xref: /linux/fs/dcache.c (revision fcb70a56f4d81450114034b2c61f48ce7444a0e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78 
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 	return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *__dentry_cache __ro_after_init;
90 #define dentry_cache runtime_const_ptr(__dentry_cache)
91 
92 const struct qstr empty_name = QSTR_INIT("", 0);
93 EXPORT_SYMBOL(empty_name);
94 const struct qstr slash_name = QSTR_INIT("/", 1);
95 EXPORT_SYMBOL(slash_name);
96 const struct qstr dotdot_name = QSTR_INIT("..", 2);
97 EXPORT_SYMBOL(dotdot_name);
98 
99 /*
100  * This is the single most critical data structure when it comes
101  * to the dcache: the hashtable for lookups. Somebody should try
102  * to make this good - I've just made it work.
103  *
104  * This hash-function tries to avoid losing too many bits of hash
105  * information, yet avoid using a prime hash-size or similar.
106  *
107  * Marking the variables "used" ensures that the compiler doesn't
108  * optimize them away completely on architectures with runtime
109  * constant infrastructure, this allows debuggers to see their
110  * values. But updating these values has no effect on those arches.
111  */
112 
113 static unsigned int d_hash_shift __ro_after_init __used;
114 
115 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116 
d_hash(unsigned long hashlen)117 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118 {
119 	return runtime_const_ptr(dentry_hashtable) +
120 		runtime_const_shift_right_32(hashlen, d_hash_shift);
121 }
122 
123 #define IN_LOOKUP_SHIFT 10
124 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125 
in_lookup_hash(const struct dentry * parent,unsigned int hash)126 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127 					unsigned int hash)
128 {
129 	hash += (unsigned long) parent / L1_CACHE_BYTES;
130 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131 }
132 
133 struct dentry_stat_t {
134 	long nr_dentry;
135 	long nr_unused;
136 	long age_limit;		/* age in seconds */
137 	long want_pages;	/* pages requested by system */
138 	long nr_negative;	/* # of unused negative dentries */
139 	long dummy;		/* Reserved for future use */
140 };
141 
142 static DEFINE_PER_CPU(long, nr_dentry);
143 static DEFINE_PER_CPU(long, nr_dentry_unused);
144 static DEFINE_PER_CPU(long, nr_dentry_negative);
145 static int dentry_negative_policy;
146 
147 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148 /* Statistics gathering. */
149 static struct dentry_stat_t dentry_stat = {
150 	.age_limit = 45,
151 };
152 
153 /*
154  * Here we resort to our own counters instead of using generic per-cpu counters
155  * for consistency with what the vfs inode code does. We are expected to harvest
156  * better code and performance by having our own specialized counters.
157  *
158  * Please note that the loop is done over all possible CPUs, not over all online
159  * CPUs. The reason for this is that we don't want to play games with CPUs going
160  * on and off. If one of them goes off, we will just keep their counters.
161  *
162  * glommer: See cffbc8a for details, and if you ever intend to change this,
163  * please update all vfs counters to match.
164  */
get_nr_dentry(void)165 static long get_nr_dentry(void)
166 {
167 	int i;
168 	long sum = 0;
169 	for_each_possible_cpu(i)
170 		sum += per_cpu(nr_dentry, i);
171 	return sum < 0 ? 0 : sum;
172 }
173 
get_nr_dentry_unused(void)174 static long get_nr_dentry_unused(void)
175 {
176 	int i;
177 	long sum = 0;
178 	for_each_possible_cpu(i)
179 		sum += per_cpu(nr_dentry_unused, i);
180 	return sum < 0 ? 0 : sum;
181 }
182 
get_nr_dentry_negative(void)183 static long get_nr_dentry_negative(void)
184 {
185 	int i;
186 	long sum = 0;
187 
188 	for_each_possible_cpu(i)
189 		sum += per_cpu(nr_dentry_negative, i);
190 	return sum < 0 ? 0 : sum;
191 }
192 
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)193 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194 			  size_t *lenp, loff_t *ppos)
195 {
196 	dentry_stat.nr_dentry = get_nr_dentry();
197 	dentry_stat.nr_unused = get_nr_dentry_unused();
198 	dentry_stat.nr_negative = get_nr_dentry_negative();
199 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200 }
201 
202 static const struct ctl_table fs_dcache_sysctls[] = {
203 	{
204 		.procname	= "dentry-state",
205 		.data		= &dentry_stat,
206 		.maxlen		= 6*sizeof(long),
207 		.mode		= 0444,
208 		.proc_handler	= proc_nr_dentry,
209 	},
210 	{
211 		.procname	= "dentry-negative",
212 		.data		= &dentry_negative_policy,
213 		.maxlen		= sizeof(dentry_negative_policy),
214 		.mode		= 0644,
215 		.proc_handler	= proc_dointvec_minmax,
216 		.extra1		= SYSCTL_ZERO,
217 		.extra2		= SYSCTL_ONE,
218 	},
219 };
220 
221 static const struct ctl_table vm_dcache_sysctls[] = {
222 	{
223 		.procname	= "vfs_cache_pressure",
224 		.data		= &sysctl_vfs_cache_pressure,
225 		.maxlen		= sizeof(sysctl_vfs_cache_pressure),
226 		.mode		= 0644,
227 		.proc_handler	= proc_dointvec_minmax,
228 		.extra1		= SYSCTL_ZERO,
229 	},
230 	{
231 		.procname	= "vfs_cache_pressure_denom",
232 		.data		= &sysctl_vfs_cache_pressure_denom,
233 		.maxlen		= sizeof(sysctl_vfs_cache_pressure_denom),
234 		.mode		= 0644,
235 		.proc_handler	= proc_dointvec_minmax,
236 		.extra1		= SYSCTL_ONE_HUNDRED,
237 	},
238 };
239 
init_fs_dcache_sysctls(void)240 static int __init init_fs_dcache_sysctls(void)
241 {
242 	register_sysctl_init("vm", vm_dcache_sysctls);
243 	register_sysctl_init("fs", fs_dcache_sysctls);
244 	return 0;
245 }
246 fs_initcall(init_fs_dcache_sysctls);
247 #endif
248 
249 /*
250  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
251  * The strings are both count bytes long, and count is non-zero.
252  */
253 #ifdef CONFIG_DCACHE_WORD_ACCESS
254 
255 #include <asm/word-at-a-time.h>
256 /*
257  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
258  * aligned allocation for this particular component. We don't
259  * strictly need the load_unaligned_zeropad() safety, but it
260  * doesn't hurt either.
261  *
262  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
263  * need the careful unaligned handling.
264  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)265 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266 {
267 	unsigned long a,b,mask;
268 
269 	for (;;) {
270 		a = read_word_at_a_time(cs);
271 		b = load_unaligned_zeropad(ct);
272 		if (tcount < sizeof(unsigned long))
273 			break;
274 		if (unlikely(a != b))
275 			return 1;
276 		cs += sizeof(unsigned long);
277 		ct += sizeof(unsigned long);
278 		tcount -= sizeof(unsigned long);
279 		if (!tcount)
280 			return 0;
281 	}
282 	mask = bytemask_from_count(tcount);
283 	return unlikely(!!((a ^ b) & mask));
284 }
285 
286 #else
287 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)288 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289 {
290 	do {
291 		if (*cs != *ct)
292 			return 1;
293 		cs++;
294 		ct++;
295 		tcount--;
296 	} while (tcount);
297 	return 0;
298 }
299 
300 #endif
301 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)302 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303 {
304 	/*
305 	 * Be careful about RCU walk racing with rename:
306 	 * use 'READ_ONCE' to fetch the name pointer.
307 	 *
308 	 * NOTE! Even if a rename will mean that the length
309 	 * was not loaded atomically, we don't care. The
310 	 * RCU walk will check the sequence count eventually,
311 	 * and catch it. And we won't overrun the buffer,
312 	 * because we're reading the name pointer atomically,
313 	 * and a dentry name is guaranteed to be properly
314 	 * terminated with a NUL byte.
315 	 *
316 	 * End result: even if 'len' is wrong, we'll exit
317 	 * early because the data cannot match (there can
318 	 * be no NUL in the ct/tcount data)
319 	 */
320 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321 
322 	return dentry_string_cmp(cs, ct, tcount);
323 }
324 
325 /*
326  * long names are allocated separately from dentry and never modified.
327  * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot()
328  * for the reason why ->count and ->head can't be combined into a union.
329  * dentry_string_cmp() relies upon ->name[] being word-aligned.
330  */
331 struct external_name {
332 	atomic_t count;
333 	struct rcu_head head;
334 	unsigned char name[] __aligned(sizeof(unsigned long));
335 };
336 
external_name(struct dentry * dentry)337 static inline struct external_name *external_name(struct dentry *dentry)
338 {
339 	return container_of(dentry->d_name.name, struct external_name, name[0]);
340 }
341 
__d_free(struct rcu_head * head)342 static void __d_free(struct rcu_head *head)
343 {
344 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345 
346 	kmem_cache_free(dentry_cache, dentry);
347 }
348 
__d_free_external(struct rcu_head * head)349 static void __d_free_external(struct rcu_head *head)
350 {
351 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352 	kfree(external_name(dentry));
353 	kmem_cache_free(dentry_cache, dentry);
354 }
355 
dname_external(const struct dentry * dentry)356 static inline int dname_external(const struct dentry *dentry)
357 {
358 	return dentry->d_name.name != dentry->d_shortname.string;
359 }
360 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)361 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362 {
363 	unsigned seq;
364 	const unsigned char *s;
365 
366 	rcu_read_lock();
367 retry:
368 	seq = read_seqcount_begin(&dentry->d_seq);
369 	s = READ_ONCE(dentry->d_name.name);
370 	name->name.hash_len = dentry->d_name.hash_len;
371 	name->name.name = name->inline_name.string;
372 	if (likely(s == dentry->d_shortname.string)) {
373 		name->inline_name = dentry->d_shortname;
374 	} else {
375 		struct external_name *p;
376 		p = container_of(s, struct external_name, name[0]);
377 		// get a valid reference
378 		if (unlikely(!atomic_inc_not_zero(&p->count)))
379 			goto retry;
380 		name->name.name = s;
381 	}
382 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
383 		release_dentry_name_snapshot(name);
384 		goto retry;
385 	}
386 	rcu_read_unlock();
387 }
388 EXPORT_SYMBOL(take_dentry_name_snapshot);
389 
release_dentry_name_snapshot(struct name_snapshot * name)390 void release_dentry_name_snapshot(struct name_snapshot *name)
391 {
392 	if (unlikely(name->name.name != name->inline_name.string)) {
393 		struct external_name *p;
394 		p = container_of(name->name.name, struct external_name, name[0]);
395 		if (unlikely(atomic_dec_and_test(&p->count)))
396 			kfree_rcu(p, head);
397 	}
398 }
399 EXPORT_SYMBOL(release_dentry_name_snapshot);
400 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)401 static inline void __d_set_inode_and_type(struct dentry *dentry,
402 					  struct inode *inode,
403 					  unsigned type_flags)
404 {
405 	unsigned flags;
406 
407 	dentry->d_inode = inode;
408 	flags = READ_ONCE(dentry->d_flags);
409 	flags &= ~DCACHE_ENTRY_TYPE;
410 	flags |= type_flags;
411 	smp_store_release(&dentry->d_flags, flags);
412 }
413 
__d_clear_type_and_inode(struct dentry * dentry)414 static inline void __d_clear_type_and_inode(struct dentry *dentry)
415 {
416 	unsigned flags = READ_ONCE(dentry->d_flags);
417 
418 	flags &= ~DCACHE_ENTRY_TYPE;
419 	WRITE_ONCE(dentry->d_flags, flags);
420 	dentry->d_inode = NULL;
421 	/*
422 	 * The negative counter only tracks dentries on the LRU. Don't inc if
423 	 * d_lru is on another list.
