1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/rmap.c - physical to virtual reverse mappings 4 * 5 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/leafops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlb.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 #include "swap.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_assign(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 mmap_assert_locked(mm); 192 might_sleep(); 193 194 avc = anon_vma_chain_alloc(GFP_KERNEL); 195 if (!avc) 196 goto out_enomem; 197 198 anon_vma = find_mergeable_anon_vma(vma); 199 allocated = NULL; 200 if (!anon_vma) { 201 anon_vma = anon_vma_alloc(); 202 if (unlikely(!anon_vma)) 203 goto out_enomem_free_avc; 204 anon_vma->num_children++; /* self-parent link for new root */ 205 allocated = anon_vma; 206 } 207 208 anon_vma_lock_write(anon_vma); 209 /* page_table_lock to protect against threads */ 210 spin_lock(&mm->page_table_lock); 211 if (likely(!vma->anon_vma)) { 212 vma->anon_vma = anon_vma; 213 anon_vma_chain_assign(vma, avc, anon_vma); 214 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 static void check_anon_vma_clone(struct vm_area_struct *dst, 236 struct vm_area_struct *src, 237 enum vma_operation operation) 238 { 239 /* The write lock must be held. */ 240 mmap_assert_write_locked(src->vm_mm); 241 /* If not a fork then must be on same mm. */ 242 VM_WARN_ON_ONCE(operation != VMA_OP_FORK && dst->vm_mm != src->vm_mm); 243 244 /* If we have anything to do src->anon_vma must be provided. */ 245 VM_WARN_ON_ONCE(!src->anon_vma && !list_empty(&src->anon_vma_chain)); 246 VM_WARN_ON_ONCE(!src->anon_vma && dst->anon_vma); 247 /* We are establishing a new anon_vma_chain. */ 248 VM_WARN_ON_ONCE(!list_empty(&dst->anon_vma_chain)); 249 /* 250 * On fork, dst->anon_vma is set NULL (temporarily). Otherwise, anon_vma 251 * must be the same across dst and src. 252 */ 253 VM_WARN_ON_ONCE(dst->anon_vma && dst->anon_vma != src->anon_vma); 254 /* 255 * Essentially equivalent to above - if not a no-op, we should expect 256 * dst->anon_vma to be set for everything except a fork. 257 */ 258 VM_WARN_ON_ONCE(operation != VMA_OP_FORK && src->anon_vma && 259 !dst->anon_vma); 260 /* For the anon_vma to be compatible, it can only be singular. */ 261 VM_WARN_ON_ONCE(operation == VMA_OP_MERGE_UNFAULTED && 262 !list_is_singular(&src->anon_vma_chain)); 263 #ifdef CONFIG_PER_VMA_LOCK 264 /* Only merging an unfaulted VMA leaves the destination attached. */ 265 VM_WARN_ON_ONCE(operation != VMA_OP_MERGE_UNFAULTED && 266 vma_is_attached(dst)); 267 #endif 268 } 269 270 static void maybe_reuse_anon_vma(struct vm_area_struct *dst, 271 struct anon_vma *anon_vma) 272 { 273 /* If already populated, nothing to do.*/ 274 if (dst->anon_vma) 275 return; 276 277 /* 278 * We reuse an anon_vma if any linking VMAs were unmapped and it has 279 * only a single child at most. 280 */ 281 if (anon_vma->num_active_vmas > 0) 282 return; 283 if (anon_vma->num_children > 1) 284 return; 285 286 dst->anon_vma = anon_vma; 287 anon_vma->num_active_vmas++; 288 } 289 290 static void cleanup_partial_anon_vmas(struct vm_area_struct *vma); 291 292 /** 293 * anon_vma_clone - Establishes new anon_vma_chain objects in @dst linking to 294 * all of the anon_vma objects contained within @src anon_vma_chain's. 295 * @dst: The destination VMA with an empty anon_vma_chain. 296 * @src: The source VMA we wish to duplicate. 297 * @operation: The type of operation which resulted in the clone. 298 * 299 * This is the heart of the VMA side of the anon_vma implementation - we invoke 300 * this function whenever we need to set up a new VMA's anon_vma state. 301 * 302 * This is invoked for: 303 * 304 * - VMA Merge, but only when @dst is unfaulted and @src is faulted - meaning we 305 * clone @src into @dst. 306 * - VMA split. 307 * - VMA (m)remap. 308 * - Fork of faulted VMA. 309 * 310 * In all cases other than fork this is simply a duplication. Fork additionally 311 * adds a new active anon_vma. 312 * 313 * ONLY in the case of fork do we try to 'reuse' existing anon_vma's in an 314 * anon_vma hierarchy, reusing anon_vma's which have no VMA associated with them 315 * but do have a single child. This is to avoid waste of memory when repeatedly 316 * forking. 317 * 318 * Returns: 0 on success, -ENOMEM on failure. 319 */ 320 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src, 321 enum vma_operation operation) 322 { 323 struct anon_vma_chain *avc, *pavc; 324 struct anon_vma *active_anon_vma = src->anon_vma; 325 326 check_anon_vma_clone(dst, src, operation); 327 328 if (!active_anon_vma) 329 return 0; 330 331 /* 332 * Allocate AVCs. We don't need an anon_vma lock for this as we 333 * are not updating the anon_vma rbtree nor are we changing 334 * anon_vma statistics. 335 * 336 * Either src, dst have the same mm for which we hold an exclusive mmap 337 * write lock, or we are forking and we hold it on src->vm_mm and dst is 338 * not yet accessible to other threads so there's no possibliity of the 339 * unlinked AVC's being observed yet. 340 */ 341 list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) { 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto enomem_failure; 345 346 anon_vma_chain_assign(dst, avc, pavc->anon_vma); 347 } 348 349 /* 350 * Now link the anon_vma's back to the newly inserted AVCs. 351 * Note that all anon_vma's share the same root. 352 */ 353 anon_vma_lock_write(src->anon_vma); 354 list_for_each_entry_reverse(avc, &dst->anon_vma_chain, same_vma) { 355 struct anon_vma *anon_vma = avc->anon_vma; 356 357 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 358 if (operation == VMA_OP_FORK) 359 maybe_reuse_anon_vma(dst, anon_vma); 360 } 361 362 if (operation != VMA_OP_FORK) 363 dst->anon_vma->num_active_vmas++; 364 365 anon_vma_unlock_write(active_anon_vma); 366 return 0; 367 368 enomem_failure: 369 cleanup_partial_anon_vmas(dst); 370 return -ENOMEM; 371 } 372 373 /* 374 * Attach vma to its own anon_vma, as well as to the anon_vmas that 375 * the corresponding VMA in the parent process is attached to. 376 * Returns 0 on success, non-zero on failure. 377 */ 378 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 379 { 380 struct anon_vma_chain *avc; 381 struct anon_vma *anon_vma; 382 int rc; 383 384 /* Don't bother if the parent process has no anon_vma here. */ 385 if (!pvma->anon_vma) 386 return 0; 387 388 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 389 vma->anon_vma = NULL; 390 391 anon_vma = anon_vma_alloc(); 392 if (!anon_vma) 393 return -ENOMEM; 394 avc = anon_vma_chain_alloc(GFP_KERNEL); 395 if (!avc) { 396 put_anon_vma(anon_vma); 397 return -ENOMEM; 398 } 399 400 /* 401 * First, attach the new VMA to the parent VMA's anon_vmas, 402 * so rmap can find non-COWed pages in child processes. 403 */ 404 rc = anon_vma_clone(vma, pvma, VMA_OP_FORK); 405 /* An error arose or an existing anon_vma was reused, all done then. */ 406 if (rc || vma->anon_vma) { 407 put_anon_vma(anon_vma); 408 anon_vma_chain_free(avc); 409 return rc; 410 } 411 412 /* 413 * OK no reuse, so add our own anon_vma. 414 * 415 * Since it is not linked anywhere we can safely manipulate anon_vma 416 * fields without a lock. 417 */ 418 419 anon_vma->num_active_vmas = 1; 420 /* 421 * The root anon_vma's rwsem is the lock actually used when we 422 * lock any of the anon_vmas in this anon_vma tree. 423 */ 424 anon_vma->root = pvma->anon_vma->root; 425 anon_vma->parent = pvma->anon_vma; 426 /* 427 * With refcounts, an anon_vma can stay around longer than the 428 * process it belongs to. The root anon_vma needs to be pinned until 429 * this anon_vma is freed, because the lock lives in the root. 430 */ 431 get_anon_vma(anon_vma->root); 432 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 433 vma->anon_vma = anon_vma; 434 anon_vma_chain_assign(vma, avc, anon_vma); 435 /* Now let rmap see it. */ 436 anon_vma_lock_write(anon_vma); 437 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 438 anon_vma->parent->num_children++; 439 anon_vma_unlock_write(anon_vma); 440 441 return 0; 442 } 443 444 /* 445 * In the unfortunate case of anon_vma_clone() failing to allocate memory we 446 * have to clean things up. 447 * 448 * Since we allocate anon_vma_chain's before we insert them into the interval 449 * trees, we simply have to free up the AVC's and remove the entries from the 450 * VMA's anon_vma_chain. 451 */ 452 static void cleanup_partial_anon_vmas(struct vm_area_struct *vma) 453 { 454 struct anon_vma_chain *avc, *next; 455 456 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 457 list_del(&avc->same_vma); 458 anon_vma_chain_free(avc); 459 } 460 } 461 462 /** 463 * unlink_anon_vmas() - remove all links between a VMA and anon_vma's, freeing 464 * anon_vma_chain objects. 465 * @vma: The VMA whose links to anon_vma objects is to be severed. 466 * 467 * As part of the process anon_vma_chain's are freed, 468 * anon_vma->num_children,num_active_vmas is updated as required and, if the 469 * relevant anon_vma references no further VMAs, its reference count is 470 * decremented. 471 */ 472 void unlink_anon_vmas(struct vm_area_struct *vma) 473 { 474 struct anon_vma_chain *avc, *next; 475 struct anon_vma *active_anon_vma = vma->anon_vma; 476 477 /* Always hold mmap lock, read-lock on unmap possibly. */ 478 mmap_assert_locked(vma->vm_mm); 479 480 /* Unfaulted is a no-op. */ 481 if (!active_anon_vma) { 482 VM_WARN_ON_ONCE(!list_empty(&vma->anon_vma_chain)); 483 return; 484 } 485 486 anon_vma_lock_write(active_anon_vma); 487 488 /* 489 * Unlink each anon_vma chained to the VMA. This list is ordered 490 * from newest to oldest, ensuring the root anon_vma gets freed last. 491 */ 492 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 493 struct anon_vma *anon_vma = avc->anon_vma; 494 495 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 496 497 /* 498 * Leave empty anon_vmas on the list - we'll need 499 * to free them outside the lock. 500 */ 501 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 502 anon_vma->parent->num_children--; 503 continue; 504 } 505 506 list_del(&avc->same_vma); 507 anon_vma_chain_free(avc); 508 } 509 510 active_anon_vma->num_active_vmas--; 511 /* 512 * vma would still be needed after unlink, and anon_vma will be prepared 513 * when handle fault. 514 */ 515 vma->anon_vma = NULL; 516 anon_vma_unlock_write(active_anon_vma); 517 518 519 /* 520 * Iterate the list once more, it now only contains empty and unlinked 521 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 522 * needing to write-acquire the anon_vma->root->rwsem. 523 */ 524 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 525 struct anon_vma *anon_vma = avc->anon_vma; 526 527 VM_WARN_ON(anon_vma->num_children); 528 VM_WARN_ON(anon_vma->num_active_vmas); 529 put_anon_vma(anon_vma); 530 531 list_del(&avc->same_vma); 532 anon_vma_chain_free(avc); 533 } 534 } 535 536 static void anon_vma_ctor(void *data) 537 { 538 struct anon_vma *anon_vma = data; 539 540 init_rwsem(&anon_vma->rwsem); 541 atomic_set(&anon_vma->refcount, 0); 542 anon_vma->rb_root = RB_ROOT_CACHED; 543 } 544 545 void __init anon_vma_init(void) 546 { 547 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 548 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 549 anon_vma_ctor); 550 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 551 SLAB_PANIC|SLAB_ACCOUNT); 552 } 553 554 /* 555 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 556 * 557 * Since there is no serialization what so ever against folio_remove_rmap_*() 558 * the best this function can do is return a refcount increased anon_vma 559 * that might have been relevant to this page. 560 * 561 * The page might have been remapped to a different anon_vma or the anon_vma 562 * returned may already be freed (and even reused). 