xref: /linux/mm/huge_memory.c (revision 4b49c0ba4eeb31b44462303cac4162476b72c831)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/mm_types.h>
24 #include <linux/khugepaged.h>
25 #include <linux/freezer.h>
26 #include <linux/pfn_t.h>
27 #include <linux/mman.h>
28 #include <linux/memremap.h>
29 #include <linux/pagemap.h>
30 #include <linux/debugfs.h>
31 #include <linux/migrate.h>
32 #include <linux/hashtable.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/page_idle.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/oom.h>
37 #include <linux/numa.h>
38 #include <linux/page_owner.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/memory-tiers.h>
41 #include <linux/compat.h>
42 #include <linux/pgalloc_tag.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlb.h>
46 #include <asm/pgalloc.h>
47 #include "internal.h"
48 #include "swap.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/thp.h>
52 
53 /*
54  * By default, transparent hugepage support is disabled in order to avoid
55  * risking an increased memory footprint for applications that are not
56  * guaranteed to benefit from it. When transparent hugepage support is
57  * enabled, it is for all mappings, and khugepaged scans all mappings.
58  * Defrag is invoked by khugepaged hugepage allocations and by page faults
59  * for all hugepage allocations.
60  */
61 unsigned long transparent_hugepage_flags __read_mostly =
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
63 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
64 #endif
65 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
66 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
67 #endif
68 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
69 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
70 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
71 
72 static struct shrinker *deferred_split_shrinker;
73 static unsigned long deferred_split_count(struct shrinker *shrink,
74 					  struct shrink_control *sc);
75 static unsigned long deferred_split_scan(struct shrinker *shrink,
76 					 struct shrink_control *sc);
77 static bool split_underused_thp = true;
78 
79 static atomic_t huge_zero_refcount;
80 struct folio *huge_zero_folio __read_mostly;
81 unsigned long huge_zero_pfn __read_mostly = ~0UL;
82 unsigned long huge_anon_orders_always __read_mostly;
83 unsigned long huge_anon_orders_madvise __read_mostly;
84 unsigned long huge_anon_orders_inherit __read_mostly;
85 static bool anon_orders_configured __initdata;
86 
__thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)87 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
88 					 unsigned long vm_flags,
89 					 unsigned long tva_flags,
90 					 unsigned long orders)
91 {
92 	bool smaps = tva_flags & TVA_SMAPS;
93 	bool in_pf = tva_flags & TVA_IN_PF;
94 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
95 	unsigned long supported_orders;
96 
97 	/* Check the intersection of requested and supported orders. */
98 	if (vma_is_anonymous(vma))
99 		supported_orders = THP_ORDERS_ALL_ANON;
100 	else if (vma_is_special_huge(vma))
101 		supported_orders = THP_ORDERS_ALL_SPECIAL;
102 	else
103 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
104 
105 	orders &= supported_orders;
106 	if (!orders)
107 		return 0;
108 
109 	if (!vma->vm_mm)		/* vdso */
110 		return 0;
111 
112 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
113 		return 0;
114 
115 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
116 	if (vma_is_dax(vma))
117 		return in_pf ? orders : 0;
118 
119 	/*
120 	 * khugepaged special VMA and hugetlb VMA.
121 	 * Must be checked after dax since some dax mappings may have
122 	 * VM_MIXEDMAP set.
123 	 */
124 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
125 		return 0;
126 
127 	/*
128 	 * Check alignment for file vma and size for both file and anon vma by
129 	 * filtering out the unsuitable orders.
130 	 *
131 	 * Skip the check for page fault. Huge fault does the check in fault
132 	 * handlers.
133 	 */
134 	if (!in_pf) {
135 		int order = highest_order(orders);
136 		unsigned long addr;
137 
138 		while (orders) {
139 			addr = vma->vm_end - (PAGE_SIZE << order);
140 			if (thp_vma_suitable_order(vma, addr, order))
141 				break;
142 			order = next_order(&orders, order);
143 		}
144 
145 		if (!orders)
146 			return 0;
147 	}
148 
149 	/*
150 	 * Enabled via shmem mount options or sysfs settings.
151 	 * Must be done before hugepage flags check since shmem has its
152 	 * own flags.
153 	 */
154 	if (!in_pf && shmem_file(vma->vm_file))
155 		return shmem_allowable_huge_orders(file_inode(vma->vm_file),
156 						   vma, vma->vm_pgoff, 0,
157 						   !enforce_sysfs);
158 
159 	if (!vma_is_anonymous(vma)) {
160 		/*
161 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
162 		 * were already handled in thp_vma_allowable_orders().
163 		 */
164 		if (enforce_sysfs &&
165 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
166 						    !hugepage_global_always())))
167 			return 0;
168 
169 		/*
170 		 * Trust that ->huge_fault() handlers know what they are doing
171 		 * in fault path.
172 		 */
173 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
174 			return orders;
175 		/* Only regular file is valid in collapse path */
176 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
177 			return orders;
178 		return 0;
179 	}
180 
181 	if (vma_is_temporary_stack(vma))
182 		return 0;
183 
184 	/*
185 	 * THPeligible bit of smaps should show 1 for proper VMAs even
186 	 * though anon_vma is not initialized yet.
187 	 *
188 	 * Allow page fault since anon_vma may be not initialized until
189 	 * the first page fault.
190 	 */
191 	if (!vma->anon_vma)
192 		return (smaps || in_pf) ? orders : 0;
193 
194 	return orders;
195 }
196 
get_huge_zero_page(void)197 static bool get_huge_zero_page(void)
198 {
199 	struct folio *zero_folio;
200 retry:
201 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
202 		return true;
203 
204 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
205 			HPAGE_PMD_ORDER);
206 	if (!zero_folio) {
207 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
208 		return false;
209 	}
210 	/* Ensure zero folio won't have large_rmappable flag set. */
211 	folio_clear_large_rmappable(zero_folio);
212 	preempt_disable();
213 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
214 		preempt_enable();
215 		folio_put(zero_folio);
216 		goto retry;
217 	}
218 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
219 
220 	/* We take additional reference here. It will be put back by shrinker */
221 	atomic_set(&huge_zero_refcount, 2);
222 	preempt_enable();
223 	count_vm_event(THP_ZERO_PAGE_ALLOC);
224 	return true;
225 }
226 
put_huge_zero_page(void)227 static void put_huge_zero_page(void)
228 {
229 	/*
230 	 * Counter should never go to zero here. Only shrinker can put
231 	 * last reference.
232 	 */
233 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
234 }
235 
mm_get_huge_zero_folio(struct mm_struct * mm)236 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
237 {
238 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
239 		return READ_ONCE(huge_zero_folio);
240 
241 	if (!get_huge_zero_page())
242 		return NULL;
243 
244 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
245 		put_huge_zero_page();
246 
247 	return READ_ONCE(huge_zero_folio);
248 }
249 
mm_put_huge_zero_folio(struct mm_struct * mm)250 void mm_put_huge_zero_folio(struct mm_struct *mm)
251 {
252 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 		put_huge_zero_page();
254 }
255 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)256 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
257 					struct shrink_control *sc)
258 {
259 	/* we can free zero page only if last reference remains */
260 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
261 }
262 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)263 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
264 				       struct shrink_control *sc)
265 {
266 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
267 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
268 		BUG_ON(zero_folio == NULL);
269 		WRITE_ONCE(huge_zero_pfn, ~0UL);
270 		folio_put(zero_folio);
271 		return HPAGE_PMD_NR;
272 	}
273 
274 	return 0;
275 }
276 
277 static struct shrinker *huge_zero_page_shrinker;
278 
279 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)280 static ssize_t enabled_show(struct kobject *kobj,
281 			    struct kobj_attribute *attr, char *buf)
282 {
283 	const char *output;
284 
285 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
286 		output = "[always] madvise never";
287 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
288 			  &transparent_hugepage_flags))
289 		output = "always [madvise] never";
290 	else
291 		output = "always madvise [never]";
292 
293 	return sysfs_emit(buf, "%s\n", output);
294 }
295 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)296 static ssize_t enabled_store(struct kobject *kobj,
297 			     struct kobj_attribute *attr,
298 			     const char *buf, size_t count)
299 {
300 	ssize_t ret = count;
301 
302 	if (sysfs_streq(buf, "always")) {
303 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
305 	} else if (sysfs_streq(buf, "madvise")) {
306 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
307 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
308 	} else if (sysfs_streq(buf, "never")) {
309 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
310 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
311 	} else
312 		ret = -EINVAL;
313 
314 	if (ret > 0) {
315 		int err = start_stop_khugepaged();
316 		if (err)
317 			ret = err;
318 	}
319 	return ret;
320 }
321 
322 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
323 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)324 ssize_t single_hugepage_flag_show(struct kobject *kobj,
325 				  struct kobj_attribute *attr, char *buf,
326 				  enum transparent_hugepage_flag flag)
327 {
328 	return sysfs_emit(buf, "%d\n",
329 			  !!test_bit(flag, &transparent_hugepage_flags));
330 }
331 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)332 ssize_t single_hugepage_flag_store(struct kobject *kobj,
333 				 struct kobj_attribute *attr,
334 				 const char *buf, size_t count,
335 				 enum transparent_hugepage_flag flag)
336 {
337 	unsigned long value;
338 	int ret;
339 
340 	ret = kstrtoul(buf, 10, &value);
341 	if (ret < 0)
342 		return ret;
343 	if (value > 1)
344 		return -EINVAL;
345 
346 	if (value)
347 		set_bit(flag, &transparent_hugepage_flags);
348 	else
349 		clear_bit(flag, &transparent_hugepage_flags);
350 
351 	return count;
352 }
353 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)354 static ssize_t defrag_show(struct kobject *kobj,
355 			   struct kobj_attribute *attr, char *buf)
356 {
357 	const char *output;
358 
359 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
360 		     &transparent_hugepage_flags))
361 		output = "[always] defer defer+madvise madvise never";
362 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
363 			  &transparent_hugepage_flags))
364 		output = "always [defer] defer+madvise madvise never";
365 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
366 			  &transparent_hugepage_flags))
367 		output = "always defer [defer+madvise] madvise never";
368 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
369 			  &transparent_hugepage_flags))
370 		output = "always defer defer+madvise [madvise] never";
371 	else
372 		output = "always defer defer+madvise madvise [never]";
373 
374 	return sysfs_emit(buf, "%s\n", output);
375 }
376 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)377 static ssize_t defrag_store(struct kobject *kobj,
378 			    struct kobj_attribute *attr,
379 			    const char *buf, size_t count)
380 {
381 	if (sysfs_streq(buf, "always")) {
382 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
383 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
385 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 	} else if (sysfs_streq(buf, "defer+madvise")) {
387 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
388 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
390 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
391 	} else if (sysfs_streq(buf, "defer")) {
392 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
393 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
394 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
395 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 	} else if (sysfs_streq(buf, "madvise")) {
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
399 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
400 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
401 	} else if (sysfs_streq(buf, "never")) {
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
404 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
406 	} else
407 		return -EINVAL;
408 
409 	return count;
410 }
411 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
412 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)413 static ssize_t use_zero_page_show(struct kobject *kobj,
414 				  struct kobj_attribute *attr, char *buf)
415 {
416 	return single_hugepage_flag_show(kobj, attr, buf,
417 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
418 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)419 static ssize_t use_zero_page_store(struct kobject *kobj,
420 		struct kobj_attribute *attr, const char *buf, size_t count)
421 {
422 	return single_hugepage_flag_store(kobj, attr, buf, count,
423 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
424 }
425 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
426 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)427 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
428 				   struct kobj_attribute *attr, char *buf)
429 {
430 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
431 }
432 static struct kobj_attribute hpage_pmd_size_attr =
433 	__ATTR_RO(hpage_pmd_size);
434 
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)435 static ssize_t split_underused_thp_show(struct kobject *kobj,
436 			    struct kobj_attribute *attr, char *buf)
437 {
438 	return sysfs_emit(buf, "%d\n", split_underused_thp);
439 }
440 
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)441 static ssize_t split_underused_thp_store(struct kobject *kobj,
442 			     struct kobj_attribute *attr,
443 			     const char *buf, size_t count)
444 {
445 	int err = kstrtobool(buf, &split_underused_thp);
446 
447 	if (err < 0)
448 		return err;
449 
450 	return count;
451 }
452 
453 static struct kobj_attribute split_underused_thp_attr = __ATTR(
454 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
455 
456 static struct attribute *hugepage_attr[] = {
457 	&enabled_attr.attr,
458 	&defrag_attr.attr,
459 	&use_zero_page_attr.attr,
460 	&hpage_pmd_size_attr.attr,
461 #ifdef CONFIG_SHMEM
462 	&shmem_enabled_attr.attr,
463 #endif
464 	&split_underused_thp_attr.attr,
465 	NULL,
466 };
467 
468 static const struct attribute_group hugepage_attr_group = {
469 	.attrs = hugepage_attr,
470 };
471 
472 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
473 static void thpsize_release(struct kobject *kobj);
474 static DEFINE_SPINLOCK(huge_anon_orders_lock);
475 static LIST_HEAD(thpsize_list);
476 
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)477 static ssize_t anon_enabled_show(struct kobject *kobj,
478 				 struct kobj_attribute *attr, char *buf)
479 {
480 	int order = to_thpsize(kobj)->order;
481 	const char *output;
482 
483 	if (test_bit(order, &huge_anon_orders_always))
484 		output = "[always] inherit madvise never";
485 	else if (test_bit(order, &huge_anon_orders_inherit))
486 		output = "always [inherit] madvise never";
487 	else if (test_bit(order, &huge_anon_orders_madvise))
488 		output = "always inherit [madvise] never";
489 	else
490 		output = "always inherit madvise [never]";
491 
492 	return sysfs_emit(buf, "%s\n", output);
493 }
494 
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)495 static ssize_t anon_enabled_store(struct kobject *kobj,
496 				  struct kobj_attribute *attr,
497 				  const char *buf, size_t count)
498 {
499 	int order = to_thpsize(kobj)->order;
500 	ssize_t ret = count;
501 
502 	if (sysfs_streq(buf, "always")) {
503 		spin_lock(&huge_anon_orders_lock);
504 		clear_bit(order, &huge_anon_orders_inherit);
505 		clear_bit(order, &huge_anon_orders_madvise);
506 		set_bit(order, &huge_anon_orders_always);
507 		spin_unlock(&huge_anon_orders_lock);
508 	} else if (sysfs_streq(buf, "inherit")) {
509 		spin_lock(&huge_anon_orders_lock);
510 		clear_bit(order, &huge_anon_orders_always);
511 		clear_bit(order, &huge_anon_orders_madvise);
512 		set_bit(order, &huge_anon_orders_inherit);
513 		spin_unlock(&huge_anon_orders_lock);
514 	} else if (sysfs_streq(buf, "madvise")) {
515 		spin_lock(&huge_anon_orders_lock);
516 		clear_bit(order, &huge_anon_orders_always);
517 		clear_bit(order, &huge_anon_orders_inherit);
518 		set_bit(order, &huge_anon_orders_madvise);
519 		spin_unlock(&huge_anon_orders_lock);
520 	} else if (sysfs_streq(buf, "never")) {
521 		spin_lock(&huge_anon_orders_lock);
522 		clear_bit(order, &huge_anon_orders_always);
523 		clear_bit(order, &huge_anon_orders_inherit);
524 		clear_bit(order, &huge_anon_orders_madvise);
525 		spin_unlock(&huge_anon_orders_lock);
526 	} else
527 		ret = -EINVAL;
528 
529 	if (ret > 0) {
530 		int err;
531 
532 		err = start_stop_khugepaged();
533 		if (err)
534 			ret = err;
535 	}
536 	return ret;
537 }
538 
539 static struct kobj_attribute anon_enabled_attr =
540 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
541 
542 static struct attribute *anon_ctrl_attrs[] = {
543 	&anon_enabled_attr.attr,
544 	NULL,
545 };
546 
547 static const struct attribute_group anon_ctrl_attr_grp = {
548 	.attrs = anon_ctrl_attrs,
549 };
550 
551 static struct attribute *file_ctrl_attrs[] = {
552 #ifdef CONFIG_SHMEM
553 	&thpsize_shmem_enabled_attr.attr,
554 #endif
555 	NULL,
556 };
557 
558 static const struct attribute_group file_ctrl_attr_grp = {
559 	.attrs = file_ctrl_attrs,
560 };
561 
562 static struct attribute *any_ctrl_attrs[] = {
563 	NULL,
564 };
565 
566 static const struct attribute_group any_ctrl_attr_grp = {
567 	.attrs = any_ctrl_attrs,
568 };
569 
570 static const struct kobj_type thpsize_ktype = {
571 	.release = &thpsize_release,
572 	.sysfs_ops = &kobj_sysfs_ops,
573 };
574 
575 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
576 
sum_mthp_stat(int order,enum mthp_stat_item item)577 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
578 {
579 	unsigned long sum = 0;
580 	int cpu;
581 
582 	for_each_possible_cpu(cpu) {
583 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
584 
585 		sum += this->stats[order][item];
586 	}
587 
588 	return sum;
589 }
590 
591 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
592 static ssize_t _name##_show(struct kobject *kobj,			\
593 			struct kobj_attribute *attr, char *buf)		\
594 {									\
595 	int order = to_thpsize(kobj)->order;				\
596 									\
597 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
598 }									\
599 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
600 
601 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
602 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
603 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
604 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
605 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
606 #ifdef CONFIG_SHMEM
607 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
608 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
609 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
610 #endif
611 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
612 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
613 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
614 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
615 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
616 
617 static struct attribute *anon_stats_attrs[] = {
618 	&anon_fault_alloc_attr.attr,
619 	&anon_fault_fallback_attr.attr,
620 	&anon_fault_fallback_charge_attr.attr,
621 #ifndef CONFIG_SHMEM
622 	&swpout_attr.attr,
623 	&swpout_fallback_attr.attr,
624 #endif
625 	&split_deferred_attr.attr,
626 	&nr_anon_attr.attr,
627 	&nr_anon_partially_mapped_attr.attr,
628 	NULL,
629 };
630 
631 static struct attribute_group anon_stats_attr_grp = {
632 	.name = "stats",
633 	.attrs = anon_stats_attrs,
634 };
635 
636 static struct attribute *file_stats_attrs[] = {
637 #ifdef CONFIG_SHMEM
638 	&shmem_alloc_attr.attr,
639 	&shmem_fallback_attr.attr,
640 	&shmem_fallback_charge_attr.attr,
641 #endif
642 	NULL,
643 };
644 
645 static struct attribute_group file_stats_attr_grp = {
646 	.name = "stats",
647 	.attrs = file_stats_attrs,
648 };
649 
650 static struct attribute *any_stats_attrs[] = {
651 #ifdef CONFIG_SHMEM
652 	&swpout_attr.attr,
653 	&swpout_fallback_attr.attr,
654 #endif
655 	&split_attr.attr,
656 	&split_failed_attr.attr,
657 	NULL,
658 };
659 
660 static struct attribute_group any_stats_attr_grp = {
661 	.name = "stats",
662 	.attrs = any_stats_attrs,
663 };
664 
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)665 static int sysfs_add_group(struct kobject *kobj,
666 			   const struct attribute_group *grp)
667 {
668 	int ret = -ENOENT;
669 
670 	/*
671 	 * If the group is named, try to merge first, assuming the subdirectory
672 	 * was already created. This avoids the warning emitted by
673 	 * sysfs_create_group() if the directory already exists.
