xref: /linux/kernel/dma/mapping.c (revision a7405aa92feec2598cedc1b6c651beb1848240fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23 
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29 
30 /*
31  * Managed DMA API
32  */
33 struct dma_devres {
34 	size_t		size;
35 	void		*vaddr;
36 	dma_addr_t	dma_handle;
37 	unsigned long	attrs;
38 };
39 
dmam_release(struct device * dev,void * res)40 static void dmam_release(struct device *dev, void *res)
41 {
42 	struct dma_devres *this = res;
43 
44 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 			this->attrs);
46 }
47 
dmam_match(struct device * dev,void * res,void * match_data)48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 	struct dma_devres *this = res, *match = match_data;
51 
52 	if (this->vaddr == match->vaddr) {
53 		WARN_ON(this->size != match->size ||
54 			this->dma_handle != match->dma_handle);
55 		return 1;
56 	}
57 	return 0;
58 }
59 
60 /**
61  * dmam_free_coherent - Managed dma_free_coherent()
62  * @dev: Device to free coherent memory for
63  * @size: Size of allocation
64  * @vaddr: Virtual address of the memory to free
65  * @dma_handle: DMA handle of the memory to free
66  *
67  * Managed dma_free_coherent().
68  */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 			dma_addr_t dma_handle)
71 {
72 	struct dma_devres match_data = { size, vaddr, dma_handle };
73 
74 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 	dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78 
79 /**
80  * dmam_alloc_attrs - Managed dma_alloc_attrs()
81  * @dev: Device to allocate non_coherent memory for
82  * @size: Size of allocation
83  * @dma_handle: Out argument for allocated DMA handle
84  * @gfp: Allocation flags
85  * @attrs: Flags in the DMA_ATTR_* namespace.
86  *
87  * Managed dma_alloc_attrs().  Memory allocated using this function will be
88  * automatically released on driver detach.
89  *
90  * RETURNS:
91  * Pointer to allocated memory on success, NULL on failure.
92  */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 		gfp_t gfp, unsigned long attrs)
95 {
96 	struct dma_devres *dr;
97 	void *vaddr;
98 
99 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 	if (!dr)
101 		return NULL;
102 
103 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 	if (!vaddr) {
105 		devres_free(dr);
106 		return NULL;
107 	}
108 
109 	dr->vaddr = vaddr;
110 	dr->dma_handle = *dma_handle;
111 	dr->size = size;
112 	dr->attrs = attrs;
113 
114 	devres_add(dev, dr);
115 
116 	return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119 
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 		const struct dma_map_ops *ops)
122 {
123 	if (use_dma_iommu(dev))
124 		return false;
125 
126 	if (likely(!ops))
127 		return true;
128 
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 	if (dev->dma_ops_bypass)
131 		return min_not_zero(mask, dev->bus_dma_limit) >=
132 			    dma_direct_get_required_mask(dev);
133 #endif
134 	return false;
135 }
136 
137 
138 /*
139  * Check if the devices uses a direct mapping for streaming DMA operations.
140  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141  * enough.