424 	 */
425 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426 		this_cpu_inc(nr_dentry_negative);
427 }
428 
dentry_free(struct dentry * dentry)429 static void dentry_free(struct dentry *dentry)
430 {
431 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432 	if (unlikely(dname_external(dentry))) {
433 		struct external_name *p = external_name(dentry);
434 		if (likely(atomic_dec_and_test(&p->count))) {
435 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436 			return;
437 		}
438 	}
439 	/* if dentry was never visible to RCU, immediate free is OK */
440 	if (dentry->d_flags & DCACHE_NORCU)
441 		__d_free(&dentry->d_u.d_rcu);
442 	else
443 		call_rcu(&dentry->d_u.d_rcu, __d_free);
444 }
445 
446 /*
447  * Release the dentry's inode, using the filesystem
448  * d_iput() operation if defined.
449  */
dentry_unlink_inode(struct dentry * dentry)450 static void dentry_unlink_inode(struct dentry * dentry)
451 	__releases(dentry->d_lock)
452 	__releases(dentry->d_inode->i_lock)
453 {
454 	struct inode *inode = dentry->d_inode;
455 
456 	raw_write_seqcount_begin(&dentry->d_seq);
457 	__d_clear_type_and_inode(dentry);
458 	hlist_del_init(&dentry->d_u.d_alias);
459 	raw_write_seqcount_end(&dentry->d_seq);
460 	spin_unlock(&dentry->d_lock);
461 	spin_unlock(&inode->i_lock);
462 	if (!inode->i_nlink)
463 		fsnotify_inoderemove(inode);
464 	if (dentry->d_op && dentry->d_op->d_iput)
465 		dentry->d_op->d_iput(dentry, inode);
466 	else
467 		iput(inode);
468 }
469 
470 /*
471  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472  * is in use - which includes both the "real" per-superblock
473  * LRU list _and_ the DCACHE_SHRINK_LIST use.
474  *
475  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476  * on the shrink list (ie not on the superblock LRU list).
477  *
478  * The per-cpu "nr_dentry_unused" counters are updated with
479  * the DCACHE_LRU_LIST bit.
480  *
481  * The per-cpu "nr_dentry_negative" counters are only updated
482  * when deleted from or added to the per-superblock LRU list, not
483  * from/to the shrink list. That is to avoid an unneeded dec/inc
484  * pair when moving from LRU to shrink list in select_collect().
485  *
486  * These helper functions make sure we always follow the
487  * rules. d_lock must be held by the caller.
488  */
489 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)490 static void d_lru_add(struct dentry *dentry)
491 {
492 	D_FLAG_VERIFY(dentry, 0);
493 	dentry->d_flags |= DCACHE_LRU_LIST;
494 	this_cpu_inc(nr_dentry_unused);
495 	if (d_is_negative(dentry))
496 		this_cpu_inc(nr_dentry_negative);
497 	WARN_ON_ONCE(!list_lru_add_obj(
498 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499 }
500 
d_lru_del(struct dentry * dentry)501 static void d_lru_del(struct dentry *dentry)
502 {
503 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504 	dentry->d_flags &= ~DCACHE_LRU_LIST;
505 	this_cpu_dec(nr_dentry_unused);
506 	if (d_is_negative(dentry))
507 		this_cpu_dec(nr_dentry_negative);
508 	WARN_ON_ONCE(!list_lru_del_obj(
509 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510 }
511 
d_shrink_del(struct dentry * dentry)512 static void d_shrink_del(struct dentry *dentry)
513 {
514 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515 	list_del_init(&dentry->d_lru);
516 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517 	this_cpu_dec(nr_dentry_unused);
518 }
519 
d_shrink_add(struct dentry * dentry,struct list_head * list)520 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521 {
522 	D_FLAG_VERIFY(dentry, 0);
523 	list_add(&dentry->d_lru, list);
524 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525 	this_cpu_inc(nr_dentry_unused);
526 }
527 
528 /*
529  * These can only be called under the global LRU lock, ie during the
530  * callback for freeing the LRU list. "isolate" removes it from the
531  * LRU lists entirely, while shrink_move moves it to the indicated
532  * private list.
533  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)534 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535 {
536 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537 	dentry->d_flags &= ~DCACHE_LRU_LIST;
538 	this_cpu_dec(nr_dentry_unused);
539 	if (d_is_negative(dentry))
540 		this_cpu_dec(nr_dentry_negative);
541 	list_lru_isolate(lru, &dentry->d_lru);
542 }
543 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)544 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545 			      struct list_head *list)
546 {
547 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548 	dentry->d_flags |= DCACHE_SHRINK_LIST;
549 	if (d_is_negative(dentry))
550 		this_cpu_dec(nr_dentry_negative);
551 	list_lru_isolate_move(lru, &dentry->d_lru, list);
552 }
553 
___d_drop(struct dentry * dentry)554 static void ___d_drop(struct dentry *dentry)
555 {
556 	struct hlist_bl_head *b;
557 	/*
558 	 * Hashed dentries are normally on the dentry hashtable,
559 	 * with the exception of those newly allocated by
560 	 * d_obtain_root, which are always IS_ROOT:
561 	 */
562 	if (unlikely(IS_ROOT(dentry)))
563 		b = &dentry->d_sb->s_roots;
564 	else
565 		b = d_hash(dentry->d_name.hash);
566 
567 	hlist_bl_lock(b);
568 	__hlist_bl_del(&dentry->d_hash);
569 	hlist_bl_unlock(b);
570 }
571 
__d_drop(struct dentry * dentry)572 void __d_drop(struct dentry *dentry)
573 {
574 	if (!d_unhashed(dentry)) {
575 		___d_drop(dentry);
576 		dentry->d_hash.pprev = NULL;
577 		write_seqcount_invalidate(&dentry->d_seq);
578 	}
579 }
580 EXPORT_SYMBOL(__d_drop);
581 
582 /**
583  * d_drop - drop a dentry
584  * @dentry: dentry to drop
585  *
586  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587  * be found through a VFS lookup any more. Note that this is different from
588  * deleting the dentry - d_delete will try to mark the dentry negative if
589  * possible, giving a successful _negative_ lookup, while d_drop will
590  * just make the cache lookup fail.
591  *
592  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593  * reason (NFS timeouts or autofs deletes).
594  *
595  * __d_drop requires dentry->d_lock
596  *
597  * ___d_drop doesn't mark dentry as "unhashed"
598  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599  */
d_drop(struct dentry * dentry)600 void d_drop(struct dentry *dentry)
601 {
602 	spin_lock(&dentry->d_lock);
603 	__d_drop(dentry);
604 	spin_unlock(&dentry->d_lock);
605 }
606 EXPORT_SYMBOL(d_drop);
607 
dentry_unlist(struct dentry * dentry)608 static inline void dentry_unlist(struct dentry *dentry)
609 {
610 	struct dentry *next;
611 	/*
612 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
613 	 * attached to the dentry tree
614 	 */
615 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
616 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
617 		return;
618 	__hlist_del(&dentry->d_sib);
619 	/*
620 	 * Cursors can move around the list of children.  While we'd been
621 	 * a normal list member, it didn't matter - ->d_sib.next would've
622 	 * been updated.  However, from now on it won't be and for the
623 	 * things like d_walk() it might end up with a nasty surprise.
624 	 * Normally d_walk() doesn't care about cursors moving around -
625 	 * ->d_lock on parent prevents that and since a cursor has no children
626 	 * of its own, we get through it without ever unlocking the parent.
627 	 * There is one exception, though - if we ascend from a child that
628 	 * gets killed as soon as we unlock it, the next sibling is found
629 	 * using the value left in its ->d_sib.next.  And if _that_
630 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
631 	 * before d_walk() regains parent->d_lock, we'll end up skipping
632 	 * everything the cursor had been moved past.
633 	 *
634 	 * Solution: make sure that the pointer left behind in ->d_sib.next
635 	 * points to something that won't be moving around.  I.e. skip the
636 	 * cursors.
637 	 */
638 	while (dentry->d_sib.next) {
639 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641 			break;
642 		dentry->d_sib.next = next->d_sib.next;
643 	}
644 }
645 
__dentry_kill(struct dentry * dentry)646 static struct dentry *__dentry_kill(struct dentry *dentry)
647 {
648 	struct dentry *parent = NULL;
649 	bool can_free = true;
650 
651 	/*
652 	 * The dentry is now unrecoverably dead to the world.
653 	 */
654 	lockref_mark_dead(&dentry->d_lockref);
655 
656 	/*
657 	 * inform the fs via d_prune that this dentry is about to be
658 	 * unhashed and destroyed.