674 	 */
675 	if (grp->name)
676 		ret = sysfs_merge_group(kobj, grp);
677 	if (ret)
678 		ret = sysfs_create_group(kobj, grp);
679 
680 	return ret;
681 }
682 
thpsize_create(int order,struct kobject * parent)683 static struct thpsize *thpsize_create(int order, struct kobject *parent)
684 {
685 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
686 	struct thpsize *thpsize;
687 	int ret = -ENOMEM;
688 
689 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
690 	if (!thpsize)
691 		goto err;
692 
693 	thpsize->order = order;
694 
695 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
696 				   "hugepages-%lukB", size);
697 	if (ret) {
698 		kfree(thpsize);
699 		goto err;
700 	}
701 
702 
703 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
704 	if (ret)
705 		goto err_put;
706 
707 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
708 	if (ret)
709 		goto err_put;
710 
711 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
712 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
713 		if (ret)
714 			goto err_put;
715 
716 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
717 		if (ret)
718 			goto err_put;
719 	}
720 
721 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
722 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
723 		if (ret)
724 			goto err_put;
725 
726 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
727 		if (ret)
728 			goto err_put;
729 	}
730 
731 	return thpsize;
732 err_put:
733 	kobject_put(&thpsize->kobj);
734 err:
735 	return ERR_PTR(ret);
736 }
737 
thpsize_release(struct kobject * kobj)738 static void thpsize_release(struct kobject *kobj)
739 {
740 	kfree(to_thpsize(kobj));
741 }
742 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)743 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
744 {
745 	int err;
746 	struct thpsize *thpsize;
747 	unsigned long orders;
748 	int order;
749 
750 	/*
751 	 * Default to setting PMD-sized THP to inherit the global setting and
752 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
753 	 * constant so we have to do this here.
754 	 */
755 	if (!anon_orders_configured)
756 		huge_anon_orders_inherit = BIT(PMD_ORDER);
757 
758 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
759 	if (unlikely(!*hugepage_kobj)) {
760 		pr_err("failed to create transparent hugepage kobject\n");
761 		return -ENOMEM;
762 	}
763 
764 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
765 	if (err) {
766 		pr_err("failed to register transparent hugepage group\n");
767 		goto delete_obj;
768 	}
769 
770 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
771 	if (err) {
772 		pr_err("failed to register transparent hugepage group\n");
773 		goto remove_hp_group;
774 	}
775 
776 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
777 	order = highest_order(orders);
778 	while (orders) {
779 		thpsize = thpsize_create(order, *hugepage_kobj);
780 		if (IS_ERR(thpsize)) {
781 			pr_err("failed to create thpsize for order %d\n", order);
782 			err = PTR_ERR(thpsize);
783 			goto remove_all;
784 		}
785 		list_add(&thpsize->node, &thpsize_list);
786 		order = next_order(&orders, order);
787 	}
788 
789 	return 0;
790 
791 remove_all:
792 	hugepage_exit_sysfs(*hugepage_kobj);
793 	return err;
794 remove_hp_group:
795 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
796 delete_obj:
797 	kobject_put(*hugepage_kobj);
798 	return err;
799 }
800 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)801 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
802 {
803 	struct thpsize *thpsize, *tmp;
804 
805 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
806 		list_del(&thpsize->node);
807 		kobject_put(&thpsize->kobj);
808 	}
809 
810 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
811 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
812 	kobject_put(hugepage_kobj);
813 }
814 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)815 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
816 {
817 	return 0;
818 }
819 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)820 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
821 {
822 }
823 #endif /* CONFIG_SYSFS */
824 
thp_shrinker_init(void)825 static int __init thp_shrinker_init(void)
826 {
827 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
828 	if (!huge_zero_page_shrinker)
829 		return -ENOMEM;
830 
831 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
832 						 SHRINKER_MEMCG_AWARE |
833 						 SHRINKER_NONSLAB,
834 						 "thp-deferred_split");
835 	if (!deferred_split_shrinker) {
836 		shrinker_free(huge_zero_page_shrinker);
837 		return -ENOMEM;
838 	}
839 
840 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
841 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
842 	shrinker_register(huge_zero_page_shrinker);
843 
844 	deferred_split_shrinker->count_objects = deferred_split_count;
845 	deferred_split_shrinker->scan_objects = deferred_split_scan;
846 	shrinker_register(deferred_split_shrinker);
847 
848 	return 0;
849 }
850 
thp_shrinker_exit(void)851 static void __init thp_shrinker_exit(void)
852 {
853 	shrinker_free(huge_zero_page_shrinker);
854 	shrinker_free(deferred_split_shrinker);
855 }
856 
hugepage_init(void)857 static int __init hugepage_init(void)
858 {
859 	int err;
860 	struct kobject *hugepage_kobj;
861 
862 	if (!has_transparent_hugepage()) {
863 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
864 		return -EINVAL;
865 	}
866 
867 	/*
868 	 * hugepages can't be allocated by the buddy allocator
869 	 */
870 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
871 
872 	err = hugepage_init_sysfs(&hugepage_kobj);
873 	if (err)
874 		goto err_sysfs;
875 
876 	err = khugepaged_init();
877 	if (err)
878 		goto err_slab;
879 
880 	err = thp_shrinker_init();
881 	if (err)
882 		goto err_shrinker;
883 
884 	/*
885 	 * By default disable transparent hugepages on smaller systems,
886 	 * where the extra memory used could hurt more than TLB overhead
887 	 * is likely to save.  The admin can still enable it through /sys.
888 	 */
889 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
890 		transparent_hugepage_flags = 0;
891 		return 0;
892 	}
893 
894 	err = start_stop_khugepaged();
895 	if (err)
896 		goto err_khugepaged;
897 
898 	return 0;
899 err_khugepaged:
900 	thp_shrinker_exit();
901 err_shrinker:
902 	khugepaged_destroy();
903 err_slab:
904 	hugepage_exit_sysfs(hugepage_kobj);
905 err_sysfs:
906 	return err;
907 }
908 subsys_initcall(hugepage_init);
909 
setup_transparent_hugepage(char * str)910 static int __init setup_transparent_hugepage(char *str)
911 {
912 	int ret = 0;
913 	if (!str)
914 		goto out;
915 	if (!strcmp(str, "always")) {
916 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
917 			&transparent_hugepage_flags);
918 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
919 			  &transparent_hugepage_flags);
920 		ret = 1;
921 	} else if (!strcmp(str, "madvise")) {
922 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
923 			  &transparent_hugepage_flags);
924 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
925 			&transparent_hugepage_flags);
926 		ret = 1;
927 	} else if (!strcmp(str, "never")) {
928 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
929 			  &transparent_hugepage_flags);
930 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
931 			  &transparent_hugepage_flags);
932 		ret = 1;
933 	}
934 out:
935 	if (!ret)
936 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
937 	return ret;
938 }
939 __setup("transparent_hugepage=", setup_transparent_hugepage);
940 
get_order_from_str(const char * size_str)941 static inline int get_order_from_str(const char *size_str)
942 {
943 	unsigned long size;
944 	char *endptr;
945 	int order;
946 
947 	size = memparse(size_str, &endptr);
948 
949 	if (!is_power_of_2(size))
950 		goto err;
951 	order = get_order(size);
952 	if (BIT(order) & ~THP_ORDERS_ALL_ANON)
953 		goto err;
954 
955 	return order;
956 err:
957 	pr_err("invalid size %s in thp_anon boot parameter\n", size_str);
958 	return -EINVAL;
959 }
960 
961 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)962 static int __init setup_thp_anon(char *str)
963 {
964 	char *token, *range, *policy, *subtoken;
965 	unsigned long always, inherit, madvise;
966 	char *start_size, *end_size;
967 	int start, end, nr;
968 	char *p;
969 
970 	if (!str || strlen(str) + 1 > PAGE_SIZE)
971 		goto err;
972 	strcpy(str_dup, str);
973 
974 	always = huge_anon_orders_always;
975 	madvise = huge_anon_orders_madvise;
976 	inherit = huge_anon_orders_inherit;
977 	p = str_dup;
978 	while ((token = strsep(&p, ";")) != NULL) {
979 		range = strsep(&token, ":");
980 		policy = token;
981 
982 		if (!policy)
983 			goto err;
984 
985 		while ((subtoken = strsep(&range, ",")) != NULL) {
986 			if (strchr(subtoken, '-')) {
987 				start_size = strsep(&subtoken, "-");
988 				end_size = subtoken;
989 
990 				start = get_order_from_str(start_size);
991 				end = get_order_from_str(end_size);
992 			} else {
993 				start = end = get_order_from_str(subtoken);
994 			}
995 
996 			if (start < 0 || end < 0 || start > end)
997 				goto err;
998 
999 			nr = end - start + 1;
1000 			if (!strcmp(policy, "always")) {
1001 				bitmap_set(&always, start, nr);
1002 				bitmap_clear(&inherit, start, nr);
1003 				bitmap_clear(&madvise, start, nr);
1004 			} else if (!strcmp(policy, "madvise")) {
1005 				bitmap_set(&madvise, start, nr);
1006 				bitmap_clear(&inherit, start, nr);
1007 				bitmap_clear(&always, start, nr);
1008 			} else if (!strcmp(policy, "inherit")) {
1009 				bitmap_set(&inherit, start, nr);
1010 				bitmap_clear(&madvise, start, nr);
1011 				bitmap_clear(&always, start, nr);
1012 			} else if (!strcmp(policy, "never")) {
1013 				bitmap_clear(&inherit, start, nr);
1014 				bitmap_clear(&madvise, start, nr);
1015 				bitmap_clear(&always, start, nr);
1016 			} else {
1017 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1018 				goto err;
1019 			}
1020 		}
1021 	}
1022 
1023 	huge_anon_orders_always = always;
1024 	huge_anon_orders_madvise = madvise;
1025 	huge_anon_orders_inherit = inherit;
1026 	anon_orders_configured = true;
1027 	return 1;
1028 
1029 err:
1030 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1031 	return 0;
1032 }
1033 __setup("thp_anon=", setup_thp_anon);
1034 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1035 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1036 {
1037 	if (likely(vma->vm_flags & VM_WRITE))
1038 		pmd = pmd_mkwrite(pmd, vma);
1039 	return pmd;
1040 }
1041 
1042 #ifdef CONFIG_MEMCG
1043 static inline
get_deferred_split_queue(struct folio * folio)1044 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1045 {
1046 	struct mem_cgroup *memcg = folio_memcg(folio);
1047 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1048 
1049 	if (memcg)
1050 		return &memcg->deferred_split_queue;
1051 	else
1052 		return &pgdat->deferred_split_queue;
1053 }
1054 #else
1055 static inline
get_deferred_split_queue(struct folio * folio)1056 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1057 {
1058 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1059 
1060 	return &pgdat->deferred_split_queue;
1061 }
1062 #endif
1063 
is_transparent_hugepage(const struct folio * folio)1064 static inline bool is_transparent_hugepage(const struct folio *folio)
1065 {
1066 	if (!folio_test_large(folio))
1067 		return false;
1068 
1069 	return is_huge_zero_folio(folio) ||
1070 		folio_test_large_rmappable(folio);
1071 }
1072 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1073 static unsigned long __thp_get_unmapped_area(struct file *filp,
1074 		unsigned long addr, unsigned long len,
1075 		loff_t off, unsigned long flags, unsigned long size,
1076 		vm_flags_t vm_flags)
1077 {
1078 	loff_t off_end = off + len;
1079 	loff_t off_align = round_up(off, size);
1080 	unsigned long len_pad, ret, off_sub;
1081 
1082 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1083 		return 0;
1084 
1085 	if (off_end <= off_align || (off_end - off_align) < size)
1086 		return 0;
1087 
1088 	len_pad = len + size;
1089 	if (len_pad < len || (off + len_pad) < off)
1090 		return 0;
1091 
1092 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1093 					   off >> PAGE_SHIFT, flags, vm_flags);
1094 
1095 	/*
1096 	 * The failure might be due to length padding. The caller will retry
1097 	 * without the padding.
1098 	 */
1099 	if (IS_ERR_VALUE(ret))
1100 		return 0;
1101 
1102 	/*
1103 	 * Do not try to align to THP boundary if allocation at the address
1104 	 * hint succeeds.
1105 	 */
1106 	if (ret == addr)
1107 		return addr;
1108 
1109 	off_sub = (off - ret) & (size - 1);
1110 
1111 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1112 		return ret + size;
1113 
1114 	ret += off_sub;
1115 	return ret;
1116 }
1117 
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1118 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1119 		unsigned long len, unsigned long pgoff, unsigned long flags,
1120 		vm_flags_t vm_flags)
1121 {
1122 	unsigned long ret;
1123 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1124 
1125 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1126 	if (ret)
1127 		return ret;
1128 
1129 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1130 					    vm_flags);
1131 }
1132 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1133 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1134 		unsigned long len, unsigned long pgoff, unsigned long flags)
1135 {
1136 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1137 }
1138 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1139 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)1140 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
1141 			struct page *page, gfp_t gfp)
1142 {
1143 	struct vm_area_struct *vma = vmf->vma;
1144 	struct folio *folio = page_folio(page);
1145 	pgtable_t pgtable;
1146 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1147 	vm_fault_t ret = 0;
1148 
1149 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1150 
1151 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1152 		folio_put(folio);
1153 		count_vm_event(THP_FAULT_FALLBACK);
1154 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1155 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1156 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1157 		return VM_FAULT_FALLBACK;
1158 	}
1159 	folio_throttle_swaprate(folio, gfp);
1160 
1161 	pgtable = pte_alloc_one(vma->vm_mm);
1162 	if (unlikely(!pgtable)) {
1163 		ret = VM_FAULT_OOM;
1164 		goto release;
1165 	}
1166 
1167 	folio_zero_user(folio, vmf->address);
1168 	/*
1169 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1170 	 * folio_zero_user writes become visible before the set_pmd_at()
1171 	 * write.
