1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/leafops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <linux/pgalloc.h>
52
53 #include <asm/tlbflush.h>
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/filemap.h>
58
59 /*
60 * FIXME: remove all knowledge of the buffer layer from the core VM
61 */
62 #include <linux/buffer_head.h> /* for try_to_free_buffers */
63
64 #include <asm/mman.h>
65
66 #include "swap.h"
67
68 /*
69 * Shared mappings implemented 30.11.1994. It's not fully working yet,
70 * though.
71 *
72 * Shared mappings now work. 15.8.1995 Bruno.
73 *
74 * finished 'unifying' the page and buffer cache and SMP-threaded the
75 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
76 *
77 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
78 */
79
80 /*
81 * Lock ordering:
82 *
83 * ->i_mmap_rwsem (truncate_pagecache)
84 * ->private_lock (__free_pte->block_dirty_folio)
85 * ->swap_lock (exclusive_swap_page, others)
86 * ->i_pages lock
87 *
88 * ->i_rwsem
89 * ->invalidate_lock (acquired by fs in truncate path)
90 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
91 *
92 * ->mmap_lock
93 * ->i_mmap_rwsem
94 * ->page_table_lock or pte_lock (various, mainly in memory.c)
95 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
96 *
97 * ->mmap_lock
98 * ->invalidate_lock (filemap_fault)
99 * ->lock_page (filemap_fault, access_process_vm)
100 *
101 * ->i_rwsem (generic_perform_write)
102 * ->mmap_lock (fault_in_readable->do_page_fault)
103 *
104 * bdi->wb.list_lock
105 * sb_lock (fs/fs-writeback.c)
106 * ->i_pages lock (__sync_single_inode)
107 *
108 * ->i_mmap_rwsem
109 * ->anon_vma.lock (vma_merge)
110 *
111 * ->anon_vma.lock
112 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
113 *
114 * ->page_table_lock or pte_lock
115 * ->swap_lock (try_to_unmap_one)
116 * ->private_lock (try_to_unmap_one)
117 * ->i_pages lock (try_to_unmap_one)
118 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
119 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
120 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
122 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
123 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
124 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
125 * ->inode->i_lock (zap_pte_range->set_page_dirty)
126 * ->private_lock (zap_pte_range->block_dirty_folio)
127 */
128
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)129 static void page_cache_delete(struct address_space *mapping,
130 struct folio *folio, void *shadow)
131 {
132 XA_STATE(xas, &mapping->i_pages, folio->index);
133 long nr = 1;
134
135 mapping_set_update(&xas, mapping);
136
137 xas_set_order(&xas, folio->index, folio_order(folio));
138 nr = folio_nr_pages(folio);
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave folio->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = folio_mapcount(folio);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 atomic_set(&folio->_mapcount, -1);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
195 mod_node_page_state(folio_pgdat(folio),
196 NR_KERNEL_FILE_PAGES, -nr);
197
198 /*
199 * At this point folio must be either written or cleaned by
200 * truncate. Dirty folio here signals a bug and loss of
201 * unwritten data - on ordinary filesystems.
202 *
203 * But it's harmless on in-memory filesystems like tmpfs; and can
204 * occur when a driver which did get_user_pages() sets page dirty
205 * before putting it, while the inode is being finally evicted.
206 *
207 * Below fixes dirty accounting after removing the folio entirely
208 * but leaves the dirty flag set: it has no effect for truncated
209 * folio and anyway will be cleared before returning folio to
210 * buddy allocator.
211 */
212 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 mapping_can_writeback(mapping)))
214 folio_account_cleaned(folio, inode_to_wb(mapping->host));
215 }
216
217 /*
218 * Delete a page from the page cache and free it. Caller has to make
219 * sure the page is locked and that nobody else uses it - or that usage
220 * is safe. The caller must hold the i_pages lock.
221 */
__filemap_remove_folio(struct folio * folio,void * shadow)222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 struct address_space *mapping = folio->mapping;
225
226 trace_mm_filemap_delete_from_page_cache(folio);
227 filemap_unaccount_folio(mapping, folio);
228 page_cache_delete(mapping, folio, shadow);
229 }
230
filemap_free_folio(struct address_space * mapping,struct folio * folio)231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 void (*free_folio)(struct folio *);
234
235 free_folio = mapping->a_ops->free_folio;
236 if (free_folio)
237 free_folio(folio);
238
239 folio_put_refs(folio, folio_nr_pages(folio));
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
filemap_remove_folio(struct folio * folio)250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_lru_list_add(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_lru_list_add(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
filemap_check_and_keep_errors(struct address_space * mapping)360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
filemap_writeback(struct address_space * mapping,loff_t start,loff_t end,enum writeback_sync_modes sync_mode,long * nr_to_write)370 static int filemap_writeback(struct address_space *mapping, loff_t start,
371 loff_t end, enum writeback_sync_modes sync_mode,
372 long *nr_to_write)
373 {
374 struct writeback_control wbc = {
375 .sync_mode = sync_mode,
376 .nr_to_write = nr_to_write ? *nr_to_write : LONG_MAX,
377 .range_start = start,
378 .range_end = end,
379 };
380 int ret;
381
382 if (!mapping_can_writeback(mapping) ||
383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
384 return 0;
385
386 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
387 ret = do_writepages(mapping, &wbc);
388 wbc_detach_inode(&wbc);
389
390 if (!ret && nr_to_write)
391 *nr_to_write = wbc.nr_to_write;
392 return ret;
393 }
394
395 /**
396 * filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397 * @mapping: address space structure to write
398 * @start: offset in bytes where the range starts
399 * @end: offset in bytes where the range ends (inclusive)
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * This is a data integrity operation that waits upon dirty or in writeback
405 * pages.
406 *
407 * Return: %0 on success, negative error code otherwise.
408 */
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)409 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
410 loff_t end)
411 {
412 return filemap_writeback(mapping, start, end, WB_SYNC_ALL, NULL);
413 }
414 EXPORT_SYMBOL(filemap_fdatawrite_range);
415
filemap_fdatawrite(struct address_space * mapping)416 int filemap_fdatawrite(struct address_space *mapping)
417 {
418 return filemap_fdatawrite_range(mapping, 0, LLONG_MAX);
419 }
420 EXPORT_SYMBOL(filemap_fdatawrite);
421
422 /**
423 * filemap_flush_range - start writeback on a range
424 * @mapping: target address_space
425 * @start: index to start writeback on
426 * @end: last (inclusive) index for writeback
427 *
428 * This is a non-integrity writeback helper, to start writing back folios
429 * for the indicated range.
430 *
431 * Return: %0 on success, negative error code otherwise.
432 */
filemap_flush_range(struct address_space * mapping,loff_t start,loff_t end)433 int filemap_flush_range(struct address_space *mapping, loff_t start,
434 loff_t end)
435 {
436 return filemap_writeback(mapping, start, end, WB_SYNC_NONE, NULL);
437 }
438 EXPORT_SYMBOL_GPL(filemap_flush_range);
439
440 /**
441 * filemap_flush - mostly a non-blocking flush
442 * @mapping: target address_space
443 *
444 * This is a mostly non-blocking flush. Not suitable for data-integrity
445 * purposes - I/O may not be started against all dirty pages.
446 *
447 * Return: %0 on success, negative error code otherwise.
448 */
filemap_flush(struct address_space * mapping)449 int filemap_flush(struct address_space *mapping)
450 {
451 return filemap_flush_range(mapping, 0, LLONG_MAX);
452 }
453 EXPORT_SYMBOL(filemap_flush);
454
455 /*
456 * Start writeback on @nr_to_write pages from @mapping. No one but the existing
457 * btrfs caller should be using this. Talk to linux-mm if you think adding a
458 * new caller is a good idea.
459 */
filemap_flush_nr(struct address_space * mapping,long * nr_to_write)460 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write)
461 {
462 return filemap_writeback(mapping, 0, LLONG_MAX, WB_SYNC_NONE,
463 nr_to_write);
464 }
465 EXPORT_SYMBOL_FOR_MODULES(filemap_flush_nr, "btrfs");
466
467 /**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
478 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)479 bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481 {
482 struct folio *folio;
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
485
486 if (end_byte < start_byte)
487 return false;
488
489 rcu_read_lock();
490 for (;;) {
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
493 continue;
494 /* Shadow entries don't count */
495 if (xa_is_value(folio))
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
505
506 return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 loff_t start_byte, loff_t end_byte)
512 {
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
519
520 while (index <= end) {
521 unsigned i;
522
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
527 break;
528
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
531
532 folio_wait_writeback(folio);
533 }
534 folio_batch_release(&fbatch);
535 cond_resched();
536 }
537 }
538
539 /**
540 * filemap_fdatawait_range - wait for writeback to complete
541 * @mapping: address space structure to wait for
542 * @start_byte: offset in bytes where the range starts
543 * @end_byte: offset in bytes where the range ends (inclusive)
544 *
545 * Walk the list of under-writeback pages of the given address space
546 * in the given range and wait for all of them. Check error status of
547 * the address space and return it.
548 *
549 * Since the error status of the address space is cleared by this function,
550 * callers are responsible for checking the return value and handling and/or
551 * reporting the error.
552 *
553 * Return: error status of the address space.
554 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 loff_t end_byte)
557 {
558 __filemap_fdatawait_range(mapping, start_byte, end_byte);
559 return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562
563 /**
564 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565 * @mapping: address space structure to wait for
566 * @start_byte: offset in bytes where the range starts
567 * @end_byte: offset in bytes where the range ends (inclusive)
568 *
569 * Walk the list of under-writeback pages of the given address space in the
570 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
571 * this function does not clear error status of the address space.
572 *
573 * Use this function if callers don't handle errors themselves. Expected
574 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575 * fsfreeze(8)
576 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 loff_t start_byte, loff_t end_byte)
579 {
580 __filemap_fdatawait_range(mapping, start_byte, end_byte);
581 return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584
585 /**
586 * file_fdatawait_range - wait for writeback to complete
587 * @file: file pointing to address space structure to wait for
588 * @start_byte: offset in bytes where the range starts
589 * @end_byte: offset in bytes where the range ends (inclusive)
590 *
591 * Walk the list of under-writeback pages of the address space that file
592 * refers to, in the given range and wait for all of them. Check error
593 * status of the address space vs. the file->f_wb_err cursor and return it.
594 *
595 * Since the error status of the file is advanced by this function,
596 * callers are responsible for checking the return value and handling and/or
597 * reporting the error.
598 *
599 * Return: error status of the address space vs. the file->f_wb_err cursor.
600 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 struct address_space *mapping = file->f_mapping;
604
605 __filemap_fdatawait_range(mapping, start_byte, end_byte);
606 return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609
610 /**
611 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612 * @mapping: address space structure to wait for
613 *
614 * Walk the list of under-writeback pages of the given address space
615 * and wait for all of them. Unlike filemap_fdatawait(), this function
616 * does not clear error status of the address space.
617 *
618 * Use this function if callers don't handle errors themselves. Expected
619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * fsfreeze(8)
621 *
622 * Return: error status of the address space.
623 */
filemap_fdatawait_keep_errors(struct address_space * mapping)624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630
631 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 return mapping->nrpages;
635 }
636
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)637 bool filemap_range_has_writeback(struct address_space *mapping,
638 loff_t start_byte, loff_t end_byte)
639 {
640 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 pgoff_t max = end_byte >> PAGE_SHIFT;
642 struct folio *folio;
643
644 if (end_byte < start_byte)
645 return false;
646
647 rcu_read_lock();
648 xas_for_each(&xas, folio, max) {
649 if (xas_retry(&xas, folio))
650 continue;
651 if (xa_is_value(folio))
652 continue;
653 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
654 folio_test_writeback(folio))
655 break;
656 }
657 rcu_read_unlock();
658 return folio != NULL;
659 }
660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
661
662 /**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
672 *
673 * Return: error status of the address space.
674 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)675 int filemap_write_and_wait_range(struct address_space *mapping,
676 loff_t lstart, loff_t lend)
677 {
678 int err = 0, err2;
679
680 if (lend < lstart)
681 return 0;
682
683 if (mapping_needs_writeback(mapping)) {
684 err = filemap_fdatawrite_range(mapping, lstart, lend);
685 /*
686 * Even if the above returned error, the pages may be
687 * written partially (e.g. -ENOSPC), so we wait for it.
688 * But the -EIO is special case, it may indicate the worst
689 * thing (e.g. bug) happened, so we avoid waiting for it.
690 */
691 if (err != -EIO)
692 __filemap_fdatawait_range(mapping, lstart, lend);
693 }
694 err2 = filemap_check_errors(mapping);
695 if (!err)
696 err = err2;
697 return err;
698 }
699 EXPORT_SYMBOL(filemap_write_and_wait_range);
700
__filemap_set_wb_err(struct address_space * mapping,int err)701 void __filemap_set_wb_err(struct address_space *mapping, int err)
702 {
703 errseq_t eseq = errseq_set(&mapping->wb_err, err);
704
705 trace_filemap_set_wb_err(mapping, eseq);
706 }
707 EXPORT_SYMBOL(__filemap_set_wb_err);
708
709 /**
710 * file_check_and_advance_wb_err - report wb error (if any) that was previously
711 * and advance wb_err to current one
712 * @file: struct file on which the error is being reported
713 *
714 * When userland calls fsync (or something like nfsd does the equivalent), we
715 * want to report any writeback errors that occurred since the last fsync (or
716 * since the file was opened if there haven't been any).
717 *
718 * Grab the wb_err from the mapping. If it matches what we have in the file,
719 * then just quickly return 0. The file is all caught up.
720 *
721 * If it doesn't match, then take the mapping value, set the "seen" flag in
722 * it and try to swap it into place. If it works, or another task beat us
723 * to it with the new value, then update the f_wb_err and return the error
724 * portion. The error at this point must be reported via proper channels
725 * (a'la fsync, or NFS COMMIT operation, etc.).
726 *
727 * While we handle mapping->wb_err with atomic operations, the f_wb_err
728 * value is protected by the f_lock since we must ensure that it reflects
729 * the latest value swapped in for this file descriptor.
730 *
731 * Return: %0 on success, negative error code otherwise.
732 */
file_check_and_advance_wb_err(struct file * file)733 int file_check_and_advance_wb_err(struct file *file)
734 {
735 int err = 0;
736 errseq_t old = READ_ONCE(file->f_wb_err);
737 struct address_space *mapping = file->f_mapping;
738
739 /* Locklessly handle the common case where nothing has changed */
740 if (errseq_check(&mapping->wb_err, old)) {
741 /* Something changed, must use slow path */
742 spin_lock(&file->f_lock);
743 old = file->f_wb_err;
744 err = errseq_check_and_advance(&mapping->wb_err,
745 &file->f_wb_err);
746 trace_file_check_and_advance_wb_err(file, old);
747 spin_unlock(&file->f_lock);
748 }
749
750 /*
751 * We're mostly using this function as a drop in replacement for
752 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
753 * that the legacy code would have had on these flags.
754 */
755 clear_bit(AS_EIO, &mapping->flags);
756 clear_bit(AS_ENOSPC, &mapping->flags);
757 return err;
758 }
759 EXPORT_SYMBOL(file_check_and_advance_wb_err);
760
761 /**
762 * file_write_and_wait_range - write out & wait on a file range
763 * @file: file pointing to address_space with pages
764 * @lstart: offset in bytes where the range starts
765 * @lend: offset in bytes where the range ends (inclusive)
766 *
767 * Write out and wait upon file offsets lstart->lend, inclusive.
768 *
769 * Note that @lend is inclusive (describes the last byte to be written) so
770 * that this function can be used to write to the very end-of-file (end = -1).
771 *
772 * After writing out and waiting on the data, we check and advance the
773 * f_wb_err cursor to the latest value, and return any errors detected there.
774 *
775 * Return: %0 on success, negative error code otherwise.
776 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)777 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
778 {
779 int err = 0, err2;
780 struct address_space *mapping = file->f_mapping;
781
782 if (lend < lstart)
783 return 0;
784
785 if (mapping_needs_writeback(mapping)) {
786 err = filemap_fdatawrite_range(mapping, lstart, lend);
787 /* See comment of filemap_write_and_wait() */
788 if (err != -EIO)
789 __filemap_fdatawait_range(mapping, lstart, lend);
790 }
791 err2 = file_check_and_advance_wb_err(file);
792 if (!err)
793 err = err2;
794 return err;
795 }
796 EXPORT_SYMBOL(file_write_and_wait_range);
797
798 /**
799 * replace_page_cache_folio - replace a pagecache folio with a new one
800 * @old: folio to be replaced
801 * @new: folio to replace with
802 *
803 * This function replaces a folio in the pagecache with a new one. On
804 * success it acquires the pagecache reference for the new folio and
805 * drops it for the old folio. Both the old and new folios must be
806 * locked. This function does not add the new folio to the LRU, the
807 * caller must do that.
808 *
809 * The remove + add is atomic. This function cannot fail.
