1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 #include <asm/runtime-const.h>
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
65 * s_roots lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
75 */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *__dentry_cache __ro_after_init;
90 #define dentry_cache runtime_const_ptr(__dentry_cache)
91
92 const struct qstr empty_name = QSTR_INIT("", 0);
93 EXPORT_SYMBOL(empty_name);
94 const struct qstr slash_name = QSTR_INIT("/", 1);
95 EXPORT_SYMBOL(slash_name);
96 const struct qstr dotdot_name = QSTR_INIT("..", 2);
97 EXPORT_SYMBOL(dotdot_name);
98
99 /*
100 * This is the single most critical data structure when it comes
101 * to the dcache: the hashtable for lookups. Somebody should try
102 * to make this good - I've just made it work.
103 *
104 * This hash-function tries to avoid losing too many bits of hash
105 * information, yet avoid using a prime hash-size or similar.
106 *
107 * Marking the variables "used" ensures that the compiler doesn't
108 * optimize them away completely on architectures with runtime
109 * constant infrastructure, this allows debuggers to see their
110 * values. But updating these values has no effect on those arches.
111 */
112
113 static unsigned int d_hash_shift __ro_after_init __used;
114
115 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116
d_hash(unsigned long hashlen)117 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118 {
119 return runtime_const_ptr(dentry_hashtable) +
120 runtime_const_shift_right_32(hashlen, d_hash_shift);
121 }
122
123 #define IN_LOOKUP_SHIFT 10
124 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125
in_lookup_hash(const struct dentry * parent,unsigned int hash)126 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127 unsigned int hash)
128 {
129 hash += (unsigned long) parent / L1_CACHE_BYTES;
130 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131 }
132
133 struct dentry_stat_t {
134 long nr_dentry;
135 long nr_unused;
136 long age_limit; /* age in seconds */
137 long want_pages; /* pages requested by system */
138 long nr_negative; /* # of unused negative dentries */
139 long dummy; /* Reserved for future use */
140 };
141
142 static DEFINE_PER_CPU(long, nr_dentry);
143 static DEFINE_PER_CPU(long, nr_dentry_unused);
144 static DEFINE_PER_CPU(long, nr_dentry_negative);
145 static int dentry_negative_policy;
146
147 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148 /* Statistics gathering. */
149 static struct dentry_stat_t dentry_stat = {
150 .age_limit = 45,
151 };
152
153 /*
154 * Here we resort to our own counters instead of using generic per-cpu counters
155 * for consistency with what the vfs inode code does. We are expected to harvest
156 * better code and performance by having our own specialized counters.
157 *
158 * Please note that the loop is done over all possible CPUs, not over all online
159 * CPUs. The reason for this is that we don't want to play games with CPUs going
160 * on and off. If one of them goes off, we will just keep their counters.
161 *
162 * glommer: See cffbc8a for details, and if you ever intend to change this,
163 * please update all vfs counters to match.
164 */
get_nr_dentry(void)165 static long get_nr_dentry(void)
166 {
167 int i;
168 long sum = 0;
169 for_each_possible_cpu(i)
170 sum += per_cpu(nr_dentry, i);
171 return sum < 0 ? 0 : sum;
172 }
173
get_nr_dentry_unused(void)174 static long get_nr_dentry_unused(void)
175 {
176 int i;
177 long sum = 0;
178 for_each_possible_cpu(i)
179 sum += per_cpu(nr_dentry_unused, i);
180 return sum < 0 ? 0 : sum;
181 }
182
get_nr_dentry_negative(void)183 static long get_nr_dentry_negative(void)
184 {
185 int i;
186 long sum = 0;
187
188 for_each_possible_cpu(i)
189 sum += per_cpu(nr_dentry_negative, i);
190 return sum < 0 ? 0 : sum;
191 }
192
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)193 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194 size_t *lenp, loff_t *ppos)
195 {
196 dentry_stat.nr_dentry = get_nr_dentry();
197 dentry_stat.nr_unused = get_nr_dentry_unused();
198 dentry_stat.nr_negative = get_nr_dentry_negative();
199 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200 }
201
202 static const struct ctl_table fs_dcache_sysctls[] = {
203 {
204 .procname = "dentry-state",
205 .data = &dentry_stat,
206 .maxlen = 6*sizeof(long),
207 .mode = 0444,
208 .proc_handler = proc_nr_dentry,
209 },
210 {
211 .procname = "dentry-negative",
212 .data = &dentry_negative_policy,
213 .maxlen = sizeof(dentry_negative_policy),
214 .mode = 0644,
215 .proc_handler = proc_dointvec_minmax,
216 .extra1 = SYSCTL_ZERO,
217 .extra2 = SYSCTL_ONE,
218 },
219 };
220
221 static const struct ctl_table vm_dcache_sysctls[] = {
222 {
223 .procname = "vfs_cache_pressure",
224 .data = &sysctl_vfs_cache_pressure,
225 .maxlen = sizeof(sysctl_vfs_cache_pressure),
226 .mode = 0644,
227 .proc_handler = proc_dointvec_minmax,
228 .extra1 = SYSCTL_ZERO,
229 },
230 {
231 .procname = "vfs_cache_pressure_denom",
232 .data = &sysctl_vfs_cache_pressure_denom,
233 .maxlen = sizeof(sysctl_vfs_cache_pressure_denom),
234 .mode = 0644,
235 .proc_handler = proc_dointvec_minmax,
236 .extra1 = SYSCTL_ONE_HUNDRED,
237 },
238 };
239
init_fs_dcache_sysctls(void)240 static int __init init_fs_dcache_sysctls(void)
241 {
242 register_sysctl_init("vm", vm_dcache_sysctls);
243 register_sysctl_init("fs", fs_dcache_sysctls);
244 return 0;
245 }
246 fs_initcall(init_fs_dcache_sysctls);
247 #endif
248
249 /*
250 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
251 * The strings are both count bytes long, and count is non-zero.
252 */
253 #ifdef CONFIG_DCACHE_WORD_ACCESS
254
255 #include <asm/word-at-a-time.h>
256 /*
257 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
258 * aligned allocation for this particular component. We don't
259 * strictly need the load_unaligned_zeropad() safety, but it
260 * doesn't hurt either.
261 *
262 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
263 * need the careful unaligned handling.
264 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)265 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266 {
267 unsigned long a,b,mask;
268
269 for (;;) {
270 a = read_word_at_a_time(cs);
271 b = load_unaligned_zeropad(ct);
272 if (tcount < sizeof(unsigned long))
273 break;
274 if (unlikely(a != b))
275 return 1;
276 cs += sizeof(unsigned long);
277 ct += sizeof(unsigned long);
278 tcount -= sizeof(unsigned long);
279 if (!tcount)
280 return 0;
281 }
282 mask = bytemask_from_count(tcount);
283 return unlikely(!!((a ^ b) & mask));
284 }
285
286 #else
287
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)288 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289 {
290 do {
291 if (*cs != *ct)
292 return 1;
293 cs++;
294 ct++;
295 tcount--;
296 } while (tcount);
297 return 0;
298 }
299
300 #endif
301
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)302 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303 {
304 /*
305 * Be careful about RCU walk racing with rename:
306 * use 'READ_ONCE' to fetch the name pointer.
307 *
308 * NOTE! Even if a rename will mean that the length
309 * was not loaded atomically, we don't care. The
310 * RCU walk will check the sequence count eventually,
311 * and catch it. And we won't overrun the buffer,
312 * because we're reading the name pointer atomically,
313 * and a dentry name is guaranteed to be properly
314 * terminated with a NUL byte.
315 *
316 * End result: even if 'len' is wrong, we'll exit
317 * early because the data cannot match (there can
318 * be no NUL in the ct/tcount data)
319 */
320 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321
322 return dentry_string_cmp(cs, ct, tcount);
323 }
324
325 /*
326 * long names are allocated separately from dentry and never modified.
327 * Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
328 * for the reason why ->count and ->head can't be combined into a union.
329 * dentry_string_cmp() relies upon ->name[] being word-aligned.
330 */
331 struct external_name {
332 atomic_t count;
333 struct rcu_head head;
334 unsigned char name[] __aligned(sizeof(unsigned long));
335 };
336
external_name(struct dentry * dentry)337 static inline struct external_name *external_name(struct dentry *dentry)
338 {
339 return container_of(dentry->d_name.name, struct external_name, name[0]);
340 }
341
__d_free(struct rcu_head * head)342 static void __d_free(struct rcu_head *head)
343 {
344 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345
346 kmem_cache_free(dentry_cache, dentry);
347 }
348
__d_free_external(struct rcu_head * head)349 static void __d_free_external(struct rcu_head *head)
350 {
351 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352 kfree(external_name(dentry));
353 kmem_cache_free(dentry_cache, dentry);
354 }
355
dname_external(const struct dentry * dentry)356 static inline int dname_external(const struct dentry *dentry)
357 {
358 return dentry->d_name.name != dentry->d_shortname.string;
359 }
360
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)361 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362 {
363 unsigned seq;
364 const unsigned char *s;
365
366 rcu_read_lock();
367 retry:
368 seq = read_seqcount_begin(&dentry->d_seq);
369 s = READ_ONCE(dentry->d_name.name);
370 name->name.hash_len = dentry->d_name.hash_len;
371 name->name.name = name->inline_name.string;
372 if (likely(s == dentry->d_shortname.string)) {
373 name->inline_name = dentry->d_shortname;
374 } else {
375 struct external_name *p;
376 p = container_of(s, struct external_name, name[0]);
377 // get a valid reference
378 if (unlikely(!atomic_inc_not_zero(&p->count)))
379 goto retry;
380 name->name.name = s;
381 }
382 if (read_seqcount_retry(&dentry->d_seq, seq)) {
383 release_dentry_name_snapshot(name);
384 goto retry;
385 }
386 rcu_read_unlock();
387 }
388 EXPORT_SYMBOL(take_dentry_name_snapshot);
389
release_dentry_name_snapshot(struct name_snapshot * name)390 void release_dentry_name_snapshot(struct name_snapshot *name)
391 {
392 if (unlikely(name->name.name != name->inline_name.string)) {
393 struct external_name *p;
394 p = container_of(name->name.name, struct external_name, name[0]);
395 if (unlikely(atomic_dec_and_test(&p->count)))
396 kfree_rcu(p, head);
397 }
398 }
399 EXPORT_SYMBOL(release_dentry_name_snapshot);
400
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)401 static inline void __d_set_inode_and_type(struct dentry *dentry,
402 struct inode *inode,
403 unsigned type_flags)
404 {
405 unsigned flags;
406
407 dentry->d_inode = inode;
408 flags = READ_ONCE(dentry->d_flags);
409 flags &= ~DCACHE_ENTRY_TYPE;
410 flags |= type_flags;
411 smp_store_release(&dentry->d_flags, flags);
412 }
413
__d_clear_type_and_inode(struct dentry * dentry)414 static inline void __d_clear_type_and_inode(struct dentry *dentry)
415 {
416 unsigned flags = READ_ONCE(dentry->d_flags);
417
418 flags &= ~DCACHE_ENTRY_TYPE;
419 WRITE_ONCE(dentry->d_flags, flags);
420 dentry->d_inode = NULL;
421 /*
422 * The negative counter only tracks dentries on the LRU. Don't inc if
423 * d_lru is on another list.
424 */
425 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426 this_cpu_inc(nr_dentry_negative);
427 }
428
dentry_free(struct dentry * dentry)429 static void dentry_free(struct dentry *dentry)
430 {
431 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432 if (unlikely(dname_external(dentry))) {
433 struct external_name *p = external_name(dentry);
434 if (likely(atomic_dec_and_test(&p->count))) {
435 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436 return;
437 }
438 }
439 /* if dentry was never visible to RCU, immediate free is OK */
440 if (dentry->d_flags & DCACHE_NORCU)
441 __d_free(&dentry->d_u.d_rcu);
442 else
443 call_rcu(&dentry->d_u.d_rcu, __d_free);
444 }
445
446 /*
447 * Release the dentry's inode, using the filesystem
448 * d_iput() operation if defined.
449 */
dentry_unlink_inode(struct dentry * dentry)450 static void dentry_unlink_inode(struct dentry * dentry)
451 __releases(dentry->d_lock)
452 __releases(dentry->d_inode->i_lock)
453 {
454 struct inode *inode = dentry->d_inode;
455
456 raw_write_seqcount_begin(&dentry->d_seq);
457 __d_clear_type_and_inode(dentry);
458 hlist_del_init(&dentry->d_u.d_alias);
459 raw_write_seqcount_end(&dentry->d_seq);
460 spin_unlock(&dentry->d_lock);
461 spin_unlock(&inode->i_lock);
462 if (!inode->i_nlink)
463 fsnotify_inoderemove(inode);
464 if (dentry->d_op && dentry->d_op->d_iput)
465 dentry->d_op->d_iput(dentry, inode);
466 else
467 iput(inode);
468 }
469
470 /*
471 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472 * is in use - which includes both the "real" per-superblock
473 * LRU list _and_ the DCACHE_SHRINK_LIST use.
474 *
475 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476 * on the shrink list (ie not on the superblock LRU list).
477 *
478 * The per-cpu "nr_dentry_unused" counters are updated with
479 * the DCACHE_LRU_LIST bit.
480 *
481 * The per-cpu "nr_dentry_negative" counters are only updated
482 * when deleted from or added to the per-superblock LRU list, not
483 * from/to the shrink list. That is to avoid an unneeded dec/inc
484 * pair when moving from LRU to shrink list in select_collect().
485 *
486 * These helper functions make sure we always follow the
487 * rules. d_lock must be held by the caller.