1172 	 */
1173 	__folio_mark_uptodate(folio);
1174 
1175 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1176 	if (unlikely(!pmd_none(*vmf->pmd))) {
1177 		goto unlock_release;
1178 	} else {
1179 		pmd_t entry;
1180 
1181 		ret = check_stable_address_space(vma->vm_mm);
1182 		if (ret)
1183 			goto unlock_release;
1184 
1185 		/* Deliver the page fault to userland */
1186 		if (userfaultfd_missing(vma)) {
1187 			spin_unlock(vmf->ptl);
1188 			folio_put(folio);
1189 			pte_free(vma->vm_mm, pgtable);
1190 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1191 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1192 			return ret;
1193 		}
1194 
1195 		entry = mk_huge_pmd(page, vma->vm_page_prot);
1196 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1197 		folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1198 		folio_add_lru_vma(folio, vma);
1199 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1200 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1201 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1202 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1203 		mm_inc_nr_ptes(vma->vm_mm);
1204 		deferred_split_folio(folio, false);
1205 		spin_unlock(vmf->ptl);
1206 		count_vm_event(THP_FAULT_ALLOC);
1207 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1208 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1209 	}
1210 
1211 	return 0;
1212 unlock_release:
1213 	spin_unlock(vmf->ptl);
1214 release:
1215 	if (pgtable)
1216 		pte_free(vma->vm_mm, pgtable);
1217 	folio_put(folio);
1218 	return ret;
1219 
1220 }
1221 
1222 /*
1223  * always: directly stall for all thp allocations
1224  * defer: wake kswapd and fail if not immediately available
1225  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1226  *		  fail if not immediately available
1227  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1228  *	    available
1229  * never: never stall for any thp allocation
1230  */
vma_thp_gfp_mask(struct vm_area_struct * vma)1231 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1232 {
1233 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1234 
1235 	/* Always do synchronous compaction */
1236 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1237 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1238 
1239 	/* Kick kcompactd and fail quickly */
1240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1241 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1242 
1243 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1244 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1245 		return GFP_TRANSHUGE_LIGHT |
1246 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1247 					__GFP_KSWAPD_RECLAIM);
1248 
1249 	/* Only do synchronous compaction if madvised */
1250 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1251 		return GFP_TRANSHUGE_LIGHT |
1252 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1253 
1254 	return GFP_TRANSHUGE_LIGHT;
1255 }
1256 
1257 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1258 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1259 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1260 		struct folio *zero_folio)
1261 {
1262 	pmd_t entry;
1263 	if (!pmd_none(*pmd))
1264 		return;
1265 	entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1266 	entry = pmd_mkhuge(entry);
1267 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1268 	set_pmd_at(mm, haddr, pmd, entry);
1269 	mm_inc_nr_ptes(mm);
1270 }
1271 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1272 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1273 {
1274 	struct vm_area_struct *vma = vmf->vma;
1275 	gfp_t gfp;
1276 	struct folio *folio;
1277 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1278 	vm_fault_t ret;
1279 
1280 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1281 		return VM_FAULT_FALLBACK;
1282 	ret = vmf_anon_prepare(vmf);
1283 	if (ret)
1284 		return ret;
1285 	khugepaged_enter_vma(vma, vma->vm_flags);
1286 
1287 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1288 			!mm_forbids_zeropage(vma->vm_mm) &&
1289 			transparent_hugepage_use_zero_page()) {
1290 		pgtable_t pgtable;
1291 		struct folio *zero_folio;
1292 		vm_fault_t ret;
1293 
1294 		pgtable = pte_alloc_one(vma->vm_mm);
1295 		if (unlikely(!pgtable))
1296 			return VM_FAULT_OOM;
1297 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1298 		if (unlikely(!zero_folio)) {
1299 			pte_free(vma->vm_mm, pgtable);
1300 			count_vm_event(THP_FAULT_FALLBACK);
1301 			return VM_FAULT_FALLBACK;
1302 		}
1303 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1304 		ret = 0;
1305 		if (pmd_none(*vmf->pmd)) {
1306 			ret = check_stable_address_space(vma->vm_mm);
1307 			if (ret) {
1308 				spin_unlock(vmf->ptl);
1309 				pte_free(vma->vm_mm, pgtable);
1310 			} else if (userfaultfd_missing(vma)) {
1311 				spin_unlock(vmf->ptl);
1312 				pte_free(vma->vm_mm, pgtable);
1313 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1314 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1315 			} else {
1316 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1317 						   haddr, vmf->pmd, zero_folio);
1318 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1319 				spin_unlock(vmf->ptl);
1320 			}
1321 		} else {
1322 			spin_unlock(vmf->ptl);
1323 			pte_free(vma->vm_mm, pgtable);
1324 		}
1325 		return ret;
1326 	}
1327 	gfp = vma_thp_gfp_mask(vma);
1328 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1329 	if (unlikely(!folio)) {
1330 		count_vm_event(THP_FAULT_FALLBACK);
1331 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1332 		return VM_FAULT_FALLBACK;
1333 	}
1334 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1335 }
1336 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)1337 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1338 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1339 		pgtable_t pgtable)
1340 {
1341 	struct mm_struct *mm = vma->vm_mm;
1342 	pmd_t entry;
1343 	spinlock_t *ptl;
1344 
1345 	ptl = pmd_lock(mm, pmd);
1346 	if (!pmd_none(*pmd)) {
1347 		if (write) {
1348 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1349 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1350 				goto out_unlock;
1351 			}
1352 			entry = pmd_mkyoung(*pmd);
1353 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1355 				update_mmu_cache_pmd(vma, addr, pmd);
1356 		}
1357 
1358 		goto out_unlock;
1359 	}
1360 
1361 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1362 	if (pfn_t_devmap(pfn))
1363 		entry = pmd_mkdevmap(entry);
1364 	else
1365 		entry = pmd_mkspecial(entry);
1366 	if (write) {
1367 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1368 		entry = maybe_pmd_mkwrite(entry, vma);
1369 	}
1370 
1371 	if (pgtable) {
1372 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1373 		mm_inc_nr_ptes(mm);
1374 		pgtable = NULL;
1375 	}
1376 
1377 	set_pmd_at(mm, addr, pmd, entry);
1378 	update_mmu_cache_pmd(vma, addr, pmd);
1379 
1380 out_unlock:
1381 	spin_unlock(ptl);
1382 	if (pgtable)
1383 		pte_free(mm, pgtable);
1384 }
1385 
1386 /**
1387  * vmf_insert_pfn_pmd - insert a pmd size pfn
1388  * @vmf: Structure describing the fault
1389  * @pfn: pfn to insert
1390  * @write: whether it's a write fault
1391  *
1392  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1393  *
1394  * Return: vm_fault_t value.
1395  */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)1396 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1397 {
1398 	unsigned long addr = vmf->address & PMD_MASK;
1399 	struct vm_area_struct *vma = vmf->vma;
1400 	pgprot_t pgprot = vma->vm_page_prot;
1401 	pgtable_t pgtable = NULL;
1402 
1403 	/*
1404 	 * If we had pmd_special, we could avoid all these restrictions,
1405 	 * but we need to be consistent with PTEs and architectures that
1406 	 * can't support a 'special' bit.
1407 	 */
1408 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1409 			!pfn_t_devmap(pfn));
1410 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1411 						(VM_PFNMAP|VM_MIXEDMAP));
1412 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1413 
1414 	if (addr < vma->vm_start || addr >= vma->vm_end)
1415 		return VM_FAULT_SIGBUS;
1416 
1417 	if (arch_needs_pgtable_deposit()) {
1418 		pgtable = pte_alloc_one(vma->vm_mm);
1419 		if (!pgtable)
1420 			return VM_FAULT_OOM;
1421 	}
1422 
1423 	track_pfn_insert(vma, &pgprot, pfn);
1424 
1425 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1426 	return VM_FAULT_NOPAGE;
1427 }
1428 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1429 
1430 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1431 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1432 {
1433 	if (likely(vma->vm_flags & VM_WRITE))
1434 		pud = pud_mkwrite(pud);
1435 	return pud;
1436 }
1437 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)1438 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1439 		pud_t *pud, pfn_t pfn, bool write)
1440 {
1441 	struct mm_struct *mm = vma->vm_mm;
1442 	pgprot_t prot = vma->vm_page_prot;
1443 	pud_t entry;
1444 	spinlock_t *ptl;
1445 
1446 	ptl = pud_lock(mm, pud);
1447 	if (!pud_none(*pud)) {
1448 		if (write) {
1449 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1450 				goto out_unlock;
1451 			entry = pud_mkyoung(*pud);
1452 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1453 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1454 				update_mmu_cache_pud(vma, addr, pud);
1455 		}
1456 		goto out_unlock;
1457 	}
1458 
1459 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1460 	if (pfn_t_devmap(pfn))
1461 		entry = pud_mkdevmap(entry);
1462 	else
1463 		entry = pud_mkspecial(entry);
1464 	if (write) {
1465 		entry = pud_mkyoung(pud_mkdirty(entry));
1466 		entry = maybe_pud_mkwrite(entry, vma);
1467 	}
1468 	set_pud_at(mm, addr, pud, entry);
1469 	update_mmu_cache_pud(vma, addr, pud);
1470 
1471 out_unlock:
1472 	spin_unlock(ptl);
1473 }
1474 
1475 /**
1476  * vmf_insert_pfn_pud - insert a pud size pfn
1477  * @vmf: Structure describing the fault
1478  * @pfn: pfn to insert
1479  * @write: whether it's a write fault
1480  *
1481  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1482  *
1483  * Return: vm_fault_t value.
1484  */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)1485 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1486 {
1487 	unsigned long addr = vmf->address & PUD_MASK;
1488 	struct vm_area_struct *vma = vmf->vma;
1489 	pgprot_t pgprot = vma->vm_page_prot;
1490 
1491 	/*
1492 	 * If we had pud_special, we could avoid all these restrictions,
1493 	 * but we need to be consistent with PTEs and architectures that
1494 	 * can't support a 'special' bit.
1495 	 */
1496 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1497 			!pfn_t_devmap(pfn));
1498 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1499 						(VM_PFNMAP|VM_MIXEDMAP));
1500 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1501 
1502 	if (addr < vma->vm_start || addr >= vma->vm_end)
1503 		return VM_FAULT_SIGBUS;
1504 
1505 	track_pfn_insert(vma, &pgprot, pfn);
1506 
1507 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1508 	return VM_FAULT_NOPAGE;
1509 }
1510 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1511 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1512 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1513 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1514 	       pmd_t *pmd, bool write)
1515 {
1516 	pmd_t _pmd;
1517 
1518 	_pmd = pmd_mkyoung(*pmd);
1519 	if (write)
1520 		_pmd = pmd_mkdirty(_pmd);
1521 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1522 				  pmd, _pmd, write))
1523 		update_mmu_cache_pmd(vma, addr, pmd);
1524 }
1525 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1526 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1527 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1528 {
1529 	unsigned long pfn = pmd_pfn(*pmd);
1530 	struct mm_struct *mm = vma->vm_mm;
1531 	struct page *page;
1532 	int ret;
1533 
1534 	assert_spin_locked(pmd_lockptr(mm, pmd));
1535 
1536 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1537 		return NULL;
1538 
1539 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1540 		/* pass */;
1541 	else
1542 		return NULL;
1543 
1544 	if (flags & FOLL_TOUCH)
1545 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1546 
1547 	/*
1548 	 * device mapped pages can only be returned if the
1549 	 * caller will manage the page reference count.
1550 	 */
1551 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1552 		return ERR_PTR(-EEXIST);
1553 
1554 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1555 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1556 	if (!*pgmap)
1557 		return ERR_PTR(-EFAULT);
1558 	page = pfn_to_page(pfn);
1559 	ret = try_grab_folio(page_folio(page), 1, flags);
1560 	if (ret)
1561 		page = ERR_PTR(ret);
1562 
1563 	return page;
1564 }
1565 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1566 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1567 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1568 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1569 {
1570 	spinlock_t *dst_ptl, *src_ptl;
1571 	struct page *src_page;
1572 	struct folio *src_folio;
1573 	pmd_t pmd;
1574 	pgtable_t pgtable = NULL;
1575 	int ret = -ENOMEM;
1576 
1577 	pmd = pmdp_get_lockless(src_pmd);
1578 	if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1579 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1580 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1581 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1582 		/*
1583 		 * No need to recheck the pmd, it can't change with write
1584 		 * mmap lock held here.
1585 		 *
1586 		 * Meanwhile, making sure it's not a CoW VMA with writable
1587 		 * mapping, otherwise it means either the anon page wrongly
1588 		 * applied special bit, or we made the PRIVATE mapping be
1589 		 * able to wrongly write to the backend MMIO.
1590 		 */
1591 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1592 		goto set_pmd;
1593 	}
1594 
1595 	/* Skip if can be re-fill on fault */
1596 	if (!vma_is_anonymous(dst_vma))
1597 		return 0;
1598 
1599 	pgtable = pte_alloc_one(dst_mm);
1600 	if (unlikely(!pgtable))
1601 		goto out;
1602 
1603 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1604 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1605 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1606 
1607 	ret = -EAGAIN;
1608 	pmd = *src_pmd;
1609 
1610 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1611 	if (unlikely(is_swap_pmd(pmd))) {
1612 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1613 
1614 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1615 		if (!is_readable_migration_entry(entry)) {
1616 			entry = make_readable_migration_entry(
1617 							swp_offset(entry));
1618 			pmd = swp_entry_to_pmd(entry);
1619 			if (pmd_swp_soft_dirty(*src_pmd))
1620 				pmd = pmd_swp_mksoft_dirty(pmd);
1621 			if (pmd_swp_uffd_wp(*src_pmd))
1622 				pmd = pmd_swp_mkuffd_wp(pmd);
1623 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1624 		}
1625 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1626 		mm_inc_nr_ptes(dst_mm);
1627 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1628 		if (!userfaultfd_wp(dst_vma))
1629 			pmd = pmd_swp_clear_uffd_wp(pmd);
1630 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1631 		ret = 0;
1632 		goto out_unlock;
1633 	}
1634 #endif
1635 
1636 	if (unlikely(!pmd_trans_huge(pmd))) {
1637 		pte_free(dst_mm, pgtable);
1638 		goto out_unlock;
1639 	}
1640 	/*
1641 	 * When page table lock is held, the huge zero pmd should not be
1642 	 * under splitting since we don't split the page itself, only pmd to
1643 	 * a page table.
1644 	 */
1645 	if (is_huge_zero_pmd(pmd)) {
1646 		/*
1647 		 * mm_get_huge_zero_folio() will never allocate a new
1648 		 * folio here, since we already have a zero page to
1649 		 * copy. It just takes a reference.