659 	 */
660 	if (dentry->d_flags & DCACHE_OP_PRUNE)
661 		dentry->d_op->d_prune(dentry);
662 
663 	if (dentry->d_flags & DCACHE_LRU_LIST) {
664 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665 			d_lru_del(dentry);
666 	}
667 	/* if it was on the hash then remove it */
668 	__d_drop(dentry);
669 	if (dentry->d_inode)
670 		dentry_unlink_inode(dentry);
671 	else
672 		spin_unlock(&dentry->d_lock);
673 	this_cpu_dec(nr_dentry);
674 	if (dentry->d_op && dentry->d_op->d_release)
675 		dentry->d_op->d_release(dentry);
676 
677 	cond_resched();
678 	/* now that it's negative, ->d_parent is stable */
679 	if (!IS_ROOT(dentry)) {
680 		parent = dentry->d_parent;
681 		spin_lock(&parent->d_lock);
682 	}
683 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684 	dentry_unlist(dentry);
685 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
686 		can_free = false;
687 	spin_unlock(&dentry->d_lock);
688 	if (likely(can_free))
689 		dentry_free(dentry);
690 	if (parent && --parent->d_lockref.count) {
691 		spin_unlock(&parent->d_lock);
692 		return NULL;
693 	}
694 	return parent;
695 }
696 
697 /*
698  * Lock a dentry for feeding it to __dentry_kill().
699  * Called under rcu_read_lock() and dentry->d_lock; the former
700  * guarantees that nothing we access will be freed under us.
701  * Note that dentry is *not* protected from concurrent dentry_kill(),
702  * d_delete(), etc.
703  *
704  * Return false if dentry is busy.  Otherwise, return true and have
705  * that dentry's inode locked.
706  */
707 
lock_for_kill(struct dentry * dentry)708 static bool lock_for_kill(struct dentry *dentry)
709 {
710 	struct inode *inode = dentry->d_inode;
711 
712 	if (unlikely(dentry->d_lockref.count))
713 		return false;
714 
715 	if (!inode || likely(spin_trylock(&inode->i_lock)))
716 		return true;
717 
718 	do {
719 		spin_unlock(&dentry->d_lock);
720 		spin_lock(&inode->i_lock);
721 		spin_lock(&dentry->d_lock);
722 		if (likely(inode == dentry->d_inode))
723 			break;
724 		spin_unlock(&inode->i_lock);
725 		inode = dentry->d_inode;
726 	} while (inode);
727 	if (likely(!dentry->d_lockref.count))
728 		return true;
729 	if (inode)
730 		spin_unlock(&inode->i_lock);
731 	return false;
732 }
733 
734 /*
735  * Decide if dentry is worth retaining.  Usually this is called with dentry
736  * locked; if not locked, we are more limited and might not be able to tell
737  * without a lock.  False in this case means "punt to locked path and recheck".
738  *
739  * In case we aren't locked, these predicates are not "stable". However, it is
740  * sufficient that at some point after we dropped the reference the dentry was
741  * hashed and the flags had the proper value. Other dentry users may have
742  * re-gotten a reference to the dentry and change that, but our work is done -
743  * we can leave the dentry around with a zero refcount.
744  */
retain_dentry(struct dentry * dentry,bool locked)745 static inline bool retain_dentry(struct dentry *dentry, bool locked)
746 {
747 	unsigned int d_flags;
748 
749 	smp_rmb();
750 	d_flags = READ_ONCE(dentry->d_flags);
751 
752 	// Unreachable? Nobody would be able to look it up, no point retaining
753 	if (unlikely(d_unhashed(dentry)))
754 		return false;
755 
756 	// Same if it's disconnected
757 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
758 		return false;
759 
760 	// ->d_delete() might tell us not to bother, but that requires
761 	// ->d_lock; can't decide without it
762 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763 		if (!locked || dentry->d_op->d_delete(dentry))
764 			return false;
765 	}
766 
767 	// Explicitly told not to bother
768 	if (unlikely(d_flags & DCACHE_DONTCACHE))
769 		return false;
770 
771 	// At this point it looks like we ought to keep it.  We also might
772 	// need to do something - put it on LRU if it wasn't there already
773 	// and mark it referenced if it was on LRU, but not marked yet.
774 	// Unfortunately, both actions require ->d_lock, so in lockless
775 	// case we'd have to punt rather than doing those.
776 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777 		if (!locked)
778 			return false;
779 		d_lru_add(dentry);
780 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781 		if (!locked)
782 			return false;
783 		dentry->d_flags |= DCACHE_REFERENCED;
784 	}
785 	return true;
786 }
787 
d_mark_dontcache(struct inode * inode)788 void d_mark_dontcache(struct inode *inode)
789 {
790 	struct dentry *de;
791 
792 	spin_lock(&inode->i_lock);
793 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794 		spin_lock(&de->d_lock);
795 		de->d_flags |= DCACHE_DONTCACHE;
796 		spin_unlock(&de->d_lock);
797 	}
798 	inode_state_set(inode, I_DONTCACHE);
799 	spin_unlock(&inode->i_lock);
800 }
801 EXPORT_SYMBOL(d_mark_dontcache);
802 
803 /*
804  * Try to do a lockless dput(), and return whether that was successful.
805  *
806  * If unsuccessful, we return false, having already taken the dentry lock.
807  * In that case refcount is guaranteed to be zero and we have already
808  * decided that it's not worth keeping around.
809  *
810  * The caller needs to hold the RCU read lock, so that the dentry is
811  * guaranteed to stay around even if the refcount goes down to zero!
812  */
fast_dput(struct dentry * dentry)813 static inline bool fast_dput(struct dentry *dentry)
814 {
815 	int ret;
816 
817 	/*
818 	 * try to decrement the lockref optimistically.
819 	 */
820 	ret = lockref_put_return(&dentry->d_lockref);
821 
822 	/*
823 	 * If the lockref_put_return() failed due to the lock being held
824 	 * by somebody else, the fast path has failed. We will need to
825 	 * get the lock, and then check the count again.
826 	 */
827 	if (unlikely(ret < 0)) {
828 		spin_lock(&dentry->d_lock);
829 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830 			spin_unlock(&dentry->d_lock);
831 			return true;
832 		}
833 		dentry->d_lockref.count--;
834 		goto locked;
835 	}
836 
837 	/*
838 	 * If we weren't the last ref, we're done.
839 	 */
840 	if (ret)
841 		return true;
842 
843 	/*
844 	 * Can we decide that decrement of refcount is all we needed without
845 	 * taking the lock?  There's a very common case when it's all we need -
846 	 * dentry looks like it ought to be retained and there's nothing else
847 	 * to do.
848 	 */
849 	if (retain_dentry(dentry, false))
850 		return true;
851 
852 	/*
853 	 * Either not worth retaining or we can't tell without the lock.
854 	 * Get the lock, then.  We've already decremented the refcount to 0,
855 	 * but we'll need to re-check the situation after getting the lock.
856 	 */
857 	spin_lock(&dentry->d_lock);
858 
859 	/*
860 	 * Did somebody else grab a reference to it in the meantime, and
861 	 * we're no longer the last user after all? Alternatively, somebody
862 	 * else could have killed it and marked it dead. Either way, we
863 	 * don't need to do anything else.
864 	 */
865 locked:
866 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867 		spin_unlock(&dentry->d_lock);
868 		return true;
869 	}
870 	return false;
871 }
872 
finish_dput(struct dentry * dentry)873 static void finish_dput(struct dentry *dentry)
874 	__releases(dentry->d_lock)
875 	__releases(RCU)
876 {
877 	while (lock_for_kill(dentry)) {
878 		rcu_read_unlock();
879 		dentry = __dentry_kill(dentry);
880 		if (!dentry)
881 			return;
882 		if (retain_dentry(dentry, true)) {
883 			spin_unlock(&dentry->d_lock);
884 			return;
885 		}
886 		rcu_read_lock();
887 	}
888 	rcu_read_unlock();
889 	spin_unlock(&dentry->d_lock);
890 }
891 
892 /*
893  * This is dput
894  *
895  * This is complicated by the fact that we do not want to put
896  * dentries that are no longer on any hash chain on the unused
897  * list: we'd much rather just get rid of them immediately.
898  *
899  * However, that implies that we have to traverse the dentry
900  * tree upwards to the parents which might _also_ now be
901  * scheduled for deletion (it may have been only waiting for
902  * its last child to go away).
903  *
904  * This tail recursion is done by hand as we don't want to depend
905  * on the compiler to always get this right (gcc generally doesn't).
906  * Real recursion would eat up our stack space.
907  */
908 
909 /*
910  * dput - release a dentry
911  * @dentry: dentry to release
912  *
913  * Release a dentry. This will drop the usage count and if appropriate
914  * call the dentry unlink method as well as removing it from the queues and
915  * releasing its resources. If the parent dentries were scheduled for release
916  * they too may now get deleted.
917  */
dput(struct dentry * dentry)918 void dput(struct dentry *dentry)
919 {
920 	if (!dentry)
921 		return;
922 	might_sleep();
923 	rcu_read_lock();
924 	if (likely(fast_dput(dentry))) {
925 		rcu_read_unlock();
926 		return;
927 	}
928 	finish_dput(dentry);
929 }
930 EXPORT_SYMBOL(dput);
931 
d_make_discardable(struct dentry * dentry)932 void d_make_discardable(struct dentry *dentry)
933 {
934 	spin_lock(&dentry->d_lock);
935 	WARN_ON(!(dentry->d_flags & DCACHE_PERSISTENT));
936 	dentry->d_flags &= ~DCACHE_PERSISTENT;
937 	dentry->d_lockref.count--;
938 	rcu_read_lock();
939 	finish_dput(dentry);
940 }
941 EXPORT_SYMBOL(d_make_discardable);
942 
to_shrink_list(struct dentry * dentry,struct list_head * list)943 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
944 __must_hold(&dentry->d_lock)
945 {
946 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
947 		if (dentry->d_flags & DCACHE_LRU_LIST)
948 			d_lru_del(dentry);
949 		d_shrink_add(dentry, list);
950 	}
951 }
952 
dput_to_list(struct dentry * dentry,struct list_head * list)953 void dput_to_list(struct dentry *dentry, struct list_head *list)
954 {
955 	rcu_read_lock();
956 	if (likely(fast_dput(dentry))) {
957 		rcu_read_unlock();
958 		return;
959 	}
960 	rcu_read_unlock();
961 	to_shrink_list(dentry, list);
962 	spin_unlock(&dentry->d_lock);
963 }
964 
dget_parent(struct dentry * dentry)965 struct dentry *dget_parent(struct dentry *dentry)
966 {
967 	int gotref;
968 	struct dentry *ret;
969 	unsigned seq;
970 
971 	/*
972 	 * Do optimistic parent lookup without any
973 	 * locking.