142  */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)143 static inline bool dma_alloc_direct(struct device *dev,
144 		const struct dma_map_ops *ops)
145 {
146 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148 
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)149 static inline bool dma_map_direct(struct device *dev,
150 		const struct dma_map_ops *ops)
151 {
152 	return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154 
dma_map_phys(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)155 dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
156 		enum dma_data_direction dir, unsigned long attrs)
157 {
158 	const struct dma_map_ops *ops = get_dma_ops(dev);
159 	bool is_mmio = attrs & DMA_ATTR_MMIO;
160 	dma_addr_t addr = DMA_MAPPING_ERROR;
161 
162 	BUG_ON(!valid_dma_direction(dir));
163 
164 	if (WARN_ON_ONCE(!dev->dma_mask))
165 		return DMA_MAPPING_ERROR;
166 
167 	if (dma_map_direct(dev, ops) ||
168 	    (!is_mmio && arch_dma_map_phys_direct(dev, phys + size)))
169 		addr = dma_direct_map_phys(dev, phys, size, dir, attrs);
170 	else if (use_dma_iommu(dev))
171 		addr = iommu_dma_map_phys(dev, phys, size, dir, attrs);
172 	else if (ops->map_phys)
173 		addr = ops->map_phys(dev, phys, size, dir, attrs);
174 
175 	if (!is_mmio)
176 		kmsan_handle_dma(phys, size, dir);
177 	trace_dma_map_phys(dev, phys, addr, size, dir, attrs);
178 	debug_dma_map_phys(dev, phys, size, dir, addr, attrs);
179 
180 	return addr;
181 }
182 EXPORT_SYMBOL_GPL(dma_map_phys);
183 
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)184 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
185 		size_t offset, size_t size, enum dma_data_direction dir,
186 		unsigned long attrs)
187 {
188 	phys_addr_t phys = page_to_phys(page) + offset;
189 
190 	if (unlikely(attrs & DMA_ATTR_MMIO))
191 		return DMA_MAPPING_ERROR;
192 
193 	if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
194 	    WARN_ON_ONCE(is_zone_device_page(page)))
195 		return DMA_MAPPING_ERROR;
196 
197 	return dma_map_phys(dev, phys, size, dir, attrs);
198 }
199 EXPORT_SYMBOL(dma_map_page_attrs);
200 
dma_unmap_phys(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)201 void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size,
202 		enum dma_data_direction dir, unsigned long attrs)
203 {
204 	const struct dma_map_ops *ops = get_dma_ops(dev);
205 	bool is_mmio = attrs & DMA_ATTR_MMIO;
206 
207 	BUG_ON(!valid_dma_direction(dir));
208 	if (dma_map_direct(dev, ops) ||
209 	    (!is_mmio && arch_dma_unmap_phys_direct(dev, addr + size)))
210 		dma_direct_unmap_phys(dev, addr, size, dir, attrs);
211 	else if (use_dma_iommu(dev))
212 		iommu_dma_unmap_phys(dev, addr, size, dir, attrs);
213 	else if (ops->unmap_phys)
214 		ops->unmap_phys(dev, addr, size, dir, attrs);
215 	trace_dma_unmap_phys(dev, addr, size, dir, attrs);
216 	debug_dma_unmap_phys(dev, addr, size, dir);
217 }
218 EXPORT_SYMBOL_GPL(dma_unmap_phys);
219 
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)220 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
221 		 enum dma_data_direction dir, unsigned long attrs)
222 {
223 	if (unlikely(attrs & DMA_ATTR_MMIO))
224 		return;
225 
226 	dma_unmap_phys(dev, addr, size, dir, attrs);
227 }
228 EXPORT_SYMBOL(dma_unmap_page_attrs);
229 
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)230 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
231 	 int nents, enum dma_data_direction dir, unsigned long attrs)
232 {
233 	const struct dma_map_ops *ops = get_dma_ops(dev);
234 	int ents;
235 
236 	BUG_ON(!valid_dma_direction(dir));
237 
238 	if (WARN_ON_ONCE(!dev->dma_mask))
239 		return 0;
240 
241 	if (dma_map_direct(dev, ops) ||
242 	    arch_dma_map_sg_direct(dev, sg, nents))
243 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
244 	else if (use_dma_iommu(dev))
245 		ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
246 	else
247 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
248 
249 	if (ents > 0) {
250 		kmsan_handle_dma_sg(sg, nents, dir);
251 		trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
252 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
253 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
254 				ents != -EIO && ents != -EREMOTEIO)) {
255 		trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
256 		return -EIO;
257 	}
258 
259 	return ents;
260 }
261 
262 /**
263  * dma_map_sg_attrs - Map the given buffer for DMA
264  * @dev:	The device for which to perform the DMA operation
265  * @sg:		The sg_table object describing the buffer
266  * @nents:	Number of entries to map
267  * @dir:	DMA direction
268  * @attrs:	Optional DMA attributes for the map operation
269  *
270  * Maps a buffer described by a scatterlist passed in the sg argument with
271  * nents segments for the @dir DMA operation by the @dev device.
