1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29
30 /*
31 * Managed DMA API
32 */
33 struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38 };
39
dmam_release(struct device * dev,void * res)40 static void dmam_release(struct device *dev, void *res)
41 {
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46 }
47
dmam_match(struct device * dev,void * res,void * match_data)48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58 }
59
60 /**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71 {
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78
79 /**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95 {
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122 {
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133 #endif
134 return false;
135 }
136
137
138 /*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)143 static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145 {
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)149 static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151 {
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 size_t offset, size_t size, enum dma_data_direction dir,
157 unsigned long attrs)
158 {
159 const struct dma_map_ops *ops = get_dma_ops(dev);
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 else
173 addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 kmsan_handle_dma(page, offset, size, dir);
175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 attrs);
177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179 return addr;
180 }
181 EXPORT_SYMBOL(dma_map_page_attrs);
182
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 enum dma_data_direction dir, unsigned long attrs)
185 {
186 const struct dma_map_ops *ops = get_dma_ops(dev);
187
188 BUG_ON(!valid_dma_direction(dir));
189 if (dma_map_direct(dev, ops) ||
190 arch_dma_unmap_page_direct(dev, addr + size))
191 dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 else if (use_dma_iommu(dev))
193 iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 else
195 ops->unmap_page(dev, addr, size, dir, attrs);
196 trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 debug_dma_unmap_page(dev, addr, size, dir);
198 }
199 EXPORT_SYMBOL(dma_unmap_page_attrs);
200
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 int nents, enum dma_data_direction dir, unsigned long attrs)
203 {
204 const struct dma_map_ops *ops = get_dma_ops(dev);
205 int ents;
206
207 BUG_ON(!valid_dma_direction(dir));
208
209 if (WARN_ON_ONCE(!dev->dma_mask))
210 return 0;
211
212 if (dma_map_direct(dev, ops) ||
213 arch_dma_map_sg_direct(dev, sg, nents))
214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 else if (use_dma_iommu(dev))
216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 else
218 ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220 if (ents > 0) {
221 kmsan_handle_dma_sg(sg, nents, dir);
222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 ents != -EIO && ents != -EREMOTEIO)) {
226 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227 return -EIO;
228 }
229
230 return ents;
231 }
232
233 /**
234 * dma_map_sg_attrs - Map the given buffer for DMA
235 * @dev: The device for which to perform the DMA operation
236 * @sg: The sg_table object describing the buffer
237 * @nents: Number of entries to map
238 * @dir: DMA direction
239 * @attrs: Optional DMA attributes for the map operation
240 *
241 * Maps a buffer described by a scatterlist passed in the sg argument with
242 * nents segments for the @dir DMA operation by the @dev device.
243 *
244 * Returns the number of mapped entries (which can be less than nents)
245 * on success. Zero is returned for any error.
246 *
247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248 * original sg and original nents (not the value returned by this funciton).
249 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)250 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251 int nents, enum dma_data_direction dir, unsigned long attrs)
252 {
253 int ret;
254
255 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256 if (ret < 0)
257 return 0;
258 return ret;
259 }
260 EXPORT_SYMBOL(dma_map_sg_attrs);
261
262 /**
263 * dma_map_sgtable - Map the given buffer for DMA
264 * @dev: The device for which to perform the DMA operation
265 * @sgt: The sg_table object describing the buffer
266 * @dir: DMA direction
267 * @attrs: Optional DMA attributes for the map operation
268 *
269 * Maps a buffer described by a scatterlist stored in the given sg_table
270 * object for the @dir DMA operation by the @dev device. After success, the
271 * ownership for the buffer is transferred to the DMA domain. One has to
272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273 * ownership of the buffer back to the CPU domain before touching the
274 * buffer by the CPU.
275 *
276 * Returns 0 on success or a negative error code on error. The following
277 * error codes are supported with the given meaning:
278 *
279 * -EINVAL An invalid argument, unaligned access or other error
280 * in usage. Will not succeed if retried.
281 * -ENOMEM Insufficient resources (like memory or IOVA space) to
282 * complete the mapping. Should succeed if retried later.
283 * -EIO Legacy error code with an unknown meaning. eg. this is
284 * returned if a lower level call returned
285 * DMA_MAPPING_ERROR.
286 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
287 * in the sg_table. This will not succeed if retried.
