xref: /linux/kernel/sched/deadline.c (revision 115135422562e2f791e98a6f55ec57b2da3b3a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24 
25 /*
26  * Default limits for DL period; on the top end we guard against small util
27  * tasks still getting ridiculously long effective runtimes, on the bottom end we
28  * guard against timer DoS.
29  */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 	{
35 		.procname       = "sched_deadline_period_max_us",
36 		.data           = &sysctl_sched_dl_period_max,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = proc_douintvec_minmax,
40 		.extra1         = (void *)&sysctl_sched_dl_period_min,
41 	},
42 	{
43 		.procname       = "sched_deadline_period_min_us",
44 		.data           = &sysctl_sched_dl_period_min,
45 		.maxlen         = sizeof(unsigned int),
46 		.mode           = 0644,
47 		.proc_handler   = proc_douintvec_minmax,
48 		.extra2         = (void *)&sysctl_sched_dl_period_max,
49 	},
50 };
51 
52 static int __init sched_dl_sysctl_init(void)
53 {
54 	register_sysctl_init("kernel", sched_dl_sysctls);
55 	return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59 
60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 	return dl_se->dl_server;
63 }
64 
65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 	BUG_ON(dl_server(dl_se));
68 	return container_of(dl_se, struct task_struct, dl);
69 }
70 
71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 	return container_of(dl_rq, struct rq, dl);
74 }
75 
76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 	struct rq *rq = dl_se->rq;
79 
80 	if (!dl_server(dl_se))
81 		rq = task_rq(dl_task_of(dl_se));
82 
83 	return rq;
84 }
85 
86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 	return &rq_of_dl_se(dl_se)->dl;
89 }
90 
91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 	return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95 
96 #ifdef CONFIG_RT_MUTEXES
97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 	return dl_se->pi_se;
100 }
101 
102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 	return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 	return dl_se;
110 }
111 
112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 	return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117 
118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 			 "sched RCU must be held");
122 	return &cpu_rq(i)->rd->dl_bw;
123 }
124 
125 static inline int dl_bw_cpus(int i)
126 {
127 	struct root_domain *rd = cpu_rq(i)->rd;
128 
129 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
130 			 "sched RCU must be held");
131 
132 	return cpumask_weight_and(rd->span, cpu_active_mask);
133 }
134 
135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
136 {
137 	unsigned long cap = 0;
138 	int i;
139 
140 	for_each_cpu_and(i, mask, cpu_active_mask)
141 		cap += arch_scale_cpu_capacity(i);
142 
143 	return cap;
144 }
145 
146 /*
147  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
148  * of the CPU the task is running on rather rd's \Sum CPU capacity.
149  */
150 static inline unsigned long dl_bw_capacity(int i)
151 {
152 	if (!sched_asym_cpucap_active() &&
153 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
154 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
155 	} else {
156 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
157 				 "sched RCU must be held");
158 
159 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
160 	}
161 }
162 
163 bool dl_bw_visited(int cpu, u64 cookie)
164 {
165 	struct root_domain *rd = cpu_rq(cpu)->rd;
166 
167 	if (rd->visit_cookie == cookie)
168 		return true;
169 
170 	rd->visit_cookie = cookie;
171 	return false;
172 }
173 
174 static inline
175 void __dl_update(struct dl_bw *dl_b, s64 bw)
176 {
177 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
178 	int i;
179 
180 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
181 			 "sched RCU must be held");
182 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
183 		struct rq *rq = cpu_rq(i);
184 
185 		rq->dl.extra_bw += bw;
186 	}
187 }
188 
189 static inline
190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
191 {
192 	dl_b->total_bw -= tsk_bw;
193 	__dl_update(dl_b, (s32)tsk_bw / cpus);
194 }
195 
196 static inline
197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
198 {
199 	dl_b->total_bw += tsk_bw;
200 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
201 }
202 
203 static inline bool
204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
205 {
206 	return dl_b->bw != -1 &&
207 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
208 }
209 
210 static inline
211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
212 {
213 	u64 old = dl_rq->running_bw;
214 
215 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
216 	dl_rq->running_bw += dl_bw;
217 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
218 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
219 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
220 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
221 }
222 
223 static inline
224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
225 {
226 	u64 old = dl_rq->running_bw;
227 
228 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
229 	dl_rq->running_bw -= dl_bw;
230 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
231 	if (dl_rq->running_bw > old)
232 		dl_rq->running_bw = 0;
233 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
234 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
235 }
236 
237 static inline
238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
239 {
240 	u64 old = dl_rq->this_bw;
241 
242 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
243 	dl_rq->this_bw += dl_bw;
244 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
245 }
246 
247 static inline
248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
249 {
250 	u64 old = dl_rq->this_bw;
251 
252 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
253 	dl_rq->this_bw -= dl_bw;
254 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
255 	if (dl_rq->this_bw > old)
256 		dl_rq->this_bw = 0;
257 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
258 }
259 
260 static inline
261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
262 {
263 	if (!dl_entity_is_special(dl_se))
264 		__add_rq_bw(dl_se->dl_bw, dl_rq);
265 }
266 
267 static inline
268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
269 {
270 	if (!dl_entity_is_special(dl_se))
271 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
272 }
273 
274 static inline
275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
276 {
277 	if (!dl_entity_is_special(dl_se))
278 		__add_running_bw(dl_se->dl_bw, dl_rq);
279 }
280 
281 static inline
282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283 {
284 	if (!dl_entity_is_special(dl_se))
285 		__sub_running_bw(dl_se->dl_bw, dl_rq);
286 }
287 
288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
289 {
290 	if (dl_se->dl_non_contending) {
291 		sub_running_bw(dl_se, &rq->dl);
292 		dl_se->dl_non_contending = 0;
293 
294 		/*
295 		 * If the timer handler is currently running and the
296 		 * timer cannot be canceled, inactive_task_timer()
297 		 * will see that dl_not_contending is not set, and
298 		 * will not touch the rq's active utilization,
299 		 * so we are still safe.
300 		 */
301 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
302 			if (!dl_server(dl_se))
303 				put_task_struct(dl_task_of(dl_se));
304 		}
305 	}
306 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
307 	__add_rq_bw(new_bw, &rq->dl);
308 }
309 
310 static __always_inline
311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
312 {
313 	/*
314 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
315 	 * it will eventually call put_task_struct().
316 	 */
317 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
318 		put_task_struct(dl_task_of(dl_se));
319 }
320 
321 static __always_inline
322 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
323 {
324 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
325 }
326 
327 static __always_inline
328 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
329 {
330 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
331 }
332 
333 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
334 {
335 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
336 
337 	if (task_on_rq_queued(p))
338 		return;
339 
340 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
341 }
342 
343 static void __dl_clear_params(struct sched_dl_entity *dl_se);
344 
345 /*
346  * The utilization of a task cannot be immediately removed from
347  * the rq active utilization (running_bw) when the task blocks.
348  * Instead, we have to wait for the so called "0-lag time".
349  *
350  * If a task blocks before the "0-lag time", a timer (the inactive
351  * timer) is armed, and running_bw is decreased when the timer
352  * fires.
353  *
354  * If the task wakes up again before the inactive timer fires,
355  * the timer is canceled, whereas if the task wakes up after the
356  * inactive timer fired (and running_bw has been decreased) the
357  * task's utilization has to be added to running_bw again.
358  * A flag in the deadline scheduling entity (dl_non_contending)
359  * is used to avoid race conditions between the inactive timer handler
360  * and task wakeups.
361  *
362  * The following diagram shows how running_bw is updated. A task is
363  * "ACTIVE" when its utilization contributes to running_bw; an
364  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
365  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
366  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
367  * time already passed, which does not contribute to running_bw anymore.
368  *                              +------------------+
369  *             wakeup           |    ACTIVE        |
370  *          +------------------>+   contending     |
371  *          | add_running_bw    |                  |
372  *          |                   +----+------+------+
373  *          |                        |      ^
374  *          |                dequeue |      |
375  * +--------+-------+                |      |
376  * |                |   t >= 0-lag   |      | wakeup
377  * |    INACTIVE    |<---------------+      |
378  * |                | sub_running_bw |      |
379  * +--------+-------+                |      |
380  *          ^                        |      |
381  *          |              t < 0-lag |      |
382  *          |                        |      |
383  *          |                        V      |
384  *          |                   +----+------+------+
385  *          | sub_running_bw    |    ACTIVE        |
386  *          +-------------------+                  |
387  *            inactive timer    |  non contending  |
388  *            fired             +------------------+
389  *
390  * The task_non_contending() function is invoked when a task
391  * blocks, and checks if the 0-lag time already passed or
392  * not (in the first case, it directly updates running_bw;
393  * in the second case, it arms the inactive timer).
394  *
395  * The task_contending() function is invoked when a task wakes
396  * up, and checks if the task is still in the "ACTIVE non contending"
397  * state or not (in the second case, it updates running_bw).
398  */
399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task)
400 {
401 	struct hrtimer *timer = &dl_se->inactive_timer;
402 	struct rq *rq = rq_of_dl_se(dl_se);
403 	struct dl_rq *dl_rq = &rq->dl;
404 	s64 zerolag_time;
405 
406 	/*
407 	 * If this is a non-deadline task that has been boosted,
408 	 * do nothing
409 	 */
410 	if (dl_se->dl_runtime == 0)
411 		return;
412 
413 	if (dl_entity_is_special(dl_se))
414 		return;
415 
416 	WARN_ON(dl_se->dl_non_contending);
417 
418 	zerolag_time = dl_se->deadline -
419 		 div64_long((dl_se->runtime * dl_se->dl_period),
420 			dl_se->dl_runtime);
421 
422 	/*
423 	 * Using relative times instead of the absolute "0-lag time"
424 	 * allows to simplify the code
425 	 */
426 	zerolag_time -= rq_clock(rq);
427 
428 	/*
429 	 * If the "0-lag time" already passed, decrease the active
430 	 * utilization now, instead of starting a timer
431 	 */
432 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
433 		if (dl_server(dl_se)) {
434 			sub_running_bw(dl_se, dl_rq);
435 		} else {
436 			struct task_struct *p = dl_task_of(dl_se);
437 
438 			if (dl_task)
439 				sub_running_bw(dl_se, dl_rq);
440 
441 			if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) {
442 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
443 
444 				if (READ_ONCE(p->__state) == TASK_DEAD)
445 					sub_rq_bw(dl_se, &rq->dl);
446 				raw_spin_lock(&dl_b->lock);
447 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
448 				raw_spin_unlock(&dl_b->lock);
449 				__dl_clear_params(dl_se);
450 			}
451 		}
452 
453 		return;
454 	}
455 
456 	dl_se->dl_non_contending = 1;
457 	if (!dl_server(dl_se))
458 		get_task_struct(dl_task_of(dl_se));
459 
460 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
461 }
462 
463 static void task_contending(struct sched_dl_entity *dl_se, int flags)
464 {
465 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
466 
467 	/*
468 	 * If this is a non-deadline task that has been boosted,
469 	 * do nothing
470 	 */
471 	if (dl_se->dl_runtime == 0)
472 		return;
473 
474 	if (flags & ENQUEUE_MIGRATED)
475 		add_rq_bw(dl_se, dl_rq);
476 
477 	if (dl_se->dl_non_contending) {
478 		dl_se->dl_non_contending = 0;
479 		/*
480 		 * If the timer handler is currently running and the
481 		 * timer cannot be canceled, inactive_task_timer()
482 		 * will see that dl_not_contending is not set, and
483 		 * will not touch the rq's active utilization,
484 		 * so we are still safe.
485 		 */
486 		cancel_inactive_timer(dl_se);
487 	} else {
488 		/*
489 		 * Since "dl_non_contending" is not set, the
490 		 * task's utilization has already been removed from
491 		 * active utilization (either when the task blocked,
492 		 * when the "inactive timer" fired).
493 		 * So, add it back.
494 		 */
495 		add_running_bw(dl_se, dl_rq);
496 	}
497 }
498 
499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
500 {
501 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
502 }
503 
504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
505 
506 void init_dl_bw(struct dl_bw *dl_b)
507 {
508 	raw_spin_lock_init(&dl_b->lock);
509 	if (global_rt_runtime() == RUNTIME_INF)
510 		dl_b->bw = -1;
511 	else
512 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
513 	dl_b->total_bw = 0;
514 }
515 
516 void init_dl_rq(struct dl_rq *dl_rq)
517 {
518 	dl_rq->root = RB_ROOT_CACHED;
519 
520 	/* zero means no -deadline tasks */
521 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
522 
523 	dl_rq->overloaded = 0;
524 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
525 
526 	dl_rq->running_bw = 0;
527 	dl_rq->this_bw = 0;
528 	init_dl_rq_bw_ratio(dl_rq);
529 }
530 
531 static inline int dl_overloaded(struct rq *rq)
532 {
533 	return atomic_read(&rq->rd->dlo_count);
534 }
535 
536 static inline void dl_set_overload(struct rq *rq)
537 {
538 	if (!rq->online)
539 		return;
540 
541 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 	/*
543 	 * Must be visible before the overload count is
544 	 * set (as in sched_rt.c).
545 	 *
546 	 * Matched by the barrier in pull_dl_task().
547 	 */
548 	smp_wmb();
549 	atomic_inc(&rq->rd->dlo_count);
550 }
551 
552 static inline void dl_clear_overload(struct rq *rq)
553 {
554 	if (!rq->online)
555 		return;
556 
557 	atomic_dec(&rq->rd->dlo_count);
558 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559 }
560 
561 #define __node_2_pdl(node) \
562 	rb_entry((node), struct task_struct, pushable_dl_tasks)
563 
564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
565 {
566 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
567 }
568 
569 static inline int has_pushable_dl_tasks(struct rq *rq)
570 {
571 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
572 }
573 
574 /*
575  * The list of pushable -deadline task is not a plist, like in
576  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
577  */
578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
579 {
580 	struct rb_node *leftmost;
581 
582 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
583 
584 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
585 				 &rq->dl.pushable_dl_tasks_root,
586 				 __pushable_less);
587 	if (leftmost)
588 		rq->dl.earliest_dl.next = p->dl.deadline;
589 
590 	if (!rq->dl.overloaded) {
591 		dl_set_overload(rq);
592 		rq->dl.overloaded = 1;
593 	}
594 }
595 
596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
597 {
598 	struct dl_rq *dl_rq = &rq->dl;
599 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
600 	struct rb_node *leftmost;
601 
602 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
603 		return;
604 
605 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
606 	if (leftmost)
607 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
608 
609 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
610 
611 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
612 		dl_clear_overload(rq);
613 		rq->dl.overloaded = 0;
614 	}
615 }
616 
617 static int push_dl_task(struct rq *rq);
618 
619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
620 {
621 	return rq->online && dl_task(prev);
622 }
623 
624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
626 
627 static void push_dl_tasks(struct rq *);
628 static void pull_dl_task(struct rq *);
629 
630 static inline void deadline_queue_push_tasks(struct rq *rq)
631 {
632 	if (!has_pushable_dl_tasks(rq))
633 		return;
634 
635 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
636 }
637 
638 static inline void deadline_queue_pull_task(struct rq *rq)
639 {
640 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
641 }
642 
643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
644 
645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
646 {
647 	struct rq *later_rq = NULL;
648 	struct dl_bw *dl_b;
649 
650 	later_rq = find_lock_later_rq(p, rq);
651 	if (!later_rq) {
652 		int cpu;
653 
654 		/*
655 		 * If we cannot preempt any rq, fall back to pick any
656 		 * online CPU:
657 		 */
658 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
659 		if (cpu >= nr_cpu_ids) {
660 			/*
661 			 * Failed to find any suitable CPU.
