1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/bitops.h>
30 #include <linux/cgroup_dmem.h>
31 #include <linux/debugfs.h>
32 #include <linux/fs.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mount.h>
36 #include <linux/pseudo_fs.h>
37 #include <linux/slab.h>
38 #include <linux/sprintf.h>
39 #include <linux/srcu.h>
40 #include <linux/xarray.h>
41
42 #include <drm/drm_accel.h>
43 #include <drm/drm_bridge.h>
44 #include <drm/drm_cache.h>
45 #include <drm/drm_client_event.h>
46 #include <drm/drm_color_mgmt.h>
47 #include <drm/drm_drv.h>
48 #include <drm/drm_file.h>
49 #include <drm/drm_managed.h>
50 #include <drm/drm_mode_object.h>
51 #include <drm/drm_panic.h>
52 #include <drm/drm_print.h>
53 #include <drm/drm_privacy_screen_machine.h>
54
55 #include "drm_crtc_internal.h"
56 #include "drm_internal.h"
57
58 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
59 MODULE_DESCRIPTION("DRM shared core routines");
60 MODULE_LICENSE("GPL and additional rights");
61
62 DEFINE_XARRAY_ALLOC(drm_minors_xa);
63
64 /*
65 * If the drm core fails to init for whatever reason,
66 * we should prevent any drivers from registering with it.
67 * It's best to check this at drm_dev_init(), as some drivers
68 * prefer to embed struct drm_device into their own device
69 * structure and call drm_dev_init() themselves.
70 */
71 static bool drm_core_init_complete;
72
73 static struct dentry *drm_debugfs_root;
74
75 DEFINE_STATIC_SRCU(drm_unplug_srcu);
76
77 /*
78 * DRM Minors
79 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
80 * of them is represented by a drm_minor object. Depending on the capabilities
81 * of the device-driver, different interfaces are registered.
82 *
83 * Minors can be accessed via dev->$minor_name. This pointer is either
84 * NULL or a valid drm_minor pointer and stays valid as long as the device is
85 * valid. This means, DRM minors have the same life-time as the underlying
86 * device. However, this doesn't mean that the minor is active. Minors are
87 * registered and unregistered dynamically according to device-state.
88 */
89
drm_minor_get_xa(enum drm_minor_type type)90 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
91 {
92 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
93 return &drm_minors_xa;
94 #if IS_ENABLED(CONFIG_DRM_ACCEL)
95 else if (type == DRM_MINOR_ACCEL)
96 return &accel_minors_xa;
97 #endif
98 else
99 return ERR_PTR(-EOPNOTSUPP);
100 }
101
drm_minor_get_slot(struct drm_device * dev,enum drm_minor_type type)102 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
103 enum drm_minor_type type)
104 {
105 switch (type) {
106 case DRM_MINOR_PRIMARY:
107 return &dev->primary;
108 case DRM_MINOR_RENDER:
109 return &dev->render;
110 case DRM_MINOR_ACCEL:
111 return &dev->accel;
112 default:
113 BUG();
114 }
115 }
116
drm_minor_alloc_release(struct drm_device * dev,void * data)117 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
118 {
119 struct drm_minor *minor = data;
120
121 WARN_ON(dev != minor->dev);
122
123 put_device(minor->kdev);
124
125 xa_erase(drm_minor_get_xa(minor->type), minor->index);
126 }
127
128 /*
129 * DRM used to support 64 devices, for backwards compatibility we need to maintain the
130 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
131 * and 128-191 are render nodes.
132 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
133 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
134 * range.
135 */
136 #define DRM_MINOR_LIMIT(t) ({ \
137 typeof(t) _t = (t); \
138 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
139 })
140 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
141
drm_minor_alloc(struct drm_device * dev,enum drm_minor_type type)142 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
143 {
144 struct drm_minor *minor;
145 int r;
146
147 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
148 if (!minor)
149 return -ENOMEM;
150
151 minor->type = type;
152 minor->dev = dev;
153
154 r = xa_alloc(drm_minor_get_xa(type), &minor->index,
155 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
156 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
157 r = xa_alloc(&drm_minors_xa, &minor->index,
158 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
159 if (r < 0)
160 return r;
161
162 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
163 if (r)
164 return r;
165
166 minor->kdev = drm_sysfs_minor_alloc(minor);
167 if (IS_ERR(minor->kdev))
168 return PTR_ERR(minor->kdev);
169
170 *drm_minor_get_slot(dev, type) = minor;
171 return 0;
172 }
173
drm_minor_register(struct drm_device * dev,enum drm_minor_type type)174 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
175 {
176 struct drm_minor *minor;
177 void *entry;
178 int ret;
179
180 DRM_DEBUG("\n");
181
182 minor = *drm_minor_get_slot(dev, type);
183 if (!minor)
184 return 0;
185
186 if (minor->type != DRM_MINOR_ACCEL) {
187 ret = drm_debugfs_register(minor, minor->index,
188 drm_debugfs_root);
189 if (ret) {
190 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
191 goto err_debugfs;
192 }
193 }
194
195 ret = device_add(minor->kdev);
196 if (ret)
197 goto err_debugfs;
198
199 /* replace NULL with @minor so lookups will succeed from now on */
200 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
201 if (xa_is_err(entry)) {
202 ret = xa_err(entry);
203 goto err_debugfs;
204 }
205 WARN_ON(entry);
206
207 DRM_DEBUG("new minor registered %d\n", minor->index);
208 return 0;
209
210 err_debugfs:
211 drm_debugfs_unregister(minor);
212 return ret;
213 }
214
drm_minor_unregister(struct drm_device * dev,enum drm_minor_type type)215 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
216 {
217 struct drm_minor *minor;
218
219 minor = *drm_minor_get_slot(dev, type);
220 if (!minor || !device_is_registered(minor->kdev))
221 return;
222
223 /* replace @minor with NULL so lookups will fail from now on */
224 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
225
226 device_del(minor->kdev);
227 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
228 drm_debugfs_unregister(minor);
229 }
230
231 /*
232 * Looks up the given minor-ID and returns the respective DRM-minor object. The
233 * refence-count of the underlying device is increased so you must release this
234 * object with drm_minor_release().