288 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)289 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290 enum dma_data_direction dir, unsigned long attrs)
291 {
292 int nents;
293
294 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295 if (nents < 0)
296 return nents;
297 sgt->nents = nents;
298 return 0;
299 }
300 EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)302 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303 int nents, enum dma_data_direction dir,
304 unsigned long attrs)
305 {
306 const struct dma_map_ops *ops = get_dma_ops(dev);
307
308 BUG_ON(!valid_dma_direction(dir));
309 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310 debug_dma_unmap_sg(dev, sg, nents, dir);
311 if (dma_map_direct(dev, ops) ||
312 arch_dma_unmap_sg_direct(dev, sg, nents))
313 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314 else if (use_dma_iommu(dev))
315 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316 else if (ops->unmap_sg)
317 ops->unmap_sg(dev, sg, nents, dir, attrs);
318 }
319 EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)321 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322 size_t size, enum dma_data_direction dir, unsigned long attrs)
323 {
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325 dma_addr_t addr = DMA_MAPPING_ERROR;
326
327 BUG_ON(!valid_dma_direction(dir));
328
329 if (WARN_ON_ONCE(!dev->dma_mask))
330 return DMA_MAPPING_ERROR;
331
332 if (dma_map_direct(dev, ops))
333 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334 else if (use_dma_iommu(dev))
335 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336 else if (ops->map_resource)
337 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341 return addr;
342 }
343 EXPORT_SYMBOL(dma_map_resource);
344
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)345 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346 enum dma_data_direction dir, unsigned long attrs)
347 {
348 const struct dma_map_ops *ops = get_dma_ops(dev);
349
350 BUG_ON(!valid_dma_direction(dir));
351 if (dma_map_direct(dev, ops))
352 ; /* nothing to do: uncached and no swiotlb */
353 else if (use_dma_iommu(dev))
354 iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355 else if (ops->unmap_resource)
356 ops->unmap_resource(dev, addr, size, dir, attrs);
357 trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358 debug_dma_unmap_resource(dev, addr, size, dir);
359 }
360 EXPORT_SYMBOL(dma_unmap_resource);
361
362 #ifdef CONFIG_DMA_NEED_SYNC
__dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)363 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364 enum dma_data_direction dir)
365 {
366 const struct dma_map_ops *ops = get_dma_ops(dev);
367
368 BUG_ON(!valid_dma_direction(dir));
369 if (dma_map_direct(dev, ops))
370 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371 else if (use_dma_iommu(dev))
372 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373 else if (ops->sync_single_for_cpu)
374 ops->sync_single_for_cpu(dev, addr, size, dir);
375 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377 }
378 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
__dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)380 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381 size_t size, enum dma_data_direction dir)
382 {
383 const struct dma_map_ops *ops = get_dma_ops(dev);
384
385 BUG_ON(!valid_dma_direction(dir));
386 if (dma_map_direct(dev, ops))
387 dma_direct_sync_single_for_device(dev, addr, size, dir);
388 else if (use_dma_iommu(dev))
389 iommu_dma_sync_single_for_device(dev, addr, size, dir);
390 else if (ops->sync_single_for_device)
391 ops->sync_single_for_device(dev, addr, size, dir);
392 trace_dma_sync_single_for_device(dev, addr, size, dir);
393 debug_dma_sync_single_for_device(dev, addr, size, dir);
394 }
395 EXPORT_SYMBOL(__dma_sync_single_for_device);
396
__dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)397 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398 int nelems, enum dma_data_direction dir)
399 {
400 const struct dma_map_ops *ops = get_dma_ops(dev);
401
402 BUG_ON(!valid_dma_direction(dir));
403 if (dma_map_direct(dev, ops))
404 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405 else if (use_dma_iommu(dev))
406 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407 else if (ops->sync_sg_for_cpu)
408 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411 }
412 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
__dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)414 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415 int nelems, enum dma_data_direction dir)
416 {
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418
419 BUG_ON(!valid_dma_direction(dir));
420 if (dma_map_direct(dev, ops))
421 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422 else if (use_dma_iommu(dev))
423 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424 else if (ops->sync_sg_for_device)
425 ops->sync_sg_for_device(dev, sg, nelems, dir);
426 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428 }
429 EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
__dma_need_sync(struct device * dev,dma_addr_t dma_addr)431 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432 {
433 const struct dma_map_ops *ops = get_dma_ops(dev);
434
435 if (dma_map_direct(dev, ops))
436 /*
437 * dma_skip_sync could've been reset on first SWIOTLB buffer
438 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439 * In this case, fall back to more granular check.