662 			 * The task will never come back!
663 			 */
664 			WARN_ON_ONCE(dl_bandwidth_enabled());
665 
666 			/*
667 			 * If admission control is disabled we
668 			 * try a little harder to let the task
669 			 * run.
670 			 */
671 			cpu = cpumask_any(cpu_active_mask);
672 		}
673 		later_rq = cpu_rq(cpu);
674 		double_lock_balance(rq, later_rq);
675 	}
676 
677 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
678 		/*
679 		 * Inactive timer is armed (or callback is running, but
680 		 * waiting for us to release rq locks). In any case, when it
681 		 * will fire (or continue), it will see running_bw of this
682 		 * task migrated to later_rq (and correctly handle it).
683 		 */
684 		sub_running_bw(&p->dl, &rq->dl);
685 		sub_rq_bw(&p->dl, &rq->dl);
686 
687 		add_rq_bw(&p->dl, &later_rq->dl);
688 		add_running_bw(&p->dl, &later_rq->dl);
689 	} else {
690 		sub_rq_bw(&p->dl, &rq->dl);
691 		add_rq_bw(&p->dl, &later_rq->dl);
692 	}
693 
694 	/*
695 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
696 	 * since p is still hanging out in the old (now moved to default) root
697 	 * domain.
698 	 */
699 	dl_b = &rq->rd->dl_bw;
700 	raw_spin_lock(&dl_b->lock);
701 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
702 	raw_spin_unlock(&dl_b->lock);
703 
704 	dl_b = &later_rq->rd->dl_bw;
705 	raw_spin_lock(&dl_b->lock);
706 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
707 	raw_spin_unlock(&dl_b->lock);
708 
709 	set_task_cpu(p, later_rq->cpu);
710 	double_unlock_balance(later_rq, rq);
711 
712 	return later_rq;
713 }
714 
715 static void
716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
720 
721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
722 					    struct rq *rq)
723 {
724 	/* for non-boosted task, pi_of(dl_se) == dl_se */
725 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
726 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
727 
728 	/*
729 	 * If it is a deferred reservation, and the server
730 	 * is not handling an starvation case, defer it.
731 	 */
732 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
733 		dl_se->dl_throttled = 1;
734 		dl_se->dl_defer_armed = 1;
735 	}
736 }
737 
738 /*
739  * We are being explicitly informed that a new instance is starting,
740  * and this means that:
741  *  - the absolute deadline of the entity has to be placed at
742  *    current time + relative deadline;
743  *  - the runtime of the entity has to be set to the maximum value.
744  *
745  * The capability of specifying such event is useful whenever a -deadline
746  * entity wants to (try to!) synchronize its behaviour with the scheduler's
747  * one, and to (try to!) reconcile itself with its own scheduling
748  * parameters.
749  */
750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
751 {
752 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
753 	struct rq *rq = rq_of_dl_rq(dl_rq);
754 
755 	WARN_ON(is_dl_boosted(dl_se));
756 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
757 
758 	/*
759 	 * We are racing with the deadline timer. So, do nothing because
760 	 * the deadline timer handler will take care of properly recharging
761 	 * the runtime and postponing the deadline
762 	 */
763 	if (dl_se->dl_throttled)
764 		return;
765 
766 	/*
767 	 * We use the regular wall clock time to set deadlines in the
768 	 * future; in fact, we must consider execution overheads (time
769 	 * spent on hardirq context, etc.).
770 	 */
771 	replenish_dl_new_period(dl_se, rq);
772 }
773 
774 static int start_dl_timer(struct sched_dl_entity *dl_se);
775 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
776 
777 /*
778  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
779  * possibility of a entity lasting more than what it declared, and thus
780  * exhausting its runtime.
781  *
782  * Here we are interested in making runtime overrun possible, but we do
783  * not want a entity which is misbehaving to affect the scheduling of all
784  * other entities.
785  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
786  * is used, in order to confine each entity within its own bandwidth.
787  *
788  * This function deals exactly with that, and ensures that when the runtime
789  * of a entity is replenished, its deadline is also postponed. That ensures
790  * the overrunning entity can't interfere with other entity in the system and
791  * can't make them miss their deadlines. Reasons why this kind of overruns
792  * could happen are, typically, a entity voluntarily trying to overcome its
793  * runtime, or it just underestimated it during sched_setattr().
794  */
795 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
796 {
797 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
798 	struct rq *rq = rq_of_dl_rq(dl_rq);
799 
800 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
801 
802 	/*
803 	 * This could be the case for a !-dl task that is boosted.
804 	 * Just go with full inherited parameters.
805 	 *
806 	 * Or, it could be the case of a deferred reservation that
807 	 * was not able to consume its runtime in background and
808 	 * reached this point with current u > U.
809 	 *
810 	 * In both cases, set a new period.
811 	 */
812 	if (dl_se->dl_deadline == 0 ||
813 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
814 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
815 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
816 	}
817 
818 	if (dl_se->dl_yielded && dl_se->runtime > 0)
819 		dl_se->runtime = 0;
820 
821 	/*
822 	 * We keep moving the deadline away until we get some
823 	 * available runtime for the entity. This ensures correct
824 	 * handling of situations where the runtime overrun is
825 	 * arbitrary large.
826 	 */
827 	while (dl_se->runtime <= 0) {
828 		dl_se->deadline += pi_of(dl_se)->dl_period;
829 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
830 	}
831 
832 	/*
833 	 * At this point, the deadline really should be "in
834 	 * the future" with respect to rq->clock. If it's
835 	 * not, we are, for some reason, lagging too much!
836 	 * Anyway, after having warn userspace abut that,
837 	 * we still try to keep the things running by
838 	 * resetting the deadline and the budget of the
839 	 * entity.
840 	 */
841 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
842 		printk_deferred_once("sched: DL replenish lagged too much\n");
843 		replenish_dl_new_period(dl_se, rq);
844 	}
845 
846 	if (dl_se->dl_yielded)
847 		dl_se->dl_yielded = 0;
848 	if (dl_se->dl_throttled)
849 		dl_se->dl_throttled = 0;
850 
851 	/*
852 	 * If this is the replenishment of a deferred reservation,
853 	 * clear the flag and return.
854 	 */
855 	if (dl_se->dl_defer_armed) {
856 		dl_se->dl_defer_armed = 0;
857 		return;
858 	}
859 
860 	/*
861 	 * A this point, if the deferred server is not armed, and the deadline
862 	 * is in the future, if it is not running already, throttle the server
863 	 * and arm the defer timer.
864 	 */
865 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
866 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
867 		if (!is_dl_boosted(dl_se)) {
868 
869 			/*
870 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
871 			 * inform the start_dl_timer() that this is a deferred
872 			 * activation.
873 			 */
874 			dl_se->dl_defer_armed = 1;
875 			dl_se->dl_throttled = 1;
876 			if (!start_dl_timer(dl_se)) {
877 				/*
878 				 * If for whatever reason (delays), a previous timer was
879 				 * queued but not serviced, cancel it and clean the
880 				 * deferrable server variables intended for start_dl_timer().
881 				 */
882 				hrtimer_try_to_cancel(&dl_se->dl_timer);
883 				dl_se->dl_defer_armed = 0;
884 				dl_se->dl_throttled = 0;
885 			}
886 		}
887 	}
888 }
889 
890 /*
891  * Here we check if --at time t-- an entity (which is probably being
892  * [re]activated or, in general, enqueued) can use its remaining runtime
893  * and its current deadline _without_ exceeding the bandwidth it is
894  * assigned (function returns true if it can't). We are in fact applying
895  * one of the CBS rules: when a task wakes up, if the residual runtime
896  * over residual deadline fits within the allocated bandwidth, then we
897  * can keep the current (absolute) deadline and residual budget without
898  * disrupting the schedulability of the system. Otherwise, we should
899  * refill the runtime and set the deadline a period in the future,
900  * because keeping the current (absolute) deadline of the task would
901  * result in breaking guarantees promised to other tasks (refer to
902  * Documentation/scheduler/sched-deadline.rst for more information).
903  *
904  * This function returns true if:
905  *
906  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
907  *
908  * IOW we can't recycle current parameters.
909  *
910  * Notice that the bandwidth check is done against the deadline. For
911  * task with deadline equal to period this is the same of using
912  * dl_period instead of dl_deadline in the equation above.
913  */
914 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
915 {
916 	u64 left, right;
917 
918 	/*
919 	 * left and right are the two sides of the equation above,
920 	 * after a bit of shuffling to use multiplications instead
921 	 * of divisions.
922 	 *
923 	 * Note that none of the time values involved in the two
924 	 * multiplications are absolute: dl_deadline and dl_runtime
925 	 * are the relative deadline and the maximum runtime of each
926 	 * instance, runtime is the runtime left for the last instance
927 	 * and (deadline - t), since t is rq->clock, is the time left
928 	 * to the (absolute) deadline. Even if overflowing the u64 type
929 	 * is very unlikely to occur in both cases, here we scale down
930 	 * as we want to avoid that risk at all. Scaling down by 10
931 	 * means that we reduce granularity to 1us. We are fine with it,
932 	 * since this is only a true/false check and, anyway, thinking
933 	 * of anything below microseconds resolution is actually fiction
934 	 * (but still we want to give the user that illusion >;).
935 	 */
936 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
937 	right = ((dl_se->deadline - t) >> DL_SCALE) *
938 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
939 
940 	return dl_time_before(right, left);
941 }
942 
943 /*
944  * Revised wakeup rule [1]: For self-suspending tasks, rather then
945  * re-initializing task's runtime and deadline, the revised wakeup
946  * rule adjusts the task's runtime to avoid the task to overrun its
947  * density.
948  *
949  * Reasoning: a task may overrun the density if:
950  *    runtime / (deadline - t) > dl_runtime / dl_deadline
951  *
952  * Therefore, runtime can be adjusted to:
953  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
954  *
955  * In such way that runtime will be equal to the maximum density
956  * the task can use without breaking any rule.
957  *
958  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
959  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
960  */
961 static void
962 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
963 {
964 	u64 laxity = dl_se->deadline - rq_clock(rq);
965 
966 	/*
967 	 * If the task has deadline < period, and the deadline is in the past,
968 	 * it should already be throttled before this check.
969 	 *
970 	 * See update_dl_entity() comments for further details.
971 	 */
972 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
973 
974 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
975 }
976 
977 /*
978  * Regarding the deadline, a task with implicit deadline has a relative
979  * deadline == relative period. A task with constrained deadline has a
980  * relative deadline <= relative period.
981  *
982  * We support constrained deadline tasks. However, there are some restrictions
983  * applied only for tasks which do not have an implicit deadline. See
984  * update_dl_entity() to know more about such restrictions.
985  *
986  * The dl_is_implicit() returns true if the task has an implicit deadline.
987  */
988 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
989 {
990 	return dl_se->dl_deadline == dl_se->dl_period;
991 }
992 
993 /*
994  * When a deadline entity is placed in the runqueue, its runtime and deadline
995  * might need to be updated. This is done by a CBS wake up rule. There are two
996  * different rules: 1) the original CBS; and 2) the Revisited CBS.
997  *
998  * When the task is starting a new period, the Original CBS is used. In this
999  * case, the runtime is replenished and a new absolute deadline is set.
1000  *
1001  * When a task is queued before the begin of the next period, using the
1002  * remaining runtime and deadline could make the entity to overflow, see
1003  * dl_entity_overflow() to find more about runtime overflow. When such case
1004  * is detected, the runtime and deadline need to be updated.
1005  *
1006  * If the task has an implicit deadline, i.e., deadline == period, the Original
1007  * CBS is applied. The runtime is replenished and a new absolute deadline is
1008  * set, as in the previous cases.
1009  *
1010  * However, the Original CBS does not work properly for tasks with
1011  * deadline < period, which are said to have a constrained deadline. By
1012  * applying the Original CBS, a constrained deadline task would be able to run
1013  * runtime/deadline in a period. With deadline < period, the task would
1014  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1015  *
1016  * In order to prevent this misbehave, the Revisited CBS is used for
1017  * constrained deadline tasks when a runtime overflow is detected. In the
1018  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1019  * the remaining runtime of the task is reduced to avoid runtime overflow.
1020  * Please refer to the comments update_dl_revised_wakeup() function to find
1021  * more about the Revised CBS rule.
1022  */
1023 static void update_dl_entity(struct sched_dl_entity *dl_se)
1024 {
1025 	struct rq *rq = rq_of_dl_se(dl_se);
1026 
1027 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1028 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1029 
1030 		if (unlikely(!dl_is_implicit(dl_se) &&
1031 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1032 			     !is_dl_boosted(dl_se))) {
1033 			update_dl_revised_wakeup(dl_se, rq);
1034 			return;
1035 		}
1036 
1037 		/*
1038 		 * When [4] D->A is followed by [1] A->B, dl_defer_running
1039 		 * needs to be cleared, otherwise it will fail to properly
1040 		 * start the zero-laxity timer.
1041 		 */
1042 		dl_se->dl_defer_running = 0;
1043 		replenish_dl_new_period(dl_se, rq);
1044 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1045 		/*
1046 		 * The server can still use its previous deadline, so check if
1047 		 * it left the dl_defer_running state.