810 */
replace_page_cache_folio(struct folio * old,struct folio * new)811 void replace_page_cache_folio(struct folio *old, struct folio *new)
812 {
813 struct address_space *mapping = old->mapping;
814 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
815 pgoff_t offset = old->index;
816 XA_STATE(xas, &mapping->i_pages, offset);
817
818 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
819 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
820 VM_BUG_ON_FOLIO(new->mapping, new);
821
822 folio_get(new);
823 new->mapping = mapping;
824 new->index = offset;
825
826 mem_cgroup_replace_folio(old, new);
827
828 xas_lock_irq(&xas);
829 xas_store(&xas, new);
830
831 old->mapping = NULL;
832 /* hugetlb pages do not participate in page cache accounting. */
833 if (!folio_test_hugetlb(old))
834 lruvec_stat_sub_folio(old, NR_FILE_PAGES);
835 if (!folio_test_hugetlb(new))
836 lruvec_stat_add_folio(new, NR_FILE_PAGES);
837 if (folio_test_swapbacked(old))
838 lruvec_stat_sub_folio(old, NR_SHMEM);
839 if (folio_test_swapbacked(new))
840 lruvec_stat_add_folio(new, NR_SHMEM);
841 xas_unlock_irq(&xas);
842 if (free_folio)
843 free_folio(old);
844 folio_put(old);
845 }
846 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
847
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)848 noinline int __filemap_add_folio(struct address_space *mapping,
849 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
850 {
851 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
852 bool huge;
853 long nr;
854 unsigned int forder = folio_order(folio);
855
856 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
857 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
858 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
859 folio);
860 mapping_set_update(&xas, mapping);
861
862 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
863 huge = folio_test_hugetlb(folio);
864 nr = folio_nr_pages(folio);
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 for (;;) {
872 int order = -1;
873 void *entry, *old = NULL;
874
875 xas_lock_irq(&xas);
876 xas_for_each_conflict(&xas, entry) {
877 old = entry;
878 if (!xa_is_value(entry)) {
879 xas_set_err(&xas, -EEXIST);
880 goto unlock;
881 }
882 /*
883 * If a larger entry exists,
884 * it will be the first and only entry iterated.
885 */
886 if (order == -1)
887 order = xas_get_order(&xas);
888 }
889
890 if (old) {
891 if (order > 0 && order > forder) {
892 unsigned int split_order = max(forder,
893 xas_try_split_min_order(order));
894
895 /* How to handle large swap entries? */
896 BUG_ON(shmem_mapping(mapping));
897
898 while (order > forder) {
899 xas_set_order(&xas, index, split_order);
900 xas_try_split(&xas, old, order);
901 if (xas_error(&xas))
902 goto unlock;
903 order = split_order;
904 split_order =
905 max(xas_try_split_min_order(
906 split_order),
907 forder);
908 }
909 xas_reset(&xas);
910 }
911 if (shadowp)
912 *shadowp = old;
913 }
914
915 xas_store(&xas, folio);
916 if (xas_error(&xas))
917 goto unlock;
918
919 mapping->nrpages += nr;
920
921 /* hugetlb pages do not participate in page cache accounting */
922 if (!huge) {
923 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
924 if (folio_test_pmd_mappable(folio))
925 lruvec_stat_mod_folio(folio,
926 NR_FILE_THPS, nr);
927 }
928
929 unlock:
930 xas_unlock_irq(&xas);
931
932 if (!xas_nomem(&xas, gfp))
933 break;
934 }
935
936 if (xas_error(&xas))
937 goto error;
938
939 trace_mm_filemap_add_to_page_cache(folio);
940 return 0;
941 error:
942 folio->mapping = NULL;
943 /* Leave folio->index set: truncation relies upon it */
944 folio_put_refs(folio, nr);
945 return xas_error(&xas);
946 }
947 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
948
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)949 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
950 pgoff_t index, gfp_t gfp)
951 {
952 void *shadow = NULL;
953 int ret;
954 struct mem_cgroup *tmp;
955 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
956
957 if (kernel_file)
958 tmp = set_active_memcg(root_mem_cgroup);
959 ret = mem_cgroup_charge(folio, NULL, gfp);
960 if (kernel_file)
961 set_active_memcg(tmp);
962 if (ret)
963 return ret;
964
965 __folio_set_locked(folio);
966 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
967 if (unlikely(ret)) {
968 mem_cgroup_uncharge(folio);
969 __folio_clear_locked(folio);
970 } else {
971 /*
972 * The folio might have been evicted from cache only
973 * recently, in which case it should be activated like
974 * any other repeatedly accessed folio.
975 * The exception is folios getting rewritten; evicting other
976 * data from the working set, only to cache data that will
977 * get overwritten with something else, is a waste of memory.
978 */
979 WARN_ON_ONCE(folio_test_active(folio));
980 if (!(gfp & __GFP_WRITE) && shadow)
981 workingset_refault(folio, shadow);
982 folio_add_lru(folio);
983 if (kernel_file)
984 mod_node_page_state(folio_pgdat(folio),
985 NR_KERNEL_FILE_PAGES,
986 folio_nr_pages(folio));
987 }
988 return ret;
989 }
990 EXPORT_SYMBOL_GPL(filemap_add_folio);
991
992 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order,struct mempolicy * policy)993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
994 struct mempolicy *policy)
995 {
996 int n;
997 struct folio *folio;
998
999 if (policy)
1000 return folio_alloc_mpol_noprof(gfp, order, policy,
1001 NO_INTERLEAVE_INDEX, numa_node_id());
1002
1003 if (cpuset_do_page_mem_spread()) {
1004 unsigned int cpuset_mems_cookie;
1005 do {
1006 cpuset_mems_cookie = read_mems_allowed_begin();
1007 n = cpuset_mem_spread_node();
1008 folio = __folio_alloc_node_noprof(gfp, order, n);
1009 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1010
1011 return folio;
1012 }
1013 return folio_alloc_noprof(gfp, order);
1014 }
1015 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1016 #endif
1017
1018 /*
1019 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1020 *
1021 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1022 *
1023 * @mapping1: the first mapping to lock
1024 * @mapping2: the second mapping to lock
1025 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1026 void filemap_invalidate_lock_two(struct address_space *mapping1,
1027 struct address_space *mapping2)
1028 {
1029 if (mapping1 > mapping2)
1030 swap(mapping1, mapping2);
1031 if (mapping1)
1032 down_write(&mapping1->invalidate_lock);
1033 if (mapping2 && mapping1 != mapping2)
1034 down_write_nested(&mapping2->invalidate_lock, 1);
1035 }
1036 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1037
1038 /*
1039 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1040 *
1041 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1042 *
1043 * @mapping1: the first mapping to unlock
1044 * @mapping2: the second mapping to unlock
1045 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1046 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1047 struct address_space *mapping2)
1048 {
1049 if (mapping1)
1050 up_write(&mapping1->invalidate_lock);
1051 if (mapping2 && mapping1 != mapping2)
1052 up_write(&mapping2->invalidate_lock);
1053 }
1054 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1055
1056 /*
1057 * In order to wait for pages to become available there must be
1058 * waitqueues associated with pages. By using a hash table of
1059 * waitqueues where the bucket discipline is to maintain all
1060 * waiters on the same queue and wake all when any of the pages
1061 * become available, and for the woken contexts to check to be
1062 * sure the appropriate page became available, this saves space
1063 * at a cost of "thundering herd" phenomena during rare hash
1064 * collisions.
1065 */
1066 #define PAGE_WAIT_TABLE_BITS 8
1067 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1068 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1069
folio_waitqueue(struct folio * folio)1070 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1071 {
1072 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1073 }
1074
1075 /* How many times do we accept lock stealing from under a waiter? */
1076 static int sysctl_page_lock_unfairness = 5;
1077 static const struct ctl_table filemap_sysctl_table[] = {
1078 {
1079 .procname = "page_lock_unfairness",
1080 .data = &sysctl_page_lock_unfairness,
1081 .maxlen = sizeof(sysctl_page_lock_unfairness),
1082 .mode = 0644,
1083 .proc_handler = proc_dointvec_minmax,
1084 .extra1 = SYSCTL_ZERO,
1085 }
1086 };
1087
pagecache_init(void)1088 void __init pagecache_init(void)
1089 {
1090 int i;
1091
1092 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1093 init_waitqueue_head(&folio_wait_table[i]);
1094
1095 page_writeback_init();
1096 register_sysctl_init("vm", filemap_sysctl_table);
1097 }
1098
1099 /*
1100 * The page wait code treats the "wait->flags" somewhat unusually, because
1101 * we have multiple different kinds of waits, not just the usual "exclusive"
1102 * one.
1103 *
1104 * We have:
1105 *
1106 * (a) no special bits set:
1107 *
1108 * We're just waiting for the bit to be released, and when a waker
1109 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1110 * and remove it from the wait queue.
1111 *
1112 * Simple and straightforward.
1113 *
1114 * (b) WQ_FLAG_EXCLUSIVE:
1115 *
1116 * The waiter is waiting to get the lock, and only one waiter should
1117 * be woken up to avoid any thundering herd behavior. We'll set the
1118 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1119 *
1120 * This is the traditional exclusive wait.
1121 *
1122 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1123 *
1124 * The waiter is waiting to get the bit, and additionally wants the
1125 * lock to be transferred to it for fair lock behavior. If the lock
1126 * cannot be taken, we stop walking the wait queue without waking
1127 * the waiter.
1128 *
1129 * This is the "fair lock handoff" case, and in addition to setting
1130 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1131 * that it now has the lock.
1132 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1133 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1134 {
1135 unsigned int flags;
1136 struct wait_page_key *key = arg;
1137 struct wait_page_queue *wait_page
1138 = container_of(wait, struct wait_page_queue, wait);
1139
1140 if (!wake_page_match(wait_page, key))
1141 return 0;
1142
1143 /*
1144 * If it's a lock handoff wait, we get the bit for it, and
1145 * stop walking (and do not wake it up) if we can't.
1146 */
1147 flags = wait->flags;
1148 if (flags & WQ_FLAG_EXCLUSIVE) {
1149 if (test_bit(key->bit_nr, &key->folio->flags.f))
1150 return -1;
1151 if (flags & WQ_FLAG_CUSTOM) {
1152 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1153 return -1;
1154 flags |= WQ_FLAG_DONE;
1155 }
1156 }
1157
1158 /*
1159 * We are holding the wait-queue lock, but the waiter that
1160 * is waiting for this will be checking the flags without
1161 * any locking.
1162 *
1163 * So update the flags atomically, and wake up the waiter
1164 * afterwards to avoid any races. This store-release pairs
1165 * with the load-acquire in folio_wait_bit_common().
1166 */
1167 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1168 wake_up_state(wait->private, mode);
1169
1170 /*
1171 * Ok, we have successfully done what we're waiting for,
1172 * and we can unconditionally remove the wait entry.
1173 *
1174 * Note that this pairs with the "finish_wait()" in the
1175 * waiter, and has to be the absolute last thing we do.
1176 * After this list_del_init(&wait->entry) the wait entry
1177 * might be de-allocated and the process might even have
1178 * exited.
1179 */
1180 list_del_init_careful(&wait->entry);
1181 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1182 }
1183
folio_wake_bit(struct folio * folio,int bit_nr)1184 static void folio_wake_bit(struct folio *folio, int bit_nr)
1185 {
1186 wait_queue_head_t *q = folio_waitqueue(folio);
1187 struct wait_page_key key;
1188 unsigned long flags;
1189
1190 key.folio = folio;
1191 key.bit_nr = bit_nr;
1192 key.page_match = 0;
1193
1194 spin_lock_irqsave(&q->lock, flags);
1195 __wake_up_locked_key(q, TASK_NORMAL, &key);
1196
1197 /*
1198 * It's possible to miss clearing waiters here, when we woke our page
1199 * waiters, but the hashed waitqueue has waiters for other pages on it.
1200 * That's okay, it's a rare case. The next waker will clear it.
1201 *
1202 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1203 * other), the flag may be cleared in the course of freeing the page;
1204 * but that is not required for correctness.
1205 */
1206 if (!waitqueue_active(q) || !key.page_match)
1207 folio_clear_waiters(folio);
1208
1209 spin_unlock_irqrestore(&q->lock, flags);
1210 }
1211
1212 /*
1213 * A choice of three behaviors for folio_wait_bit_common():
1214 */
1215 enum behavior {
1216 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1217 * __folio_lock() waiting on then setting PG_locked.
1218 */
1219 SHARED, /* Hold ref to page and check the bit when woken, like
1220 * folio_wait_writeback() waiting on PG_writeback.
1221 */
1222 DROP, /* Drop ref to page before wait, no check when woken,
1223 * like folio_put_wait_locked() on PG_locked.
1224 */
1225 };
1226
1227 /*
1228 * Attempt to check (or get) the folio flag, and mark us done
1229 * if successful.
1230 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1231 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1232 struct wait_queue_entry *wait)
1233 {
1234 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1235 if (test_and_set_bit(bit_nr, &folio->flags.f))
1236 return false;
1237 } else if (test_bit(bit_nr, &folio->flags.f))
1238 return false;
1239
1240 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1241 return true;
1242 }
1243
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1244 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1245 int state, enum behavior behavior)
1246 {
1247 wait_queue_head_t *q = folio_waitqueue(folio);
1248 int unfairness = sysctl_page_lock_unfairness;
1249 struct wait_page_queue wait_page;
1250 wait_queue_entry_t *wait = &wait_page.wait;
1251 bool thrashing = false;
1252 unsigned long pflags;
1253 bool in_thrashing;
1254
1255 if (bit_nr == PG_locked &&
1256 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1257 delayacct_thrashing_start(&in_thrashing);
1258 psi_memstall_enter(&pflags);
1259 thrashing = true;
1260 }
1261
1262 init_wait(wait);
1263 wait->func = wake_page_function;
1264 wait_page.folio = folio;
1265 wait_page.bit_nr = bit_nr;
1266
1267 repeat:
1268 wait->flags = 0;
1269 if (behavior == EXCLUSIVE) {
1270 wait->flags = WQ_FLAG_EXCLUSIVE;
1271 if (--unfairness < 0)
1272 wait->flags |= WQ_FLAG_CUSTOM;
1273 }
1274
1275 /*
1276 * Do one last check whether we can get the
1277 * page bit synchronously.
1278 *
1279 * Do the folio_set_waiters() marking before that
1280 * to let any waker we _just_ missed know they
1281 * need to wake us up (otherwise they'll never
1282 * even go to the slow case that looks at the
1283 * page queue), and add ourselves to the wait
1284 * queue if we need to sleep.
1285 *
1286 * This part needs to be done under the queue
1287 * lock to avoid races.
1288 */
1289 spin_lock_irq(&q->lock);
1290 folio_set_waiters(folio);
1291 if (!folio_trylock_flag(folio, bit_nr, wait))
1292 __add_wait_queue_entry_tail(q, wait);
1293 spin_unlock_irq(&q->lock);
1294
1295 /*
1296 * From now on, all the logic will be based on
1297 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1298 * see whether the page bit testing has already
1299 * been done by the wake function.
1300 *
1301 * We can drop our reference to the folio.
1302 */
1303 if (behavior == DROP)
1304 folio_put(folio);
1305
1306 /*
1307 * Note that until the "finish_wait()", or until
1308 * we see the WQ_FLAG_WOKEN flag, we need to
1309 * be very careful with the 'wait->flags', because
1310 * we may race with a waker that sets them.
1311 */
1312 for (;;) {
1313 unsigned int flags;
1314
1315 set_current_state(state);
1316
1317 /* Loop until we've been woken or interrupted */
1318 flags = smp_load_acquire(&wait->flags);
1319 if (!(flags & WQ_FLAG_WOKEN)) {
1320 if (signal_pending_state(state, current))
1321 break;
1322
1323 io_schedule();
1324 continue;
1325 }
1326
1327 /* If we were non-exclusive, we're done */
1328 if (behavior != EXCLUSIVE)
1329 break;
1330
1331 /* If the waker got the lock for us, we're done */
1332 if (flags & WQ_FLAG_DONE)
1333 break;
1334
1335 /*
1336 * Otherwise, if we're getting the lock, we need to
1337 * try to get it ourselves.
1338 *
1339 * And if that fails, we'll have to retry this all.
1340 */
1341 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1342 goto repeat;
1343
1344 wait->flags |= WQ_FLAG_DONE;
1345 break;
1346 }
1347
1348 /*
1349 * If a signal happened, this 'finish_wait()' may remove the last
1350 * waiter from the wait-queues, but the folio waiters bit will remain
1351 * set. That's ok. The next wakeup will take care of it, and trying
1352 * to do it here would be difficult and prone to races.
1353 */
1354 finish_wait(q, wait);
1355
1356 if (thrashing) {
1357 delayacct_thrashing_end(&in_thrashing);
1358 psi_memstall_leave(&pflags);
1359 }
1360
1361 /*
1362 * NOTE! The wait->flags weren't stable until we've done the
1363 * 'finish_wait()', and we could have exited the loop above due
1364 * to a signal, and had a wakeup event happen after the signal
1365 * test but before the 'finish_wait()'.
1366 *
1367 * So only after the finish_wait() can we reliably determine
1368 * if we got woken up or not, so we can now figure out the final
1369 * return value based on that state without races.
1370 *
1371 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1372 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1373 */
1374 if (behavior == EXCLUSIVE)
1375 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1376
1377 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1378 }
1379
1380 #ifdef CONFIG_MIGRATION
1381 /**
1382 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1383 * @entry: migration swap entry.
1384 * @ptl: already locked ptl. This function will drop the lock.
1385 *
1386 * Wait for a migration entry referencing the given page to be removed. This is
1387 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1388 * this can be called without taking a reference on the page. Instead this
1389 * should be called while holding the ptl for the migration entry referencing
1390 * the page.
1391 *
1392 * Returns after unlocking the ptl.
1393 *
1394 * This follows the same logic as folio_wait_bit_common() so see the comments
1395 * there.