440 */
441 return dma_direct_need_sync(dev, dma_addr);
442 return true;
443 }
444 EXPORT_SYMBOL_GPL(__dma_need_sync);
445
446 /**
447 * dma_need_unmap - does this device need dma_unmap_* operations
448 * @dev: device to check
449 *
450 * If this function returns %false, drivers can skip calling dma_unmap_* after
451 * finishing an I/O. This function must be called after all mappings that might
452 * need to be unmapped have been performed.
453 */
dma_need_unmap(struct device * dev)454 bool dma_need_unmap(struct device *dev)
455 {
456 if (!dma_map_direct(dev, get_dma_ops(dev)))
457 return true;
458 if (!dev->dma_skip_sync)
459 return true;
460 return IS_ENABLED(CONFIG_DMA_API_DEBUG);
461 }
462 EXPORT_SYMBOL_GPL(dma_need_unmap);
463
dma_setup_need_sync(struct device * dev)464 static void dma_setup_need_sync(struct device *dev)
465 {
466 const struct dma_map_ops *ops = get_dma_ops(dev);
467
468 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
469 /*
470 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
471 * mapping, if any. During the device initialization, it's
472 * enough to check only for the DMA coherence.
473 */
474 dev->dma_skip_sync = dev_is_dma_coherent(dev);
475 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
476 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
477 /*
478 * Synchronization is not possible when none of DMA sync ops
479 * is set.
480 */
481 dev->dma_skip_sync = true;
482 else
483 dev->dma_skip_sync = false;
484 }
485 #else /* !CONFIG_DMA_NEED_SYNC */
dma_setup_need_sync(struct device * dev)486 static inline void dma_setup_need_sync(struct device *dev) { }
487 #endif /* !CONFIG_DMA_NEED_SYNC */
488
489 /*
490 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
491 * that the intention is to allow exporting memory allocated via the
492 * coherent DMA APIs through the dma_buf API, which only accepts a
493 * scattertable. This presents a couple of problems:
494 * 1. Not all memory allocated via the coherent DMA APIs is backed by
495 * a struct page
496 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
497 * as we will try to flush the memory through a different alias to that
498 * actually being used (and the flushes are redundant.)
499 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)500 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
501 void *cpu_addr, dma_addr_t dma_addr, size_t size,
502 unsigned long attrs)
503 {
504 const struct dma_map_ops *ops = get_dma_ops(dev);
505
506 if (dma_alloc_direct(dev, ops))
507 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
508 size, attrs);
509 if (use_dma_iommu(dev))
510 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
511 size, attrs);
512 if (!ops->get_sgtable)
513 return -ENXIO;
514 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
515 }
516 EXPORT_SYMBOL(dma_get_sgtable_attrs);
517
518 #ifdef CONFIG_MMU
519 /*
520 * Return the page attributes used for mapping dma_alloc_* memory, either in
521 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
522 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)523 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
524 {
525 if (dev_is_dma_coherent(dev))
526 return prot;
527 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
528 if (attrs & DMA_ATTR_WRITE_COMBINE)
529 return pgprot_writecombine(prot);
530 #endif
531 return pgprot_dmacoherent(prot);
532 }
533 #endif /* CONFIG_MMU */
534
535 /**
536 * dma_can_mmap - check if a given device supports dma_mmap_*
537 * @dev: device to check
538 *
539 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
540 * map DMA allocations to userspace.
541 */
dma_can_mmap(struct device * dev)542 bool dma_can_mmap(struct device *dev)
543 {
544 const struct dma_map_ops *ops = get_dma_ops(dev);
545
546 if (dma_alloc_direct(dev, ops))
547 return dma_direct_can_mmap(dev);
548 if (use_dma_iommu(dev))
549 return true;
550 return ops->mmap != NULL;
551 }
552 EXPORT_SYMBOL_GPL(dma_can_mmap);
553
554 /**
555 * dma_mmap_attrs - map a coherent DMA allocation into user space
556 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
557 * @vma: vm_area_struct describing requested user mapping
558 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
559 * @dma_addr: device-view address returned from dma_alloc_attrs
560 * @size: size of memory originally requested in dma_alloc_attrs
561 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
562 *
563 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
564 * space. The coherent DMA buffer must not be freed by the driver until the
565 * user space mapping has been released.