488 */
489 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)490 static void d_lru_add(struct dentry *dentry)
491 {
492 D_FLAG_VERIFY(dentry, 0);
493 dentry->d_flags |= DCACHE_LRU_LIST;
494 this_cpu_inc(nr_dentry_unused);
495 if (d_is_negative(dentry))
496 this_cpu_inc(nr_dentry_negative);
497 WARN_ON_ONCE(!list_lru_add_obj(
498 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499 }
500
d_lru_del(struct dentry * dentry)501 static void d_lru_del(struct dentry *dentry)
502 {
503 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504 dentry->d_flags &= ~DCACHE_LRU_LIST;
505 this_cpu_dec(nr_dentry_unused);
506 if (d_is_negative(dentry))
507 this_cpu_dec(nr_dentry_negative);
508 WARN_ON_ONCE(!list_lru_del_obj(
509 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510 }
511
d_shrink_del(struct dentry * dentry)512 static void d_shrink_del(struct dentry *dentry)
513 {
514 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515 list_del_init(&dentry->d_lru);
516 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517 this_cpu_dec(nr_dentry_unused);
518 }
519
d_shrink_add(struct dentry * dentry,struct list_head * list)520 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521 {
522 D_FLAG_VERIFY(dentry, 0);
523 list_add(&dentry->d_lru, list);
524 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525 this_cpu_inc(nr_dentry_unused);
526 }
527
528 /*
529 * These can only be called under the global LRU lock, ie during the
530 * callback for freeing the LRU list. "isolate" removes it from the
531 * LRU lists entirely, while shrink_move moves it to the indicated
532 * private list.
533 */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)534 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535 {
536 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537 dentry->d_flags &= ~DCACHE_LRU_LIST;
538 this_cpu_dec(nr_dentry_unused);
539 if (d_is_negative(dentry))
540 this_cpu_dec(nr_dentry_negative);
541 list_lru_isolate(lru, &dentry->d_lru);
542 }
543
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)544 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545 struct list_head *list)
546 {
547 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548 dentry->d_flags |= DCACHE_SHRINK_LIST;
549 if (d_is_negative(dentry))
550 this_cpu_dec(nr_dentry_negative);
551 list_lru_isolate_move(lru, &dentry->d_lru, list);
552 }
553
___d_drop(struct dentry * dentry)554 static void ___d_drop(struct dentry *dentry)
555 {
556 struct hlist_bl_head *b;
557 /*
558 * Hashed dentries are normally on the dentry hashtable,
559 * with the exception of those newly allocated by
560 * d_obtain_root, which are always IS_ROOT:
561 */
562 if (unlikely(IS_ROOT(dentry)))
563 b = &dentry->d_sb->s_roots;
564 else
565 b = d_hash(dentry->d_name.hash);
566
567 hlist_bl_lock(b);
568 __hlist_bl_del(&dentry->d_hash);
569 hlist_bl_unlock(b);
570 }
571
__d_drop(struct dentry * dentry)572 void __d_drop(struct dentry *dentry)
573 {
574 if (!d_unhashed(dentry)) {
575 ___d_drop(dentry);
576 dentry->d_hash.pprev = NULL;
577 write_seqcount_invalidate(&dentry->d_seq);
578 }
579 }
580 EXPORT_SYMBOL(__d_drop);
581
582 /**
583 * d_drop - drop a dentry
584 * @dentry: dentry to drop
585 *
586 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587 * be found through a VFS lookup any more. Note that this is different from
588 * deleting the dentry - d_delete will try to mark the dentry negative if
589 * possible, giving a successful _negative_ lookup, while d_drop will
590 * just make the cache lookup fail.
591 *
592 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593 * reason (NFS timeouts or autofs deletes).
594 *
595 * __d_drop requires dentry->d_lock
596 *
597 * ___d_drop doesn't mark dentry as "unhashed"
598 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599 */
d_drop(struct dentry * dentry)600 void d_drop(struct dentry *dentry)
601 {
602 spin_lock(&dentry->d_lock);
603 __d_drop(dentry);
604 spin_unlock(&dentry->d_lock);
605 }
606 EXPORT_SYMBOL(d_drop);
607
dentry_unlist(struct dentry * dentry)608 static inline void dentry_unlist(struct dentry *dentry)
609 {
610 struct dentry *next;
611 /*
612 * Inform d_walk() and shrink_dentry_list() that we are no longer
613 * attached to the dentry tree
614 */
615 dentry->d_flags |= DCACHE_DENTRY_KILLED;
616 if (unlikely(hlist_unhashed(&dentry->d_sib)))
617 return;
618 __hlist_del(&dentry->d_sib);
619 /*
620 * Cursors can move around the list of children. While we'd been
621 * a normal list member, it didn't matter - ->d_sib.next would've
622 * been updated. However, from now on it won't be and for the
623 * things like d_walk() it might end up with a nasty surprise.
624 * Normally d_walk() doesn't care about cursors moving around -
625 * ->d_lock on parent prevents that and since a cursor has no children
626 * of its own, we get through it without ever unlocking the parent.
627 * There is one exception, though - if we ascend from a child that
628 * gets killed as soon as we unlock it, the next sibling is found
629 * using the value left in its ->d_sib.next. And if _that_
630 * pointed to a cursor, and cursor got moved (e.g. by lseek())
631 * before d_walk() regains parent->d_lock, we'll end up skipping
632 * everything the cursor had been moved past.
633 *
634 * Solution: make sure that the pointer left behind in ->d_sib.next
635 * points to something that won't be moving around. I.e. skip the
636 * cursors.
637 */
638 while (dentry->d_sib.next) {
639 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641 break;
642 dentry->d_sib.next = next->d_sib.next;
643 }
644 }
645
__dentry_kill(struct dentry * dentry)646 static struct dentry *__dentry_kill(struct dentry *dentry)
647 {
648 struct dentry *parent = NULL;
649 bool can_free = true;
650
651 /*
652 * The dentry is now unrecoverably dead to the world.
653 */
654 lockref_mark_dead(&dentry->d_lockref);
655
656 /*
657 * inform the fs via d_prune that this dentry is about to be
658 * unhashed and destroyed.
659 */
660 if (dentry->d_flags & DCACHE_OP_PRUNE)
661 dentry->d_op->d_prune(dentry);
662
663 if (dentry->d_flags & DCACHE_LRU_LIST) {
664 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665 d_lru_del(dentry);
666 }
667 /* if it was on the hash then remove it */
668 __d_drop(dentry);
669 if (dentry->d_inode)
670 dentry_unlink_inode(dentry);
671 else
672 spin_unlock(&dentry->d_lock);
673 this_cpu_dec(nr_dentry);
674 if (dentry->d_op && dentry->d_op->d_release)
675 dentry->d_op->d_release(dentry);
676
677 cond_resched();
678 /* now that it's negative, ->d_parent is stable */
679 if (!IS_ROOT(dentry)) {
680 parent = dentry->d_parent;
681 spin_lock(&parent->d_lock);
682 }
683 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684 dentry_unlist(dentry);
685 if (dentry->d_flags & DCACHE_SHRINK_LIST)
686 can_free = false;
687 spin_unlock(&dentry->d_lock);
688 if (likely(can_free))
689 dentry_free(dentry);
690 if (parent && --parent->d_lockref.count) {
691 spin_unlock(&parent->d_lock);
692 return NULL;
693 }
694 return parent;
695 }
696
697 /*
698 * Lock a dentry for feeding it to __dentry_kill().
699 * Called under rcu_read_lock() and dentry->d_lock; the former
700 * guarantees that nothing we access will be freed under us.
701 * Note that dentry is *not* protected from concurrent dentry_kill(),
702 * d_delete(), etc.
703 *
704 * Return false if dentry is busy. Otherwise, return true and have
705 * that dentry's inode locked.
706 */
707
lock_for_kill(struct dentry * dentry)708 static bool lock_for_kill(struct dentry *dentry)
709 {
710 struct inode *inode = dentry->d_inode;
711
712 if (unlikely(dentry->d_lockref.count))
713 return false;
714
715 if (!inode || likely(spin_trylock(&inode->i_lock)))
716 return true;
717
718 do {
719 spin_unlock(&dentry->d_lock);
720 spin_lock(&inode->i_lock);
721 spin_lock(&dentry->d_lock);
722 if (likely(inode == dentry->d_inode))
723 break;
724 spin_unlock(&inode->i_lock);
725 inode = dentry->d_inode;
726 } while (inode);
727 if (likely(!dentry->d_lockref.count))
728 return true;
729 if (inode)
730 spin_unlock(&inode->i_lock);
731 return false;
732 }
733
734 /*
735 * Decide if dentry is worth retaining. Usually this is called with dentry
736 * locked; if not locked, we are more limited and might not be able to tell
737 * without a lock. False in this case means "punt to locked path and recheck".
738 *
739 * In case we aren't locked, these predicates are not "stable". However, it is
740 * sufficient that at some point after we dropped the reference the dentry was
741 * hashed and the flags had the proper value. Other dentry users may have
742 * re-gotten a reference to the dentry and change that, but our work is done -
743 * we can leave the dentry around with a zero refcount.
744 */
retain_dentry(struct dentry * dentry,bool locked)745 static inline bool retain_dentry(struct dentry *dentry, bool locked)
746 {
747 unsigned int d_flags;
748
749 smp_rmb();
750 d_flags = READ_ONCE(dentry->d_flags);
751
752 // Unreachable? Nobody would be able to look it up, no point retaining
753 if (unlikely(d_unhashed(dentry)))
754 return false;
755
756 // Same if it's disconnected
757 if (unlikely(d_flags & DCACHE_DISCONNECTED))
758 return false;
759
760 // ->d_delete() might tell us not to bother, but that requires
761 // ->d_lock; can't decide without it
762 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763 if (!locked || dentry->d_op->d_delete(dentry))
764 return false;
765 }
766
767 // Explicitly told not to bother
768 if (unlikely(d_flags & DCACHE_DONTCACHE))
769 return false;
770
771 // At this point it looks like we ought to keep it. We also might
772 // need to do something - put it on LRU if it wasn't there already
773 // and mark it referenced if it was on LRU, but not marked yet.
774 // Unfortunately, both actions require ->d_lock, so in lockless
775 // case we'd have to punt rather than doing those.
776 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777 if (!locked)
778 return false;
779 d_lru_add(dentry);
780 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781 if (!locked)
782 return false;
783 dentry->d_flags |= DCACHE_REFERENCED;
784 }
785 return true;
786 }
787
d_mark_dontcache(struct inode * inode)788 void d_mark_dontcache(struct inode *inode)
789 {
790 struct dentry *de;
791
792 spin_lock(&inode->i_lock);
793 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794 spin_lock(&de->d_lock);
795 de->d_flags |= DCACHE_DONTCACHE;
796 spin_unlock(&de->d_lock);
797 }
798 inode_state_set(inode, I_DONTCACHE);
799 spin_unlock(&inode->i_lock);
800 }
801 EXPORT_SYMBOL(d_mark_dontcache);
802
803 /*
804 * Try to do a lockless dput(), and return whether that was successful.
805 *
806 * If unsuccessful, we return false, having already taken the dentry lock.
807 * In that case refcount is guaranteed to be zero and we have already
808 * decided that it's not worth keeping around.
809 *
810 * The caller needs to hold the RCU read lock, so that the dentry is
811 * guaranteed to stay around even if the refcount goes down to zero!
812 */
fast_dput(struct dentry * dentry)813 static inline bool fast_dput(struct dentry *dentry)
814 {
815 int ret;
816
817 /*
818 * try to decrement the lockref optimistically.
819 */
820 ret = lockref_put_return(&dentry->d_lockref);
821
822 /*
823 * If the lockref_put_return() failed due to the lock being held
824 * by somebody else, the fast path has failed. We will need to
825 * get the lock, and then check the count again.
826 */
827 if (unlikely(ret < 0)) {
828 spin_lock(&dentry->d_lock);
829 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830 spin_unlock(&dentry->d_lock);
831 return true;
832 }
833 dentry->d_lockref.count--;
834 goto locked;
835 }
836
837 /*
838 * If we weren't the last ref, we're done.
839 */
840 if (ret)
841 return true;
842
843 /*
844 * Can we decide that decrement of refcount is all we needed without
845 * taking the lock? There's a very common case when it's all we need -
846 * dentry looks like it ought to be retained and there's nothing else
847 * to do.
848 */
849 if (retain_dentry(dentry, false))
850 return true;
851
852 /*
853 * Either not worth retaining or we can't tell without the lock.
854 * Get the lock, then. We've already decremented the refcount to 0,
855 * but we'll need to re-check the situation after getting the lock.
856 */
857 spin_lock(&dentry->d_lock);
858
859 /*
860 * Did somebody else grab a reference to it in the meantime, and
861 * we're no longer the last user after all? Alternatively, somebody
862 * else could have killed it and marked it dead. Either way, we
863 * don't need to do anything else.
864 */
865 locked:
866 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867 spin_unlock(&dentry->d_lock);
868 return true;
869 }
870 return false;
871 }
872
finish_dput(struct dentry * dentry)873 static void finish_dput(struct dentry *dentry)
874 __releases(dentry->d_lock)
875 __releases(RCU)
876 {
877 while (lock_for_kill(dentry)) {
878 rcu_read_unlock();
879 dentry = __dentry_kill(dentry);
880 if (!dentry)
881 return;
882 if (retain_dentry(dentry, true)) {
883 spin_unlock(&dentry->d_lock);
884 return;
885 }
886 rcu_read_lock();
887 }
888 rcu_read_unlock();
889 spin_unlock(&dentry->d_lock);
890 }
891
892 /*
893 * This is dput
894 *
895 * This is complicated by the fact that we do not want to put
896 * dentries that are no longer on any hash chain on the unused
897 * list: we'd much rather just get rid of them immediately.