235 *
236 * As long as you hold this minor, it is guaranteed that the object and the
237 * minor->dev pointer will stay valid! However, the device may get unplugged and
238 * unregistered while you hold the minor.
239 */
drm_minor_acquire(struct xarray * minor_xa,unsigned int minor_id)240 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
241 {
242 struct drm_minor *minor;
243
244 xa_lock(minor_xa);
245 minor = xa_load(minor_xa, minor_id);
246 if (minor)
247 drm_dev_get(minor->dev);
248 xa_unlock(minor_xa);
249
250 if (!minor) {
251 return ERR_PTR(-ENODEV);
252 } else if (drm_dev_is_unplugged(minor->dev)) {
253 drm_dev_put(minor->dev);
254 return ERR_PTR(-ENODEV);
255 }
256
257 return minor;
258 }
259
drm_minor_release(struct drm_minor * minor)260 void drm_minor_release(struct drm_minor *minor)
261 {
262 drm_dev_put(minor->dev);
263 }
264
265 /**
266 * DOC: driver instance overview
267 *
268 * A device instance for a drm driver is represented by &struct drm_device. This
269 * is allocated and initialized with devm_drm_dev_alloc(), usually from
270 * bus-specific ->probe() callbacks implemented by the driver. The driver then
271 * needs to initialize all the various subsystems for the drm device like memory
272 * management, vblank handling, modesetting support and initial output
273 * configuration plus obviously initialize all the corresponding hardware bits.
274 * Finally when everything is up and running and ready for userspace the device
275 * instance can be published using drm_dev_register().
276 *
277 * There is also deprecated support for initializing device instances using
278 * bus-specific helpers and the &drm_driver.load callback. But due to
279 * backwards-compatibility needs the device instance have to be published too
280 * early, which requires unpretty global locking to make safe and is therefore
281 * only support for existing drivers not yet converted to the new scheme.
282 *
283 * When cleaning up a device instance everything needs to be done in reverse:
284 * First unpublish the device instance with drm_dev_unregister(). Then clean up
285 * any other resources allocated at device initialization and drop the driver's
286 * reference to &drm_device using drm_dev_put().
287 *
288 * Note that any allocation or resource which is visible to userspace must be
289 * released only when the final drm_dev_put() is called, and not when the
290 * driver is unbound from the underlying physical struct &device. Best to use
291 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
292 * related functions.
293 *
294 * devres managed resources like devm_kmalloc() can only be used for resources
295 * directly related to the underlying hardware device, and only used in code
296 * paths fully protected by drm_dev_enter() and drm_dev_exit().
297 *
298 * Display driver example
299 * ~~~~~~~~~~~~~~~~~~~~~~
300 *
301 * The following example shows a typical structure of a DRM display driver.
302 * The example focus on the probe() function and the other functions that is
303 * almost always present and serves as a demonstration of devm_drm_dev_alloc().
304 *
305 * .. code-block:: c
306 *
307 * struct driver_device {
308 * struct drm_device drm;
309 * void *userspace_facing;
310 * struct clk *pclk;
311 * };
312 *
313 * static const struct drm_driver driver_drm_driver = {
314 * [...]