1048 		 */
1049 		if (!dl_se->dl_defer_running) {
1050 			dl_se->dl_defer_armed = 1;
1051 			dl_se->dl_throttled = 1;
1052 		}
1053 	}
1054 }
1055 
1056 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1057 {
1058 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1059 }
1060 
1061 /*
1062  * If the entity depleted all its runtime, and if we want it to sleep
1063  * while waiting for some new execution time to become available, we
1064  * set the bandwidth replenishment timer to the replenishment instant
1065  * and try to activate it.
1066  *
1067  * Notice that it is important for the caller to know if the timer
1068  * actually started or not (i.e., the replenishment instant is in
1069  * the future or in the past).
1070  */
1071 static int start_dl_timer(struct sched_dl_entity *dl_se)
1072 {
1073 	struct hrtimer *timer = &dl_se->dl_timer;
1074 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1075 	struct rq *rq = rq_of_dl_rq(dl_rq);
1076 	ktime_t now, act;
1077 	s64 delta;
1078 
1079 	lockdep_assert_rq_held(rq);
1080 
1081 	/*
1082 	 * We want the timer to fire at the deadline, but considering
1083 	 * that it is actually coming from rq->clock and not from
1084 	 * hrtimer's time base reading.
1085 	 *
1086 	 * The deferred reservation will have its timer set to
1087 	 * (deadline - runtime). At that point, the CBS rule will decide
1088 	 * if the current deadline can be used, or if a replenishment is
1089 	 * required to avoid add too much pressure on the system
1090 	 * (current u > U).
1091 	 */
1092 	if (dl_se->dl_defer_armed) {
1093 		WARN_ON_ONCE(!dl_se->dl_throttled);
1094 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1095 	} else {
1096 		/* act = deadline - rel-deadline + period */
1097 		act = ns_to_ktime(dl_next_period(dl_se));
1098 	}
1099 
1100 	now = hrtimer_cb_get_time(timer);
1101 	delta = ktime_to_ns(now) - rq_clock(rq);
1102 	act = ktime_add_ns(act, delta);
1103 
1104 	/*
1105 	 * If the expiry time already passed, e.g., because the value
1106 	 * chosen as the deadline is too small, don't even try to
1107 	 * start the timer in the past!
1108 	 */
1109 	if (ktime_us_delta(act, now) < 0)
1110 		return 0;
1111 
1112 	/*
1113 	 * !enqueued will guarantee another callback; even if one is already in
1114 	 * progress. This ensures a balanced {get,put}_task_struct().
1115 	 *
1116 	 * The race against __run_timer() clearing the enqueued state is
1117 	 * harmless because we're holding task_rq()->lock, therefore the timer
1118 	 * expiring after we've done the check will wait on its task_rq_lock()
1119 	 * and observe our state.
1120 	 */
1121 	if (!hrtimer_is_queued(timer)) {
1122 		if (!dl_server(dl_se))
1123 			get_task_struct(dl_task_of(dl_se));
1124 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1125 	}
1126 
1127 	return 1;
1128 }
1129 
1130 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1131 {
1132 	/*
1133 	 * Queueing this task back might have overloaded rq, check if we need
1134 	 * to kick someone away.
1135 	 */
1136 	if (has_pushable_dl_tasks(rq)) {
1137 		/*
1138 		 * Nothing relies on rq->lock after this, so its safe to drop
1139 		 * rq->lock.
1140 		 */
1141 		rq_unpin_lock(rq, rf);
1142 		push_dl_task(rq);
1143 		rq_repin_lock(rq, rf);
1144 	}
1145 }
1146 
1147 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1148 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1149 
1150 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1151 {
1152 	struct rq *rq = rq_of_dl_se(dl_se);
1153 	u64 fw;
1154 
1155 	scoped_guard (rq_lock, rq) {
1156 		struct rq_flags *rf = &scope.rf;
1157 
1158 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1159 			return HRTIMER_NORESTART;
1160 
1161 		sched_clock_tick();
1162 		update_rq_clock(rq);
1163 
1164 		/*
1165 		 * Make sure current has propagated its pending runtime into
1166 		 * any relevant server through calling dl_server_update() and
1167 		 * friends.
1168 		 */
1169 		rq->donor->sched_class->update_curr(rq);
1170 
1171 		if (dl_se->dl_defer_idle) {
1172 			dl_server_stop(dl_se);
1173 			return HRTIMER_NORESTART;
1174 		}
1175 
1176 		if (dl_se->dl_defer_armed) {
1177 			/*
1178 			 * First check if the server could consume runtime in background.
1179 			 * If so, it is possible to push the defer timer for this amount
1180 			 * of time. The dl_server_min_res serves as a limit to avoid
1181 			 * forwarding the timer for a too small amount of time.
1182 			 */
1183 			if (dl_time_before(rq_clock(dl_se->rq),
1184 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1185 
1186 				/* reset the defer timer */
1187 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1188 
1189 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1190 				return HRTIMER_RESTART;
1191 			}
1192 
1193 			dl_se->dl_defer_running = 1;
1194 		}
1195 
1196 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1197 
1198 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1199 			resched_curr(rq);
1200 
1201 		__push_dl_task(rq, rf);
1202 	}
1203 
1204 	return HRTIMER_NORESTART;
1205 }
1206 
1207 /*
1208  * This is the bandwidth enforcement timer callback. If here, we know
1209  * a task is not on its dl_rq, since the fact that the timer was running
1210  * means the task is throttled and needs a runtime replenishment.
1211  *
1212  * However, what we actually do depends on the fact the task is active,
1213  * (it is on its rq) or has been removed from there by a call to
1214  * dequeue_task_dl(). In the former case we must issue the runtime
1215  * replenishment and add the task back to the dl_rq; in the latter, we just
1216  * do nothing but clearing dl_throttled, so that runtime and deadline
1217  * updating (and the queueing back to dl_rq) will be done by the
1218  * next call to enqueue_task_dl().
1219  */
1220 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1221 {
1222 	struct sched_dl_entity *dl_se = container_of(timer,
1223 						     struct sched_dl_entity,
1224 						     dl_timer);
1225 	struct task_struct *p;
1226 	struct rq_flags rf;
1227 	struct rq *rq;
1228 
1229 	if (dl_server(dl_se))
1230 		return dl_server_timer(timer, dl_se);
1231 
1232 	p = dl_task_of(dl_se);
1233 	rq = task_rq_lock(p, &rf);
1234 
1235 	/*
1236 	 * The task might have changed its scheduling policy to something
1237 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1238 	 */
1239 	if (!dl_task(p))
1240 		goto unlock;
1241 
1242 	/*
1243 	 * The task might have been boosted by someone else and might be in the
1244 	 * boosting/deboosting path, its not throttled.
1245 	 */
1246 	if (is_dl_boosted(dl_se))
1247 		goto unlock;
1248 
1249 	/*
1250 	 * Spurious timer due to start_dl_timer() race; or we already received
1251 	 * a replenishment from rt_mutex_setprio().
1252 	 */
1253 	if (!dl_se->dl_throttled)
1254 		goto unlock;
1255 
1256 	sched_clock_tick();
1257 	update_rq_clock(rq);
1258 
1259 	/*
1260 	 * If the throttle happened during sched-out; like:
1261 	 *
1262 	 *   schedule()
1263 	 *     deactivate_task()
1264 	 *       dequeue_task_dl()
1265 	 *         update_curr_dl()
1266 	 *           start_dl_timer()
1267 	 *         __dequeue_task_dl()
1268 	 *     prev->on_rq = 0;
1269 	 *
1270 	 * We can be both throttled and !queued. Replenish the counter
1271 	 * but do not enqueue -- wait for our wakeup to do that.
1272 	 */
1273 	if (!task_on_rq_queued(p)) {
1274 		replenish_dl_entity(dl_se);
1275 		goto unlock;
1276 	}
1277 
1278 	if (unlikely(!rq->online)) {
1279 		/*
1280 		 * If the runqueue is no longer available, migrate the
1281 		 * task elsewhere. This necessarily changes rq.
1282 		 */
1283 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1284 		rq = dl_task_offline_migration(rq, p);
1285 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1286 		update_rq_clock(rq);
1287 
1288 		/*
1289 		 * Now that the task has been migrated to the new RQ and we
1290 		 * have that locked, proceed as normal and enqueue the task
1291 		 * there.
1292 		 */
1293 	}
1294 
1295 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1296 	if (dl_task(rq->donor))
1297 		wakeup_preempt_dl(rq, p, 0);
1298 	else
1299 		resched_curr(rq);
1300 
1301 	__push_dl_task(rq, &rf);
1302 
1303 unlock:
1304 	task_rq_unlock(rq, p, &rf);
1305 
1306 	/*
1307 	 * This can free the task_struct, including this hrtimer, do not touch
1308 	 * anything related to that after this.
1309 	 */
1310 	put_task_struct(p);
1311 
1312 	return HRTIMER_NORESTART;
1313 }
1314 
1315 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1316 {
1317 	struct hrtimer *timer = &dl_se->dl_timer;
1318 
1319 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1320 }
1321 
1322 /*
1323  * During the activation, CBS checks if it can reuse the current task's
1324  * runtime and period. If the deadline of the task is in the past, CBS
1325  * cannot use the runtime, and so it replenishes the task. This rule
1326  * works fine for implicit deadline tasks (deadline == period), and the
1327  * CBS was designed for implicit deadline tasks. However, a task with
1328  * constrained deadline (deadline < period) might be awakened after the
1329  * deadline, but before the next period. In this case, replenishing the
1330  * task would allow it to run for runtime / deadline. As in this case
1331  * deadline < period, CBS enables a task to run for more than the
1332  * runtime / period. In a very loaded system, this can cause a domino
1333  * effect, making other tasks miss their deadlines.
1334  *
1335  * To avoid this problem, in the activation of a constrained deadline
1336  * task after the deadline but before the next period, throttle the
1337  * task and set the replenishing timer to the begin of the next period,
1338  * unless it is boosted.
1339  */
1340 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1341 {
1342 	struct rq *rq = rq_of_dl_se(dl_se);
1343 
1344 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1345 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1346 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1347 			return;
1348 		dl_se->dl_throttled = 1;
1349 		if (dl_se->runtime > 0)
1350 			dl_se->runtime = 0;
1351 	}
1352 }
1353 
1354 static
1355 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1356 {
1357 	return (dl_se->runtime <= 0);
1358 }
1359 
1360 /*
1361  * This function implements the GRUB accounting rule. According to the
1362  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1363  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1364  * where u is the utilization of the task, Umax is the maximum reclaimable
1365  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1366  * as the difference between the "total runqueue utilization" and the
1367  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1368  * reclaimable utilization.
1369  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1370  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1371  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1372  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1373  * Since delta is a 64 bit variable, to have an overflow its value should be
1374  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1375  * not an issue here.
1376  */
1377 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1378 {
1379 	u64 u_act;
1380 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1381 
1382 	/*
1383 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1384 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1385 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1386 	 * negative leading to wrong results.
1387 	 */
1388 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1389 		u_act = dl_se->dl_bw;
1390 	else
1391 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1392 
1393 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1394 	return (delta * u_act) >> BW_SHIFT;
1395 }
1396 
1397 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1398 {
1399 	s64 scaled_delta_exec;
1400 
1401 	/*
1402 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1403 	 * spare reclaimed bandwidth is used to clock down frequency.
1404 	 *
1405 	 * For the others, we still need to scale reservation parameters
1406 	 * according to current frequency and CPU maximum capacity.
1407 	 */
1408 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1409 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1410 	} else {
1411 		int cpu = cpu_of(rq);
1412 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1413 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1414 
1415 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1416 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1417 	}
1418 
1419 	return scaled_delta_exec;
1420 }
1421 
1422 static inline void
1423 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags);
1424 
1425 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1426 {
1427 	bool idle = idle_rq(rq);
1428 	s64 scaled_delta_exec;
1429 
1430 	if (unlikely(delta_exec <= 0)) {
1431 		if (unlikely(dl_se->dl_yielded))
1432 			goto throttle;
1433 		return;
1434 	}
1435 
1436 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1437 		return;
1438 
1439 	if (dl_entity_is_special(dl_se))
1440 		return;
1441 
1442 	scaled_delta_exec = delta_exec;
1443 	if (!dl_server(dl_se))
1444 		scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1445 
1446 	dl_se->runtime -= scaled_delta_exec;
1447 
1448 	if (dl_se->dl_defer_idle && !idle)
1449 		dl_se->dl_defer_idle = 0;
1450 
1451 	/*
1452 	 * The fair server can consume its runtime while throttled (not queued/
1453 	 * running as regular CFS).
1454 	 *
1455 	 * If the server consumes its entire runtime in this state. The server
1456 	 * is not required for the current period. Thus, reset the server by
1457 	 * starting a new period, pushing the activation.
1458 	 */
1459 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1460 		/*
1461 		 * Non-servers would never get time accounted while throttled.
1462 		 */
1463 		WARN_ON_ONCE(!dl_server(dl_se));
1464 
1465 		/*
1466 		 * While the server is marked idle, do not push out the
1467 		 * activation further, instead wait for the period timer
1468 		 * to lapse and stop the server.
1469 		 */
1470 		if (dl_se->dl_defer_idle && idle) {
1471 			/*
1472 			 * The timer is at the zero-laxity point, this means
1473 			 * dl_server_stop() / dl_server_start() can happen
1474 			 * while now < deadline. This means update_dl_entity()
1475 			 * will not replenish. Additionally start_dl_timer()
1476 			 * will be set for 'deadline - runtime'. Negative
1477 			 * runtime will not do.
1478 			 */
1479 			dl_se->runtime = 0;
1480 			return;
1481 		}
1482 
1483 		/*
1484 		 * If the server was previously activated - the starving condition
1485 		 * took place, it this point it went away because the fair scheduler
1486 		 * was able to get runtime in background. So return to the initial
1487 		 * state.
1488 		 */
1489 		dl_se->dl_defer_running = 0;
1490 
1491 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1492 
1493 		replenish_dl_new_period(dl_se, dl_se->rq);
1494 
1495 		if (idle)
1496 			dl_se->dl_defer_idle = 1;
1497 
1498 		/*
1499 		 * Not being able to start the timer seems problematic. If it could not
1500 		 * be started for whatever reason, we need to "unthrottle" the DL server
1501 		 * and queue right away. Otherwise nothing might queue it. That's similar
1502 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1503 		 */
1504 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1505 
1506 		return;
1507 	}
1508 
1509 throttle:
1510 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1511 		dl_se->dl_throttled = 1;
1512 
1513 		/* If requested, inform the user about runtime overruns. */
1514 		if (dl_runtime_exceeded(dl_se) &&
1515 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1516 			dl_se->dl_overrun = 1;
1517 
1518 		dequeue_dl_entity(dl_se, 0);
1519 		if (!dl_server(dl_se)) {
1520 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1521 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1522 		}
1523 
1524 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1525 			if (dl_server(dl_se)) {
1526 				replenish_dl_new_period(dl_se, rq);
1527 				start_dl_timer(dl_se);
1528 			} else {
1529 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1530 			}
1531 		}
1532 
1533 		if (!is_leftmost(dl_se, &rq->dl))
1534 			resched_curr(rq);
1535 	}
1536 
1537 	/*
1538 	 * The fair server (sole dl_server) does not account for real-time
1539 	 * workload because it is running fair work.