563 * 564 * In case it was remapped to a different anon_vma, the new anon_vma will be a 565 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 566 * ensure that any anon_vma obtained from the page will still be valid for as 567 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 568 * 569 * All users of this function must be very careful when walking the anon_vma 570 * chain and verify that the page in question is indeed mapped in it 571 * [ something equivalent to page_mapped_in_vma() ]. 572 * 573 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 574 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 575 * if there is a mapcount, we can dereference the anon_vma after observing 576 * those. 577 * 578 * NOTE: the caller should hold folio lock when calling this. 579 */ 580 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 581 { 582 struct anon_vma *anon_vma = NULL; 583 unsigned long anon_mapping; 584 585 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 586 587 rcu_read_lock(); 588 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 589 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 590 goto out; 591 if (!folio_mapped(folio)) 592 goto out; 593 594 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 595 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 596 anon_vma = NULL; 597 goto out; 598 } 599 600 /* 601 * If this folio is still mapped, then its anon_vma cannot have been 602 * freed. But if it has been unmapped, we have no security against the 603 * anon_vma structure being freed and reused (for another anon_vma: 604 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 605 * above cannot corrupt). 606 */ 607 if (!folio_mapped(folio)) { 608 rcu_read_unlock(); 609 put_anon_vma(anon_vma); 610 return NULL; 611 } 612 out: 613 rcu_read_unlock(); 614 615 return anon_vma; 616 } 617 618 /* 619 * Similar to folio_get_anon_vma() except it locks the anon_vma. 620 * 621 * Its a little more complex as it tries to keep the fast path to a single 622 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 623 * reference like with folio_get_anon_vma() and then block on the mutex 624 * on !rwc->try_lock case. 625 */ 626 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 627 struct rmap_walk_control *rwc) 628 { 629 struct anon_vma *anon_vma = NULL; 630 struct anon_vma *root_anon_vma; 631 unsigned long anon_mapping; 632 633 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 634 635 rcu_read_lock(); 636 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 637 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 638 goto out; 639 if (!folio_mapped(folio)) 640 goto out; 641 642 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 643 root_anon_vma = READ_ONCE(anon_vma->root); 644 if (down_read_trylock(&root_anon_vma->rwsem)) { 645 /* 646 * If the folio is still mapped, then this anon_vma is still 647 * its anon_vma, and holding the mutex ensures that it will 648 * not go away, see anon_vma_free(). 649 */ 650 if (!folio_mapped(folio)) { 651 up_read(&root_anon_vma->rwsem); 652 anon_vma = NULL; 653 } 654 goto out; 655 } 656 657 if (rwc && rwc->try_lock) { 658 anon_vma = NULL; 659 rwc->contended = true; 660 goto out; 661 } 662 663 /* trylock failed, we got to sleep */ 664 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 665 anon_vma = NULL; 666 goto out; 667 } 668 669 if (!folio_mapped(folio)) { 670 rcu_read_unlock(); 671 put_anon_vma(anon_vma); 672 return NULL; 673 } 674 675 /* we pinned the anon_vma, its safe to sleep */ 676 rcu_read_unlock(); 677 anon_vma_lock_read(anon_vma); 678 679 if (atomic_dec_and_test(&anon_vma->refcount)) { 680 /* 681 * Oops, we held the last refcount, release the lock 682 * and bail -- can't simply use put_anon_vma() because 683 * we'll deadlock on the anon_vma_lock_write() recursion. 684 */ 685 anon_vma_unlock_read(anon_vma); 686 __put_anon_vma(anon_vma); 687 anon_vma = NULL; 688 } 689 690 return anon_vma; 691 692 out: 693 rcu_read_unlock(); 694 return anon_vma; 695 } 696 697 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 698 /* 699 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 700 * important if a PTE was dirty when it was unmapped that it's flushed 701 * before any IO is initiated on the page to prevent lost writes. Similarly, 702 * it must be flushed before freeing to prevent data leakage. 703 */ 704 void try_to_unmap_flush(void) 705 { 706 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 707 708 if (!tlb_ubc->flush_required) 709 return; 710 711 arch_tlbbatch_flush(&tlb_ubc->arch); 712 tlb_ubc->flush_required = false; 713 tlb_ubc->writable = false; 714 } 715 716 /* Flush iff there are potentially writable TLB entries that can race with IO */ 717 void try_to_unmap_flush_dirty(void) 718 { 719 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 720 721 if (tlb_ubc->writable) 722 try_to_unmap_flush(); 723 } 724 725 /* 726 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 727 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 728 */ 729 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 730 #define TLB_FLUSH_BATCH_PENDING_MASK \ 731 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 732 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 733 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 734 735 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 736 unsigned long start, unsigned long end) 737 { 738 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 739 int batch; 740 bool writable = pte_dirty(pteval); 741 742 if (!pte_accessible(mm, pteval)) 743 return; 744 745 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 746 tlb_ubc->flush_required = true; 747 748 /* 749 * Ensure compiler does not re-order the setting of tlb_flush_batched 750 * before the PTE is cleared. 751 */ 752 barrier(); 753 batch = atomic_read(&mm->tlb_flush_batched); 754 retry: 755 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 756 /* 757 * Prevent `pending' from catching up with `flushed' because of 758 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 759 * `pending' becomes large. 760 */ 761 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 762 goto retry; 763 } else { 764 atomic_inc(&mm->tlb_flush_batched); 765 } 766 767 /* 768 * If the PTE was dirty then it's best to assume it's writable. The 769 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 770 * before the page is queued for IO. 771 */ 772 if (writable) 773 tlb_ubc->writable = true; 774 } 775 776 /* 777 * Returns true if the TLB flush should be deferred to the end of a batch of 778 * unmap operations to reduce IPIs. 779 */ 780 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 781 { 782 if (!(flags & TTU_BATCH_FLUSH)) 783 return false; 784 785 return arch_tlbbatch_should_defer(mm); 786 } 787 788 /* 789 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 790 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 791 * operation such as mprotect or munmap to race between reclaim unmapping 792 * the page and flushing the page. If this race occurs, it potentially allows 793 * access to data via a stale TLB entry. Tracking all mm's that have TLB 794 * batching in flight would be expensive during reclaim so instead track 795 * whether TLB batching occurred in the past and if so then do a flush here 796 * if required. This will cost one additional flush per reclaim cycle paid 797 * by the first operation at risk such as mprotect and mumap. 798 * 799 * This must be called under the PTL so that an access to tlb_flush_batched 800 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 801 * via the PTL. 802 */ 803 void flush_tlb_batched_pending(struct mm_struct *mm) 804 { 805 int batch = atomic_read(&mm->tlb_flush_batched); 806 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 807 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 808 809 if (pending != flushed) { 810 flush_tlb_mm(mm); 811 /* 812 * If the new TLB flushing is pending during flushing, leave 813 * mm->tlb_flush_batched as is, to avoid losing flushing. 814 */ 815 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 816 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 817 } 818 } 819 #else 820 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 821 unsigned long start, unsigned long end) 822 { 823 } 824 825 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 826 { 827 return false; 828 } 829 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 830 831 /** 832 * page_address_in_vma - The virtual address of a page in this VMA. 833 * @folio: The folio containing the page. 834 * @page: The page within the folio. 835 * @vma: The VMA we need to know the address in. 836 * 837 * Calculates the user virtual address of this page in the specified VMA. 838 * It is the caller's responsibility to check the page is actually 839 * within the VMA. There may not currently be a PTE pointing at this 840 * page, but if a page fault occurs at this address, this is the page 841 * which will be accessed. 842 * 843 * Context: Caller should hold a reference to the folio. Caller should 844 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 845 * VMA from being altered. 846 * 847 * Return: The virtual address corresponding to this page in the VMA. 848 */ 849 unsigned long page_address_in_vma(const struct folio *folio, 850 const struct page *page, const struct vm_area_struct *vma) 851 { 852 if (folio_test_anon(folio)) { 853 struct anon_vma *anon_vma = folio_anon_vma(folio); 854 /* 855 * Note: swapoff's unuse_vma() is more efficient with this 856 * check, and needs it to match anon_vma when KSM is active. 857 */ 858 if (!vma->anon_vma || !anon_vma || 859 vma->anon_vma->root != anon_vma->root) 860 return -EFAULT; 861 } else if (!vma->vm_file) { 862 return -EFAULT; 863 } else if (vma->vm_file->f_mapping != folio->mapping) { 864 return -EFAULT; 865 } 866 867 /* KSM folios don't reach here because of the !anon_vma check */ 868 return vma_address(vma, page_pgoff(folio, page), 1); 869 } 870 871 /* 872 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 873 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 874 * represents. 875 */ 876 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 877 { 878 pgd_t *pgd; 879 p4d_t *p4d; 880 pud_t *pud; 881 pmd_t *pmd = NULL; 882 883 pgd = pgd_offset(mm, address); 884 if (!pgd_present(*pgd)) 885 goto out; 886 887 p4d = p4d_offset(pgd, address); 888 if (!p4d_present(*p4d)) 889 goto out; 890 891 pud = pud_offset(p4d, address); 892 if (!pud_present(*pud)) 893 goto out; 894 895 pmd = pmd_offset(pud, address); 896 out: 897 return pmd; 898 } 899 900 struct folio_referenced_arg { 901 int mapcount; 902 int referenced; 903 vm_flags_t vm_flags; 904 struct mem_cgroup *memcg; 905 }; 906 907 /* 908 * arg: folio_referenced_arg will be passed 909 */ 910 static bool folio_referenced_one(struct folio *folio, 911 struct vm_area_struct *vma, unsigned long address, void *arg) 912 { 913 struct folio_referenced_arg *pra = arg; 914 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 915 int ptes = 0, referenced = 0; 916 917 while (page_vma_mapped_walk(&pvmw)) { 918 address = pvmw.address; 919 920 if (vma->vm_flags & VM_LOCKED) { 921 ptes++; 922 pra->mapcount--; 923 924 /* Only mlock fully mapped pages */ 925 if (pvmw.pte && ptes != pvmw.nr_pages) 926 continue; 927 928 /* 929 * All PTEs must be protected by page table lock in 930 * order to mlock the page. 931 * 932 * If page table boundary has been cross, current ptl 933 * only protect part of ptes. 934 */ 935 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 936 continue; 937 938 /* Restore the mlock which got missed */ 939 mlock_vma_folio(folio, vma); 940 page_vma_mapped_walk_done(&pvmw); 941 pra->vm_flags |= VM_LOCKED; 942 return false; /* To break the loop */ 943 } 944 945 /* 946 * Skip the non-shared swapbacked folio mapped solely by 947 * the exiting or OOM-reaped process. This avoids redundant 948 * swap-out followed by an immediate unmap. 