930 clear_exec_queue_pending_disable(q);
1931 deregister_exec_queue(guc, q);
1932 } else {
1933 clear_exec_queue_pending_disable(q);
1934 }
1935 }
1936 }
1937 }
1938
xe_guc_sched_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1939 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1940 {
1941 struct xe_exec_queue *q;
1942 u32 guc_id, runnable_state;
1943
1944 if (unlikely(len < 2))
1945 return -EPROTO;
1946
1947 guc_id = msg[0];
1948 runnable_state = msg[1];
1949
1950 q = g2h_exec_queue_lookup(guc, guc_id);
1951 if (unlikely(!q))
1952 return -EPROTO;
1953
1954 if (unlikely(!exec_queue_pending_enable(q) &&
1955 !exec_queue_pending_disable(q))) {
1956 xe_gt_err(guc_to_gt(guc),
1957 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1958 atomic_read(&q->guc->state), q->guc->id,
1959 runnable_state);
1960 return -EPROTO;
1961 }
1962
1963 handle_sched_done(guc, q, runnable_state);
1964
1965 return 0;
1966 }
1967
handle_deregister_done(struct xe_guc * guc,struct xe_exec_queue * q)1968 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1969 {
1970 trace_xe_exec_queue_deregister_done(q);
1971
1972 clear_exec_queue_registered(q);
1973
1974 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1975 xe_exec_queue_put(q);
1976 else
1977 __guc_exec_queue_fini(guc, q);
1978 }
1979
xe_guc_deregister_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1980 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1981 {
1982 struct xe_exec_queue *q;
1983 u32 guc_id;
1984
1985 if (unlikely(len < 1))
1986 return -EPROTO;
1987
1988 guc_id = msg[0];
1989
1990 q = g2h_exec_queue_lookup(guc, guc_id);
1991 if (unlikely(!q))
1992 return -EPROTO;
1993
1994 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1995 exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1996 xe_gt_err(guc_to_gt(guc),
1997 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1998 atomic_read(&q->guc->state), q->guc->id);
1999 return -EPROTO;
2000 }
2001
2002 handle_deregister_done(guc, q);
2003
2004 return 0;
2005 }
2006
xe_guc_exec_queue_reset_handler(struct xe_guc * guc,u32 * msg,u32 len)2007 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
2008 {
2009 struct xe_gt *gt = guc_to_gt(guc);
2010 struct xe_exec_queue *q;
2011 u32 guc_id;
2012
2013 if (unlikely(len < 1))
2014 return -EPROTO;
2015
2016 guc_id = msg[0];
2017
2018 q = g2h_exec_queue_lookup(guc, guc_id);
2019 if (unlikely(!q))
2020 return -EPROTO;
2021
2022 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2023 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2024
2025 trace_xe_exec_queue_reset(q);
2026
2027 /*
2028 * A banned engine is a NOP at this point (came from
2029 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
2030 * jobs by setting timeout of the job to the minimum value kicking
2031 * guc_exec_queue_timedout_job.
2032 */
2033 set_exec_queue_reset(q);
2034 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2035 xe_guc_exec_queue_trigger_cleanup(q);
2036
2037 return 0;
2038 }
2039
2040 /*
2041 * xe_guc_error_capture_handler - Handler of GuC captured message
2042 * @guc: The GuC object
2043 * @msg: Point to the message
2044 * @len: The message length
2045 *
2046 * When GuC captured data is ready, GuC will send message
2047 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2048 * called 1st to check status before process the data comes with the message.
2049 *
2050 * Returns: error code. 0 if success
2051 */
xe_guc_error_capture_handler(struct xe_guc * guc,u32 * msg,u32 len)2052 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2053 {
2054 u32 status;
2055
2056 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN))
2057 return -EPROTO;
2058
2059 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2060 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2061 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2062
2063 xe_guc_capture_process(guc);
2064
2065 return 0;
2066 }
2067
xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc * guc,u32 * msg,u32 len)2068 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2069 u32 len)
2070 {
2071 struct xe_gt *gt = guc_to_gt(guc);
2072 struct xe_exec_queue *q;
2073 u32 guc_id;
2074
2075 if (unlikely(len < 1))
2076 return -EPROTO;
2077
2078 guc_id = msg[0];
2079
2080 if (guc_id == GUC_ID_UNKNOWN) {
2081 /*
2082 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF
2083 * context. In such case only PF will be notified about that fault.