1650 		 */
1651 		mm_get_huge_zero_folio(dst_mm);
1652 		goto out_zero_page;
1653 	}
1654 
1655 	src_page = pmd_page(pmd);
1656 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1657 	src_folio = page_folio(src_page);
1658 
1659 	folio_get(src_folio);
1660 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1661 		/* Page maybe pinned: split and retry the fault on PTEs. */
1662 		folio_put(src_folio);
1663 		pte_free(dst_mm, pgtable);
1664 		spin_unlock(src_ptl);
1665 		spin_unlock(dst_ptl);
1666 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1667 		return -EAGAIN;
1668 	}
1669 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1670 out_zero_page:
1671 	mm_inc_nr_ptes(dst_mm);
1672 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1673 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1674 	if (!userfaultfd_wp(dst_vma))
1675 		pmd = pmd_clear_uffd_wp(pmd);
1676 	pmd = pmd_wrprotect(pmd);
1677 set_pmd:
1678 	pmd = pmd_mkold(pmd);
1679 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1680 
1681 	ret = 0;
1682 out_unlock:
1683 	spin_unlock(src_ptl);
1684 	spin_unlock(dst_ptl);
1685 out:
1686 	return ret;
1687 }
1688 
1689 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1690 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1691 	       pud_t *pud, bool write)
1692 {
1693 	pud_t _pud;
1694 
1695 	_pud = pud_mkyoung(*pud);
1696 	if (write)
1697 		_pud = pud_mkdirty(_pud);
1698 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1699 				  pud, _pud, write))
1700 		update_mmu_cache_pud(vma, addr, pud);
1701 }
1702 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1703 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1704 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1705 		  struct vm_area_struct *vma)
1706 {
1707 	spinlock_t *dst_ptl, *src_ptl;
1708 	pud_t pud;
1709 	int ret;
1710 
1711 	dst_ptl = pud_lock(dst_mm, dst_pud);
1712 	src_ptl = pud_lockptr(src_mm, src_pud);
1713 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1714 
1715 	ret = -EAGAIN;
1716 	pud = *src_pud;
1717 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1718 		goto out_unlock;
1719 
1720 	/*
1721 	 * TODO: once we support anonymous pages, use
1722 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1723 	 */
1724 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1725 		pudp_set_wrprotect(src_mm, addr, src_pud);
1726 		pud = pud_wrprotect(pud);
1727 	}
1728 	pud = pud_mkold(pud);
1729 	set_pud_at(dst_mm, addr, dst_pud, pud);
1730 
1731 	ret = 0;
1732 out_unlock:
1733 	spin_unlock(src_ptl);
1734 	spin_unlock(dst_ptl);
1735 	return ret;
1736 }
1737 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1738 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1739 {
1740 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1741 
1742 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1743 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1744 		goto unlock;
1745 
1746 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1747 unlock:
1748 	spin_unlock(vmf->ptl);
1749 }
1750 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1751 
huge_pmd_set_accessed(struct vm_fault * vmf)1752 void huge_pmd_set_accessed(struct vm_fault *vmf)
1753 {
1754 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1755 
1756 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1757 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1758 		goto unlock;
1759 
1760 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1761 
1762 unlock:
1763 	spin_unlock(vmf->ptl);
1764 }
1765 
do_huge_pmd_wp_page(struct vm_fault * vmf)1766 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1767 {
1768 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1769 	struct vm_area_struct *vma = vmf->vma;
1770 	struct folio *folio;
1771 	struct page *page;
1772 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1773 	pmd_t orig_pmd = vmf->orig_pmd;
1774 
1775 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1776 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1777 
1778 	if (is_huge_zero_pmd(orig_pmd))
1779 		goto fallback;
1780 
1781 	spin_lock(vmf->ptl);
1782 
1783 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1784 		spin_unlock(vmf->ptl);
1785 		return 0;
1786 	}
1787 
1788 	page = pmd_page(orig_pmd);
1789 	folio = page_folio(page);
1790 	VM_BUG_ON_PAGE(!PageHead(page), page);
1791 
1792 	/* Early check when only holding the PT lock. */
1793 	if (PageAnonExclusive(page))
1794 		goto reuse;
1795 
1796 	if (!folio_trylock(folio)) {
1797 		folio_get(folio);
1798 		spin_unlock(vmf->ptl);
1799 		folio_lock(folio);
1800 		spin_lock(vmf->ptl);
1801 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1802 			spin_unlock(vmf->ptl);
1803 			folio_unlock(folio);
1804 			folio_put(folio);
1805 			return 0;
1806 		}
1807 		folio_put(folio);
1808 	}
1809 
1810 	/* Recheck after temporarily dropping the PT lock. */
1811 	if (PageAnonExclusive(page)) {
1812 		folio_unlock(folio);
1813 		goto reuse;
1814 	}
1815 
1816 	/*
1817 	 * See do_wp_page(): we can only reuse the folio exclusively if
1818 	 * there are no additional references. Note that we always drain
1819 	 * the LRU cache immediately after adding a THP.
1820 	 */
1821 	if (folio_ref_count(folio) >
1822 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1823 		goto unlock_fallback;
1824 	if (folio_test_swapcache(folio))
1825 		folio_free_swap(folio);
1826 	if (folio_ref_count(folio) == 1) {
1827 		pmd_t entry;
1828 
1829 		folio_move_anon_rmap(folio, vma);
1830 		SetPageAnonExclusive(page);
1831 		folio_unlock(folio);
1832 reuse:
1833 		if (unlikely(unshare)) {
1834 			spin_unlock(vmf->ptl);
1835 			return 0;
1836 		}
1837 		entry = pmd_mkyoung(orig_pmd);
1838 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1839 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1840 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1841 		spin_unlock(vmf->ptl);
1842 		return 0;
1843 	}
1844 
1845 unlock_fallback:
1846 	folio_unlock(folio);
1847 	spin_unlock(vmf->ptl);
1848 fallback:
1849 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1850 	return VM_FAULT_FALLBACK;
1851 }
1852 
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1853 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1854 					   unsigned long addr, pmd_t pmd)
1855 {
1856 	struct page *page;
1857 
1858 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1859 		return false;
1860 
1861 	/* Don't touch entries that are not even readable (NUMA hinting). */
1862 	if (pmd_protnone(pmd))
1863 		return false;
1864 
1865 	/* Do we need write faults for softdirty tracking? */
1866 	if (pmd_needs_soft_dirty_wp(vma, pmd))
1867 		return false;
1868 
1869 	/* Do we need write faults for uffd-wp tracking? */
1870 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1871 		return false;
1872 
1873 	if (!(vma->vm_flags & VM_SHARED)) {
1874 		/* See can_change_pte_writable(). */
1875 		page = vm_normal_page_pmd(vma, addr, pmd);
1876 		return page && PageAnon(page) && PageAnonExclusive(page);
1877 	}
1878 
1879 	/* See can_change_pte_writable(). */
1880 	return pmd_dirty(pmd);
1881 }
1882 
1883 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1884 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1885 {
1886 	struct vm_area_struct *vma = vmf->vma;
1887 	struct folio *folio;
1888 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1889 	int nid = NUMA_NO_NODE;
1890 	int target_nid, last_cpupid;
1891 	pmd_t pmd, old_pmd;
1892 	bool writable = false;
1893 	int flags = 0;
1894 
1895 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1896 	old_pmd = pmdp_get(vmf->pmd);
1897 
1898 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1899 		spin_unlock(vmf->ptl);
1900 		return 0;
1901 	}
1902 
1903 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1904 
1905 	/*
1906 	 * Detect now whether the PMD could be writable; this information
1907 	 * is only valid while holding the PT lock.
1908 	 */
1909 	writable = pmd_write(pmd);
1910 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1911 	    can_change_pmd_writable(vma, vmf->address, pmd))
1912 		writable = true;
1913 
1914 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1915 	if (!folio)
1916 		goto out_map;
1917 
1918 	nid = folio_nid(folio);
1919 
1920 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1921 					&last_cpupid);
1922 	if (target_nid == NUMA_NO_NODE)
1923 		goto out_map;
1924 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1925 		flags |= TNF_MIGRATE_FAIL;
1926 		goto out_map;
1927 	}
1928 	/* The folio is isolated and isolation code holds a folio reference. */
1929 	spin_unlock(vmf->ptl);
1930 	writable = false;
1931 
1932 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
1933 		flags |= TNF_MIGRATED;
1934 		nid = target_nid;
1935 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1936 		return 0;
1937 	}
1938 
1939 	flags |= TNF_MIGRATE_FAIL;
1940 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1941 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
1942 		spin_unlock(vmf->ptl);
1943 		return 0;
1944 	}
1945 out_map:
1946 	/* Restore the PMD */
1947 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
1948 	pmd = pmd_mkyoung(pmd);
1949 	if (writable)
1950 		pmd = pmd_mkwrite(pmd, vma);
1951 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1952 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1953 	spin_unlock(vmf->ptl);
1954 
1955 	if (nid != NUMA_NO_NODE)
1956 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1957 	return 0;
1958 }
1959 
1960 /*
1961  * Return true if we do MADV_FREE successfully on entire pmd page.
1962  * Otherwise, return false.
1963  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1964 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1965 		pmd_t *pmd, unsigned long addr, unsigned long next)
1966 {
1967 	spinlock_t *ptl;
1968 	pmd_t orig_pmd;
1969 	struct folio *folio;
1970 	struct mm_struct *mm = tlb->mm;
1971 	bool ret = false;
1972 
1973 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1974 
1975 	ptl = pmd_trans_huge_lock(pmd, vma);
1976 	if (!ptl)
1977 		goto out_unlocked;
1978 
1979 	orig_pmd = *pmd;
1980 	if (is_huge_zero_pmd(orig_pmd))
1981 		goto out;
1982 
1983 	if (unlikely(!pmd_present(orig_pmd))) {
1984 		VM_BUG_ON(thp_migration_supported() &&
1985 				  !is_pmd_migration_entry(orig_pmd));
1986 		goto out;
1987 	}
1988 
1989 	folio = pmd_folio(orig_pmd);
1990 	/*
1991 	 * If other processes are mapping this folio, we couldn't discard
1992 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1993 	 */
1994 	if (folio_likely_mapped_shared(folio))
1995 		goto out;
1996 
1997 	if (!folio_trylock(folio))
1998 		goto out;
1999 
2000 	/*
2001 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2002 	 * will deactivate only them.
2003 	 */
2004 	if (next - addr != HPAGE_PMD_SIZE) {
2005 		folio_get(folio);
2006 		spin_unlock(ptl);
2007 		split_folio(folio);
2008 		folio_unlock(folio);
2009 		folio_put(folio);
2010 		goto out_unlocked;
2011 	}
2012 
2013 	if (folio_test_dirty(folio))
2014 		folio_clear_dirty(folio);
2015 	folio_unlock(folio);
2016 
2017 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2018 		pmdp_invalidate(vma, addr, pmd);
2019 		orig_pmd = pmd_mkold(orig_pmd);
2020 		orig_pmd = pmd_mkclean(orig_pmd);
2021 
2022 		set_pmd_at(mm, addr, pmd, orig_pmd);
2023 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2024 	}
2025 
2026 	folio_mark_lazyfree(folio);
2027 	ret = true;
2028 out:
2029 	spin_unlock(ptl);
2030 out_unlocked:
2031 	return ret;
2032 }
2033 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2034 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2035 {
2036 	pgtable_t pgtable;
2037 
2038 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2039 	pte_free(mm, pgtable);
2040 	mm_dec_nr_ptes(mm);
2041 }
2042 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2043 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2044 		 pmd_t *pmd, unsigned long addr)
2045 {
2046 	pmd_t orig_pmd;
2047 	spinlock_t *ptl;
2048 
2049 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2050 
2051 	ptl = __pmd_trans_huge_lock(pmd, vma);
2052 	if (!ptl)
2053 		return 0;
2054 	/*
2055 	 * For architectures like ppc64 we look at deposited pgtable
2056 	 * when calling pmdp_huge_get_and_clear. So do the
2057 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2058 	 * operations.
2059 	 */
2060 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2061 						tlb->fullmm);
2062 	arch_check_zapped_pmd(vma, orig_pmd);
2063 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2064 	if (vma_is_special_huge(vma)) {
2065 		if (arch_needs_pgtable_deposit())
2066 			zap_deposited_table(tlb->mm, pmd);
2067 		spin_unlock(ptl);
2068 	} else if (is_huge_zero_pmd(orig_pmd)) {
2069 		zap_deposited_table(tlb->mm, pmd);
2070 		spin_unlock(ptl);
2071 	} else {
2072 		struct folio *folio = NULL;
2073 		int flush_needed = 1;
2074 
2075 		if (pmd_present(orig_pmd)) {
2076 			struct page *page = pmd_page(orig_pmd);
2077 
2078 			folio = page_folio(page);
2079 			folio_remove_rmap_pmd(folio, page, vma);
2080 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2081 			VM_BUG_ON_PAGE(!PageHead(page), page);
2082 		} else if (thp_migration_supported()) {
2083 			swp_entry_t entry;
2084 
2085 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2086 			entry = pmd_to_swp_entry(orig_pmd);
2087 			folio = pfn_swap_entry_folio(entry);
2088 			flush_needed = 0;
2089 		} else
2090 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2091 
2092 		if (folio_test_anon(folio)) {
2093 			zap_deposited_table(tlb->mm, pmd);
2094 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2095 		} else {
2096 			if (arch_needs_pgtable_deposit())
2097 				zap_deposited_table(tlb->mm, pmd);
2098 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2099 				       -HPAGE_PMD_NR);
2100 		}
2101 
2102 		spin_unlock(ptl);
2103 		if (flush_needed)
2104 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2105 	}
2106 	return 1;
2107 }
2108 
2109 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2110 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2111 					 spinlock_t *old_pmd_ptl,
2112 					 struct vm_area_struct *vma)
2113 {
2114 	/*
2115 	 * With split pmd lock we also need to move preallocated
2116 	 * PTE page table if new_pmd is on different PMD page table.
2117 	 *
2118 	 * We also don't deposit and withdraw tables for file pages.
2119 	 */
2120 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2121 }
2122 #endif
2123 
move_soft_dirty_pmd(pmd_t pmd)2124 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2125 {
2126 #ifdef CONFIG_MEM_SOFT_DIRTY
2127 	if (unlikely(is_pmd_migration_entry(pmd)))
2128 		pmd = pmd_swp_mksoft_dirty(pmd);
2129 	else if (pmd_present(pmd))
2130 		pmd = pmd_mksoft_dirty(pmd);
2131 #endif
2132 	return pmd;
2133 }
2134 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2135 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2136 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2137 {
2138 	spinlock_t *old_ptl, *new_ptl;
2139 	pmd_t pmd;
2140 	struct mm_struct *mm = vma->vm_mm;
2141 	bool force_flush = false;
2142 
2143 	/*
2144 	 * The destination pmd shouldn't be established, free_pgtables()
2145 	 * should have released it; but move_page_tables() might have already
2146 	 * inserted a page table, if racing against shmem/file collapse.
2147 	 */
2148 	if (!pmd_none(*new_pmd)) {
2149 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2150 		return false;
2151 	}
2152 
2153 	/*
2154 	 * We don't have to worry about the ordering of src and dst
2155 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2156 	 */
2157 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2158 	if (old_ptl) {
2159 		new_ptl = pmd_lockptr(mm, new_pmd);
2160 		if (new_ptl != old_ptl)
2161 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2162 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2163 		if (pmd_present(pmd))
2164 			force_flush = true;
2165 		VM_BUG_ON(!pmd_none(*new_pmd));
2166 
2167 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2168 			pgtable_t pgtable;
2169 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2170 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2171 		}
2172 		pmd = move_soft_dirty_pmd(pmd);
2173 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2174 		if (force_flush)
2175 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2176 		if (new_ptl != old_ptl)
2177 			spin_unlock(new_ptl);
2178 		spin_unlock(old_ptl);
2179 		return true;
2180 	}
2181 	return false;
2182 }
2183 
2184 /*
2185  * Returns
2186  *  - 0 if PMD could not be locked
2187  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2188  *      or if prot_numa but THP migration is not supported
2189  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2190  */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2191 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2192 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2193 		    unsigned long cp_flags)
2194 {
2195 	struct mm_struct *mm = vma->vm_mm;
2196 	spinlock_t *ptl;
2197 	pmd_t oldpmd, entry;
2198 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2199 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2200 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2201 	int ret = 1;
2202 
2203 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2204 
2205 	if (prot_numa && !thp_migration_supported())
2206 		return 1;
2207 
2208 	ptl = __pmd_trans_huge_lock(pmd, vma);
2209 	if (!ptl)
2210 		return 0;
2211 
2212 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2213 	if (is_swap_pmd(*pmd)) {
2214 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2215 		struct folio *folio = pfn_swap_entry_folio(entry);
2216 		pmd_t newpmd;
2217 
2218 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2219 		if (is_writable_migration_entry(entry)) {
2220 			/*
2221 			 * A protection check is difficult so
2222 			 * just be safe and disable write
2223 			 */
2224 			if (folio_test_anon(folio))
2225 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2226 			else
2227 				entry = make_readable_migration_entry(swp_offset(entry));
2228 			newpmd = swp_entry_to_pmd(entry);
2229 			if (pmd_swp_soft_dirty(*pmd))
2230 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2231 		} else {
2232 			newpmd = *pmd;
2233 		}
2234 
2235 		if (uffd_wp)
2236 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2237 		else if (uffd_wp_resolve)
2238 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2239 		if (!pmd_same(*pmd, newpmd))
2240 			set_pmd_at(mm, addr, pmd, newpmd);
2241 		goto unlock;
2242 	}
2243 #endif
2244 
2245 	if (prot_numa) {
2246 		struct folio *folio;
2247 		bool toptier;
2248 		/*
2249 		 * Avoid trapping faults against the zero page. The read-only
2250 		 * data is likely to be read-cached on the local CPU and
2251 		 * local/remote hits to the zero page are not interesting.