272  *
273  * Returns the number of mapped entries (which can be less than nents)
274  * on success. Zero is returned for any error.
275  *
276  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
277  * original sg and original nents (not the value returned by this funciton).
278  */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)279 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
280 		    int nents, enum dma_data_direction dir, unsigned long attrs)
281 {
282 	int ret;
283 
284 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
285 	if (ret < 0)
286 		return 0;
287 	return ret;
288 }
289 EXPORT_SYMBOL(dma_map_sg_attrs);
290 
291 /**
292  * dma_map_sgtable - Map the given buffer for DMA
293  * @dev:	The device for which to perform the DMA operation
294  * @sgt:	The sg_table object describing the buffer
295  * @dir:	DMA direction
296  * @attrs:	Optional DMA attributes for the map operation
297  *
298  * Maps a buffer described by a scatterlist stored in the given sg_table
299  * object for the @dir DMA operation by the @dev device. After success, the
300  * ownership for the buffer is transferred to the DMA domain.  One has to
301  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
302  * ownership of the buffer back to the CPU domain before touching the
303  * buffer by the CPU.
304  *
305  * Returns 0 on success or a negative error code on error. The following
306  * error codes are supported with the given meaning:
307  *
308  *   -EINVAL		An invalid argument, unaligned access or other error
309  *			in usage. Will not succeed if retried.
310  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
311  *			complete the mapping. Should succeed if retried later.
312  *   -EIO		Legacy error code with an unknown meaning. eg. this is
313  *			returned if a lower level call returned
314  *			DMA_MAPPING_ERROR.
315  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
316  *			in the sg_table. This will not succeed if retried.
317  */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)318 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
319 		    enum dma_data_direction dir, unsigned long attrs)
320 {
321 	int nents;
322 
323 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
324 	if (nents < 0)
325 		return nents;
326 	sgt->nents = nents;
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(dma_map_sgtable);
330 
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)331 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
332 				      int nents, enum dma_data_direction dir,
333 				      unsigned long attrs)
334 {
335 	const struct dma_map_ops *ops = get_dma_ops(dev);
336 
337 	BUG_ON(!valid_dma_direction(dir));
338 	trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
339 	debug_dma_unmap_sg(dev, sg, nents, dir);
340 	if (dma_map_direct(dev, ops) ||
341 	    arch_dma_unmap_sg_direct(dev, sg, nents))
342 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
343 	else if (use_dma_iommu(dev))
344 		iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
345 	else if (ops->unmap_sg)
346 		ops->unmap_sg(dev, sg, nents, dir, attrs);
347 }
348 EXPORT_SYMBOL(dma_unmap_sg_attrs);
349 
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)350 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
351 		size_t size, enum dma_data_direction dir, unsigned long attrs)
352 {
353 	if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
354 	    WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
355 		return DMA_MAPPING_ERROR;
356 
357 	return dma_map_phys(dev, phys_addr, size, dir, attrs | DMA_ATTR_MMIO);
358 }
359 EXPORT_SYMBOL(dma_map_resource);
360 
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)361 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
362 		enum dma_data_direction dir, unsigned long attrs)
363 {
364 	dma_unmap_phys(dev, addr, size, dir, attrs | DMA_ATTR_MMIO);
365 }
366 EXPORT_SYMBOL(dma_unmap_resource);
367 
368 #ifdef CONFIG_DMA_NEED_SYNC
__dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)369 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
370 		enum dma_data_direction dir)
371 {
372 	const struct dma_map_ops *ops = get_dma_ops(dev);
373 
374 	BUG_ON(!valid_dma_direction(dir));
375 	if (dma_map_direct(dev, ops))
376 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
377 	else if (use_dma_iommu(dev))
378 		iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