566 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)567 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
568 void *cpu_addr, dma_addr_t dma_addr, size_t size,
569 unsigned long attrs)
570 {
571 const struct dma_map_ops *ops = get_dma_ops(dev);
572
573 if (dma_alloc_direct(dev, ops))
574 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
575 attrs);
576 if (use_dma_iommu(dev))
577 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
578 attrs);
579 if (!ops->mmap)
580 return -ENXIO;
581 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
582 }
583 EXPORT_SYMBOL(dma_mmap_attrs);
584
dma_get_required_mask(struct device * dev)585 u64 dma_get_required_mask(struct device *dev)
586 {
587 const struct dma_map_ops *ops = get_dma_ops(dev);
588
589 if (dma_alloc_direct(dev, ops))
590 return dma_direct_get_required_mask(dev);
591
592 if (use_dma_iommu(dev))
593 return DMA_BIT_MASK(32);
594
595 if (ops->get_required_mask)
596 return ops->get_required_mask(dev);
597
598 /*
599 * We require every DMA ops implementation to at least support a 32-bit
600 * DMA mask (and use bounce buffering if that isn't supported in
601 * hardware). As the direct mapping code has its own routine to
602 * actually report an optimal mask we default to 32-bit here as that
603 * is the right thing for most IOMMUs, and at least not actively
604 * harmful in general.
605 */
606 return DMA_BIT_MASK(32);
607 }
608 EXPORT_SYMBOL_GPL(dma_get_required_mask);
609
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)610 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
611 gfp_t flag, unsigned long attrs)
612 {
613 const struct dma_map_ops *ops = get_dma_ops(dev);
614 void *cpu_addr;
615
616 WARN_ON_ONCE(!dev->coherent_dma_mask);
617
618 /*
619 * DMA allocations can never be turned back into a page pointer, so
620 * requesting compound pages doesn't make sense (and can't even be
621 * supported at all by various backends).
622 */
623 if (WARN_ON_ONCE(flag & __GFP_COMP))
624 return NULL;
625
626 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
627 trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
628 DMA_BIDIRECTIONAL, flag, attrs);
629 return cpu_addr;
630 }
631
632 /* let the implementation decide on the zone to allocate from: */
633 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
634
635 if (dma_alloc_direct(dev, ops)) {
636 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
637 } else if (use_dma_iommu(dev)) {
638 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
639 } else if (ops->alloc) {
640 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
641 } else {
642 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
643 attrs);
644 return NULL;
645 }
646
647 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
648 flag, attrs);
649 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
650 return cpu_addr;
651 }
652 EXPORT_SYMBOL(dma_alloc_attrs);
653
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)654 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
655 dma_addr_t dma_handle, unsigned long attrs)
656 {
657 const struct dma_map_ops *ops = get_dma_ops(dev);
658
659 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
660 return;
661 /*
662 * On non-coherent platforms which implement DMA-coherent buffers via
663 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
664 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
665 * sleep on some machines, and b) an indication that the driver is
666 * probably misusing the coherent API anyway.