2252 		 */
2253 		if (is_huge_zero_pmd(*pmd))
2254 			goto unlock;
2255 
2256 		if (pmd_protnone(*pmd))
2257 			goto unlock;
2258 
2259 		folio = pmd_folio(*pmd);
2260 		toptier = node_is_toptier(folio_nid(folio));
2261 		/*
2262 		 * Skip scanning top tier node if normal numa
2263 		 * balancing is disabled
2264 		 */
2265 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2266 		    toptier)
2267 			goto unlock;
2268 
2269 		if (folio_use_access_time(folio))
2270 			folio_xchg_access_time(folio,
2271 					       jiffies_to_msecs(jiffies));
2272 	}
2273 	/*
2274 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2275 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2276 	 * which is also under mmap_read_lock(mm):
2277 	 *
2278 	 *	CPU0:				CPU1:
2279 	 *				change_huge_pmd(prot_numa=1)
2280 	 *				 pmdp_huge_get_and_clear_notify()
2281 	 * madvise_dontneed()
2282 	 *  zap_pmd_range()
2283 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2284 	 *   // skip the pmd
2285 	 *				 set_pmd_at();
2286 	 *				 // pmd is re-established
2287 	 *
2288 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2289 	 * which may break userspace.
2290 	 *
2291 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2292 	 * dirty/young flags set by hardware.
2293 	 */
2294 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2295 
2296 	entry = pmd_modify(oldpmd, newprot);
2297 	if (uffd_wp)
2298 		entry = pmd_mkuffd_wp(entry);
2299 	else if (uffd_wp_resolve)
2300 		/*
2301 		 * Leave the write bit to be handled by PF interrupt
2302 		 * handler, then things like COW could be properly
2303 		 * handled.
2304 		 */
2305 		entry = pmd_clear_uffd_wp(entry);
2306 
2307 	/* See change_pte_range(). */
2308 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2309 	    can_change_pmd_writable(vma, addr, entry))
2310 		entry = pmd_mkwrite(entry, vma);
2311 
2312 	ret = HPAGE_PMD_NR;
2313 	set_pmd_at(mm, addr, pmd, entry);
2314 
2315 	if (huge_pmd_needs_flush(oldpmd, entry))
2316 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2317 unlock:
2318 	spin_unlock(ptl);
2319 	return ret;
2320 }
2321 
2322 /*
2323  * Returns:
2324  *
2325  * - 0: if pud leaf changed from under us
2326  * - 1: if pud can be skipped
2327  * - HPAGE_PUD_NR: if pud was successfully processed
2328  */
2329 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2330 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2331 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2332 		    unsigned long cp_flags)
2333 {
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	pud_t oldpud, entry;
2336 	spinlock_t *ptl;
2337 
2338 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2339 
2340 	/* NUMA balancing doesn't apply to dax */
2341 	if (cp_flags & MM_CP_PROT_NUMA)
2342 		return 1;
2343 
2344 	/*
2345 	 * Huge entries on userfault-wp only works with anonymous, while we
2346 	 * don't have anonymous PUDs yet.
2347 	 */
2348 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2349 		return 1;
2350 
2351 	ptl = __pud_trans_huge_lock(pudp, vma);
2352 	if (!ptl)
2353 		return 0;
2354 
2355 	/*
2356 	 * Can't clear PUD or it can race with concurrent zapping.  See
2357 	 * change_huge_pmd().
2358 	 */
2359 	oldpud = pudp_invalidate(vma, addr, pudp);
2360 	entry = pud_modify(oldpud, newprot);
2361 	set_pud_at(mm, addr, pudp, entry);
2362 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2363 
2364 	spin_unlock(ptl);
2365 	return HPAGE_PUD_NR;
2366 }
2367 #endif
2368 
2369 #ifdef CONFIG_USERFAULTFD
2370 /*
2371  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2372  * the caller, but it must return after releasing the page_table_lock.
2373  * Just move the page from src_pmd to dst_pmd if possible.
2374  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2375  * repeated by the caller, or other errors in case of failure.
2376  */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2377 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2378 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2379 			unsigned long dst_addr, unsigned long src_addr)
2380 {
2381 	pmd_t _dst_pmd, src_pmdval;
2382 	struct page *src_page;
2383 	struct folio *src_folio;
2384 	struct anon_vma *src_anon_vma;
2385 	spinlock_t *src_ptl, *dst_ptl;
2386 	pgtable_t src_pgtable;
2387 	struct mmu_notifier_range range;
2388 	int err = 0;
2389 
2390 	src_pmdval = *src_pmd;
2391 	src_ptl = pmd_lockptr(mm, src_pmd);
2392 
2393 	lockdep_assert_held(src_ptl);
2394 	vma_assert_locked(src_vma);
2395 	vma_assert_locked(dst_vma);
2396 
2397 	/* Sanity checks before the operation */
2398 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2399 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2400 		spin_unlock(src_ptl);
2401 		return -EINVAL;
2402 	}
2403 
2404 	if (!pmd_trans_huge(src_pmdval)) {
2405 		spin_unlock(src_ptl);
2406 		if (is_pmd_migration_entry(src_pmdval)) {
2407 			pmd_migration_entry_wait(mm, &src_pmdval);
2408 			return -EAGAIN;
2409 		}
2410 		return -ENOENT;
2411 	}
2412 
2413 	src_page = pmd_page(src_pmdval);
2414 
2415 	if (!is_huge_zero_pmd(src_pmdval)) {
2416 		if (unlikely(!PageAnonExclusive(src_page))) {
2417 			spin_unlock(src_ptl);
2418 			return -EBUSY;
2419 		}
2420 
2421 		src_folio = page_folio(src_page);
2422 		folio_get(src_folio);
2423 	} else
2424 		src_folio = NULL;
2425 
2426 	spin_unlock(src_ptl);
2427 
2428 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2429 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2430 				src_addr + HPAGE_PMD_SIZE);
2431 	mmu_notifier_invalidate_range_start(&range);
2432 
2433 	if (src_folio) {
2434 		folio_lock(src_folio);
2435 
2436 		/*
2437 		 * split_huge_page walks the anon_vma chain without the page
2438 		 * lock. Serialize against it with the anon_vma lock, the page
2439 		 * lock is not enough.
2440 		 */
2441 		src_anon_vma = folio_get_anon_vma(src_folio);
2442 		if (!src_anon_vma) {
2443 			err = -EAGAIN;
2444 			goto unlock_folio;
2445 		}
2446 		anon_vma_lock_write(src_anon_vma);
2447 	} else
2448 		src_anon_vma = NULL;
2449 
2450 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2451 	double_pt_lock(src_ptl, dst_ptl);
2452 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2453 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2454 		err = -EAGAIN;
2455 		goto unlock_ptls;
2456 	}
2457 	if (src_folio) {
2458 		if (folio_maybe_dma_pinned(src_folio) ||
2459 		    !PageAnonExclusive(&src_folio->page)) {
2460 			err = -EBUSY;
2461 			goto unlock_ptls;
2462 		}
2463 
2464 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2465 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2466 			err = -EBUSY;
2467 			goto unlock_ptls;
2468 		}
2469 
2470 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2471 		/* Folio got pinned from under us. Put it back and fail the move. */
2472 		if (folio_maybe_dma_pinned(src_folio)) {
2473 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2474 			err = -EBUSY;
2475 			goto unlock_ptls;
2476 		}
2477 
2478 		folio_move_anon_rmap(src_folio, dst_vma);
2479 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2480 
2481 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2482 		/* Follow mremap() behavior and treat the entry dirty after the move */
2483 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2484 	} else {
2485 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2486 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2487 	}
2488 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2489 
2490 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2491 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2492 unlock_ptls:
2493 	double_pt_unlock(src_ptl, dst_ptl);
2494 	if (src_anon_vma) {
2495 		anon_vma_unlock_write(src_anon_vma);
2496 		put_anon_vma(src_anon_vma);
2497 	}
2498 unlock_folio:
2499 	/* unblock rmap walks */
2500 	if (src_folio)
2501 		folio_unlock(src_folio);
2502 	mmu_notifier_invalidate_range_end(&range);
2503 	if (src_folio)
2504 		folio_put(src_folio);
2505 	return err;
2506 }
2507 #endif /* CONFIG_USERFAULTFD */
2508 
2509 /*
2510  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2511  *
2512  * Note that if it returns page table lock pointer, this routine returns without
2513  * unlocking page table lock. So callers must unlock it.
2514  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2515 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2516 {
2517 	spinlock_t *ptl;
2518 	ptl = pmd_lock(vma->vm_mm, pmd);
2519 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2520 			pmd_devmap(*pmd)))
2521 		return ptl;
2522 	spin_unlock(ptl);
2523 	return NULL;
2524 }
2525 
2526 /*
2527  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2528  *
2529  * Note that if it returns page table lock pointer, this routine returns without
2530  * unlocking page table lock. So callers must unlock it.
2531  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2532 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2533 {
2534 	spinlock_t *ptl;
2535 
2536 	ptl = pud_lock(vma->vm_mm, pud);
2537 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2538 		return ptl;
2539 	spin_unlock(ptl);
2540 	return NULL;
2541 }
2542 
2543 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2544 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2545 		 pud_t *pud, unsigned long addr)
2546 {
2547 	spinlock_t *ptl;
2548 	pud_t orig_pud;
2549 
2550 	ptl = __pud_trans_huge_lock(pud, vma);
2551 	if (!ptl)
2552 		return 0;
2553 
2554 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2555 	arch_check_zapped_pud(vma, orig_pud);
2556 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2557 	if (vma_is_special_huge(vma)) {
2558 		spin_unlock(ptl);
2559 		/* No zero page support yet */
2560 	} else {
2561 		/* No support for anonymous PUD pages yet */
2562 		BUG();
2563 	}
2564 	return 1;
2565 }
2566 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2567 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2568 		unsigned long haddr)
2569 {
2570 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2571 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2572 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2573 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2574 
2575 	count_vm_event(THP_SPLIT_PUD);
2576 
2577 	pudp_huge_clear_flush(vma, haddr, pud);
2578 }
2579 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2580 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2581 		unsigned long address)
2582 {
2583 	spinlock_t *ptl;
2584 	struct mmu_notifier_range range;
2585 
2586 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2587 				address & HPAGE_PUD_MASK,
2588 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2589 	mmu_notifier_invalidate_range_start(&range);
2590 	ptl = pud_lock(vma->vm_mm, pud);
2591 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2592 		goto out;
2593 	__split_huge_pud_locked(vma, pud, range.start);
2594 
2595 out:
2596 	spin_unlock(ptl);
2597 	mmu_notifier_invalidate_range_end(&range);
2598 }
2599 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2600 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2601 		unsigned long address)
2602 {
2603 }
2604 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2605 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2606 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2607 		unsigned long haddr, pmd_t *pmd)
2608 {
2609 	struct mm_struct *mm = vma->vm_mm;
2610 	pgtable_t pgtable;
2611 	pmd_t _pmd, old_pmd;
2612 	unsigned long addr;
2613 	pte_t *pte;
2614 	int i;
2615 
2616 	/*
2617 	 * Leave pmd empty until pte is filled note that it is fine to delay
2618 	 * notification until mmu_notifier_invalidate_range_end() as we are
2619 	 * replacing a zero pmd write protected page with a zero pte write
2620 	 * protected page.
2621 	 *
2622 	 * See Documentation/mm/mmu_notifier.rst
2623 	 */
2624 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2625 
2626 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2627 	pmd_populate(mm, &_pmd, pgtable);
2628 
2629 	pte = pte_offset_map(&_pmd, haddr);
2630 	VM_BUG_ON(!pte);
2631 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2632 		pte_t entry;
2633 
2634 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2635 		entry = pte_mkspecial(entry);
2636 		if (pmd_uffd_wp(old_pmd))
2637 			entry = pte_mkuffd_wp(entry);
2638 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2639 		set_pte_at(mm, addr, pte, entry);
2640 		pte++;
2641 	}
2642 	pte_unmap(pte - 1);
2643 	smp_wmb(); /* make pte visible before pmd */
2644 	pmd_populate(mm, pmd, pgtable);
2645 }
2646 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2647 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2648 		unsigned long haddr, bool freeze)
2649 {
2650 	struct mm_struct *mm = vma->vm_mm;
2651 	struct folio *folio;
2652 	struct page *page;
2653 	pgtable_t pgtable;
2654 	pmd_t old_pmd, _pmd;
2655 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2656 	bool anon_exclusive = false, dirty = false;
2657 	unsigned long addr;
2658 	pte_t *pte;
2659 	int i;
2660 
2661 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2662 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2663 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2664 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2665 				&& !pmd_devmap(*pmd));
2666 
2667 	count_vm_event(THP_SPLIT_PMD);
2668 
2669 	if (!vma_is_anonymous(vma)) {
2670 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2671 		/*
2672 		 * We are going to unmap this huge page. So
2673 		 * just go ahead and zap it
2674 		 */
2675 		if (arch_needs_pgtable_deposit())
2676 			zap_deposited_table(mm, pmd);
2677 		if (vma_is_special_huge(vma))
2678 			return;
2679 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2680 			swp_entry_t entry;
2681 
2682 			entry = pmd_to_swp_entry(old_pmd);
2683 			folio = pfn_swap_entry_folio(entry);
2684 		} else {
2685 			page = pmd_page(old_pmd);
2686 			folio = page_folio(page);
2687 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2688 				folio_mark_dirty(folio);
2689 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2690 				folio_set_referenced(folio);
2691 			folio_remove_rmap_pmd(folio, page, vma);
2692 			folio_put(folio);
2693 		}
2694 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2695 		return;
2696 	}
2697 
2698 	if (is_huge_zero_pmd(*pmd)) {
2699 		/*
2700 		 * FIXME: Do we want to invalidate secondary mmu by calling
2701 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2702 		 * inside __split_huge_pmd() ?
2703 		 *
2704 		 * We are going from a zero huge page write protected to zero
2705 		 * small page also write protected so it does not seems useful
2706 		 * to invalidate secondary mmu at this time.
2707 		 */
2708 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2709 	}
2710 
2711 	pmd_migration = is_pmd_migration_entry(*pmd);
2712 	if (unlikely(pmd_migration)) {
2713 		swp_entry_t entry;
2714 
2715 		old_pmd = *pmd;
2716 		entry = pmd_to_swp_entry(old_pmd);
2717 		page = pfn_swap_entry_to_page(entry);
2718 		write = is_writable_migration_entry(entry);
2719 		if (PageAnon(page))
2720 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2721 		young = is_migration_entry_young(entry);
2722 		dirty = is_migration_entry_dirty(entry);
2723 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2724 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2725 	} else {
2726 		/*
2727 		 * Up to this point the pmd is present and huge and userland has
2728 		 * the whole access to the hugepage during the split (which
2729 		 * happens in place). If we overwrite the pmd with the not-huge
2730 		 * version pointing to the pte here (which of course we could if
2731 		 * all CPUs were bug free), userland could trigger a small page
2732 		 * size TLB miss on the small sized TLB while the hugepage TLB
2733 		 * entry is still established in the huge TLB. Some CPU doesn't
2734 		 * like that. See
2735 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2736 		 * 383 on page 105. Intel should be safe but is also warns that
2737 		 * it's only safe if the permission and cache attributes of the
2738 		 * two entries loaded in the two TLB is identical (which should
2739 		 * be the case here). But it is generally safer to never allow
2740 		 * small and huge TLB entries for the same virtual address to be
2741 		 * loaded simultaneously. So instead of doing "pmd_populate();
2742 		 * flush_pmd_tlb_range();" we first mark the current pmd
2743 		 * notpresent (atomically because here the pmd_trans_huge must
2744 		 * remain set at all times on the pmd until the split is
2745 		 * complete for this pmd), then we flush the SMP TLB and finally
2746 		 * we write the non-huge version of the pmd entry with
2747 		 * pmd_populate.