379 	else if (ops->sync_single_for_cpu)
380 		ops->sync_single_for_cpu(dev, addr, size, dir);
381 	trace_dma_sync_single_for_cpu(dev, addr, size, dir);
382 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
383 }
384 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
385 
__dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)386 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
387 		size_t size, enum dma_data_direction dir)
388 {
389 	const struct dma_map_ops *ops = get_dma_ops(dev);
390 
391 	BUG_ON(!valid_dma_direction(dir));
392 	if (dma_map_direct(dev, ops))
393 		dma_direct_sync_single_for_device(dev, addr, size, dir);
394 	else if (use_dma_iommu(dev))
395 		iommu_dma_sync_single_for_device(dev, addr, size, dir);
396 	else if (ops->sync_single_for_device)
397 		ops->sync_single_for_device(dev, addr, size, dir);
398 	trace_dma_sync_single_for_device(dev, addr, size, dir);
399 	debug_dma_sync_single_for_device(dev, addr, size, dir);
400 }
401 EXPORT_SYMBOL(__dma_sync_single_for_device);
402 
__dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)403 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
404 		    int nelems, enum dma_data_direction dir)
405 {
406 	const struct dma_map_ops *ops = get_dma_ops(dev);
407 
408 	BUG_ON(!valid_dma_direction(dir));
409 	if (dma_map_direct(dev, ops))
410 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
411 	else if (use_dma_iommu(dev))
412 		iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
413 	else if (ops->sync_sg_for_cpu)
414 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
415 	trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
416 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
417 }
418 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
419 
__dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)420 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
421 		       int nelems, enum dma_data_direction dir)
422 {
423 	const struct dma_map_ops *ops = get_dma_ops(dev);
424 
425 	BUG_ON(!valid_dma_direction(dir));
426 	if (dma_map_direct(dev, ops))
427 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
428 	else if (use_dma_iommu(dev))
429 		iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
430 	else if (ops->sync_sg_for_device)
431 		ops->sync_sg_for_device(dev, sg, nelems, dir);
432 	trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
433 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
434 }
435 EXPORT_SYMBOL(__dma_sync_sg_for_device);
436 
__dma_need_sync(struct device * dev,dma_addr_t dma_addr)437 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
438 {
439 	const struct dma_map_ops *ops = get_dma_ops(dev);
440 
441 	if (dma_map_direct(dev, ops))
442 		/*
443 		 * dma_skip_sync could've been reset on first SWIOTLB buffer
444 		 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
445 		 * In this case, fall back to more granular check.
446 		 */
447 		return dma_direct_need_sync(dev, dma_addr);
448 	return true;
449 }
450 EXPORT_SYMBOL_GPL(__dma_need_sync);
451 
452 /**
453  * dma_need_unmap - does this device need dma_unmap_* operations
454  * @dev: device to check
455  *
456  * If this function returns %false, drivers can skip calling dma_unmap_* after
457  * finishing an I/O.  This function must be called after all mappings that might
458  * need to be unmapped have been performed.
459  */
dma_need_unmap(struct device * dev)460 bool dma_need_unmap(struct device *dev)
461 {
462 	if (!dma_map_direct(dev, get_dma_ops(dev)))
463 		return true;
464 	if (!dev->dma_skip_sync)
465 		return true;
466 	return IS_ENABLED(CONFIG_DMA_API_DEBUG);
467 }
468 EXPORT_SYMBOL_GPL(dma_need_unmap);
469 
dma_setup_need_sync(struct device * dev)470 static void dma_setup_need_sync(struct device *dev)
471 {
472 	const struct dma_map_ops *ops = get_dma_ops(dev);
473 
474 	if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
475 		/*
476 		 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
477 		 * mapping, if any. During the device initialization, it's
478 		 * enough to check only for the DMA coherence.
479 		 */
480 		dev->dma_skip_sync = dev_is_dma_coherent(dev);
481 	else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
482 		 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
483 		/*
484 		 * Synchronization is not possible when none of DMA sync ops
485 		 * is set.