1396 */
migration_entry_wait_on_locked(softleaf_t entry,spinlock_t * ptl)1397 void migration_entry_wait_on_locked(softleaf_t entry, spinlock_t *ptl)
1398 __releases(ptl)
1399 {
1400 struct wait_page_queue wait_page;
1401 wait_queue_entry_t *wait = &wait_page.wait;
1402 bool thrashing = false;
1403 unsigned long pflags;
1404 bool in_thrashing;
1405 wait_queue_head_t *q;
1406 struct folio *folio = softleaf_to_folio(entry);
1407
1408 q = folio_waitqueue(folio);
1409 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1410 delayacct_thrashing_start(&in_thrashing);
1411 psi_memstall_enter(&pflags);
1412 thrashing = true;
1413 }
1414
1415 init_wait(wait);
1416 wait->func = wake_page_function;
1417 wait_page.folio = folio;
1418 wait_page.bit_nr = PG_locked;
1419 wait->flags = 0;
1420
1421 spin_lock_irq(&q->lock);
1422 folio_set_waiters(folio);
1423 if (!folio_trylock_flag(folio, PG_locked, wait))
1424 __add_wait_queue_entry_tail(q, wait);
1425 spin_unlock_irq(&q->lock);
1426
1427 /*
1428 * If a migration entry exists for the page the migration path must hold
1429 * a valid reference to the page, and it must take the ptl to remove the
1430 * migration entry. So the page is valid until the ptl is dropped.
1431 */
1432 spin_unlock(ptl);
1433
1434 for (;;) {
1435 unsigned int flags;
1436
1437 set_current_state(TASK_UNINTERRUPTIBLE);
1438
1439 /* Loop until we've been woken or interrupted */
1440 flags = smp_load_acquire(&wait->flags);
1441 if (!(flags & WQ_FLAG_WOKEN)) {
1442 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1443 break;
1444
1445 io_schedule();
1446 continue;
1447 }
1448 break;
1449 }
1450
1451 finish_wait(q, wait);
1452
1453 if (thrashing) {
1454 delayacct_thrashing_end(&in_thrashing);
1455 psi_memstall_leave(&pflags);
1456 }
1457 }
1458 #endif
1459
folio_wait_bit(struct folio * folio,int bit_nr)1460 void folio_wait_bit(struct folio *folio, int bit_nr)
1461 {
1462 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit);
1465
folio_wait_bit_killable(struct folio * folio,int bit_nr)1466 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1467 {
1468 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1469 }
1470 EXPORT_SYMBOL(folio_wait_bit_killable);
1471
1472 /**
1473 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1474 * @folio: The folio to wait for.
1475 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1476 *
1477 * The caller should hold a reference on @folio. They expect the page to
1478 * become unlocked relatively soon, but do not wish to hold up migration
1479 * (for example) by holding the reference while waiting for the folio to
1480 * come unlocked. After this function returns, the caller should not
1481 * dereference @folio.
1482 *
1483 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1484 */
folio_put_wait_locked(struct folio * folio,int state)1485 static int folio_put_wait_locked(struct folio *folio, int state)
1486 {
1487 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1488 }
1489
1490 /**
1491 * folio_unlock - Unlock a locked folio.
1492 * @folio: The folio.
1493 *
1494 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1495 *
1496 * Context: May be called from interrupt or process context. May not be
1497 * called from NMI context.
1498 */
folio_unlock(struct folio * folio)1499 void folio_unlock(struct folio *folio)
1500 {
1501 /* Bit 7 allows x86 to check the byte's sign bit */
1502 BUILD_BUG_ON(PG_waiters != 7);
1503 BUILD_BUG_ON(PG_locked > 7);
1504 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1505 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1506 folio_wake_bit(folio, PG_locked);
1507 }
1508 EXPORT_SYMBOL(folio_unlock);
1509
1510 /**
1511 * folio_end_read - End read on a folio.
1512 * @folio: The folio.
1513 * @success: True if all reads completed successfully.
1514 *
1515 * When all reads against a folio have completed, filesystems should
1516 * call this function to let the pagecache know that no more reads
1517 * are outstanding. This will unlock the folio and wake up any thread
1518 * sleeping on the lock. The folio will also be marked uptodate if all
1519 * reads succeeded.
1520 *
1521 * Context: May be called from interrupt or process context. May not be
1522 * called from NMI context.
1523 */
folio_end_read(struct folio * folio,bool success)1524 void folio_end_read(struct folio *folio, bool success)
1525 {
1526 unsigned long mask = 1 << PG_locked;
1527
1528 /* Must be in bottom byte for x86 to work */
1529 BUILD_BUG_ON(PG_uptodate > 7);
1530 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1531 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1532
1533 if (likely(success))
1534 mask |= 1 << PG_uptodate;
1535 if (folio_xor_flags_has_waiters(folio, mask))
1536 folio_wake_bit(folio, PG_locked);
1537 }
1538 EXPORT_SYMBOL(folio_end_read);
1539
1540 /**
1541 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1542 * @folio: The folio.
1543 *
1544 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1545 * it. The folio reference held for PG_private_2 being set is released.
1546 *
1547 * This is, for example, used when a netfs folio is being written to a local
1548 * disk cache, thereby allowing writes to the cache for the same folio to be
1549 * serialised.
1550 */
folio_end_private_2(struct folio * folio)1551 void folio_end_private_2(struct folio *folio)
1552 {
1553 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1554 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1555 folio_wake_bit(folio, PG_private_2);
1556 folio_put(folio);
1557 }
1558 EXPORT_SYMBOL(folio_end_private_2);
1559
1560 /**
1561 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1562 * @folio: The folio to wait on.
1563 *
1564 * Wait for PG_private_2 to be cleared on a folio.
1565 */
folio_wait_private_2(struct folio * folio)1566 void folio_wait_private_2(struct folio *folio)
1567 {
1568 while (folio_test_private_2(folio))
1569 folio_wait_bit(folio, PG_private_2);
1570 }
1571 EXPORT_SYMBOL(folio_wait_private_2);
1572
1573 /**
1574 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1575 * @folio: The folio to wait on.
1576 *
1577 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1578 * received by the calling task.
1579 *
1580 * Return:
1581 * - 0 if successful.
1582 * - -EINTR if a fatal signal was encountered.
1583 */
folio_wait_private_2_killable(struct folio * folio)1584 int folio_wait_private_2_killable(struct folio *folio)
1585 {
1586 int ret = 0;
1587
1588 while (folio_test_private_2(folio)) {
1589 ret = folio_wait_bit_killable(folio, PG_private_2);
1590 if (ret < 0)
1591 break;
1592 }
1593
1594 return ret;
1595 }
1596 EXPORT_SYMBOL(folio_wait_private_2_killable);
1597
filemap_end_dropbehind(struct folio * folio)1598 static void filemap_end_dropbehind(struct folio *folio)
1599 {
1600 struct address_space *mapping = folio->mapping;
1601
1602 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1603
1604 if (folio_test_writeback(folio) || folio_test_dirty(folio))
1605 return;
1606 if (!folio_test_clear_dropbehind(folio))
1607 return;
1608 if (mapping)
1609 folio_unmap_invalidate(mapping, folio, 0);
1610 }
1611
1612 /*
1613 * If folio was marked as dropbehind, then pages should be dropped when writeback
1614 * completes. Do that now. If we fail, it's likely because of a big folio -
1615 * just reset dropbehind for that case and latter completions should invalidate.
1616 */
folio_end_dropbehind(struct folio * folio)1617 void folio_end_dropbehind(struct folio *folio)
1618 {
1619 if (!folio_test_dropbehind(folio))
1620 return;
1621
1622 /*
1623 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1624 * but can happen if normal writeback just happens to find dirty folios
1625 * that were created as part of uncached writeback, and that writeback
1626 * would otherwise not need non-IRQ handling. Just skip the
1627 * invalidation in that case.
1628 */
1629 if (in_task() && folio_trylock(folio)) {
1630 filemap_end_dropbehind(folio);
1631 folio_unlock(folio);
1632 }
1633 }
1634 EXPORT_SYMBOL_GPL(folio_end_dropbehind);
1635
1636 /**
1637 * folio_end_writeback_no_dropbehind - End writeback against a folio.
1638 * @folio: The folio.
1639 *
1640 * The folio must actually be under writeback.
1641 * This call is intended for filesystems that need to defer dropbehind.
1642 *
1643 * Context: May be called from process or interrupt context.
1644 */
folio_end_writeback_no_dropbehind(struct folio * folio)1645 void folio_end_writeback_no_dropbehind(struct folio *folio)
1646 {
1647 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1648
1649 /*
1650 * folio_test_clear_reclaim() could be used here but it is an
1651 * atomic operation and overkill in this particular case. Failing
1652 * to shuffle a folio marked for immediate reclaim is too mild
1653 * a gain to justify taking an atomic operation penalty at the
1654 * end of every folio writeback.
1655 */
1656 if (folio_test_reclaim(folio)) {
1657 folio_clear_reclaim(folio);
1658 folio_rotate_reclaimable(folio);
1659 }
1660
1661 if (__folio_end_writeback(folio))
1662 folio_wake_bit(folio, PG_writeback);
1663
1664 acct_reclaim_writeback(folio);
1665 }
1666 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind);
1667
1668 /**
1669 * folio_end_writeback - End writeback against a folio.
1670 * @folio: The folio.
1671 *
1672 * The folio must actually be under writeback.
1673 *
1674 * Context: May be called from process or interrupt context.
1675 */
folio_end_writeback(struct folio * folio)1676 void folio_end_writeback(struct folio *folio)
1677 {
1678 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1679
1680 /*
1681 * Writeback does not hold a folio reference of its own, relying
1682 * on truncation to wait for the clearing of PG_writeback.
1683 * But here we must make sure that the folio is not freed and
1684 * reused before the folio_wake_bit().
1685 */
1686 folio_get(folio);
1687 folio_end_writeback_no_dropbehind(folio);
1688 folio_end_dropbehind(folio);
1689 folio_put(folio);
1690 }
1691 EXPORT_SYMBOL(folio_end_writeback);
1692
1693 /**
1694 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1695 * @folio: The folio to lock
1696 */
__folio_lock(struct folio * folio)1697 void __folio_lock(struct folio *folio)
1698 {
1699 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1700 EXCLUSIVE);
1701 }
1702 EXPORT_SYMBOL(__folio_lock);
1703
__folio_lock_killable(struct folio * folio)1704 int __folio_lock_killable(struct folio *folio)
1705 {
1706 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1707 EXCLUSIVE);
1708 }
1709 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1710
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1711 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1712 {
1713 struct wait_queue_head *q = folio_waitqueue(folio);
1714 int ret;
1715
1716 wait->folio = folio;
1717 wait->bit_nr = PG_locked;
1718
1719 spin_lock_irq(&q->lock);
1720 __add_wait_queue_entry_tail(q, &wait->wait);
1721 folio_set_waiters(folio);
1722 ret = !folio_trylock(folio);
1723 /*
1724 * If we were successful now, we know we're still on the
1725 * waitqueue as we're still under the lock. This means it's
1726 * safe to remove and return success, we know the callback
1727 * isn't going to trigger.
1728 */
1729 if (!ret)
1730 __remove_wait_queue(q, &wait->wait);
1731 else
1732 ret = -EIOCBQUEUED;
1733 spin_unlock_irq(&q->lock);
1734 return ret;
1735 }
1736
1737 /*
1738 * Return values:
1739 * 0 - folio is locked.
1740 * non-zero - folio is not locked.
1741 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1742 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1743 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1744 *
1745 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1746 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1747 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1748 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1749 {
1750 unsigned int flags = vmf->flags;
1751
1752 if (fault_flag_allow_retry_first(flags)) {
1753 /*
1754 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1755 * released even though returning VM_FAULT_RETRY.
1756 */
1757 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1758 return VM_FAULT_RETRY;
1759
1760 release_fault_lock(vmf);
1761 if (flags & FAULT_FLAG_KILLABLE)
1762 folio_wait_locked_killable(folio);
1763 else
1764 folio_wait_locked(folio);
1765 return VM_FAULT_RETRY;
1766 }
1767 if (flags & FAULT_FLAG_KILLABLE) {
1768 bool ret;
1769
1770 ret = __folio_lock_killable(folio);
1771 if (ret) {
1772 release_fault_lock(vmf);
1773 return VM_FAULT_RETRY;
1774 }
1775 } else {
1776 __folio_lock(folio);
1777 }
1778
1779 return 0;
1780 }
1781
1782 /**
1783 * page_cache_next_miss() - Find the next gap in the page cache.
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
1787 *
1788 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1789 * gap with the lowest index.
1790 *
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 5, then subsequently a gap is
1794 * created at index 10, page_cache_next_miss covering both indices may
1795 * return 10 if called under the rcu_read_lock.
1796 *
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'return - index >= max_scan' will be true).
1799 * In the rare case of index wrap-around, 0 will be returned.
1800 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1801 pgoff_t page_cache_next_miss(struct address_space *mapping,
1802 pgoff_t index, unsigned long max_scan)
1803 {
1804 XA_STATE(xas, &mapping->i_pages, index);
1805 unsigned long nr = max_scan;
1806
1807 while (nr--) {
1808 void *entry = xas_next(&xas);
1809 if (!entry || xa_is_value(entry))
1810 return xas.xa_index;
1811 if (xas.xa_index == 0)
1812 return 0;
1813 }
1814
1815 return index + max_scan;
1816 }
1817 EXPORT_SYMBOL(page_cache_next_miss);
1818
1819 /**
1820 * page_cache_prev_miss() - Find the previous gap in the page cache.
1821 * @mapping: Mapping.
1822 * @index: Index.
1823 * @max_scan: Maximum range to search.
1824 *
1825 * Search the range [max(index - max_scan + 1, 0), index] for the
1826 * gap with the highest index.
1827 *
1828 * This function may be called under the rcu_read_lock. However, this will
1829 * not atomically search a snapshot of the cache at a single point in time.
1830 * For example, if a gap is created at index 10, then subsequently a gap is
1831 * created at index 5, page_cache_prev_miss() covering both indices may
1832 * return 5 if called under the rcu_read_lock.
1833 *
1834 * Return: The index of the gap if found, otherwise an index outside the
1835 * range specified (in which case 'index - return >= max_scan' will be true).
1836 * In the rare case of wrap-around, ULONG_MAX will be returned.
1837 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1838 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1839 pgoff_t index, unsigned long max_scan)
1840 {
1841 XA_STATE(xas, &mapping->i_pages, index);
1842
1843 while (max_scan--) {
1844 void *entry = xas_prev(&xas);
1845 if (!entry || xa_is_value(entry))
1846 break;
1847 if (xas.xa_index == ULONG_MAX)
1848 break;
1849 }
1850
1851 return xas.xa_index;
1852 }
1853 EXPORT_SYMBOL(page_cache_prev_miss);
1854
1855 /*
1856 * Lockless page cache protocol:
1857 * On the lookup side:
1858 * 1. Load the folio from i_pages
1859 * 2. Increment the refcount if it's not zero
1860 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1861 *
1862 * On the removal side:
1863 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1864 * B. Remove the page from i_pages
1865 * C. Return the page to the page allocator
1866 *
1867 * This means that any page may have its reference count temporarily
1868 * increased by a speculative page cache (or GUP-fast) lookup as it can
1869 * be allocated by another user before the RCU grace period expires.
1870 * Because the refcount temporarily acquired here may end up being the
1871 * last refcount on the page, any page allocation must be freeable by
1872 * folio_put().
1873 */
1874
1875 /*
1876 * filemap_get_entry - Get a page cache entry.
1877 * @mapping: the address_space to search
1878 * @index: The page cache index.
1879 *
1880 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1881 * it is returned with an increased refcount. If it is a shadow entry
1882 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1883 * it is returned without further action.
1884 *
1885 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1886 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1887 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1888 {
1889 XA_STATE(xas, &mapping->i_pages, index);
1890 struct folio *folio;
1891
1892 rcu_read_lock();
1893 repeat:
1894 xas_reset(&xas);
1895 folio = xas_load(&xas);
1896 if (xas_retry(&xas, folio))
1897 goto repeat;
1898 /*
1899 * A shadow entry of a recently evicted page, or a swap entry from
1900 * shmem/tmpfs. Return it without attempting to raise page count.
1901 */
1902 if (!folio || xa_is_value(folio))
1903 goto out;
1904
1905 if (!folio_try_get(folio))
1906 goto repeat;
1907
1908 if (unlikely(folio != xas_reload(&xas))) {
1909 folio_put(folio);
1910 goto repeat;
1911 }
1912 out:
1913 rcu_read_unlock();
1914
1915 return folio;
1916 }
1917
1918 /**
1919 * __filemap_get_folio_mpol - Find and get a reference to a folio.
1920 * @mapping: The address_space to search.
1921 * @index: The page index.
1922 * @fgp_flags: %FGP flags modify how the folio is returned.
1923 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1924 * @policy: NUMA memory allocation policy to follow.
1925 *
1926 * Looks up the page cache entry at @mapping & @index.
1927 *
1928 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1929 * if the %GFP flags specified for %FGP_CREAT are atomic.
1930 *
1931 * If this function returns a folio, it is returned with an increased refcount.
1932 *
1933 * Return: The found folio or an ERR_PTR() otherwise.