898 *
899 * However, that implies that we have to traverse the dentry
900 * tree upwards to the parents which might _also_ now be
901 * scheduled for deletion (it may have been only waiting for
902 * its last child to go away).
903 *
904 * This tail recursion is done by hand as we don't want to depend
905 * on the compiler to always get this right (gcc generally doesn't).
906 * Real recursion would eat up our stack space.
907 */
908
909 /*
910 * dput - release a dentry
911 * @dentry: dentry to release
912 *
913 * Release a dentry. This will drop the usage count and if appropriate
914 * call the dentry unlink method as well as removing it from the queues and
915 * releasing its resources. If the parent dentries were scheduled for release
916 * they too may now get deleted.
917 */
dput(struct dentry * dentry)918 void dput(struct dentry *dentry)
919 {
920 if (!dentry)
921 return;
922 might_sleep();
923 rcu_read_lock();
924 if (likely(fast_dput(dentry))) {
925 rcu_read_unlock();
926 return;
927 }
928 finish_dput(dentry);
929 }
930 EXPORT_SYMBOL(dput);
931
d_make_discardable(struct dentry * dentry)932 void d_make_discardable(struct dentry *dentry)
933 {
934 spin_lock(&dentry->d_lock);
935 WARN_ON(!(dentry->d_flags & DCACHE_PERSISTENT));
936 dentry->d_flags &= ~DCACHE_PERSISTENT;
937 dentry->d_lockref.count--;
938 rcu_read_lock();
939 finish_dput(dentry);
940 }
941 EXPORT_SYMBOL(d_make_discardable);
942
to_shrink_list(struct dentry * dentry,struct list_head * list)943 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
944 __must_hold(&dentry->d_lock)
945 {
946 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
947 if (dentry->d_flags & DCACHE_LRU_LIST)
948 d_lru_del(dentry);
949 d_shrink_add(dentry, list);
950 }
951 }
952
dput_to_list(struct dentry * dentry,struct list_head * list)953 void dput_to_list(struct dentry *dentry, struct list_head *list)
954 {
955 rcu_read_lock();
956 if (likely(fast_dput(dentry))) {
957 rcu_read_unlock();
958 return;
959 }
960 rcu_read_unlock();
961 to_shrink_list(dentry, list);
962 spin_unlock(&dentry->d_lock);
963 }
964
dget_parent(struct dentry * dentry)965 struct dentry *dget_parent(struct dentry *dentry)
966 {
967 int gotref;
968 struct dentry *ret;
969 unsigned seq;
970
971 /*
972 * Do optimistic parent lookup without any
973 * locking.
974 */
975 rcu_read_lock();
976 seq = raw_seqcount_begin(&dentry->d_seq);
977 ret = READ_ONCE(dentry->d_parent);
978 gotref = lockref_get_not_zero(&ret->d_lockref);
979 rcu_read_unlock();
980 if (likely(gotref)) {
981 if (!read_seqcount_retry(&dentry->d_seq, seq))
982 return ret;
983 dput(ret);
984 }
985
986 repeat:
987 /*
988 * Don't need rcu_dereference because we re-check it was correct under
989 * the lock.
990 */
991 rcu_read_lock();
992 ret = dentry->d_parent;
993 spin_lock(&ret->d_lock);
994 if (unlikely(ret != dentry->d_parent)) {
995 spin_unlock(&ret->d_lock);
996 rcu_read_unlock();
997 goto repeat;
998 }
999 rcu_read_unlock();
1000 BUG_ON(!ret->d_lockref.count);
1001 ret->d_lockref.count++;
1002 spin_unlock(&ret->d_lock);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL(dget_parent);
1006
__d_find_any_alias(struct inode * inode)1007 static struct dentry * __d_find_any_alias(struct inode *inode)
1008 {
1009 struct dentry *alias;
1010
1011 if (hlist_empty(&inode->i_dentry))
1012 return NULL;
1013 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1014 lockref_get(&alias->d_lockref);
1015 return alias;
1016 }
1017
1018 /**
1019 * d_find_any_alias - find any alias for a given inode
1020 * @inode: inode to find an alias for
1021 *
1022 * If any aliases exist for the given inode, take and return a
1023 * reference for one of them. If no aliases exist, return %NULL.
1024 */
d_find_any_alias(struct inode * inode)1025 struct dentry *d_find_any_alias(struct inode *inode)
1026 {
1027 struct dentry *de;
1028
1029 spin_lock(&inode->i_lock);
1030 de = __d_find_any_alias(inode);
1031 spin_unlock(&inode->i_lock);
1032 return de;
1033 }
1034 EXPORT_SYMBOL(d_find_any_alias);
1035
__d_find_alias(struct inode * inode)1036 static struct dentry *__d_find_alias(struct inode *inode)
1037 {
1038 struct dentry *alias;
1039
1040 if (S_ISDIR(inode->i_mode))
1041 return __d_find_any_alias(inode);
1042
1043 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1044 spin_lock(&alias->d_lock);
1045 if (!d_unhashed(alias)) {
1046 dget_dlock(alias);
1047 spin_unlock(&alias->d_lock);
1048 return alias;
1049 }
1050 spin_unlock(&alias->d_lock);
1051 }
1052 return NULL;
1053 }
1054
1055 /**
1056 * d_find_alias - grab a hashed alias of inode
1057 * @inode: inode in question
1058 *
1059 * If inode has a hashed alias, or is a directory and has any alias,
1060 * acquire the reference to alias and return it. Otherwise return NULL.
1061 * Notice that if inode is a directory there can be only one alias and
1062 * it can be unhashed only if it has no children, or if it is the root
1063 * of a filesystem, or if the directory was renamed and d_revalidate
1064 * was the first vfs operation to notice.
1065 *
1066 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1067 * any other hashed alias over that one.
1068 */
d_find_alias(struct inode * inode)1069 struct dentry *d_find_alias(struct inode *inode)
1070 {
1071 struct dentry *de = NULL;
1072
1073 if (!hlist_empty(&inode->i_dentry)) {
1074 spin_lock(&inode->i_lock);
1075 de = __d_find_alias(inode);
1076 spin_unlock(&inode->i_lock);
1077 }
1078 return de;
1079 }
1080 EXPORT_SYMBOL(d_find_alias);
1081
1082 /*
1083 * Caller MUST be holding rcu_read_lock() and be guaranteed
1084 * that inode won't get freed until rcu_read_unlock().
1085 */
d_find_alias_rcu(struct inode * inode)1086 struct dentry *d_find_alias_rcu(struct inode *inode)
1087 {
1088 struct hlist_head *l = &inode->i_dentry;
1089 struct dentry *de = NULL;
1090
1091 spin_lock(&inode->i_lock);
1092 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1093 // used without having I_FREEING set, which means no aliases left
1094 if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1095 if (S_ISDIR(inode->i_mode)) {
1096 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1097 } else {
1098 hlist_for_each_entry(de, l, d_u.d_alias)
1099 if (!d_unhashed(de))
1100 break;
1101 }
1102 }
1103 spin_unlock(&inode->i_lock);
1104 return de;
1105 }
1106
1107 /**
1108 * d_dispose_if_unused - move unreferenced dentries to shrink list
1109 * @dentry: dentry in question
1110 * @dispose: head of shrink list
1111 *
1112 * If dentry has no external references, move it to shrink list.
1113 *
1114 * NOTE!!! The caller is responsible for preventing eviction of the dentry by
1115 * holding dentry->d_inode->i_lock or equivalent.
1116 */
d_dispose_if_unused(struct dentry * dentry,struct list_head * dispose)1117 void d_dispose_if_unused(struct dentry *dentry, struct list_head *dispose)
1118 {
1119 spin_lock(&dentry->d_lock);
1120 if (!dentry->d_lockref.count)
1121 to_shrink_list(dentry, dispose);
1122 spin_unlock(&dentry->d_lock);
1123 }
1124 EXPORT_SYMBOL(d_dispose_if_unused);
1125
1126 /*
1127 * Try to kill dentries associated with this inode.
1128 * WARNING: you must own a reference to inode.
1129 */
d_prune_aliases(struct inode * inode)1130 void d_prune_aliases(struct inode *inode)
1131 {
1132 LIST_HEAD(dispose);
1133 struct dentry *dentry;
1134
1135 spin_lock(&inode->i_lock);
1136 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias)
1137 d_dispose_if_unused(dentry, &dispose);
1138 spin_unlock(&inode->i_lock);
1139 shrink_dentry_list(&dispose);
1140 }
1141 EXPORT_SYMBOL(d_prune_aliases);
1142
shrink_kill(struct dentry * victim)1143 static inline void shrink_kill(struct dentry *victim)
1144 {
1145 do {
1146 rcu_read_unlock();
1147 victim = __dentry_kill(victim);
1148 rcu_read_lock();
1149 } while (victim && lock_for_kill(victim));
1150 rcu_read_unlock();
1151 if (victim)
1152 spin_unlock(&victim->d_lock);
1153 }
1154
shrink_dentry_list(struct list_head * list)1155 void shrink_dentry_list(struct list_head *list)
1156 {
1157 while (!list_empty(list)) {
1158 struct dentry *dentry;
1159
1160 dentry = list_entry(list->prev, struct dentry, d_lru);
1161 spin_lock(&dentry->d_lock);
1162 rcu_read_lock();
1163 if (!lock_for_kill(dentry)) {
1164 bool can_free;
1165 rcu_read_unlock();
1166 d_shrink_del(dentry);
1167 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1168 spin_unlock(&dentry->d_lock);
1169 if (can_free)
1170 dentry_free(dentry);
1171 continue;
1172 }
1173 d_shrink_del(dentry);
1174 shrink_kill(dentry);
1175 }
1176 }
1177 EXPORT_SYMBOL(shrink_dentry_list);
1178
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1179 static enum lru_status dentry_lru_isolate(struct list_head *item,
1180 struct list_lru_one *lru, void *arg)
1181 {
1182 struct list_head *freeable = arg;
1183 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1184
1185
1186 /*
1187 * we are inverting the lru lock/dentry->d_lock here,
1188 * so use a trylock. If we fail to get the lock, just skip
1189 * it
1190 */
1191 if (!spin_trylock(&dentry->d_lock))
1192 return LRU_SKIP;
1193
1194 /*
1195 * Referenced dentries are still in use. If they have active
1196 * counts, just remove them from the LRU. Otherwise give them
1197 * another pass through the LRU.
1198 */
1199 if (dentry->d_lockref.count) {
1200 d_lru_isolate(lru, dentry);
1201 spin_unlock(&dentry->d_lock);
1202 return LRU_REMOVED;
1203 }
1204
1205 if (dentry->d_flags & DCACHE_REFERENCED) {
1206 dentry->d_flags &= ~DCACHE_REFERENCED;
1207 spin_unlock(&dentry->d_lock);
1208
1209 /*
1210 * The list move itself will be made by the common LRU code. At
1211 * this point, we've dropped the dentry->d_lock but keep the
1212 * lru lock. This is safe to do, since every list movement is
1213 * protected by the lru lock even if both locks are held.
1214 *
1215 * This is guaranteed by the fact that all LRU management
1216 * functions are intermediated by the LRU API calls like
1217 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1218 * only ever occur through this functions or through callbacks
1219 * like this one, that are called from the LRU API.
1220 *
1221 * The only exceptions to this are functions like
1222 * shrink_dentry_list, and code that first checks for the
1223 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1224 * operating only with stack provided lists after they are
1225 * properly isolated from the main list. It is thus, always a
1226 * local access.
1227 */
1228 return LRU_ROTATE;
1229 }
1230
1231 d_lru_shrink_move(lru, dentry, freeable);
1232 spin_unlock(&dentry->d_lock);
1233
1234 return LRU_REMOVED;
1235 }
1236
1237 /**
1238 * prune_dcache_sb - shrink the dcache
1239 * @sb: superblock
1240 * @sc: shrink control, passed to list_lru_shrink_walk()
1241 *
1242 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1243 * is done when we need more memory and called from the superblock shrinker
1244 * function.
1245 *
1246 * This function may fail to free any resources if all the dentries are in
1247 * use.
1248 */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1249 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1250 {
1251 LIST_HEAD(dispose);
1252 long freed;
1253
1254 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1255 dentry_lru_isolate, &dispose);
1256 shrink_dentry_list(&dispose);
1257 return freed;
1258 }
1259
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1260 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1261 struct list_lru_one *lru, void *arg)
1262 {
1263 struct list_head *freeable = arg;
1264 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1265
1266 /*
1267 * we are inverting the lru lock/dentry->d_lock here,
1268 * so use a trylock. If we fail to get the lock, just skip
1269 * it
1270 */
1271 if (!spin_trylock(&dentry->d_lock))
1272 return LRU_SKIP;
1273
1274 d_lru_shrink_move(lru, dentry, freeable);
1275 spin_unlock(&dentry->d_lock);
1276
1277 return LRU_REMOVED;
1278 }
1279
1280
1281 /**
1282 * shrink_dcache_sb - shrink dcache for a superblock
1283 * @sb: superblock
1284 *
1285 * Shrink the dcache for the specified super block. This is used to free
1286 * the dcache before unmounting a file system.
1287 */
shrink_dcache_sb(struct super_block * sb)1288 void shrink_dcache_sb(struct super_block *sb)
1289 {
1290 do {
1291 LIST_HEAD(dispose);
1292
1293 list_lru_walk(&sb->s_dentry_lru,
1294 dentry_lru_isolate_shrink, &dispose, 1024);
1295 shrink_dentry_list(&dispose);
1296 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1297 }
1298 EXPORT_SYMBOL(shrink_dcache_sb);
1299
1300 /**
1301 * enum d_walk_ret - action to talke during tree walk
1302 * @D_WALK_CONTINUE: contrinue walk
1303 * @D_WALK_QUIT: quit walk
1304 * @D_WALK_NORETRY: quit when retry is needed
1305 * @D_WALK_SKIP: skip this dentry and its children
1306 */
1307 enum d_walk_ret {
1308 D_WALK_CONTINUE,
1309 D_WALK_QUIT,
1310 D_WALK_NORETRY,
1311 D_WALK_SKIP,
1312 };
1313
1314 /**
1315 * d_walk - walk the dentry tree
1316 * @parent: start of walk
1317 * @data: data passed to @enter() and @finish()
1318 * @enter: callback when first entering the dentry
1319 *
1320 * The @enter() callbacks are called with d_lock held.