315 * };
316 *
317 * static int driver_probe(struct platform_device *pdev)
318 * {
319 * struct driver_device *priv;
320 * struct drm_device *drm;
321 * int ret;
322 *
323 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
324 * struct driver_device, drm);
325 * if (IS_ERR(priv))
326 * return PTR_ERR(priv);
327 * drm = &priv->drm;
328 *
329 * ret = drmm_mode_config_init(drm);
330 * if (ret)
331 * return ret;
332 *
333 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
334 * if (!priv->userspace_facing)
335 * return -ENOMEM;
336 *
337 * priv->pclk = devm_clk_get(dev, "PCLK");
338 * if (IS_ERR(priv->pclk))
339 * return PTR_ERR(priv->pclk);
340 *
341 * // Further setup, display pipeline etc
342 *
343 * platform_set_drvdata(pdev, drm);
344 *
345 * drm_mode_config_reset(drm);
346 *
347 * ret = drm_dev_register(drm);
348 * if (ret)
349 * return ret;
350 *
351 * drm_fbdev_{...}_setup(drm, 32);
352 *
353 * return 0;
354 * }
355 *
356 * // This function is called before the devm_ resources are released
357 * static int driver_remove(struct platform_device *pdev)
358 * {
359 * struct drm_device *drm = platform_get_drvdata(pdev);
360 *
361 * drm_dev_unregister(drm);
362 * drm_atomic_helper_shutdown(drm)
363 *
364 * return 0;
365 * }
366 *
367 * // This function is called on kernel restart and shutdown
368 * static void driver_shutdown(struct platform_device *pdev)
369 * {
370 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
371 * }
372 *
373 * static int __maybe_unused driver_pm_suspend(struct device *dev)
374 * {
375 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
376 * }
377 *
378 * static int __maybe_unused driver_pm_resume(struct device *dev)
379 * {
380 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
381 *
382 * return 0;
383 * }
384 *
385 * static const struct dev_pm_ops driver_pm_ops = {
386 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
387 * };
388 *
389 * static struct platform_driver driver_driver = {
390 * .driver = {
391 * [...]
392 * .pm = &driver_pm_ops,
393 * },
394 * .probe = driver_probe,
395 * .remove = driver_remove,
396 * .shutdown = driver_shutdown,
397 * };
398 * module_platform_driver(driver_driver);
399 *
400 * Drivers that want to support device unplugging (USB, DT overlay unload) should
401 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
402 * regions that is accessing device resources to prevent use after they're
403 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
404 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
405 * drm_atomic_helper_shutdown() is called. This means that if the disable code
406 * paths are protected, they will not run on regular driver module unload,
407 * possibly leaving the hardware enabled.
408 */
409
410 /**
411 * drm_put_dev - Unregister and release a DRM device
412 * @dev: DRM device
413 *
414 * Called at module unload time or when a PCI device is unplugged.
415 *
416 * Cleans up all DRM device, calling drm_lastclose().
417 *
418 * Note: Use of this function is deprecated. It will eventually go away
419 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
420 * instead to make sure that the device isn't userspace accessible any more
421 * while teardown is in progress, ensuring that userspace can't access an
422 * inconsistent state.
423 */
drm_put_dev(struct drm_device * dev)424 void drm_put_dev(struct drm_device *dev)
425 {
426 DRM_DEBUG("\n");
427
428 if (!dev) {
429 DRM_ERROR("cleanup called no dev\n");
430 return;
431 }
432
433 drm_dev_unregister(dev);
434 drm_dev_put(dev);
435 }
436 EXPORT_SYMBOL(drm_put_dev);
437
438 /**
439 * drm_dev_enter - Enter device critical section
440 * @dev: DRM device
441 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
442 *
443 * This function marks and protects the beginning of a section that should not
444 * be entered after the device has been unplugged. The section end is marked
445 * with drm_dev_exit(). Calls to this function can be nested.
446 *
447 * Returns:
448 * True if it is OK to enter the section, false otherwise.
449 */
drm_dev_enter(struct drm_device * dev,int * idx)450 bool drm_dev_enter(struct drm_device *dev, int *idx)
451 {
452 *idx = srcu_read_lock(&drm_unplug_srcu);
453
454 if (dev->unplugged) {
455 srcu_read_unlock(&drm_unplug_srcu, *idx);
456 return false;
457 }
458
459 return true;
460 }
461 EXPORT_SYMBOL(drm_dev_enter);
462
463 /**
464 * drm_dev_exit - Exit device critical section
465 * @idx: index returned from drm_dev_enter()
466 *
467 * This function marks the end of a section that should not be entered after
468 * the device has been unplugged.
469 */
drm_dev_exit(int idx)470 void drm_dev_exit(int idx)
471 {
472 srcu_read_unlock(&drm_unplug_srcu, idx);
473 }
474 EXPORT_SYMBOL(drm_dev_exit);
475
476 /**
477 * drm_dev_unplug - unplug a DRM device
478 * @dev: DRM device
479 *
480 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
481 * userspace operations. Entry-points can use drm_dev_enter() and
482 * drm_dev_exit() to protect device resources in a race free manner. This
483 * essentially unregisters the device like drm_dev_unregister(), but can be
484 * called while there are still open users of @dev.