1934 */
__filemap_get_folio_mpol(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp,struct mempolicy * policy)1935 struct folio *__filemap_get_folio_mpol(struct address_space *mapping,
1936 pgoff_t index, fgf_t fgp_flags, gfp_t gfp, struct mempolicy *policy)
1937 {
1938 struct folio *folio;
1939
1940 repeat:
1941 folio = filemap_get_entry(mapping, index);
1942 if (xa_is_value(folio))
1943 folio = NULL;
1944 if (!folio)
1945 goto no_page;
1946
1947 if (fgp_flags & FGP_LOCK) {
1948 if (fgp_flags & FGP_NOWAIT) {
1949 if (!folio_trylock(folio)) {
1950 folio_put(folio);
1951 return ERR_PTR(-EAGAIN);
1952 }
1953 } else {
1954 folio_lock(folio);
1955 }
1956
1957 /* Has the page been truncated? */
1958 if (unlikely(folio->mapping != mapping)) {
1959 folio_unlock(folio);
1960 folio_put(folio);
1961 goto repeat;
1962 }
1963 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1964 }
1965
1966 if (fgp_flags & FGP_ACCESSED)
1967 folio_mark_accessed(folio);
1968 else if (fgp_flags & FGP_WRITE) {
1969 /* Clear idle flag for buffer write */
1970 if (folio_test_idle(folio))
1971 folio_clear_idle(folio);
1972 }
1973
1974 if (fgp_flags & FGP_STABLE)
1975 folio_wait_stable(folio);
1976 no_page:
1977 if (!folio && (fgp_flags & FGP_CREAT)) {
1978 unsigned int min_order = mapping_min_folio_order(mapping);
1979 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1980 int err;
1981 index = mapping_align_index(mapping, index);
1982
1983 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1984 gfp |= __GFP_WRITE;
1985 if (fgp_flags & FGP_NOFS)
1986 gfp &= ~__GFP_FS;
1987 if (fgp_flags & FGP_NOWAIT) {
1988 gfp &= ~GFP_KERNEL;
1989 gfp |= GFP_NOWAIT;
1990 }
1991 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1992 fgp_flags |= FGP_LOCK;
1993
1994 if (order > mapping_max_folio_order(mapping))
1995 order = mapping_max_folio_order(mapping);
1996 /* If we're not aligned, allocate a smaller folio */
1997 if (index & ((1UL << order) - 1))
1998 order = __ffs(index);
1999
2000 do {
2001 gfp_t alloc_gfp = gfp;
2002
2003 err = -ENOMEM;
2004 if (order > min_order)
2005 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
2006 folio = filemap_alloc_folio(alloc_gfp, order, policy);
2007 if (!folio)
2008 continue;
2009
2010 /* Init accessed so avoid atomic mark_page_accessed later */
2011 if (fgp_flags & FGP_ACCESSED)
2012 __folio_set_referenced(folio);
2013 if (fgp_flags & FGP_DONTCACHE)
2014 __folio_set_dropbehind(folio);
2015
2016 err = filemap_add_folio(mapping, folio, index, gfp);
2017 if (!err)
2018 break;
2019 folio_put(folio);
2020 folio = NULL;
2021 } while (order-- > min_order);
2022
2023 if (err == -EEXIST)
2024 goto repeat;
2025 if (err) {
2026 /*
2027 * When NOWAIT I/O fails to allocate folios this could
2028 * be due to a nonblocking memory allocation and not
2029 * because the system actually is out of memory.
2030 * Return -EAGAIN so that there caller retries in a
2031 * blocking fashion instead of propagating -ENOMEM
2032 * to the application.
2033 */
2034 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2035 err = -EAGAIN;
2036 return ERR_PTR(err);
2037 }
2038 /*
2039 * filemap_add_folio locks the page, and for mmap
2040 * we expect an unlocked page.
2041 */
2042 if (folio && (fgp_flags & FGP_FOR_MMAP))
2043 folio_unlock(folio);
2044 }
2045
2046 if (!folio)
2047 return ERR_PTR(-ENOENT);
2048 /* not an uncached lookup, clear uncached if set */
2049 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2050 folio_clear_dropbehind(folio);
2051 return folio;
2052 }
2053 EXPORT_SYMBOL(__filemap_get_folio_mpol);
2054
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2055 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2056 xa_mark_t mark)
2057 {
2058 struct folio *folio;
2059
2060 retry:
2061 if (mark == XA_PRESENT)
2062 folio = xas_find(xas, max);
2063 else
2064 folio = xas_find_marked(xas, max, mark);
2065
2066 if (xas_retry(xas, folio))
2067 goto retry;
2068 /*
2069 * A shadow entry of a recently evicted page, a swap
2070 * entry from shmem/tmpfs or a DAX entry. Return it
2071 * without attempting to raise page count.
2072 */
2073 if (!folio || xa_is_value(folio))
2074 return folio;
2075
2076 if (!folio_try_get(folio))
2077 goto reset;
2078
2079 if (unlikely(folio != xas_reload(xas))) {
2080 folio_put(folio);
2081 goto reset;
2082 }
2083
2084 return folio;
2085 reset:
2086 xas_reset(xas);
2087 goto retry;
2088 }
2089
2090 /**
2091 * find_get_entries - gang pagecache lookup
2092 * @mapping: The address_space to search
2093 * @start: The starting page cache index
2094 * @end: The final page index (inclusive).
2095 * @fbatch: Where the resulting entries are placed.
2096 * @indices: The cache indices corresponding to the entries in @entries
2097 *
2098 * find_get_entries() will search for and return a batch of entries in
2099 * the mapping. The entries are placed in @fbatch. find_get_entries()
2100 * takes a reference on any actual folios it returns.
2101 *
2102 * The entries have ascending indexes. The indices may not be consecutive
2103 * due to not-present entries or large folios.
2104 *
2105 * Any shadow entries of evicted folios, or swap entries from
2106 * shmem/tmpfs, are included in the returned array.
2107 *
2108 * Return: The number of entries which were found.
2109 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2110 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2111 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2112 {
2113 XA_STATE(xas, &mapping->i_pages, *start);
2114 struct folio *folio;
2115
2116 rcu_read_lock();
2117 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2118 indices[fbatch->nr] = xas.xa_index;
2119 if (!folio_batch_add(fbatch, folio))
2120 break;
2121 }
2122
2123 if (folio_batch_count(fbatch)) {
2124 unsigned long nr;
2125 int idx = folio_batch_count(fbatch) - 1;
2126
2127 folio = fbatch->folios[idx];
2128 if (!xa_is_value(folio))
2129 nr = folio_nr_pages(folio);
2130 else
2131 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2132 *start = round_down(indices[idx] + nr, nr);
2133 }
2134 rcu_read_unlock();
2135
2136 return folio_batch_count(fbatch);
2137 }
2138
2139 /**
2140 * find_lock_entries - Find a batch of pagecache entries.
2141 * @mapping: The address_space to search.
2142 * @start: The starting page cache index.
2143 * @end: The final page index (inclusive).
2144 * @fbatch: Where the resulting entries are placed.
2145 * @indices: The cache indices of the entries in @fbatch.
2146 *
2147 * find_lock_entries() will return a batch of entries from @mapping.
2148 * Swap, shadow and DAX entries are included. Folios are returned
2149 * locked and with an incremented refcount. Folios which are locked
2150 * by somebody else or under writeback are skipped. Folios which are
2151 * partially outside the range are not returned.
2152 *
2153 * The entries have ascending indexes. The indices may not be consecutive
2154 * due to not-present entries, large folios, folios which could not be
2155 * locked or folios under writeback.
2156 *
2157 * Return: The number of entries which were found.
2158 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2159 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2160 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2161 {
2162 XA_STATE(xas, &mapping->i_pages, *start);
2163 struct folio *folio;
2164
2165 rcu_read_lock();
2166 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2167 unsigned long base;
2168 unsigned long nr;
2169
2170 if (!xa_is_value(folio)) {
2171 nr = folio_nr_pages(folio);
2172 base = folio->index;
2173 /* Omit large folio which begins before the start */
2174 if (base < *start)
2175 goto put;
2176 /* Omit large folio which extends beyond the end */
2177 if (base + nr - 1 > end)
2178 goto put;
2179 if (!folio_trylock(folio))
2180 goto put;
2181 if (folio->mapping != mapping ||
2182 folio_test_writeback(folio))
2183 goto unlock;
2184 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2185 folio);
2186 } else {
2187 nr = 1 << xas_get_order(&xas);
2188 base = xas.xa_index & ~(nr - 1);
2189 /* Omit order>0 value which begins before the start */
2190 if (base < *start)
2191 continue;
2192 /* Omit order>0 value which extends beyond the end */
2193 if (base + nr - 1 > end)
2194 break;
2195 }
2196
2197 /* Update start now so that last update is correct on return */
2198 *start = base + nr;
2199 indices[fbatch->nr] = xas.xa_index;
2200 if (!folio_batch_add(fbatch, folio))
2201 break;
2202 continue;
2203 unlock:
2204 folio_unlock(folio);
2205 put:
2206 folio_put(folio);
2207 }
2208 rcu_read_unlock();
2209
2210 return folio_batch_count(fbatch);
2211 }
2212
2213 /**
2214 * filemap_get_folios - Get a batch of folios
2215 * @mapping: The address_space to search
2216 * @start: The starting page index
2217 * @end: The final page index (inclusive)
2218 * @fbatch: The batch to fill.
2219 *
2220 * Search for and return a batch of folios in the mapping starting at
2221 * index @start and up to index @end (inclusive). The folios are returned
2222 * in @fbatch with an elevated reference count.
2223 *
2224 * Return: The number of folios which were found.
2225 * We also update @start to index the next folio for the traversal.
2226 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2227 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2228 pgoff_t end, struct folio_batch *fbatch)
2229 {
2230 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2231 }
2232 EXPORT_SYMBOL(filemap_get_folios);
2233
2234 /**
2235 * filemap_get_folios_contig - Get a batch of contiguous folios
2236 * @mapping: The address_space to search
2237 * @start: The starting page index
2238 * @end: The final page index (inclusive)
2239 * @fbatch: The batch to fill
2240 *
2241 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2242 * except the returned folios are guaranteed to be contiguous. This may
2243 * not return all contiguous folios if the batch gets filled up.
2244 *
2245 * Return: The number of folios found.
2246 * Also update @start to be positioned for traversal of the next folio.
2247 */
2248
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2249 unsigned filemap_get_folios_contig(struct address_space *mapping,
2250 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2251 {
2252 XA_STATE(xas, &mapping->i_pages, *start);
2253 unsigned long nr;
2254 struct folio *folio;
2255
2256 rcu_read_lock();
2257
2258 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2259 folio = xas_next(&xas)) {
2260 if (xas_retry(&xas, folio))
2261 continue;
2262 /*
2263 * If the entry has been swapped out, we can stop looking.
2264 * No current caller is looking for DAX entries.
2265 */
2266 if (xa_is_value(folio))
2267 goto update_start;
2268
2269 /* If we landed in the middle of a THP, continue at its end. */
2270 if (xa_is_sibling(folio))
2271 goto update_start;
2272
2273 if (!folio_try_get(folio))
2274 goto retry;
2275
2276 if (unlikely(folio != xas_reload(&xas)))
2277 goto put_folio;
2278
2279 if (!folio_batch_add(fbatch, folio)) {
2280 nr = folio_nr_pages(folio);
2281 *start = folio->index + nr;
2282 goto out;
2283 }
2284 xas_advance(&xas, folio_next_index(folio) - 1);
2285 continue;
2286 put_folio:
2287 folio_put(folio);
2288
2289 retry:
2290 xas_reset(&xas);
2291 }
2292
2293 update_start:
2294 nr = folio_batch_count(fbatch);
2295
2296 if (nr) {
2297 folio = fbatch->folios[nr - 1];
2298 *start = folio_next_index(folio);
2299 }
2300 out:
2301 rcu_read_unlock();
2302 return folio_batch_count(fbatch);
2303 }
2304 EXPORT_SYMBOL(filemap_get_folios_contig);
2305
2306 /**
2307 * filemap_get_folios_tag - Get a batch of folios matching @tag
2308 * @mapping: The address_space to search
2309 * @start: The starting page index
2310 * @end: The final page index (inclusive)
2311 * @tag: The tag index
2312 * @fbatch: The batch to fill
2313 *
2314 * The first folio may start before @start; if it does, it will contain
2315 * @start. The final folio may extend beyond @end; if it does, it will
2316 * contain @end. The folios have ascending indices. There may be gaps
2317 * between the folios if there are indices which have no folio in the
2318 * page cache. If folios are added to or removed from the page cache
2319 * while this is running, they may or may not be found by this call.
2320 * Only returns folios that are tagged with @tag.
2321 *
2322 * Return: The number of folios found.
2323 * Also update @start to index the next folio for traversal.
2324 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2325 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2326 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2327 {
2328 XA_STATE(xas, &mapping->i_pages, *start);
2329 struct folio *folio;
2330
2331 rcu_read_lock();
2332 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2333 /*
2334 * Shadow entries should never be tagged, but this iteration
2335 * is lockless so there is a window for page reclaim to evict
2336 * a page we saw tagged. Skip over it.
2337 */
2338 if (xa_is_value(folio))
2339 continue;
2340 if (!folio_batch_add(fbatch, folio)) {
2341 unsigned long nr = folio_nr_pages(folio);
2342 *start = folio->index + nr;
2343 goto out;
2344 }
2345 }
2346 /*
2347 * We come here when there is no page beyond @end. We take care to not
2348 * overflow the index @start as it confuses some of the callers. This
2349 * breaks the iteration when there is a page at index -1 but that is
2350 * already broke anyway.
2351 */
2352 if (end == (pgoff_t)-1)
2353 *start = (pgoff_t)-1;
2354 else
2355 *start = end + 1;
2356 out:
2357 rcu_read_unlock();
2358
2359 return folio_batch_count(fbatch);
2360 }
2361 EXPORT_SYMBOL(filemap_get_folios_tag);
2362
2363 /**
2364 * filemap_get_folios_dirty - Get a batch of dirty folios
2365 * @mapping: The address_space to search
2366 * @start: The starting folio index
2367 * @end: The final folio index (inclusive)
2368 * @fbatch: The batch to fill
2369 *
2370 * filemap_get_folios_dirty() works exactly like filemap_get_folios(), except
2371 * the returned folios are presumed to be dirty or undergoing writeback. Dirty
2372 * state is presumed because we don't block on folio lock nor want to miss
2373 * folios. Callers that need to can recheck state upon locking the folio.
2374 *
2375 * This may not return all dirty folios if the batch gets filled up.
2376 *
2377 * Return: The number of folios found.
2378 * Also update @start to be positioned for traversal of the next folio.
2379 */
filemap_get_folios_dirty(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2380 unsigned filemap_get_folios_dirty(struct address_space *mapping, pgoff_t *start,
2381 pgoff_t end, struct folio_batch *fbatch)
2382 {
2383 XA_STATE(xas, &mapping->i_pages, *start);
2384 struct folio *folio;
2385
2386 rcu_read_lock();
2387 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2388 if (xa_is_value(folio))
2389 continue;
2390 if (folio_trylock(folio)) {
2391 bool clean = !folio_test_dirty(folio) &&
2392 !folio_test_writeback(folio);
2393 folio_unlock(folio);
2394 if (clean) {
2395 folio_put(folio);
2396 continue;
2397 }
2398 }
2399 if (!folio_batch_add(fbatch, folio)) {
2400 unsigned long nr = folio_nr_pages(folio);
2401 *start = folio->index + nr;
2402 goto out;
2403 }
2404 }
2405 /*
2406 * We come here when there is no folio beyond @end. We take care to not
2407 * overflow the index @start as it confuses some of the callers. This
2408 * breaks the iteration when there is a folio at index -1 but that is
2409 * already broke anyway.
2410 */
2411 if (end == (pgoff_t)-1)
2412 *start = (pgoff_t)-1;
2413 else
2414 *start = end + 1;
2415 out:
2416 rcu_read_unlock();
2417
2418 return folio_batch_count(fbatch);
2419 }
2420
2421 /*
2422 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2423 * a _large_ part of the i/o request. Imagine the worst scenario:
2424 *
2425 * ---R__________________________________________B__________
2426 * ^ reading here ^ bad block(assume 4k)
2427 *
2428 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2429 * => failing the whole request => read(R) => read(R+1) =>
2430 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2431 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2432 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2433 *
2434 * It is going insane. Fix it by quickly scaling down the readahead size.
2435 */
shrink_readahead_size_eio(struct file_ra_state * ra)2436 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2437 {
2438 ra->ra_pages /= 4;
2439 }
2440
2441 /*
2442 * filemap_get_read_batch - Get a batch of folios for read
2443 *
2444 * Get a batch of folios which represent a contiguous range of bytes in
2445 * the file. No exceptional entries will be returned. If @index is in
2446 * the middle of a folio, the entire folio will be returned. The last
2447 * folio in the batch may have the readahead flag set or the uptodate flag
2448 * clear so that the caller can take the appropriate action.
2449 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2450 static void filemap_get_read_batch(struct address_space *mapping,
2451 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2452 {
2453 XA_STATE(xas, &mapping->i_pages, index);
2454 struct folio *folio;
2455
2456 rcu_read_lock();
2457 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2458 if (xas_retry(&xas, folio))
2459 continue;
2460 if (xas.xa_index > max || xa_is_value(folio))
2461 break;
2462 if (xa_is_sibling(folio))
2463 break;
2464 if (!folio_try_get(folio))
2465 goto retry;
2466
2467 if (unlikely(folio != xas_reload(&xas)))
2468 goto put_folio;
2469
2470 if (!folio_batch_add(fbatch, folio))
2471 break;
2472 if (!folio_test_uptodate(folio))
2473 break;
2474 if (folio_test_readahead(folio))
2475 break;
2476 xas_advance(&xas, folio_next_index(folio) - 1);
2477 continue;
2478 put_folio:
2479 folio_put(folio);
2480 retry:
2481 xas_reset(&xas);
2482 }
2483 rcu_read_unlock();
2484 }
2485
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2486 static int filemap_read_folio(struct file *file, filler_t filler,
2487 struct folio *folio)
2488 {
2489 bool workingset = folio_test_workingset(folio);
2490 unsigned long pflags;
2491 int error;
2492
2493 /* Start the actual read. The read will unlock the page. */
2494 if (unlikely(workingset))
2495 psi_memstall_enter(&pflags);
2496 error = filler(file, folio);
2497 if (unlikely(workingset))
2498 psi_memstall_leave(&pflags);
2499 if (error)
2500 return error;
2501
2502 error = folio_wait_locked_killable(folio);
2503 if (error)
2504 return error;
2505 if (folio_test_uptodate(folio))
2506 return 0;
2507 if (file)
2508 shrink_readahead_size_eio(&file->f_ra);
2509 return -EIO;
2510 }
2511
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2512 static bool filemap_range_uptodate(struct address_space *mapping,
2513 loff_t pos, size_t count, struct folio *folio,
2514 bool need_uptodate)
2515 {
2516 if (folio_test_uptodate(folio))
2517 return true;
2518 /* pipes can't handle partially uptodate pages */
2519 if (need_uptodate)
2520 return false;
2521 if (!mapping->a_ops->is_partially_uptodate)
2522 return false;
2523 if (mapping->host->i_blkbits >= folio_shift(folio))
2524 return false;
2525
2526 if (folio_pos(folio) > pos) {
2527 count -= folio_pos(folio) - pos;
2528 pos = 0;
2529 } else {
2530 pos -= folio_pos(folio);
2531 }
2532
2533 if (pos == 0 && count >= folio_size(folio))
2534 return false;
2535
2536 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2537 }
2538
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2539 static int filemap_update_page(struct kiocb *iocb,
2540 struct address_space *mapping, size_t count,
2541 struct folio *folio, bool need_uptodate)
2542 {
2543 int error;
2544
2545 if (iocb->ki_flags & IOCB_NOWAIT) {
2546 if (!filemap_invalidate_trylock_shared(mapping))
2547 return -EAGAIN;
2548 } else {
2549 filemap_invalidate_lock_shared(mapping);
2550 }
2551
2552 if (!folio_trylock(folio)) {
2553 error = -EAGAIN;
2554 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2555 goto unlock_mapping;
2556 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2557 filemap_invalidate_unlock_shared(mapping);
2558 /*
2559 * This is where we usually end up waiting for a
2560 * previously submitted readahead to finish.