1321 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1322 static void d_walk(struct dentry *parent, void *data,
1323 enum d_walk_ret (*enter)(void *, struct dentry *))
1324 {
1325 struct dentry *this_parent, *dentry;
1326 unsigned seq = 0;
1327 enum d_walk_ret ret;
1328 bool retry = true;
1329
1330 again:
1331 read_seqbegin_or_lock(&rename_lock, &seq);
1332 this_parent = parent;
1333 spin_lock(&this_parent->d_lock);
1334
1335 ret = enter(data, this_parent);
1336 switch (ret) {
1337 case D_WALK_CONTINUE:
1338 break;
1339 case D_WALK_QUIT:
1340 case D_WALK_SKIP:
1341 goto out_unlock;
1342 case D_WALK_NORETRY:
1343 retry = false;
1344 break;
1345 }
1346 repeat:
1347 dentry = d_first_child(this_parent);
1348 resume:
1349 hlist_for_each_entry_from(dentry, d_sib) {
1350 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1351 continue;
1352
1353 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1354
1355 ret = enter(data, dentry);
1356 switch (ret) {
1357 case D_WALK_CONTINUE:
1358 break;
1359 case D_WALK_QUIT:
1360 spin_unlock(&dentry->d_lock);
1361 goto out_unlock;
1362 case D_WALK_NORETRY:
1363 retry = false;
1364 break;
1365 case D_WALK_SKIP:
1366 spin_unlock(&dentry->d_lock);
1367 continue;
1368 }
1369
1370 if (!hlist_empty(&dentry->d_children)) {
1371 spin_unlock(&this_parent->d_lock);
1372 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1373 this_parent = dentry;
1374 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1375 goto repeat;
1376 }
1377 spin_unlock(&dentry->d_lock);
1378 }
1379 /*
1380 * All done at this level ... ascend and resume the search.
1381 */
1382 rcu_read_lock();
1383 ascend:
1384 if (this_parent != parent) {
1385 dentry = this_parent;
1386 this_parent = dentry->d_parent;
1387
1388 spin_unlock(&dentry->d_lock);
1389 spin_lock(&this_parent->d_lock);
1390
1391 /* might go back up the wrong parent if we have had a rename. */
1392 if (need_seqretry(&rename_lock, seq))
1393 goto rename_retry;
1394 /* go into the first sibling still alive */
1395 hlist_for_each_entry_continue(dentry, d_sib) {
1396 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1397 rcu_read_unlock();
1398 goto resume;
1399 }
1400 }
1401 goto ascend;
1402 }
1403 if (need_seqretry(&rename_lock, seq))
1404 goto rename_retry;
1405 rcu_read_unlock();
1406
1407 out_unlock:
1408 spin_unlock(&this_parent->d_lock);
1409 done_seqretry(&rename_lock, seq);
1410 return;
1411
1412 rename_retry:
1413 spin_unlock(&this_parent->d_lock);
1414 rcu_read_unlock();
1415 BUG_ON(seq & 1);
1416 if (!retry)
1417 return;
1418 seq = 1;
1419 goto again;
1420 }
1421
1422 struct check_mount {
1423 struct vfsmount *mnt;
1424 unsigned int mounted;
1425 };
1426
1427 /* locks: mount_locked_reader && dentry->d_lock */
path_check_mount(void * data,struct dentry * dentry)1428 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1429 {
1430 struct check_mount *info = data;
1431 struct path path = { .mnt = info->mnt, .dentry = dentry };
1432
1433 if (likely(!d_mountpoint(dentry)))
1434 return D_WALK_CONTINUE;
1435 if (__path_is_mountpoint(&path)) {
1436 info->mounted = 1;
1437 return D_WALK_QUIT;
1438 }
1439 return D_WALK_CONTINUE;
1440 }
1441
1442 /**
1443 * path_has_submounts - check for mounts over a dentry in the
1444 * current namespace.
1445 * @parent: path to check.
1446 *
1447 * Return true if the parent or its subdirectories contain
1448 * a mount point in the current namespace.
1449 */
path_has_submounts(const struct path * parent)1450 int path_has_submounts(const struct path *parent)
1451 {
1452 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1453
1454 guard(mount_locked_reader)();
1455 d_walk(parent->dentry, &data, path_check_mount);
1456
1457 return data.mounted;
1458 }
1459 EXPORT_SYMBOL(path_has_submounts);
1460
1461 /*
1462 * Called by mount code to set a mountpoint and check if the mountpoint is
1463 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1464 * subtree can become unreachable).
1465 *
1466 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1467 * this reason take rename_lock and d_lock on dentry and ancestors.
1468 */
d_set_mounted(struct dentry * dentry)1469 int d_set_mounted(struct dentry *dentry)
1470 {
1471 struct dentry *p;
1472 int ret = -ENOENT;
1473 read_seqlock_excl(&rename_lock);
1474 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1475 /* Need exclusion wrt. d_invalidate() */
1476 spin_lock(&p->d_lock);
1477 if (unlikely(d_unhashed(p))) {
1478 spin_unlock(&p->d_lock);
1479 goto out;
1480 }
1481 spin_unlock(&p->d_lock);
1482 }
1483 spin_lock(&dentry->d_lock);
1484 if (!d_unlinked(dentry)) {
1485 ret = -EBUSY;
1486 if (!d_mountpoint(dentry)) {
1487 dentry->d_flags |= DCACHE_MOUNTED;
1488 ret = 0;
1489 }
1490 }
1491 spin_unlock(&dentry->d_lock);
1492 out:
1493 read_sequnlock_excl(&rename_lock);
1494 return ret;
1495 }
1496
1497 /*
1498 * Search the dentry child list of the specified parent,
1499 * and move any unused dentries to the end of the unused
1500 * list for prune_dcache(). We descend to the next level
1501 * whenever the d_children list is non-empty and continue
1502 * searching.
1503 *
1504 * It returns zero iff there are no unused children,
1505 * otherwise it returns the number of children moved to
1506 * the end of the unused list. This may not be the total
1507 * number of unused children, because select_parent can
1508 * drop the lock and return early due to latency
1509 * constraints.
1510 */
1511
1512 struct select_data {
1513 struct dentry *start;
1514 union {
1515 long found;
1516 struct dentry *victim;
1517 };
1518 struct list_head dispose;
1519 };
1520
select_collect(void * _data,struct dentry * dentry)1521 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1522 {
1523 struct select_data *data = _data;
1524 enum d_walk_ret ret = D_WALK_CONTINUE;
1525
1526 if (data->start == dentry)
1527 goto out;
1528
1529 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1530 data->found++;
1531 } else if (!dentry->d_lockref.count) {
1532 to_shrink_list(dentry, &data->dispose);
1533 data->found++;
1534 } else if (dentry->d_lockref.count < 0) {
1535 data->found++;
1536 }
1537 /*
1538 * We can return to the caller if we have found some (this
1539 * ensures forward progress). We'll be coming back to find
1540 * the rest.
1541 */
1542 if (!list_empty(&data->dispose))
1543 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1544 out:
1545 return ret;
1546 }
1547
select_collect_umount(void * _data,struct dentry * dentry)1548 static enum d_walk_ret select_collect_umount(void *_data, struct dentry *dentry)
1549 {
1550 if (dentry->d_flags & DCACHE_PERSISTENT) {
1551 dentry->d_flags &= ~DCACHE_PERSISTENT;
1552 dentry->d_lockref.count--;
1553 }
1554 return select_collect(_data, dentry);
1555 }
1556
select_collect2(void * _data,struct dentry * dentry)1557 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1558 {
1559 struct select_data *data = _data;
1560 enum d_walk_ret ret = D_WALK_CONTINUE;
1561
1562 if (data->start == dentry)
1563 goto out;
1564
1565 if (!dentry->d_lockref.count) {
1566 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1567 rcu_read_lock();
1568 data->victim = dentry;
1569 return D_WALK_QUIT;
1570 }
1571 to_shrink_list(dentry, &data->dispose);
1572 }
1573 /*
1574 * We can return to the caller if we have found some (this
1575 * ensures forward progress). We'll be coming back to find
1576 * the rest.
1577 */
1578 if (!list_empty(&data->dispose))
1579 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1580 out:
1581 return ret;
1582 }
1583
1584 /**
1585 * shrink_dcache_tree - prune dcache
1586 * @parent: parent of entries to prune
1587 * @for_umount: true if we want to unpin the persistent ones
1588 *
1589 * Prune the dcache to remove unused children of the parent dentry.
1590 */
shrink_dcache_tree(struct dentry * parent,bool for_umount)1591 static void shrink_dcache_tree(struct dentry *parent, bool for_umount)
1592 {
1593 for (;;) {
1594 struct select_data data = {.start = parent};
1595
1596 INIT_LIST_HEAD(&data.dispose);
1597 d_walk(parent, &data,
1598 for_umount ? select_collect_umount : select_collect);
1599
1600 if (!list_empty(&data.dispose)) {
1601 shrink_dentry_list(&data.dispose);
1602 continue;
1603 }
1604
1605 cond_resched();
1606 if (!data.found)
1607 break;
1608 data.victim = NULL;
1609 d_walk(parent, &data, select_collect2);
1610 if (data.victim) {
1611 spin_lock(&data.victim->d_lock);
1612 if (!lock_for_kill(data.victim)) {
1613 spin_unlock(&data.victim->d_lock);
1614 rcu_read_unlock();
1615 } else {
1616 shrink_kill(data.victim);
1617 }
1618 }
1619 if (!list_empty(&data.dispose))
1620 shrink_dentry_list(&data.dispose);
1621 }
1622 }
1623
shrink_dcache_parent(struct dentry * parent)1624 void shrink_dcache_parent(struct dentry *parent)
1625 {
1626 shrink_dcache_tree(parent, false);
1627 }
1628 EXPORT_SYMBOL(shrink_dcache_parent);
1629
umount_check(void * _data,struct dentry * dentry)1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631 {
1632 /* it has busy descendents; complain about those instead */
1633 if (!hlist_empty(&dentry->d_children))
1634 return D_WALK_CONTINUE;
1635
1636 /* root with refcount 1 is fine */
1637 if (dentry == _data && dentry->d_lockref.count == 1)
1638 return D_WALK_CONTINUE;
1639
1640 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1641 " still in use (%d) [unmount of %s %s]\n",
1642 dentry,
1643 dentry->d_inode ?
1644 dentry->d_inode->i_ino : 0UL,
1645 dentry,
1646 dentry->d_lockref.count,
1647 dentry->d_sb->s_type->name,
1648 dentry->d_sb->s_id);
1649 return D_WALK_CONTINUE;
1650 }
1651
do_one_tree(struct dentry * dentry)1652 static void do_one_tree(struct dentry *dentry)
1653 {
1654 shrink_dcache_tree(dentry, true);
1655 d_walk(dentry, dentry, umount_check);
1656 d_drop(dentry);
1657 dput(dentry);
1658 }
1659
1660 /*
1661 * destroy the dentries attached to a superblock on unmounting
1662 */
shrink_dcache_for_umount(struct super_block * sb)1663 void shrink_dcache_for_umount(struct super_block *sb)
1664 {
1665 struct dentry *dentry;
1666
1667 rwsem_assert_held_write(&sb->s_umount);
1668
1669 dentry = sb->s_root;
1670 sb->s_root = NULL;
1671 do_one_tree(dentry);
1672
1673 while (!hlist_bl_empty(&sb->s_roots)) {
1674 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1675 do_one_tree(dentry);
1676 }
1677 }
1678
find_submount(void * _data,struct dentry * dentry)1679 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1680 {
1681 struct dentry **victim = _data;
1682 if (d_mountpoint(dentry)) {
1683 *victim = dget_dlock(dentry);
1684 return D_WALK_QUIT;
1685 }
1686 return D_WALK_CONTINUE;
1687 }
1688
1689 /**
1690 * d_invalidate - detach submounts, prune dcache, and drop
1691 * @dentry: dentry to invalidate (aka detach, prune and drop)
1692 */
d_invalidate(struct dentry * dentry)1693 void d_invalidate(struct dentry *dentry)
1694 {
1695 bool had_submounts = false;
1696 spin_lock(&dentry->d_lock);
1697 if (d_unhashed(dentry)) {
1698 spin_unlock(&dentry->d_lock);
1699 return;
1700 }
1701 __d_drop(dentry);
1702 spin_unlock(&dentry->d_lock);
1703
1704 /* Negative dentries can be dropped without further checks */
1705 if (!dentry->d_inode)
1706 return;
1707
1708 shrink_dcache_parent(dentry);
1709 for (;;) {
1710 struct dentry *victim = NULL;
1711 d_walk(dentry, &victim, find_submount);
1712 if (!victim) {
1713 if (had_submounts)
1714 shrink_dcache_parent(dentry);
1715 return;
1716 }
1717 had_submounts = true;
1718 detach_mounts(victim);
1719 dput(victim);
1720 }
1721 }
1722 EXPORT_SYMBOL(d_invalidate);
1723
1724 /**
1725 * __d_alloc - allocate a dcache entry
1726 * @sb: filesystem it will belong to
1727 * @name: qstr of the name
1728 *
1729 * Allocates a dentry. It returns %NULL if there is insufficient memory
1730 * available. On a success the dentry is returned. The name passed in is
1731 * copied and the copy passed in may be reused after this call.