2748 		 */
2749 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2750 		page = pmd_page(old_pmd);
2751 		folio = page_folio(page);
2752 		if (pmd_dirty(old_pmd)) {
2753 			dirty = true;
2754 			folio_set_dirty(folio);
2755 		}
2756 		write = pmd_write(old_pmd);
2757 		young = pmd_young(old_pmd);
2758 		soft_dirty = pmd_soft_dirty(old_pmd);
2759 		uffd_wp = pmd_uffd_wp(old_pmd);
2760 
2761 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2762 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2763 
2764 		/*
2765 		 * Without "freeze", we'll simply split the PMD, propagating the
2766 		 * PageAnonExclusive() flag for each PTE by setting it for
2767 		 * each subpage -- no need to (temporarily) clear.
2768 		 *
2769 		 * With "freeze" we want to replace mapped pages by
2770 		 * migration entries right away. This is only possible if we
2771 		 * managed to clear PageAnonExclusive() -- see
2772 		 * set_pmd_migration_entry().
2773 		 *
2774 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2775 		 * only and let try_to_migrate_one() fail later.
2776 		 *
2777 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2778 		 */
2779 		anon_exclusive = PageAnonExclusive(page);
2780 		if (freeze && anon_exclusive &&
2781 		    folio_try_share_anon_rmap_pmd(folio, page))
2782 			freeze = false;
2783 		if (!freeze) {
2784 			rmap_t rmap_flags = RMAP_NONE;
2785 
2786 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2787 			if (anon_exclusive)
2788 				rmap_flags |= RMAP_EXCLUSIVE;
2789 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2790 						 vma, haddr, rmap_flags);
2791 		}
2792 	}
2793 
2794 	/*
2795 	 * Withdraw the table only after we mark the pmd entry invalid.
2796 	 * This's critical for some architectures (Power).
2797 	 */
2798 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2799 	pmd_populate(mm, &_pmd, pgtable);
2800 
2801 	pte = pte_offset_map(&_pmd, haddr);
2802 	VM_BUG_ON(!pte);
2803 
2804 	/*
2805 	 * Note that NUMA hinting access restrictions are not transferred to
2806 	 * avoid any possibility of altering permissions across VMAs.
2807 	 */
2808 	if (freeze || pmd_migration) {
2809 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2810 			pte_t entry;
2811 			swp_entry_t swp_entry;
2812 
2813 			if (write)
2814 				swp_entry = make_writable_migration_entry(
2815 							page_to_pfn(page + i));
2816 			else if (anon_exclusive)
2817 				swp_entry = make_readable_exclusive_migration_entry(
2818 							page_to_pfn(page + i));
2819 			else
2820 				swp_entry = make_readable_migration_entry(
2821 							page_to_pfn(page + i));
2822 			if (young)
2823 				swp_entry = make_migration_entry_young(swp_entry);
2824 			if (dirty)
2825 				swp_entry = make_migration_entry_dirty(swp_entry);
2826 			entry = swp_entry_to_pte(swp_entry);
2827 			if (soft_dirty)
2828 				entry = pte_swp_mksoft_dirty(entry);
2829 			if (uffd_wp)
2830 				entry = pte_swp_mkuffd_wp(entry);
2831 
2832 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2833 			set_pte_at(mm, addr, pte + i, entry);
2834 		}
2835 	} else {
2836 		pte_t entry;
2837 
2838 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2839 		if (write)
2840 			entry = pte_mkwrite(entry, vma);
2841 		if (!young)
2842 			entry = pte_mkold(entry);
2843 		/* NOTE: this may set soft-dirty too on some archs */
2844 		if (dirty)
2845 			entry = pte_mkdirty(entry);
2846 		if (soft_dirty)
2847 			entry = pte_mksoft_dirty(entry);
2848 		if (uffd_wp)
2849 			entry = pte_mkuffd_wp(entry);
2850 
2851 		for (i = 0; i < HPAGE_PMD_NR; i++)
2852 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2853 
2854 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2855 	}
2856 	pte_unmap(pte);
2857 
2858 	if (!pmd_migration)
2859 		folio_remove_rmap_pmd(folio, page, vma);
2860 	if (freeze)
2861 		put_page(page);
2862 
2863 	smp_wmb(); /* make pte visible before pmd */
2864 	pmd_populate(mm, pmd, pgtable);
2865 }
2866 
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)2867 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2868 			   pmd_t *pmd, bool freeze, struct folio *folio)
2869 {
2870 	VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2871 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2872 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2873 	VM_BUG_ON(freeze && !folio);
2874 
2875 	/*
2876 	 * When the caller requests to set up a migration entry, we
2877 	 * require a folio to check the PMD against. Otherwise, there
2878 	 * is a risk of replacing the wrong folio.
2879 	 */
2880 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2881 	    is_pmd_migration_entry(*pmd)) {
2882 		if (folio && folio != pmd_folio(*pmd))
2883 			return;
2884 		__split_huge_pmd_locked(vma, pmd, address, freeze);
2885 	}
2886 }
2887 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2888 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2889 		unsigned long address, bool freeze, struct folio *folio)
2890 {
2891 	spinlock_t *ptl;
2892 	struct mmu_notifier_range range;
2893 
2894 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2895 				address & HPAGE_PMD_MASK,
2896 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2897 	mmu_notifier_invalidate_range_start(&range);
2898 	ptl = pmd_lock(vma->vm_mm, pmd);
2899 	split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2900 	spin_unlock(ptl);
2901 	mmu_notifier_invalidate_range_end(&range);
2902 }
2903 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2904 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2905 		bool freeze, struct folio *folio)
2906 {
2907 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2908 
2909 	if (!pmd)
2910 		return;
2911 
2912 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2913 }
2914 
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2915 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2916 {
2917 	/*
2918 	 * If the new address isn't hpage aligned and it could previously
2919 	 * contain an hugepage: check if we need to split an huge pmd.
2920 	 */
2921 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2922 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2923 			 ALIGN(address, HPAGE_PMD_SIZE)))
2924 		split_huge_pmd_address(vma, address, false, NULL);
2925 }
2926 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2927 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2928 			     unsigned long start,
2929 			     unsigned long end,
2930 			     long adjust_next)
2931 {
2932 	/* Check if we need to split start first. */
2933 	split_huge_pmd_if_needed(vma, start);
2934 
2935 	/* Check if we need to split end next. */
2936 	split_huge_pmd_if_needed(vma, end);
2937 
2938 	/*
2939 	 * If we're also updating the next vma vm_start,
2940 	 * check if we need to split it.
2941 	 */
2942 	if (adjust_next > 0) {
2943 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2944 		unsigned long nstart = next->vm_start;
2945 		nstart += adjust_next;
2946 		split_huge_pmd_if_needed(next, nstart);
2947 	}
2948 }
2949 
unmap_folio(struct folio * folio)2950 static void unmap_folio(struct folio *folio)
2951 {
2952 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2953 		TTU_BATCH_FLUSH;
2954 
2955 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2956 
2957 	if (folio_test_pmd_mappable(folio))
2958 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
2959 
2960 	/*
2961 	 * Anon pages need migration entries to preserve them, but file
2962 	 * pages can simply be left unmapped, then faulted back on demand.
2963 	 * If that is ever changed (perhaps for mlock), update remap_page().
2964 	 */
2965 	if (folio_test_anon(folio))
2966 		try_to_migrate(folio, ttu_flags);
2967 	else
2968 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2969 
2970 	try_to_unmap_flush();
2971 }
2972 
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)2973 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
2974 					    unsigned long addr, pmd_t *pmdp,
2975 					    struct folio *folio)
2976 {
2977 	struct mm_struct *mm = vma->vm_mm;
2978 	int ref_count, map_count;
2979 	pmd_t orig_pmd = *pmdp;
2980 
2981 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
2982 		return false;
2983 
2984 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
2985 
2986 	/*
2987 	 * Syncing against concurrent GUP-fast:
2988 	 * - clear PMD; barrier; read refcount
2989 	 * - inc refcount; barrier; read PMD
2990 	 */
2991 	smp_mb();
2992 
2993 	ref_count = folio_ref_count(folio);
2994 	map_count = folio_mapcount(folio);
2995 
2996 	/*
2997 	 * Order reads for folio refcount and dirty flag
2998 	 * (see comments in __remove_mapping()).
2999 	 */
3000 	smp_rmb();
3001 
3002 	/*
3003 	 * If the folio or its PMD is redirtied at this point, or if there
3004 	 * are unexpected references, we will give up to discard this folio
3005 	 * and remap it.
3006 	 *
3007 	 * The only folio refs must be one from isolation plus the rmap(s).
3008 	 */
3009 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3010 	    ref_count != map_count + 1) {
3011 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3012 		return false;
3013 	}
3014 
3015 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3016 	zap_deposited_table(mm, pmdp);
3017 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3018 	if (vma->vm_flags & VM_LOCKED)
3019 		mlock_drain_local();
3020 	folio_put(folio);
3021 
3022 	return true;
3023 }
3024 
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3025 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3026 			   pmd_t *pmdp, struct folio *folio)
3027 {
3028 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3029 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3030 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3031 
3032 	if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3033 		return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3034 
3035 	return false;
3036 }
3037 
remap_page(struct folio * folio,unsigned long nr,int flags)3038 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3039 {
3040 	int i = 0;
3041 
3042 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3043 	if (!folio_test_anon(folio))
3044 		return;
3045 	for (;;) {
3046 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3047 		i += folio_nr_pages(folio);
3048 		if (i >= nr)
3049 			break;
3050 		folio = folio_next(folio);
3051 	}
3052 }
3053 
lru_add_page_tail(struct folio * folio,struct page * tail,struct lruvec * lruvec,struct list_head * list)3054 static void lru_add_page_tail(struct folio *folio, struct page *tail,
3055 		struct lruvec *lruvec, struct list_head *list)
3056 {
3057 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3058 	VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3059 	lockdep_assert_held(&lruvec->lru_lock);
3060 
3061 	if (list) {
3062 		/* page reclaim is reclaiming a huge page */
3063 		VM_WARN_ON(folio_test_lru(folio));
3064 		get_page(tail);
3065 		list_add_tail(&tail->lru, list);
3066 	} else {
3067 		/* head is still on lru (and we have it frozen) */
3068 		VM_WARN_ON(!folio_test_lru(folio));
3069 		if (folio_test_unevictable(folio))
3070 			tail->mlock_count = 0;
3071 		else
3072 			list_add_tail(&tail->lru, &folio->lru);
3073 		SetPageLRU(tail);
3074 	}
3075 }
3076 
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list,unsigned int new_order)3077 static void __split_huge_page_tail(struct folio *folio, int tail,
3078 		struct lruvec *lruvec, struct list_head *list,
3079 		unsigned int new_order)
3080 {
3081 	struct page *head = &folio->page;
3082 	struct page *page_tail = head + tail;
3083 	/*
3084 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3085 	 * Don't pass it around before clear_compound_head().
3086 	 */
3087 	struct folio *new_folio = (struct folio *)page_tail;
3088 
3089 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3090 
3091 	/*
3092 	 * Clone page flags before unfreezing refcount.
3093 	 *
3094 	 * After successful get_page_unless_zero() might follow flags change,
3095 	 * for example lock_page() which set PG_waiters.
3096 	 *
3097 	 * Note that for mapped sub-pages of an anonymous THP,
3098 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3099 	 * the migration entry instead from where remap_page() will restore it.
3100 	 * We can still have PG_anon_exclusive set on effectively unmapped and
3101 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
3102 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3103 	 */
3104 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3105 	page_tail->flags |= (head->flags &
3106 			((1L << PG_referenced) |
3107 			 (1L << PG_swapbacked) |
3108 			 (1L << PG_swapcache) |
3109 			 (1L << PG_mlocked) |
3110 			 (1L << PG_uptodate) |
3111 			 (1L << PG_active) |
3112 			 (1L << PG_workingset) |
3113 			 (1L << PG_locked) |
3114 			 (1L << PG_unevictable) |
3115 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3116 			 (1L << PG_arch_2) |
3117 #endif
3118 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3119 			 (1L << PG_arch_3) |
3120 #endif
3121 			 (1L << PG_dirty) |
3122 			 LRU_GEN_MASK | LRU_REFS_MASK));
3123 
3124 	/* ->mapping in first and second tail page is replaced by other uses */
3125 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3126 			page_tail);
3127 	page_tail->mapping = head->mapping;
3128 	page_tail->index = head->index + tail;
3129 
3130 	/*
3131 	 * page->private should not be set in tail pages. Fix up and warn once
3132 	 * if private is unexpectedly set.
3133 	 */
3134 	if (unlikely(page_tail->private)) {
3135 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
3136 		page_tail->private = 0;
3137 	}
3138 	if (folio_test_swapcache(folio))
3139 		new_folio->swap.val = folio->swap.val + tail;
3140 
3141 	/* Page flags must be visible before we make the page non-compound. */
3142 	smp_wmb();
3143 
3144 	/*
3145 	 * Clear PageTail before unfreezing page refcount.
3146 	 *
3147 	 * After successful get_page_unless_zero() might follow put_page()
3148 	 * which needs correct compound_head().
3149 	 */
3150 	clear_compound_head(page_tail);
3151 	if (new_order) {
3152 		prep_compound_page(page_tail, new_order);
3153 		folio_set_large_rmappable(new_folio);
3154 	}
3155 
3156 	/* Finally unfreeze refcount. Additional reference from page cache. */
3157 	page_ref_unfreeze(page_tail,
3158 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3159 			     folio_nr_pages(new_folio) : 0));
3160 
3161 	if (folio_test_young(folio))
3162 		folio_set_young(new_folio);
3163 	if (folio_test_idle(folio))
3164 		folio_set_idle(new_folio);
3165 
3166 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3167 
3168 	/*
3169 	 * always add to the tail because some iterators expect new
3170 	 * pages to show after the currently processed elements - e.g.
3171 	 * migrate_pages
3172 	 */
3173 	lru_add_page_tail(folio, page_tail, lruvec, list);
3174 }
3175 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned int new_order)3176 static void __split_huge_page(struct page *page, struct list_head *list,
3177 		pgoff_t end, unsigned int new_order)
3178 {
3179 	struct folio *folio = page_folio(page);
3180 	struct page *head = &folio->page;
3181 	struct lruvec *lruvec;
3182 	struct address_space *swap_cache = NULL;
3183 	unsigned long offset = 0;
3184 	int i, nr_dropped = 0;
3185 	unsigned int new_nr = 1 << new_order;
3186 	int order = folio_order(folio);
3187 	unsigned int nr = 1 << order;
3188 
3189 	/* complete memcg works before add pages to LRU */
3190 	split_page_memcg(head, order, new_order);
3191 
3192 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3193 		offset = swap_cache_index(folio->swap);
3194 		swap_cache = swap_address_space(folio->swap);
3195 		xa_lock(&swap_cache->i_pages);
3196 	}
3197 
3198 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3199 	lruvec = folio_lruvec_lock(folio);
3200 
3201 	ClearPageHasHWPoisoned(head);
3202 
3203 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3204 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
3205 		/* Some pages can be beyond EOF: drop them from page cache */
3206 		if (head[i].index >= end) {
3207 			struct folio *tail = page_folio(head + i);
3208 
3209 			if (shmem_mapping(folio->mapping))
3210 				nr_dropped++;
3211 			else if (folio_test_clear_dirty(tail))
3212 				folio_account_cleaned(tail,
3213 					inode_to_wb(folio->mapping->host));
3214 			__filemap_remove_folio(tail, NULL);
3215 			folio_put(tail);
3216 		} else if (!PageAnon(page)) {
3217 			__xa_store(&folio->mapping->i_pages, head[i].index,
3218 					head + i, 0);
3219 		} else if (swap_cache) {
3220 			__xa_store(&swap_cache->i_pages, offset + i,
3221 					head + i, 0);
3222 		}
3223 	}
3224 
3225 	if (!new_order)
3226 		ClearPageCompound(head);
3227 	else {
3228 		struct folio *new_folio = (struct folio *)head;
3229 
3230 		folio_set_order(new_folio, new_order);
3231 	}
3232 	unlock_page_lruvec(lruvec);
3233 	/* Caller disabled irqs, so they are still disabled here */
3234 
3235 	split_page_owner(head, order, new_order);
3236 	pgalloc_tag_split(folio, order, new_order);
3237 
3238 	/* See comment in __split_huge_page_tail() */
3239 	if (folio_test_anon(folio)) {
3240 		/* Additional pin to swap cache */
3241 		if (folio_test_swapcache(folio)) {
3242 			folio_ref_add(folio, 1 + new_nr);
3243 			xa_unlock(&swap_cache->i_pages);
3244 		} else {
3245 			folio_ref_inc(folio);
3246 		}
3247 	} else {
3248 		/* Additional pin to page cache */
3249 		folio_ref_add(folio, 1 + new_nr);
3250 		xa_unlock(&folio->mapping->i_pages);
3251 	}
3252 	local_irq_enable();
3253 
3254 	if (nr_dropped)
3255 		shmem_uncharge(folio->mapping->host, nr_dropped);
3256 	remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3257 
3258 	/*
3259 	 * set page to its compound_head when split to non order-0 pages, so
3260 	 * we can skip unlocking it below, since PG_locked is transferred to
3261 	 * the compound_head of the page and the caller will unlock it.