2561 */
2562 folio_put_wait_locked(folio, TASK_KILLABLE);
2563 return AOP_TRUNCATED_PAGE;
2564 }
2565 error = __folio_lock_async(folio, iocb->ki_waitq);
2566 if (error)
2567 goto unlock_mapping;
2568 }
2569
2570 error = AOP_TRUNCATED_PAGE;
2571 if (!folio->mapping)
2572 goto unlock;
2573
2574 error = 0;
2575 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2576 need_uptodate))
2577 goto unlock;
2578
2579 error = -EAGAIN;
2580 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2581 goto unlock;
2582
2583 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2584 folio);
2585 goto unlock_mapping;
2586 unlock:
2587 folio_unlock(folio);
2588 unlock_mapping:
2589 filemap_invalidate_unlock_shared(mapping);
2590 if (error == AOP_TRUNCATED_PAGE)
2591 folio_put(folio);
2592 return error;
2593 }
2594
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2595 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2596 {
2597 struct address_space *mapping = iocb->ki_filp->f_mapping;
2598 struct folio *folio;
2599 int error;
2600 unsigned int min_order = mapping_min_folio_order(mapping);
2601 pgoff_t index;
2602
2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 return -EAGAIN;
2605
2606 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order, NULL);
2607 if (!folio)
2608 return -ENOMEM;
2609 if (iocb->ki_flags & IOCB_DONTCACHE)
2610 __folio_set_dropbehind(folio);
2611
2612 /*
2613 * Protect against truncate / hole punch. Grabbing invalidate_lock
2614 * here assures we cannot instantiate and bring uptodate new
2615 * pagecache folios after evicting page cache during truncate
2616 * and before actually freeing blocks. Note that we could
2617 * release invalidate_lock after inserting the folio into
2618 * the page cache as the locked folio would then be enough to
2619 * synchronize with hole punching. But there are code paths
2620 * such as filemap_update_page() filling in partially uptodate
2621 * pages or ->readahead() that need to hold invalidate_lock
2622 * while mapping blocks for IO so let's hold the lock here as
2623 * well to keep locking rules simple.
2624 */
2625 filemap_invalidate_lock_shared(mapping);
2626 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2627 error = filemap_add_folio(mapping, folio, index,
2628 mapping_gfp_constraint(mapping, GFP_KERNEL));
2629 if (error == -EEXIST)
2630 error = AOP_TRUNCATED_PAGE;
2631 if (error)
2632 goto error;
2633
2634 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2635 folio);
2636 if (error)
2637 goto error;
2638
2639 filemap_invalidate_unlock_shared(mapping);
2640 folio_batch_add(fbatch, folio);
2641 return 0;
2642 error:
2643 filemap_invalidate_unlock_shared(mapping);
2644 folio_put(folio);
2645 return error;
2646 }
2647
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2648 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2649 struct address_space *mapping, struct folio *folio,
2650 pgoff_t last_index)
2651 {
2652 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2653
2654 if (iocb->ki_flags & IOCB_NOIO)
2655 return -EAGAIN;
2656 if (iocb->ki_flags & IOCB_DONTCACHE)
2657 ractl.dropbehind = 1;
2658 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2659 return 0;
2660 }
2661
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2662 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2663 struct folio_batch *fbatch, bool need_uptodate)
2664 {
2665 struct file *filp = iocb->ki_filp;
2666 struct address_space *mapping = filp->f_mapping;
2667 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2668 pgoff_t last_index;
2669 struct folio *folio;
2670 unsigned int flags;
2671 int err = 0;
2672
2673 /* "last_index" is the index of the folio beyond the end of the read */
2674 last_index = round_up(iocb->ki_pos + count,
2675 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2676 retry:
2677 if (fatal_signal_pending(current))
2678 return -EINTR;
2679
2680 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2681 if (!folio_batch_count(fbatch)) {
2682 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2683
2684 if (iocb->ki_flags & IOCB_NOIO)
2685 return -EAGAIN;
2686 if (iocb->ki_flags & IOCB_NOWAIT)
2687 flags = memalloc_noio_save();
2688 if (iocb->ki_flags & IOCB_DONTCACHE)
2689 ractl.dropbehind = 1;
2690 page_cache_sync_ra(&ractl, last_index - index);
2691 if (iocb->ki_flags & IOCB_NOWAIT)
2692 memalloc_noio_restore(flags);
2693 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2694 }
2695 if (!folio_batch_count(fbatch)) {
2696 err = filemap_create_folio(iocb, fbatch);
2697 if (err == AOP_TRUNCATED_PAGE)
2698 goto retry;
2699 return err;
2700 }
2701
2702 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2703 if (folio_test_readahead(folio)) {
2704 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2705 if (err)
2706 goto err;
2707 }
2708 if (!folio_test_uptodate(folio)) {
2709 if (folio_batch_count(fbatch) > 1) {
2710 err = -EAGAIN;
2711 goto err;
2712 }
2713 err = filemap_update_page(iocb, mapping, count, folio,
2714 need_uptodate);
2715 if (err)
2716 goto err;
2717 }
2718
2719 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2720 return 0;
2721 err:
2722 if (err < 0)
2723 folio_put(folio);
2724 if (likely(--fbatch->nr))
2725 return 0;
2726 if (err == AOP_TRUNCATED_PAGE)
2727 goto retry;
2728 return err;
2729 }
2730
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2731 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2732 {
2733 unsigned int shift = folio_shift(folio);
2734
2735 return (pos1 >> shift == pos2 >> shift);
2736 }
2737
filemap_end_dropbehind_read(struct folio * folio)2738 static void filemap_end_dropbehind_read(struct folio *folio)
2739 {
2740 if (!folio_test_dropbehind(folio))
2741 return;
2742 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2743 return;
2744 if (folio_trylock(folio)) {
2745 filemap_end_dropbehind(folio);
2746 folio_unlock(folio);
2747 }
2748 }
2749
2750 /**
2751 * filemap_read - Read data from the page cache.
2752 * @iocb: The iocb to read.
2753 * @iter: Destination for the data.
2754 * @already_read: Number of bytes already read by the caller.
2755 *
2756 * Copies data from the page cache. If the data is not currently present,
2757 * uses the readahead and read_folio address_space operations to fetch it.
2758 *
2759 * Return: Total number of bytes copied, including those already read by
2760 * the caller. If an error happens before any bytes are copied, returns
2761 * a negative error number.
2762 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2763 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2764 ssize_t already_read)
2765 {
2766 struct file *filp = iocb->ki_filp;
2767 struct file_ra_state *ra = &filp->f_ra;
2768 struct address_space *mapping = filp->f_mapping;
2769 struct inode *inode = mapping->host;
2770 struct folio_batch fbatch;
2771 int i, error = 0;
2772 bool writably_mapped;
2773 loff_t isize, end_offset;
2774 loff_t last_pos = ra->prev_pos;
2775
2776 if (unlikely(iocb->ki_pos < 0))
2777 return -EINVAL;
2778 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2779 return 0;
2780 if (unlikely(!iov_iter_count(iter)))
2781 return 0;
2782
2783 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2784 folio_batch_init(&fbatch);
2785
2786 do {
2787 cond_resched();
2788
2789 /*
2790 * If we've already successfully copied some data, then we
2791 * can no longer safely return -EIOCBQUEUED. Hence mark
2792 * an async read NOWAIT at that point.
2793 */
2794 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2795 iocb->ki_flags |= IOCB_NOWAIT;
2796
2797 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2798 break;
2799
2800 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2801 if (error < 0)
2802 break;
2803
2804 /*
2805 * i_size must be checked after we know the pages are Uptodate.
2806 *
2807 * Checking i_size after the check allows us to calculate
2808 * the correct value for "nr", which means the zero-filled
2809 * part of the page is not copied back to userspace (unless
2810 * another truncate extends the file - this is desired though).
2811 */
2812 isize = i_size_read(inode);
2813 if (unlikely(iocb->ki_pos >= isize))
2814 goto put_folios;
2815 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2816
2817 /*
2818 * Once we start copying data, we don't want to be touching any
2819 * cachelines that might be contended:
2820 */
2821 writably_mapped = mapping_writably_mapped(mapping);
2822
2823 /*
2824 * When a read accesses the same folio several times, only
2825 * mark it as accessed the first time.
2826 */
2827 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2828 fbatch.folios[0]))
2829 folio_mark_accessed(fbatch.folios[0]);
2830
2831 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2832 struct folio *folio = fbatch.folios[i];
2833 size_t fsize = folio_size(folio);
2834 size_t offset = iocb->ki_pos & (fsize - 1);
2835 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2836 fsize - offset);
2837 size_t copied;
2838
2839 if (end_offset < folio_pos(folio))
2840 break;
2841 if (i > 0)
2842 folio_mark_accessed(folio);
2843 /*
2844 * If users can be writing to this folio using arbitrary
2845 * virtual addresses, take care of potential aliasing
2846 * before reading the folio on the kernel side.
2847 */
2848 if (writably_mapped)
2849 flush_dcache_folio(folio);
2850
2851 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2852
2853 already_read += copied;
2854 iocb->ki_pos += copied;
2855 last_pos = iocb->ki_pos;
2856
2857 if (copied < bytes) {
2858 error = -EFAULT;
2859 break;
2860 }
2861 }
2862 put_folios:
2863 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2864 struct folio *folio = fbatch.folios[i];
2865
2866 filemap_end_dropbehind_read(folio);
2867 folio_put(folio);
2868 }
2869 folio_batch_init(&fbatch);
2870 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2871
2872 file_accessed(filp);
2873 ra->prev_pos = last_pos;
2874 return already_read ? already_read : error;
2875 }
2876 EXPORT_SYMBOL_GPL(filemap_read);
2877
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2878 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2879 {
2880 struct address_space *mapping = iocb->ki_filp->f_mapping;
2881 loff_t pos = iocb->ki_pos;
2882 loff_t end = pos + count - 1;
2883
2884 if (iocb->ki_flags & IOCB_NOWAIT) {
2885 if (filemap_range_needs_writeback(mapping, pos, end))
2886 return -EAGAIN;
2887 return 0;
2888 }
2889
2890 return filemap_write_and_wait_range(mapping, pos, end);
2891 }
2892 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2893
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2894 int filemap_invalidate_pages(struct address_space *mapping,
2895 loff_t pos, loff_t end, bool nowait)
2896 {
2897 int ret;
2898
2899 if (nowait) {
2900 /* we could block if there are any pages in the range */
2901 if (filemap_range_has_page(mapping, pos, end))
2902 return -EAGAIN;
2903 } else {
2904 ret = filemap_write_and_wait_range(mapping, pos, end);
2905 if (ret)
2906 return ret;
2907 }
2908
2909 /*
2910 * After a write we want buffered reads to be sure to go to disk to get
2911 * the new data. We invalidate clean cached page from the region we're
2912 * about to write. We do this *before* the write so that we can return
2913 * without clobbering -EIOCBQUEUED from ->direct_IO().
2914 */
2915 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2916 end >> PAGE_SHIFT);
2917 }
2918
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2919 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2920 {
2921 struct address_space *mapping = iocb->ki_filp->f_mapping;
2922
2923 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2924 iocb->ki_pos + count - 1,
2925 iocb->ki_flags & IOCB_NOWAIT);
2926 }
2927 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2928
2929 /**
2930 * generic_file_read_iter - generic filesystem read routine
2931 * @iocb: kernel I/O control block
2932 * @iter: destination for the data read
2933 *
2934 * This is the "read_iter()" routine for all filesystems
2935 * that can use the page cache directly.
2936 *
2937 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2938 * be returned when no data can be read without waiting for I/O requests
2939 * to complete; it doesn't prevent readahead.
2940 *
2941 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2942 * requests shall be made for the read or for readahead. When no data
2943 * can be read, -EAGAIN shall be returned. When readahead would be
2944 * triggered, a partial, possibly empty read shall be returned.
2945 *
2946 * Return:
2947 * * number of bytes copied, even for partial reads
2948 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2949 */
2950 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2951 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2952 {
2953 size_t count = iov_iter_count(iter);
2954 ssize_t retval = 0;
2955
2956 if (!count)
2957 return 0; /* skip atime */
2958
2959 if (iocb->ki_flags & IOCB_DIRECT) {
2960 struct file *file = iocb->ki_filp;
2961 struct address_space *mapping = file->f_mapping;
2962 struct inode *inode = mapping->host;
2963
2964 retval = kiocb_write_and_wait(iocb, count);
2965 if (retval < 0)
2966 return retval;
2967 file_accessed(file);
2968
2969 retval = mapping->a_ops->direct_IO(iocb, iter);
2970 if (retval >= 0) {
2971 iocb->ki_pos += retval;
2972 count -= retval;
2973 }
2974 if (retval != -EIOCBQUEUED)
2975 iov_iter_revert(iter, count - iov_iter_count(iter));
2976
2977 /*
2978 * Btrfs can have a short DIO read if we encounter
2979 * compressed extents, so if there was an error, or if
2980 * we've already read everything we wanted to, or if
2981 * there was a short read because we hit EOF, go ahead
2982 * and return. Otherwise fallthrough to buffered io for
2983 * the rest of the read. Buffered reads will not work for
2984 * DAX files, so don't bother trying.
2985 */
2986 if (retval < 0 || !count || IS_DAX(inode))
2987 return retval;
2988 if (iocb->ki_pos >= i_size_read(inode))
2989 return retval;
2990 }
2991
2992 return filemap_read(iocb, iter, retval);
2993 }
2994 EXPORT_SYMBOL(generic_file_read_iter);
2995
2996 /*
2997 * Splice subpages from a folio into a pipe.
2998 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2999 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
3000 struct folio *folio, loff_t fpos, size_t size)
3001 {
3002 struct page *page;
3003 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
3004
3005 page = folio_page(folio, offset / PAGE_SIZE);
3006 size = min(size, folio_size(folio) - offset);
3007 offset %= PAGE_SIZE;
3008
3009 while (spliced < size && !pipe_is_full(pipe)) {
3010 struct pipe_buffer *buf = pipe_head_buf(pipe);
3011 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
3012
3013 *buf = (struct pipe_buffer) {
3014 .ops = &page_cache_pipe_buf_ops,
3015 .page = page,
3016 .offset = offset,
3017 .len = part,
3018 };
3019 folio_get(folio);
3020 pipe->head++;
3021 page++;
3022 spliced += part;
3023 offset = 0;
3024 }
3025
3026 return spliced;
3027 }
3028
3029 /**
3030 * filemap_splice_read - Splice data from a file's pagecache into a pipe
3031 * @in: The file to read from
3032 * @ppos: Pointer to the file position to read from
3033 * @pipe: The pipe to splice into
3034 * @len: The amount to splice
3035 * @flags: The SPLICE_F_* flags
3036 *
3037 * This function gets folios from a file's pagecache and splices them into the
3038 * pipe. Readahead will be called as necessary to fill more folios. This may
3039 * be used for blockdevs also.
3040 *
3041 * Return: On success, the number of bytes read will be returned and *@ppos
3042 * will be updated if appropriate; 0 will be returned if there is no more data
3043 * to be read; -EAGAIN will be returned if the pipe had no space, and some
3044 * other negative error code will be returned on error. A short read may occur
3045 * if the pipe has insufficient space, we reach the end of the data or we hit a
3046 * hole.
3047 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3048 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3049 struct pipe_inode_info *pipe,
3050 size_t len, unsigned int flags)
3051 {
3052 struct folio_batch fbatch;
3053 struct kiocb iocb;
3054 size_t total_spliced = 0, used, npages;
3055 loff_t isize, end_offset;
3056 bool writably_mapped;
3057 int i, error = 0;
3058
3059 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3060 return 0;
3061
3062 init_sync_kiocb(&iocb, in);
3063 iocb.ki_pos = *ppos;
3064
3065 /* Work out how much data we can actually add into the pipe */
3066 used = pipe_buf_usage(pipe);
3067 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3068 len = min_t(size_t, len, npages * PAGE_SIZE);
3069
3070 folio_batch_init(&fbatch);
3071
3072 do {
3073 cond_resched();
3074
3075 if (*ppos >= i_size_read(in->f_mapping->host))
3076 break;
3077
3078 iocb.ki_pos = *ppos;
3079 error = filemap_get_pages(&iocb, len, &fbatch, true);
3080 if (error < 0)
3081 break;
3082
3083 /*
3084 * i_size must be checked after we know the pages are Uptodate.