1540 	 */
1541 	if (dl_se == &rq->fair_server)
1542 		return;
1543 
1544 #ifdef CONFIG_RT_GROUP_SCHED
1545 	/*
1546 	 * Because -- for now -- we share the rt bandwidth, we need to
1547 	 * account our runtime there too, otherwise actual rt tasks
1548 	 * would be able to exceed the shared quota.
1549 	 *
1550 	 * Account to the root rt group for now.
1551 	 *
1552 	 * The solution we're working towards is having the RT groups scheduled
1553 	 * using deadline servers -- however there's a few nasties to figure
1554 	 * out before that can happen.
1555 	 */
1556 	if (rt_bandwidth_enabled()) {
1557 		struct rt_rq *rt_rq = &rq->rt;
1558 
1559 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1560 		/*
1561 		 * We'll let actual RT tasks worry about the overflow here, we
1562 		 * have our own CBS to keep us inline; only account when RT
1563 		 * bandwidth is relevant.
1564 		 */
1565 		if (sched_rt_bandwidth_account(rt_rq))
1566 			rt_rq->rt_time += delta_exec;
1567 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1568 	}
1569 #endif /* CONFIG_RT_GROUP_SCHED */
1570 }
1571 
1572 /*
1573  * In the non-defer mode, the idle time is not accounted, as the
1574  * server provides a guarantee.
1575  *
1576  * If the dl_server is in defer mode, the idle time is also considered
1577  * as time available for the fair server, avoiding a penalty for the
1578  * rt scheduler that did not consumed that time.
1579  */
1580 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec)
1581 {
1582 	if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer)
1583 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1584 }
1585 
1586 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1587 {
1588 	/* 0 runtime = fair server disabled */
1589 	if (dl_se->dl_server_active && dl_se->dl_runtime)
1590 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1591 }
1592 
1593 /*
1594  * dl_server && dl_defer:
1595  *
1596  *                                        6
1597  *                            +--------------------+
1598  *                            v                    |
1599  *     +-------------+  4   +-----------+  5     +------------------+
1600  * +-> |   A:init    | <--- | D:running | -----> | E:replenish-wait |
1601  * |   +-------------+      +-----------+        +------------------+
1602  * |     |         |    1     ^    ^               |
1603  * |     | 1       +----------+    | 3             |
1604  * |     v                         |               |
1605  * |   +--------------------------------+   2      |
1606  * |   |                                | ----+    |
1607  * | 8 |       B:zero_laxity-wait       |     |    |
1608  * |   |                                | <---+    |
1609  * |   +--------------------------------+          |
1610  * |     |              ^         ^       2        |
1611  * |     | 7            | 2, 1    +----------------+
1612  * |     v              |
1613  * |   +-------------+  |
1614  * +-- | C:idle-wait | -+
1615  *     +-------------+
1616  *       ^ 7       |
1617  *       +---------+
1618  *
1619  *
1620  * [A] - init
1621  *   dl_server_active = 0
1622  *   dl_throttled = 0
1623  *   dl_defer_armed = 0
1624  *   dl_defer_running = 0/1
1625  *   dl_defer_idle = 0
1626  *
1627  * [B] - zero_laxity-wait
1628  *   dl_server_active = 1
1629  *   dl_throttled = 1
1630  *   dl_defer_armed = 1
1631  *   dl_defer_running = 0
1632  *   dl_defer_idle = 0
1633  *
1634  * [C] - idle-wait
1635  *   dl_server_active = 1
1636  *   dl_throttled = 1
1637  *   dl_defer_armed = 1
1638  *   dl_defer_running = 0
1639  *   dl_defer_idle = 1
1640  *
1641  * [D] - running
1642  *   dl_server_active = 1
1643  *   dl_throttled = 0
1644  *   dl_defer_armed = 0
1645  *   dl_defer_running = 1
1646  *   dl_defer_idle = 0
1647  *
1648  * [E] - replenish-wait
1649  *   dl_server_active = 1
1650  *   dl_throttled = 1
1651  *   dl_defer_armed = 0
1652  *   dl_defer_running = 1
1653  *   dl_defer_idle = 0
1654  *
1655  *
1656  * [1] A->B, A->D, C->B
1657  * dl_server_start()
1658  *   dl_defer_idle = 0;
1659  *   if (dl_server_active)
1660  *     return; // [B]
1661  *   dl_server_active = 1;
1662  *   enqueue_dl_entity()
1663  *     update_dl_entity(WAKEUP)
1664  *       if (dl_time_before() || dl_entity_overflow())
1665  *         dl_defer_running = 0;
1666  *         replenish_dl_new_period();
1667  *           // fwd period
1668  *           dl_throttled = 1;
1669  *           dl_defer_armed = 1;
1670  *       if (!dl_defer_running)
1671  *         dl_defer_armed = 1;
1672  *         dl_throttled = 1;
1673  *     if (dl_throttled && start_dl_timer())
1674  *       return; // [B]
1675  *     __enqueue_dl_entity();
1676  *     // [D]
1677  *
1678  * // deplete server runtime from client-class
1679  * [2] B->B, C->B, E->B
1680  * dl_server_update()
1681  *   update_curr_dl_se() // idle = false
1682  *     if (dl_defer_idle)
1683  *       dl_defer_idle = 0;
1684  *     if (dl_defer && dl_throttled && dl_runtime_exceeded())
1685  *       dl_defer_running = 0;
1686  *       hrtimer_try_to_cancel();   // stop timer
1687  *       replenish_dl_new_period()
1688  *         // fwd period
1689  *         dl_throttled = 1;
1690  *         dl_defer_armed = 1;
1691  *       start_dl_timer();        // restart timer
1692  *       // [B]
1693  *
1694  * // timer actually fires means we have runtime
1695  * [3] B->D
1696  * dl_server_timer()
1697  *   if (dl_defer_armed)
1698  *     dl_defer_running = 1;
1699  *   enqueue_dl_entity(REPLENISH)
1700  *     replenish_dl_entity()
1701  *       // fwd period
1702  *       if (dl_throttled)
1703  *         dl_throttled = 0;
1704  *       if (dl_defer_armed)
1705  *         dl_defer_armed = 0;
1706  *     __enqueue_dl_entity();
1707  *     // [D]
1708  *
1709  * // schedule server
1710  * [4] D->A
1711  * pick_task_dl()
1712  *   p = server_pick_task();
1713  *   if (!p)
1714  *     dl_server_stop()
1715  *       dequeue_dl_entity();
1716  *       hrtimer_try_to_cancel();
1717  *       dl_defer_armed = 0;
1718  *       dl_throttled = 0;
1719  *       dl_server_active = 0;
1720  *       // [A]
1721  *   return p;
1722  *
1723  * // server running
1724  * [5] D->E
1725  * update_curr_dl_se()
1726  *   if (dl_runtime_exceeded())
1727  *     dl_throttled = 1;
1728  *     dequeue_dl_entity();
1729  *     start_dl_timer();
1730  *     // [E]
1731  *
1732  * // server replenished
1733  * [6] E->D
1734  * dl_server_timer()
1735  *   enqueue_dl_entity(REPLENISH)
1736  *     replenish_dl_entity()
1737  *       fwd-period
1738  *       if (dl_throttled)
1739  *         dl_throttled = 0;
1740  *     __enqueue_dl_entity();
1741  *     // [D]
1742  *
1743  * // deplete server runtime from idle
1744  * [7] B->C, C->C
1745  * dl_server_update_idle()
1746  *   update_curr_dl_se() // idle = true
1747  *     if (dl_defer && dl_throttled && dl_runtime_exceeded())
1748  *       if (dl_defer_idle)
1749  *         return;
1750  *       dl_defer_running = 0;
1751  *       hrtimer_try_to_cancel();
1752  *       replenish_dl_new_period()
1753  *         // fwd period
1754  *         dl_throttled = 1;
1755  *         dl_defer_armed = 1;
1756  *       dl_defer_idle = 1;
1757  *       start_dl_timer();        // restart timer
1758  *       // [C]
1759  *
1760  * // stop idle server
1761  * [8] C->A
1762  * dl_server_timer()
1763  *   if (dl_defer_idle)
1764  *     dl_server_stop();
1765  *     // [A]
1766  *
1767  *
1768  * digraph dl_server {
1769  *   "A:init" -> "B:zero_laxity-wait"             [label="1:dl_server_start"]
1770  *   "A:init" -> "D:running"                      [label="1:dl_server_start"]
1771  *   "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1772  *   "B:zero_laxity-wait" -> "C:idle-wait"        [label="7:dl_server_update_idle"]
1773  *   "B:zero_laxity-wait" -> "D:running"          [label="3:dl_server_timer"]
1774  *   "C:idle-wait" -> "A:init"                    [label="8:dl_server_timer"]
1775  *   "C:idle-wait" -> "B:zero_laxity-wait"        [label="1:dl_server_start"]
1776  *   "C:idle-wait" -> "B:zero_laxity-wait"        [label="2:dl_server_update"]
1777  *   "C:idle-wait" -> "C:idle-wait"               [label="7:dl_server_update_idle"]
1778  *   "D:running" -> "A:init"                      [label="4:pick_task_dl"]
1779  *   "D:running" -> "E:replenish-wait"            [label="5:update_curr_dl_se"]
1780  *   "E:replenish-wait" -> "B:zero_laxity-wait"   [label="2:dl_server_update"]
1781  *   "E:replenish-wait" -> "D:running"            [label="6:dl_server_timer"]
1782  * }
1783  *
1784  *
1785  * Notes:
1786  *
1787  *  - When there are fair tasks running the most likely loop is [2]->[2].
1788  *    the dl_server never actually runs, the timer never fires.
1789  *
1790  *  - When there is actual fair starvation; the timer fires and starts the
1791  *    dl_server. This will then throttle and replenish like a normal DL
1792  *    task. Notably it will not 'defer' again.
1793  *
1794  *  - When idle it will push the actication forward once, and then wait
1795  *    for the timer to hit or a non-idle update to restart things.
1796  */
1797 void dl_server_start(struct sched_dl_entity *dl_se)
1798 {
1799 	struct rq *rq = dl_se->rq;
1800 
1801 	dl_se->dl_defer_idle = 0;
1802 	if (!dl_server(dl_se) || dl_se->dl_server_active)
1803 		return;
1804 
1805 	/*
1806 	 * Update the current task to 'now'.
1807 	 */
1808 	rq->donor->sched_class->update_curr(rq);
1809 
1810 	if (WARN_ON_ONCE(!cpu_online(cpu_of(rq))))
1811 		return;
1812 
1813 	dl_se->dl_server_active = 1;
1814 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1815 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1816 		resched_curr(dl_se->rq);
1817 }
1818 
1819 void dl_server_stop(struct sched_dl_entity *dl_se)
1820 {
1821 	if (!dl_server(dl_se) || !dl_server_active(dl_se))
1822 		return;
1823 
1824 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1825 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1826 	dl_se->dl_defer_armed = 0;
1827 	dl_se->dl_throttled = 0;
1828 	dl_se->dl_defer_idle = 0;
1829 	dl_se->dl_server_active = 0;
1830 }
1831 
1832 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1833 		    dl_server_pick_f pick_task)
1834 {
1835 	dl_se->rq = rq;
1836 	dl_se->server_pick_task = pick_task;
1837 }
1838 
1839 void sched_init_dl_servers(void)
1840 {
1841 	int cpu;
1842 	struct rq *rq;
1843 	struct sched_dl_entity *dl_se;
1844 
1845 	for_each_online_cpu(cpu) {
1846 		u64 runtime =  50 * NSEC_PER_MSEC;
1847 		u64 period = 1000 * NSEC_PER_MSEC;
1848 
1849 		rq = cpu_rq(cpu);
1850 
1851 		guard(rq_lock_irq)(rq);
1852 		update_rq_clock(rq);
1853 
1854 		dl_se = &rq->fair_server;
1855 
1856 		WARN_ON(dl_server(dl_se));
1857 
1858 		dl_server_apply_params(dl_se, runtime, period, 1);
1859 
1860 		dl_se->dl_server = 1;
1861 		dl_se->dl_defer = 1;
1862 		setup_new_dl_entity(dl_se);
1863 	}
1864 }
1865 
1866 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1867 {
1868 	u64 new_bw = dl_se->dl_bw;
1869 	int cpu = cpu_of(rq);
1870 	struct dl_bw *dl_b;
1871 
1872 	dl_b = dl_bw_of(cpu_of(rq));
1873 	guard(raw_spinlock)(&dl_b->lock);
1874 
1875 	if (!dl_bw_cpus(cpu))
1876 		return;
1877 
1878 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1879 }
1880 
1881 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1882 {
1883 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1884 	u64 new_bw = to_ratio(period, runtime);
1885 	struct rq *rq = dl_se->rq;
1886 	int cpu = cpu_of(rq);
1887 	struct dl_bw *dl_b;
1888 	unsigned long cap;
1889 	int retval = 0;
1890 	int cpus;
1891 
1892 	dl_b = dl_bw_of(cpu);
1893 	guard(raw_spinlock)(&dl_b->lock);
1894 
1895 	cpus = dl_bw_cpus(cpu);
1896 	cap = dl_bw_capacity(cpu);
1897 
1898 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1899 		return -EBUSY;
1900 
1901 	if (init) {
1902 		__add_rq_bw(new_bw, &rq->dl);
1903 		__dl_add(dl_b, new_bw, cpus);
1904 	} else {
1905 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1906 		__dl_add(dl_b, new_bw, cpus);
1907 
1908 		dl_rq_change_utilization(rq, dl_se, new_bw);
1909 	}
1910 
1911 	dl_se->dl_runtime = runtime;
1912 	dl_se->dl_deadline = period;
1913 	dl_se->dl_period = period;
1914 
1915 	dl_se->runtime = 0;
1916 	dl_se->deadline = 0;
1917 
1918 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1919 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1920 
1921 	return retval;
1922 }
1923 
1924 /*
1925  * Update the current task's runtime statistics (provided it is still
1926  * a -deadline task and has not been removed from the dl_rq).