667 */
668 WARN_ON(irqs_disabled());
669
670 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
671 attrs);
672 if (!cpu_addr)
673 return;
674
675 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
676 if (dma_alloc_direct(dev, ops))
677 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
678 else if (use_dma_iommu(dev))
679 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
680 else if (ops->free)
681 ops->free(dev, size, cpu_addr, dma_handle, attrs);
682 }
683 EXPORT_SYMBOL(dma_free_attrs);
684
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)685 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
686 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
687 {
688 const struct dma_map_ops *ops = get_dma_ops(dev);
689
690 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
691 return NULL;
692 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
693 return NULL;
694 if (WARN_ON_ONCE(gfp & __GFP_COMP))
695 return NULL;
696
697 size = PAGE_ALIGN(size);
698 if (dma_alloc_direct(dev, ops))
699 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
700 if (use_dma_iommu(dev))
701 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
702 if (!ops->alloc_pages_op)
703 return NULL;
704 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
705 }
706
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)707 struct page *dma_alloc_pages(struct device *dev, size_t size,
708 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
709 {
710 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
711
712 if (page) {
713 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
714 size, dir, gfp, 0);
715 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
716 } else {
717 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
718 }
719 return page;
720 }
721 EXPORT_SYMBOL_GPL(dma_alloc_pages);
722
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)723 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
724 dma_addr_t dma_handle, enum dma_data_direction dir)
725 {
726 const struct dma_map_ops *ops = get_dma_ops(dev);
727
728 size = PAGE_ALIGN(size);
729 if (dma_alloc_direct(dev, ops))
730 dma_direct_free_pages(dev, size, page, dma_handle, dir);
731 else if (use_dma_iommu(dev))
732 dma_common_free_pages(dev, size, page, dma_handle, dir);
733 else if (ops->free_pages)
734 ops->free_pages(dev, size, page, dma_handle, dir);
735 }
736
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)737 void dma_free_pages(struct device *dev, size_t size, struct page *page,
738 dma_addr_t dma_handle, enum dma_data_direction dir)
739 {
740 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
741 debug_dma_unmap_page(dev, dma_handle, size, dir);
742 __dma_free_pages(dev, size, page, dma_handle, dir);
743 }
744 EXPORT_SYMBOL_GPL(dma_free_pages);
745
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)746 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
747 size_t size, struct page *page)
748 {
749 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
750
751 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
752 return -ENXIO;
753 return remap_pfn_range(vma, vma->vm_start,
754 page_to_pfn(page) + vma->vm_pgoff,
755 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
756 }
757 EXPORT_SYMBOL_GPL(dma_mmap_pages);
758
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)759 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
760 enum dma_data_direction dir, gfp_t gfp)
761 {
762 struct sg_table *sgt;
763 struct page *page;
764
765 sgt = kmalloc(sizeof(*sgt), gfp);
766 if (!sgt)
767 return NULL;
768 if (sg_alloc_table(sgt, 1, gfp))
769 goto out_free_sgt;
770 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
771 if (!page)
772 goto out_free_table;
773 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
774 sg_dma_len(sgt->sgl) = sgt->sgl->length;
775 return sgt;
776 out_free_table:
777 sg_free_table(sgt);
778 out_free_sgt:
779 kfree(sgt);
780 return NULL;
781 }
782
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)783 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
784 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
785 {
786 struct sg_table *sgt;
787
788 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
789 return NULL;
790 if (WARN_ON_ONCE(gfp & __GFP_COMP))
791 return NULL;
792
793 if (use_dma_iommu(dev))
794 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
795 else
796 sgt = alloc_single_sgt(dev, size, dir, gfp);
797
798 if (sgt) {
799 sgt->nents = 1;
800 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
801 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
802 } else {
803 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
804 }
805 return sgt;
806 }
807 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
808
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)809 static void free_single_sgt(struct device *dev, size_t size,
810 struct sg_table *sgt, enum dma_data_direction dir)
811 {
812 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
813 dir);
814 sg_free_table(sgt);
815 kfree(sgt);
816 }
817
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)818 void dma_free_noncontiguous(struct device *dev, size_t size,
819 struct sg_table *sgt, enum dma_data_direction dir)
820 {
821 trace_dma_free_sgt(dev, sgt, size, dir);
822 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
823
824 if (use_dma_iommu(dev))
825 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
826 else
827 free_single_sgt(dev, size, sgt, dir);
828 }
829 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
830
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)831 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
832 struct sg_table *sgt)
833 {
834
835 if (use_dma_iommu(dev))
836 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
837
838 return page_address(sg_page(sgt->sgl));
839 }
840 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
841
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)842 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
843 {
844 if (use_dma_iommu(dev))
845 iommu_dma_vunmap_noncontiguous(dev, vaddr);
846 }
847 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
848
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)849 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
850 size_t size, struct sg_table *sgt)
851 {
852 if (use_dma_iommu(dev))
853 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
854 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
855 }
856 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
857
dma_supported(struct device * dev,u64 mask)858 static int dma_supported(struct device *dev, u64 mask)
859 {
860 const struct dma_map_ops *ops = get_dma_ops(dev);
861
862 if (use_dma_iommu(dev)) {
863 if (WARN_ON(ops))
864 return false;
865 return true;
866 }
867
868 /*
869 * ->dma_supported sets and clears the bypass flag, so ignore it here
870 * and always call into the method if there is one.