3085 *
3086 * Checking i_size after the check allows us to calculate
3087 * the correct value for "nr", which means the zero-filled
3088 * part of the page is not copied back to userspace (unless
3089 * another truncate extends the file - this is desired though).
3090 */
3091 isize = i_size_read(in->f_mapping->host);
3092 if (unlikely(*ppos >= isize))
3093 break;
3094 end_offset = min_t(loff_t, isize, *ppos + len);
3095
3096 /*
3097 * Once we start copying data, we don't want to be touching any
3098 * cachelines that might be contended:
3099 */
3100 writably_mapped = mapping_writably_mapped(in->f_mapping);
3101
3102 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3103 struct folio *folio = fbatch.folios[i];
3104 size_t n;
3105
3106 if (folio_pos(folio) >= end_offset)
3107 goto out;
3108 folio_mark_accessed(folio);
3109
3110 /*
3111 * If users can be writing to this folio using arbitrary
3112 * virtual addresses, take care of potential aliasing
3113 * before reading the folio on the kernel side.
3114 */
3115 if (writably_mapped)
3116 flush_dcache_folio(folio);
3117
3118 n = min_t(loff_t, len, isize - *ppos);
3119 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3120 if (!n)
3121 goto out;
3122 len -= n;
3123 total_spliced += n;
3124 *ppos += n;
3125 in->f_ra.prev_pos = *ppos;
3126 if (pipe_is_full(pipe))
3127 goto out;
3128 }
3129
3130 folio_batch_release(&fbatch);
3131 } while (len);
3132
3133 out:
3134 folio_batch_release(&fbatch);
3135 file_accessed(in);
3136
3137 return total_spliced ? total_spliced : error;
3138 }
3139 EXPORT_SYMBOL(filemap_splice_read);
3140
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3141 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3142 struct address_space *mapping, struct folio *folio,
3143 loff_t start, loff_t end, bool seek_data)
3144 {
3145 const struct address_space_operations *ops = mapping->a_ops;
3146 size_t offset, bsz = i_blocksize(mapping->host);
3147
3148 if (xa_is_value(folio) || folio_test_uptodate(folio))
3149 return seek_data ? start : end;
3150 if (!ops->is_partially_uptodate)
3151 return seek_data ? end : start;
3152
3153 xas_pause(xas);
3154 rcu_read_unlock();
3155 folio_lock(folio);
3156 if (unlikely(folio->mapping != mapping))
3157 goto unlock;
3158
3159 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3160
3161 do {
3162 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3163 seek_data)
3164 break;
3165 start = (start + bsz) & ~((u64)bsz - 1);
3166 offset += bsz;
3167 } while (offset < folio_size(folio));
3168 unlock:
3169 folio_unlock(folio);
3170 rcu_read_lock();
3171 return start;
3172 }
3173
seek_folio_size(struct xa_state * xas,struct folio * folio)3174 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3175 {
3176 if (xa_is_value(folio))
3177 return PAGE_SIZE << xas_get_order(xas);
3178 return folio_size(folio);
3179 }
3180
3181 /**
3182 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3183 * @mapping: Address space to search.
3184 * @start: First byte to consider.
3185 * @end: Limit of search (exclusive).
3186 * @whence: Either SEEK_HOLE or SEEK_DATA.
3187 *
3188 * If the page cache knows which blocks contain holes and which blocks
3189 * contain data, your filesystem can use this function to implement
3190 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3191 * entirely memory-based such as tmpfs, and filesystems which support
3192 * unwritten extents.
3193 *
3194 * Return: The requested offset on success, or -ENXIO if @whence specifies
3195 * SEEK_DATA and there is no data after @start. There is an implicit hole
3196 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3197 * and @end contain data.
3198 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3199 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3200 loff_t end, int whence)
3201 {
3202 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3203 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3204 bool seek_data = (whence == SEEK_DATA);
3205 struct folio *folio;
3206
3207 if (end <= start)
3208 return -ENXIO;
3209
3210 rcu_read_lock();
3211 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3212 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3213 size_t seek_size;
3214
3215 if (start < pos) {
3216 if (!seek_data)
3217 goto unlock;
3218 start = pos;
3219 }
3220
3221 seek_size = seek_folio_size(&xas, folio);
3222 pos = round_up((u64)pos + 1, seek_size);
3223 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3224 seek_data);
3225 if (start < pos)
3226 goto unlock;
3227 if (start >= end)
3228 break;
3229 if (seek_size > PAGE_SIZE)
3230 xas_set(&xas, pos >> PAGE_SHIFT);
3231 if (!xa_is_value(folio))
3232 folio_put(folio);
3233 }
3234 if (seek_data)
3235 start = -ENXIO;
3236 unlock:
3237 rcu_read_unlock();
3238 if (folio && !xa_is_value(folio))
3239 folio_put(folio);
3240 if (start > end)
3241 return end;
3242 return start;
3243 }
3244
3245 #ifdef CONFIG_MMU
3246 #define MMAP_LOTSAMISS (100)
3247 /*
3248 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3249 * @vmf - the vm_fault for this fault.
3250 * @folio - the folio to lock.
3251 * @fpin - the pointer to the file we may pin (or is already pinned).
3252 *
3253 * This works similar to lock_folio_or_retry in that it can drop the
3254 * mmap_lock. It differs in that it actually returns the folio locked
3255 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3256 * to drop the mmap_lock then fpin will point to the pinned file and
3257 * needs to be fput()'ed at a later point.
3258 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3259 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3260 struct file **fpin)
3261 {
3262 if (folio_trylock(folio))
3263 return 1;
3264
3265 /*
3266 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3267 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3268 * is supposed to work. We have way too many special cases..
3269 */
3270 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3271 return 0;
3272
3273 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3274 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3275 if (__folio_lock_killable(folio)) {
3276 /*
3277 * We didn't have the right flags to drop the
3278 * fault lock, but all fault_handlers only check
3279 * for fatal signals if we return VM_FAULT_RETRY,
3280 * so we need to drop the fault lock here and
3281 * return 0 if we don't have a fpin.
3282 */
3283 if (*fpin == NULL)
3284 release_fault_lock(vmf);
3285 return 0;
3286 }
3287 } else
3288 __folio_lock(folio);
3289
3290 return 1;
3291 }
3292
3293 /*
3294 * Synchronous readahead happens when we don't even find a page in the page
3295 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3296 * to drop the mmap sem we return the file that was pinned in order for us to do
3297 * that. If we didn't pin a file then we return NULL. The file that is
3298 * returned needs to be fput()'ed when we're done with it.
3299 */
do_sync_mmap_readahead(struct vm_fault * vmf)3300 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3301 {
3302 struct file *file = vmf->vma->vm_file;
3303 struct file_ra_state *ra = &file->f_ra;
3304 struct address_space *mapping = file->f_mapping;
3305 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3306 struct file *fpin = NULL;
3307 vm_flags_t vm_flags = vmf->vma->vm_flags;
3308 bool force_thp_readahead = false;
3309 unsigned short mmap_miss;
3310
3311 /* Use the readahead code, even if readahead is disabled */
3312 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3313 (vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER)
3314 force_thp_readahead = true;
3315
3316 if (!force_thp_readahead) {
3317 /*
3318 * If we don't want any read-ahead, don't bother.
3319 * VM_EXEC case below is already intended for random access.
3320 */
3321 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3322 return fpin;
3323
3324 if (!ra->ra_pages)
3325 return fpin;
3326
3327 if (vm_flags & VM_SEQ_READ) {
3328 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3329 page_cache_sync_ra(&ractl, ra->ra_pages);
3330 return fpin;
3331 }
3332 }
3333
3334 if (!(vm_flags & VM_SEQ_READ)) {
3335 /* Avoid banging the cache line if not needed */
3336 mmap_miss = READ_ONCE(ra->mmap_miss);
3337 if (mmap_miss < MMAP_LOTSAMISS * 10)
3338 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3339
3340 /*
3341 * Do we miss much more than hit in this file? If so,
3342 * stop bothering with read-ahead. It will only hurt.
3343 */
3344 if (mmap_miss > MMAP_LOTSAMISS)
3345 return fpin;
3346 }
3347
3348 if (force_thp_readahead) {
3349 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3350 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3351 ra->size = HPAGE_PMD_NR;
3352 /*
3353 * Fetch two PMD folios, so we get the chance to actually
3354 * readahead, unless we've been told not to.
3355 */
3356 if (!(vm_flags & VM_RAND_READ))
3357 ra->size *= 2;
3358 ra->async_size = HPAGE_PMD_NR;
3359 ra->order = HPAGE_PMD_ORDER;
3360 page_cache_ra_order(&ractl, ra);
3361 return fpin;
3362 }
3363
3364 if (vm_flags & VM_EXEC) {
3365 /*
3366 * Allow arch to request a preferred minimum folio order for
3367 * executable memory. This can often be beneficial to
3368 * performance if (e.g.) arm64 can contpte-map the folio.
3369 * Executable memory rarely benefits from readahead, due to its
3370 * random access nature, so set async_size to 0.
3371 *
3372 * Limit to the boundaries of the VMA to avoid reading in any
3373 * pad that might exist between sections, which would be a waste
3374 * of memory.
3375 */
3376 struct vm_area_struct *vma = vmf->vma;
3377 unsigned long start = vma->vm_pgoff;
3378 unsigned long end = start + vma_pages(vma);
3379 unsigned long ra_end;
3380
3381 ra->order = exec_folio_order();
3382 ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3383 ra->start = max(ra->start, start);
3384 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3385 ra_end = min(ra_end, end);
3386 ra->size = ra_end - ra->start;
3387 ra->async_size = 0;
3388 } else {
3389 /*
3390 * mmap read-around
3391 */
3392 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3393 ra->size = ra->ra_pages;
3394 ra->async_size = ra->ra_pages / 4;
3395 ra->order = 0;
3396 }
3397
3398 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3399 ractl._index = ra->start;
3400 page_cache_ra_order(&ractl, ra);
3401 return fpin;
3402 }
3403
3404 /*
3405 * Asynchronous readahead happens when we find the page and PG_readahead,
3406 * so we want to possibly extend the readahead further. We return the file that
3407 * was pinned if we have to drop the mmap_lock in order to do IO.
3408 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3409 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3410 struct folio *folio)
3411 {
3412 struct file *file = vmf->vma->vm_file;
3413 struct file_ra_state *ra = &file->f_ra;
3414 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3415 struct file *fpin = NULL;
3416 unsigned short mmap_miss;
3417
3418 /* If we don't want any read-ahead, don't bother */
3419 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3420 return fpin;
3421
3422 /*
3423 * If the folio is locked, we're likely racing against another fault.
3424 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3425 * times for a single folio and break the balance with mmap_miss
3426 * increase in do_sync_mmap_readahead().
3427 */
3428 if (likely(!folio_test_locked(folio))) {
3429 mmap_miss = READ_ONCE(ra->mmap_miss);
3430 if (mmap_miss)
3431 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3432 }
3433
3434 if (folio_test_readahead(folio)) {
3435 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3436 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3437 }
3438 return fpin;
3439 }
3440
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3441 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3442 {
3443 struct vm_area_struct *vma = vmf->vma;
3444 vm_fault_t ret = 0;
3445 pte_t *ptep;
3446
3447 /*
3448 * We might have COW'ed a pagecache folio and might now have an mlocked
3449 * anon folio mapped. The original pagecache folio is not mlocked and
3450 * might have been evicted. During a read+clear/modify/write update of
3451 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3452 * temporarily clear the PTE under PT lock and might detect it here as
3453 * "none" when not holding the PT lock.
3454 *
3455 * Not rechecking the PTE under PT lock could result in an unexpected
3456 * major fault in an mlock'ed region. Recheck only for this special
3457 * scenario while holding the PT lock, to not degrade non-mlocked
3458 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3459 * the number of times we hold PT lock.
3460 */
3461 if (!(vma->vm_flags & VM_LOCKED))
3462 return 0;
3463
3464 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3465 return 0;
3466
3467 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3468 &vmf->ptl);
3469 if (unlikely(!ptep))
3470 return VM_FAULT_NOPAGE;
3471
3472 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3473 ret = VM_FAULT_NOPAGE;
3474 } else {
3475 spin_lock(vmf->ptl);
3476 if (unlikely(!pte_none(ptep_get(ptep))))
3477 ret = VM_FAULT_NOPAGE;
3478 spin_unlock(vmf->ptl);
3479 }
3480 pte_unmap(ptep);
3481 return ret;
3482 }
3483
3484 /**
3485 * filemap_fault - read in file data for page fault handling
3486 * @vmf: struct vm_fault containing details of the fault
3487 *
3488 * filemap_fault() is invoked via the vma operations vector for a
3489 * mapped memory region to read in file data during a page fault.
3490 *
3491 * The goto's are kind of ugly, but this streamlines the normal case of having
3492 * it in the page cache, and handles the special cases reasonably without
3493 * having a lot of duplicated code.
3494 *
3495 * vma->vm_mm->mmap_lock must be held on entry.
3496 *
3497 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3498 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3499 *
3500 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3501 * has not been released.
3502 *
3503 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3504 *
3505 * Return: bitwise-OR of %VM_FAULT_ codes.
3506 */
filemap_fault(struct vm_fault * vmf)3507 vm_fault_t filemap_fault(struct vm_fault *vmf)
3508 {
3509 int error;
3510 struct file *file = vmf->vma->vm_file;
3511 struct file *fpin = NULL;
3512 struct address_space *mapping = file->f_mapping;
3513 struct inode *inode = mapping->host;
3514 pgoff_t max_idx, index = vmf->pgoff;
3515 struct folio *folio;
3516 vm_fault_t ret = 0;
3517 bool mapping_locked = false;
3518
3519 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3520 if (unlikely(index >= max_idx))
3521 return VM_FAULT_SIGBUS;
3522
3523 trace_mm_filemap_fault(mapping, index);
3524
3525 /*
3526 * Do we have something in the page cache already?
3527 */
3528 folio = filemap_get_folio(mapping, index);
3529 if (likely(!IS_ERR(folio))) {
3530 /*
3531 * We found the page, so try async readahead before waiting for
3532 * the lock.
3533 */
3534 if (!(vmf->flags & FAULT_FLAG_TRIED))
3535 fpin = do_async_mmap_readahead(vmf, folio);
3536 if (unlikely(!folio_test_uptodate(folio))) {
3537 filemap_invalidate_lock_shared(mapping);
3538 mapping_locked = true;
3539 }
3540 } else {
3541 ret = filemap_fault_recheck_pte_none(vmf);
3542 if (unlikely(ret))
3543 return ret;
3544
3545 /* No page in the page cache at all */
3546 count_vm_event(PGMAJFAULT);
3547 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3548 ret = VM_FAULT_MAJOR;
3549 fpin = do_sync_mmap_readahead(vmf);
3550 retry_find:
3551 /*
3552 * See comment in filemap_create_folio() why we need
3553 * invalidate_lock
3554 */
3555 if (!mapping_locked) {
3556 filemap_invalidate_lock_shared(mapping);
3557 mapping_locked = true;
3558 }
3559 folio = __filemap_get_folio(mapping, index,
3560 FGP_CREAT|FGP_FOR_MMAP,
3561 vmf->gfp_mask);
3562 if (IS_ERR(folio)) {
3563 if (fpin)
3564 goto out_retry;
3565 filemap_invalidate_unlock_shared(mapping);
3566 return VM_FAULT_OOM;
3567 }
3568 }
3569
3570 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3571 goto out_retry;
3572
3573 /* Did it get truncated? */
3574 if (unlikely(folio->mapping != mapping)) {
3575 folio_unlock(folio);
3576 folio_put(folio);
3577 goto retry_find;
3578 }
3579 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3580
3581 /*
3582 * We have a locked folio in the page cache, now we need to check
3583 * that it's up-to-date. If not, it is going to be due to an error,
3584 * or because readahead was otherwise unable to retrieve it.
3585 */
3586 if (unlikely(!folio_test_uptodate(folio))) {
3587 /*
3588 * If the invalidate lock is not held, the folio was in cache
3589 * and uptodate and now it is not. Strange but possible since we
3590 * didn't hold the page lock all the time. Let's drop
3591 * everything, get the invalidate lock and try again.
3592 */
3593 if (!mapping_locked) {
3594 folio_unlock(folio);
3595 folio_put(folio);
3596 goto retry_find;
3597 }
3598
3599 /*
3600 * OK, the folio is really not uptodate. This can be because the
3601 * VMA has the VM_RAND_READ flag set, or because an error
3602 * arose. Let's read it in directly.
3603 */
3604 goto page_not_uptodate;
3605 }
3606
3607 /*
3608 * We've made it this far and we had to drop our mmap_lock, now is the
3609 * time to return to the upper layer and have it re-find the vma and
3610 * redo the fault.
3611 */
3612 if (fpin) {
3613 folio_unlock(folio);
3614 goto out_retry;
3615 }
3616 if (mapping_locked)
3617 filemap_invalidate_unlock_shared(mapping);
3618
3619 /*
3620 * Found the page and have a reference on it.
3621 * We must recheck i_size under page lock.
3622 */
3623 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3624 if (unlikely(index >= max_idx)) {
3625 folio_unlock(folio);
3626 folio_put(folio);
3627 return VM_FAULT_SIGBUS;
3628 }
3629
3630 vmf->page = folio_file_page(folio, index);
3631 return ret | VM_FAULT_LOCKED;
3632
3633 page_not_uptodate:
3634 /*
3635 * Umm, take care of errors if the page isn't up-to-date.
3636 * Try to re-read it _once_. We do this synchronously,
3637 * because there really aren't any performance issues here
3638 * and we need to check for errors.