486 		 */
487 		dev->dma_skip_sync = true;
488 	else
489 		dev->dma_skip_sync = false;
490 }
491 #else /* !CONFIG_DMA_NEED_SYNC */
dma_setup_need_sync(struct device * dev)492 static inline void dma_setup_need_sync(struct device *dev) { }
493 #endif /* !CONFIG_DMA_NEED_SYNC */
494 
495 /*
496  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
497  * that the intention is to allow exporting memory allocated via the
498  * coherent DMA APIs through the dma_buf API, which only accepts a
499  * scattertable.  This presents a couple of problems:
500  * 1. Not all memory allocated via the coherent DMA APIs is backed by
501  *    a struct page
502  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
503  *    as we will try to flush the memory through a different alias to that
504  *    actually being used (and the flushes are redundant.)
505  */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)506 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
507 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
508 		unsigned long attrs)
509 {
510 	const struct dma_map_ops *ops = get_dma_ops(dev);
511 
512 	if (dma_alloc_direct(dev, ops))
513 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
514 				size, attrs);
515 	if (use_dma_iommu(dev))
516 		return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
517 				size, attrs);
518 	if (!ops->get_sgtable)
519 		return -ENXIO;
520 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
521 }
522 EXPORT_SYMBOL(dma_get_sgtable_attrs);
523 
524 #ifdef CONFIG_MMU
525 /*
526  * Return the page attributes used for mapping dma_alloc_* memory, either in
527  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
528  */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)529 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
530 {
531 	if (dev_is_dma_coherent(dev))
532 		return prot;
533 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
534 	if (attrs & DMA_ATTR_WRITE_COMBINE)
535 		return pgprot_writecombine(prot);
536 #endif
537 	return pgprot_dmacoherent(prot);
538 }
539 #endif /* CONFIG_MMU */
540 
541 /**
542  * dma_can_mmap - check if a given device supports dma_mmap_*
543  * @dev: device to check
544  *
545  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
546  * map DMA allocations to userspace.
547  */
dma_can_mmap(struct device * dev)548 bool dma_can_mmap(struct device *dev)
549 {
550 	const struct dma_map_ops *ops = get_dma_ops(dev);
551 
552 	if (dma_alloc_direct(dev, ops))
553 		return dma_direct_can_mmap(dev);
554 	if (use_dma_iommu(dev))
555 		return true;
556 	return ops->mmap != NULL;
557 }
558 EXPORT_SYMBOL_GPL(dma_can_mmap);
559 
560 /**
561  * dma_mmap_attrs - map a coherent DMA allocation into user space
562  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
563  * @vma: vm_area_struct describing requested user mapping
564  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
565  * @dma_addr: device-view address returned from dma_alloc_attrs
566  * @size: size of memory originally requested in dma_alloc_attrs
567  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
568  *
569  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
570  * space.  The coherent DMA buffer must not be freed by the driver until the
571  * user space mapping has been released.
572  */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)573 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
574 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
575 		unsigned long attrs)
576 {
577 	const struct dma_map_ops *ops = get_dma_ops(dev);
578 
579 	if (dma_alloc_direct(dev, ops))
580 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
581 				attrs);
582 	if (use_dma_iommu(dev))
583 		return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
584 				      attrs);
585 	if (!ops->mmap)
586 		return -ENXIO;
587 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
588 }
589 EXPORT_SYMBOL(dma_mmap_attrs);
590 
dma_get_required_mask(struct device * dev)591 u64 dma_get_required_mask(struct device *dev)
592 {
593 	const struct dma_map_ops *ops = get_dma_ops(dev);
594 
595 	if (dma_alloc_direct(dev, ops))
596 		return dma_direct_get_required_mask(dev);
597 
598 	if (use_dma_iommu(dev))
599 		return DMA_BIT_MASK(32);
600 
601 	if (ops->get_required_mask)
602 		return ops->get_required_mask(dev);
603 
604 	/*
605 	 * We require every DMA ops implementation to at least support a 32-bit
606 	 * DMA mask (and use bounce buffering if that isn't supported in
607 	 * hardware).  As the direct mapping code has its own routine to
608 	 * actually report an optimal mask we default to 32-bit here as that
609 	 * is the right thing for most IOMMUs, and at least not actively
610 	 * harmful in general.