3262 	 */
3263 	if (new_order)
3264 		page = compound_head(page);
3265 
3266 	for (i = 0; i < nr; i += new_nr) {
3267 		struct page *subpage = head + i;
3268 		struct folio *new_folio = page_folio(subpage);
3269 		if (subpage == page)
3270 			continue;
3271 		folio_unlock(new_folio);
3272 
3273 		/*
3274 		 * Subpages may be freed if there wasn't any mapping
3275 		 * like if add_to_swap() is running on a lru page that
3276 		 * had its mapping zapped. And freeing these pages
3277 		 * requires taking the lru_lock so we do the put_page
3278 		 * of the tail pages after the split is complete.
3279 		 */
3280 		free_page_and_swap_cache(subpage);
3281 	}
3282 }
3283 
3284 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3285 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3286 {
3287 	int extra_pins;
3288 
3289 	/* Additional pins from page cache */
3290 	if (folio_test_anon(folio))
3291 		extra_pins = folio_test_swapcache(folio) ?
3292 				folio_nr_pages(folio) : 0;
3293 	else
3294 		extra_pins = folio_nr_pages(folio);
3295 	if (pextra_pins)
3296 		*pextra_pins = extra_pins;
3297 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3298 					caller_pins;
3299 }
3300 
3301 /*
3302  * This function splits a large folio into smaller folios of order @new_order.
3303  * @page can point to any page of the large folio to split. The split operation
3304  * does not change the position of @page.
3305  *
3306  * Prerequisites:
3307  *
3308  * 1) The caller must hold a reference on the @page's owning folio, also known
3309  *    as the large folio.
3310  *
3311  * 2) The large folio must be locked.
3312  *
3313  * 3) The folio must not be pinned. Any unexpected folio references, including
3314  *    GUP pins, will result in the folio not getting split; instead, the caller
3315  *    will receive an -EAGAIN.
3316  *
3317  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3318  *    supported for non-file-backed folios, because folio->_deferred_list, which
3319  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3320  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3321  *    since they do not use _deferred_list.
3322  *
3323  * After splitting, the caller's folio reference will be transferred to @page,
3324  * resulting in a raised refcount of @page after this call. The other pages may
3325  * be freed if they are not mapped.
3326  *
3327  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3328  *
3329  * Pages in @new_order will inherit the mapping, flags, and so on from the
3330  * huge page.
3331  *
3332  * Returns 0 if the huge page was split successfully.
3333  *
3334  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3335  * the folio was concurrently removed from the page cache.
3336  *
3337  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3338  * under writeback, if fs-specific folio metadata cannot currently be
3339  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3340  * truncation).
3341  *
3342  * Callers should ensure that the order respects the address space mapping
3343  * min-order if one is set for non-anonymous folios.
3344  *
3345  * Returns -EINVAL when trying to split to an order that is incompatible
3346  * with the folio. Splitting to order 0 is compatible with all folios.
3347  */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3348 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3349 				     unsigned int new_order)
3350 {
3351 	struct folio *folio = page_folio(page);
3352 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3353 	/* reset xarray order to new order after split */
3354 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3355 	bool is_anon = folio_test_anon(folio);
3356 	struct address_space *mapping = NULL;
3357 	struct anon_vma *anon_vma = NULL;
3358 	int order = folio_order(folio);
3359 	int extra_pins, ret;
3360 	pgoff_t end;
3361 	bool is_hzp;
3362 
3363 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3364 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3365 
3366 	if (new_order >= folio_order(folio))
3367 		return -EINVAL;
3368 
3369 	if (is_anon) {
3370 		/* order-1 is not supported for anonymous THP. */
3371 		if (new_order == 1) {
3372 			VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3373 			return -EINVAL;
3374 		}
3375 	} else if (new_order) {
3376 		/* Split shmem folio to non-zero order not supported */
3377 		if (shmem_mapping(folio->mapping)) {
3378 			VM_WARN_ONCE(1,
3379 				"Cannot split shmem folio to non-0 order");
3380 			return -EINVAL;
3381 		}
3382 		/*
3383 		 * No split if the file system does not support large folio.
3384 		 * Note that we might still have THPs in such mappings due to
3385 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3386 		 * does not actually support large folios properly.
3387 		 */
3388 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3389 		    !mapping_large_folio_support(folio->mapping)) {
3390 			VM_WARN_ONCE(1,
3391 				"Cannot split file folio to non-0 order");
3392 			return -EINVAL;
3393 		}
3394 	}
3395 
3396 	/* Only swapping a whole PMD-mapped folio is supported */
3397 	if (folio_test_swapcache(folio) && new_order)
3398 		return -EINVAL;
3399 
3400 	is_hzp = is_huge_zero_folio(folio);
3401 	if (is_hzp) {
3402 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3403 		return -EBUSY;
3404 	}
3405 
3406 	if (folio_test_writeback(folio))
3407 		return -EBUSY;
3408 
3409 	if (is_anon) {
3410 		/*
3411 		 * The caller does not necessarily hold an mmap_lock that would
3412 		 * prevent the anon_vma disappearing so we first we take a
3413 		 * reference to it and then lock the anon_vma for write. This
3414 		 * is similar to folio_lock_anon_vma_read except the write lock
3415 		 * is taken to serialise against parallel split or collapse
3416 		 * operations.
3417 		 */
3418 		anon_vma = folio_get_anon_vma(folio);
3419 		if (!anon_vma) {
3420 			ret = -EBUSY;
3421 			goto out;
3422 		}
3423 		end = -1;
3424 		mapping = NULL;
3425 		anon_vma_lock_write(anon_vma);
3426 	} else {
3427 		unsigned int min_order;
3428 		gfp_t gfp;
3429 
3430 		mapping = folio->mapping;
3431 
3432 		/* Truncated ? */
3433 		if (!mapping) {
3434 			ret = -EBUSY;
3435 			goto out;
3436 		}
3437 
3438 		min_order = mapping_min_folio_order(folio->mapping);
3439 		if (new_order < min_order) {
3440 			VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3441 				     min_order);
3442 			ret = -EINVAL;
3443 			goto out;
3444 		}
3445 
3446 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3447 							GFP_RECLAIM_MASK);
3448 
3449 		if (!filemap_release_folio(folio, gfp)) {
3450 			ret = -EBUSY;
3451 			goto out;
3452 		}
3453 
3454 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3455 		if (xas_error(&xas)) {
3456 			ret = xas_error(&xas);
3457 			goto out;
3458 		}
3459 
3460 		anon_vma = NULL;
3461 		i_mmap_lock_read(mapping);
3462 
3463 		/*
3464 		 *__split_huge_page() may need to trim off pages beyond EOF:
3465 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3466 		 * which cannot be nested inside the page tree lock. So note
3467 		 * end now: i_size itself may be changed at any moment, but
3468 		 * folio lock is good enough to serialize the trimming.
3469 		 */
3470 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3471 		if (shmem_mapping(mapping))
3472 			end = shmem_fallocend(mapping->host, end);
3473 	}
3474 
3475 	/*
3476 	 * Racy check if we can split the page, before unmap_folio() will
3477 	 * split PMDs
3478 	 */
3479 	if (!can_split_folio(folio, 1, &extra_pins)) {
3480 		ret = -EAGAIN;
3481 		goto out_unlock;
3482 	}
3483 
3484 	unmap_folio(folio);
3485 
3486 	/* block interrupt reentry in xa_lock and spinlock */
3487 	local_irq_disable();
3488 	if (mapping) {
3489 		/*
3490 		 * Check if the folio is present in page cache.
3491 		 * We assume all tail are present too, if folio is there.
3492 		 */
3493 		xas_lock(&xas);
3494 		xas_reset(&xas);
3495 		if (xas_load(&xas) != folio)
3496 			goto fail;
3497 	}
3498 
3499 	/* Prevent deferred_split_scan() touching ->_refcount */
3500 	spin_lock(&ds_queue->split_queue_lock);
3501 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3502 		if (folio_order(folio) > 1 &&
3503 		    !list_empty(&folio->_deferred_list)) {
3504 			ds_queue->split_queue_len--;
3505 			if (folio_test_partially_mapped(folio)) {
3506 				__folio_clear_partially_mapped(folio);
3507 				mod_mthp_stat(folio_order(folio),
3508 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3509 			}
3510 			/*
3511 			 * Reinitialize page_deferred_list after removing the
3512 			 * page from the split_queue, otherwise a subsequent
3513 			 * split will see list corruption when checking the
3514 			 * page_deferred_list.
3515 			 */
3516 			list_del_init(&folio->_deferred_list);
3517 		}
3518 		spin_unlock(&ds_queue->split_queue_lock);
3519 		if (mapping) {
3520 			int nr = folio_nr_pages(folio);
3521 
3522 			xas_split(&xas, folio, folio_order(folio));
3523 			if (folio_test_pmd_mappable(folio) &&
3524 			    new_order < HPAGE_PMD_ORDER) {
3525 				if (folio_test_swapbacked(folio)) {
3526 					__lruvec_stat_mod_folio(folio,
3527 							NR_SHMEM_THPS, -nr);
3528 				} else {
3529 					__lruvec_stat_mod_folio(folio,
3530 							NR_FILE_THPS, -nr);
3531 					filemap_nr_thps_dec(mapping);
3532 				}
3533 			}
3534 		}
3535 
3536 		if (is_anon) {
3537 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3538 			mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3539 		}
3540 		__split_huge_page(page, list, end, new_order);
3541 		ret = 0;
3542 	} else {
3543 		spin_unlock(&ds_queue->split_queue_lock);
3544 fail:
3545 		if (mapping)
3546 			xas_unlock(&xas);
3547 		local_irq_enable();
3548 		remap_page(folio, folio_nr_pages(folio), 0);
3549 		ret = -EAGAIN;
3550 	}
3551 
3552 out_unlock:
3553 	if (anon_vma) {
3554 		anon_vma_unlock_write(anon_vma);
3555 		put_anon_vma(anon_vma);
3556 	}
3557 	if (mapping)
3558 		i_mmap_unlock_read(mapping);
3559 out:
3560 	xas_destroy(&xas);
3561 	if (order == HPAGE_PMD_ORDER)
3562 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3563 	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3564 	return ret;
3565 }
3566 
min_order_for_split(struct folio * folio)3567 int min_order_for_split(struct folio *folio)
3568 {
3569 	if (folio_test_anon(folio))
3570 		return 0;
3571 
3572 	if (!folio->mapping) {
3573 		if (folio_test_pmd_mappable(folio))
3574 			count_vm_event(THP_SPLIT_PAGE_FAILED);
3575 		return -EBUSY;
3576 	}
3577 
3578 	return mapping_min_folio_order(folio->mapping);
3579 }
3580 
split_folio_to_list(struct folio * folio,struct list_head * list)3581 int split_folio_to_list(struct folio *folio, struct list_head *list)
3582 {
3583 	int ret = min_order_for_split(folio);
3584 
3585 	if (ret < 0)
3586 		return ret;
3587 
3588 	return split_huge_page_to_list_to_order(&folio->page, list, ret);
3589 }
3590 
3591 /*
3592  * __folio_unqueue_deferred_split() is not to be called directly:
3593  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3594  * limits its calls to those folios which may have a _deferred_list for
3595  * queueing THP splits, and that list is (racily observed to be) non-empty.
3596  *
3597  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3598  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3599  * might be in use on deferred_split_scan()'s unlocked on-stack list.
3600  *
3601  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3602  * therefore important to unqueue deferred split before changing folio memcg.
3603  */
__folio_unqueue_deferred_split(struct folio * folio)3604 bool __folio_unqueue_deferred_split(struct folio *folio)
3605 {
3606 	struct deferred_split *ds_queue;
3607 	unsigned long flags;
3608 	bool unqueued = false;
3609 
3610 	WARN_ON_ONCE(folio_ref_count(folio));
3611 	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3612 
3613 	ds_queue = get_deferred_split_queue(folio);
3614 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3615 	if (!list_empty(&folio->_deferred_list)) {
3616 		ds_queue->split_queue_len--;
3617 		if (folio_test_partially_mapped(folio)) {
3618 			__folio_clear_partially_mapped(folio);
3619 			mod_mthp_stat(folio_order(folio),
3620 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3621 		}
3622 		list_del_init(&folio->_deferred_list);
3623 		unqueued = true;
3624 	}
3625 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3626 
3627 	return unqueued;	/* useful for debug warnings */
3628 }
3629 
3630 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)3631 void deferred_split_folio(struct folio *folio, bool partially_mapped)
3632 {
3633 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3634 #ifdef CONFIG_MEMCG
3635 	struct mem_cgroup *memcg = folio_memcg(folio);
3636 #endif
3637 	unsigned long flags;
3638 
3639 	/*
3640 	 * Order 1 folios have no space for a deferred list, but we also
3641 	 * won't waste much memory by not adding them to the deferred list.
3642 	 */
3643 	if (folio_order(folio) <= 1)
3644 		return;
3645 
3646 	if (!partially_mapped && !split_underused_thp)
3647 		return;
3648 
3649 	/*
3650 	 * Exclude swapcache: originally to avoid a corrupt deferred split
3651 	 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3652 	 * but if page reclaim is already handling the same folio, it is
3653 	 * unnecessary to handle it again in the shrinker, so excluding
3654 	 * swapcache here may still be a useful optimization.
3655 	 */
3656 	if (folio_test_swapcache(folio))
3657 		return;
3658 
3659 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3660 	if (partially_mapped) {
3661 		if (!folio_test_partially_mapped(folio)) {
3662 			__folio_set_partially_mapped(folio);
3663 			if (folio_test_pmd_mappable(folio))
3664 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3665 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3666 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3667 
3668 		}
3669 	} else {
3670 		/* partially mapped folios cannot become non-partially mapped */
3671 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3672 	}
3673 	if (list_empty(&folio->_deferred_list)) {
3674 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3675 		ds_queue->split_queue_len++;
3676 #ifdef CONFIG_MEMCG
3677 		if (memcg)
3678 			set_shrinker_bit(memcg, folio_nid(folio),
3679 					 deferred_split_shrinker->id);
3680 #endif
3681 	}
3682 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3683 }
3684 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)3685 static unsigned long deferred_split_count(struct shrinker *shrink,
3686 		struct shrink_control *sc)
3687 {
3688 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3689 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3690 
3691 #ifdef CONFIG_MEMCG
3692 	if (sc->memcg)
3693 		ds_queue = &sc->memcg->deferred_split_queue;
3694 #endif
3695 	return READ_ONCE(ds_queue->split_queue_len);
3696 }
3697 
thp_underused(struct folio * folio)3698 static bool thp_underused(struct folio *folio)
3699 {
3700 	int num_zero_pages = 0, num_filled_pages = 0;
3701 	void *kaddr;
3702 	int i;
3703 
3704 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3705 		return false;
3706 
3707 	for (i = 0; i < folio_nr_pages(folio); i++) {
3708 		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3709 		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3710 			num_zero_pages++;
3711 			if (num_zero_pages > khugepaged_max_ptes_none) {
3712 				kunmap_local(kaddr);
3713 				return true;
3714 			}
3715 		} else {
3716 			/*
3717 			 * Another path for early exit once the number
3718 			 * of non-zero filled pages exceeds threshold.