485 */
drm_dev_unplug(struct drm_device * dev)486 void drm_dev_unplug(struct drm_device *dev)
487 {
488 /*
489 * After synchronizing any critical read section is guaranteed to see
490 * the new value of ->unplugged, and any critical section which might
491 * still have seen the old value of ->unplugged is guaranteed to have
492 * finished.
493 */
494 dev->unplugged = true;
495 synchronize_srcu(&drm_unplug_srcu);
496
497 drm_dev_unregister(dev);
498
499 /* Clear all CPU mappings pointing to this device */
500 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
501 }
502 EXPORT_SYMBOL(drm_dev_unplug);
503
504 /**
505 * drm_dev_set_dma_dev - set the DMA device for a DRM device
506 * @dev: DRM device
507 * @dma_dev: DMA device or NULL
508 *
509 * Sets the DMA device of the given DRM device. Only required if
510 * the DMA device is different from the DRM device's parent. After
511 * calling this function, the DRM device holds a reference on
512 * @dma_dev. Pass NULL to clear the DMA device.
513 */
drm_dev_set_dma_dev(struct drm_device * dev,struct device * dma_dev)514 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev)
515 {
516 dma_dev = get_device(dma_dev);
517
518 put_device(dev->dma_dev);
519 dev->dma_dev = dma_dev;
520 }
521 EXPORT_SYMBOL(drm_dev_set_dma_dev);
522
523 /*
524 * Available recovery methods for wedged device. To be sent along with device
525 * wedged uevent.
526 */
drm_get_wedge_recovery(unsigned int opt)527 static const char *drm_get_wedge_recovery(unsigned int opt)
528 {
529 switch (BIT(opt)) {
530 case DRM_WEDGE_RECOVERY_NONE:
531 return "none";
532 case DRM_WEDGE_RECOVERY_REBIND:
533 return "rebind";
534 case DRM_WEDGE_RECOVERY_BUS_RESET:
535 return "bus-reset";
536 default:
537 return NULL;
538 }
539 }
540
541 /**
542 * drm_dev_wedged_event - generate a device wedged uevent
543 * @dev: DRM device
544 * @method: method(s) to be used for recovery
545 *
546 * This generates a device wedged uevent for the DRM device specified by @dev.
547 * Recovery @method\(s) of choice will be sent in the uevent environment as
548 * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
549 * If caller is unsure about recovery or @method is unknown (0),
550 * ``WEDGED=unknown`` will be sent instead.
551 *
552 * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
553 * details.
554 *
555 * Returns: 0 on success, negative error code otherwise.
556 */
drm_dev_wedged_event(struct drm_device * dev,unsigned long method)557 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method)
558 {
559 const char *recovery = NULL;
560 unsigned int len, opt;
561 /* Event string length up to 28+ characters with available methods */
562 char event_string[32];
563 char *envp[] = { event_string, NULL };
564
565 len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
566
567 for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
568 recovery = drm_get_wedge_recovery(opt);
569 if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
570 break;
571
572 len += scnprintf(event_string + len, sizeof(event_string) - len, "%s,", recovery);
573 }
574
575 if (recovery)
576 /* Get rid of trailing comma */
577 event_string[len - 1] = '\0';
578 else
579 /* Caller is unsure about recovery, do the best we can at this point. */
580 snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
581
582 drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
583 "but recovered through reset" : "needs recovery");
584
585 return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
586 }
587 EXPORT_SYMBOL(drm_dev_wedged_event);
588
589 /*
590 * DRM internal mount
591 * We want to be able to allocate our own "struct address_space" to control
592 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
593 * stand-alone address_space objects, so we need an underlying inode. As there
594 * is no way to allocate an independent inode easily, we need a fake internal
595 * VFS mount-point.
596 *
597 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
598 * frees it again. You are allowed to use iget() and iput() to get references to
599 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
600 * drm_fs_inode_free() call (which does not have to be the last iput()).
601 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
602 * between multiple inode-users. You could, technically, call
603 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
604 * iput(), but this way you'd end up with a new vfsmount for each inode.
605 */
606
607 static int drm_fs_cnt;
608 static struct vfsmount *drm_fs_mnt;
609
drm_fs_init_fs_context(struct fs_context * fc)610 static int drm_fs_init_fs_context(struct fs_context *fc)
611 {
612 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
613 }
614
615 static struct file_system_type drm_fs_type = {
616 .name = "drm",
617 .owner = THIS_MODULE,
618 .init_fs_context = drm_fs_init_fs_context,
619 .kill_sb = kill_anon_super,
620 };
621
drm_fs_inode_new(void)622 static struct inode *drm_fs_inode_new(void)
623 {
624 struct inode *inode;
625 int r;
626
627 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
628 if (r < 0) {
629 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
630 return ERR_PTR(r);
631 }
632
633 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
634 if (IS_ERR(inode))
635 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
636
637 return inode;
638 }
639
drm_fs_inode_free(struct inode * inode)640 static void drm_fs_inode_free(struct inode *inode)
641 {
642 if (inode) {
643 iput(inode);
644 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
645 }
646 }
647
648 /**
649 * DOC: component helper usage recommendations
650 *
651 * DRM drivers that drive hardware where a logical device consists of a pile of
652 * independent hardware blocks are recommended to use the :ref:`component helper
653 * library<component>`. For consistency and better options for code reuse the
654 * following guidelines apply:
655 *
656 * - The entire device initialization procedure should be run from the
657 * &component_master_ops.master_bind callback, starting with
658 * devm_drm_dev_alloc(), then binding all components with
659 * component_bind_all() and finishing with drm_dev_register().