949 */ 950 if ((!atomic_read(&vma->vm_mm->mm_users) || 951 check_stable_address_space(vma->vm_mm)) && 952 folio_test_anon(folio) && folio_test_swapbacked(folio) && 953 !folio_maybe_mapped_shared(folio)) { 954 pra->referenced = -1; 955 page_vma_mapped_walk_done(&pvmw); 956 return false; 957 } 958 959 if (lru_gen_enabled() && pvmw.pte) { 960 if (lru_gen_look_around(&pvmw)) 961 referenced++; 962 } else if (pvmw.pte) { 963 if (ptep_clear_flush_young_notify(vma, address, 964 pvmw.pte)) 965 referenced++; 966 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 967 if (pmdp_clear_flush_young_notify(vma, address, 968 pvmw.pmd)) 969 referenced++; 970 } else { 971 /* unexpected pmd-mapped folio? */ 972 WARN_ON_ONCE(1); 973 } 974 975 pra->mapcount--; 976 } 977 978 if (referenced) 979 folio_clear_idle(folio); 980 if (folio_test_clear_young(folio)) 981 referenced++; 982 983 if (referenced) { 984 pra->referenced++; 985 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 986 } 987 988 if (!pra->mapcount) 989 return false; /* To break the loop */ 990 991 return true; 992 } 993 994 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 995 { 996 struct folio_referenced_arg *pra = arg; 997 struct mem_cgroup *memcg = pra->memcg; 998 999 /* 1000 * Ignore references from this mapping if it has no recency. If the 1001 * folio has been used in another mapping, we will catch it; if this 1002 * other mapping is already gone, the unmap path will have set the 1003 * referenced flag or activated the folio in zap_pte_range(). 1004 */ 1005 if (!vma_has_recency(vma)) 1006 return true; 1007 1008 /* 1009 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 1010 * of references from different cgroups. 1011 */ 1012 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 1013 return true; 1014 1015 return false; 1016 } 1017 1018 /** 1019 * folio_referenced() - Test if the folio was referenced. 1020 * @folio: The folio to test. 1021 * @is_locked: Caller holds lock on the folio. 1022 * @memcg: target memory cgroup 1023 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 1024 * 1025 * Quick test_and_clear_referenced for all mappings of a folio, 1026 * 1027 * Return: The number of mappings which referenced the folio. Return -1 if 1028 * the function bailed out due to rmap lock contention. 1029 */ 1030 int folio_referenced(struct folio *folio, int is_locked, 1031 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 1032 { 1033 bool we_locked = false; 1034 struct folio_referenced_arg pra = { 1035 .mapcount = folio_mapcount(folio), 1036 .memcg = memcg, 1037 }; 1038 struct rmap_walk_control rwc = { 1039 .rmap_one = folio_referenced_one, 1040 .arg = (void *)&pra, 1041 .anon_lock = folio_lock_anon_vma_read, 1042 .try_lock = true, 1043 .invalid_vma = invalid_folio_referenced_vma, 1044 }; 1045 1046 *vm_flags = 0; 1047 if (!pra.mapcount) 1048 return 0; 1049 1050 if (!folio_raw_mapping(folio)) 1051 return 0; 1052 1053 if (!is_locked) { 1054 we_locked = folio_trylock(folio); 1055 if (!we_locked) 1056 return 1; 1057 } 1058 1059 rmap_walk(folio, &rwc); 1060 *vm_flags = pra.vm_flags; 1061 1062 if (we_locked) 1063 folio_unlock(folio); 1064 1065 return rwc.contended ? -1 : pra.referenced; 1066 } 1067 1068 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1069 { 1070 int cleaned = 0; 1071 struct vm_area_struct *vma = pvmw->vma; 1072 struct mmu_notifier_range range; 1073 unsigned long address = pvmw->address; 1074 1075 /* 1076 * We have to assume the worse case ie pmd for invalidation. Note that 1077 * the folio can not be freed from this function. 1078 */ 1079 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1080 vma->vm_mm, address, vma_address_end(pvmw)); 1081 mmu_notifier_invalidate_range_start(&range); 1082 1083 while (page_vma_mapped_walk(pvmw)) { 1084 int ret = 0; 1085 1086 address = pvmw->address; 1087 if (pvmw->pte) { 1088 pte_t *pte = pvmw->pte; 1089 pte_t entry = ptep_get(pte); 1090 1091 /* 1092 * PFN swap PTEs, such as device-exclusive ones, that 1093 * actually map pages are clean and not writable from a 1094 * CPU perspective. The MMU notifier takes care of any 1095 * device aspects. 1096 */ 1097 if (!pte_present(entry)) 1098 continue; 1099 if (!pte_dirty(entry) && !pte_write(entry)) 1100 continue; 1101 1102 flush_cache_page(vma, address, pte_pfn(entry)); 1103 entry = ptep_clear_flush(vma, address, pte); 1104 entry = pte_wrprotect(entry); 1105 entry = pte_mkclean(entry); 1106 set_pte_at(vma->vm_mm, address, pte, entry); 1107 ret = 1; 1108 } else { 1109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1110 pmd_t *pmd = pvmw->pmd; 1111 pmd_t entry = pmdp_get(pmd); 1112 1113 /* 1114 * Please see the comment above (!pte_present). 1115 * A non present PMD is not writable from a CPU 1116 * perspective. 1117 */ 1118 if (!pmd_present(entry)) 1119 continue; 1120 if (!pmd_dirty(entry) && !pmd_write(entry)) 1121 continue; 1122 1123 flush_cache_range(vma, address, 1124 address + HPAGE_PMD_SIZE); 1125 entry = pmdp_invalidate(vma, address, pmd); 1126 entry = pmd_wrprotect(entry); 1127 entry = pmd_mkclean(entry); 1128 set_pmd_at(vma->vm_mm, address, pmd, entry); 1129 ret = 1; 1130 #else 1131 /* unexpected pmd-mapped folio? */ 1132 WARN_ON_ONCE(1); 1133 #endif 1134 } 1135 1136 if (ret) 1137 cleaned++; 1138 } 1139 1140 mmu_notifier_invalidate_range_end(&range); 1141 1142 return cleaned; 1143 } 1144 1145 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1146 unsigned long address, void *arg) 1147 { 1148 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1149 int *cleaned = arg; 1150 1151 *cleaned += page_vma_mkclean_one(&pvmw); 1152 1153 return true; 1154 } 1155 1156 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1157 { 1158 if (vma->vm_flags & VM_SHARED) 1159 return false; 1160 1161 return true; 1162 } 1163 1164 int folio_mkclean(struct folio *folio) 1165 { 1166 int cleaned = 0; 1167 struct address_space *mapping; 1168 struct rmap_walk_control rwc = { 1169 .arg = (void *)&cleaned, 1170 .rmap_one = page_mkclean_one, 1171 .invalid_vma = invalid_mkclean_vma, 1172 }; 1173 1174 BUG_ON(!folio_test_locked(folio)); 1175 1176 if (!folio_mapped(folio)) 1177 return 0; 1178 1179 mapping = folio_mapping(folio); 1180 if (!mapping) 1181 return 0; 1182 1183 rmap_walk(folio, &rwc); 1184 1185 return cleaned; 1186 } 1187 EXPORT_SYMBOL_GPL(folio_mkclean); 1188 1189 struct wrprotect_file_state { 1190 int cleaned; 1191 pgoff_t pgoff; 1192 unsigned long pfn; 1193 unsigned long nr_pages; 1194 }; 1195 1196 static bool mapping_wrprotect_range_one(struct folio *folio, 1197 struct vm_area_struct *vma, unsigned long address, void *arg) 1198 { 1199 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1200 struct page_vma_mapped_walk pvmw = { 1201 .pfn = state->pfn, 1202 .nr_pages = state->nr_pages, 1203 .pgoff = state->pgoff, 1204 .vma = vma, 1205 .address = address, 1206 .flags = PVMW_SYNC, 1207 }; 1208 1209 state->cleaned += page_vma_mkclean_one(&pvmw); 1210 1211 return true; 1212 } 1213 1214 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1215 pgoff_t pgoff_start, unsigned long nr_pages, 1216 struct rmap_walk_control *rwc, bool locked); 1217 1218 /** 1219 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1220 * 1221 * @mapping: The mapping whose reverse mapping should be traversed. 1222 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1223 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1224 * @nr_pages: The number of physically contiguous base pages spanned. 1225 * 1226 * Traverses the reverse mapping, finding all VMAs which contain a shared 1227 * mapping of the pages in the specified range in @mapping, and write-protects 1228 * them (that is, updates the page tables to mark the mappings read-only such 1229 * that a write protection fault arises when the mappings are written to). 1230 * 1231 * The @pfn value need not refer to a folio, but rather can reference a kernel 1232 * allocation which is mapped into userland. We therefore do not require that 1233 * the page maps to a folio with a valid mapping or index field, rather the 1234 * caller specifies these in @mapping and @pgoff. 1235 * 1236 * Return: the number of write-protected PTEs, or an error. 1237 */ 1238 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1239 unsigned long pfn, unsigned long nr_pages) 1240 { 1241 struct wrprotect_file_state state = { 1242 .cleaned = 0, 1243 .pgoff = pgoff, 1244 .pfn = pfn, 1245 .nr_pages = nr_pages, 1246 }; 1247 struct rmap_walk_control rwc = { 1248 .arg = (void *)&state, 1249 .rmap_one = mapping_wrprotect_range_one, 1250 .invalid_vma = invalid_mkclean_vma, 1251 }; 1252 1253 if (!mapping) 1254 return 0; 1255 1256 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1257 /* locked = */false); 1258 1259 return state.cleaned; 1260 } 1261 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1262 1263 /** 1264 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1265 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1266 * within the @vma of shared mappings. And since clean PTEs 1267 * should also be readonly, write protects them too. 1268 * @pfn: start pfn. 1269 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1270 * @pgoff: page offset that the @pfn mapped with. 1271 * @vma: vma that @pfn mapped within. 1272 * 1273 * Returns the number of cleaned PTEs (including PMDs). 1274 */ 1275 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1276 struct vm_area_struct *vma) 1277 { 1278 struct page_vma_mapped_walk pvmw = { 1279 .pfn = pfn, 1280 .nr_pages = nr_pages, 1281 .pgoff = pgoff, 1282 .vma = vma, 1283 .flags = PVMW_SYNC, 1284 }; 1285 1286 if (invalid_mkclean_vma(vma, NULL)) 1287 return 0; 1288 1289 pvmw.address = vma_address(vma, pgoff, nr_pages); 1290 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1291 1292 return page_vma_mkclean_one(&pvmw); 1293 } 1294 1295 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1296 { 1297 int idx; 1298 1299 if (nr) { 1300 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1301 lruvec_stat_mod_folio(folio, idx, nr); 1302 } 1303 if (nr_pmdmapped) { 1304 if (folio_test_anon(folio)) { 1305 idx = NR_ANON_THPS; 1306 lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1307 } else { 1308 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1309 idx = folio_test_swapbacked(folio) ? 