1732 */
1733
__d_alloc(struct super_block * sb,const struct qstr * name)1734 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1735 {
1736 struct dentry *dentry;
1737 char *dname;
1738 int err;
1739
1740 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1741 GFP_KERNEL);
1742 if (!dentry)
1743 return NULL;
1744
1745 /*
1746 * We guarantee that the inline name is always NUL-terminated.
1747 * This way the memcpy() done by the name switching in rename
1748 * will still always have a NUL at the end, even if we might
1749 * be overwriting an internal NUL character
1750 */
1751 dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1752 if (unlikely(!name)) {
1753 name = &slash_name;
1754 dname = dentry->d_shortname.string;
1755 } else if (name->len > DNAME_INLINE_LEN-1) {
1756 size_t size = offsetof(struct external_name, name[1]);
1757 struct external_name *p = kmalloc(size + name->len,
1758 GFP_KERNEL_ACCOUNT |
1759 __GFP_RECLAIMABLE);
1760 if (!p) {
1761 kmem_cache_free(dentry_cache, dentry);
1762 return NULL;
1763 }
1764 atomic_set(&p->count, 1);
1765 dname = p->name;
1766 } else {
1767 dname = dentry->d_shortname.string;
1768 }
1769
1770 dentry->__d_name.len = name->len;
1771 dentry->__d_name.hash = name->hash;
1772 memcpy(dname, name->name, name->len);
1773 dname[name->len] = 0;
1774
1775 /* Make sure we always see the terminating NUL character */
1776 smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1777
1778 dentry->d_flags = 0;
1779 lockref_init(&dentry->d_lockref);
1780 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1781 dentry->d_inode = NULL;
1782 dentry->d_parent = dentry;
1783 dentry->d_sb = sb;
1784 dentry->d_op = sb->__s_d_op;
1785 dentry->d_flags = sb->s_d_flags;
1786 dentry->d_fsdata = NULL;
1787 INIT_HLIST_BL_NODE(&dentry->d_hash);
1788 INIT_LIST_HEAD(&dentry->d_lru);
1789 INIT_HLIST_HEAD(&dentry->d_children);
1790 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1791 INIT_HLIST_NODE(&dentry->d_sib);
1792
1793 if (dentry->d_op && dentry->d_op->d_init) {
1794 err = dentry->d_op->d_init(dentry);
1795 if (err) {
1796 if (dname_external(dentry))
1797 kfree(external_name(dentry));
1798 kmem_cache_free(dentry_cache, dentry);
1799 return NULL;
1800 }
1801 }
1802
1803 this_cpu_inc(nr_dentry);
1804
1805 return dentry;
1806 }
1807
1808 /**
1809 * d_alloc - allocate a dcache entry
1810 * @parent: parent of entry to allocate
1811 * @name: qstr of the name
1812 *
1813 * Allocates a dentry. It returns %NULL if there is insufficient memory
1814 * available. On a success the dentry is returned. The name passed in is
1815 * copied and the copy passed in may be reused after this call.
1816 */
d_alloc(struct dentry * parent,const struct qstr * name)1817 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1818 {
1819 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1820 if (!dentry)
1821 return NULL;
1822 spin_lock(&parent->d_lock);
1823 /*
1824 * don't need child lock because it is not subject
1825 * to concurrency here
1826 */
1827 dentry->d_parent = dget_dlock(parent);
1828 hlist_add_head(&dentry->d_sib, &parent->d_children);
1829 spin_unlock(&parent->d_lock);
1830
1831 return dentry;
1832 }
1833 EXPORT_SYMBOL(d_alloc);
1834
d_alloc_anon(struct super_block * sb)1835 struct dentry *d_alloc_anon(struct super_block *sb)
1836 {
1837 return __d_alloc(sb, NULL);
1838 }
1839 EXPORT_SYMBOL(d_alloc_anon);
1840
d_alloc_cursor(struct dentry * parent)1841 struct dentry *d_alloc_cursor(struct dentry * parent)
1842 {
1843 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1844 if (dentry) {
1845 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1846 dentry->d_parent = dget(parent);
1847 }
1848 return dentry;
1849 }
1850
1851 /**
1852 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1853 * @sb: the superblock
1854 * @name: qstr of the name
1855 *
1856 * For a filesystem that just pins its dentries in memory and never
1857 * performs lookups at all, return an unhashed IS_ROOT dentry.
1858 * This is used for pipes, sockets et.al. - the stuff that should
1859 * never be anyone's children or parents. Unlike all other
1860 * dentries, these will not have RCU delay between dropping the
1861 * last reference and freeing them.
1862 *
1863 * The only user is alloc_file_pseudo() and that's what should
1864 * be considered a public interface. Don't use directly.
1865 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1866 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1867 {
1868 static const struct dentry_operations anon_ops = {
1869 .d_dname = simple_dname
1870 };
1871 struct dentry *dentry = __d_alloc(sb, name);
1872 if (likely(dentry)) {
1873 dentry->d_flags |= DCACHE_NORCU;
1874 /* d_op_flags(&anon_ops) is 0 */
1875 if (!dentry->d_op)
1876 dentry->d_op = &anon_ops;
1877 }
1878 return dentry;
1879 }
1880
d_alloc_name(struct dentry * parent,const char * name)1881 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1882 {
1883 struct qstr q;
1884
1885 q.name = name;
1886 q.hash_len = hashlen_string(parent, name);
1887 return d_alloc(parent, &q);
1888 }
1889 EXPORT_SYMBOL(d_alloc_name);
1890
1891 #define DCACHE_OP_FLAGS \
1892 (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1893 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1894 DCACHE_OP_REAL)
1895
d_op_flags(const struct dentry_operations * op)1896 static unsigned int d_op_flags(const struct dentry_operations *op)
1897 {
1898 unsigned int flags = 0;
1899 if (op) {
1900 if (op->d_hash)
1901 flags |= DCACHE_OP_HASH;
1902 if (op->d_compare)
1903 flags |= DCACHE_OP_COMPARE;
1904 if (op->d_revalidate)
1905 flags |= DCACHE_OP_REVALIDATE;
1906 if (op->d_weak_revalidate)
1907 flags |= DCACHE_OP_WEAK_REVALIDATE;
1908 if (op->d_delete)
1909 flags |= DCACHE_OP_DELETE;
1910 if (op->d_prune)
1911 flags |= DCACHE_OP_PRUNE;
1912 if (op->d_real)
1913 flags |= DCACHE_OP_REAL;
1914 }
1915 return flags;
1916 }
1917
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1918 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1919 {
1920 unsigned int flags = d_op_flags(op);
1921 WARN_ON_ONCE(dentry->d_op);
1922 WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1923 dentry->d_op = op;
1924 if (flags)
1925 dentry->d_flags |= flags;
1926 }
1927
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1928 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1929 {
1930 unsigned int flags = d_op_flags(ops);
1931 s->__s_d_op = ops;
1932 s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1933 }
1934 EXPORT_SYMBOL(set_default_d_op);
1935
d_flags_for_inode(struct inode * inode)1936 static unsigned d_flags_for_inode(struct inode *inode)
1937 {
1938 unsigned add_flags = DCACHE_REGULAR_TYPE;
1939
1940 if (!inode)
1941 return DCACHE_MISS_TYPE;
1942
1943 if (S_ISDIR(inode->i_mode)) {
1944 add_flags = DCACHE_DIRECTORY_TYPE;
1945 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1946 if (unlikely(!inode->i_op->lookup))
1947 add_flags = DCACHE_AUTODIR_TYPE;
1948 else
1949 inode->i_opflags |= IOP_LOOKUP;
1950 }
1951 goto type_determined;
1952 }
1953
1954 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1955 if (unlikely(inode->i_op->get_link)) {
1956 add_flags = DCACHE_SYMLINK_TYPE;
1957 goto type_determined;
1958 }
1959 inode->i_opflags |= IOP_NOFOLLOW;
1960 }
1961
1962 if (unlikely(!S_ISREG(inode->i_mode)))
1963 add_flags = DCACHE_SPECIAL_TYPE;
1964
1965 type_determined:
1966 if (unlikely(IS_AUTOMOUNT(inode)))
1967 add_flags |= DCACHE_NEED_AUTOMOUNT;
1968 return add_flags;
1969 }
1970
__d_instantiate(struct dentry * dentry,struct inode * inode)1971 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1972 {
1973 unsigned add_flags = d_flags_for_inode(inode);
1974 WARN_ON(d_in_lookup(dentry));
1975
1976 /*
1977 * The negative counter only tracks dentries on the LRU. Don't dec if
1978 * d_lru is on another list.
1979 */
1980 if ((dentry->d_flags &
1981 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1982 this_cpu_dec(nr_dentry_negative);
1983 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1984 raw_write_seqcount_begin(&dentry->d_seq);
1985 __d_set_inode_and_type(dentry, inode, add_flags);
1986 raw_write_seqcount_end(&dentry->d_seq);
1987 fsnotify_update_flags(dentry);
1988 }
1989
1990 /**
1991 * d_instantiate - fill in inode information for a dentry
1992 * @entry: dentry to complete
1993 * @inode: inode to attach to this dentry
1994 *
1995 * Fill in inode information in the entry.
1996 *
1997 * This turns negative dentries into productive full members
1998 * of society.
1999 *
2000 * NOTE! This assumes that the inode count has been incremented
2001 * (or otherwise set) by the caller to indicate that it is now
2002 * in use by the dcache.
2003 */
2004
d_instantiate(struct dentry * entry,struct inode * inode)2005 void d_instantiate(struct dentry *entry, struct inode * inode)
2006 {
2007 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2008 if (inode) {
2009 security_d_instantiate(entry, inode);
2010 spin_lock(&inode->i_lock);
2011 spin_lock(&entry->d_lock);
2012 __d_instantiate(entry, inode);
2013 spin_unlock(&entry->d_lock);
2014 spin_unlock(&inode->i_lock);
2015 }
2016 }
2017 EXPORT_SYMBOL(d_instantiate);
2018
2019 /*
2020 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2021 * with lockdep-related part of unlock_new_inode() done before
2022 * anything else. Use that instead of open-coding d_instantiate()/
2023 * unlock_new_inode() combinations.
2024 */
d_instantiate_new(struct dentry * entry,struct inode * inode)2025 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2026 {
2027 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2028 BUG_ON(!inode);
2029 lockdep_annotate_inode_mutex_key(inode);
2030 security_d_instantiate(entry, inode);
2031 spin_lock(&inode->i_lock);
2032 spin_lock(&entry->d_lock);
2033 __d_instantiate(entry, inode);
2034 spin_unlock(&entry->d_lock);
2035 WARN_ON(!(inode_state_read(inode) & I_NEW));
2036 inode_state_clear(inode, I_NEW | I_CREATING);
2037 inode_wake_up_bit(inode, __I_NEW);
2038 spin_unlock(&inode->i_lock);
2039 }
2040 EXPORT_SYMBOL(d_instantiate_new);
2041
d_make_root(struct inode * root_inode)2042 struct dentry *d_make_root(struct inode *root_inode)
2043 {
2044 struct dentry *res = NULL;
2045
2046 if (root_inode) {
2047 res = d_alloc_anon(root_inode->i_sb);
2048 if (res)
2049 d_instantiate(res, root_inode);
2050 else
2051 iput(root_inode);
2052 }
2053 return res;
2054 }
2055 EXPORT_SYMBOL(d_make_root);
2056
__d_obtain_alias(struct inode * inode,bool disconnected)2057 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2058 {
2059 struct super_block *sb;
2060 struct dentry *new, *res;
2061
2062 if (!inode)
2063 return ERR_PTR(-ESTALE);
2064 if (IS_ERR(inode))
2065 return ERR_CAST(inode);
2066
2067 sb = inode->i_sb;
2068
2069 res = d_find_any_alias(inode); /* existing alias? */
2070 if (res)
2071 goto out;
2072
2073 new = d_alloc_anon(sb);
2074 if (!new) {
2075 res = ERR_PTR(-ENOMEM);
2076 goto out;
2077 }
2078
2079 security_d_instantiate(new, inode);
2080 spin_lock(&inode->i_lock);
2081 res = __d_find_any_alias(inode); /* recheck under lock */
2082 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2083 unsigned add_flags = d_flags_for_inode(inode);
2084
2085 if (disconnected)
2086 add_flags |= DCACHE_DISCONNECTED;
2087
2088 spin_lock(&new->d_lock);
2089 __d_set_inode_and_type(new, inode, add_flags);
2090 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2091 if (!disconnected) {
2092 hlist_bl_lock(&sb->s_roots);
2093 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2094 hlist_bl_unlock(&sb->s_roots);
2095 }
2096 spin_unlock(&new->d_lock);
2097 spin_unlock(&inode->i_lock);
2098 inode = NULL; /* consumed by new->d_inode */
2099 res = new;
2100 } else {
2101 spin_unlock(&inode->i_lock);
2102 dput(new);
2103 }
2104
2105 out:
2106 iput(inode);
2107 return res;
2108 }
2109
2110 /**
2111 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2112 * @inode: inode to allocate the dentry for
2113 *
2114 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2115 * similar open by handle operations. The returned dentry may be anonymous,
2116 * or may have a full name (if the inode was already in the cache).
2117 *
2118 * When called on a directory inode, we must ensure that the inode only ever
2119 * has one dentry. If a dentry is found, that is returned instead of
2120 * allocating a new one.
2121 *
2122 * On successful return, the reference to the inode has been transferred
2123 * to the dentry. In case of an error the reference on the inode is released.