660 *
661 * - The opaque pointer passed to all components through component_bind_all()
662 * should point at &struct drm_device of the device instance, not some driver
663 * specific private structure.
664 *
665 * - The component helper fills the niche where further standardization of
666 * interfaces is not practical. When there already is, or will be, a
667 * standardized interface like &drm_bridge or &drm_panel, providing its own
668 * functions to find such components at driver load time, like
669 * drm_of_find_panel_or_bridge(), then the component helper should not be
670 * used.
671 */
672
drm_dev_init_release(struct drm_device * dev,void * res)673 static void drm_dev_init_release(struct drm_device *dev, void *res)
674 {
675 drm_fs_inode_free(dev->anon_inode);
676
677 put_device(dev->dma_dev);
678 dev->dma_dev = NULL;
679 put_device(dev->dev);
680 /* Prevent use-after-free in drm_managed_release when debugging is
681 * enabled. Slightly awkward, but can't really be helped. */
682 dev->dev = NULL;
683 mutex_destroy(&dev->master_mutex);
684 mutex_destroy(&dev->clientlist_mutex);
685 mutex_destroy(&dev->filelist_mutex);
686 mutex_destroy(&dev->struct_mutex);
687 }
688
drm_dev_init(struct drm_device * dev,const struct drm_driver * driver,struct device * parent)689 static int drm_dev_init(struct drm_device *dev,
690 const struct drm_driver *driver,
691 struct device *parent)
692 {
693 struct inode *inode;
694 int ret;
695
696 if (!drm_core_init_complete) {
697 DRM_ERROR("DRM core is not initialized\n");
698 return -ENODEV;
699 }
700
701 if (WARN_ON(!parent))
702 return -EINVAL;
703
704 kref_init(&dev->ref);
705 dev->dev = get_device(parent);
706 dev->driver = driver;
707
708 INIT_LIST_HEAD(&dev->managed.resources);
709 spin_lock_init(&dev->managed.lock);
710
711 /* no per-device feature limits by default */
712 dev->driver_features = ~0u;
713
714 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
715 (drm_core_check_feature(dev, DRIVER_RENDER) ||
716 drm_core_check_feature(dev, DRIVER_MODESET))) {
717 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
718 return -EINVAL;
719 }
720
721 INIT_LIST_HEAD(&dev->filelist);
722 INIT_LIST_HEAD(&dev->filelist_internal);
723 INIT_LIST_HEAD(&dev->clientlist);
724 INIT_LIST_HEAD(&dev->vblank_event_list);
725
726 spin_lock_init(&dev->event_lock);
727 mutex_init(&dev->struct_mutex);
728 mutex_init(&dev->filelist_mutex);
729 mutex_init(&dev->clientlist_mutex);
730 mutex_init(&dev->master_mutex);
731 raw_spin_lock_init(&dev->mode_config.panic_lock);
732
733 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
734 if (ret)
735 return ret;
736
737 inode = drm_fs_inode_new();
738 if (IS_ERR(inode)) {
739 ret = PTR_ERR(inode);
740 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
741 goto err;
742 }
743
744 dev->anon_inode = inode;
745
746 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
747 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
748 if (ret)
749 goto err;
750 } else {
751 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
752 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
753 if (ret)
754 goto err;
755 }
756
757 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
758 if (ret)
759 goto err;
760 }
761
762 if (drm_core_check_feature(dev, DRIVER_GEM)) {
763 ret = drm_gem_init(dev);
764 if (ret) {
765 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
766 goto err;
767 }
768 }
769
770 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
771 if (!dev->unique) {
772 ret = -ENOMEM;
773 goto err;
774 }
775
776 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
777 accel_debugfs_init(dev);
778 else
779 drm_debugfs_dev_init(dev, drm_debugfs_root);
780
781 return 0;
782
783 err:
784 drm_managed_release(dev);
785
786 return ret;
787 }
788
devm_drm_dev_init_release(void * data)789 static void devm_drm_dev_init_release(void *data)
790 {
791 drm_dev_put(data);
792 }
793
devm_drm_dev_init(struct device * parent,struct drm_device * dev,const struct drm_driver * driver)794 static int devm_drm_dev_init(struct device *parent,
795 struct drm_device *dev,
796 const struct drm_driver *driver)
797 {
798 int ret;
799
800 ret = drm_dev_init(dev, driver, parent);
801 if (ret)
802 return ret;
803
804 return devm_add_action_or_reset(parent,
805 devm_drm_dev_init_release, dev);
806 }
807
__devm_drm_dev_alloc(struct device * parent,const struct drm_driver * driver,size_t size,size_t offset)808 void *__devm_drm_dev_alloc(struct device *parent,
809 const struct drm_driver *driver,
810 size_t size, size_t offset)
811 {
812 void *container;
813 struct drm_device *drm;
814 int ret;
815
816 container = kzalloc(size, GFP_KERNEL);
817 if (!container)
818 return ERR_PTR(-ENOMEM);
819
820 drm = container + offset;
821 ret = devm_drm_dev_init(parent, drm, driver);
822 if (ret) {
823 kfree(container);
824 return ERR_PTR(ret);
825 }
826 drmm_add_final_kfree(drm, container);
827
828 return container;
829 }
830 EXPORT_SYMBOL(__devm_drm_dev_alloc);
831
832 /**
833 * __drm_dev_alloc - Allocation of a &drm_device instance
834 * @parent: Parent device object
835 * @driver: DRM driver
836 * @size: the size of the struct which contains struct drm_device
837 * @offset: the offset of the &drm_device within the container.