974 	 */
975 	rcu_read_lock();
976 	seq = raw_seqcount_begin(&dentry->d_seq);
977 	ret = READ_ONCE(dentry->d_parent);
978 	gotref = lockref_get_not_zero(&ret->d_lockref);
979 	rcu_read_unlock();
980 	if (likely(gotref)) {
981 		if (!read_seqcount_retry(&dentry->d_seq, seq))
982 			return ret;
983 		dput(ret);
984 	}
985 
986 repeat:
987 	/*
988 	 * Don't need rcu_dereference because we re-check it was correct under
989 	 * the lock.
990 	 */
991 	rcu_read_lock();
992 	ret = dentry->d_parent;
993 	spin_lock(&ret->d_lock);
994 	if (unlikely(ret != dentry->d_parent)) {
995 		spin_unlock(&ret->d_lock);
996 		rcu_read_unlock();
997 		goto repeat;
998 	}
999 	rcu_read_unlock();
1000 	BUG_ON(!ret->d_lockref.count);
1001 	ret->d_lockref.count++;
1002 	spin_unlock(&ret->d_lock);
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL(dget_parent);
1006 
__d_find_any_alias(struct inode * inode)1007 static struct dentry * __d_find_any_alias(struct inode *inode)
1008 {
1009 	struct dentry *alias;
1010 
1011 	if (hlist_empty(&inode->i_dentry))
1012 		return NULL;
1013 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1014 	lockref_get(&alias->d_lockref);
1015 	return alias;
1016 }
1017 
1018 /**
1019  * d_find_any_alias - find any alias for a given inode
1020  * @inode: inode to find an alias for
1021  *
1022  * If any aliases exist for the given inode, take and return a
1023  * reference for one of them.  If no aliases exist, return %NULL.
1024  */
d_find_any_alias(struct inode * inode)1025 struct dentry *d_find_any_alias(struct inode *inode)
1026 {
1027 	struct dentry *de;
1028 
1029 	spin_lock(&inode->i_lock);
1030 	de = __d_find_any_alias(inode);
1031 	spin_unlock(&inode->i_lock);
1032 	return de;
1033 }
1034 EXPORT_SYMBOL(d_find_any_alias);
1035 
__d_find_alias(struct inode * inode)1036 static struct dentry *__d_find_alias(struct inode *inode)
1037 {
1038 	struct dentry *alias;
1039 
1040 	if (S_ISDIR(inode->i_mode))
1041 		return __d_find_any_alias(inode);
1042 
1043 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1044 		spin_lock(&alias->d_lock);
1045  		if (!d_unhashed(alias)) {
1046 			dget_dlock(alias);
1047 			spin_unlock(&alias->d_lock);
1048 			return alias;
1049 		}
1050 		spin_unlock(&alias->d_lock);
1051 	}
1052 	return NULL;
1053 }
1054 
1055 /**
1056  * d_find_alias - grab a hashed alias of inode
1057  * @inode: inode in question
1058  *
1059  * If inode has a hashed alias, or is a directory and has any alias,
1060  * acquire the reference to alias and return it. Otherwise return NULL.
1061  * Notice that if inode is a directory there can be only one alias and
1062  * it can be unhashed only if it has no children, or if it is the root
1063  * of a filesystem, or if the directory was renamed and d_revalidate
1064  * was the first vfs operation to notice.
1065  *
1066  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1067  * any other hashed alias over that one.
1068  */
d_find_alias(struct inode * inode)1069 struct dentry *d_find_alias(struct inode *inode)
1070 {
1071 	struct dentry *de = NULL;
1072 
1073 	if (!hlist_empty(&inode->i_dentry)) {
1074 		spin_lock(&inode->i_lock);
1075 		de = __d_find_alias(inode);
1076 		spin_unlock(&inode->i_lock);
1077 	}
1078 	return de;
1079 }
1080 EXPORT_SYMBOL(d_find_alias);
1081 
1082 /*
1083  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1084  *  that inode won't get freed until rcu_read_unlock().
1085  */
d_find_alias_rcu(struct inode * inode)1086 struct dentry *d_find_alias_rcu(struct inode *inode)
1087 {
1088 	struct hlist_head *l = &inode->i_dentry;
1089 	struct dentry *de = NULL;
1090 
1091 	spin_lock(&inode->i_lock);
1092 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1093 	// used without having I_FREEING set, which means no aliases left
1094 	if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1095 		if (S_ISDIR(inode->i_mode)) {
1096 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1097 		} else {
1098 			hlist_for_each_entry(de, l, d_u.d_alias)
1099 				if (!d_unhashed(de))
1100 					break;
1101 		}
1102 	}
1103 	spin_unlock(&inode->i_lock);
1104 	return de;
1105 }
1106 
1107 /**
1108  * d_dispose_if_unused - move unreferenced dentries to shrink list
1109  * @dentry: dentry in question
1110  * @dispose: head of shrink list
1111  *
1112  * If dentry has no external references, move it to shrink list.
1113  *
1114  * NOTE!!! The caller is responsible for preventing eviction of the dentry by
1115  * holding dentry->d_inode->i_lock or equivalent.
1116  */
d_dispose_if_unused(struct dentry * dentry,struct list_head * dispose)1117 void d_dispose_if_unused(struct dentry *dentry, struct list_head *dispose)
1118 {
1119 	spin_lock(&dentry->d_lock);
1120 	if (!dentry->d_lockref.count)
1121 		to_shrink_list(dentry, dispose);
1122 	spin_unlock(&dentry->d_lock);
1123 }
1124 EXPORT_SYMBOL(d_dispose_if_unused);
1125 
1126 /*
1127  *	Try to kill dentries associated with this inode.
1128  * WARNING: you must own a reference to inode.
1129  */
d_prune_aliases(struct inode * inode)1130 void d_prune_aliases(struct inode *inode)
1131 {
1132 	LIST_HEAD(dispose);
1133 	struct dentry *dentry;
1134 
1135 	spin_lock(&inode->i_lock);
1136 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias)
1137 		d_dispose_if_unused(dentry, &dispose);
1138 	spin_unlock(&inode->i_lock);
1139 	shrink_dentry_list(&dispose);
1140 }
1141 EXPORT_SYMBOL(d_prune_aliases);
1142 
shrink_kill(struct dentry * victim)1143 static inline void shrink_kill(struct dentry *victim)
1144 {
1145 	do {
1146 		rcu_read_unlock();
1147 		victim = __dentry_kill(victim);
1148 		rcu_read_lock();
1149 	} while (victim && lock_for_kill(victim));
1150 	rcu_read_unlock();
1151 	if (victim)
1152 		spin_unlock(&victim->d_lock);
1153 }
1154 
shrink_dentry_list(struct list_head * list)1155 void shrink_dentry_list(struct list_head *list)
1156 {
1157 	while (!list_empty(list)) {
1158 		struct dentry *dentry;
1159 
1160 		dentry = list_entry(list->prev, struct dentry, d_lru);
1161 		spin_lock(&dentry->d_lock);
1162 		rcu_read_lock();
1163 		if (!lock_for_kill(dentry)) {
1164 			bool can_free;
1165 			rcu_read_unlock();
1166 			d_shrink_del(dentry);
1167 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1168 			spin_unlock(&dentry->d_lock);
1169 			if (can_free)
1170 				dentry_free(dentry);
1171 			continue;
1172 		}
1173 		d_shrink_del(dentry);
1174 		shrink_kill(dentry);
1175 	}
1176 }
1177 EXPORT_SYMBOL(shrink_dentry_list);
1178 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1179 static enum lru_status dentry_lru_isolate(struct list_head *item,
1180 		struct list_lru_one *lru, void *arg)
1181 {
1182 	struct list_head *freeable = arg;
1183 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1184 
1185 
1186 	/*
1187 	 * we are inverting the lru lock/dentry->d_lock here,
1188 	 * so use a trylock. If we fail to get the lock, just skip
1189 	 * it
1190 	 */
1191 	if (!spin_trylock(&dentry->d_lock))
1192 		return LRU_SKIP;
1193 
1194 	/*
1195 	 * Referenced dentries are still in use. If they have active
1196 	 * counts, just remove them from the LRU. Otherwise give them
1197 	 * another pass through the LRU.
1198 	 */
1199 	if (dentry->d_lockref.count) {
1200 		d_lru_isolate(lru, dentry);
1201 		spin_unlock(&dentry->d_lock);
1202 		return LRU_REMOVED;
1203 	}
1204 
1205 	if (dentry->d_flags & DCACHE_REFERENCED) {
1206 		dentry->d_flags &= ~DCACHE_REFERENCED;
1207 		spin_unlock(&dentry->d_lock);
1208 
1209 		/*
1210 		 * The list move itself will be made by the common LRU code. At
1211 		 * this point, we've dropped the dentry->d_lock but keep the
1212 		 * lru lock. This is safe to do, since every list movement is
1213 		 * protected by the lru lock even if both locks are held.
1214 		 *
1215 		 * This is guaranteed by the fact that all LRU management
1216 		 * functions are intermediated by the LRU API calls like
1217 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1218 		 * only ever occur through this functions or through callbacks
1219 		 * like this one, that are called from the LRU API.
1220 		 *
1221 		 * The only exceptions to this are functions like
1222 		 * shrink_dentry_list, and code that first checks for the
1223 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1224 		 * operating only with stack provided lists after they are
1225 		 * properly isolated from the main list.  It is thus, always a
1226 		 * local access.
1227 		 */
1228 		return LRU_ROTATE;
1229 	}
1230 
1231 	d_lru_shrink_move(lru, dentry, freeable);
1232 	spin_unlock(&dentry->d_lock);
1233 
1234 	return LRU_REMOVED;
1235 }
1236 
1237 /**
1238  * prune_dcache_sb - shrink the dcache
1239  * @sb: superblock
1240  * @sc: shrink control, passed to list_lru_shrink_walk()
1241  *
1242  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1243  * is done when we need more memory and called from the superblock shrinker
1244  * function.
1245  *
1246  * This function may fail to free any resources if all the dentries are in
1247  * use.