1310 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1311 __mod_node_page_state(folio_pgdat(folio), idx, 1312 nr_pmdmapped); 1313 } 1314 } 1315 } 1316 1317 static __always_inline void __folio_add_rmap(struct folio *folio, 1318 struct page *page, int nr_pages, struct vm_area_struct *vma, 1319 enum pgtable_level level) 1320 { 1321 atomic_t *mapped = &folio->_nr_pages_mapped; 1322 const int orig_nr_pages = nr_pages; 1323 int first = 0, nr = 0, nr_pmdmapped = 0; 1324 1325 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1326 1327 switch (level) { 1328 case PGTABLE_LEVEL_PTE: 1329 if (!folio_test_large(folio)) { 1330 nr = atomic_inc_and_test(&folio->_mapcount); 1331 break; 1332 } 1333 1334 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1335 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1336 if (nr == orig_nr_pages) 1337 /* Was completely unmapped. */ 1338 nr = folio_large_nr_pages(folio); 1339 else 1340 nr = 0; 1341 break; 1342 } 1343 1344 do { 1345 first += atomic_inc_and_test(&page->_mapcount); 1346 } while (page++, --nr_pages > 0); 1347 1348 if (first && 1349 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1350 nr = first; 1351 1352 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1353 break; 1354 case PGTABLE_LEVEL_PMD: 1355 case PGTABLE_LEVEL_PUD: 1356 first = atomic_inc_and_test(&folio->_entire_mapcount); 1357 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1358 if (level == PGTABLE_LEVEL_PMD && first) 1359 nr_pmdmapped = folio_large_nr_pages(folio); 1360 nr = folio_inc_return_large_mapcount(folio, vma); 1361 if (nr == 1) 1362 /* Was completely unmapped. */ 1363 nr = folio_large_nr_pages(folio); 1364 else 1365 nr = 0; 1366 break; 1367 } 1368 1369 if (first) { 1370 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1371 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1372 nr_pages = folio_large_nr_pages(folio); 1373 /* 1374 * We only track PMD mappings of PMD-sized 1375 * folios separately. 1376 */ 1377 if (level == PGTABLE_LEVEL_PMD) 1378 nr_pmdmapped = nr_pages; 1379 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1380 /* Raced ahead of a remove and another add? */ 1381 if (unlikely(nr < 0)) 1382 nr = 0; 1383 } else { 1384 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1385 nr = 0; 1386 } 1387 } 1388 folio_inc_large_mapcount(folio, vma); 1389 break; 1390 default: 1391 BUILD_BUG(); 1392 } 1393 __folio_mod_stat(folio, nr, nr_pmdmapped); 1394 } 1395 1396 /** 1397 * folio_move_anon_rmap - move a folio to our anon_vma 1398 * @folio: The folio to move to our anon_vma 1399 * @vma: The vma the folio belongs to 1400 * 1401 * When a folio belongs exclusively to one process after a COW event, 1402 * that folio can be moved into the anon_vma that belongs to just that 1403 * process, so the rmap code will not search the parent or sibling processes. 1404 */ 1405 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1406 { 1407 void *anon_vma = vma->anon_vma; 1408 1409 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1410 VM_BUG_ON_VMA(!anon_vma, vma); 1411 1412 anon_vma += FOLIO_MAPPING_ANON; 1413 /* 1414 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1415 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1416 * folio_test_anon()) will not see one without the other. 1417 */ 1418 WRITE_ONCE(folio->mapping, anon_vma); 1419 } 1420 1421 /** 1422 * __folio_set_anon - set up a new anonymous rmap for a folio 1423 * @folio: The folio to set up the new anonymous rmap for. 1424 * @vma: VM area to add the folio to. 1425 * @address: User virtual address of the mapping 1426 * @exclusive: Whether the folio is exclusive to the process. 1427 */ 1428 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1429 unsigned long address, bool exclusive) 1430 { 1431 struct anon_vma *anon_vma = vma->anon_vma; 1432 1433 BUG_ON(!anon_vma); 1434 1435 /* 1436 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1437 * possible anon_vma for the folio mapping! 1438 */ 1439 if (!exclusive) 1440 anon_vma = anon_vma->root; 1441 1442 /* 1443 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1444 * Make sure the compiler doesn't split the stores of anon_vma and 1445 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1446 * could mistake the mapping for a struct address_space and crash. 1447 */ 1448 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1449 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1450 folio->index = linear_page_index(vma, address); 1451 } 1452 1453 /** 1454 * __page_check_anon_rmap - sanity check anonymous rmap addition 1455 * @folio: The folio containing @page. 1456 * @page: the page to check the mapping of 1457 * @vma: the vm area in which the mapping is added 1458 * @address: the user virtual address mapped 1459 */ 1460 static void __page_check_anon_rmap(const struct folio *folio, 1461 const struct page *page, struct vm_area_struct *vma, 1462 unsigned long address) 1463 { 1464 /* 1465 * The page's anon-rmap details (mapping and index) are guaranteed to 1466 * be set up correctly at this point. 1467 * 1468 * We have exclusion against folio_add_anon_rmap_*() because the caller 1469 * always holds the page locked. 1470 * 1471 * We have exclusion against folio_add_new_anon_rmap because those pages 1472 * are initially only visible via the pagetables, and the pte is locked 1473 * over the call to folio_add_new_anon_rmap. 1474 */ 1475 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1476 folio); 1477 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1478 page); 1479 } 1480 1481 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1482 struct page *page, int nr_pages, struct vm_area_struct *vma, 1483 unsigned long address, rmap_t flags, enum pgtable_level level) 1484 { 1485 int i; 1486 1487 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1488 1489 __folio_add_rmap(folio, page, nr_pages, vma, level); 1490 1491 if (likely(!folio_test_ksm(folio))) 1492 __page_check_anon_rmap(folio, page, vma, address); 1493 1494 if (flags & RMAP_EXCLUSIVE) { 1495 switch (level) { 1496 case PGTABLE_LEVEL_PTE: 1497 for (i = 0; i < nr_pages; i++) 1498 SetPageAnonExclusive(page + i); 1499 break; 1500 case PGTABLE_LEVEL_PMD: 1501 SetPageAnonExclusive(page); 1502 break; 1503 case PGTABLE_LEVEL_PUD: 1504 /* 1505 * Keep the compiler happy, we don't support anonymous 1506 * PUD mappings. 1507 */ 1508 WARN_ON_ONCE(1); 1509 break; 1510 default: 1511 BUILD_BUG(); 1512 } 1513 } 1514 1515 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1516 atomic_read(&folio->_mapcount) > 0, folio); 1517 for (i = 0; i < nr_pages; i++) { 1518 struct page *cur_page = page + i; 1519 1520 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1521 folio_entire_mapcount(folio) > 1 && 1522 PageAnonExclusive(cur_page), folio); 1523 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1524 continue; 1525 1526 /* 1527 * While PTE-mapping a THP we have a PMD and a PTE 1528 * mapping. 1529 */ 1530 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1531 PageAnonExclusive(cur_page), folio); 1532 } 1533 1534 /* 1535 * Only mlock it if the folio is fully mapped to the VMA. 1536 * 1537 * Partially mapped folios can be split on reclaim and part outside 1538 * of mlocked VMA can be evicted or freed. 1539 */ 1540 if (folio_nr_pages(folio) == nr_pages) 1541 mlock_vma_folio(folio, vma); 1542 } 1543 1544 /** 1545 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1546 * @folio: The folio to add the mappings to 1547 * @page: The first page to add 1548 * @nr_pages: The number of pages which will be mapped 1549 * @vma: The vm area in which the mappings are added 1550 * @address: The user virtual address of the first page to map 1551 * @flags: The rmap flags 1552 * 1553 * The page range of folio is defined by [first_page, first_page + nr_pages) 1554 * 1555 * The caller needs to hold the page table lock, and the page must be locked in 1556 * the anon_vma case: to serialize mapping,index checking after setting, 1557 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1558 * (but KSM folios are never downgraded). 1559 */ 1560 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1561 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1562 rmap_t flags) 1563 { 1564 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1565 PGTABLE_LEVEL_PTE); 1566 } 1567 1568 /** 1569 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1570 * @folio: The folio to add the mapping to 1571 * @page: The first page to add 1572 * @vma: The vm area in which the mapping is added 1573 * @address: The user virtual address of the first page to map 1574 * @flags: The rmap flags 1575 * 1576 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1577 * 1578 * The caller needs to hold the page table lock, and the page must be locked in 1579 * the anon_vma case: to serialize mapping,index checking after setting. 1580 */ 1581 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1582 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1583 { 1584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1585 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1586 PGTABLE_LEVEL_PMD); 1587 #else 1588 WARN_ON_ONCE(true); 1589 #endif 1590 } 1591 1592 /** 1593 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1594 * @folio: The folio to add the mapping to. 1595 * @vma: the vm area in which the mapping is added 1596 * @address: the user virtual address mapped 1597 * @flags: The rmap flags 1598 * 1599 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1600 * This means the inc-and-test can be bypassed. 1601 * The folio doesn't necessarily need to be locked while it's exclusive 1602 * unless two threads map it concurrently. However, the folio must be 1603 * locked if it's shared. 1604 * 1605 * If the folio is pmd-mappable, it is accounted as a THP. 1606 */ 1607 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1608 unsigned long address, rmap_t flags) 1609 { 1610 const bool exclusive = flags & RMAP_EXCLUSIVE; 1611 int nr = 1, nr_pmdmapped = 0; 1612 1613 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1614 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1615 1616 /* 1617 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1618 * under memory pressure. 1619 */ 1620 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1621 __folio_set_swapbacked(folio); 1622 __folio_set_anon(folio, vma, address, exclusive); 1623 1624 if (likely(!folio_test_large(folio))) { 1625 /* increment count (starts at -1) */ 1626 atomic_set(&folio->_mapcount, 0); 1627 if (exclusive) 1628 SetPageAnonExclusive(&folio->page); 1629 } else if (!folio_test_pmd_mappable(folio)) { 1630 int i; 1631 1632 nr = folio_large_nr_pages(folio); 1633 for (i = 0; i < nr; i++) { 1634 struct page *page = folio_page(folio, i); 1635 1636 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1637 /* increment count (starts at -1) */ 1638 atomic_set(&page->_mapcount, 0); 1639 if (exclusive) 1640 SetPageAnonExclusive(page); 1641 } 1642 1643 folio_set_large_mapcount(folio, nr, vma); 1644 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1645 atomic_set(&folio->_nr_pages_mapped, nr); 1646 } else { 1647 nr = folio_large_nr_pages(folio); 1648 /* increment count (starts at -1) */ 1649 atomic_set(&folio->_entire_mapcount, 0); 1650 folio_set_large_mapcount(folio, 1, vma); 1651 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1652 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1653 if (exclusive) 1654 SetPageAnonExclusive(&folio->page); 1655 nr_pmdmapped = nr; 1656 } 1657 1658 VM_WARN_ON_ONCE(address < vma->vm_start || 1659 address + (nr << PAGE_SHIFT) > vma->vm_end); 1660 1661 __folio_mod_stat(folio, nr, nr_pmdmapped); 1662 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1663 } 1664 1665 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1666 struct page *page, int nr_pages, struct vm_area_struct *vma, 1667 enum pgtable_level level) 1668 { 1669 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1670 1671 __folio_add_rmap(folio, page, nr_pages, vma, level); 1672 1673 /* 1674 * Only mlock it if the folio is fully mapped to the VMA. 1675 * 1676 * Partially mapped folios can be split on reclaim and part outside 1677 * of mlocked VMA can be evicted or freed. 