3719 			 */
3720 			num_filled_pages++;
3721 			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3722 				kunmap_local(kaddr);
3723 				return false;
3724 			}
3725 		}
3726 		kunmap_local(kaddr);
3727 	}
3728 	return false;
3729 }
3730 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)3731 static unsigned long deferred_split_scan(struct shrinker *shrink,
3732 		struct shrink_control *sc)
3733 {
3734 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3735 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3736 	unsigned long flags;
3737 	LIST_HEAD(list);
3738 	struct folio *folio, *next, *prev = NULL;
3739 	int split = 0, removed = 0;
3740 
3741 #ifdef CONFIG_MEMCG
3742 	if (sc->memcg)
3743 		ds_queue = &sc->memcg->deferred_split_queue;
3744 #endif
3745 
3746 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3747 	/* Take pin on all head pages to avoid freeing them under us */
3748 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3749 							_deferred_list) {
3750 		if (folio_try_get(folio)) {
3751 			list_move(&folio->_deferred_list, &list);
3752 		} else {
3753 			/* We lost race with folio_put() */
3754 			if (folio_test_partially_mapped(folio)) {
3755 				__folio_clear_partially_mapped(folio);
3756 				mod_mthp_stat(folio_order(folio),
3757 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3758 			}
3759 			list_del_init(&folio->_deferred_list);
3760 			ds_queue->split_queue_len--;
3761 		}
3762 		if (!--sc->nr_to_scan)
3763 			break;
3764 	}
3765 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3766 
3767 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3768 		bool did_split = false;
3769 		bool underused = false;
3770 
3771 		if (!folio_test_partially_mapped(folio)) {
3772 			underused = thp_underused(folio);
3773 			if (!underused)
3774 				goto next;
3775 		}
3776 		if (!folio_trylock(folio))
3777 			goto next;
3778 		if (!split_folio(folio)) {
3779 			did_split = true;
3780 			if (underused)
3781 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3782 			split++;
3783 		}
3784 		folio_unlock(folio);
3785 next:
3786 		/*
3787 		 * split_folio() removes folio from list on success.
3788 		 * Only add back to the queue if folio is partially mapped.
3789 		 * If thp_underused returns false, or if split_folio fails
3790 		 * in the case it was underused, then consider it used and
3791 		 * don't add it back to split_queue.
3792 		 */
3793 		if (did_split) {
3794 			; /* folio already removed from list */
3795 		} else if (!folio_test_partially_mapped(folio)) {
3796 			list_del_init(&folio->_deferred_list);
3797 			removed++;
3798 		} else {
3799 			/*
3800 			 * That unlocked list_del_init() above would be unsafe,
3801 			 * unless its folio is separated from any earlier folios
3802 			 * left on the list (which may be concurrently unqueued)
3803 			 * by one safe folio with refcount still raised.
3804 			 */
3805 			swap(folio, prev);
3806 		}
3807 		if (folio)
3808 			folio_put(folio);
3809 	}
3810 
3811 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3812 	list_splice_tail(&list, &ds_queue->split_queue);
3813 	ds_queue->split_queue_len -= removed;
3814 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3815 
3816 	if (prev)
3817 		folio_put(prev);
3818 
3819 	/*
3820 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3821 	 * This can happen if pages were freed under us.
3822 	 */
3823 	if (!split && list_empty(&ds_queue->split_queue))
3824 		return SHRINK_STOP;
3825 	return split;
3826 }
3827 
3828 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)3829 static void split_huge_pages_all(void)
3830 {
3831 	struct zone *zone;
3832 	struct page *page;
3833 	struct folio *folio;
3834 	unsigned long pfn, max_zone_pfn;
3835 	unsigned long total = 0, split = 0;
3836 
3837 	pr_debug("Split all THPs\n");
3838 	for_each_zone(zone) {
3839 		if (!managed_zone(zone))
3840 			continue;
3841 		max_zone_pfn = zone_end_pfn(zone);
3842 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3843 			int nr_pages;
3844 
3845 			page = pfn_to_online_page(pfn);
3846 			if (!page || PageTail(page))
3847 				continue;
3848 			folio = page_folio(page);
3849 			if (!folio_try_get(folio))
3850 				continue;
3851 
3852 			if (unlikely(page_folio(page) != folio))
3853 				goto next;
3854 
3855 			if (zone != folio_zone(folio))
3856 				goto next;
3857 
3858 			if (!folio_test_large(folio)
3859 				|| folio_test_hugetlb(folio)
3860 				|| !folio_test_lru(folio))
3861 				goto next;
3862 
3863 			total++;
3864 			folio_lock(folio);
3865 			nr_pages = folio_nr_pages(folio);
3866 			if (!split_folio(folio))
3867 				split++;
3868 			pfn += nr_pages - 1;
3869 			folio_unlock(folio);
3870 next:
3871 			folio_put(folio);
3872 			cond_resched();
3873 		}
3874 	}
3875 
3876 	pr_debug("%lu of %lu THP split\n", split, total);
3877 }
3878 
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)3879 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3880 {
3881 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3882 		    is_vm_hugetlb_page(vma);
3883 }
3884 
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order)3885 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3886 				unsigned long vaddr_end, unsigned int new_order)
3887 {
3888 	int ret = 0;
3889 	struct task_struct *task;
3890 	struct mm_struct *mm;
3891 	unsigned long total = 0, split = 0;
3892 	unsigned long addr;
3893 
3894 	vaddr_start &= PAGE_MASK;
3895 	vaddr_end &= PAGE_MASK;
3896 
3897 	task = find_get_task_by_vpid(pid);
3898 	if (!task) {
3899 		ret = -ESRCH;
3900 		goto out;
3901 	}
3902 
3903 	/* Find the mm_struct */
3904 	mm = get_task_mm(task);
3905 	put_task_struct(task);
3906 
3907 	if (!mm) {
3908 		ret = -EINVAL;
3909 		goto out;
3910 	}
3911 
3912 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3913 		 pid, vaddr_start, vaddr_end);
3914 
3915 	mmap_read_lock(mm);
3916 	/*
3917 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3918 	 * table filled with PTE-mapped THPs, each of which is distinct.
3919 	 */
3920 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3921 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3922 		struct folio_walk fw;
3923 		struct folio *folio;
3924 		struct address_space *mapping;
3925 		unsigned int target_order = new_order;
3926 
3927 		if (!vma)
3928 			break;
3929 
3930 		/* skip special VMA and hugetlb VMA */
3931 		if (vma_not_suitable_for_thp_split(vma)) {
3932 			addr = vma->vm_end;
3933 			continue;
3934 		}
3935 
3936 		folio = folio_walk_start(&fw, vma, addr, 0);
3937 		if (!folio)
3938 			continue;
3939 
3940 		if (!is_transparent_hugepage(folio))
3941 			goto next;
3942 
3943 		if (!folio_test_anon(folio)) {
3944 			mapping = folio->mapping;
3945 			target_order = max(new_order,
3946 					   mapping_min_folio_order(mapping));
3947 		}
3948 
3949 		if (target_order >= folio_order(folio))
3950 			goto next;
3951 
3952 		total++;
3953 		/*
3954 		 * For folios with private, split_huge_page_to_list_to_order()
3955 		 * will try to drop it before split and then check if the folio
3956 		 * can be split or not. So skip the check here.
3957 		 */
3958 		if (!folio_test_private(folio) &&
3959 		    !can_split_folio(folio, 0, NULL))
3960 			goto next;
3961 
3962 		if (!folio_trylock(folio))
3963 			goto next;
3964 		folio_get(folio);
3965 		folio_walk_end(&fw, vma);
3966 
3967 		if (!folio_test_anon(folio) && folio->mapping != mapping)
3968 			goto unlock;
3969 
3970 		if (!split_folio_to_order(folio, target_order))
3971 			split++;
3972 
3973 unlock:
3974 
3975 		folio_unlock(folio);
3976 		folio_put(folio);
3977 
3978 		cond_resched();
3979 		continue;
3980 next:
3981 		folio_walk_end(&fw, vma);
3982 		cond_resched();
3983 	}
3984 	mmap_read_unlock(mm);
3985 	mmput(mm);
3986 
3987 	pr_debug("%lu of %lu THP split\n", split, total);
3988 
3989 out:
3990 	return ret;
3991 }
3992 
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order)3993 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3994 				pgoff_t off_end, unsigned int new_order)
3995 {
3996 	struct filename *file;
3997 	struct file *candidate;
3998 	struct address_space *mapping;
3999 	int ret = -EINVAL;
4000 	pgoff_t index;
4001 	int nr_pages = 1;
4002 	unsigned long total = 0, split = 0;
4003 	unsigned int min_order;
4004 	unsigned int target_order;
4005 
4006 	file = getname_kernel(file_path);
4007 	if (IS_ERR(file))
4008 		return ret;
4009 
4010 	candidate = file_open_name(file, O_RDONLY, 0);
4011 	if (IS_ERR(candidate))
4012 		goto out;
4013 
4014 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4015 		 file_path, off_start, off_end);
4016 
4017 	mapping = candidate->f_mapping;
4018 	min_order = mapping_min_folio_order(mapping);
4019 	target_order = max(new_order, min_order);
4020 
4021 	for (index = off_start; index < off_end; index += nr_pages) {
4022 		struct folio *folio = filemap_get_folio(mapping, index);
4023 
4024 		nr_pages = 1;
4025 		if (IS_ERR(folio))
4026 			continue;
4027 
4028 		if (!folio_test_large(folio))
4029 			goto next;
4030 
4031 		total++;
4032 		nr_pages = folio_nr_pages(folio);
4033 
4034 		if (target_order >= folio_order(folio))
4035 			goto next;
4036 
4037 		if (!folio_trylock(folio))
4038 			goto next;
4039 
4040 		if (folio->mapping != mapping)
4041 			goto unlock;
4042 
4043 		if (!split_folio_to_order(folio, target_order))
4044 			split++;
4045 
4046 unlock:
4047 		folio_unlock(folio);
4048 next:
4049 		folio_put(folio);
4050 		cond_resched();
4051 	}
4052 
4053 	filp_close(candidate, NULL);
4054 	ret = 0;
4055 
4056 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4057 out:
4058 	putname(file);
4059 	return ret;
4060 }
4061 
4062 #define MAX_INPUT_BUF_SZ 255
4063 
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4064 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4065 				size_t count, loff_t *ppops)
4066 {
4067 	static DEFINE_MUTEX(split_debug_mutex);
4068 	ssize_t ret;
4069 	/*
4070 	 * hold pid, start_vaddr, end_vaddr, new_order or
4071 	 * file_path, off_start, off_end, new_order
4072 	 */
4073 	char input_buf[MAX_INPUT_BUF_SZ];
4074 	int pid;
4075 	unsigned long vaddr_start, vaddr_end;
4076 	unsigned int new_order = 0;
4077 
4078 	ret = mutex_lock_interruptible(&split_debug_mutex);
4079 	if (ret)
4080 		return ret;
4081 
4082 	ret = -EFAULT;
4083 
4084 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4085 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4086 		goto out;
4087 
4088 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4089 
4090 	if (input_buf[0] == '/') {
4091 		char *tok;
4092 		char *buf = input_buf;
4093 		char file_path[MAX_INPUT_BUF_SZ];
4094 		pgoff_t off_start = 0, off_end = 0;
4095 		size_t input_len = strlen(input_buf);
4096 
4097 		tok = strsep(&buf, ",");
4098 		if (tok) {
4099 			strcpy(file_path, tok);
4100 		} else {
4101 			ret = -EINVAL;
4102 			goto out;
4103 		}
4104 
4105 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4106 		if (ret != 2 && ret != 3) {
4107 			ret = -EINVAL;
4108 			goto out;
4109 		}
4110 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4111 		if (!ret)
4112 			ret = input_len;
4113 
4114 		goto out;
4115 	}
4116 
4117 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4118 	if (ret == 1 && pid == 1) {
4119 		split_huge_pages_all();
4120 		ret = strlen(input_buf);
4121 		goto out;
4122 	} else if (ret != 3 && ret != 4) {
4123 		ret = -EINVAL;
4124 		goto out;
4125 	}
4126 
4127 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4128 	if (!ret)
4129 		ret = strlen(input_buf);
4130 out:
4131 	mutex_unlock(&split_debug_mutex);
4132 	return ret;
4133 
4134 }
4135 
4136 static const struct file_operations split_huge_pages_fops = {
4137 	.owner	 = THIS_MODULE,
4138 	.write	 = split_huge_pages_write,
4139 };
4140 
split_huge_pages_debugfs(void)4141 static int __init split_huge_pages_debugfs(void)
4142 {
4143 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4144 			    &split_huge_pages_fops);
4145 	return 0;
4146 }
4147 late_initcall(split_huge_pages_debugfs);
4148 #endif
4149 
4150 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4151 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4152 		struct page *page)
4153 {
4154 	struct folio *folio = page_folio(page);
4155 	struct vm_area_struct *vma = pvmw->vma;
4156 	struct mm_struct *mm = vma->vm_mm;
4157 	unsigned long address = pvmw->address;
4158 	bool anon_exclusive;
4159 	pmd_t pmdval;
4160 	swp_entry_t entry;
4161 	pmd_t pmdswp;
4162 
4163 	if (!(pvmw->pmd && !pvmw->pte))
4164 		return 0;
4165 
4166 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4167 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4168 
4169 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4170 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4171 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4172 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4173 		return -EBUSY;
4174 	}
4175 
4176 	if (pmd_dirty(pmdval))
4177 		folio_mark_dirty(folio);
4178 	if (pmd_write(pmdval))
4179 		entry = make_writable_migration_entry(page_to_pfn(page));
4180 	else if (anon_exclusive)
4181 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4182 	else
4183 		entry = make_readable_migration_entry(page_to_pfn(page));
4184 	if (pmd_young(pmdval))
4185 		entry = make_migration_entry_young(entry);
4186 	if (pmd_dirty(pmdval))
4187 		entry = make_migration_entry_dirty(entry);
4188 	pmdswp = swp_entry_to_pmd(entry);
4189 	if (pmd_soft_dirty(pmdval))
4190 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4191 	if (pmd_uffd_wp(pmdval))
4192 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4193 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4194 	folio_remove_rmap_pmd(folio, page, vma);
4195 	folio_put(folio);
4196 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4197 
4198 	return 0;
4199 }
4200 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4201 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4202 {
4203 	struct folio *folio = page_folio(new);
4204 	struct vm_area_struct *vma = pvmw->vma;
4205 	struct mm_struct *mm = vma->vm_mm;
4206 	unsigned long address = pvmw->address;
4207 	unsigned long haddr = address & HPAGE_PMD_MASK;
4208 	pmd_t pmde;
4209 	swp_entry_t entry;
4210 
4211 	if (!(pvmw->pmd && !pvmw->pte))
4212 		return;
4213 
4214 	entry = pmd_to_swp_entry(*pvmw->pmd);
4215 	folio_get(folio);
4216 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4217 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4218 		pmde = pmd_mksoft_dirty(pmde);
4219 	if (is_writable_migration_entry(entry))
4220 		pmde = pmd_mkwrite(pmde, vma);
4221 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4222 		pmde = pmd_mkuffd_wp(pmde);
4223 	if (!is_migration_entry_young(entry))
4224 		pmde = pmd_mkold(pmde);
4225 	/* NOTE: this may contain setting soft-dirty on some archs */
4226 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4227 		pmde = pmd_mkdirty(pmde);
4228 
4229 	if (folio_test_anon(folio)) {
4230 		rmap_t rmap_flags = RMAP_NONE;
4231 
4232 		if (!is_readable_migration_entry(entry))
4233 			rmap_flags |= RMAP_EXCLUSIVE;
4234 
4235 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4236 	} else {
4237 		folio_add_file_rmap_pmd(folio, new, vma);
4238 	}
4239 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4240 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4241 
4242 	/* No need to invalidate - it was non-present before */
4243 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4244 	trace_remove_migration_pmd(address, pmd_val(pmde));
4245 }
4246 #endif
4247