1248  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1249 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1250 {
1251 	LIST_HEAD(dispose);
1252 	long freed;
1253 
1254 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1255 				     dentry_lru_isolate, &dispose);
1256 	shrink_dentry_list(&dispose);
1257 	return freed;
1258 }
1259 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1260 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1261 		struct list_lru_one *lru, void *arg)
1262 {
1263 	struct list_head *freeable = arg;
1264 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1265 
1266 	/*
1267 	 * we are inverting the lru lock/dentry->d_lock here,
1268 	 * so use a trylock. If we fail to get the lock, just skip
1269 	 * it
1270 	 */
1271 	if (!spin_trylock(&dentry->d_lock))
1272 		return LRU_SKIP;
1273 
1274 	d_lru_shrink_move(lru, dentry, freeable);
1275 	spin_unlock(&dentry->d_lock);
1276 
1277 	return LRU_REMOVED;
1278 }
1279 
1280 
1281 /**
1282  * shrink_dcache_sb - shrink dcache for a superblock
1283  * @sb: superblock
1284  *
1285  * Shrink the dcache for the specified super block. This is used to free
1286  * the dcache before unmounting a file system.
1287  */
shrink_dcache_sb(struct super_block * sb)1288 void shrink_dcache_sb(struct super_block *sb)
1289 {
1290 	do {
1291 		LIST_HEAD(dispose);
1292 
1293 		list_lru_walk(&sb->s_dentry_lru,
1294 			dentry_lru_isolate_shrink, &dispose, 1024);
1295 		shrink_dentry_list(&dispose);
1296 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1297 }
1298 EXPORT_SYMBOL(shrink_dcache_sb);
1299 
1300 /**
1301  * enum d_walk_ret - action to talke during tree walk
1302  * @D_WALK_CONTINUE:	contrinue walk
1303  * @D_WALK_QUIT:	quit walk
1304  * @D_WALK_NORETRY:	quit when retry is needed
1305  * @D_WALK_SKIP:	skip this dentry and its children
1306  */
1307 enum d_walk_ret {
1308 	D_WALK_CONTINUE,
1309 	D_WALK_QUIT,
1310 	D_WALK_NORETRY,
1311 	D_WALK_SKIP,
1312 };
1313 
1314 /**
1315  * d_walk - walk the dentry tree
1316  * @parent:	start of walk
1317  * @data:	data passed to @enter() and @finish()
1318  * @enter:	callback when first entering the dentry
1319  *
1320  * The @enter() callbacks are called with d_lock held.
1321  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1322 static void d_walk(struct dentry *parent, void *data,
1323 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1324 {
1325 	struct dentry *this_parent, *dentry;
1326 	unsigned seq = 0;
1327 	enum d_walk_ret ret;
1328 	bool retry = true;
1329 
1330 again:
1331 	read_seqbegin_or_lock(&rename_lock, &seq);
1332 	this_parent = parent;
1333 	spin_lock(&this_parent->d_lock);
1334 
1335 	ret = enter(data, this_parent);
1336 	switch (ret) {
1337 	case D_WALK_CONTINUE:
1338 		break;
1339 	case D_WALK_QUIT:
1340 	case D_WALK_SKIP:
1341 		goto out_unlock;
1342 	case D_WALK_NORETRY:
1343 		retry = false;
1344 		break;
1345 	}
1346 repeat:
1347 	dentry = d_first_child(this_parent);
1348 resume:
1349 	hlist_for_each_entry_from(dentry, d_sib) {
1350 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1351 			continue;
1352 
1353 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1354 
1355 		ret = enter(data, dentry);
1356 		switch (ret) {
1357 		case D_WALK_CONTINUE:
1358 			break;
1359 		case D_WALK_QUIT:
1360 			spin_unlock(&dentry->d_lock);
1361 			goto out_unlock;
1362 		case D_WALK_NORETRY:
1363 			retry = false;
1364 			break;
1365 		case D_WALK_SKIP:
1366 			spin_unlock(&dentry->d_lock);
1367 			continue;
1368 		}
1369 
1370 		if (!hlist_empty(&dentry->d_children)) {
1371 			spin_unlock(&this_parent->d_lock);
1372 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1373 			this_parent = dentry;
1374 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1375 			goto repeat;
1376 		}
1377 		spin_unlock(&dentry->d_lock);
1378 	}
1379 	/*
1380 	 * All done at this level ... ascend and resume the search.
1381 	 */
1382 	rcu_read_lock();
1383 ascend:
1384 	if (this_parent != parent) {
1385 		dentry = this_parent;
1386 		this_parent = dentry->d_parent;
1387 
1388 		spin_unlock(&dentry->d_lock);
1389 		spin_lock(&this_parent->d_lock);
1390 
1391 		/* might go back up the wrong parent if we have had a rename. */
1392 		if (need_seqretry(&rename_lock, seq))
1393 			goto rename_retry;
1394 		/* go into the first sibling still alive */
1395 		hlist_for_each_entry_continue(dentry, d_sib) {
1396 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1397 				rcu_read_unlock();
1398 				goto resume;
1399 			}
1400 		}
1401 		goto ascend;
1402 	}
1403 	if (need_seqretry(&rename_lock, seq))
1404 		goto rename_retry;
1405 	rcu_read_unlock();
1406 
1407 out_unlock:
1408 	spin_unlock(&this_parent->d_lock);
1409 	done_seqretry(&rename_lock, seq);
1410 	return;
1411 
1412 rename_retry:
1413 	spin_unlock(&this_parent->d_lock);
1414 	rcu_read_unlock();
1415 	BUG_ON(seq & 1);
1416 	if (!retry)
1417 		return;
1418 	seq = 1;
1419 	goto again;
1420 }
1421 
1422 struct check_mount {
1423 	struct vfsmount *mnt;
1424 	unsigned int mounted;
1425 };
1426 
1427 /* locks: mount_locked_reader && dentry->d_lock */
path_check_mount(void * data,struct dentry * dentry)1428 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1429 {
1430 	struct check_mount *info = data;
1431 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1432 
1433 	if (likely(!d_mountpoint(dentry)))
1434 		return D_WALK_CONTINUE;
1435 	if (__path_is_mountpoint(&path)) {
1436 		info->mounted = 1;
1437 		return D_WALK_QUIT;
1438 	}
1439 	return D_WALK_CONTINUE;
1440 }
1441 
1442 /**
1443  * path_has_submounts - check for mounts over a dentry in the
1444  *                      current namespace.
1445  * @parent: path to check.
1446  *
1447  * Return true if the parent or its subdirectories contain
1448  * a mount point in the current namespace.
1449  */
path_has_submounts(const struct path * parent)1450 int path_has_submounts(const struct path *parent)
1451 {
1452 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1453 
1454 	guard(mount_locked_reader)();
1455 	d_walk(parent->dentry, &data, path_check_mount);
1456 
1457 	return data.mounted;
1458 }
1459 EXPORT_SYMBOL(path_has_submounts);
1460 
1461 /*
1462  * Called by mount code to set a mountpoint and check if the mountpoint is
1463  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1464  * subtree can become unreachable).
1465  *
1466  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1467  * this reason take rename_lock and d_lock on dentry and ancestors.
1468  */
d_set_mounted(struct dentry * dentry)1469 int d_set_mounted(struct dentry *dentry)
1470 {
1471 	struct dentry *p;
1472 	int ret = -ENOENT;
1473 	read_seqlock_excl(&rename_lock);
1474 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1475 		/* Need exclusion wrt. d_invalidate() */
1476 		spin_lock(&p->d_lock);
1477 		if (unlikely(d_unhashed(p))) {
1478 			spin_unlock(&p->d_lock);
1479 			goto out;
1480 		}
1481 		spin_unlock(&p->d_lock);
1482 	}
1483 	spin_lock(&dentry->d_lock);
1484 	if (!d_unlinked(dentry)) {
1485 		ret = -EBUSY;
1486 		if (!d_mountpoint(dentry)) {
1487 			dentry->d_flags |= DCACHE_MOUNTED;
1488 			ret = 0;
1489 		}
1490 	}
1491  	spin_unlock(&dentry->d_lock);
1492 out:
1493 	read_sequnlock_excl(&rename_lock);
1494 	return ret;
1495 }
1496 
1497 /*
1498  * Search the dentry child list of the specified parent,
1499  * and move any unused dentries to the end of the unused
1500  * list for prune_dcache(). We descend to the next level
1501  * whenever the d_children list is non-empty and continue
1502  * searching.
1503  *
1504  * It returns zero iff there are no unused children,
1505  * otherwise  it returns the number of children moved to
1506  * the end of the unused list. This may not be the total
1507  * number of unused children, because select_parent can
1508  * drop the lock and return early due to latency
1509  * constraints.
1510  */
1511 
1512 struct select_data {
1513 	struct dentry *start;
1514 	union {
1515 		long found;
1516 		struct dentry *victim;
1517 	};
1518 	struct list_head dispose;
1519 };
1520 
select_collect(void * _data,struct dentry * dentry)1521 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1522 {
1523 	struct select_data *data = _data;
1524 	enum d_walk_ret ret = D_WALK_CONTINUE;
1525 
1526 	if (data->start == dentry)
1527 		goto out;
1528 
1529 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1530 		data->found++;
1531 	} else if (!dentry->d_lockref.count) {
1532 		to_shrink_list(dentry, &data->dispose);
1533 		data->found++;
1534 	} else if (dentry->d_lockref.count < 0) {
1535 		data->found++;
1536 	}
1537 	/*
1538 	 * We can return to the caller if we have found some (this
1539 	 * ensures forward progress). We'll be coming back to find
1540 	 * the rest.
1541 	 */
1542 	if (!list_empty(&data->dispose))
1543 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1544 out:
1545 	return ret;
1546 }
1547 
select_collect_umount(void * _data,struct dentry * dentry)1548 static enum d_walk_ret select_collect_umount(void *_data, struct dentry *dentry)
1549 {
1550 	if (dentry->d_flags & DCACHE_PERSISTENT) {
1551 		dentry->d_flags &= ~DCACHE_PERSISTENT;
1552 		dentry->d_lockref.count--;
1553 	}
1554 	return select_collect(_data, dentry);
1555 }
1556 
select_collect2(void * _data,struct dentry * dentry)1557 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1558 {
1559 	struct select_data *data = _data;
1560 	enum d_walk_ret ret = D_WALK_CONTINUE;
1561 
1562 	if (data->start == dentry)
1563 		goto out;
1564 
1565 	if (!dentry->d_lockref.count) {
1566 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1567 			rcu_read_lock();
1568 			data->victim = dentry;
1569 			return D_WALK_QUIT;
1570 		}
1571 		to_shrink_list(dentry, &data->dispose);
1572 	}
1573 	/*
1574 	 * We can return to the caller if we have found some (this
1575 	 * ensures forward progress). We'll be coming back to find
1576 	 * the rest.