611 	 */
612 	return DMA_BIT_MASK(32);
613 }
614 EXPORT_SYMBOL_GPL(dma_get_required_mask);
615 
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)616 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
617 		gfp_t flag, unsigned long attrs)
618 {
619 	const struct dma_map_ops *ops = get_dma_ops(dev);
620 	void *cpu_addr;
621 
622 	WARN_ON_ONCE(!dev->coherent_dma_mask);
623 
624 	/*
625 	 * DMA allocations can never be turned back into a page pointer, so
626 	 * requesting compound pages doesn't make sense (and can't even be
627 	 * supported at all by various backends).
628 	 */
629 	if (WARN_ON_ONCE(flag & __GFP_COMP))
630 		return NULL;
631 
632 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
633 		trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
634 				DMA_BIDIRECTIONAL, flag, attrs);
635 		return cpu_addr;
636 	}
637 
638 	/* let the implementation decide on the zone to allocate from: */
639 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
640 
641 	if (dma_alloc_direct(dev, ops)) {
642 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
643 	} else if (use_dma_iommu(dev)) {
644 		cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
645 	} else if (ops->alloc) {
646 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
647 	} else {
648 		trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
649 				attrs);
650 		return NULL;
651 	}
652 
653 	trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
654 			flag, attrs);
655 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
656 	return cpu_addr;
657 }
658 EXPORT_SYMBOL(dma_alloc_attrs);
659 
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)660 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
661 		dma_addr_t dma_handle, unsigned long attrs)
662 {
663 	const struct dma_map_ops *ops = get_dma_ops(dev);
664 
665 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
666 		return;
667 	/*
668 	 * On non-coherent platforms which implement DMA-coherent buffers via
669 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
670 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
671 	 * sleep on some machines, and b) an indication that the driver is
672 	 * probably misusing the coherent API anyway.
673 	 */
674 	WARN_ON(irqs_disabled());
675 
676 	trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
677 		       attrs);
678 	if (!cpu_addr)
679 		return;
680 
681 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
682 	if (dma_alloc_direct(dev, ops))
683 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
684 	else if (use_dma_iommu(dev))
685 		iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
686 	else if (ops->free)
687 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
688 }
689 EXPORT_SYMBOL(dma_free_attrs);
690 
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)691 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
692 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
693 {
694 	const struct dma_map_ops *ops = get_dma_ops(dev);
695 
696 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
697 		return NULL;
698 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
699 		return NULL;
700 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
701 		return NULL;
702 
703 	size = PAGE_ALIGN(size);
704 	if (dma_alloc_direct(dev, ops))
705 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
706 	if (use_dma_iommu(dev))
707 		return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
708 	if (!ops->alloc_pages_op)
709 		return NULL;
710 	return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
711 }
712 
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)713 struct page *dma_alloc_pages(struct device *dev, size_t size,
714 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
715 {
716 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
717 
718 	if (page) {
719 		trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
720 				      size, dir, gfp, 0);
721 		debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
722 	} else {
723 		trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
724 	}
725 	return page;
726 }
727 EXPORT_SYMBOL_GPL(dma_alloc_pages);
728 
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)729 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
730 		dma_addr_t dma_handle, enum dma_data_direction dir)
731 {
732 	const struct dma_map_ops *ops = get_dma_ops(dev);
733 
734 	size = PAGE_ALIGN(size);
735 	if (dma_alloc_direct(dev, ops))
736 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
737 	else if (use_dma_iommu(dev))
738 		dma_common_free_pages(dev, size, page, dma_handle, dir);
739 	else if (ops->free_pages)
740 		ops->free_pages(dev, size, page, dma_handle, dir);
741 }
742 
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)743 void dma_free_pages(struct device *dev, size_t size, struct page *page,
744 		dma_addr_t dma_handle, enum dma_data_direction dir)
745 {
746 	trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