1678 */ 1679 if (folio_nr_pages(folio) == nr_pages) 1680 mlock_vma_folio(folio, vma); 1681 } 1682 1683 /** 1684 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1685 * @folio: The folio to add the mappings to 1686 * @page: The first page to add 1687 * @nr_pages: The number of pages that will be mapped using PTEs 1688 * @vma: The vm area in which the mappings are added 1689 * 1690 * The page range of the folio is defined by [page, page + nr_pages) 1691 * 1692 * The caller needs to hold the page table lock. 1693 */ 1694 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1695 int nr_pages, struct vm_area_struct *vma) 1696 { 1697 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1698 } 1699 1700 /** 1701 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1702 * @folio: The folio to add the mapping to 1703 * @page: The first page to add 1704 * @vma: The vm area in which the mapping is added 1705 * 1706 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1707 * 1708 * The caller needs to hold the page table lock. 1709 */ 1710 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1711 struct vm_area_struct *vma) 1712 { 1713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1714 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1715 #else 1716 WARN_ON_ONCE(true); 1717 #endif 1718 } 1719 1720 /** 1721 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1722 * @folio: The folio to add the mapping to 1723 * @page: The first page to add 1724 * @vma: The vm area in which the mapping is added 1725 * 1726 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1727 * 1728 * The caller needs to hold the page table lock. 1729 */ 1730 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1731 struct vm_area_struct *vma) 1732 { 1733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1734 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1735 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1736 #else 1737 WARN_ON_ONCE(true); 1738 #endif 1739 } 1740 1741 static __always_inline void __folio_remove_rmap(struct folio *folio, 1742 struct page *page, int nr_pages, struct vm_area_struct *vma, 1743 enum pgtable_level level) 1744 { 1745 atomic_t *mapped = &folio->_nr_pages_mapped; 1746 int last = 0, nr = 0, nr_pmdmapped = 0; 1747 bool partially_mapped = false; 1748 1749 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1750 1751 switch (level) { 1752 case PGTABLE_LEVEL_PTE: 1753 if (!folio_test_large(folio)) { 1754 nr = atomic_add_negative(-1, &folio->_mapcount); 1755 break; 1756 } 1757 1758 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1759 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1760 if (!nr) { 1761 /* Now completely unmapped. */ 1762 nr = folio_large_nr_pages(folio); 1763 } else { 1764 partially_mapped = nr < folio_large_nr_pages(folio) && 1765 !folio_entire_mapcount(folio); 1766 nr = 0; 1767 } 1768 break; 1769 } 1770 1771 folio_sub_large_mapcount(folio, nr_pages, vma); 1772 do { 1773 last += atomic_add_negative(-1, &page->_mapcount); 1774 } while (page++, --nr_pages > 0); 1775 1776 if (last && 1777 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1778 nr = last; 1779 1780 partially_mapped = nr && atomic_read(mapped); 1781 break; 1782 case PGTABLE_LEVEL_PMD: 1783 case PGTABLE_LEVEL_PUD: 1784 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1785 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1786 if (level == PGTABLE_LEVEL_PMD && last) 1787 nr_pmdmapped = folio_large_nr_pages(folio); 1788 nr = folio_dec_return_large_mapcount(folio, vma); 1789 if (!nr) { 1790 /* Now completely unmapped. */ 1791 nr = folio_large_nr_pages(folio); 1792 } else { 1793 partially_mapped = last && 1794 nr < folio_large_nr_pages(folio); 1795 nr = 0; 1796 } 1797 break; 1798 } 1799 1800 folio_dec_large_mapcount(folio, vma); 1801 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1802 if (last) { 1803 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1804 if (likely(nr < ENTIRELY_MAPPED)) { 1805 nr_pages = folio_large_nr_pages(folio); 1806 if (level == PGTABLE_LEVEL_PMD) 1807 nr_pmdmapped = nr_pages; 1808 nr = nr_pages - nr; 1809 /* Raced ahead of another remove and an add? */ 1810 if (unlikely(nr < 0)) 1811 nr = 0; 1812 } else { 1813 /* An add of ENTIRELY_MAPPED raced ahead */ 1814 nr = 0; 1815 } 1816 } 1817 1818 partially_mapped = nr && nr < nr_pmdmapped; 1819 break; 1820 default: 1821 BUILD_BUG(); 1822 } 1823 1824 /* 1825 * Queue anon large folio for deferred split if at least one page of 1826 * the folio is unmapped and at least one page is still mapped. 1827 * 1828 * Check partially_mapped first to ensure it is a large folio. 1829 * 1830 * Device private folios do not support deferred splitting and 1831 * shrinker based scanning of the folios to free. 1832 */ 1833 if (partially_mapped && folio_test_anon(folio) && 1834 !folio_test_partially_mapped(folio) && 1835 !folio_is_device_private(folio)) 1836 deferred_split_folio(folio, true); 1837 1838 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1839 1840 /* 1841 * It would be tidy to reset folio_test_anon mapping when fully 1842 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1843 * which increments mapcount after us but sets mapping before us: 1844 * so leave the reset to free_pages_prepare, and remember that 1845 * it's only reliable while mapped. 1846 */ 1847 1848 munlock_vma_folio(folio, vma); 1849 } 1850 1851 /** 1852 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1853 * @folio: The folio to remove the mappings from 1854 * @page: The first page to remove 1855 * @nr_pages: The number of pages that will be removed from the mapping 1856 * @vma: The vm area from which the mappings are removed 1857 * 1858 * The page range of the folio is defined by [page, page + nr_pages) 1859 * 1860 * The caller needs to hold the page table lock. 1861 */ 1862 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1863 int nr_pages, struct vm_area_struct *vma) 1864 { 1865 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1866 } 1867 1868 /** 1869 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1870 * @folio: The folio to remove the mapping from 1871 * @page: The first page to remove 1872 * @vma: The vm area from which the mapping is removed 1873 * 1874 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1875 * 1876 * The caller needs to hold the page table lock. 1877 */ 1878 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1879 struct vm_area_struct *vma) 1880 { 1881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1882 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1883 #else 1884 WARN_ON_ONCE(true); 1885 #endif 1886 } 1887 1888 /** 1889 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1890 * @folio: The folio to remove the mapping from 1891 * @page: The first page to remove 1892 * @vma: The vm area from which the mapping is removed 1893 * 1894 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1895 * 1896 * The caller needs to hold the page table lock. 1897 */ 1898 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1899 struct vm_area_struct *vma) 1900 { 1901 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1902 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1903 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1904 #else 1905 WARN_ON_ONCE(true); 1906 #endif 1907 } 1908 1909 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1910 struct page_vma_mapped_walk *pvmw, 1911 enum ttu_flags flags, pte_t pte) 1912 { 1913 unsigned long end_addr, addr = pvmw->address; 1914 struct vm_area_struct *vma = pvmw->vma; 1915 unsigned int max_nr; 1916 1917 if (flags & TTU_HWPOISON) 1918 return 1; 1919 if (!folio_test_large(folio)) 1920 return 1; 1921 1922 /* We may only batch within a single VMA and a single page table. */ 1923 end_addr = pmd_addr_end(addr, vma->vm_end); 1924 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1925 1926 /* We only support lazyfree batching for now ... */ 1927 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1928 return 1; 1929 if (pte_unused(pte)) 1930 return 1; 1931 1932 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1933 } 1934 1935 /* 1936 * @arg: enum ttu_flags will be passed to this argument 1937 */ 1938 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1939 unsigned long address, void *arg) 1940 { 1941 struct mm_struct *mm = vma->vm_mm; 1942 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1943 bool anon_exclusive, ret = true; 1944 pte_t pteval; 1945 struct page *subpage; 1946 struct mmu_notifier_range range; 1947 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1948 unsigned long nr_pages = 1, end_addr; 1949 unsigned long pfn; 1950 unsigned long hsz = 0; 1951 int ptes = 0; 1952 1953 /* 1954 * When racing against e.g. zap_pte_range() on another cpu, 1955 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1956 * try_to_unmap() may return before page_mapped() has become false, 1957 * if page table locking is skipped: use TTU_SYNC to wait for that. 1958 */ 1959 if (flags & TTU_SYNC) 1960 pvmw.flags = PVMW_SYNC; 1961 1962 /* 1963 * For THP, we have to assume the worse case ie pmd for invalidation. 1964 * For hugetlb, it could be much worse if we need to do pud 1965 * invalidation in the case of pmd sharing. 1966 * 1967 * Note that the folio can not be freed in this function as call of 1968 * try_to_unmap() must hold a reference on the folio. 1969 */ 1970 range.end = vma_address_end(&pvmw); 1971 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1972 address, range.end); 1973 if (folio_test_hugetlb(folio)) { 1974 /* 1975 * If sharing is possible, start and end will be adjusted 1976 * accordingly. 1977 */ 1978 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1979 &range.end); 1980 1981 /* We need the huge page size for set_huge_pte_at() */ 1982 hsz = huge_page_size(hstate_vma(vma)); 1983 } 1984 mmu_notifier_invalidate_range_start(&range); 1985 1986 while (page_vma_mapped_walk(&pvmw)) { 1987 /* 1988 * If the folio is in an mlock()d vma, we must not swap it out. 1989 */ 1990 if (!(flags & TTU_IGNORE_MLOCK) && 1991 (vma->vm_flags & VM_LOCKED)) { 1992 ptes++; 1993 1994 /* 1995 * Set 'ret' to indicate the page cannot be unmapped. 1996 * 1997 * Do not jump to walk_abort immediately as additional 1998 * iteration might be required to detect fully mapped 1999 * folio an mlock it. 2000 */ 2001 ret = false; 2002 2003 /* Only mlock fully mapped pages */ 2004 if (pvmw.pte && ptes != pvmw.nr_pages) 2005 continue; 2006 2007 /* 2008 * All PTEs must be protected by page table lock in 2009 * order to mlock the page. 2010 * 2011 * If page table boundary has been cross, current ptl 2012 * only protect part of ptes. 2013 */ 2014 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 2015 goto walk_done; 2016 2017 /* Restore the mlock which got missed */ 2018 mlock_vma_folio(folio, vma); 2019 goto walk_done; 2020 } 2021 2022 if (!pvmw.pte) { 2023 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2024 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 2025 goto walk_done; 2026 /* 2027 * unmap_huge_pmd_locked has either already marked 2028 * the folio as swap-backed or decided to retain it 2029 * due to GUP or speculative references. 2030 */ 2031 goto walk_abort; 2032 } 2033 2034 if (flags & TTU_SPLIT_HUGE_PMD) { 2035 /* 2036 * We temporarily have to drop the PTL and 2037 * restart so we can process the PTE-mapped THP. 2038 */ 2039 split_huge_pmd_locked(vma, pvmw.address, 2040 pvmw.pmd, false); 2041 flags &= ~TTU_SPLIT_HUGE_PMD; 2042 page_vma_mapped_walk_restart(&pvmw); 2043 continue; 2044 } 2045 } 2046 2047 /* Unexpected PMD-mapped THP? */ 2048 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2049 2050 /* 2051 * Handle PFN swap PTEs, such as device-exclusive ones, that 2052 * actually map pages. 