2084 */
2085 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n");
2086 return 0;
2087 }
2088
2089 q = g2h_exec_queue_lookup(guc, guc_id);
2090 if (unlikely(!q))
2091 return -EPROTO;
2092
2093 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2094 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2095
2096 trace_xe_exec_queue_memory_cat_error(q);
2097
2098 /* Treat the same as engine reset */
2099 set_exec_queue_reset(q);
2100 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2101 xe_guc_exec_queue_trigger_cleanup(q);
2102
2103 return 0;
2104 }
2105
xe_guc_exec_queue_reset_failure_handler(struct xe_guc * guc,u32 * msg,u32 len)2106 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2107 {
2108 struct xe_gt *gt = guc_to_gt(guc);
2109 u8 guc_class, instance;
2110 u32 reason;
2111
2112 if (unlikely(len != 3))
2113 return -EPROTO;
2114
2115 guc_class = msg[0];
2116 instance = msg[1];
2117 reason = msg[2];
2118
2119 /* Unexpected failure of a hardware feature, log an actual error */
2120 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X",
2121 guc_class, instance, reason);
2122
2123 xe_gt_reset_async(gt);
2124
2125 return 0;
2126 }
2127
2128 static void
guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue * q,struct xe_guc_submit_exec_queue_snapshot * snapshot)2129 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2130 struct xe_guc_submit_exec_queue_snapshot *snapshot)
2131 {
2132 struct xe_guc *guc = exec_queue_to_guc(q);
2133 struct xe_device *xe = guc_to_xe(guc);
2134 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2135 int i;
2136
2137 snapshot->guc.wqi_head = q->guc->wqi_head;
2138 snapshot->guc.wqi_tail = q->guc->wqi_tail;
2139 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2140 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2141 snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2142 wq_desc.wq_status);
2143
2144 if (snapshot->parallel.wq_desc.head !=
2145 snapshot->parallel.wq_desc.tail) {
2146 for (i = snapshot->parallel.wq_desc.head;
2147 i != snapshot->parallel.wq_desc.tail;
2148 i = (i + sizeof(u32)) % WQ_SIZE)
2149 snapshot->parallel.wq[i / sizeof(u32)] =
2150 parallel_read(xe, map, wq[i / sizeof(u32)]);
2151 }
2152 }
2153
2154 static void
guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2155 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2156 struct drm_printer *p)
2157 {
2158 int i;
2159
2160 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2161 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2162 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2163 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2164 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2165
2166 if (snapshot->parallel.wq_desc.head !=
2167 snapshot->parallel.wq_desc.tail) {
2168 for (i = snapshot->parallel.wq_desc.head;
2169 i != snapshot->parallel.wq_desc.tail;
2170 i = (i + sizeof(u32)) % WQ_SIZE)
2171 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2172 snapshot->parallel.wq[i / sizeof(u32)]);
2173 }
2174 }
2175
2176 /**
2177 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2178 * @q: faulty exec queue
2179 *
2180 * This can be printed out in a later stage like during dev_coredump
2181 * analysis.
2182 *
2183 * Returns: a GuC Submit Engine snapshot object that must be freed by the
2184 * caller, using `xe_guc_exec_queue_snapshot_free`.
2185 */
2186 struct xe_guc_submit_exec_queue_snapshot *
xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue * q)2187 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2188 {
2189 struct xe_gpu_scheduler *sched = &q->guc->sched;
2190 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2191 int i;
2192
2193 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2194
2195 if (!snapshot)
2196 return NULL;
2197
2198 snapshot->guc.id = q->guc->id;
2199 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2200 snapshot->class = q->class;
2201 snapshot->logical_mask = q->logical_mask;
2202 snapshot->width = q->width;
2203 snapshot->refcount = kref_read(&q->refcount);
2204 snapshot->sched_timeout = sched->base.timeout;
2205 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2206 snapshot->sched_props.preempt_timeout_us =
2207 q->sched_props.preempt_timeout_us;
2208
2209 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2210 GFP_ATOMIC);
2211
2212 if (snapshot->lrc) {
2213 for (i = 0; i < q->width; ++i) {
2214 struct xe_lrc *lrc = q->lrc[i];
2215
2216 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2217 }
2218 }
2219
2220 snapshot->schedule_state = atomic_read(&q->guc->state);
2221 snapshot->exec_queue_flags = q->flags;
2222
2223 snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2224 if (snapshot->parallel_execution)
2225 guc_exec_queue_wq_snapshot_capture(q, snapshot);
2226
2227 spin_lock(&sched->base.job_list_lock);
2228 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2229 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2230 sizeof(struct pending_list_snapshot),
2231 GFP_ATOMIC);
2232
2233 if (snapshot->pending_list) {
2234 struct xe_sched_job *job_iter;
2235
2236 i = 0;
2237 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2238 snapshot->pending_list[i].seqno =
2239 xe_sched_job_seqno(job_iter);
2240 snapshot->pending_list[i].fence =
2241 dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2242 snapshot->pending_list[i].finished =
2243 dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2244 ? 1 : 0;
2245 i++;
2246 }
2247 }
2248
2249 spin_unlock(&sched->base.job_list_lock);
2250
2251 return snapshot;
2252 }
2253
2254 /**
2255 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2256 * @snapshot: Previously captured snapshot of job.