871 */
872 if (ops) {
873 if (!ops->dma_supported)
874 return true;
875 return ops->dma_supported(dev, mask);
876 }
877
878 return dma_direct_supported(dev, mask);
879 }
880
dma_pci_p2pdma_supported(struct device * dev)881 bool dma_pci_p2pdma_supported(struct device *dev)
882 {
883 const struct dma_map_ops *ops = get_dma_ops(dev);
884
885 /*
886 * Note: dma_ops_bypass is not checked here because P2PDMA should
887 * not be used with dma mapping ops that do not have support even
888 * if the specific device is bypassing them.
889 */
890
891 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
892 return !ops;
893 }
894 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
895
dma_set_mask(struct device * dev,u64 mask)896 int dma_set_mask(struct device *dev, u64 mask)
897 {
898 /*
899 * Truncate the mask to the actually supported dma_addr_t width to
900 * avoid generating unsupportable addresses.
901 */
902 mask = (dma_addr_t)mask;
903
904 if (!dev->dma_mask || !dma_supported(dev, mask))
905 return -EIO;
906
907 arch_dma_set_mask(dev, mask);
908 *dev->dma_mask = mask;
909 dma_setup_need_sync(dev);
910
911 return 0;
912 }
913 EXPORT_SYMBOL(dma_set_mask);
914
dma_set_coherent_mask(struct device * dev,u64 mask)915 int dma_set_coherent_mask(struct device *dev, u64 mask)
916 {
917 /*
918 * Truncate the mask to the actually supported dma_addr_t width to
919 * avoid generating unsupportable addresses.
920 */
921 mask = (dma_addr_t)mask;
922
923 if (!dma_supported(dev, mask))
924 return -EIO;
925
926 dev->coherent_dma_mask = mask;
927 return 0;
928 }
929 EXPORT_SYMBOL(dma_set_coherent_mask);
930
__dma_addressing_limited(struct device * dev)931 static bool __dma_addressing_limited(struct device *dev)
932 {
933 const struct dma_map_ops *ops = get_dma_ops(dev);
934
935 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
936 dma_get_required_mask(dev))
937 return true;
938
939 if (unlikely(ops) || use_dma_iommu(dev))
940 return false;
941 return !dma_direct_all_ram_mapped(dev);
942 }
943
944 /**
945 * dma_addressing_limited - return if the device is addressing limited
946 * @dev: device to check
947 *
948 * Return %true if the devices DMA mask is too small to address all memory in
949 * the system, else %false. Lack of addressing bits is the prime reason for
950 * bounce buffering, but might not be the only one.
951 */
dma_addressing_limited(struct device * dev)952 bool dma_addressing_limited(struct device *dev)
953 {
954 if (!__dma_addressing_limited(dev))
955 return false;
956
957 dev_dbg(dev, "device is DMA addressing limited\n");
958 return true;
959 }
960 EXPORT_SYMBOL_GPL(dma_addressing_limited);
961
dma_max_mapping_size(struct device * dev)962 size_t dma_max_mapping_size(struct device *dev)
963 {
964 const struct dma_map_ops *ops = get_dma_ops(dev);
965 size_t size = SIZE_MAX;
966
967 if (dma_map_direct(dev, ops))
968 size = dma_direct_max_mapping_size(dev);
969 else if (use_dma_iommu(dev))
970 size = iommu_dma_max_mapping_size(dev);
971 else if (ops && ops->max_mapping_size)
972 size = ops->max_mapping_size(dev);
973
974 return size;
975 }
976 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
977
dma_opt_mapping_size(struct device * dev)978 size_t dma_opt_mapping_size(struct device *dev)
979 {
980 const struct dma_map_ops *ops = get_dma_ops(dev);
981 size_t size = SIZE_MAX;
982
983 if (use_dma_iommu(dev))
984 size = iommu_dma_opt_mapping_size();
985 else if (ops && ops->opt_mapping_size)
986 size = ops->opt_mapping_size();
987
988 return min(dma_max_mapping_size(dev), size);
989 }
990 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
991
dma_get_merge_boundary(struct device * dev)992 unsigned long dma_get_merge_boundary(struct device *dev)
993 {
994 const struct dma_map_ops *ops = get_dma_ops(dev);
995
996 if (use_dma_iommu(dev))
997 return iommu_dma_get_merge_boundary(dev);
998
999 if (!ops || !ops->get_merge_boundary)
1000 return 0; /* can't merge */
1001
1002 return ops->get_merge_boundary(dev);
1003 }
1004 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1005