838 *
839 * This should *NOT* be by any drivers, but is a dedicated interface for the
840 * corresponding Rust abstraction.
841 *
842 * This is the same as devm_drm_dev_alloc(), but without the corresponding
843 * resource management through the parent device, but not the same as
844 * drm_dev_alloc(), since the latter is the deprecated version, which does not
845 * support subclassing.
846 *
847 * Returns: A pointer to new DRM device, or an ERR_PTR on failure.
848 */
__drm_dev_alloc(struct device * parent,const struct drm_driver * driver,size_t size,size_t offset)849 void *__drm_dev_alloc(struct device *parent,
850 const struct drm_driver *driver,
851 size_t size, size_t offset)
852 {
853 void *container;
854 struct drm_device *drm;
855 int ret;
856
857 container = kzalloc(size, GFP_KERNEL);
858 if (!container)
859 return ERR_PTR(-ENOMEM);
860
861 drm = container + offset;
862 ret = drm_dev_init(drm, driver, parent);
863 if (ret) {
864 kfree(container);
865 return ERR_PTR(ret);
866 }
867 drmm_add_final_kfree(drm, container);
868
869 return container;
870 }
871 EXPORT_SYMBOL(__drm_dev_alloc);
872
873 /**
874 * drm_dev_alloc - Allocate new DRM device
875 * @driver: DRM driver to allocate device for
876 * @parent: Parent device object
877 *
878 * This is the deprecated version of devm_drm_dev_alloc(), which does not support
879 * subclassing through embedding the struct &drm_device in a driver private
880 * structure, and which does not support automatic cleanup through devres.
881 *
882 * RETURNS:
883 * Pointer to new DRM device, or ERR_PTR on failure.
884 */
drm_dev_alloc(const struct drm_driver * driver,struct device * parent)885 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
886 struct device *parent)
887 {
888 return __drm_dev_alloc(parent, driver, sizeof(struct drm_device), 0);
889 }
890 EXPORT_SYMBOL(drm_dev_alloc);
891
drm_dev_release(struct kref * ref)892 static void drm_dev_release(struct kref *ref)
893 {
894 struct drm_device *dev = container_of(ref, struct drm_device, ref);
895
896 /* Just in case register/unregister was never called */
897 drm_debugfs_dev_fini(dev);
898
899 if (dev->driver->release)
900 dev->driver->release(dev);
901
902 drm_managed_release(dev);
903
904 kfree(dev->managed.final_kfree);
905 }
906
907 /**
908 * drm_dev_get - Take reference of a DRM device
909 * @dev: device to take reference of or NULL
910 *
911 * This increases the ref-count of @dev by one. You *must* already own a
912 * reference when calling this. Use drm_dev_put() to drop this reference
913 * again.
914 *
915 * This function never fails. However, this function does not provide *any*
916 * guarantee whether the device is alive or running. It only provides a
917 * reference to the object and the memory associated with it.
918 */
drm_dev_get(struct drm_device * dev)919 void drm_dev_get(struct drm_device *dev)
920 {
921 if (dev)
922 kref_get(&dev->ref);
923 }
924 EXPORT_SYMBOL(drm_dev_get);
925
926 /**
927 * drm_dev_put - Drop reference of a DRM device
928 * @dev: device to drop reference of or NULL
929 *
930 * This decreases the ref-count of @dev by one. The device is destroyed if the
931 * ref-count drops to zero.