2257 *
2258 * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2259 */
2260 void
xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot * snapshot)2261 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2262 {
2263 int i;
2264
2265 if (!snapshot || !snapshot->lrc)
2266 return;
2267
2268 for (i = 0; i < snapshot->width; ++i)
2269 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2270 }
2271
2272 /**
2273 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2274 * @snapshot: GuC Submit Engine snapshot object.
2275 * @p: drm_printer where it will be printed out.
2276 *
2277 * This function prints out a given GuC Submit Engine snapshot object.
2278 */
2279 void
xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2280 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2281 struct drm_printer *p)
2282 {
2283 int i;
2284
2285 if (!snapshot)
2286 return;
2287
2288 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2289 drm_printf(p, "\tName: %s\n", snapshot->name);
2290 drm_printf(p, "\tClass: %d\n", snapshot->class);
2291 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2292 drm_printf(p, "\tWidth: %d\n", snapshot->width);
2293 drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2294 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2295 drm_printf(p, "\tTimeslice: %u (us)\n",
2296 snapshot->sched_props.timeslice_us);
2297 drm_printf(p, "\tPreempt timeout: %u (us)\n",
2298 snapshot->sched_props.preempt_timeout_us);
2299
2300 for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2301 xe_lrc_snapshot_print(snapshot->lrc[i], p);
2302
2303 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2304 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2305
2306 if (snapshot->parallel_execution)
2307 guc_exec_queue_wq_snapshot_print(snapshot, p);
2308
2309 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2310 i++)
2311 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2312 snapshot->pending_list[i].seqno,
2313 snapshot->pending_list[i].fence,
2314 snapshot->pending_list[i].finished);
2315 }
2316
2317 /**
2318 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2319 * snapshot.
2320 * @snapshot: GuC Submit Engine snapshot object.
2321 *
2322 * This function free all the memory that needed to be allocated at capture
2323 * time.
2324 */
xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot * snapshot)2325 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2326 {
2327 int i;
2328
2329 if (!snapshot)
2330 return;
2331
2332 if (snapshot->lrc) {
2333 for (i = 0; i < snapshot->width; i++)
2334 xe_lrc_snapshot_free(snapshot->lrc[i]);
2335 kfree(snapshot->lrc);
2336 }
2337 kfree(snapshot->pending_list);
2338 kfree(snapshot);
2339 }
2340
guc_exec_queue_print(struct xe_exec_queue * q,struct drm_printer * p)2341 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2342 {
2343 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2344
2345 snapshot = xe_guc_exec_queue_snapshot_capture(q);
2346 xe_guc_exec_queue_snapshot_print(snapshot, p);
2347 xe_guc_exec_queue_snapshot_free(snapshot);
2348 }
2349
2350 /**
2351 * xe_guc_submit_print - GuC Submit Print.
2352 * @guc: GuC.
2353 * @p: drm_printer where it will be printed out.
2354 *
2355 * This function capture and prints snapshots of **all** GuC Engines.
2356 */
xe_guc_submit_print(struct xe_guc * guc,struct drm_printer * p)2357 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2358 {
2359 struct xe_exec_queue *q;
2360 unsigned long index;
2361
2362 if (!xe_device_uc_enabled(guc_to_xe(guc)))
2363 return;
2364
2365 mutex_lock(&guc->submission_state.lock);
2366 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2367 guc_exec_queue_print(q, p);
2368 mutex_unlock(&guc->submission_state.lock);
2369 }
2370