2124 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2125 * be passed in and the error will be propagated to the return value,
2126 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2127 */
d_obtain_alias(struct inode * inode)2128 struct dentry *d_obtain_alias(struct inode *inode)
2129 {
2130 return __d_obtain_alias(inode, true);
2131 }
2132 EXPORT_SYMBOL(d_obtain_alias);
2133
2134 /**
2135 * d_obtain_root - find or allocate a dentry for a given inode
2136 * @inode: inode to allocate the dentry for
2137 *
2138 * Obtain an IS_ROOT dentry for the root of a filesystem.
2139 *
2140 * We must ensure that directory inodes only ever have one dentry. If a
2141 * dentry is found, that is returned instead of allocating a new one.
2142 *
2143 * On successful return, the reference to the inode has been transferred
2144 * to the dentry. In case of an error the reference on the inode is
2145 * released. A %NULL or IS_ERR inode may be passed in and will be the
2146 * error will be propagate to the return value, with a %NULL @inode
2147 * replaced by ERR_PTR(-ESTALE).
2148 */
d_obtain_root(struct inode * inode)2149 struct dentry *d_obtain_root(struct inode *inode)
2150 {
2151 return __d_obtain_alias(inode, false);
2152 }
2153 EXPORT_SYMBOL(d_obtain_root);
2154
2155 /**
2156 * d_add_ci - lookup or allocate new dentry with case-exact name
2157 * @dentry: the negative dentry that was passed to the parent's lookup func
2158 * @inode: the inode case-insensitive lookup has found
2159 * @name: the case-exact name to be associated with the returned dentry
2160 *
2161 * This is to avoid filling the dcache with case-insensitive names to the
2162 * same inode, only the actual correct case is stored in the dcache for
2163 * case-insensitive filesystems.
2164 *
2165 * For a case-insensitive lookup match and if the case-exact dentry
2166 * already exists in the dcache, use it and return it.
2167 *
2168 * If no entry exists with the exact case name, allocate new dentry with
2169 * the exact case, and return the spliced entry.
2170 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2171 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2172 struct qstr *name)
2173 {
2174 struct dentry *found, *res;
2175
2176 /*
2177 * First check if a dentry matching the name already exists,
2178 * if not go ahead and create it now.
2179 */
2180 found = d_hash_and_lookup(dentry->d_parent, name);
2181 if (found) {
2182 iput(inode);
2183 return found;
2184 }
2185 if (d_in_lookup(dentry)) {
2186 found = d_alloc_parallel(dentry->d_parent, name,
2187 dentry->d_wait);
2188 if (IS_ERR(found) || !d_in_lookup(found)) {
2189 iput(inode);
2190 return found;
2191 }
2192 } else {
2193 found = d_alloc(dentry->d_parent, name);
2194 if (!found) {
2195 iput(inode);
2196 return ERR_PTR(-ENOMEM);
2197 }
2198 }
2199 res = d_splice_alias(inode, found);
2200 if (res) {
2201 d_lookup_done(found);
2202 dput(found);
2203 return res;
2204 }
2205 return found;
2206 }
2207 EXPORT_SYMBOL(d_add_ci);
2208
2209 /**
2210 * d_same_name - compare dentry name with case-exact name
2211 * @dentry: the negative dentry that was passed to the parent's lookup func
2212 * @parent: parent dentry
2213 * @name: the case-exact name to be associated with the returned dentry
2214 *
2215 * Return: true if names are same, or false
2216 */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2217 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2218 const struct qstr *name)
2219 {
2220 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2221 if (dentry->d_name.len != name->len)
2222 return false;
2223 return dentry_cmp(dentry, name->name, name->len) == 0;
2224 }
2225 return parent->d_op->d_compare(dentry,
2226 dentry->d_name.len, dentry->d_name.name,
2227 name) == 0;
2228 }
2229 EXPORT_SYMBOL_GPL(d_same_name);
2230
2231 /*
2232 * This is __d_lookup_rcu() when the parent dentry has
2233 * DCACHE_OP_COMPARE, which makes things much nastier.
2234 */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2235 static noinline struct dentry *__d_lookup_rcu_op_compare(
2236 const struct dentry *parent,
2237 const struct qstr *name,
2238 unsigned *seqp)
2239 {
2240 u64 hashlen = name->hash_len;
2241 struct hlist_bl_head *b = d_hash(hashlen);
2242 struct hlist_bl_node *node;
2243 struct dentry *dentry;
2244
2245 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246 int tlen;
2247 const char *tname;
2248 unsigned seq;
2249
2250 seqretry:
2251 seq = raw_seqcount_begin(&dentry->d_seq);
2252 if (dentry->d_parent != parent)
2253 continue;
2254 if (d_unhashed(dentry))
2255 continue;
2256 if (dentry->d_name.hash != hashlen_hash(hashlen))
2257 continue;
2258 tlen = dentry->d_name.len;
2259 tname = dentry->d_name.name;
2260 /* we want a consistent (name,len) pair */
2261 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2262 cpu_relax();
2263 goto seqretry;
2264 }
2265 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2266 continue;
2267 *seqp = seq;
2268 return dentry;
2269 }
2270 return NULL;
2271 }
2272
2273 /**
2274 * __d_lookup_rcu - search for a dentry (racy, store-free)
2275 * @parent: parent dentry
2276 * @name: qstr of name we wish to find
2277 * @seqp: returns d_seq value at the point where the dentry was found
2278 * Returns: dentry, or NULL
2279 *
2280 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2281 * resolution (store-free path walking) design described in
2282 * Documentation/filesystems/path-lookup.txt.
2283 *
2284 * This is not to be used outside core vfs.
2285 *
2286 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2287 * held, and rcu_read_lock held. The returned dentry must not be stored into
2288 * without taking d_lock and checking d_seq sequence count against @seq
2289 * returned here.
2290 *
2291 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2292 * the returned dentry, so long as its parent's seqlock is checked after the
2293 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2294 * is formed, giving integrity down the path walk.
2295 *
2296 * NOTE! The caller *has* to check the resulting dentry against the sequence
2297 * number we've returned before using any of the resulting dentry state!
2298 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2299 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2300 const struct qstr *name,
2301 unsigned *seqp)
2302 {
2303 u64 hashlen = name->hash_len;
2304 const unsigned char *str = name->name;
2305 struct hlist_bl_head *b = d_hash(hashlen);
2306 struct hlist_bl_node *node;
2307 struct dentry *dentry;
2308
2309 /*
2310 * Note: There is significant duplication with __d_lookup_rcu which is
2311 * required to prevent single threaded performance regressions
2312 * especially on architectures where smp_rmb (in seqcounts) are costly.
2313 * Keep the two functions in sync.
2314 */
2315
2316 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2317 return __d_lookup_rcu_op_compare(parent, name, seqp);
2318
2319 /*
2320 * The hash list is protected using RCU.
2321 *
2322 * Carefully use d_seq when comparing a candidate dentry, to avoid
2323 * races with d_move().
2324 *
2325 * It is possible that concurrent renames can mess up our list
2326 * walk here and result in missing our dentry, resulting in the
2327 * false-negative result. d_lookup() protects against concurrent
2328 * renames using rename_lock seqlock.
2329 *
2330 * See Documentation/filesystems/path-lookup.txt for more details.
2331 */
2332 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2333 unsigned seq;
2334
2335 /*
2336 * The dentry sequence count protects us from concurrent
2337 * renames, and thus protects parent and name fields.
2338 *
2339 * The caller must perform a seqcount check in order
2340 * to do anything useful with the returned dentry.
2341 *
2342 * NOTE! We do a "raw" seqcount_begin here. That means that
2343 * we don't wait for the sequence count to stabilize if it
2344 * is in the middle of a sequence change. If we do the slow
2345 * dentry compare, we will do seqretries until it is stable,
2346 * and if we end up with a successful lookup, we actually
2347 * want to exit RCU lookup anyway.
2348 *
2349 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2350 * we are still guaranteed NUL-termination of ->d_name.name.
2351 */
2352 seq = raw_seqcount_begin(&dentry->d_seq);
2353 if (dentry->d_parent != parent)
2354 continue;
2355 if (dentry->d_name.hash_len != hashlen)
2356 continue;
2357 if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2358 continue;
2359 /*
2360 * Check for the dentry being unhashed.
2361 *
2362 * As tempting as it is, we *can't* skip it because of a race window
2363 * between us finding the dentry before it gets unhashed and loading
2364 * the sequence counter after unhashing is finished.
2365 *
2366 * We can at least predict on it.
2367 */
2368 if (unlikely(d_unhashed(dentry)))
2369 continue;
2370 *seqp = seq;
2371 return dentry;
2372 }
2373 return NULL;
2374 }
2375
2376 /**
2377 * d_lookup - search for a dentry
2378 * @parent: parent dentry
2379 * @name: qstr of name we wish to find
2380 * Returns: dentry, or NULL
2381 *
2382 * d_lookup searches the children of the parent dentry for the name in
2383 * question. If the dentry is found its reference count is incremented and the
2384 * dentry is returned. The caller must use dput to free the entry when it has
2385 * finished using it. %NULL is returned if the dentry does not exist.
2386 */
d_lookup(const struct dentry * parent,const struct qstr * name)2387 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2388 {
2389 struct dentry *dentry;
2390 unsigned seq;
2391
2392 do {
2393 seq = read_seqbegin(&rename_lock);
2394 dentry = __d_lookup(parent, name);
2395 if (dentry)
2396 break;
2397 } while (read_seqretry(&rename_lock, seq));
2398 return dentry;
2399 }
2400 EXPORT_SYMBOL(d_lookup);
2401
2402 /**
2403 * __d_lookup - search for a dentry (racy)
2404 * @parent: parent dentry
2405 * @name: qstr of name we wish to find
2406 * Returns: dentry, or NULL
2407 *
2408 * __d_lookup is like d_lookup, however it may (rarely) return a
2409 * false-negative result due to unrelated rename activity.
2410 *
2411 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2412 * however it must be used carefully, eg. with a following d_lookup in
2413 * the case of failure.
2414 *
2415 * __d_lookup callers must be commented.
2416 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2417 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2418 {
2419 unsigned int hash = name->hash;
2420 struct hlist_bl_head *b = d_hash(hash);
2421 struct hlist_bl_node *node;
2422 struct dentry *found = NULL;
2423 struct dentry *dentry;
2424
2425 /*
2426 * Note: There is significant duplication with __d_lookup_rcu which is
2427 * required to prevent single threaded performance regressions
2428 * especially on architectures where smp_rmb (in seqcounts) are costly.
2429 * Keep the two functions in sync.
2430 */
2431
2432 /*
2433 * The hash list is protected using RCU.
2434 *
2435 * Take d_lock when comparing a candidate dentry, to avoid races
2436 * with d_move().
2437 *
2438 * It is possible that concurrent renames can mess up our list
2439 * walk here and result in missing our dentry, resulting in the
2440 * false-negative result. d_lookup() protects against concurrent
2441 * renames using rename_lock seqlock.
2442 *
2443 * See Documentation/filesystems/path-lookup.txt for more details.
2444 */
2445 rcu_read_lock();
2446
2447 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2448
2449 if (dentry->d_name.hash != hash)
2450 continue;
2451
2452 spin_lock(&dentry->d_lock);
2453 if (dentry->d_parent != parent)
2454 goto next;
2455 if (d_unhashed(dentry))
2456 goto next;
2457
2458 if (!d_same_name(dentry, parent, name))
2459 goto next;
2460
2461 dentry->d_lockref.count++;
2462 found = dentry;
2463 spin_unlock(&dentry->d_lock);
2464 break;
2465 next:
2466 spin_unlock(&dentry->d_lock);
2467 }
2468 rcu_read_unlock();
2469
2470 return found;
2471 }
2472
2473 /**
2474 * d_hash_and_lookup - hash the qstr then search for a dentry
2475 * @dir: Directory to search in
2476 * @name: qstr of name we wish to find
2477 *
2478 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2479 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2480 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2481 {
2482 /*
2483 * Check for a fs-specific hash function. Note that we must
2484 * calculate the standard hash first, as the d_op->d_hash()
2485 * routine may choose to leave the hash value unchanged.
2486 */
2487 name->hash = full_name_hash(dir, name->name, name->len);
2488 if (dir->d_flags & DCACHE_OP_HASH) {
2489 int err = dir->d_op->d_hash(dir, name);
2490 if (unlikely(err < 0))
2491 return ERR_PTR(err);
2492 }
2493 return d_lookup(dir, name);
2494 }
2495
2496 /*
2497 * When a file is deleted, we have two options:
2498 * - turn this dentry into a negative dentry
2499 * - unhash this dentry and free it.
2500 *
2501 * Usually, we want to just turn this into
2502 * a negative dentry, but if anybody else is
2503 * currently using the dentry or the inode
2504 * we can't do that and we fall back on removing
2505 * it from the hash queues and waiting for
2506 * it to be deleted later when it has no users
2507 */
2508
2509 /**
2510 * d_delete - delete a dentry
2511 * @dentry: The dentry to delete
2512 *
2513 * Turn the dentry into a negative dentry if possible, otherwise
2514 * remove it from the hash queues so it can be deleted later
2515 */
2516
d_delete(struct dentry * dentry)2517 void d_delete(struct dentry * dentry)
2518 {
2519 struct inode *inode = dentry->d_inode;
2520
2521 spin_lock(&inode->i_lock);
2522 spin_lock(&dentry->d_lock);
2523 /*
2524 * Are we the only user?