932 */
drm_dev_put(struct drm_device * dev)933 void drm_dev_put(struct drm_device *dev)
934 {
935 if (dev)
936 kref_put(&dev->ref, drm_dev_release);
937 }
938 EXPORT_SYMBOL(drm_dev_put);
939
drmm_cg_unregister_region(struct drm_device * dev,void * arg)940 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
941 {
942 dmem_cgroup_unregister_region(arg);
943 }
944
945 /**
946 * drmm_cgroup_register_region - Register a region of a DRM device to cgroups
947 * @dev: device for region
948 * @region_name: Region name for registering
949 * @size: Size of region in bytes
950 *
951 * This decreases the ref-count of @dev by one. The device is destroyed if the
952 * ref-count drops to zero.
953 */
drmm_cgroup_register_region(struct drm_device * dev,const char * region_name,u64 size)954 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
955 {
956 struct dmem_cgroup_region *region;
957 int ret;
958
959 region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
960 if (IS_ERR_OR_NULL(region))
961 return region;
962
963 ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
964 if (ret)
965 return ERR_PTR(ret);
966
967 return region;
968 }
969 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
970
create_compat_control_link(struct drm_device * dev)971 static int create_compat_control_link(struct drm_device *dev)
972 {
973 struct drm_minor *minor;
974 char *name;
975 int ret;
976
977 if (!drm_core_check_feature(dev, DRIVER_MODESET))
978 return 0;
979
980 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
981 if (!minor)
982 return 0;
983
984 /*
985 * Some existing userspace out there uses the existing of the controlD*
986 * sysfs files to figure out whether it's a modeset driver. It only does
987 * readdir, hence a symlink is sufficient (and the least confusing
988 * option). Otherwise controlD* is entirely unused.
989 *
990 * Old controlD chardev have been allocated in the range
991 * 64-127.
992 */
993 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
994 if (!name)
995 return -ENOMEM;
996
997 ret = sysfs_create_link(minor->kdev->kobj.parent,
998 &minor->kdev->kobj,
999 name);
1000
1001 kfree(name);
1002
1003 return ret;
1004 }
1005
remove_compat_control_link(struct drm_device * dev)1006 static void remove_compat_control_link(struct drm_device *dev)
1007 {
1008 struct drm_minor *minor;
1009 char *name;
1010
1011 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1012 return;
1013
1014 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
1015 if (!minor)
1016 return;
1017
1018 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
1019 if (!name)
1020 return;
1021
1022 sysfs_remove_link(minor->kdev->kobj.parent, name);
1023
1024 kfree(name);
1025 }
1026
1027 /**
1028 * drm_dev_register - Register DRM device
1029 * @dev: Device to register
1030 * @flags: Flags passed to the driver's .load() function
1031 *
1032 * Register the DRM device @dev with the system, advertise device to user-space
1033 * and start normal device operation. @dev must be initialized via drm_dev_init()
1034 * previously.
1035 *
1036 * Never call this twice on any device!
1037 *
1038 * NOTE: To ensure backward compatibility with existing drivers method this
1039 * function calls the &drm_driver.load method after registering the device
1040 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
1041 * therefore deprecated, drivers must perform all initialization before calling
1042 * drm_dev_register().
1043 *
1044 * RETURNS:
1045 * 0 on success, negative error code on failure.
1046 */
drm_dev_register(struct drm_device * dev,unsigned long flags)1047 int drm_dev_register(struct drm_device *dev, unsigned long flags)
1048 {
1049 const struct drm_driver *driver = dev->driver;
1050 int ret;
1051
1052 if (!driver->load)
1053 drm_mode_config_validate(dev);
1054
1055 WARN_ON(!dev->managed.final_kfree);
1056
1057 if (drm_dev_needs_global_mutex(dev))
1058 mutex_lock(&drm_global_mutex);
1059
1060 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
1061 accel_debugfs_register(dev);
1062 else
1063 drm_debugfs_dev_register(dev);
1064
1065 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
1066 if (ret)
1067 goto err_minors;
1068
1069 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
1070 if (ret)
1071 goto err_minors;
1072
1073 ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
1074 if (ret)
1075 goto err_minors;
1076
1077 ret = create_compat_control_link(dev);
1078 if (ret)
1079 goto err_minors;
1080
1081 dev->registered = true;
1082
1083 if (driver->load) {
1084 ret = driver->load(dev, flags);
1085 if (ret)
1086 goto err_minors;
1087 }
1088
1089 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1090 ret = drm_modeset_register_all(dev);
1091 if (ret)
1092 goto err_unload;
1093 }
1094 drm_panic_register(dev);
1095
1096 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
1097 driver->name, driver->major, driver->minor,
1098 driver->patchlevel,
1099 dev->dev ? dev_name(dev->dev) : "virtual device",
1100 dev->primary ? dev->primary->index : dev->accel->index);
1101
1102 goto out_unlock;
1103
1104 err_unload:
1105 if (dev->driver->unload)
1106 dev->driver->unload(dev);
1107 err_minors:
1108 remove_compat_control_link(dev);
1109 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1110 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1111 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1112 out_unlock:
1113 if (drm_dev_needs_global_mutex(dev))
1114 mutex_unlock(&drm_global_mutex);
1115 return ret;
1116 }
1117 EXPORT_SYMBOL(drm_dev_register);
1118
1119 /**
1120 * drm_dev_unregister - Unregister DRM device
1121 * @dev: Device to unregister
1122 *
1123 * Unregister the DRM device from the system. This does the reverse of
1124 * drm_dev_register() but does not deallocate the device. The caller must call
1125 * drm_dev_put() to drop their final reference, unless it is managed with devres
1126 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
1127 * already an unwind action registered.