3639 */
3640 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3641 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3642 if (fpin)
3643 goto out_retry;
3644 folio_put(folio);
3645
3646 if (!error || error == AOP_TRUNCATED_PAGE)
3647 goto retry_find;
3648 filemap_invalidate_unlock_shared(mapping);
3649
3650 return VM_FAULT_SIGBUS;
3651
3652 out_retry:
3653 /*
3654 * We dropped the mmap_lock, we need to return to the fault handler to
3655 * re-find the vma and come back and find our hopefully still populated
3656 * page.
3657 */
3658 if (!IS_ERR(folio))
3659 folio_put(folio);
3660 if (mapping_locked)
3661 filemap_invalidate_unlock_shared(mapping);
3662 if (fpin)
3663 fput(fpin);
3664 return ret | VM_FAULT_RETRY;
3665 }
3666 EXPORT_SYMBOL(filemap_fault);
3667
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3668 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3669 pgoff_t start)
3670 {
3671 struct mm_struct *mm = vmf->vma->vm_mm;
3672
3673 /* Huge page is mapped? No need to proceed. */
3674 if (pmd_trans_huge(*vmf->pmd)) {
3675 folio_unlock(folio);
3676 folio_put(folio);
3677 return true;
3678 }
3679
3680 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3681 struct page *page = folio_file_page(folio, start);
3682 vm_fault_t ret = do_set_pmd(vmf, folio, page);
3683 if (!ret) {
3684 /* The page is mapped successfully, reference consumed. */
3685 folio_unlock(folio);
3686 return true;
3687 }
3688 }
3689
3690 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3691 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3692
3693 return false;
3694 }
3695
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3696 static struct folio *next_uptodate_folio(struct xa_state *xas,
3697 struct address_space *mapping, pgoff_t end_pgoff)
3698 {
3699 struct folio *folio = xas_next_entry(xas, end_pgoff);
3700 unsigned long max_idx;
3701
3702 do {
3703 if (!folio)
3704 return NULL;
3705 if (xas_retry(xas, folio))
3706 continue;
3707 if (xa_is_value(folio))
3708 continue;
3709 if (!folio_try_get(folio))
3710 continue;
3711 if (folio_test_locked(folio))
3712 goto skip;
3713 /* Has the page moved or been split? */
3714 if (unlikely(folio != xas_reload(xas)))
3715 goto skip;
3716 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3717 goto skip;
3718 if (!folio_trylock(folio))
3719 goto skip;
3720 if (folio->mapping != mapping)
3721 goto unlock;
3722 if (!folio_test_uptodate(folio))
3723 goto unlock;
3724 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3725 if (xas->xa_index >= max_idx)
3726 goto unlock;
3727 return folio;
3728 unlock:
3729 folio_unlock(folio);
3730 skip:
3731 folio_put(folio);
3732 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3733
3734 return NULL;
3735 }
3736
3737 /*
3738 * Map page range [start_page, start_page + nr_pages) of folio.
3739 * start_page is gotten from start by folio_page(folio, start)
3740 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned short * mmap_miss,pgoff_t file_end)3741 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3742 struct folio *folio, unsigned long start,
3743 unsigned long addr, unsigned int nr_pages,
3744 unsigned long *rss, unsigned short *mmap_miss,
3745 pgoff_t file_end)
3746 {
3747 struct address_space *mapping = folio->mapping;
3748 unsigned int ref_from_caller = 1;
3749 vm_fault_t ret = 0;
3750 struct page *page = folio_page(folio, start);
3751 unsigned int count = 0;
3752 pte_t *old_ptep = vmf->pte;
3753 unsigned long addr0;
3754
3755 /*
3756 * Map the large folio fully where possible:
3757 *
3758 * - The folio is fully within size of the file or belong
3759 * to shmem/tmpfs;
3760 * - The folio doesn't cross VMA boundary;
3761 * - The folio doesn't cross page table boundary;
3762 */
3763 addr0 = addr - start * PAGE_SIZE;
3764 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3765 folio_within_vma(folio, vmf->vma) &&
3766 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3767 vmf->pte -= start;
3768 page -= start;
3769 addr = addr0;
3770 nr_pages = folio_nr_pages(folio);
3771 }
3772
3773 do {
3774 if (PageHWPoison(page + count))
3775 goto skip;
3776
3777 /*
3778 * If there are too many folios that are recently evicted
3779 * in a file, they will probably continue to be evicted.
3780 * In such situation, read-ahead is only a waste of IO.
3781 * Don't decrease mmap_miss in this scenario to make sure
3782 * we can stop read-ahead.
3783 */
3784 if (!folio_test_workingset(folio))
3785 (*mmap_miss)++;
3786
3787 /*
3788 * NOTE: If there're PTE markers, we'll leave them to be
3789 * handled in the specific fault path, and it'll prohibit the
3790 * fault-around logic.
3791 */
3792 if (!pte_none(ptep_get(&vmf->pte[count])))
3793 goto skip;
3794
3795 count++;
3796 continue;
3797 skip:
3798 if (count) {
3799 set_pte_range(vmf, folio, page, count, addr);
3800 *rss += count;
3801 folio_ref_add(folio, count - ref_from_caller);
3802 ref_from_caller = 0;
3803 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3804 ret = VM_FAULT_NOPAGE;
3805 }
3806
3807 count++;
3808 page += count;
3809 vmf->pte += count;
3810 addr += count * PAGE_SIZE;
3811 count = 0;
3812 } while (--nr_pages > 0);
3813
3814 if (count) {
3815 set_pte_range(vmf, folio, page, count, addr);
3816 *rss += count;
3817 folio_ref_add(folio, count - ref_from_caller);
3818 ref_from_caller = 0;
3819 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3820 ret = VM_FAULT_NOPAGE;
3821 }
3822
3823 vmf->pte = old_ptep;
3824 if (ref_from_caller)
3825 /* Locked folios cannot get truncated. */
3826 folio_ref_dec(folio);
3827
3828 return ret;
3829 }
3830
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned short * mmap_miss)3831 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3832 struct folio *folio, unsigned long addr,
3833 unsigned long *rss, unsigned short *mmap_miss)
3834 {
3835 vm_fault_t ret = 0;
3836 struct page *page = &folio->page;
3837
3838 if (PageHWPoison(page))
3839 goto out;
3840
3841 /* See comment of filemap_map_folio_range() */
3842 if (!folio_test_workingset(folio))
3843 (*mmap_miss)++;
3844
3845 /*
3846 * NOTE: If there're PTE markers, we'll leave them to be
3847 * handled in the specific fault path, and it'll prohibit
3848 * the fault-around logic.
3849 */
3850 if (!pte_none(ptep_get(vmf->pte)))
3851 goto out;
3852
3853 if (vmf->address == addr)
3854 ret = VM_FAULT_NOPAGE;
3855
3856 set_pte_range(vmf, folio, page, 1, addr);
3857 (*rss)++;
3858 return ret;
3859
3860 out:
3861 /* Locked folios cannot get truncated. */
3862 folio_ref_dec(folio);
3863 return ret;
3864 }
3865
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3866 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3867 pgoff_t start_pgoff, pgoff_t end_pgoff)
3868 {
3869 struct vm_area_struct *vma = vmf->vma;
3870 struct file *file = vma->vm_file;
3871 struct address_space *mapping = file->f_mapping;
3872 pgoff_t file_end, last_pgoff = start_pgoff;
3873 unsigned long addr;
3874 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3875 struct folio *folio;
3876 vm_fault_t ret = 0;
3877 unsigned long rss = 0;
3878 unsigned int nr_pages = 0, folio_type;
3879 unsigned short mmap_miss = 0, mmap_miss_saved;
3880
3881 rcu_read_lock();
3882 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3883 if (!folio)
3884 goto out;
3885
3886 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3887 end_pgoff = min(end_pgoff, file_end);
3888
3889 /*
3890 * Do not allow to map with PMD across i_size to preserve
3891 * SIGBUS semantics.
3892 *
3893 * Make an exception for shmem/tmpfs that for long time
3894 * intentionally mapped with PMDs across i_size.
3895 */
3896 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3897 filemap_map_pmd(vmf, folio, start_pgoff)) {
3898 ret = VM_FAULT_NOPAGE;
3899 goto out;
3900 }
3901
3902 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3903 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3904 if (!vmf->pte) {
3905 folio_unlock(folio);
3906 folio_put(folio);
3907 goto out;
3908 }
3909
3910 folio_type = mm_counter_file(folio);
3911 do {
3912 unsigned long end;
3913
3914 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3915 vmf->pte += xas.xa_index - last_pgoff;
3916 last_pgoff = xas.xa_index;
3917 end = folio_next_index(folio) - 1;
3918 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3919
3920 if (!folio_test_large(folio))
3921 ret |= filemap_map_order0_folio(vmf,
3922 folio, addr, &rss, &mmap_miss);
3923 else
3924 ret |= filemap_map_folio_range(vmf, folio,
3925 xas.xa_index - folio->index, addr,
3926 nr_pages, &rss, &mmap_miss, file_end);
3927
3928 folio_unlock(folio);
3929 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3930 add_mm_counter(vma->vm_mm, folio_type, rss);
3931 pte_unmap_unlock(vmf->pte, vmf->ptl);
3932 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3933 out:
3934 rcu_read_unlock();
3935
3936 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3937 if (mmap_miss >= mmap_miss_saved)
3938 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3939 else
3940 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3941
3942 return ret;
3943 }
3944 EXPORT_SYMBOL(filemap_map_pages);
3945
filemap_page_mkwrite(struct vm_fault * vmf)3946 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3947 {
3948 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3949 struct folio *folio = page_folio(vmf->page);
3950 vm_fault_t ret = VM_FAULT_LOCKED;
3951
3952 sb_start_pagefault(mapping->host->i_sb);
3953 file_update_time(vmf->vma->vm_file);
3954 folio_lock(folio);
3955 if (folio->mapping != mapping) {
3956 folio_unlock(folio);
3957 ret = VM_FAULT_NOPAGE;
3958 goto out;
3959 }
3960 /*
3961 * We mark the folio dirty already here so that when freeze is in
3962 * progress, we are guaranteed that writeback during freezing will
3963 * see the dirty folio and writeprotect it again.
3964 */
3965 folio_mark_dirty(folio);
3966 folio_wait_stable(folio);
3967 out:
3968 sb_end_pagefault(mapping->host->i_sb);
3969 return ret;
3970 }
3971
3972 const struct vm_operations_struct generic_file_vm_ops = {
3973 .fault = filemap_fault,
3974 .map_pages = filemap_map_pages,
3975 .page_mkwrite = filemap_page_mkwrite,
3976 };
3977
3978 /* This is used for a general mmap of a disk file */
3979
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3980 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3981 {
3982 struct address_space *mapping = file->f_mapping;
3983
3984 if (!mapping->a_ops->read_folio)
3985 return -ENOEXEC;
3986 file_accessed(file);
3987 vma->vm_ops = &generic_file_vm_ops;
3988 return 0;
3989 }
3990
generic_file_mmap_prepare(struct vm_area_desc * desc)3991 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3992 {
3993 struct file *file = desc->file;
3994 struct address_space *mapping = file->f_mapping;
3995
3996 if (!mapping->a_ops->read_folio)
3997 return -ENOEXEC;
3998 file_accessed(file);
3999 desc->vm_ops = &generic_file_vm_ops;
4000 return 0;
4001 }
4002
4003 /*
4004 * This is for filesystems which do not implement ->writepage.
4005 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)4006 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
4007 {
4008 if (vma_is_shared_maywrite(vma))
4009 return -EINVAL;
4010 return generic_file_mmap(file, vma);
4011 }
4012
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)4013 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
4014 {
4015 if (is_shared_maywrite(desc->vm_flags))
4016 return -EINVAL;
4017 return generic_file_mmap_prepare(desc);
4018 }
4019 #else
filemap_page_mkwrite(struct vm_fault * vmf)4020 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4021 {
4022 return VM_FAULT_SIGBUS;
4023 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)4024 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
4025 {
4026 return -ENOSYS;
4027 }
generic_file_mmap_prepare(struct vm_area_desc * desc)4028 int generic_file_mmap_prepare(struct vm_area_desc *desc)
4029 {
4030 return -ENOSYS;
4031 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)4032 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
4033 {
4034 return -ENOSYS;
4035 }
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)4036 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
4037 {
4038 return -ENOSYS;
4039 }
4040 #endif /* CONFIG_MMU */
4041
4042 EXPORT_SYMBOL(filemap_page_mkwrite);
4043 EXPORT_SYMBOL(generic_file_mmap);
4044 EXPORT_SYMBOL(generic_file_mmap_prepare);
4045 EXPORT_SYMBOL(generic_file_readonly_mmap);
4046 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
4047
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)4048 static struct folio *do_read_cache_folio(struct address_space *mapping,
4049 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
4050 {
4051 struct folio *folio;
4052 int err;
4053
4054 if (!filler)
4055 filler = mapping->a_ops->read_folio;
4056 repeat:
4057 folio = filemap_get_folio(mapping, index);
4058 if (IS_ERR(folio)) {
4059 folio = filemap_alloc_folio(gfp, mapping_min_folio_order(mapping), NULL);
4060 if (!folio)
4061 return ERR_PTR(-ENOMEM);
4062 index = mapping_align_index(mapping, index);
4063 err = filemap_add_folio(mapping, folio, index, gfp);
4064 if (unlikely(err)) {
4065 folio_put(folio);
4066 if (err == -EEXIST)
4067 goto repeat;
4068 /* Presumably ENOMEM for xarray node */
4069 return ERR_PTR(err);
4070 }
4071
4072 goto filler;
4073 }
4074 if (folio_test_uptodate(folio))
4075 goto out;
4076
4077 if (!folio_trylock(folio)) {
4078 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
4079 goto repeat;
4080 }
4081
4082 /* Folio was truncated from mapping */
4083 if (!folio->mapping) {
4084 folio_unlock(folio);
4085 folio_put(folio);
4086 goto repeat;
4087 }
4088
4089 /* Someone else locked and filled the page in a very small window */
4090 if (folio_test_uptodate(folio)) {
4091 folio_unlock(folio);
4092 goto out;
4093 }
4094
4095 filler:
4096 err = filemap_read_folio(file, filler, folio);
4097 if (err) {
4098 folio_put(folio);
4099 if (err == AOP_TRUNCATED_PAGE)
4100 goto repeat;
4101 return ERR_PTR(err);
4102 }
4103
4104 out:
4105 folio_mark_accessed(folio);
4106 return folio;
4107 }
4108
4109 /**
4110 * read_cache_folio - Read into page cache, fill it if needed.
4111 * @mapping: The address_space to read from.
4112 * @index: The index to read.
4113 * @filler: Function to perform the read, or NULL to use aops->read_folio().
4114 * @file: Passed to filler function, may be NULL if not required.
4115 *
4116 * Read one page into the page cache. If it succeeds, the folio returned
4117 * will contain @index, but it may not be the first page of the folio.
4118 *
4119 * If the filler function returns an error, it will be returned to the
4120 * caller.
4121 *
4122 * Context: May sleep. Expects mapping->invalidate_lock to be held.
4123 * Return: An uptodate folio on success, ERR_PTR() on failure.
4124 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)4125 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4126 filler_t filler, struct file *file)
4127 {
4128 return do_read_cache_folio(mapping, index, filler, file,
4129 mapping_gfp_mask(mapping));
4130 }
4131 EXPORT_SYMBOL(read_cache_folio);
4132
4133 /**
4134 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4135 * @mapping: The address_space for the folio.
4136 * @index: The index that the allocated folio will contain.
4137 * @gfp: The page allocator flags to use if allocating.
4138 *
4139 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4140 * any new memory allocations done using the specified allocation flags.
4141 *
4142 * The most likely error from this function is EIO, but ENOMEM is
4143 * possible and so is EINTR. If ->read_folio returns another error,
4144 * that will be returned to the caller.
4145 *
4146 * The function expects mapping->invalidate_lock to be already held.
4147 *
4148 * Return: Uptodate folio on success, ERR_PTR() on failure.
4149 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4150 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4151 pgoff_t index, gfp_t gfp)
4152 {
4153 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4154 }
4155 EXPORT_SYMBOL(mapping_read_folio_gfp);
4156
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4157 static struct page *do_read_cache_page(struct address_space *mapping,
4158 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4159 {
4160 struct folio *folio;
4161
4162 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4163 if (IS_ERR(folio))
4164 return &folio->page;
4165 return folio_file_page(folio, index);
4166 }
4167
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4168 struct page *read_cache_page(struct address_space *mapping,
4169 pgoff_t index, filler_t *filler, struct file *file)
4170 {
4171 return do_read_cache_page(mapping, index, filler, file,
4172 mapping_gfp_mask(mapping));
4173 }
4174 EXPORT_SYMBOL(read_cache_page);
4175
4176 /**
4177 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4178 * @mapping: the page's address_space
4179 * @index: the page index
4180 * @gfp: the page allocator flags to use if allocating
4181 *
4182 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4183 * any new page allocations done using the specified allocation flags.
4184 *
4185 * If the page does not get brought uptodate, return -EIO.
4186 *
4187 * The function expects mapping->invalidate_lock to be already held.
4188 *
4189 * Return: up to date page on success, ERR_PTR() on failure.
4190 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4191 struct page *read_cache_page_gfp(struct address_space *mapping,
4192 pgoff_t index,
4193 gfp_t gfp)
4194 {
4195 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4196 }
4197 EXPORT_SYMBOL(read_cache_page_gfp);
4198
4199 /*
4200 * Warn about a page cache invalidation failure during a direct I/O write.