1577 	 */
1578 	if (!list_empty(&data->dispose))
1579 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1580 out:
1581 	return ret;
1582 }
1583 
1584 /**
1585  * shrink_dcache_tree - prune dcache
1586  * @parent: parent of entries to prune
1587  * @for_umount: true if we want to unpin the persistent ones
1588  *
1589  * Prune the dcache to remove unused children of the parent dentry.
1590  */
shrink_dcache_tree(struct dentry * parent,bool for_umount)1591 static void shrink_dcache_tree(struct dentry *parent, bool for_umount)
1592 {
1593 	for (;;) {
1594 		struct select_data data = {.start = parent};
1595 
1596 		INIT_LIST_HEAD(&data.dispose);
1597 		d_walk(parent, &data,
1598 			for_umount ? select_collect_umount : select_collect);
1599 
1600 		if (!list_empty(&data.dispose)) {
1601 			shrink_dentry_list(&data.dispose);
1602 			continue;
1603 		}
1604 
1605 		cond_resched();
1606 		if (!data.found)
1607 			break;
1608 		data.victim = NULL;
1609 		d_walk(parent, &data, select_collect2);
1610 		if (data.victim) {
1611 			spin_lock(&data.victim->d_lock);
1612 			if (!lock_for_kill(data.victim)) {
1613 				spin_unlock(&data.victim->d_lock);
1614 				rcu_read_unlock();
1615 			} else {
1616 				shrink_kill(data.victim);
1617 			}
1618 		}
1619 		if (!list_empty(&data.dispose))
1620 			shrink_dentry_list(&data.dispose);
1621 	}
1622 }
1623 
shrink_dcache_parent(struct dentry * parent)1624 void shrink_dcache_parent(struct dentry *parent)
1625 {
1626 	shrink_dcache_tree(parent, false);
1627 }
1628 EXPORT_SYMBOL(shrink_dcache_parent);
1629 
umount_check(void * _data,struct dentry * dentry)1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631 {
1632 	/* it has busy descendents; complain about those instead */
1633 	if (!hlist_empty(&dentry->d_children))
1634 		return D_WALK_CONTINUE;
1635 
1636 	/* root with refcount 1 is fine */
1637 	if (dentry == _data && dentry->d_lockref.count == 1)
1638 		return D_WALK_CONTINUE;
1639 
1640 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1641 			" still in use (%d) [unmount of %s %s]\n",
1642 		       dentry,
1643 		       dentry->d_inode ?
1644 		       dentry->d_inode->i_ino : 0UL,
1645 		       dentry,
1646 		       dentry->d_lockref.count,
1647 		       dentry->d_sb->s_type->name,
1648 		       dentry->d_sb->s_id);
1649 	return D_WALK_CONTINUE;
1650 }
1651 
do_one_tree(struct dentry * dentry)1652 static void do_one_tree(struct dentry *dentry)
1653 {
1654 	shrink_dcache_tree(dentry, true);
1655 	d_walk(dentry, dentry, umount_check);
1656 	d_drop(dentry);
1657 	dput(dentry);
1658 }
1659 
1660 /*
1661  * destroy the dentries attached to a superblock on unmounting
1662  */
shrink_dcache_for_umount(struct super_block * sb)1663 void shrink_dcache_for_umount(struct super_block *sb)
1664 {
1665 	struct dentry *dentry;
1666 
1667 	rwsem_assert_held_write(&sb->s_umount);
1668 
1669 	dentry = sb->s_root;
1670 	sb->s_root = NULL;
1671 	do_one_tree(dentry);
1672 
1673 	while (!hlist_bl_empty(&sb->s_roots)) {
1674 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1675 		do_one_tree(dentry);
1676 	}
1677 }
1678 
find_submount(void * _data,struct dentry * dentry)1679 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1680 {
1681 	struct dentry **victim = _data;
1682 	if (d_mountpoint(dentry)) {
1683 		*victim = dget_dlock(dentry);
1684 		return D_WALK_QUIT;
1685 	}
1686 	return D_WALK_CONTINUE;
1687 }
1688 
1689 /**
1690  * d_invalidate - detach submounts, prune dcache, and drop
1691  * @dentry: dentry to invalidate (aka detach, prune and drop)
1692  */
d_invalidate(struct dentry * dentry)1693 void d_invalidate(struct dentry *dentry)
1694 {
1695 	bool had_submounts = false;
1696 	spin_lock(&dentry->d_lock);
1697 	if (d_unhashed(dentry)) {
1698 		spin_unlock(&dentry->d_lock);
1699 		return;
1700 	}
1701 	__d_drop(dentry);
1702 	spin_unlock(&dentry->d_lock);
1703 
1704 	/* Negative dentries can be dropped without further checks */
1705 	if (!dentry->d_inode)
1706 		return;
1707 
1708 	shrink_dcache_parent(dentry);
1709 	for (;;) {
1710 		struct dentry *victim = NULL;
1711 		d_walk(dentry, &victim, find_submount);
1712 		if (!victim) {
1713 			if (had_submounts)
1714 				shrink_dcache_parent(dentry);
1715 			return;
1716 		}
1717 		had_submounts = true;
1718 		detach_mounts(victim);
1719 		dput(victim);
1720 	}
1721 }
1722 EXPORT_SYMBOL(d_invalidate);
1723 
1724 /**
1725  * __d_alloc	-	allocate a dcache entry
1726  * @sb: filesystem it will belong to
1727  * @name: qstr of the name
1728  *
1729  * Allocates a dentry. It returns %NULL if there is insufficient memory
1730  * available. On a success the dentry is returned. The name passed in is
1731  * copied and the copy passed in may be reused after this call.
1732  */
1733 
__d_alloc(struct super_block * sb,const struct qstr * name)1734 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1735 {
1736 	struct dentry *dentry;
1737 	char *dname;
1738 	int err;
1739 
1740 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1741 				      GFP_KERNEL);
1742 	if (!dentry)
1743 		return NULL;
1744 
1745 	/*
1746 	 * We guarantee that the inline name is always NUL-terminated.
1747 	 * This way the memcpy() done by the name switching in rename
1748 	 * will still always have a NUL at the end, even if we might
1749 	 * be overwriting an internal NUL character
1750 	 */
1751 	dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1752 	if (unlikely(!name)) {
1753 		name = &slash_name;
1754 		dname = dentry->d_shortname.string;
1755 	} else if (name->len > DNAME_INLINE_LEN-1) {
1756 		size_t size = offsetof(struct external_name, name[1]);
1757 		struct external_name *p = kmalloc(size + name->len,
1758 						  GFP_KERNEL_ACCOUNT |
1759 						  __GFP_RECLAIMABLE);
1760 		if (!p) {
1761 			kmem_cache_free(dentry_cache, dentry);
1762 			return NULL;
1763 		}
1764 		atomic_set(&p->count, 1);
1765 		dname = p->name;
1766 	} else  {
1767 		dname = dentry->d_shortname.string;
1768 	}
1769 
1770 	dentry->__d_name.len = name->len;
1771 	dentry->__d_name.hash = name->hash;
1772 	memcpy(dname, name->name, name->len);
1773 	dname[name->len] = 0;
1774 
1775 	/* Make sure we always see the terminating NUL character */
1776 	smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1777 
1778 	dentry->d_flags = 0;
1779 	lockref_init(&dentry->d_lockref);
1780 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1781 	dentry->d_inode = NULL;
1782 	dentry->d_parent = dentry;
1783 	dentry->d_sb = sb;
1784 	dentry->d_op = sb->__s_d_op;
1785 	dentry->d_flags = sb->s_d_flags;
1786 	dentry->d_fsdata = NULL;
1787 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1788 	INIT_LIST_HEAD(&dentry->d_lru);
1789 	INIT_HLIST_HEAD(&dentry->d_children);
1790 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1791 	INIT_HLIST_NODE(&dentry->d_sib);
1792 
1793 	if (dentry->d_op && dentry->d_op->d_init) {
1794 		err = dentry->d_op->d_init(dentry);
1795 		if (err) {
1796 			if (dname_external(dentry))
1797 				kfree(external_name(dentry));
1798 			kmem_cache_free(dentry_cache, dentry);
1799 			return NULL;
1800 		}
1801 	}
1802 
1803 	this_cpu_inc(nr_dentry);
1804 
1805 	return dentry;
1806 }
1807 
1808 /**
1809  * d_alloc	-	allocate a dcache entry
1810  * @parent: parent of entry to allocate
1811  * @name: qstr of the name
1812  *
1813  * Allocates a dentry. It returns %NULL if there is insufficient memory
1814  * available. On a success the dentry is returned. The name passed in is
1815  * copied and the copy passed in may be reused after this call.
1816  */
d_alloc(struct dentry * parent,const struct qstr * name)1817 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1818 {
1819 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1820 	if (!dentry)
1821 		return NULL;
1822 	spin_lock(&parent->d_lock);
1823 	/*
1824 	 * don't need child lock because it is not subject
1825 	 * to concurrency here
1826 	 */
1827 	dentry->d_parent = dget_dlock(parent);
1828 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1829 	spin_unlock(&parent->d_lock);
1830 
1831 	return dentry;
1832 }
1833 EXPORT_SYMBOL(d_alloc);
1834 
d_alloc_anon(struct super_block * sb)1835 struct dentry *d_alloc_anon(struct super_block *sb)
1836 {
1837 	return __d_alloc(sb, NULL);
1838 }
1839 EXPORT_SYMBOL(d_alloc_anon);
1840 
d_alloc_cursor(struct dentry * parent)1841 struct dentry *d_alloc_cursor(struct dentry * parent)
1842 {
1843 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1844 	if (dentry) {
1845 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1846 		dentry->d_parent = dget(parent);
1847 	}
1848 	return dentry;
1849 }
1850 
1851 /**
1852  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1853  * @sb: the superblock
1854  * @name: qstr of the name
1855  *
1856  * For a filesystem that just pins its dentries in memory and never
1857  * performs lookups at all, return an unhashed IS_ROOT dentry.
1858  * This is used for pipes, sockets et.al. - the stuff that should
1859  * never be anyone's children or parents.  Unlike all other
1860  * dentries, these will not have RCU delay between dropping the
1861  * last reference and freeing them.
1862  *
1863  * The only user is alloc_file_pseudo() and that's what should
1864  * be considered a public interface.  Don't use directly.