1128 *
1129 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1130 * which can be called while there are still open users of @dev.
1131 *
1132 * This should be called first in the device teardown code to make sure
1133 * userspace can't access the device instance any more.
1134 */
drm_dev_unregister(struct drm_device * dev)1135 void drm_dev_unregister(struct drm_device *dev)
1136 {
1137 dev->registered = false;
1138
1139 drm_panic_unregister(dev);
1140
1141 drm_client_dev_unregister(dev);
1142
1143 if (drm_core_check_feature(dev, DRIVER_MODESET))
1144 drm_modeset_unregister_all(dev);
1145
1146 if (dev->driver->unload)
1147 dev->driver->unload(dev);
1148
1149 remove_compat_control_link(dev);
1150 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1151 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1152 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1153 drm_debugfs_dev_fini(dev);
1154 }
1155 EXPORT_SYMBOL(drm_dev_unregister);
1156
1157 /*
1158 * DRM Core
1159 * The DRM core module initializes all global DRM objects and makes them
1160 * available to drivers. Once setup, drivers can probe their respective
1161 * devices.
1162 * Currently, core management includes:
1163 * - The "DRM-Global" key/value database
1164 * - Global ID management for connectors
1165 * - DRM major number allocation
1166 * - DRM minor management
1167 * - DRM sysfs class
1168 * - DRM debugfs root
1169 *
1170 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1171 * interface registered on a DRM device, you can request minor numbers from DRM
1172 * core. DRM core takes care of major-number management and char-dev
1173 * registration. A stub ->open() callback forwards any open() requests to the
1174 * registered minor.
1175 */
1176
drm_stub_open(struct inode * inode,struct file * filp)1177 static int drm_stub_open(struct inode *inode, struct file *filp)
1178 {
1179 const struct file_operations *new_fops;
1180 struct drm_minor *minor;
1181 int err;
1182
1183 DRM_DEBUG("\n");
1184
1185 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1186 if (IS_ERR(minor))
1187 return PTR_ERR(minor);
1188
1189 new_fops = fops_get(minor->dev->driver->fops);
1190 if (!new_fops) {
1191 err = -ENODEV;
1192 goto out;
1193 }
1194
1195 replace_fops(filp, new_fops);
1196 if (filp->f_op->open)
1197 err = filp->f_op->open(inode, filp);
1198 else
1199 err = 0;
1200
1201 out:
1202 drm_minor_release(minor);
1203
1204 return err;
1205 }
1206
1207 static const struct file_operations drm_stub_fops = {
1208 .owner = THIS_MODULE,
1209 .open = drm_stub_open,
1210 .llseek = noop_llseek,
1211 };
1212
drm_core_exit(void)1213 static void drm_core_exit(void)
1214 {
1215 drm_privacy_screen_lookup_exit();
1216 drm_panic_exit();
1217 accel_core_exit();
1218 unregister_chrdev(DRM_MAJOR, "drm");
1219 debugfs_remove(drm_debugfs_root);
1220 drm_sysfs_destroy();
1221 WARN_ON(!xa_empty(&drm_minors_xa));
1222 drm_connector_ida_destroy();
1223 }
1224
drm_core_init(void)1225 static int __init drm_core_init(void)
1226 {
1227 int ret;
1228
1229 drm_connector_ida_init();
1230 drm_memcpy_init_early();
1231
1232 ret = drm_sysfs_init();
1233 if (ret < 0) {
1234 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1235 goto error;
1236 }
1237
1238 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1239 drm_bridge_debugfs_params(drm_debugfs_root);
1240
1241 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1242 if (ret < 0)
1243 goto error;
1244
1245 ret = accel_core_init();
1246 if (ret < 0)
1247 goto error;
1248
1249 drm_panic_init();
1250
1251 drm_privacy_screen_lookup_init();
1252
1253 drm_core_init_complete = true;
1254
1255 DRM_DEBUG("Initialized\n");
1256 return 0;
1257
1258 error:
1259 drm_core_exit();
1260 return ret;
1261 }
1262
1263 module_init(drm_core_init);
1264 module_exit(drm_core_exit);
1265