4201 */
dio_warn_stale_pagecache(struct file * filp)4202 static void dio_warn_stale_pagecache(struct file *filp)
4203 {
4204 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4205 char pathname[128];
4206 char *path;
4207
4208 errseq_set(&filp->f_mapping->wb_err, -EIO);
4209 if (__ratelimit(&_rs)) {
4210 path = file_path(filp, pathname, sizeof(pathname));
4211 if (IS_ERR(path))
4212 path = "(unknown)";
4213 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4214 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4215 current->comm);
4216 }
4217 }
4218
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4219 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4220 {
4221 struct address_space *mapping = iocb->ki_filp->f_mapping;
4222
4223 if (mapping->nrpages &&
4224 invalidate_inode_pages2_range(mapping,
4225 iocb->ki_pos >> PAGE_SHIFT,
4226 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4227 dio_warn_stale_pagecache(iocb->ki_filp);
4228 }
4229
4230 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4231 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4232 {
4233 struct address_space *mapping = iocb->ki_filp->f_mapping;
4234 size_t write_len = iov_iter_count(from);
4235 ssize_t written;
4236
4237 /*
4238 * If a page can not be invalidated, return 0 to fall back
4239 * to buffered write.
4240 */
4241 written = kiocb_invalidate_pages(iocb, write_len);
4242 if (written) {
4243 if (written == -EBUSY)
4244 return 0;
4245 return written;
4246 }
4247
4248 written = mapping->a_ops->direct_IO(iocb, from);
4249
4250 /*
4251 * Finally, try again to invalidate clean pages which might have been
4252 * cached by non-direct readahead, or faulted in by get_user_pages()
4253 * if the source of the write was an mmap'ed region of the file
4254 * we're writing. Either one is a pretty crazy thing to do,
4255 * so we don't support it 100%. If this invalidation
4256 * fails, tough, the write still worked...
4257 *
4258 * Most of the time we do not need this since dio_complete() will do
4259 * the invalidation for us. However there are some file systems that
4260 * do not end up with dio_complete() being called, so let's not break
4261 * them by removing it completely.
4262 *
4263 * Noticeable example is a blkdev_direct_IO().
4264 *
4265 * Skip invalidation for async writes or if mapping has no pages.
4266 */
4267 if (written > 0) {
4268 struct inode *inode = mapping->host;
4269 loff_t pos = iocb->ki_pos;
4270
4271 kiocb_invalidate_post_direct_write(iocb, written);
4272 pos += written;
4273 write_len -= written;
4274 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4275 i_size_write(inode, pos);
4276 mark_inode_dirty(inode);
4277 }
4278 iocb->ki_pos = pos;
4279 }
4280 if (written != -EIOCBQUEUED)
4281 iov_iter_revert(from, write_len - iov_iter_count(from));
4282 return written;
4283 }
4284 EXPORT_SYMBOL(generic_file_direct_write);
4285
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4286 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4287 {
4288 struct file *file = iocb->ki_filp;
4289 loff_t pos = iocb->ki_pos;
4290 struct address_space *mapping = file->f_mapping;
4291 const struct address_space_operations *a_ops = mapping->a_ops;
4292 size_t chunk = mapping_max_folio_size(mapping);
4293 long status = 0;
4294 ssize_t written = 0;
4295
4296 do {
4297 struct folio *folio;
4298 size_t offset; /* Offset into folio */
4299 size_t bytes; /* Bytes to write to folio */
4300 size_t copied; /* Bytes copied from user */
4301 void *fsdata = NULL;
4302
4303 bytes = iov_iter_count(i);
4304 retry:
4305 offset = pos & (chunk - 1);
4306 bytes = min(chunk - offset, bytes);
4307 balance_dirty_pages_ratelimited(mapping);
4308
4309 if (fatal_signal_pending(current)) {
4310 status = -EINTR;
4311 break;
4312 }
4313
4314 status = a_ops->write_begin(iocb, mapping, pos, bytes,
4315 &folio, &fsdata);
4316 if (unlikely(status < 0))
4317 break;
4318
4319 offset = offset_in_folio(folio, pos);
4320 if (bytes > folio_size(folio) - offset)
4321 bytes = folio_size(folio) - offset;
4322
4323 if (mapping_writably_mapped(mapping))
4324 flush_dcache_folio(folio);
4325
4326 /*
4327 * Faults here on mmap()s can recurse into arbitrary
4328 * filesystem code. Lots of locks are held that can
4329 * deadlock. Use an atomic copy to avoid deadlocking
4330 * in page fault handling.
4331 */
4332 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4333 flush_dcache_folio(folio);
4334
4335 status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4336 folio, fsdata);
4337 if (unlikely(status != copied)) {
4338 iov_iter_revert(i, copied - max(status, 0L));
4339 if (unlikely(status < 0))
4340 break;
4341 }
4342 cond_resched();
4343
4344 if (unlikely(status == 0)) {
4345 /*
4346 * A short copy made ->write_end() reject the
4347 * thing entirely. Might be memory poisoning
4348 * halfway through, might be a race with munmap,
4349 * might be severe memory pressure.
4350 */
4351 if (chunk > PAGE_SIZE)
4352 chunk /= 2;
4353 if (copied) {
4354 bytes = copied;
4355 goto retry;
4356 }
4357
4358 /*
4359 * 'folio' is now unlocked and faults on it can be
4360 * handled. Ensure forward progress by trying to
4361 * fault it in now.
4362 */
4363 if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4364 status = -EFAULT;
4365 break;
4366 }
4367 } else {
4368 pos += status;
4369 written += status;
4370 }
4371 } while (iov_iter_count(i));
4372
4373 if (!written)
4374 return status;
4375 iocb->ki_pos += written;
4376 return written;
4377 }
4378 EXPORT_SYMBOL(generic_perform_write);
4379
4380 /**
4381 * __generic_file_write_iter - write data to a file
4382 * @iocb: IO state structure (file, offset, etc.)
4383 * @from: iov_iter with data to write
4384 *
4385 * This function does all the work needed for actually writing data to a
4386 * file. It does all basic checks, removes SUID from the file, updates
4387 * modification times and calls proper subroutines depending on whether we
4388 * do direct IO or a standard buffered write.
4389 *
4390 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4391 * object which does not need locking at all.
4392 *
4393 * This function does *not* take care of syncing data in case of O_SYNC write.
4394 * A caller has to handle it. This is mainly due to the fact that we want to
4395 * avoid syncing under i_rwsem.
4396 *
4397 * Return:
4398 * * number of bytes written, even for truncated writes
4399 * * negative error code if no data has been written at all
4400 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4401 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4402 {
4403 struct file *file = iocb->ki_filp;
4404 struct address_space *mapping = file->f_mapping;
4405 struct inode *inode = mapping->host;
4406 ssize_t ret;
4407
4408 ret = file_remove_privs(file);
4409 if (ret)
4410 return ret;
4411
4412 ret = file_update_time(file);
4413 if (ret)
4414 return ret;
4415
4416 if (iocb->ki_flags & IOCB_DIRECT) {
4417 ret = generic_file_direct_write(iocb, from);
4418 /*
4419 * If the write stopped short of completing, fall back to
4420 * buffered writes. Some filesystems do this for writes to
4421 * holes, for example. For DAX files, a buffered write will
4422 * not succeed (even if it did, DAX does not handle dirty
4423 * page-cache pages correctly).
4424 */
4425 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4426 return ret;
4427 return direct_write_fallback(iocb, from, ret,
4428 generic_perform_write(iocb, from));
4429 }
4430
4431 return generic_perform_write(iocb, from);
4432 }
4433 EXPORT_SYMBOL(__generic_file_write_iter);
4434
4435 /**
4436 * generic_file_write_iter - write data to a file
4437 * @iocb: IO state structure
4438 * @from: iov_iter with data to write
4439 *
4440 * This is a wrapper around __generic_file_write_iter() to be used by most
4441 * filesystems. It takes care of syncing the file in case of O_SYNC file
4442 * and acquires i_rwsem as needed.
4443 * Return:
4444 * * negative error code if no data has been written at all of
4445 * vfs_fsync_range() failed for a synchronous write
4446 * * number of bytes written, even for truncated writes
4447 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4448 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4449 {
4450 struct file *file = iocb->ki_filp;
4451 struct inode *inode = file->f_mapping->host;
4452 ssize_t ret;
4453
4454 inode_lock(inode);
4455 ret = generic_write_checks(iocb, from);
4456 if (ret > 0)
4457 ret = __generic_file_write_iter(iocb, from);
4458 inode_unlock(inode);
4459
4460 if (ret > 0)
4461 ret = generic_write_sync(iocb, ret);
4462 return ret;
4463 }
4464 EXPORT_SYMBOL(generic_file_write_iter);
4465
4466 /**
4467 * filemap_release_folio() - Release fs-specific metadata on a folio.
4468 * @folio: The folio which the kernel is trying to free.
4469 * @gfp: Memory allocation flags (and I/O mode).
4470 *
4471 * The address_space is trying to release any data attached to a folio
4472 * (presumably at folio->private).
4473 *
4474 * This will also be called if the private_2 flag is set on a page,
4475 * indicating that the folio has other metadata associated with it.
4476 *
4477 * The @gfp argument specifies whether I/O may be performed to release
4478 * this page (__GFP_IO), and whether the call may block
4479 * (__GFP_RECLAIM & __GFP_FS).
4480 *
4481 * Return: %true if the release was successful, otherwise %false.
4482 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4483 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4484 {
4485 struct address_space * const mapping = folio->mapping;
4486
4487 BUG_ON(!folio_test_locked(folio));
4488 if (!folio_needs_release(folio))
4489 return true;
4490 if (folio_test_writeback(folio))
4491 return false;
4492
4493 if (mapping && mapping->a_ops->release_folio)
4494 return mapping->a_ops->release_folio(folio, gfp);
4495 return try_to_free_buffers(folio);
4496 }
4497 EXPORT_SYMBOL(filemap_release_folio);
4498
4499 /**
4500 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4501 * @inode: The inode to flush
4502 * @flush: Set to write back rather than simply invalidate.
4503 * @start: First byte to in range.
4504 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4505 * onwards.
4506 *
4507 * Invalidate all the folios on an inode that contribute to the specified
4508 * range, possibly writing them back first. Whilst the operation is
4509 * undertaken, the invalidate lock is held to prevent new folios from being
4510 * installed.
4511 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4512 int filemap_invalidate_inode(struct inode *inode, bool flush,
4513 loff_t start, loff_t end)
4514 {
4515 struct address_space *mapping = inode->i_mapping;
4516 pgoff_t first = start >> PAGE_SHIFT;
4517 pgoff_t last = end >> PAGE_SHIFT;
4518 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4519
4520 if (!mapping || !mapping->nrpages || end < start)
4521 goto out;
4522
4523 /* Prevent new folios from being added to the inode. */
4524 filemap_invalidate_lock(mapping);
4525
4526 if (!mapping->nrpages)
4527 goto unlock;
4528
4529 unmap_mapping_pages(mapping, first, nr, false);
4530
4531 /* Write back the data if we're asked to. */
4532 if (flush)
4533 filemap_fdatawrite_range(mapping, start, end);
4534
4535 /* Wait for writeback to complete on all folios and discard. */
4536 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4537
4538 unlock:
4539 filemap_invalidate_unlock(mapping);
4540 out:
4541 return filemap_check_errors(mapping);
4542 }
4543 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4544
4545 #ifdef CONFIG_CACHESTAT_SYSCALL
4546 /**
4547 * filemap_cachestat() - compute the page cache statistics of a mapping
4548 * @mapping: The mapping to compute the statistics for.
4549 * @first_index: The starting page cache index.
4550 * @last_index: The final page index (inclusive).
4551 * @cs: the cachestat struct to write the result to.
4552 *
4553 * This will query the page cache statistics of a mapping in the
4554 * page range of [first_index, last_index] (inclusive). The statistics
4555 * queried include: number of dirty pages, number of pages marked for
4556 * writeback, and the number of (recently) evicted pages.
4557 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4558 static void filemap_cachestat(struct address_space *mapping,
4559 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4560 {
4561 XA_STATE(xas, &mapping->i_pages, first_index);
4562 struct folio *folio;
4563
4564 /* Flush stats (and potentially sleep) outside the RCU read section. */
4565 mem_cgroup_flush_stats_ratelimited(NULL);
4566
4567 rcu_read_lock();
4568 xas_for_each(&xas, folio, last_index) {
4569 int order;
4570 unsigned long nr_pages;
4571 pgoff_t folio_first_index, folio_last_index;
4572
4573 /*
4574 * Don't deref the folio. It is not pinned, and might
4575 * get freed (and reused) underneath us.
4576 *
4577 * We *could* pin it, but that would be expensive for
4578 * what should be a fast and lightweight syscall.
4579 *
4580 * Instead, derive all information of interest from
4581 * the rcu-protected xarray.
4582 */
4583
4584 if (xas_retry(&xas, folio))
4585 continue;
4586
4587 order = xas_get_order(&xas);
4588 nr_pages = 1 << order;
4589 folio_first_index = round_down(xas.xa_index, 1 << order);
4590 folio_last_index = folio_first_index + nr_pages - 1;
4591
4592 /* Folios might straddle the range boundaries, only count covered pages */
4593 if (folio_first_index < first_index)
4594 nr_pages -= first_index - folio_first_index;
4595
4596 if (folio_last_index > last_index)
4597 nr_pages -= folio_last_index - last_index;
4598
4599 if (xa_is_value(folio)) {
4600 /* page is evicted */
4601 void *shadow = (void *)folio;
4602 bool workingset; /* not used */
4603
4604 cs->nr_evicted += nr_pages;
4605
4606 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4607 if (shmem_mapping(mapping)) {
4608 /* shmem file - in swap cache */
4609 swp_entry_t swp = radix_to_swp_entry(folio);
4610
4611 /* swapin error results in poisoned entry */
4612 if (!softleaf_is_swap(swp))
4613 goto resched;
4614
4615 /*
4616 * Getting a swap entry from the shmem
4617 * inode means we beat
4618 * shmem_unuse(). rcu_read_lock()
4619 * ensures swapoff waits for us before
4620 * freeing the swapper space. However,
4621 * we can race with swapping and
4622 * invalidation, so there might not be
4623 * a shadow in the swapcache (yet).
4624 */
4625 shadow = swap_cache_get_shadow(swp);
4626 if (!shadow)
4627 goto resched;
4628 }
4629 #endif
4630 if (workingset_test_recent(shadow, true, &workingset, false))
4631 cs->nr_recently_evicted += nr_pages;
4632
4633 goto resched;
4634 }
4635
4636 /* page is in cache */
4637 cs->nr_cache += nr_pages;
4638
4639 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4640 cs->nr_dirty += nr_pages;
4641
4642 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4643 cs->nr_writeback += nr_pages;
4644
4645 resched:
4646 if (need_resched()) {
4647 xas_pause(&xas);
4648 cond_resched_rcu();
4649 }
4650 }
4651 rcu_read_unlock();
4652 }
4653
4654 /*
4655 * See mincore: reveal pagecache information only for files
4656 * that the calling process has write access to, or could (if
4657 * tried) open for writing.
4658 */
can_do_cachestat(struct file * f)4659 static inline bool can_do_cachestat(struct file *f)
4660 {
4661 if (f->f_mode & FMODE_WRITE)
4662 return true;
4663 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4664 return true;
4665 return file_permission(f, MAY_WRITE) == 0;
4666 }
4667
4668 /*
4669 * The cachestat(2) system call.
4670 *
4671 * cachestat() returns the page cache statistics of a file in the
4672 * bytes range specified by `off` and `len`: number of cached pages,
4673 * number of dirty pages, number of pages marked for writeback,
4674 * number of evicted pages, and number of recently evicted pages.
4675 *
4676 * An evicted page is a page that is previously in the page cache
4677 * but has been evicted since. A page is recently evicted if its last
4678 * eviction was recent enough that its reentry to the cache would
4679 * indicate that it is actively being used by the system, and that
4680 * there is memory pressure on the system.
4681 *
4682 * `off` and `len` must be non-negative integers. If `len` > 0,
4683 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4684 * we will query in the range from `off` to the end of the file.
4685 *
4686 * The `flags` argument is unused for now, but is included for future
4687 * extensibility. User should pass 0 (i.e no flag specified).
4688 *
4689 * Currently, hugetlbfs is not supported.
4690 *
4691 * Because the status of a page can change after cachestat() checks it
4692 * but before it returns to the application, the returned values may
4693 * contain stale information.
4694 *
4695 * return values:
4696 * zero - success
4697 * -EFAULT - cstat or cstat_range points to an illegal address
4698 * -EINVAL - invalid flags
4699 * -EBADF - invalid file descriptor
4700 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4701 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4702 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4703 struct cachestat_range __user *, cstat_range,
4704 struct cachestat __user *, cstat, unsigned int, flags)
4705 {
4706 CLASS(fd, f)(fd);
4707 struct address_space *mapping;
4708 struct cachestat_range csr;
4709 struct cachestat cs;
4710 pgoff_t first_index, last_index;
4711
4712 if (fd_empty(f))
4713 return -EBADF;
4714
4715 if (copy_from_user(&csr, cstat_range,
4716 sizeof(struct cachestat_range)))
4717 return -EFAULT;
4718
4719 /* hugetlbfs is not supported */
4720 if (is_file_hugepages(fd_file(f)))
4721 return -EOPNOTSUPP;
4722
4723 if (!can_do_cachestat(fd_file(f)))
4724 return -EPERM;
4725
4726 if (flags != 0)
4727 return -EINVAL;
4728
4729 first_index = csr.off >> PAGE_SHIFT;
4730 last_index =
4731 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4732 memset(&cs, 0, sizeof(struct cachestat));
4733 mapping = fd_file(f)->f_mapping;
4734 filemap_cachestat(mapping, first_index, last_index, &cs);
4735
4736 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4737 return -EFAULT;
4738
4739 return 0;
4740 }
4741 #endif /* CONFIG_CACHESTAT_SYSCALL */
4742