1927  */
1928 static void update_curr_dl(struct rq *rq)
1929 {
1930 	struct task_struct *donor = rq->donor;
1931 	struct sched_dl_entity *dl_se = &donor->dl;
1932 	s64 delta_exec;
1933 
1934 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1935 		return;
1936 
1937 	/*
1938 	 * Consumed budget is computed considering the time as
1939 	 * observed by schedulable tasks (excluding time spent
1940 	 * in hardirq context, etc.). Deadlines are instead
1941 	 * computed using hard walltime. This seems to be the more
1942 	 * natural solution, but the full ramifications of this
1943 	 * approach need further study.
1944 	 */
1945 	delta_exec = update_curr_common(rq);
1946 	update_curr_dl_se(rq, dl_se, delta_exec);
1947 }
1948 
1949 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1950 {
1951 	struct sched_dl_entity *dl_se = container_of(timer,
1952 						     struct sched_dl_entity,
1953 						     inactive_timer);
1954 	struct task_struct *p = NULL;
1955 	struct rq_flags rf;
1956 	struct rq *rq;
1957 
1958 	if (!dl_server(dl_se)) {
1959 		p = dl_task_of(dl_se);
1960 		rq = task_rq_lock(p, &rf);
1961 	} else {
1962 		rq = dl_se->rq;
1963 		rq_lock(rq, &rf);
1964 	}
1965 
1966 	sched_clock_tick();
1967 	update_rq_clock(rq);
1968 
1969 	if (dl_server(dl_se))
1970 		goto no_task;
1971 
1972 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1973 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1974 
1975 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1976 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1977 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1978 			dl_se->dl_non_contending = 0;
1979 		}
1980 
1981 		raw_spin_lock(&dl_b->lock);
1982 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1983 		raw_spin_unlock(&dl_b->lock);
1984 		__dl_clear_params(dl_se);
1985 
1986 		goto unlock;
1987 	}
1988 
1989 no_task:
1990 	if (dl_se->dl_non_contending == 0)
1991 		goto unlock;
1992 
1993 	sub_running_bw(dl_se, &rq->dl);
1994 	dl_se->dl_non_contending = 0;
1995 unlock:
1996 
1997 	if (!dl_server(dl_se)) {
1998 		task_rq_unlock(rq, p, &rf);
1999 		put_task_struct(p);
2000 	} else {
2001 		rq_unlock(rq, &rf);
2002 	}
2003 
2004 	return HRTIMER_NORESTART;
2005 }
2006 
2007 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
2008 {
2009 	struct hrtimer *timer = &dl_se->inactive_timer;
2010 
2011 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
2012 }
2013 
2014 #define __node_2_dle(node) \
2015 	rb_entry((node), struct sched_dl_entity, rb_node)
2016 
2017 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2018 {
2019 	struct rq *rq = rq_of_dl_rq(dl_rq);
2020 
2021 	if (dl_rq->earliest_dl.curr == 0 ||
2022 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
2023 		if (dl_rq->earliest_dl.curr == 0)
2024 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
2025 		dl_rq->earliest_dl.curr = deadline;
2026 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
2027 	}
2028 }
2029 
2030 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2031 {
2032 	struct rq *rq = rq_of_dl_rq(dl_rq);
2033 
2034 	/*
2035 	 * Since we may have removed our earliest (and/or next earliest)
2036 	 * task we must recompute them.
2037 	 */
2038 	if (!dl_rq->dl_nr_running) {
2039 		dl_rq->earliest_dl.curr = 0;
2040 		dl_rq->earliest_dl.next = 0;
2041 		cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online);
2042 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2043 	} else {
2044 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
2045 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
2046 
2047 		dl_rq->earliest_dl.curr = entry->deadline;
2048 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
2049 	}
2050 }
2051 
2052 static inline
2053 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2054 {
2055 	u64 deadline = dl_se->deadline;
2056 
2057 	dl_rq->dl_nr_running++;
2058 
2059 	if (!dl_server(dl_se))
2060 		add_nr_running(rq_of_dl_rq(dl_rq), 1);
2061 
2062 	inc_dl_deadline(dl_rq, deadline);
2063 }
2064 
2065 static inline
2066 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2067 {
2068 	WARN_ON(!dl_rq->dl_nr_running);
2069 	dl_rq->dl_nr_running--;
2070 
2071 	if (!dl_server(dl_se))
2072 		sub_nr_running(rq_of_dl_rq(dl_rq), 1);
2073 
2074 	dec_dl_deadline(dl_rq, dl_se->deadline);
2075 }
2076 
2077 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
2078 {
2079 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
2080 }
2081 
2082 static __always_inline struct sched_statistics *
2083 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
2084 {
2085 	if (!schedstat_enabled())
2086 		return NULL;
2087 
2088 	if (dl_server(dl_se))
2089 		return NULL;
2090 
2091 	return &dl_task_of(dl_se)->stats;
2092 }
2093 
2094 static inline void
2095 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2096 {
2097 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2098 	if (stats)
2099 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2100 }
2101 
2102 static inline void
2103 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2104 {
2105 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2106 	if (stats)
2107 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2108 }
2109 
2110 static inline void
2111 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2112 {
2113 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2114 	if (stats)
2115 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2116 }
2117 
2118 static inline void
2119 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2120 			int flags)
2121 {
2122 	if (!schedstat_enabled())
2123 		return;
2124 
2125 	if (flags & ENQUEUE_WAKEUP)
2126 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
2127 }
2128 
2129 static inline void
2130 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2131 			int flags)
2132 {
2133 	struct task_struct *p = dl_task_of(dl_se);
2134 
2135 	if (!schedstat_enabled())
2136 		return;
2137 
2138 	if ((flags & DEQUEUE_SLEEP)) {
2139 		unsigned int state;
2140 
2141 		state = READ_ONCE(p->__state);
2142 		if (state & TASK_INTERRUPTIBLE)
2143 			__schedstat_set(p->stats.sleep_start,
2144 					rq_clock(rq_of_dl_rq(dl_rq)));
2145 
2146 		if (state & TASK_UNINTERRUPTIBLE)
2147 			__schedstat_set(p->stats.block_start,
2148 					rq_clock(rq_of_dl_rq(dl_rq)));
2149 	}
2150 }
2151 
2152 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
2153 {
2154 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2155 
2156 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
2157 
2158 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
2159 
2160 	inc_dl_tasks(dl_se, dl_rq);
2161 }
2162 
2163 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
2164 {
2165 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2166 
2167 	if (RB_EMPTY_NODE(&dl_se->rb_node))
2168 		return;
2169 
2170 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
2171 
2172 	RB_CLEAR_NODE(&dl_se->rb_node);
2173 
2174 	dec_dl_tasks(dl_se, dl_rq);
2175 }
2176 
2177 static void
2178 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2179 {
2180 	WARN_ON_ONCE(on_dl_rq(dl_se));
2181 
2182 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
2183 
2184 	/*
2185 	 * Check if a constrained deadline task was activated
2186 	 * after the deadline but before the next period.
2187 	 * If that is the case, the task will be throttled and
2188 	 * the replenishment timer will be set to the next period.
2189 	 */
2190 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2191 		dl_check_constrained_dl(dl_se);
2192 
2193 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2194 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2195 
2196 		add_rq_bw(dl_se, dl_rq);
2197 		add_running_bw(dl_se, dl_rq);
2198 	}
2199 
2200 	/*
2201 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2202 	 * its budget it needs a replenishment and, since it now is on
2203 	 * its rq, the bandwidth timer callback (which clearly has not
2204 	 * run yet) will take care of this.
2205 	 * However, the active utilization does not depend on the fact
2206 	 * that the task is on the runqueue or not (but depends on the
2207 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2208 	 * In other words, even if a task is throttled its utilization must
2209 	 * be counted in the active utilization; hence, we need to call
2210 	 * add_running_bw().
2211 	 */
2212 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2213 		if (flags & ENQUEUE_WAKEUP)
2214 			task_contending(dl_se, flags);
2215 
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * If this is a wakeup or a new instance, the scheduling
2221 	 * parameters of the task might need updating. Otherwise,
2222 	 * we want a replenishment of its runtime.
2223 	 */
2224 	if (flags & ENQUEUE_WAKEUP) {
2225 		task_contending(dl_se, flags);
2226 		update_dl_entity(dl_se);
2227 	} else if (flags & ENQUEUE_REPLENISH) {
2228 		replenish_dl_entity(dl_se);
2229 	} else if ((flags & ENQUEUE_MOVE) &&
2230 		   !is_dl_boosted(dl_se) &&
2231 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2232 		setup_new_dl_entity(dl_se);
2233 	}
2234 
2235 	/*
2236 	 * If the reservation is still throttled, e.g., it got replenished but is a
2237 	 * deferred task and still got to wait, don't enqueue.
2238 	 */
2239 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2240 		return;
2241 
2242 	/*
2243 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2244 	 * In case the timer was not started, say because the defer time
2245 	 * has passed, mark as not throttled and mark unarmed.
2246 	 * Also cancel earlier timers, since letting those run is pointless.
2247 	 */
2248 	if (dl_se->dl_throttled) {
2249 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2250 		dl_se->dl_defer_armed = 0;
2251 		dl_se->dl_throttled = 0;
2252 	}
2253 
2254 	__enqueue_dl_entity(dl_se);
2255 }
2256 
2257 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2258 {
2259 	__dequeue_dl_entity(dl_se);
2260 
2261 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2262 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2263 
2264 		sub_running_bw(dl_se, dl_rq);
2265 		sub_rq_bw(dl_se, dl_rq);
2266 	}
2267 
2268 	/*
2269 	 * This check allows to start the inactive timer (or to immediately
2270 	 * decrease the active utilization, if needed) in two cases:
2271 	 * when the task blocks and when it is terminating
2272 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2273 	 * way, because from GRUB's point of view the same thing is happening
2274 	 * (the task moves from "active contending" to "active non contending"
2275 	 * or "inactive")
2276 	 */
2277 	if (flags & DEQUEUE_SLEEP)
2278 		task_non_contending(dl_se, true);
2279 }
2280 
2281 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2282 {
2283 	if (is_dl_boosted(&p->dl)) {
2284 		/*
2285 		 * Because of delays in the detection of the overrun of a
2286 		 * thread's runtime, it might be the case that a thread
2287 		 * goes to sleep in a rt mutex with negative runtime. As
2288 		 * a consequence, the thread will be throttled.
2289 		 *
2290 		 * While waiting for the mutex, this thread can also be
2291 		 * boosted via PI, resulting in a thread that is throttled
2292 		 * and boosted at the same time.
2293 		 *
2294 		 * In this case, the boost overrides the throttle.
2295 		 */
2296 		if (p->dl.dl_throttled) {
2297 			/*
2298 			 * The replenish timer needs to be canceled. No
2299 			 * problem if it fires concurrently: boosted threads
2300 			 * are ignored in dl_task_timer().
2301 			 */
2302 			cancel_replenish_timer(&p->dl);
2303 			p->dl.dl_throttled = 0;
2304 		}
2305 	} else if (!dl_prio(p->normal_prio)) {
2306 		/*
2307 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2308 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2309 		 * replenishing it, as it's going to return back to its original
2310 		 * scheduling class after this. If it has been throttled, we need to
2311 		 * clear the flag, otherwise the task may wake up as throttled after
2312 		 * being boosted again with no means to replenish the runtime and clear
2313 		 * the throttle.
2314 		 */
2315 		p->dl.dl_throttled = 0;
2316 		if (!(flags & ENQUEUE_REPLENISH))
2317 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2318 					     task_pid_nr(p));
2319 
2320 		return;
2321 	}
2322 
2323 	check_schedstat_required();
2324 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2325 
2326 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2327 		flags |= ENQUEUE_MIGRATING;
2328 
2329 	enqueue_dl_entity(&p->dl, flags);
2330 
2331 	if (dl_server(&p->dl))
2332 		return;
2333 
2334 	if (task_is_blocked(p))
2335 		return;
2336 
2337 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2338 		enqueue_pushable_dl_task(rq, p);
2339 }
2340 
2341 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2342 {
2343 	update_curr_dl(rq);
2344 
2345 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2346 		flags |= DEQUEUE_MIGRATING;
2347 
2348 	dequeue_dl_entity(&p->dl, flags);
2349 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2350 		dequeue_pushable_dl_task(rq, p);
2351 
2352 	return true;
2353 }
2354 
2355 /*
2356  * Yield task semantic for -deadline tasks is:
2357  *
2358  *   get off from the CPU until our next instance, with
2359  *   a new runtime. This is of little use now, since we
2360  *   don't have a bandwidth reclaiming mechanism. Anyway,
2361  *   bandwidth reclaiming is planned for the future, and
2362  *   yield_task_dl will indicate that some spare budget
2363  *   is available for other task instances to use it.
2364  */
2365 static void yield_task_dl(struct rq *rq)
2366 {
2367 	/*
2368 	 * We make the task go to sleep until its current deadline by
2369 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2370 	 * it and the bandwidth timer will wake it up and will give it
2371 	 * new scheduling parameters (thanks to dl_yielded=1).
2372 	 */
2373 	rq->donor->dl.dl_yielded = 1;
2374 
2375 	update_rq_clock(rq);
2376 	update_curr_dl(rq);
2377 	/*
2378 	 * Tell update_rq_clock() that we've just updated,
2379 	 * so we don't do microscopic update in schedule()
2380 	 * and double the fastpath cost.
2381 	 */
2382 	rq_clock_skip_update(rq);
2383 }
2384 
2385 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2386 						 struct rq *rq)
2387 {
2388 	return (!rq->dl.dl_nr_running ||
2389 		dl_time_before(p->dl.deadline,
2390 			       rq->dl.earliest_dl.curr));
2391 }
2392 
2393 static int find_later_rq(struct task_struct *task);
2394 
2395 static int
2396 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2397 {
2398 	struct task_struct *curr, *donor;
2399 	bool select_rq;
2400 	struct rq *rq;
2401 
2402 	if (!(flags & WF_TTWU))
2403 		return cpu;
2404 
2405 	rq = cpu_rq(cpu);
2406 
2407 	rcu_read_lock();
2408 	curr = READ_ONCE(rq->curr); /* unlocked access */
2409 	donor = READ_ONCE(rq->donor);
2410 
2411 	/*
2412 	 * If we are dealing with a -deadline task, we must
2413 	 * decide where to wake it up.