1865  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1866 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1867 {
1868 	static const struct dentry_operations anon_ops = {
1869 		.d_dname = simple_dname
1870 	};
1871 	struct dentry *dentry = __d_alloc(sb, name);
1872 	if (likely(dentry)) {
1873 		dentry->d_flags |= DCACHE_NORCU;
1874 		/* d_op_flags(&anon_ops) is 0 */
1875 		if (!dentry->d_op)
1876 			dentry->d_op = &anon_ops;
1877 	}
1878 	return dentry;
1879 }
1880 
d_alloc_name(struct dentry * parent,const char * name)1881 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1882 {
1883 	struct qstr q;
1884 
1885 	q.name = name;
1886 	q.hash_len = hashlen_string(parent, name);
1887 	return d_alloc(parent, &q);
1888 }
1889 EXPORT_SYMBOL(d_alloc_name);
1890 
1891 #define DCACHE_OP_FLAGS \
1892 	(DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1893 	 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1894 	 DCACHE_OP_REAL)
1895 
d_op_flags(const struct dentry_operations * op)1896 static unsigned int d_op_flags(const struct dentry_operations *op)
1897 {
1898 	unsigned int flags = 0;
1899 	if (op) {
1900 		if (op->d_hash)
1901 			flags |= DCACHE_OP_HASH;
1902 		if (op->d_compare)
1903 			flags |= DCACHE_OP_COMPARE;
1904 		if (op->d_revalidate)
1905 			flags |= DCACHE_OP_REVALIDATE;
1906 		if (op->d_weak_revalidate)
1907 			flags |= DCACHE_OP_WEAK_REVALIDATE;
1908 		if (op->d_delete)
1909 			flags |= DCACHE_OP_DELETE;
1910 		if (op->d_prune)
1911 			flags |= DCACHE_OP_PRUNE;
1912 		if (op->d_real)
1913 			flags |= DCACHE_OP_REAL;
1914 	}
1915 	return flags;
1916 }
1917 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1918 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1919 {
1920 	unsigned int flags = d_op_flags(op);
1921 	WARN_ON_ONCE(dentry->d_op);
1922 	WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1923 	dentry->d_op = op;
1924 	if (flags)
1925 		dentry->d_flags |= flags;
1926 }
1927 
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1928 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1929 {
1930 	unsigned int flags = d_op_flags(ops);
1931 	s->__s_d_op = ops;
1932 	s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1933 }
1934 EXPORT_SYMBOL(set_default_d_op);
1935 
d_flags_for_inode(struct inode * inode)1936 static unsigned d_flags_for_inode(struct inode *inode)
1937 {
1938 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1939 
1940 	if (!inode)
1941 		return DCACHE_MISS_TYPE;
1942 
1943 	if (S_ISDIR(inode->i_mode)) {
1944 		add_flags = DCACHE_DIRECTORY_TYPE;
1945 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1946 			if (unlikely(!inode->i_op->lookup))
1947 				add_flags = DCACHE_AUTODIR_TYPE;
1948 			else
1949 				inode->i_opflags |= IOP_LOOKUP;
1950 		}
1951 		goto type_determined;
1952 	}
1953 
1954 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1955 		if (unlikely(inode->i_op->get_link)) {
1956 			add_flags = DCACHE_SYMLINK_TYPE;
1957 			goto type_determined;
1958 		}
1959 		inode->i_opflags |= IOP_NOFOLLOW;
1960 	}
1961 
1962 	if (unlikely(!S_ISREG(inode->i_mode)))
1963 		add_flags = DCACHE_SPECIAL_TYPE;
1964 
1965 type_determined:
1966 	if (unlikely(IS_AUTOMOUNT(inode)))
1967 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1968 	return add_flags;
1969 }
1970 
__d_instantiate(struct dentry * dentry,struct inode * inode)1971 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1972 {
1973 	unsigned add_flags = d_flags_for_inode(inode);
1974 	WARN_ON(d_in_lookup(dentry));
1975 
1976 	/*
1977 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1978 	 * d_lru is on another list.
1979 	 */
1980 	if ((dentry->d_flags &
1981 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1982 		this_cpu_dec(nr_dentry_negative);
1983 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1984 	raw_write_seqcount_begin(&dentry->d_seq);
1985 	__d_set_inode_and_type(dentry, inode, add_flags);
1986 	raw_write_seqcount_end(&dentry->d_seq);
1987 	fsnotify_update_flags(dentry);
1988 }
1989 
1990 /**
1991  * d_instantiate - fill in inode information for a dentry
1992  * @entry: dentry to complete
1993  * @inode: inode to attach to this dentry
1994  *
1995  * Fill in inode information in the entry.
1996  *
1997  * This turns negative dentries into productive full members
1998  * of society.
1999  *
2000  * NOTE! This assumes that the inode count has been incremented
2001  * (or otherwise set) by the caller to indicate that it is now
2002  * in use by the dcache.
2003  */
2004 
d_instantiate(struct dentry * entry,struct inode * inode)2005 void d_instantiate(struct dentry *entry, struct inode * inode)
2006 {
2007 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2008 	if (inode) {
2009 		security_d_instantiate(entry, inode);
2010 		spin_lock(&inode->i_lock);
2011 		spin_lock(&entry->d_lock);
2012 		__d_instantiate(entry, inode);
2013 		spin_unlock(&entry->d_lock);
2014 		spin_unlock(&inode->i_lock);
2015 	}
2016 }
2017 EXPORT_SYMBOL(d_instantiate);
2018 
2019 /*
2020  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2021  * with lockdep-related part of unlock_new_inode() done before
2022  * anything else.  Use that instead of open-coding d_instantiate()/
2023  * unlock_new_inode() combinations.
2024  */
d_instantiate_new(struct dentry * entry,struct inode * inode)2025 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2026 {
2027 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2028 	BUG_ON(!inode);
2029 	lockdep_annotate_inode_mutex_key(inode);
2030 	security_d_instantiate(entry, inode);
2031 	spin_lock(&inode->i_lock);
2032 	spin_lock(&entry->d_lock);
2033 	__d_instantiate(entry, inode);
2034 	spin_unlock(&entry->d_lock);
2035 	WARN_ON(!(inode_state_read(inode) & I_NEW));
2036 	inode_state_clear(inode, I_NEW | I_CREATING);
2037 	inode_wake_up_bit(inode, __I_NEW);
2038 	spin_unlock(&inode->i_lock);
2039 }
2040 EXPORT_SYMBOL(d_instantiate_new);
2041 
d_make_root(struct inode * root_inode)2042 struct dentry *d_make_root(struct inode *root_inode)
2043 {
2044 	struct dentry *res = NULL;
2045 
2046 	if (root_inode) {
2047 		res = d_alloc_anon(root_inode->i_sb);
2048 		if (res)
2049 			d_instantiate(res, root_inode);
2050 		else
2051 			iput(root_inode);
2052 	}
2053 	return res;
2054 }
2055 EXPORT_SYMBOL(d_make_root);
2056 
__d_obtain_alias(struct inode * inode,bool disconnected)2057 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2058 {
2059 	struct super_block *sb;
2060 	struct dentry *new, *res;
2061 
2062 	if (!inode)
2063 		return ERR_PTR(-ESTALE);
2064 	if (IS_ERR(inode))
2065 		return ERR_CAST(inode);
2066 
2067 	sb = inode->i_sb;
2068 
2069 	res = d_find_any_alias(inode); /* existing alias? */
2070 	if (res)
2071 		goto out;
2072 
2073 	new = d_alloc_anon(sb);
2074 	if (!new) {
2075 		res = ERR_PTR(-ENOMEM);
2076 		goto out;
2077 	}
2078 
2079 	security_d_instantiate(new, inode);
2080 	spin_lock(&inode->i_lock);
2081 	res = __d_find_any_alias(inode); /* recheck under lock */
2082 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2083 		unsigned add_flags = d_flags_for_inode(inode);
2084 
2085 		if (disconnected)
2086 			add_flags |= DCACHE_DISCONNECTED;
2087 
2088 		spin_lock(&new->d_lock);
2089 		__d_set_inode_and_type(new, inode, add_flags);
2090 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2091 		if (!disconnected) {
2092 			hlist_bl_lock(&sb->s_roots);
2093 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2094 			hlist_bl_unlock(&sb->s_roots);
2095 		}
2096 		spin_unlock(&new->d_lock);
2097 		spin_unlock(&inode->i_lock);
2098 		inode = NULL; /* consumed by new->d_inode */
2099 		res = new;
2100 	} else {
2101 		spin_unlock(&inode->i_lock);
2102 		dput(new);
2103 	}
2104 
2105  out:
2106 	iput(inode);
2107 	return res;
2108 }
2109 
2110 /**
2111  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2112  * @inode: inode to allocate the dentry for
2113  *
2114  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2115  * similar open by handle operations.  The returned dentry may be anonymous,
2116  * or may have a full name (if the inode was already in the cache).
2117  *
2118  * When called on a directory inode, we must ensure that the inode only ever
2119  * has one dentry.  If a dentry is found, that is returned instead of
2120  * allocating a new one.
2121  *
2122  * On successful return, the reference to the inode has been transferred
2123  * to the dentry.  In case of an error the reference on the inode is released.
2124  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2125  * be passed in and the error will be propagated to the return value,
2126  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2127  */
d_obtain_alias(struct inode * inode)2128 struct dentry *d_obtain_alias(struct inode *inode)
2129 {
2130 	return __d_obtain_alias(inode, true);
2131 }
2132 EXPORT_SYMBOL(d_obtain_alias);
2133 
2134 /**
2135  * d_obtain_root - find or allocate a dentry for a given inode
2136  * @inode: inode to allocate the dentry for
2137  *
2138  * Obtain an IS_ROOT dentry for the root of a filesystem.
2139  *
2140  * We must ensure that directory inodes only ever have one dentry.  If a
2141  * dentry is found, that is returned instead of allocating a new one.
2142  *
2143  * On successful return, the reference to the inode has been transferred
2144  * to the dentry.  In case of an error the reference on the inode is
2145  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2146  * error will be propagate to the return value, with a %NULL @inode
2147  * replaced by ERR_PTR(-ESTALE).
2148  */
d_obtain_root(struct inode * inode)2149 struct dentry *d_obtain_root(struct inode *inode)
2150 {
2151 	return __d_obtain_alias(inode, false);
2152 }
2153 EXPORT_SYMBOL(d_obtain_root);
2154 
2155 /**
2156  * d_add_ci - lookup or allocate new dentry with case-exact name
2157  * @dentry: the negative dentry that was passed to the parent's lookup func
2158  * @inode:  the inode case-insensitive lookup has found
2159  * @name:   the case-exact name to be associated with the returned dentry
2160  *
2161  * This is to avoid filling the dcache with case-insensitive names to the
2162  * same inode, only the actual correct case is stored in the dcache for
2163  * case-insensitive filesystems.