2525 */
2526 if (dentry->d_lockref.count == 1) {
2527 if (dentry_negative_policy)
2528 __d_drop(dentry);
2529 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2530 dentry_unlink_inode(dentry);
2531 } else {
2532 __d_drop(dentry);
2533 spin_unlock(&dentry->d_lock);
2534 spin_unlock(&inode->i_lock);
2535 }
2536 }
2537 EXPORT_SYMBOL(d_delete);
2538
__d_rehash(struct dentry * entry)2539 static void __d_rehash(struct dentry *entry)
2540 {
2541 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2542
2543 hlist_bl_lock(b);
2544 hlist_bl_add_head_rcu(&entry->d_hash, b);
2545 hlist_bl_unlock(b);
2546 }
2547
2548 /**
2549 * d_rehash - add an entry back to the hash
2550 * @entry: dentry to add to the hash
2551 *
2552 * Adds a dentry to the hash according to its name.
2553 */
2554
d_rehash(struct dentry * entry)2555 void d_rehash(struct dentry * entry)
2556 {
2557 spin_lock(&entry->d_lock);
2558 __d_rehash(entry);
2559 spin_unlock(&entry->d_lock);
2560 }
2561 EXPORT_SYMBOL(d_rehash);
2562
start_dir_add(struct inode * dir)2563 static inline unsigned start_dir_add(struct inode *dir)
2564 {
2565 preempt_disable_nested();
2566 for (;;) {
2567 unsigned n = READ_ONCE(dir->i_dir_seq);
2568 if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2569 return n;
2570 cpu_relax();
2571 }
2572 }
2573
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2574 static inline void end_dir_add(struct inode *dir, unsigned int n,
2575 wait_queue_head_t *d_wait)
2576 {
2577 smp_store_release(&dir->i_dir_seq, n + 2);
2578 preempt_enable_nested();
2579 if (wq_has_sleeper(d_wait))
2580 wake_up_all(d_wait);
2581 }
2582
d_wait_lookup(struct dentry * dentry)2583 static void d_wait_lookup(struct dentry *dentry)
2584 {
2585 if (d_in_lookup(dentry)) {
2586 DECLARE_WAITQUEUE(wait, current);
2587 add_wait_queue(dentry->d_wait, &wait);
2588 do {
2589 set_current_state(TASK_UNINTERRUPTIBLE);
2590 spin_unlock(&dentry->d_lock);
2591 schedule();
2592 spin_lock(&dentry->d_lock);
2593 } while (d_in_lookup(dentry));
2594 }
2595 }
2596
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2597 struct dentry *d_alloc_parallel(struct dentry *parent,
2598 const struct qstr *name,
2599 wait_queue_head_t *wq)
2600 {
2601 unsigned int hash = name->hash;
2602 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2603 struct hlist_bl_node *node;
2604 struct dentry *new = __d_alloc(parent->d_sb, name);
2605 struct dentry *dentry;
2606 unsigned seq, r_seq, d_seq;
2607
2608 if (unlikely(!new))
2609 return ERR_PTR(-ENOMEM);
2610
2611 new->d_flags |= DCACHE_PAR_LOOKUP;
2612 spin_lock(&parent->d_lock);
2613 new->d_parent = dget_dlock(parent);
2614 hlist_add_head(&new->d_sib, &parent->d_children);
2615 if (parent->d_flags & DCACHE_DISCONNECTED)
2616 new->d_flags |= DCACHE_DISCONNECTED;
2617 spin_unlock(&parent->d_lock);
2618
2619 retry:
2620 rcu_read_lock();
2621 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2622 r_seq = read_seqbegin(&rename_lock);
2623 dentry = __d_lookup_rcu(parent, name, &d_seq);
2624 if (unlikely(dentry)) {
2625 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2626 rcu_read_unlock();
2627 goto retry;
2628 }
2629 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2630 rcu_read_unlock();
2631 dput(dentry);
2632 goto retry;
2633 }
2634 rcu_read_unlock();
2635 dput(new);
2636 return dentry;
2637 }
2638 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2639 rcu_read_unlock();
2640 goto retry;
2641 }
2642
2643 if (unlikely(seq & 1)) {
2644 rcu_read_unlock();
2645 goto retry;
2646 }
2647
2648 hlist_bl_lock(b);
2649 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2650 hlist_bl_unlock(b);
2651 rcu_read_unlock();
2652 goto retry;
2653 }
2654 /*
2655 * No changes for the parent since the beginning of d_lookup().
2656 * Since all removals from the chain happen with hlist_bl_lock(),
2657 * any potential in-lookup matches are going to stay here until
2658 * we unlock the chain. All fields are stable in everything
2659 * we encounter.
2660 */
2661 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2662 if (dentry->d_name.hash != hash)
2663 continue;
2664 if (dentry->d_parent != parent)
2665 continue;
2666 if (!d_same_name(dentry, parent, name))
2667 continue;
2668 hlist_bl_unlock(b);
2669 /* now we can try to grab a reference */
2670 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2671 rcu_read_unlock();
2672 goto retry;
2673 }
2674
2675 rcu_read_unlock();
2676 /*
2677 * somebody is likely to be still doing lookup for it;
2678 * wait for them to finish
2679 */
2680 spin_lock(&dentry->d_lock);
2681 d_wait_lookup(dentry);
2682 /*
2683 * it's not in-lookup anymore; in principle we should repeat
2684 * everything from dcache lookup, but it's likely to be what
2685 * d_lookup() would've found anyway. If it is, just return it;
2686 * otherwise we really have to repeat the whole thing.
2687 */
2688 if (unlikely(dentry->d_name.hash != hash))
2689 goto mismatch;
2690 if (unlikely(dentry->d_parent != parent))
2691 goto mismatch;
2692 if (unlikely(d_unhashed(dentry)))
2693 goto mismatch;
2694 if (unlikely(!d_same_name(dentry, parent, name)))
2695 goto mismatch;
2696 /* OK, it *is* a hashed match; return it */
2697 spin_unlock(&dentry->d_lock);
2698 dput(new);
2699 return dentry;
2700 }
2701 rcu_read_unlock();
2702 new->d_wait = wq;
2703 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2704 hlist_bl_unlock(b);
2705 return new;
2706 mismatch:
2707 spin_unlock(&dentry->d_lock);
2708 dput(dentry);
2709 goto retry;
2710 }
2711 EXPORT_SYMBOL(d_alloc_parallel);
2712
2713 /*
2714 * - Unhash the dentry
2715 * - Retrieve and clear the waitqueue head in dentry
2716 * - Return the waitqueue head
2717 */
__d_lookup_unhash(struct dentry * dentry)2718 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2719 {
2720 wait_queue_head_t *d_wait;
2721 struct hlist_bl_head *b;
2722
2723 lockdep_assert_held(&dentry->d_lock);
2724
2725 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2726 hlist_bl_lock(b);
2727 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2728 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2729 d_wait = dentry->d_wait;
2730 dentry->d_wait = NULL;
2731 hlist_bl_unlock(b);
2732 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2733 INIT_LIST_HEAD(&dentry->d_lru);
2734 return d_wait;
2735 }
2736
__d_lookup_unhash_wake(struct dentry * dentry)2737 void __d_lookup_unhash_wake(struct dentry *dentry)
2738 {
2739 spin_lock(&dentry->d_lock);
2740 wake_up_all(__d_lookup_unhash(dentry));
2741 spin_unlock(&dentry->d_lock);
2742 }
2743 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2744
2745 /* inode->i_lock held if inode is non-NULL */
2746
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2747 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2748 const struct dentry_operations *ops)
2749 {
2750 wait_queue_head_t *d_wait;
2751 struct inode *dir = NULL;
2752 unsigned n;
2753 spin_lock(&dentry->d_lock);
2754 if (unlikely(d_in_lookup(dentry))) {
2755 dir = dentry->d_parent->d_inode;
2756 n = start_dir_add(dir);
2757 d_wait = __d_lookup_unhash(dentry);
2758 }
2759 if (unlikely(ops))
2760 d_set_d_op(dentry, ops);
2761 if (inode) {
2762 unsigned add_flags = d_flags_for_inode(inode);
2763 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2764 raw_write_seqcount_begin(&dentry->d_seq);
2765 __d_set_inode_and_type(dentry, inode, add_flags);
2766 raw_write_seqcount_end(&dentry->d_seq);
2767 fsnotify_update_flags(dentry);
2768 }
2769 __d_rehash(dentry);
2770 if (dir)
2771 end_dir_add(dir, n, d_wait);
2772 spin_unlock(&dentry->d_lock);
2773 if (inode)
2774 spin_unlock(&inode->i_lock);
2775 }
2776
2777 /**
2778 * d_add - add dentry to hash queues
2779 * @entry: dentry to add
2780 * @inode: The inode to attach to this dentry
2781 *
2782 * This adds the entry to the hash queues and initializes @inode.
2783 * The entry was actually filled in earlier during d_alloc().
2784 */
2785
d_add(struct dentry * entry,struct inode * inode)2786 void d_add(struct dentry *entry, struct inode *inode)
2787 {
2788 if (inode) {
2789 security_d_instantiate(entry, inode);
2790 spin_lock(&inode->i_lock);
2791 }
2792 __d_add(entry, inode, NULL);
2793 }
2794 EXPORT_SYMBOL(d_add);
2795
d_make_persistent(struct dentry * dentry,struct inode * inode)2796 struct dentry *d_make_persistent(struct dentry *dentry, struct inode *inode)
2797 {
2798 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
2799 WARN_ON(!inode);
2800 security_d_instantiate(dentry, inode);
2801 spin_lock(&inode->i_lock);
2802 spin_lock(&dentry->d_lock);
2803 __d_instantiate(dentry, inode);
2804 dentry->d_flags |= DCACHE_PERSISTENT;
2805 dget_dlock(dentry);
2806 if (d_unhashed(dentry))
2807 __d_rehash(dentry);
2808 spin_unlock(&dentry->d_lock);
2809 spin_unlock(&inode->i_lock);
2810 return dentry;
2811 }
2812 EXPORT_SYMBOL(d_make_persistent);
2813
swap_names(struct dentry * dentry,struct dentry * target)2814 static void swap_names(struct dentry *dentry, struct dentry *target)
2815 {
2816 if (unlikely(dname_external(target))) {
2817 if (unlikely(dname_external(dentry))) {
2818 /*
2819 * Both external: swap the pointers
2820 */
2821 swap(target->__d_name.name, dentry->__d_name.name);
2822 } else {
2823 /*
2824 * dentry:internal, target:external. Steal target's
2825 * storage and make target internal.
2826 */
2827 dentry->__d_name.name = target->__d_name.name;
2828 target->d_shortname = dentry->d_shortname;
2829 target->__d_name.name = target->d_shortname.string;
2830 }
2831 } else {
2832 if (unlikely(dname_external(dentry))) {
2833 /*
2834 * dentry:external, target:internal. Give dentry's
2835 * storage to target and make dentry internal
2836 */
2837 target->__d_name.name = dentry->__d_name.name;
2838 dentry->d_shortname = target->d_shortname;
2839 dentry->__d_name.name = dentry->d_shortname.string;
2840 } else {
2841 /*
2842 * Both are internal.
2843 */
2844 for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2845 swap(dentry->d_shortname.words[i],
2846 target->d_shortname.words[i]);
2847 }
2848 }
2849 swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2850 }
2851
copy_name(struct dentry * dentry,struct dentry * target)2852 static void copy_name(struct dentry *dentry, struct dentry *target)
2853 {
2854 struct external_name *old_name = NULL;
2855 if (unlikely(dname_external(dentry)))
2856 old_name = external_name(dentry);
2857 if (unlikely(dname_external(target))) {
2858 atomic_inc(&external_name(target)->count);
2859 dentry->__d_name = target->__d_name;
2860 } else {
2861 dentry->d_shortname = target->d_shortname;
2862 dentry->__d_name.name = dentry->d_shortname.string;
2863 dentry->__d_name.hash_len = target->__d_name.hash_len;
2864 }
2865 if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2866 kfree_rcu(old_name, head);
2867 }
2868
2869 /*
2870 * __d_move - move a dentry
2871 * @dentry: entry to move
2872 * @target: new dentry
2873 * @exchange: exchange the two dentries
2874 *
2875 * Update the dcache to reflect the move of a file name. Negative dcache
2876 * entries should not be moved in this way. Caller must hold rename_lock, the
2877 * i_rwsem of the source and target directories (exclusively), and the sb->
2878 * s_vfs_rename_mutex if they differ. See lock_rename().