2414 	 * If it has a later deadline and the current task
2415 	 * on this rq can't move (provided the waking task
2416 	 * can!) we prefer to send it somewhere else. On the
2417 	 * other hand, if it has a shorter deadline, we
2418 	 * try to make it stay here, it might be important.
2419 	 */
2420 	select_rq = unlikely(dl_task(donor)) &&
2421 		    (curr->nr_cpus_allowed < 2 ||
2422 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2423 		    p->nr_cpus_allowed > 1;
2424 
2425 	/*
2426 	 * Take the capacity of the CPU into account to
2427 	 * ensure it fits the requirement of the task.
2428 	 */
2429 	if (sched_asym_cpucap_active())
2430 		select_rq |= !dl_task_fits_capacity(p, cpu);
2431 
2432 	if (select_rq) {
2433 		int target = find_later_rq(p);
2434 
2435 		if (target != -1 &&
2436 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2437 			cpu = target;
2438 	}
2439 	rcu_read_unlock();
2440 
2441 	return cpu;
2442 }
2443 
2444 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2445 {
2446 	struct rq_flags rf;
2447 	struct rq *rq;
2448 
2449 	if (READ_ONCE(p->__state) != TASK_WAKING)
2450 		return;
2451 
2452 	rq = task_rq(p);
2453 	/*
2454 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2455 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2456 	 * rq->lock is not... So, lock it
2457 	 */
2458 	rq_lock(rq, &rf);
2459 	if (p->dl.dl_non_contending) {
2460 		update_rq_clock(rq);
2461 		sub_running_bw(&p->dl, &rq->dl);
2462 		p->dl.dl_non_contending = 0;
2463 		/*
2464 		 * If the timer handler is currently running and the
2465 		 * timer cannot be canceled, inactive_task_timer()
2466 		 * will see that dl_not_contending is not set, and
2467 		 * will not touch the rq's active utilization,
2468 		 * so we are still safe.
2469 		 */
2470 		cancel_inactive_timer(&p->dl);
2471 	}
2472 	sub_rq_bw(&p->dl, &rq->dl);
2473 	rq_unlock(rq, &rf);
2474 }
2475 
2476 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2477 {
2478 	/*
2479 	 * Current can't be migrated, useless to reschedule,
2480 	 * let's hope p can move out.
2481 	 */
2482 	if (rq->curr->nr_cpus_allowed == 1 ||
2483 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2484 		return;
2485 
2486 	/*
2487 	 * p is migratable, so let's not schedule it and
2488 	 * see if it is pushed or pulled somewhere else.
2489 	 */
2490 	if (p->nr_cpus_allowed != 1 &&
2491 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2492 		return;
2493 
2494 	resched_curr(rq);
2495 }
2496 
2497 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2498 {
2499 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2500 		/*
2501 		 * This is OK, because current is on_cpu, which avoids it being
2502 		 * picked for load-balance and preemption/IRQs are still
2503 		 * disabled avoiding further scheduler activity on it and we've
2504 		 * not yet started the picking loop.
2505 		 */
2506 		rq_unpin_lock(rq, rf);
2507 		pull_dl_task(rq);
2508 		rq_repin_lock(rq, rf);
2509 	}
2510 
2511 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2512 }
2513 
2514 /*
2515  * Only called when both the current and waking task are -deadline
2516  * tasks.
2517  */
2518 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2519 				  int flags)
2520 {
2521 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2522 		resched_curr(rq);
2523 		return;
2524 	}
2525 
2526 	/*
2527 	 * In the unlikely case current and p have the same deadline
2528 	 * let us try to decide what's the best thing to do...
2529 	 */
2530 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2531 	    !test_tsk_need_resched(rq->curr))
2532 		check_preempt_equal_dl(rq, p);
2533 }
2534 
2535 #ifdef CONFIG_SCHED_HRTICK
2536 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2537 {
2538 	hrtick_start(rq, dl_se->runtime);
2539 }
2540 #else /* !CONFIG_SCHED_HRTICK: */
2541 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2542 {
2543 }
2544 #endif /* !CONFIG_SCHED_HRTICK */
2545 
2546 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2547 {
2548 	struct sched_dl_entity *dl_se = &p->dl;
2549 	struct dl_rq *dl_rq = &rq->dl;
2550 
2551 	p->se.exec_start = rq_clock_task(rq);
2552 	if (on_dl_rq(&p->dl))
2553 		update_stats_wait_end_dl(dl_rq, dl_se);
2554 
2555 	/* You can't push away the running task */
2556 	dequeue_pushable_dl_task(rq, p);
2557 
2558 	if (!first)
2559 		return;
2560 
2561 	if (rq->donor->sched_class != &dl_sched_class)
2562 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2563 
2564 	deadline_queue_push_tasks(rq);
2565 
2566 	if (hrtick_enabled_dl(rq))
2567 		start_hrtick_dl(rq, &p->dl);
2568 }
2569 
2570 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2571 {
2572 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2573 
2574 	if (!left)
2575 		return NULL;
2576 
2577 	return __node_2_dle(left);
2578 }
2579 
2580 /*
2581  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2582  * @rq: The runqueue to pick the next task from.
2583  */
2584 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf)
2585 {
2586 	struct sched_dl_entity *dl_se;
2587 	struct dl_rq *dl_rq = &rq->dl;
2588 	struct task_struct *p;
2589 
2590 again:
2591 	if (!sched_dl_runnable(rq))
2592 		return NULL;
2593 
2594 	dl_se = pick_next_dl_entity(dl_rq);
2595 	WARN_ON_ONCE(!dl_se);
2596 
2597 	if (dl_server(dl_se)) {
2598 		p = dl_se->server_pick_task(dl_se, rf);
2599 		if (!p) {
2600 			dl_server_stop(dl_se);
2601 			goto again;
2602 		}
2603 		rq->dl_server = dl_se;
2604 	} else {
2605 		p = dl_task_of(dl_se);
2606 	}
2607 
2608 	return p;
2609 }
2610 
2611 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf)
2612 {
2613 	return __pick_task_dl(rq, rf);
2614 }
2615 
2616 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2617 {
2618 	struct sched_dl_entity *dl_se = &p->dl;
2619 	struct dl_rq *dl_rq = &rq->dl;
2620 
2621 	if (on_dl_rq(&p->dl))
2622 		update_stats_wait_start_dl(dl_rq, dl_se);
2623 
2624 	update_curr_dl(rq);
2625 
2626 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2627 
2628 	if (task_is_blocked(p))
2629 		return;
2630 
2631 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2632 		enqueue_pushable_dl_task(rq, p);
2633 }
2634 
2635 /*
2636  * scheduler tick hitting a task of our scheduling class.
2637  *
2638  * NOTE: This function can be called remotely by the tick offload that
2639  * goes along full dynticks. Therefore no local assumption can be made
2640  * and everything must be accessed through the @rq and @curr passed in
2641  * parameters.
2642  */
2643 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2644 {
2645 	update_curr_dl(rq);
2646 
2647 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2648 	/*
2649 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2650 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2651 	 * be set and schedule() will start a new hrtick for the next task.
2652 	 */
2653 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2654 	    is_leftmost(&p->dl, &rq->dl))
2655 		start_hrtick_dl(rq, &p->dl);
2656 }
2657 
2658 static void task_fork_dl(struct task_struct *p)
2659 {
2660 	/*
2661 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2662 	 * sched_fork()
2663 	 */
2664 }
2665 
2666 /* Only try algorithms three times */
2667 #define DL_MAX_TRIES 3
2668 
2669 /*
2670  * Return the earliest pushable rq's task, which is suitable to be executed
2671  * on the CPU, NULL otherwise:
2672  */
2673 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2674 {
2675 	struct task_struct *p = NULL;
2676 	struct rb_node *next_node;
2677 
2678 	if (!has_pushable_dl_tasks(rq))
2679 		return NULL;
2680 
2681 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2682 	while (next_node) {
2683 		p = __node_2_pdl(next_node);
2684 
2685 		if (task_is_pushable(rq, p, cpu))
2686 			return p;
2687 
2688 		next_node = rb_next(next_node);
2689 	}
2690 
2691 	return NULL;
2692 }
2693 
2694 /* Access rule: must be called on local CPU with preemption disabled */
2695 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2696 
2697 static int find_later_rq(struct task_struct *task)
2698 {
2699 	struct sched_domain *sd;
2700 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2701 	int this_cpu = smp_processor_id();
2702 	int cpu = task_cpu(task);
2703 
2704 	/* Make sure the mask is initialized first */
2705 	if (unlikely(!later_mask))
2706 		return -1;
2707 
2708 	if (task->nr_cpus_allowed == 1)
2709 		return -1;
2710 
2711 	/*
2712 	 * We have to consider system topology and task affinity
2713 	 * first, then we can look for a suitable CPU.
2714 	 */
2715 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2716 		return -1;
2717 
2718 	/*
2719 	 * If we are here, some targets have been found, including
2720 	 * the most suitable which is, among the runqueues where the
2721 	 * current tasks have later deadlines than the task's one, the
2722 	 * rq with the latest possible one.
2723 	 *
2724 	 * Now we check how well this matches with task's
2725 	 * affinity and system topology.
2726 	 *
2727 	 * The last CPU where the task run is our first
2728 	 * guess, since it is most likely cache-hot there.
2729 	 */
2730 	if (cpumask_test_cpu(cpu, later_mask))
2731 		return cpu;
2732 	/*
2733 	 * Check if this_cpu is to be skipped (i.e., it is
2734 	 * not in the mask) or not.
2735 	 */
2736 	if (!cpumask_test_cpu(this_cpu, later_mask))
2737 		this_cpu = -1;
2738 
2739 	rcu_read_lock();
2740 	for_each_domain(cpu, sd) {
2741 		if (sd->flags & SD_WAKE_AFFINE) {
2742 			int best_cpu;
2743 
2744 			/*
2745 			 * If possible, preempting this_cpu is
2746 			 * cheaper than migrating.
2747 			 */
2748 			if (this_cpu != -1 &&
2749 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2750 				rcu_read_unlock();
2751 				return this_cpu;
2752 			}
2753 
2754 			best_cpu = cpumask_any_and_distribute(later_mask,
2755 							      sched_domain_span(sd));
2756 			/*
2757 			 * Last chance: if a CPU being in both later_mask
2758 			 * and current sd span is valid, that becomes our
2759 			 * choice. Of course, the latest possible CPU is
2760 			 * already under consideration through later_mask.
2761 			 */
2762 			if (best_cpu < nr_cpu_ids) {
2763 				rcu_read_unlock();
2764 				return best_cpu;
2765 			}
2766 		}
2767 	}
2768 	rcu_read_unlock();
2769 
2770 	/*
2771 	 * At this point, all our guesses failed, we just return
2772 	 * 'something', and let the caller sort the things out.
2773 	 */
2774 	if (this_cpu != -1)
2775 		return this_cpu;
2776 
2777 	cpu = cpumask_any_distribute(later_mask);
2778 	if (cpu < nr_cpu_ids)
2779 		return cpu;
2780 
2781 	return -1;
2782 }
2783 
2784 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2785 {
2786 	struct task_struct *p;
2787 
2788 	if (!has_pushable_dl_tasks(rq))
2789 		return NULL;
2790 
2791 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2792 
2793 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2794 	WARN_ON_ONCE(task_current(rq, p));
2795 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2796 
2797 	WARN_ON_ONCE(!task_on_rq_queued(p));
2798 	WARN_ON_ONCE(!dl_task(p));
2799 
2800 	return p;
2801 }
2802 
2803 /* Locks the rq it finds */
2804 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2805 {
2806 	struct rq *later_rq = NULL;
2807 	int tries;
2808 	int cpu;
2809 
2810 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2811 		cpu = find_later_rq(task);
2812 
2813 		if ((cpu == -1) || (cpu == rq->cpu))
2814 			break;
2815 
2816 		later_rq = cpu_rq(cpu);
2817 
2818 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2819 			/*
2820 			 * Target rq has tasks of equal or earlier deadline,
2821 			 * retrying does not release any lock and is unlikely
2822 			 * to yield a different result.
2823 			 */
2824 			later_rq = NULL;
2825 			break;
2826 		}
2827 
2828 		/* Retry if something changed. */
2829 		if (double_lock_balance(rq, later_rq)) {
2830 			/*
2831 			 * double_lock_balance had to release rq->lock, in the
2832 			 * meantime, task may no longer be fit to be migrated.
2833 			 * Check the following to ensure that the task is
2834 			 * still suitable for migration:
2835 			 * 1. It is possible the task was scheduled,
2836 			 *    migrate_disabled was set and then got preempted,
2837 			 *    so we must check the task migration disable
2838 			 *    flag.
2839 			 * 2. The CPU picked is in the task's affinity.
2840 			 * 3. For throttled task (dl_task_offline_migration),
2841 			 *    check the following:
2842 			 *    - the task is not on the rq anymore (it was
2843 			 *      migrated)
2844 			 *    - the task is not on CPU anymore
2845 			 *    - the task is still a dl task
2846 			 *    - the task is not queued on the rq anymore
2847 			 * 4. For the non-throttled task (push_dl_task), the
2848 			 *    check to ensure that this task is still at the
2849 			 *    head of the pushable tasks list is enough.
2850 			 */
2851 			if (unlikely(is_migration_disabled(task) ||
2852 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2853 				     (task->dl.dl_throttled &&
2854 				      (task_rq(task) != rq ||
2855 				       task_on_cpu(rq, task) ||
2856 				       !dl_task(task) ||
2857 				       !task_on_rq_queued(task))) ||
2858 				     (!task->dl.dl_throttled &&
2859 				      task != pick_next_pushable_dl_task(rq)))) {
2860 
2861 				double_unlock_balance(rq, later_rq);
2862 				later_rq = NULL;
2863 				break;
2864 			}
2865 		}
2866 
2867 		/*
2868 		 * If the rq we found has no -deadline task, or
2869 		 * its earliest one has a later deadline than our
2870 		 * task, the rq is a good one.
2871 		 */
2872 		if (dl_task_is_earliest_deadline(task, later_rq))
2873 			break;
2874 
2875 		/* Otherwise we try again. */
2876 		double_unlock_balance(rq, later_rq);
2877 		later_rq = NULL;
2878 	}
2879 
2880 	return later_rq;
2881 }
2882 
2883 /*
2884  * See if the non running -deadline tasks on this rq
2885  * can be sent to some other CPU where they can preempt
2886  * and start executing.