747 	debug_dma_free_pages(dev, page, size, dir, dma_handle);
748 	__dma_free_pages(dev, size, page, dma_handle, dir);
749 }
750 EXPORT_SYMBOL_GPL(dma_free_pages);
751 
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)752 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
753 		size_t size, struct page *page)
754 {
755 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 
757 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
758 		return -ENXIO;
759 	return remap_pfn_range(vma, vma->vm_start,
760 			       page_to_pfn(page) + vma->vm_pgoff,
761 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
762 }
763 EXPORT_SYMBOL_GPL(dma_mmap_pages);
764 
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)765 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
766 		enum dma_data_direction dir, gfp_t gfp)
767 {
768 	struct sg_table *sgt;
769 	struct page *page;
770 
771 	sgt = kmalloc(sizeof(*sgt), gfp);
772 	if (!sgt)
773 		return NULL;
774 	if (sg_alloc_table(sgt, 1, gfp))
775 		goto out_free_sgt;
776 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
777 	if (!page)
778 		goto out_free_table;
779 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
780 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
781 	return sgt;
782 out_free_table:
783 	sg_free_table(sgt);
784 out_free_sgt:
785 	kfree(sgt);
786 	return NULL;
787 }
788 
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)789 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
790 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
791 {
792 	struct sg_table *sgt;
793 
794 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
795 		return NULL;
796 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
797 		return NULL;
798 
799 	if (use_dma_iommu(dev))
800 		sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
801 	else
802 		sgt = alloc_single_sgt(dev, size, dir, gfp);
803 
804 	if (sgt) {
805 		sgt->nents = 1;
806 		trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
807 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
808 	} else {
809 		trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
810 	}
811 	return sgt;
812 }
813 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
814 
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)815 static void free_single_sgt(struct device *dev, size_t size,
816 		struct sg_table *sgt, enum dma_data_direction dir)
817 {
818 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
819 			 dir);
820 	sg_free_table(sgt);
821 	kfree(sgt);
822 }
823 
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)824 void dma_free_noncontiguous(struct device *dev, size_t size,
825 		struct sg_table *sgt, enum dma_data_direction dir)
826 {
827 	trace_dma_free_sgt(dev, sgt, size, dir);
828 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829 
830 	if (use_dma_iommu(dev))
831 		iommu_dma_free_noncontiguous(dev, size, sgt, dir);
832 	else
833 		free_single_sgt(dev, size, sgt, dir);
834 }
835 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
836 
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)837 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
838 		struct sg_table *sgt)
839 {
840 
841 	if (use_dma_iommu(dev))
842 		return iommu_dma_vmap_noncontiguous(dev, size, sgt);
843 
844 	return page_address(sg_page(sgt->sgl));
845 }
846 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
847 
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)848 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
849 {
850 	if (use_dma_iommu(dev))
851 		iommu_dma_vunmap_noncontiguous(dev, vaddr);
852 }
853 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
854 
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)855 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
856 		size_t size, struct sg_table *sgt)
857 {
858 	if (use_dma_iommu(dev))
859 		return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
860 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
861 }
862 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
863 
dma_supported(struct device * dev,u64 mask)864 static int dma_supported(struct device *dev, u64 mask)
865 {
866 	const struct dma_map_ops *ops = get_dma_ops(dev);
867 
868 	if (use_dma_iommu(dev)) {
869 		if (WARN_ON(ops))
870 			return false;
871 		return true;
872 	}
873 
874 	/*
875 	 * ->dma_supported sets and clears the bypass flag, so ignore it here
876 	 * and always call into the method if there is one.
877 	 */
878 	if (ops) {
879 		if (!ops->dma_supported)
880 			return true;
881 		return ops->dma_supported(dev, mask);
882 	}
883 
884 	return dma_direct_supported(dev, mask);
885 }
886 
dma_pci_p2pdma_supported(struct device * dev)887 bool dma_pci_p2pdma_supported(struct device *dev)
888 {
889 	const struct dma_map_ops *ops = get_dma_ops(dev);
890 
891 	/*
892 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
893 	 * not be used with dma mapping ops that do not have support even
894 	 * if the specific device is bypassing them.