2879 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2880 static void __d_move(struct dentry *dentry, struct dentry *target,
2881 bool exchange)
2882 {
2883 struct dentry *old_parent, *p;
2884 wait_queue_head_t *d_wait;
2885 struct inode *dir = NULL;
2886 unsigned n;
2887
2888 WARN_ON(!dentry->d_inode);
2889 if (WARN_ON(dentry == target))
2890 return;
2891
2892 BUG_ON(d_ancestor(target, dentry));
2893 old_parent = dentry->d_parent;
2894 p = d_ancestor(old_parent, target);
2895 if (IS_ROOT(dentry)) {
2896 BUG_ON(p);
2897 spin_lock(&target->d_parent->d_lock);
2898 } else if (!p) {
2899 /* target is not a descendent of dentry->d_parent */
2900 spin_lock(&target->d_parent->d_lock);
2901 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2902 } else {
2903 BUG_ON(p == dentry);
2904 spin_lock(&old_parent->d_lock);
2905 if (p != target)
2906 spin_lock_nested(&target->d_parent->d_lock,
2907 DENTRY_D_LOCK_NESTED);
2908 }
2909 spin_lock_nested(&dentry->d_lock, 2);
2910 spin_lock_nested(&target->d_lock, 3);
2911
2912 if (unlikely(d_in_lookup(target))) {
2913 dir = target->d_parent->d_inode;
2914 n = start_dir_add(dir);
2915 d_wait = __d_lookup_unhash(target);
2916 }
2917
2918 write_seqcount_begin(&dentry->d_seq);
2919 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2920
2921 /* unhash both */
2922 if (!d_unhashed(dentry))
2923 ___d_drop(dentry);
2924 if (!d_unhashed(target))
2925 ___d_drop(target);
2926
2927 /* ... and switch them in the tree */
2928 dentry->d_parent = target->d_parent;
2929 if (!exchange) {
2930 copy_name(dentry, target);
2931 target->d_hash.pprev = NULL;
2932 dentry->d_parent->d_lockref.count++;
2933 if (dentry != old_parent) /* wasn't IS_ROOT */
2934 WARN_ON(!--old_parent->d_lockref.count);
2935 } else {
2936 target->d_parent = old_parent;
2937 swap_names(dentry, target);
2938 if (!hlist_unhashed(&target->d_sib))
2939 __hlist_del(&target->d_sib);
2940 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2941 __d_rehash(target);
2942 fsnotify_update_flags(target);
2943 }
2944 if (!hlist_unhashed(&dentry->d_sib))
2945 __hlist_del(&dentry->d_sib);
2946 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2947 __d_rehash(dentry);
2948 fsnotify_update_flags(dentry);
2949 fscrypt_handle_d_move(dentry);
2950
2951 write_seqcount_end(&target->d_seq);
2952 write_seqcount_end(&dentry->d_seq);
2953
2954 if (dir)
2955 end_dir_add(dir, n, d_wait);
2956
2957 if (dentry->d_parent != old_parent)
2958 spin_unlock(&dentry->d_parent->d_lock);
2959 if (dentry != old_parent)
2960 spin_unlock(&old_parent->d_lock);
2961 spin_unlock(&target->d_lock);
2962 spin_unlock(&dentry->d_lock);
2963 }
2964
2965 /*
2966 * d_move - move a dentry
2967 * @dentry: entry to move
2968 * @target: new dentry
2969 *
2970 * Update the dcache to reflect the move of a file name. Negative
2971 * dcache entries should not be moved in this way. See the locking
2972 * requirements for __d_move.
2973 */
d_move(struct dentry * dentry,struct dentry * target)2974 void d_move(struct dentry *dentry, struct dentry *target)
2975 {
2976 write_seqlock(&rename_lock);
2977 __d_move(dentry, target, false);
2978 write_sequnlock(&rename_lock);
2979 }
2980 EXPORT_SYMBOL(d_move);
2981
2982 /*
2983 * d_exchange - exchange two dentries
2984 * @dentry1: first dentry
2985 * @dentry2: second dentry
2986 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2987 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2988 {
2989 write_seqlock(&rename_lock);
2990
2991 WARN_ON(!dentry1->d_inode);
2992 WARN_ON(!dentry2->d_inode);
2993 WARN_ON(IS_ROOT(dentry1));
2994 WARN_ON(IS_ROOT(dentry2));
2995
2996 __d_move(dentry1, dentry2, true);
2997
2998 write_sequnlock(&rename_lock);
2999 }
3000 EXPORT_SYMBOL(d_exchange);
3001
3002 /**
3003 * d_ancestor - search for an ancestor
3004 * @p1: ancestor dentry
3005 * @p2: child dentry
3006 *
3007 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3008 * an ancestor of p2, else NULL.
3009 */
d_ancestor(struct dentry * p1,struct dentry * p2)3010 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3011 {
3012 struct dentry *p;
3013
3014 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3015 if (p->d_parent == p1)
3016 return p;
3017 }
3018 return NULL;
3019 }
3020
3021 /*
3022 * This helper attempts to cope with remotely renamed directories
3023 *
3024 * It assumes that the caller is already holding
3025 * dentry->d_parent->d_inode->i_rwsem, and rename_lock
3026 *
3027 * Note: If ever the locking in lock_rename() changes, then please
3028 * remember to update this too...
3029 */
__d_unalias(struct dentry * dentry,struct dentry * alias)3030 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
3031 {
3032 struct mutex *m1 = NULL;
3033 struct rw_semaphore *m2 = NULL;
3034 int ret = -ESTALE;
3035
3036 /* If alias and dentry share a parent, then no extra locks required */
3037 if (alias->d_parent == dentry->d_parent)
3038 goto out_unalias;
3039
3040 /* See lock_rename() */
3041 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3042 goto out_err;
3043 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3044 if (!inode_trylock_shared(alias->d_parent->d_inode))
3045 goto out_err;
3046 m2 = &alias->d_parent->d_inode->i_rwsem;
3047 out_unalias:
3048 if (alias->d_op && alias->d_op->d_unalias_trylock &&
3049 !alias->d_op->d_unalias_trylock(alias))
3050 goto out_err;
3051 __d_move(alias, dentry, false);
3052 if (alias->d_op && alias->d_op->d_unalias_unlock)
3053 alias->d_op->d_unalias_unlock(alias);
3054 ret = 0;
3055 out_err:
3056 if (m2)
3057 up_read(m2);
3058 if (m1)
3059 mutex_unlock(m1);
3060 return ret;
3061 }
3062
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)3063 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
3064 const struct dentry_operations *ops)
3065 {
3066 if (IS_ERR(inode))
3067 return ERR_CAST(inode);
3068
3069 BUG_ON(!d_unhashed(dentry));
3070
3071 if (!inode)
3072 goto out;
3073
3074 security_d_instantiate(dentry, inode);
3075 spin_lock(&inode->i_lock);
3076 if (S_ISDIR(inode->i_mode)) {
3077 struct dentry *new = __d_find_any_alias(inode);
3078 if (unlikely(new)) {
3079 /* The reference to new ensures it remains an alias */
3080 spin_unlock(&inode->i_lock);
3081 write_seqlock(&rename_lock);
3082 if (unlikely(d_ancestor(new, dentry))) {
3083 write_sequnlock(&rename_lock);
3084 dput(new);
3085 new = ERR_PTR(-ELOOP);
3086 pr_warn_ratelimited(
3087 "VFS: Lookup of '%s' in %s %s"
3088 " would have caused loop\n",
3089 dentry->d_name.name,
3090 inode->i_sb->s_type->name,
3091 inode->i_sb->s_id);
3092 } else if (!IS_ROOT(new)) {
3093 struct dentry *old_parent = dget(new->d_parent);
3094 int err = __d_unalias(dentry, new);
3095 write_sequnlock(&rename_lock);
3096 if (err) {
3097 dput(new);
3098 new = ERR_PTR(err);
3099 }
3100 dput(old_parent);
3101 } else {
3102 __d_move(new, dentry, false);
3103 write_sequnlock(&rename_lock);
3104 }
3105 iput(inode);
3106 return new;
3107 }
3108 }
3109 out:
3110 __d_add(dentry, inode, ops);
3111 return NULL;
3112 }
3113
3114 /**
3115 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116 * @inode: the inode which may have a disconnected dentry
3117 * @dentry: a negative dentry which we want to point to the inode.
3118 *
3119 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120 * place of the given dentry and return it, else simply d_add the inode
3121 * to the dentry and return NULL.
3122 *
3123 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124 * we should error out: directories can't have multiple aliases.
3125 *
3126 * This is needed in the lookup routine of any filesystem that is exportable
3127 * (via knfsd) so that we can build dcache paths to directories effectively.
3128 *
3129 * If a dentry was found and moved, then it is returned. Otherwise NULL
3130 * is returned. This matches the expected return value of ->lookup.
3131 *
3132 * Cluster filesystems may call this function with a negative, hashed dentry.
3133 * In that case, we know that the inode will be a regular file, and also this
3134 * will only occur during atomic_open. So we need to check for the dentry
3135 * being already hashed only in the final case.
3136 */
d_splice_alias(struct inode * inode,struct dentry * dentry)3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138 {
3139 return d_splice_alias_ops(inode, dentry, NULL);
3140 }
3141 EXPORT_SYMBOL(d_splice_alias);
3142
3143 /*
3144 * Test whether new_dentry is a subdirectory of old_dentry.
3145 *
3146 * Trivially implemented using the dcache structure
3147 */
3148
3149 /**
3150 * is_subdir - is new dentry a subdirectory of old_dentry
3151 * @new_dentry: new dentry
3152 * @old_dentry: old dentry
3153 *
3154 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3155 * Returns false otherwise.
3156 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3157 */
3158
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3159 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3160 {
3161 bool subdir;
3162 unsigned seq;
3163
3164 if (new_dentry == old_dentry)
3165 return true;
3166
3167 /* Access d_parent under rcu as d_move() may change it. */
3168 rcu_read_lock();
3169 seq = read_seqbegin(&rename_lock);
3170 subdir = d_ancestor(old_dentry, new_dentry);
3171 /* Try lockless once... */
3172 if (read_seqretry(&rename_lock, seq)) {
3173 /* ...else acquire lock for progress even on deep chains. */
3174 read_seqlock_excl(&rename_lock);
3175 subdir = d_ancestor(old_dentry, new_dentry);
3176 read_sequnlock_excl(&rename_lock);
3177 }
3178 rcu_read_unlock();
3179 return subdir;
3180 }
3181 EXPORT_SYMBOL(is_subdir);
3182
d_mark_tmpfile(struct file * file,struct inode * inode)3183 void d_mark_tmpfile(struct file *file, struct inode *inode)
3184 {
3185 struct dentry *dentry = file->f_path.dentry;
3186
3187 BUG_ON(dname_external(dentry) ||
3188 !hlist_unhashed(&dentry->d_u.d_alias) ||
3189 !d_unlinked(dentry));
3190 spin_lock(&dentry->d_parent->d_lock);
3191 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3192 dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3193 (unsigned long long)inode->i_ino);
3194 spin_unlock(&dentry->d_lock);
3195 spin_unlock(&dentry->d_parent->d_lock);
3196 }
3197 EXPORT_SYMBOL(d_mark_tmpfile);
3198
d_tmpfile(struct file * file,struct inode * inode)3199 void d_tmpfile(struct file *file, struct inode *inode)
3200 {
3201 struct dentry *dentry = file->f_path.dentry;
3202
3203 inode_dec_link_count(inode);
3204 d_mark_tmpfile(file, inode);
3205 d_instantiate(dentry, inode);
3206 }
3207 EXPORT_SYMBOL(d_tmpfile);
3208
3209 /*
3210 * Obtain inode number of the parent dentry.
3211 */
d_parent_ino(struct dentry * dentry)3212 ino_t d_parent_ino(struct dentry *dentry)
3213 {
3214 struct dentry *parent;
3215 struct inode *iparent;
3216 unsigned seq;
3217 ino_t ret;
3218
3219 scoped_guard(rcu) {
3220 seq = raw_seqcount_begin(&dentry->d_seq);
3221 parent = READ_ONCE(dentry->d_parent);
3222 iparent = d_inode_rcu(parent);
3223 if (likely(iparent)) {
3224 ret = iparent->i_ino;
3225 if (!read_seqcount_retry(&dentry->d_seq, seq))
3226 return ret;
3227 }
3228 }
3229
3230 spin_lock(&dentry->d_lock);
3231 ret = dentry->d_parent->d_inode->i_ino;
3232 spin_unlock(&dentry->d_lock);
3233 return ret;
3234 }
3235 EXPORT_SYMBOL(d_parent_ino);
3236
3237 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3238 static int __init set_dhash_entries(char *str)
3239 {
3240 if (!str)
3241 return 0;
3242 dhash_entries = simple_strtoul(str, &str, 0);
3243 return 1;
3244 }
3245 __setup("dhash_entries=", set_dhash_entries);
3246
dcache_init_early(void)3247 static void __init dcache_init_early(void)
3248 {
3249 /* If hashes are distributed across NUMA nodes, defer
3250 * hash allocation until vmalloc space is available.
3251 */
3252 if (hashdist)
3253 return;
3254
3255 dentry_hashtable =
3256 alloc_large_system_hash("Dentry cache",
3257 sizeof(struct hlist_bl_head),
3258 dhash_entries,
3259 13,
3260 HASH_EARLY | HASH_ZERO,
3261 &d_hash_shift,
3262 NULL,
3263 0,
3264 0);
3265 d_hash_shift = 32 - d_hash_shift;
3266
3267 runtime_const_init(shift, d_hash_shift);
3268 runtime_const_init(ptr, dentry_hashtable);
3269 }
3270
dcache_init(void)3271 static void __init dcache_init(void)
3272 {
3273 /*
3274 * A constructor could be added for stable state like the lists,
3275 * but it is probably not worth it because of the cache nature
3276 * of the dcache.
3277 */
3278 __dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3279 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3280 d_shortname.string);
3281 runtime_const_init(ptr, __dentry_cache);
3282
3283 /* Hash may have been set up in dcache_init_early */
3284 if (!hashdist)
3285 return;
3286
3287 dentry_hashtable =
3288 alloc_large_system_hash("Dentry cache",
3289 sizeof(struct hlist_bl_head),
3290 dhash_entries,
3291 13,
3292 HASH_ZERO,
3293 &d_hash_shift,
3294 NULL,
3295 0,
3296 0);
3297 d_hash_shift = 32 - d_hash_shift;
3298
3299 runtime_const_init(shift, d_hash_shift);
3300 runtime_const_init(ptr, dentry_hashtable);
3301 }
3302
3303 /* SLAB cache for __getname() consumers */
3304 struct kmem_cache *names_cachep __ro_after_init;
3305 EXPORT_SYMBOL(names_cachep);
3306
vfs_caches_init_early(void)3307 void __init vfs_caches_init_early(void)
3308 {
3309 int i;
3310
3311 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3312 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3313
3314 dcache_init_early();
3315 inode_init_early();
3316 }
3317
vfs_caches_init(void)3318 void __init vfs_caches_init(void)
3319 {
3320 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3321 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3322
3323 dcache_init();
3324 inode_init();
3325 files_init();
3326 files_maxfiles_init();
3327 mnt_init();
3328 bdev_cache_init();
3329 chrdev_init();
3330 }
3331