2053 */ 2054 pteval = ptep_get(pvmw.pte); 2055 if (likely(pte_present(pteval))) { 2056 pfn = pte_pfn(pteval); 2057 } else { 2058 const softleaf_t entry = softleaf_from_pte(pteval); 2059 2060 pfn = softleaf_to_pfn(entry); 2061 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2062 } 2063 2064 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2065 address = pvmw.address; 2066 anon_exclusive = folio_test_anon(folio) && 2067 PageAnonExclusive(subpage); 2068 2069 if (folio_test_hugetlb(folio)) { 2070 bool anon = folio_test_anon(folio); 2071 2072 /* 2073 * The try_to_unmap() is only passed a hugetlb page 2074 * in the case where the hugetlb page is poisoned. 2075 */ 2076 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 2077 /* 2078 * huge_pmd_unshare may unmap an entire PMD page. 2079 * There is no way of knowing exactly which PMDs may 2080 * be cached for this mm, so we must flush them all. 2081 * start/end were already adjusted above to cover this 2082 * range. 2083 */ 2084 flush_cache_range(vma, range.start, range.end); 2085 2086 /* 2087 * To call huge_pmd_unshare, i_mmap_rwsem must be 2088 * held in write mode. Caller needs to explicitly 2089 * do this outside rmap routines. 2090 * 2091 * We also must hold hugetlb vma_lock in write mode. 2092 * Lock order dictates acquiring vma_lock BEFORE 2093 * i_mmap_rwsem. We can only try lock here and fail 2094 * if unsuccessful. 2095 */ 2096 if (!anon) { 2097 struct mmu_gather tlb; 2098 2099 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2100 if (!hugetlb_vma_trylock_write(vma)) 2101 goto walk_abort; 2102 2103 tlb_gather_mmu_vma(&tlb, vma); 2104 if (huge_pmd_unshare(&tlb, vma, address, pvmw.pte)) { 2105 hugetlb_vma_unlock_write(vma); 2106 huge_pmd_unshare_flush(&tlb, vma); 2107 tlb_finish_mmu(&tlb); 2108 /* 2109 * The PMD table was unmapped, 2110 * consequently unmapping the folio. 2111 */ 2112 goto walk_done; 2113 } 2114 hugetlb_vma_unlock_write(vma); 2115 tlb_finish_mmu(&tlb); 2116 } 2117 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2118 if (pte_dirty(pteval)) 2119 folio_mark_dirty(folio); 2120 } else if (likely(pte_present(pteval))) { 2121 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2122 end_addr = address + nr_pages * PAGE_SIZE; 2123 flush_cache_range(vma, address, end_addr); 2124 2125 /* Nuke the page table entry. */ 2126 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); 2127 /* 2128 * We clear the PTE but do not flush so potentially 2129 * a remote CPU could still be writing to the folio. 2130 * If the entry was previously clean then the 2131 * architecture must guarantee that a clear->dirty 2132 * transition on a cached TLB entry is written through 2133 * and traps if the PTE is unmapped. 2134 */ 2135 if (should_defer_flush(mm, flags)) 2136 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2137 else 2138 flush_tlb_range(vma, address, end_addr); 2139 if (pte_dirty(pteval)) 2140 folio_mark_dirty(folio); 2141 } else { 2142 pte_clear(mm, address, pvmw.pte); 2143 } 2144 2145 /* 2146 * Now the pte is cleared. If this pte was uffd-wp armed, 2147 * we may want to replace a none pte with a marker pte if 2148 * it's file-backed, so we don't lose the tracking info. 2149 */ 2150 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2151 2152 /* Update high watermark before we lower rss */ 2153 update_hiwater_rss(mm); 2154 2155 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2156 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2157 if (folio_test_hugetlb(folio)) { 2158 hugetlb_count_sub(folio_nr_pages(folio), mm); 2159 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2160 hsz); 2161 } else { 2162 dec_mm_counter(mm, mm_counter(folio)); 2163 set_pte_at(mm, address, pvmw.pte, pteval); 2164 } 2165 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2166 !userfaultfd_armed(vma)) { 2167 /* 2168 * The guest indicated that the page content is of no 2169 * interest anymore. Simply discard the pte, vmscan 2170 * will take care of the rest. 2171 * A future reference will then fault in a new zero 2172 * page. When userfaultfd is active, we must not drop 2173 * this page though, as its main user (postcopy 2174 * migration) will not expect userfaults on already 2175 * copied pages. 2176 */ 2177 dec_mm_counter(mm, mm_counter(folio)); 2178 } else if (folio_test_anon(folio)) { 2179 swp_entry_t entry = page_swap_entry(subpage); 2180 pte_t swp_pte; 2181 /* 2182 * Store the swap location in the pte. 2183 * See handle_pte_fault() ... 2184 */ 2185 if (unlikely(folio_test_swapbacked(folio) != 2186 folio_test_swapcache(folio))) { 2187 WARN_ON_ONCE(1); 2188 goto walk_abort; 2189 } 2190 2191 /* MADV_FREE page check */ 2192 if (!folio_test_swapbacked(folio)) { 2193 int ref_count, map_count; 2194 2195 /* 2196 * Synchronize with gup_pte_range(): 2197 * - clear PTE; barrier; read refcount 2198 * - inc refcount; barrier; read PTE 2199 */ 2200 smp_mb(); 2201 2202 ref_count = folio_ref_count(folio); 2203 map_count = folio_mapcount(folio); 2204 2205 /* 2206 * Order reads for page refcount and dirty flag 2207 * (see comments in __remove_mapping()). 2208 */ 2209 smp_rmb(); 2210 2211 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2212 /* 2213 * redirtied either using the page table or a previously 2214 * obtained GUP reference. 2215 */ 2216 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2217 folio_set_swapbacked(folio); 2218 goto walk_abort; 2219 } else if (ref_count != 1 + map_count) { 2220 /* 2221 * Additional reference. Could be a GUP reference or any 2222 * speculative reference. GUP users must mark the folio 2223 * dirty if there was a modification. This folio cannot be 2224 * reclaimed right now either way, so act just like nothing 2225 * happened. 2226 * We'll come back here later and detect if the folio was 2227 * dirtied when the additional reference is gone. 2228 */ 2229 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2230 goto walk_abort; 2231 } 2232 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2233 goto discard; 2234 } 2235 2236 if (folio_dup_swap(folio, subpage) < 0) { 2237 set_pte_at(mm, address, pvmw.pte, pteval); 2238 goto walk_abort; 2239 } 2240 2241 /* 2242 * arch_unmap_one() is expected to be a NOP on 2243 * architectures where we could have PFN swap PTEs, 2244 * so we'll not check/care. 2245 */ 2246 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2247 folio_put_swap(folio, subpage); 2248 set_pte_at(mm, address, pvmw.pte, pteval); 2249 goto walk_abort; 2250 } 2251 2252 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2253 if (anon_exclusive && 2254 folio_try_share_anon_rmap_pte(folio, subpage)) { 2255 folio_put_swap(folio, subpage); 2256 set_pte_at(mm, address, pvmw.pte, pteval); 2257 goto walk_abort; 2258 } 2259 if (list_empty(&mm->mmlist)) { 2260 spin_lock(&mmlist_lock); 2261 if (list_empty(&mm->mmlist)) 2262 list_add(&mm->mmlist, &init_mm.mmlist); 2263 spin_unlock(&mmlist_lock); 2264 } 2265 dec_mm_counter(mm, MM_ANONPAGES); 2266 inc_mm_counter(mm, MM_SWAPENTS); 2267 swp_pte = swp_entry_to_pte(entry); 2268 if (anon_exclusive) 2269 swp_pte = pte_swp_mkexclusive(swp_pte); 2270 if (likely(pte_present(pteval))) { 2271 if (pte_soft_dirty(pteval)) 2272 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2273 if (pte_uffd_wp(pteval)) 2274 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2275 } else { 2276 if (pte_swp_soft_dirty(pteval)) 2277 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2278 if (pte_swp_uffd_wp(pteval)) 2279 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2280 } 2281 set_pte_at(mm, address, pvmw.pte, swp_pte); 2282 } else { 2283 /* 2284 * This is a locked file-backed folio, 2285 * so it cannot be removed from the page 2286 * cache and replaced by a new folio before 2287 * mmu_notifier_invalidate_range_end, so no 2288 * concurrent thread might update its page table 2289 * to point at a new folio while a device is 2290 * still using this folio. 2291 * 2292 * See Documentation/mm/mmu_notifier.rst 2293 */ 2294 dec_mm_counter(mm, mm_counter_file(folio)); 2295 } 2296 discard: 2297 if (unlikely(folio_test_hugetlb(folio))) { 2298 hugetlb_remove_rmap(folio); 2299 } else { 2300 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2301 } 2302 if (vma->vm_flags & VM_LOCKED) 2303 mlock_drain_local(); 2304 folio_put_refs(folio, nr_pages); 2305 2306 /* 2307 * If we are sure that we batched the entire folio and cleared 2308 * all PTEs, we can just optimize and stop right here. 2309 */ 2310 if (nr_pages == folio_nr_pages(folio)) 2311 goto walk_done; 2312 continue; 2313 walk_abort: 2314 ret = false; 2315 walk_done: 2316 page_vma_mapped_walk_done(&pvmw); 2317 break; 2318 } 2319 2320 mmu_notifier_invalidate_range_end(&range); 2321 2322 return ret; 2323 } 2324 2325 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2326 { 2327 return vma_is_temporary_stack(vma); 2328 } 2329 2330 static int folio_not_mapped(struct folio *folio) 2331 { 2332 return !folio_mapped(folio); 2333 } 2334 2335 /** 2336 * try_to_unmap - Try to remove all page table mappings to a folio. 2337 * @folio: The folio to unmap. 2338 * @flags: action and flags 2339 * 2340 * Tries to remove all the page table entries which are mapping this 2341 * folio. It is the caller's responsibility to check if the folio is 2342 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2343 * 2344 * Context: Caller must hold the folio lock. 2345 */ 2346 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2347 { 2348 struct rmap_walk_control rwc = { 2349 .rmap_one = try_to_unmap_one, 2350 .arg = (void *)flags, 2351 .done = folio_not_mapped, 2352 .anon_lock = folio_lock_anon_vma_read, 2353 }; 2354 2355 if (flags & TTU_RMAP_LOCKED) 2356 rmap_walk_locked(folio, &rwc); 2357 else 2358 rmap_walk(folio, &rwc); 2359 } 2360 2361 /* 2362 * @arg: enum ttu_flags will be passed to this argument. 2363 * 2364 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2365 * containing migration entries. 2366 */ 2367 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2368 unsigned long address, void *arg) 2369 { 2370 struct mm_struct *mm = vma->vm_mm; 2371 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2372 bool anon_exclusive, writable, ret = true; 2373 pte_t pteval; 2374 struct page *subpage; 2375 struct mmu_notifier_range range; 2376 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2377 unsigned long pfn; 2378 unsigned long hsz = 0; 2379 2380 /* 2381 * When racing against e.g. zap_pte_range() on another cpu, 2382 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2383 * try_to_migrate() may return before page_mapped() has become false, 2384 * if page table locking is skipped: use TTU_SYNC to wait for that. 2385 */ 2386 if (flags & TTU_SYNC) 2387 pvmw.flags = PVMW_SYNC; 2388 2389 /* 2390 * For THP, we have to assume the worse case ie pmd for invalidation. 2391 * For hugetlb, it could be much worse if we need to do pud 2392 * invalidation in the case of pmd sharing. 2393 * 2394 * Note that the page can not be free in this function as call of 2395 * try_to_unmap() must hold a reference on the page. 2396 */ 2397 range.end = vma_address_end(&pvmw); 2398 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2399 address, range.end); 2400 if (folio_test_hugetlb(folio)) { 2401 /* 2402 * If sharing is possible, start and end will be adjusted 2403 * accordingly. 