895 	 */
896 
897 	/* if ops is not set, dma direct and default IOMMU support P2PDMA */
898 	return !ops;
899 }
900 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
901 
dma_set_mask(struct device * dev,u64 mask)902 int dma_set_mask(struct device *dev, u64 mask)
903 {
904 	/*
905 	 * Truncate the mask to the actually supported dma_addr_t width to
906 	 * avoid generating unsupportable addresses.
907 	 */
908 	mask = (dma_addr_t)mask;
909 
910 	if (!dev->dma_mask || !dma_supported(dev, mask))
911 		return -EIO;
912 
913 	arch_dma_set_mask(dev, mask);
914 	*dev->dma_mask = mask;
915 	dma_setup_need_sync(dev);
916 
917 	return 0;
918 }
919 EXPORT_SYMBOL(dma_set_mask);
920 
dma_set_coherent_mask(struct device * dev,u64 mask)921 int dma_set_coherent_mask(struct device *dev, u64 mask)
922 {
923 	/*
924 	 * Truncate the mask to the actually supported dma_addr_t width to
925 	 * avoid generating unsupportable addresses.
926 	 */
927 	mask = (dma_addr_t)mask;
928 
929 	if (!dma_supported(dev, mask))
930 		return -EIO;
931 
932 	dev->coherent_dma_mask = mask;
933 	return 0;
934 }
935 EXPORT_SYMBOL(dma_set_coherent_mask);
936 
__dma_addressing_limited(struct device * dev)937 static bool __dma_addressing_limited(struct device *dev)
938 {
939 	const struct dma_map_ops *ops = get_dma_ops(dev);
940 
941 	if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
942 			 dma_get_required_mask(dev))
943 		return true;
944 
945 	if (unlikely(ops) || use_dma_iommu(dev))
946 		return false;
947 	return !dma_direct_all_ram_mapped(dev);
948 }
949 
950 /**
951  * dma_addressing_limited - return if the device is addressing limited
952  * @dev:	device to check
953  *
954  * Return %true if the devices DMA mask is too small to address all memory in
955  * the system, else %false.  Lack of addressing bits is the prime reason for
956  * bounce buffering, but might not be the only one.
957  */
dma_addressing_limited(struct device * dev)958 bool dma_addressing_limited(struct device *dev)
959 {
960 	if (!__dma_addressing_limited(dev))
961 		return false;
962 
963 	dev_dbg(dev, "device is DMA addressing limited\n");
964 	return true;
965 }
966 EXPORT_SYMBOL_GPL(dma_addressing_limited);
967 
dma_max_mapping_size(struct device * dev)968 size_t dma_max_mapping_size(struct device *dev)
969 {
970 	const struct dma_map_ops *ops = get_dma_ops(dev);
971 	size_t size = SIZE_MAX;
972 
973 	if (dma_map_direct(dev, ops))
974 		size = dma_direct_max_mapping_size(dev);
975 	else if (use_dma_iommu(dev))
976 		size = iommu_dma_max_mapping_size(dev);
977 	else if (ops && ops->max_mapping_size)
978 		size = ops->max_mapping_size(dev);
979 
980 	return size;
981 }
982 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
983 
dma_opt_mapping_size(struct device * dev)984 size_t dma_opt_mapping_size(struct device *dev)
985 {
986 	const struct dma_map_ops *ops = get_dma_ops(dev);
987 	size_t size = SIZE_MAX;
988 
989 	if (use_dma_iommu(dev))
990 		size = iommu_dma_opt_mapping_size();
991 	else if (ops && ops->opt_mapping_size)
992 		size = ops->opt_mapping_size();
993 
994 	return min(dma_max_mapping_size(dev), size);
995 }
996 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
997 
dma_get_merge_boundary(struct device * dev)998 unsigned long dma_get_merge_boundary(struct device *dev)
999 {
1000 	const struct dma_map_ops *ops = get_dma_ops(dev);
1001 
1002 	if (use_dma_iommu(dev))
1003 		return iommu_dma_get_merge_boundary(dev);
1004 
1005 	if (!ops || !ops->get_merge_boundary)
1006 		return 0;	/* can't merge */
1007 
1008 	return ops->get_merge_boundary(dev);
1009 }
1010 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1011