2887  */
2888 static int push_dl_task(struct rq *rq)
2889 {
2890 	struct task_struct *next_task;
2891 	struct rq *later_rq;
2892 	int ret = 0;
2893 
2894 	next_task = pick_next_pushable_dl_task(rq);
2895 	if (!next_task)
2896 		return 0;
2897 
2898 retry:
2899 	/*
2900 	 * If next_task preempts rq->curr, and rq->curr
2901 	 * can move away, it makes sense to just reschedule
2902 	 * without going further in pushing next_task.
2903 	 */
2904 	if (dl_task(rq->donor) &&
2905 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2906 	    rq->curr->nr_cpus_allowed > 1) {
2907 		resched_curr(rq);
2908 		return 0;
2909 	}
2910 
2911 	if (is_migration_disabled(next_task))
2912 		return 0;
2913 
2914 	if (WARN_ON(next_task == rq->curr))
2915 		return 0;
2916 
2917 	/* We might release rq lock */
2918 	get_task_struct(next_task);
2919 
2920 	/* Will lock the rq it'll find */
2921 	later_rq = find_lock_later_rq(next_task, rq);
2922 	if (!later_rq) {
2923 		struct task_struct *task;
2924 
2925 		/*
2926 		 * We must check all this again, since
2927 		 * find_lock_later_rq releases rq->lock and it is
2928 		 * then possible that next_task has migrated.
2929 		 */
2930 		task = pick_next_pushable_dl_task(rq);
2931 		if (task == next_task) {
2932 			/*
2933 			 * The task is still there. We don't try
2934 			 * again, some other CPU will pull it when ready.
2935 			 */
2936 			goto out;
2937 		}
2938 
2939 		if (!task)
2940 			/* No more tasks */
2941 			goto out;
2942 
2943 		put_task_struct(next_task);
2944 		next_task = task;
2945 		goto retry;
2946 	}
2947 
2948 	move_queued_task_locked(rq, later_rq, next_task);
2949 	ret = 1;
2950 
2951 	resched_curr(later_rq);
2952 
2953 	double_unlock_balance(rq, later_rq);
2954 
2955 out:
2956 	put_task_struct(next_task);
2957 
2958 	return ret;
2959 }
2960 
2961 static void push_dl_tasks(struct rq *rq)
2962 {
2963 	/* push_dl_task() will return true if it moved a -deadline task */
2964 	while (push_dl_task(rq))
2965 		;
2966 }
2967 
2968 static void pull_dl_task(struct rq *this_rq)
2969 {
2970 	int this_cpu = this_rq->cpu, cpu;
2971 	struct task_struct *p, *push_task;
2972 	bool resched = false;
2973 	struct rq *src_rq;
2974 	u64 dmin = LONG_MAX;
2975 
2976 	if (likely(!dl_overloaded(this_rq)))
2977 		return;
2978 
2979 	/*
2980 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2981 	 * see overloaded we must also see the dlo_mask bit.
2982 	 */
2983 	smp_rmb();
2984 
2985 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2986 		if (this_cpu == cpu)
2987 			continue;
2988 
2989 		src_rq = cpu_rq(cpu);
2990 
2991 		/*
2992 		 * It looks racy, and it is! However, as in sched_rt.c,
2993 		 * we are fine with this.
2994 		 */
2995 		if (this_rq->dl.dl_nr_running &&
2996 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2997 				   src_rq->dl.earliest_dl.next))
2998 			continue;
2999 
3000 		/* Might drop this_rq->lock */
3001 		push_task = NULL;
3002 		double_lock_balance(this_rq, src_rq);
3003 
3004 		/*
3005 		 * If there are no more pullable tasks on the
3006 		 * rq, we're done with it.
3007 		 */
3008 		if (src_rq->dl.dl_nr_running <= 1)
3009 			goto skip;
3010 
3011 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
3012 
3013 		/*
3014 		 * We found a task to be pulled if:
3015 		 *  - it preempts our current (if there's one),
3016 		 *  - it will preempt the last one we pulled (if any).
3017 		 */
3018 		if (p && dl_time_before(p->dl.deadline, dmin) &&
3019 		    dl_task_is_earliest_deadline(p, this_rq)) {
3020 			WARN_ON(p == src_rq->curr);
3021 			WARN_ON(!task_on_rq_queued(p));
3022 
3023 			/*
3024 			 * Then we pull iff p has actually an earlier
3025 			 * deadline than the current task of its runqueue.
3026 			 */
3027 			if (dl_time_before(p->dl.deadline,
3028 					   src_rq->donor->dl.deadline))
3029 				goto skip;
3030 
3031 			if (is_migration_disabled(p)) {
3032 				push_task = get_push_task(src_rq);
3033 			} else {
3034 				move_queued_task_locked(src_rq, this_rq, p);
3035 				dmin = p->dl.deadline;
3036 				resched = true;
3037 			}
3038 
3039 			/* Is there any other task even earlier? */
3040 		}
3041 skip:
3042 		double_unlock_balance(this_rq, src_rq);
3043 
3044 		if (push_task) {
3045 			preempt_disable();
3046 			raw_spin_rq_unlock(this_rq);
3047 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
3048 					    push_task, &src_rq->push_work);
3049 			preempt_enable();
3050 			raw_spin_rq_lock(this_rq);
3051 		}
3052 	}
3053 
3054 	if (resched)
3055 		resched_curr(this_rq);
3056 }
3057 
3058 /*
3059  * Since the task is not running and a reschedule is not going to happen
3060  * anytime soon on its runqueue, we try pushing it away now.
3061  */
3062 static void task_woken_dl(struct rq *rq, struct task_struct *p)
3063 {
3064 	if (!task_on_cpu(rq, p) &&
3065 	    !test_tsk_need_resched(rq->curr) &&
3066 	    p->nr_cpus_allowed > 1 &&
3067 	    dl_task(rq->donor) &&
3068 	    (rq->curr->nr_cpus_allowed < 2 ||
3069 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
3070 		push_dl_tasks(rq);
3071 	}
3072 }
3073 
3074 static void set_cpus_allowed_dl(struct task_struct *p,
3075 				struct affinity_context *ctx)
3076 {
3077 	struct root_domain *src_rd;
3078 	struct rq *rq;
3079 
3080 	WARN_ON_ONCE(!dl_task(p));
3081 
3082 	rq = task_rq(p);
3083 	src_rd = rq->rd;
3084 	/*
3085 	 * Migrating a SCHED_DEADLINE task between exclusive
3086 	 * cpusets (different root_domains) entails a bandwidth
3087 	 * update. We already made space for us in the destination
3088 	 * domain (see cpuset_can_attach()).
3089 	 */
3090 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
3091 		struct dl_bw *src_dl_b;
3092 
3093 		src_dl_b = dl_bw_of(cpu_of(rq));
3094 		/*
3095 		 * We now free resources of the root_domain we are migrating
3096 		 * off. In the worst case, sched_setattr() may temporary fail
3097 		 * until we complete the update.
3098 		 */
3099 		raw_spin_lock(&src_dl_b->lock);
3100 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
3101 		raw_spin_unlock(&src_dl_b->lock);
3102 	}
3103 
3104 	set_cpus_allowed_common(p, ctx);
3105 }
3106 
3107 /* Assumes rq->lock is held */
3108 static void rq_online_dl(struct rq *rq)
3109 {
3110 	if (rq->dl.overloaded)
3111 		dl_set_overload(rq);
3112 
3113 	if (rq->dl.dl_nr_running > 0)
3114 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
3115 	else
3116 		cpudl_clear(&rq->rd->cpudl, rq->cpu, true);
3117 }
3118 
3119 /* Assumes rq->lock is held */
3120 static void rq_offline_dl(struct rq *rq)
3121 {
3122 	if (rq->dl.overloaded)
3123 		dl_clear_overload(rq);
3124 
3125 	cpudl_clear(&rq->rd->cpudl, rq->cpu, false);
3126 }
3127 
3128 void __init init_sched_dl_class(void)
3129 {
3130 	unsigned int i;
3131 
3132 	for_each_possible_cpu(i)
3133 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
3134 					GFP_KERNEL, cpu_to_node(i));
3135 }
3136 
3137 /*
3138  * This function always returns a non-empty bitmap in @cpus. This is because
3139  * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth
3140  * check will prevent CPU hotplug from deactivating all CPUs in that domain.
3141  */
3142 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus)
3143 {
3144 	const struct cpumask *hk_msk;
3145 
3146 	hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN);
3147 	if (housekeeping_enabled(HK_TYPE_DOMAIN)) {
3148 		if (!cpumask_intersects(p->cpus_ptr, hk_msk)) {
3149 			/*
3150 			 * CPUs isolated by isolcpu="domain" always belong to
3151 			 * def_root_domain.
3152 			 */
3153 			cpumask_andnot(cpus, cpu_active_mask, hk_msk);
3154 			return;
3155 		}
3156 	}
3157 
3158 	/*
3159 	 * If a root domain holds a DL task, it must have active CPUs. So
3160 	 * active CPUs can always be found by walking up the task's cpuset
3161 	 * hierarchy up to the partition root.
3162 	 */
3163 	cpuset_cpus_allowed_locked(p, cpus);
3164 }
3165 
3166 /* The caller should hold cpuset_mutex */
3167 void dl_add_task_root_domain(struct task_struct *p)
3168 {
3169 	struct rq_flags rf;
3170 	struct rq *rq;
3171 	struct dl_bw *dl_b;
3172 	unsigned int cpu;
3173 	struct cpumask *msk;
3174 
3175 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3176 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
3177 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3178 		return;
3179 	}
3180 
3181 	msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
3182 	dl_get_task_effective_cpus(p, msk);
3183 	cpu = cpumask_first_and(cpu_active_mask, msk);
3184 	BUG_ON(cpu >= nr_cpu_ids);
3185 	rq = cpu_rq(cpu);
3186 	dl_b = &rq->rd->dl_bw;
3187 
3188 	raw_spin_lock(&dl_b->lock);
3189 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
3190 	raw_spin_unlock(&dl_b->lock);
3191 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3192 }
3193 
3194 void dl_clear_root_domain(struct root_domain *rd)
3195 {
3196 	int i;
3197 
3198 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
3199 
3200 	/*
3201 	 * Reset total_bw to zero and extra_bw to max_bw so that next
3202 	 * loop will add dl-servers contributions back properly,
3203 	 */
3204 	rd->dl_bw.total_bw = 0;
3205 	for_each_cpu(i, rd->span)
3206 		cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
3207 
3208 	/*
3209 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
3210 	 * them, we need to account for them here explicitly.
3211 	 */
3212 	for_each_cpu(i, rd->span) {
3213 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
3214 
3215 		if (dl_server(dl_se) && cpu_active(i))
3216 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
3217 	}
3218 }
3219 
3220 void dl_clear_root_domain_cpu(int cpu)
3221 {
3222 	dl_clear_root_domain(cpu_rq(cpu)->rd);
3223 }
3224 
3225 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3226 {
3227 	/*
3228 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
3229 	 * time is in the future). If the task switches back to dl before
3230 	 * the "inactive timer" fires, it can continue to consume its current
3231 	 * runtime using its current deadline. If it stays outside of
3232 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3233 	 * will reset the task parameters.
3234 	 */
3235 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
3236 		task_non_contending(&p->dl, false);
3237 
3238 	/*
3239 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3240 	 * keep track of that on its cpuset (for correct bandwidth tracking).
3241 	 */
3242 	dec_dl_tasks_cs(p);
3243 
3244 	if (!task_on_rq_queued(p)) {
3245 		/*
3246 		 * Inactive timer is armed. However, p is leaving DEADLINE and
3247 		 * might migrate away from this rq while continuing to run on
3248 		 * some other class. We need to remove its contribution from
3249 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3250 		 */
3251 		if (p->dl.dl_non_contending)
3252 			sub_running_bw(&p->dl, &rq->dl);
3253 		sub_rq_bw(&p->dl, &rq->dl);
3254 	}
3255 
3256 	/*
3257 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3258 	 * at the 0-lag time, because the task could have been migrated
3259 	 * while SCHED_OTHER in the meanwhile.
3260 	 */
3261 	if (p->dl.dl_non_contending)
3262 		p->dl.dl_non_contending = 0;
3263 
3264 	/*
3265 	 * Since this might be the only -deadline task on the rq,
3266 	 * this is the right place to try to pull some other one
3267 	 * from an overloaded CPU, if any.
3268 	 */
3269 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3270 		return;
3271 
3272 	deadline_queue_pull_task(rq);
3273 }
3274 
3275 /*
3276  * When switching to -deadline, we may overload the rq, then
3277  * we try to push someone off, if possible.
3278  */
3279 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3280 {
3281 	cancel_inactive_timer(&p->dl);
3282 
3283 	/*
3284 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3285 	 * track of that on its cpuset (for correct bandwidth tracking).
3286 	 */
3287 	inc_dl_tasks_cs(p);
3288 
3289 	/* If p is not queued we will update its parameters at next wakeup. */
3290 	if (!task_on_rq_queued(p)) {
3291 		add_rq_bw(&p->dl, &rq->dl);
3292 
3293 		return;
3294 	}
3295 
3296 	if (rq->donor != p) {
3297 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3298 			deadline_queue_push_tasks(rq);
3299 		if (dl_task(rq->donor))
3300 			wakeup_preempt_dl(rq, p, 0);
3301 		else
3302 			resched_curr(rq);
3303 	} else {
3304 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3305 	}
3306 }
3307 
3308 static u64 get_prio_dl(struct rq *rq, struct task_struct *p)
3309 {
3310 	/*
3311 	 * Make sure to update current so we don't return a stale value.
3312 	 */
3313 	if (task_current_donor(rq, p))
3314 		update_curr_dl(rq);
3315 
3316 	return p->dl.deadline;
3317 }
3318 
3319 /*
3320  * If the scheduling parameters of a -deadline task changed,
3321  * a push or pull operation might be needed.
3322  */
3323 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline)
3324 {
3325 	if (!task_on_rq_queued(p))
3326 		return;
3327 
3328 	if (p->dl.deadline == old_deadline)
3329 		return;
3330 
3331 	if (dl_time_before(old_deadline, p->dl.deadline))
3332 		deadline_queue_pull_task(rq);
3333 
3334 	if (task_current_donor(rq, p)) {
3335 		/*
3336 		 * If we now have a earlier deadline task than p,
3337 		 * then reschedule, provided p is still on this
3338 		 * runqueue.
3339 		 */
3340 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3341 			resched_curr(rq);
3342 	} else {
3343 		/*
3344 		 * Current may not be deadline in case p was throttled but we
3345 		 * have just replenished it (e.g. rt_mutex_setprio()).