2404 */ 2405 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2406 &range.end); 2407 2408 /* We need the huge page size for set_huge_pte_at() */ 2409 hsz = huge_page_size(hstate_vma(vma)); 2410 } 2411 mmu_notifier_invalidate_range_start(&range); 2412 2413 while (page_vma_mapped_walk(&pvmw)) { 2414 /* PMD-mapped THP migration entry */ 2415 if (!pvmw.pte) { 2416 __maybe_unused unsigned long pfn; 2417 __maybe_unused pmd_t pmdval; 2418 2419 if (flags & TTU_SPLIT_HUGE_PMD) { 2420 split_huge_pmd_locked(vma, pvmw.address, 2421 pvmw.pmd, true); 2422 ret = false; 2423 page_vma_mapped_walk_done(&pvmw); 2424 break; 2425 } 2426 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2427 pmdval = pmdp_get(pvmw.pmd); 2428 if (likely(pmd_present(pmdval))) 2429 pfn = pmd_pfn(pmdval); 2430 else 2431 pfn = softleaf_to_pfn(softleaf_from_pmd(pmdval)); 2432 2433 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2434 2435 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2436 !folio_test_pmd_mappable(folio), folio); 2437 2438 if (set_pmd_migration_entry(&pvmw, subpage)) { 2439 ret = false; 2440 page_vma_mapped_walk_done(&pvmw); 2441 break; 2442 } 2443 continue; 2444 #endif 2445 } 2446 2447 /* Unexpected PMD-mapped THP? */ 2448 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2449 2450 /* 2451 * Handle PFN swap PTEs, such as device-exclusive ones, that 2452 * actually map pages. 2453 */ 2454 pteval = ptep_get(pvmw.pte); 2455 if (likely(pte_present(pteval))) { 2456 pfn = pte_pfn(pteval); 2457 } else { 2458 const softleaf_t entry = softleaf_from_pte(pteval); 2459 2460 pfn = softleaf_to_pfn(entry); 2461 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2462 } 2463 2464 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2465 address = pvmw.address; 2466 anon_exclusive = folio_test_anon(folio) && 2467 PageAnonExclusive(subpage); 2468 2469 if (folio_test_hugetlb(folio)) { 2470 bool anon = folio_test_anon(folio); 2471 2472 /* 2473 * huge_pmd_unshare may unmap an entire PMD page. 2474 * There is no way of knowing exactly which PMDs may 2475 * be cached for this mm, so we must flush them all. 2476 * start/end were already adjusted above to cover this 2477 * range. 2478 */ 2479 flush_cache_range(vma, range.start, range.end); 2480 2481 /* 2482 * To call huge_pmd_unshare, i_mmap_rwsem must be 2483 * held in write mode. Caller needs to explicitly 2484 * do this outside rmap routines. 2485 * 2486 * We also must hold hugetlb vma_lock in write mode. 2487 * Lock order dictates acquiring vma_lock BEFORE 2488 * i_mmap_rwsem. We can only try lock here and 2489 * fail if unsuccessful. 2490 */ 2491 if (!anon) { 2492 struct mmu_gather tlb; 2493 2494 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2495 if (!hugetlb_vma_trylock_write(vma)) { 2496 page_vma_mapped_walk_done(&pvmw); 2497 ret = false; 2498 break; 2499 } 2500 2501 tlb_gather_mmu_vma(&tlb, vma); 2502 if (huge_pmd_unshare(&tlb, vma, address, pvmw.pte)) { 2503 hugetlb_vma_unlock_write(vma); 2504 huge_pmd_unshare_flush(&tlb, vma); 2505 tlb_finish_mmu(&tlb); 2506 /* 2507 * The PMD table was unmapped, 2508 * consequently unmapping the folio. 2509 */ 2510 page_vma_mapped_walk_done(&pvmw); 2511 break; 2512 } 2513 hugetlb_vma_unlock_write(vma); 2514 tlb_finish_mmu(&tlb); 2515 } 2516 /* Nuke the hugetlb page table entry */ 2517 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2518 if (pte_dirty(pteval)) 2519 folio_mark_dirty(folio); 2520 writable = pte_write(pteval); 2521 } else if (likely(pte_present(pteval))) { 2522 flush_cache_page(vma, address, pfn); 2523 /* Nuke the page table entry. */ 2524 if (should_defer_flush(mm, flags)) { 2525 /* 2526 * We clear the PTE but do not flush so potentially 2527 * a remote CPU could still be writing to the folio. 2528 * If the entry was previously clean then the 2529 * architecture must guarantee that a clear->dirty 2530 * transition on a cached TLB entry is written through 2531 * and traps if the PTE is unmapped. 2532 */ 2533 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2534 2535 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2536 } else { 2537 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2538 } 2539 if (pte_dirty(pteval)) 2540 folio_mark_dirty(folio); 2541 writable = pte_write(pteval); 2542 } else { 2543 const softleaf_t entry = softleaf_from_pte(pteval); 2544 2545 pte_clear(mm, address, pvmw.pte); 2546 2547 writable = softleaf_is_device_private_write(entry); 2548 } 2549 2550 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2551 !anon_exclusive, folio); 2552 2553 /* Update high watermark before we lower rss */ 2554 update_hiwater_rss(mm); 2555 2556 if (PageHWPoison(subpage)) { 2557 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2558 2559 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2560 if (folio_test_hugetlb(folio)) { 2561 hugetlb_count_sub(folio_nr_pages(folio), mm); 2562 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2563 hsz); 2564 } else { 2565 dec_mm_counter(mm, mm_counter(folio)); 2566 set_pte_at(mm, address, pvmw.pte, pteval); 2567 } 2568 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2569 !userfaultfd_armed(vma)) { 2570 /* 2571 * The guest indicated that the page content is of no 2572 * interest anymore. Simply discard the pte, vmscan 2573 * will take care of the rest. 2574 * A future reference will then fault in a new zero 2575 * page. When userfaultfd is active, we must not drop 2576 * this page though, as its main user (postcopy 2577 * migration) will not expect userfaults on already 2578 * copied pages. 2579 */ 2580 dec_mm_counter(mm, mm_counter(folio)); 2581 } else { 2582 swp_entry_t entry; 2583 pte_t swp_pte; 2584 2585 /* 2586 * arch_unmap_one() is expected to be a NOP on 2587 * architectures where we could have PFN swap PTEs, 2588 * so we'll not check/care. 2589 */ 2590 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2591 if (folio_test_hugetlb(folio)) 2592 set_huge_pte_at(mm, address, pvmw.pte, 2593 pteval, hsz); 2594 else 2595 set_pte_at(mm, address, pvmw.pte, pteval); 2596 ret = false; 2597 page_vma_mapped_walk_done(&pvmw); 2598 break; 2599 } 2600 2601 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2602 if (folio_test_hugetlb(folio)) { 2603 if (anon_exclusive && 2604 hugetlb_try_share_anon_rmap(folio)) { 2605 set_huge_pte_at(mm, address, pvmw.pte, 2606 pteval, hsz); 2607 ret = false; 2608 page_vma_mapped_walk_done(&pvmw); 2609 break; 2610 } 2611 } else if (anon_exclusive && 2612 folio_try_share_anon_rmap_pte(folio, subpage)) { 2613 set_pte_at(mm, address, pvmw.pte, pteval); 2614 ret = false; 2615 page_vma_mapped_walk_done(&pvmw); 2616 break; 2617 } 2618 2619 /* 2620 * Store the pfn of the page in a special migration 2621 * pte. do_swap_page() will wait until the migration 2622 * pte is removed and then restart fault handling. 2623 */ 2624 if (writable) 2625 entry = make_writable_migration_entry( 2626 page_to_pfn(subpage)); 2627 else if (anon_exclusive) 2628 entry = make_readable_exclusive_migration_entry( 2629 page_to_pfn(subpage)); 2630 else 2631 entry = make_readable_migration_entry( 2632 page_to_pfn(subpage)); 2633 if (likely(pte_present(pteval))) { 2634 if (pte_young(pteval)) 2635 entry = make_migration_entry_young(entry); 2636 if (pte_dirty(pteval)) 2637 entry = make_migration_entry_dirty(entry); 2638 swp_pte = swp_entry_to_pte(entry); 2639 if (pte_soft_dirty(pteval)) 2640 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2641 if (pte_uffd_wp(pteval)) 2642 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2643 } else { 2644 swp_pte = swp_entry_to_pte(entry); 2645 if (pte_swp_soft_dirty(pteval)) 2646 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2647 if (pte_swp_uffd_wp(pteval)) 2648 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2649 } 2650 if (folio_test_hugetlb(folio)) 2651 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2652 hsz); 2653 else 2654 set_pte_at(mm, address, pvmw.pte, swp_pte); 2655 trace_set_migration_pte(address, pte_val(swp_pte), 2656 folio_order(folio)); 2657 /* 2658 * No need to invalidate here it will synchronize on 2659 * against the special swap migration pte. 2660 */ 2661 } 2662 2663 if (unlikely(folio_test_hugetlb(folio))) 2664 hugetlb_remove_rmap(folio); 2665 else 2666 folio_remove_rmap_pte(folio, subpage, vma); 2667 if (vma->vm_flags & VM_LOCKED) 2668 mlock_drain_local(); 2669 folio_put(folio); 2670 } 2671 2672 mmu_notifier_invalidate_range_end(&range); 2673 2674 return ret; 2675 } 2676 2677 /** 2678 * try_to_migrate - try to replace all page table mappings with swap entries 2679 * @folio: the folio to replace page table entries for 2680 * @flags: action and flags 2681 * 2682 * Tries to remove all the page table entries which are mapping this folio and 2683 * replace them with special swap entries. Caller must hold the folio lock. 2684 */ 2685 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2686 { 2687 struct rmap_walk_control rwc = { 2688 .rmap_one = try_to_migrate_one, 2689 .arg = (void *)flags, 2690 .done = folio_not_mapped, 2691 .anon_lock = folio_lock_anon_vma_read, 2692 }; 2693 2694 /* 2695 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2696 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2697 */ 2698 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2699 TTU_SYNC | TTU_BATCH_FLUSH))) 2700 return; 2701 2702 if (folio_is_zone_device(folio) && 2703 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2704 return; 2705 2706 /* 2707 * During exec, a temporary VMA is setup and later moved. 2708 * The VMA is moved under the anon_vma lock but not the 2709 * page tables leading to a race where migration cannot 2710 * find the migration ptes. Rather than increasing the 2711 * locking requirements of exec(), migration skips 2712 * temporary VMAs until after exec() completes. 2713 */ 2714 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2715 rwc.invalid_vma = invalid_migration_vma; 2716 2717 if (flags & TTU_RMAP_LOCKED) 2718 rmap_walk_locked(folio, &rwc); 2719 else 2720 rmap_walk(folio, &rwc); 2721 } 2722 2723 #ifdef CONFIG_DEVICE_PRIVATE 2724 /** 2725 * make_device_exclusive() - Mark a page for exclusive use by a device 2726 * @mm: mm_struct of associated target process 2727 * @addr: the virtual address to mark for exclusive device access 2728 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2729 * @foliop: folio pointer will be stored here on success. 2730 * 2731 * This function looks up the page mapped at the given address, grabs a 2732 * folio reference, locks the folio and replaces the PTE with special 2733 * device-exclusive PFN swap entry, preventing access through the process 2734 * page tables. The function will return with the folio locked and referenced. 2735 * 2736 * On fault, the device-exclusive entries are replaced with the original PTE 2737 * under folio lock, after calling MMU notifiers. 2738 * 2739 * Only anonymous non-hugetlb folios are supported and the VMA must have 2740 * write permissions such that we can fault in the anonymous page writable 2741 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2742 * mode. 2743 * 2744 * A driver using this to program access from a device must use a mmu notifier 2745 * critical section to hold a device specific lock during programming. Once 2746 * programming is complete it should drop the folio lock and reference after 2747 * which point CPU access to the page will revoke the exclusive access. 2748 * 2749 * Notes: 2750 * #. This function always operates on individual PTEs mapping individual 2751 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2752 * the conversion happens on a single PTE corresponding to @addr. 2753 * #. While concurrent access through the process page tables is prevented, 2754 * concurrent access through other page references (e.g., earlier GUP 2755 * invocation) is not handled and not supported. 