3346 		 *
3347 		 * Otherwise, if p was given an earlier deadline, reschedule.
3348 		 */
3349 		if (!dl_task(rq->curr) ||
3350 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3351 			resched_curr(rq);
3352 	}
3353 }
3354 
3355 #ifdef CONFIG_SCHED_CORE
3356 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3357 {
3358 	return p->dl.dl_throttled;
3359 }
3360 #endif
3361 
3362 DEFINE_SCHED_CLASS(dl) = {
3363 
3364 	.queue_mask		= 8,
3365 
3366 	.enqueue_task		= enqueue_task_dl,
3367 	.dequeue_task		= dequeue_task_dl,
3368 	.yield_task		= yield_task_dl,
3369 
3370 	.wakeup_preempt		= wakeup_preempt_dl,
3371 
3372 	.pick_task		= pick_task_dl,
3373 	.put_prev_task		= put_prev_task_dl,
3374 	.set_next_task		= set_next_task_dl,
3375 
3376 	.balance		= balance_dl,
3377 	.select_task_rq		= select_task_rq_dl,
3378 	.migrate_task_rq	= migrate_task_rq_dl,
3379 	.set_cpus_allowed       = set_cpus_allowed_dl,
3380 	.rq_online              = rq_online_dl,
3381 	.rq_offline             = rq_offline_dl,
3382 	.task_woken		= task_woken_dl,
3383 	.find_lock_rq		= find_lock_later_rq,
3384 
3385 	.task_tick		= task_tick_dl,
3386 	.task_fork              = task_fork_dl,
3387 
3388 	.get_prio		= get_prio_dl,
3389 	.prio_changed           = prio_changed_dl,
3390 	.switched_from		= switched_from_dl,
3391 	.switched_to		= switched_to_dl,
3392 
3393 	.update_curr		= update_curr_dl,
3394 #ifdef CONFIG_SCHED_CORE
3395 	.task_is_throttled	= task_is_throttled_dl,
3396 #endif
3397 };
3398 
3399 /*
3400  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3401  * sched_domains_mutex.
3402  */
3403 u64 dl_cookie;
3404 
3405 int sched_dl_global_validate(void)
3406 {
3407 	u64 runtime = global_rt_runtime();
3408 	u64 period = global_rt_period();
3409 	u64 new_bw = to_ratio(period, runtime);
3410 	u64 cookie = ++dl_cookie;
3411 	struct dl_bw *dl_b;
3412 	int cpu, cpus, ret = 0;
3413 	unsigned long flags;
3414 
3415 	/*
3416 	 * Here we want to check the bandwidth not being set to some
3417 	 * value smaller than the currently allocated bandwidth in
3418 	 * any of the root_domains.
3419 	 */
3420 	for_each_online_cpu(cpu) {
3421 		rcu_read_lock_sched();
3422 
3423 		if (dl_bw_visited(cpu, cookie))
3424 			goto next;
3425 
3426 		dl_b = dl_bw_of(cpu);
3427 		cpus = dl_bw_cpus(cpu);
3428 
3429 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3430 		if (new_bw * cpus < dl_b->total_bw)
3431 			ret = -EBUSY;
3432 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3433 
3434 next:
3435 		rcu_read_unlock_sched();
3436 
3437 		if (ret)
3438 			break;
3439 	}
3440 
3441 	return ret;
3442 }
3443 
3444 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3445 {
3446 	if (global_rt_runtime() == RUNTIME_INF) {
3447 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3448 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3449 	} else {
3450 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3451 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3452 		dl_rq->max_bw = dl_rq->extra_bw =
3453 			to_ratio(global_rt_period(), global_rt_runtime());
3454 	}
3455 }
3456 
3457 void sched_dl_do_global(void)
3458 {
3459 	u64 new_bw = -1;
3460 	u64 cookie = ++dl_cookie;
3461 	struct dl_bw *dl_b;
3462 	int cpu;
3463 	unsigned long flags;
3464 
3465 	if (global_rt_runtime() != RUNTIME_INF)
3466 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3467 
3468 	for_each_possible_cpu(cpu)
3469 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3470 
3471 	for_each_possible_cpu(cpu) {
3472 		rcu_read_lock_sched();
3473 
3474 		if (dl_bw_visited(cpu, cookie)) {
3475 			rcu_read_unlock_sched();
3476 			continue;
3477 		}
3478 
3479 		dl_b = dl_bw_of(cpu);
3480 
3481 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3482 		dl_b->bw = new_bw;
3483 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3484 
3485 		rcu_read_unlock_sched();
3486 	}
3487 }
3488 
3489 /*
3490  * We must be sure that accepting a new task (or allowing changing the
3491  * parameters of an existing one) is consistent with the bandwidth
3492  * constraints. If yes, this function also accordingly updates the currently
3493  * allocated bandwidth to reflect the new situation.
3494  *
3495  * This function is called while holding p's rq->lock.
3496  */
3497 int sched_dl_overflow(struct task_struct *p, int policy,
3498 		      const struct sched_attr *attr)
3499 {
3500 	u64 period = attr->sched_period ?: attr->sched_deadline;
3501 	u64 runtime = attr->sched_runtime;
3502 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3503 	int cpus, err = -1, cpu = task_cpu(p);
3504 	struct dl_bw *dl_b = dl_bw_of(cpu);
3505 	unsigned long cap;
3506 
3507 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3508 		return 0;
3509 
3510 	/* !deadline task may carry old deadline bandwidth */
3511 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3512 		return 0;
3513 
3514 	/*
3515 	 * Either if a task, enters, leave, or stays -deadline but changes
3516 	 * its parameters, we may need to update accordingly the total
3517 	 * allocated bandwidth of the container.
3518 	 */
3519 	raw_spin_lock(&dl_b->lock);
3520 	cpus = dl_bw_cpus(cpu);
3521 	cap = dl_bw_capacity(cpu);
3522 
3523 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3524 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3525 		if (hrtimer_active(&p->dl.inactive_timer))
3526 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3527 		__dl_add(dl_b, new_bw, cpus);
3528 		err = 0;
3529 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3530 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3531 		/*
3532 		 * XXX this is slightly incorrect: when the task
3533 		 * utilization decreases, we should delay the total
3534 		 * utilization change until the task's 0-lag point.
3535 		 * But this would require to set the task's "inactive
3536 		 * timer" when the task is not inactive.
3537 		 */
3538 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3539 		__dl_add(dl_b, new_bw, cpus);
3540 		dl_change_utilization(p, new_bw);
3541 		err = 0;
3542 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3543 		/*
3544 		 * Do not decrease the total deadline utilization here,
3545 		 * switched_from_dl() will take care to do it at the correct
3546 		 * (0-lag) time.
3547 		 */
3548 		err = 0;
3549 	}
3550 	raw_spin_unlock(&dl_b->lock);
3551 
3552 	return err;
3553 }
3554 
3555 /*
3556  * This function initializes the sched_dl_entity of a newly becoming
3557  * SCHED_DEADLINE task.
3558  *
3559  * Only the static values are considered here, the actual runtime and the
3560  * absolute deadline will be properly calculated when the task is enqueued
3561  * for the first time with its new policy.
3562  */
3563 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3564 {
3565 	struct sched_dl_entity *dl_se = &p->dl;
3566 
3567 	dl_se->dl_runtime = attr->sched_runtime;
3568 	dl_se->dl_deadline = attr->sched_deadline;
3569 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3570 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3571 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3572 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3573 }
3574 
3575 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3576 {
3577 	struct sched_dl_entity *dl_se = &p->dl;
3578 
3579 	attr->sched_priority = p->rt_priority;
3580 	attr->sched_runtime = dl_se->dl_runtime;
3581 	attr->sched_deadline = dl_se->dl_deadline;
3582 	attr->sched_period = dl_se->dl_period;
3583 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3584 	attr->sched_flags |= dl_se->flags;
3585 }
3586 
3587 /*
3588  * This function validates the new parameters of a -deadline task.
3589  * We ask for the deadline not being zero, and greater or equal
3590  * than the runtime, as well as the period of being zero or
3591  * greater than deadline. Furthermore, we have to be sure that
3592  * user parameters are above the internal resolution of 1us (we
3593  * check sched_runtime only since it is always the smaller one) and
3594  * below 2^63 ns (we have to check both sched_deadline and
3595  * sched_period, as the latter can be zero).
3596  */
3597 bool __checkparam_dl(const struct sched_attr *attr)
3598 {
3599 	u64 period, max, min;
3600 
3601 	/* special dl tasks don't actually use any parameter */
3602 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3603 		return true;
3604 
3605 	/* deadline != 0 */
3606 	if (attr->sched_deadline == 0)
3607 		return false;
3608 
3609 	/*
3610 	 * Since we truncate DL_SCALE bits, make sure we're at least
3611 	 * that big.
3612 	 */
3613 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3614 		return false;
3615 
3616 	/*
3617 	 * Since we use the MSB for wrap-around and sign issues, make
3618 	 * sure it's not set (mind that period can be equal to zero).
3619 	 */
3620 	if (attr->sched_deadline & (1ULL << 63) ||
3621 	    attr->sched_period & (1ULL << 63))
3622 		return false;
3623 
3624 	period = attr->sched_period;
3625 	if (!period)
3626 		period = attr->sched_deadline;
3627 
3628 	/* runtime <= deadline <= period (if period != 0) */
3629 	if (period < attr->sched_deadline ||
3630 	    attr->sched_deadline < attr->sched_runtime)
3631 		return false;
3632 
3633 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3634 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3635 
3636 	if (period < min || period > max)
3637 		return false;
3638 
3639 	return true;
3640 }
3641 
3642 /*
3643  * This function clears the sched_dl_entity static params.
3644  */
3645 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3646 {
3647 	dl_se->dl_runtime		= 0;
3648 	dl_se->dl_deadline		= 0;
3649 	dl_se->dl_period		= 0;
3650 	dl_se->flags			= 0;
3651 	dl_se->dl_bw			= 0;
3652 	dl_se->dl_density		= 0;
3653 
3654 	dl_se->dl_throttled		= 0;
3655 	dl_se->dl_yielded		= 0;
3656 	dl_se->dl_non_contending	= 0;
3657 	dl_se->dl_overrun		= 0;
3658 	dl_se->dl_server		= 0;
3659 
3660 #ifdef CONFIG_RT_MUTEXES
3661 	dl_se->pi_se			= dl_se;
3662 #endif
3663 }
3664 
3665 void init_dl_entity(struct sched_dl_entity *dl_se)
3666 {
3667 	RB_CLEAR_NODE(&dl_se->rb_node);
3668 	init_dl_task_timer(dl_se);
3669 	init_dl_inactive_task_timer(dl_se);
3670 	__dl_clear_params(dl_se);
3671 }
3672 
3673 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3674 {
3675 	struct sched_dl_entity *dl_se = &p->dl;
3676 
3677 	if (dl_se->dl_runtime != attr->sched_runtime ||
3678 	    dl_se->dl_deadline != attr->sched_deadline ||
3679 	    dl_se->dl_period != attr->sched_period ||
3680 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3681 		return true;
3682 
3683 	return false;
3684 }
3685 
3686 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3687 				 const struct cpumask *trial)
3688 {
3689 	unsigned long flags, cap;
3690 	struct dl_bw *cur_dl_b;
3691 	int ret = 1;
3692 
3693 	rcu_read_lock_sched();
3694 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3695 	cap = __dl_bw_capacity(trial);
3696 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3697 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3698 		ret = 0;
3699 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3700 	rcu_read_unlock_sched();
3701 
3702 	return ret;
3703 }
3704 
3705 enum dl_bw_request {
3706 	dl_bw_req_deactivate = 0,
3707 	dl_bw_req_alloc,
3708 	dl_bw_req_free
3709 };
3710 
3711 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3712 {
3713 	unsigned long flags, cap;
3714 	struct dl_bw *dl_b;
3715 	bool overflow = 0;
3716 	u64 fair_server_bw = 0;
3717 
3718 	rcu_read_lock_sched();
3719 	dl_b = dl_bw_of(cpu);
3720 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3721 
3722 	cap = dl_bw_capacity(cpu);
3723 	switch (req) {
3724 	case dl_bw_req_free:
3725 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3726 		break;
3727 	case dl_bw_req_alloc:
3728 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3729 
3730 		if (!overflow) {
3731 			/*
3732 			 * We reserve space in the destination
3733 			 * root_domain, as we can't fail after this point.
3734 			 * We will free resources in the source root_domain
3735 			 * later on (see set_cpus_allowed_dl()).
3736 			 */
3737 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3738 		}
3739 		break;
3740 	case dl_bw_req_deactivate:
3741 		/*
3742 		 * cpu is not off yet, but we need to do the math by
3743 		 * considering it off already (i.e., what would happen if we
3744 		 * turn cpu off?).
3745 		 */
3746 		cap -= arch_scale_cpu_capacity(cpu);
3747 
3748 		/*
3749 		 * cpu is going offline and NORMAL tasks will be moved away
3750 		 * from it. We can thus discount dl_server bandwidth
3751 		 * contribution as it won't need to be servicing tasks after
3752 		 * the cpu is off.
3753 		 */
3754 		if (cpu_rq(cpu)->fair_server.dl_server)
3755 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3756 
3757 		/*
3758 		 * Not much to check if no DEADLINE bandwidth is present.
3759 		 * dl_servers we can discount, as tasks will be moved out the
3760 		 * offlined CPUs anyway.
3761 		 */
3762 		if (dl_b->total_bw - fair_server_bw > 0) {
3763 			/*
3764 			 * Leaving at least one CPU for DEADLINE tasks seems a
3765 			 * wise thing to do. As said above, cpu is not offline
3766 			 * yet, so account for that.
3767 			 */
3768 			if (dl_bw_cpus(cpu) - 1)
3769 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3770 			else
3771 				overflow = 1;
3772 		}
3773 
3774 		break;
3775 	}
3776 
3777 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3778 	rcu_read_unlock_sched();
3779 
3780 	return overflow ? -EBUSY : 0;
3781 }
3782 
3783 int dl_bw_deactivate(int cpu)
3784 {
3785 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3786 }
3787 
3788 int dl_bw_alloc(int cpu, u64 dl_bw)
3789 {
3790 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3791 }
3792 
3793 void dl_bw_free(int cpu, u64 dl_bw)
3794 {
3795 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3796 }
3797 
3798 void print_dl_stats(struct seq_file *m, int cpu)
3799 {
3800 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3801 }
3802