2756 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2757 * Device drivers must update the folio state when informed by MMU 2758 * notifiers. 2759 * 2760 * Returns: pointer to mapped page on success, otherwise a negative error. 2761 */ 2762 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2763 void *owner, struct folio **foliop) 2764 { 2765 struct mmu_notifier_range range; 2766 struct folio *folio, *fw_folio; 2767 struct vm_area_struct *vma; 2768 struct folio_walk fw; 2769 struct page *page; 2770 swp_entry_t entry; 2771 pte_t swp_pte; 2772 int ret; 2773 2774 mmap_assert_locked(mm); 2775 addr = PAGE_ALIGN_DOWN(addr); 2776 2777 /* 2778 * Fault in the page writable and try to lock it; note that if the 2779 * address would already be marked for exclusive use by a device, 2780 * the GUP call would undo that first by triggering a fault. 2781 * 2782 * If any other device would already map this page exclusively, the 2783 * fault will trigger a conversion to an ordinary 2784 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2785 */ 2786 retry: 2787 page = get_user_page_vma_remote(mm, addr, 2788 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2789 &vma); 2790 if (IS_ERR(page)) 2791 return page; 2792 folio = page_folio(page); 2793 2794 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2795 folio_put(folio); 2796 return ERR_PTR(-EOPNOTSUPP); 2797 } 2798 2799 ret = folio_lock_killable(folio); 2800 if (ret) { 2801 folio_put(folio); 2802 return ERR_PTR(ret); 2803 } 2804 2805 /* 2806 * Inform secondary MMUs that we are going to convert this PTE to 2807 * device-exclusive, such that they unmap it now. Note that the 2808 * caller must filter this event out to prevent livelocks. 2809 */ 2810 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2811 mm, addr, addr + PAGE_SIZE, owner); 2812 mmu_notifier_invalidate_range_start(&range); 2813 2814 /* 2815 * Let's do a second walk and make sure we still find the same page 2816 * mapped writable. Note that any page of an anonymous folio can 2817 * only be mapped writable using exactly one PTE ("exclusive"), so 2818 * there cannot be other mappings. 2819 */ 2820 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2821 if (fw_folio != folio || fw.page != page || 2822 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2823 if (fw_folio) 2824 folio_walk_end(&fw, vma); 2825 mmu_notifier_invalidate_range_end(&range); 2826 folio_unlock(folio); 2827 folio_put(folio); 2828 goto retry; 2829 } 2830 2831 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2832 flush_cache_page(vma, addr, page_to_pfn(page)); 2833 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2834 2835 /* Set the dirty flag on the folio now the PTE is gone. */ 2836 if (pte_dirty(fw.pte)) 2837 folio_mark_dirty(folio); 2838 2839 /* 2840 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2841 * do_swap_page() will trigger the conversion back while holding the 2842 * folio lock. 2843 */ 2844 entry = make_device_exclusive_entry(page_to_pfn(page)); 2845 swp_pte = swp_entry_to_pte(entry); 2846 if (pte_soft_dirty(fw.pte)) 2847 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2848 /* The pte is writable, uffd-wp does not apply. */ 2849 set_pte_at(mm, addr, fw.ptep, swp_pte); 2850 2851 folio_walk_end(&fw, vma); 2852 mmu_notifier_invalidate_range_end(&range); 2853 *foliop = folio; 2854 return page; 2855 } 2856 EXPORT_SYMBOL_GPL(make_device_exclusive); 2857 #endif 2858 2859 void __put_anon_vma(struct anon_vma *anon_vma) 2860 { 2861 struct anon_vma *root = anon_vma->root; 2862 2863 anon_vma_free(anon_vma); 2864 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2865 anon_vma_free(root); 2866 } 2867 2868 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2869 struct rmap_walk_control *rwc) 2870 { 2871 struct anon_vma *anon_vma; 2872 2873 if (rwc->anon_lock) 2874 return rwc->anon_lock(folio, rwc); 2875 2876 /* 2877 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2878 * because that depends on page_mapped(); but not all its usages 2879 * are holding mmap_lock. Users without mmap_lock are required to 2880 * take a reference count to prevent the anon_vma disappearing 2881 */ 2882 anon_vma = folio_anon_vma(folio); 2883 if (!anon_vma) 2884 return NULL; 2885 2886 if (anon_vma_trylock_read(anon_vma)) 2887 goto out; 2888 2889 if (rwc->try_lock) { 2890 anon_vma = NULL; 2891 rwc->contended = true; 2892 goto out; 2893 } 2894 2895 anon_vma_lock_read(anon_vma); 2896 out: 2897 return anon_vma; 2898 } 2899 2900 /* 2901 * rmap_walk_anon - do something to anonymous page using the object-based 2902 * rmap method 2903 * @folio: the folio to be handled 2904 * @rwc: control variable according to each walk type 2905 * @locked: caller holds relevant rmap lock 2906 * 2907 * Find all the mappings of a folio using the mapping pointer and the vma 2908 * chains contained in the anon_vma struct it points to. 2909 */ 2910 static void rmap_walk_anon(struct folio *folio, 2911 struct rmap_walk_control *rwc, bool locked) 2912 { 2913 struct anon_vma *anon_vma; 2914 pgoff_t pgoff_start, pgoff_end; 2915 struct anon_vma_chain *avc; 2916 2917 /* 2918 * The folio lock ensures that folio->mapping can't be changed under us 2919 * to an anon_vma with different root. 2920 */ 2921 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2922 2923 if (locked) { 2924 anon_vma = folio_anon_vma(folio); 2925 /* anon_vma disappear under us? */ 2926 VM_BUG_ON_FOLIO(!anon_vma, folio); 2927 } else { 2928 anon_vma = rmap_walk_anon_lock(folio, rwc); 2929 } 2930 if (!anon_vma) 2931 return; 2932 2933 pgoff_start = folio_pgoff(folio); 2934 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2935 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2936 pgoff_start, pgoff_end) { 2937 struct vm_area_struct *vma = avc->vma; 2938 unsigned long address = vma_address(vma, pgoff_start, 2939 folio_nr_pages(folio)); 2940 2941 VM_BUG_ON_VMA(address == -EFAULT, vma); 2942 cond_resched(); 2943 2944 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2945 continue; 2946 2947 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2948 break; 2949 if (rwc->done && rwc->done(folio)) 2950 break; 2951 } 2952 2953 if (!locked) 2954 anon_vma_unlock_read(anon_vma); 2955 } 2956 2957 /** 2958 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2959 * of a page mapped within a specified page cache object at a specified offset. 2960 * 2961 * @folio: Either the folio whose mappings to traverse, or if NULL, 2962 * the callbacks specified in @rwc will be configured such 2963 * as to be able to look up mappings correctly. 2964 * @mapping: The page cache object whose mapping VMAs we intend to 2965 * traverse. If @folio is non-NULL, this should be equal to 2966 * folio_mapping(folio). 2967 * @pgoff_start: The offset within @mapping of the page which we are 2968 * looking up. If @folio is non-NULL, this should be equal 2969 * to folio_pgoff(folio). 2970 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2971 * non-NULL, this should be equal to folio_nr_pages(folio). 2972 * @rwc: The reverse mapping walk control object describing how 2973 * the traversal should proceed. 2974 * @locked: Is the @mapping already locked? If not, we acquire the 2975 * lock. 2976 */ 2977 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2978 pgoff_t pgoff_start, unsigned long nr_pages, 2979 struct rmap_walk_control *rwc, bool locked) 2980 { 2981 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2982 struct vm_area_struct *vma; 2983 2984 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2985 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2986 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2987 2988 if (!locked) { 2989 if (i_mmap_trylock_read(mapping)) 2990 goto lookup; 2991 2992 if (rwc->try_lock) { 2993 rwc->contended = true; 2994 return; 2995 } 2996 2997 i_mmap_lock_read(mapping); 2998 } 2999 lookup: 3000 vma_interval_tree_foreach(vma, &mapping->i_mmap, 3001 pgoff_start, pgoff_end) { 3002 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 3003 3004 VM_BUG_ON_VMA(address == -EFAULT, vma); 3005 cond_resched(); 3006 3007 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3008 continue; 3009 3010 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 3011 goto done; 3012 if (rwc->done && rwc->done(folio)) 3013 goto done; 3014 } 3015 done: 3016 if (!locked) 3017 i_mmap_unlock_read(mapping); 3018 } 3019 3020 /* 3021 * rmap_walk_file - do something to file page using the object-based rmap method 3022 * @folio: the folio to be handled 3023 * @rwc: control variable according to each walk type 3024 * @locked: caller holds relevant rmap lock 3025 * 3026 * Find all the mappings of a folio using the mapping pointer and the vma chains 3027 * contained in the address_space struct it points to. 3028 */ 3029 static void rmap_walk_file(struct folio *folio, 3030 struct rmap_walk_control *rwc, bool locked) 3031 { 3032 /* 3033 * The folio lock not only makes sure that folio->mapping cannot 3034 * suddenly be NULLified by truncation, it makes sure that the structure 3035 * at mapping cannot be freed and reused yet, so we can safely take 3036 * mapping->i_mmap_rwsem. 3037 */ 3038 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3039 3040 if (!folio->mapping) 3041 return; 3042 3043 __rmap_walk_file(folio, folio->mapping, folio->index, 3044 folio_nr_pages(folio), rwc, locked); 3045 } 3046 3047 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 3048 { 3049 if (unlikely(folio_test_ksm(folio))) 3050 rmap_walk_ksm(folio, rwc); 3051 else if (folio_test_anon(folio)) 3052 rmap_walk_anon(folio, rwc, false); 3053 else 3054 rmap_walk_file(folio, rwc, false); 3055 } 3056 3057 /* Like rmap_walk, but caller holds relevant rmap lock */ 3058 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 3059 { 3060 /* no ksm support for now */ 3061 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 3062 if (folio_test_anon(folio)) 3063 rmap_walk_anon(folio, rwc, true); 3064 else 3065 rmap_walk_file(folio, rwc, true); 3066 } 3067 3068 #ifdef CONFIG_HUGETLB_PAGE 3069 /* 3070 * The following two functions are for anonymous (private mapped) hugepages. 3071 * Unlike common anonymous pages, anonymous hugepages have no accounting code 3072 * and no lru code, because we handle hugepages differently from common pages. 3073 */ 3074 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 3075 unsigned long address, rmap_t flags) 3076 { 3077 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 3078 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 3079 3080 atomic_inc(&folio->_entire_mapcount); 3081 atomic_inc(&folio->_large_mapcount); 3082 if (flags & RMAP_EXCLUSIVE) 3083 SetPageAnonExclusive(&folio->page); 3084 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 3085 PageAnonExclusive(&folio->page), folio); 3086 } 3087 3088 void hugetlb_add_new_anon_rmap(struct folio *folio, 3089 struct vm_area_struct *vma, unsigned long address) 3090 { 3091 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 3092 3093 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 3094 /* increment count (starts at -1) */ 3095 atomic_set(&folio->_entire_mapcount, 0); 3096 atomic_set(&folio->_large_mapcount, 0); 3097 folio_clear_hugetlb_restore_reserve(folio); 3098 __folio_set_anon(folio, vma, address, true); 3099 SetPageAnonExclusive(&folio->page); 3100 } 3101 #endif /* CONFIG_HUGETLB_PAGE */ 3102