2164  *
2165  * For a case-insensitive lookup match and if the case-exact dentry
2166  * already exists in the dcache, use it and return it.
2167  *
2168  * If no entry exists with the exact case name, allocate new dentry with
2169  * the exact case, and return the spliced entry.
2170  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2171 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2172 			struct qstr *name)
2173 {
2174 	struct dentry *found, *res;
2175 
2176 	/*
2177 	 * First check if a dentry matching the name already exists,
2178 	 * if not go ahead and create it now.
2179 	 */
2180 	found = d_hash_and_lookup(dentry->d_parent, name);
2181 	if (found) {
2182 		iput(inode);
2183 		return found;
2184 	}
2185 	if (d_in_lookup(dentry)) {
2186 		found = d_alloc_parallel(dentry->d_parent, name,
2187 					dentry->d_wait);
2188 		if (IS_ERR(found) || !d_in_lookup(found)) {
2189 			iput(inode);
2190 			return found;
2191 		}
2192 	} else {
2193 		found = d_alloc(dentry->d_parent, name);
2194 		if (!found) {
2195 			iput(inode);
2196 			return ERR_PTR(-ENOMEM);
2197 		}
2198 	}
2199 	res = d_splice_alias(inode, found);
2200 	if (res) {
2201 		d_lookup_done(found);
2202 		dput(found);
2203 		return res;
2204 	}
2205 	return found;
2206 }
2207 EXPORT_SYMBOL(d_add_ci);
2208 
2209 /**
2210  * d_same_name - compare dentry name with case-exact name
2211  * @dentry: the negative dentry that was passed to the parent's lookup func
2212  * @parent: parent dentry
2213  * @name:   the case-exact name to be associated with the returned dentry
2214  *
2215  * Return: true if names are same, or false
2216  */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2217 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2218 		 const struct qstr *name)
2219 {
2220 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2221 		if (dentry->d_name.len != name->len)
2222 			return false;
2223 		return dentry_cmp(dentry, name->name, name->len) == 0;
2224 	}
2225 	return parent->d_op->d_compare(dentry,
2226 				       dentry->d_name.len, dentry->d_name.name,
2227 				       name) == 0;
2228 }
2229 EXPORT_SYMBOL_GPL(d_same_name);
2230 
2231 /*
2232  * This is __d_lookup_rcu() when the parent dentry has
2233  * DCACHE_OP_COMPARE, which makes things much nastier.
2234  */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2235 static noinline struct dentry *__d_lookup_rcu_op_compare(
2236 	const struct dentry *parent,
2237 	const struct qstr *name,
2238 	unsigned *seqp)
2239 {
2240 	u64 hashlen = name->hash_len;
2241 	struct hlist_bl_head *b = d_hash(hashlen);
2242 	struct hlist_bl_node *node;
2243 	struct dentry *dentry;
2244 
2245 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246 		int tlen;
2247 		const char *tname;
2248 		unsigned seq;
2249 
2250 seqretry:
2251 		seq = raw_seqcount_begin(&dentry->d_seq);
2252 		if (dentry->d_parent != parent)
2253 			continue;
2254 		if (d_unhashed(dentry))
2255 			continue;
2256 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2257 			continue;
2258 		tlen = dentry->d_name.len;
2259 		tname = dentry->d_name.name;
2260 		/* we want a consistent (name,len) pair */
2261 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2262 			cpu_relax();
2263 			goto seqretry;
2264 		}
2265 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2266 			continue;
2267 		*seqp = seq;
2268 		return dentry;
2269 	}
2270 	return NULL;
2271 }
2272 
2273 /**
2274  * __d_lookup_rcu - search for a dentry (racy, store-free)
2275  * @parent: parent dentry
2276  * @name: qstr of name we wish to find
2277  * @seqp: returns d_seq value at the point where the dentry was found
2278  * Returns: dentry, or NULL
2279  *
2280  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2281  * resolution (store-free path walking) design described in
2282  * Documentation/filesystems/path-lookup.txt.
2283  *
2284  * This is not to be used outside core vfs.
2285  *
2286  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2287  * held, and rcu_read_lock held. The returned dentry must not be stored into
2288  * without taking d_lock and checking d_seq sequence count against @seq
2289  * returned here.
2290  *
2291  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2292  * the returned dentry, so long as its parent's seqlock is checked after the
2293  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2294  * is formed, giving integrity down the path walk.
2295  *
2296  * NOTE! The caller *has* to check the resulting dentry against the sequence
2297  * number we've returned before using any of the resulting dentry state!
2298  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2299 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2300 				const struct qstr *name,
2301 				unsigned *seqp)
2302 {
2303 	u64 hashlen = name->hash_len;
2304 	const unsigned char *str = name->name;
2305 	struct hlist_bl_head *b = d_hash(hashlen);
2306 	struct hlist_bl_node *node;
2307 	struct dentry *dentry;
2308 
2309 	/*
2310 	 * Note: There is significant duplication with __d_lookup_rcu which is
2311 	 * required to prevent single threaded performance regressions
2312 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2313 	 * Keep the two functions in sync.
2314 	 */
2315 
2316 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2317 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2318 
2319 	/*
2320 	 * The hash list is protected using RCU.
2321 	 *
2322 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2323 	 * races with d_move().
2324 	 *
2325 	 * It is possible that concurrent renames can mess up our list
2326 	 * walk here and result in missing our dentry, resulting in the
2327 	 * false-negative result. d_lookup() protects against concurrent
2328 	 * renames using rename_lock seqlock.
2329 	 *
2330 	 * See Documentation/filesystems/path-lookup.txt for more details.
2331 	 */
2332 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2333 		unsigned seq;
2334 
2335 		/*
2336 		 * The dentry sequence count protects us from concurrent
2337 		 * renames, and thus protects parent and name fields.
2338 		 *
2339 		 * The caller must perform a seqcount check in order
2340 		 * to do anything useful with the returned dentry.
2341 		 *
2342 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2343 		 * we don't wait for the sequence count to stabilize if it
2344 		 * is in the middle of a sequence change. If we do the slow
2345 		 * dentry compare, we will do seqretries until it is stable,
2346 		 * and if we end up with a successful lookup, we actually
2347 		 * want to exit RCU lookup anyway.
2348 		 *
2349 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2350 		 * we are still guaranteed NUL-termination of ->d_name.name.
2351 		 */
2352 		seq = raw_seqcount_begin(&dentry->d_seq);
2353 		if (dentry->d_parent != parent)
2354 			continue;
2355 		if (dentry->d_name.hash_len != hashlen)
2356 			continue;
2357 		if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2358 			continue;
2359 		/*
2360 		 * Check for the dentry being unhashed.
2361 		 *
2362 		 * As tempting as it is, we *can't* skip it because of a race window
2363 		 * between us finding the dentry before it gets unhashed and loading
2364 		 * the sequence counter after unhashing is finished.
2365 		 *
2366 		 * We can at least predict on it.
2367 		 */
2368 		if (unlikely(d_unhashed(dentry)))
2369 			continue;
2370 		*seqp = seq;
2371 		return dentry;
2372 	}
2373 	return NULL;
2374 }
2375 
2376 /**
2377  * d_lookup - search for a dentry
2378  * @parent: parent dentry
2379  * @name: qstr of name we wish to find
2380  * Returns: dentry, or NULL
2381  *
2382  * d_lookup searches the children of the parent dentry for the name in
2383  * question. If the dentry is found its reference count is incremented and the
2384  * dentry is returned. The caller must use dput to free the entry when it has
2385  * finished using it. %NULL is returned if the dentry does not exist.
2386  */
d_lookup(const struct dentry * parent,const struct qstr * name)2387 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2388 {
2389 	struct dentry *dentry;
2390 	unsigned seq;
2391 
2392 	do {
2393 		seq = read_seqbegin(&rename_lock);
2394 		dentry = __d_lookup(parent, name);
2395 		if (dentry)
2396 			break;
2397 	} while (read_seqretry(&rename_lock, seq));
2398 	return dentry;
2399 }
2400 EXPORT_SYMBOL(d_lookup);
2401 
2402 /**
2403  * __d_lookup - search for a dentry (racy)
2404  * @parent: parent dentry
2405  * @name: qstr of name we wish to find
2406  * Returns: dentry, or NULL
2407  *
2408  * __d_lookup is like d_lookup, however it may (rarely) return a
2409  * false-negative result due to unrelated rename activity.
2410  *
2411  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2412  * however it must be used carefully, eg. with a following d_lookup in
2413  * the case of failure.
2414  *
2415  * __d_lookup callers must be commented.
2416  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2417 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2418 {
2419 	unsigned int hash = name->hash;
2420 	struct hlist_bl_head *b = d_hash(hash);
2421 	struct hlist_bl_node *node;
2422 	struct dentry *found = NULL;
2423 	struct dentry *dentry;
2424 
2425 	/*
2426 	 * Note: There is significant duplication with __d_lookup_rcu which is
2427 	 * required to prevent single threaded performance regressions
2428 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2429 	 * Keep the two functions in sync.
2430 	 */
2431 
2432 	/*
2433 	 * The hash list is protected using RCU.
2434 	 *
2435 	 * Take d_lock when comparing a candidate dentry, to avoid races
2436 	 * with d_move().
2437 	 *
2438 	 * It is possible that concurrent renames can mess up our list
2439 	 * walk here and result in missing our dentry, resulting in the
2440 	 * false-negative result. d_lookup() protects against concurrent
2441 	 * renames using rename_lock seqlock.
2442 	 *
2443 	 * See Documentation/filesystems/path-lookup.txt for more details.
2444 	 */
2445 	rcu_read_lock();
2446 
2447 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2448 
2449 		if (dentry->d_name.hash != hash)
2450 			continue;
2451 
2452 		spin_lock(&dentry->d_lock);
2453 		if (dentry->d_parent != parent)
2454 			goto next;
2455 		if (d_unhashed(dentry))
2456 			goto next;
2457 
2458 		if (!d_same_name(dentry, parent, name))
2459 			goto next;
2460 
2461 		dentry->d_lockref.count++;
2462 		found = dentry;
2463 		spin_unlock(&dentry->d_lock);
2464 		break;
2465 next:
2466 		spin_unlock(&dentry->d_lock);
2467  	}
2468  	rcu_read_unlock();
2469 
2470  	return found;
2471 }
2472 
2473 /**
2474  * d_hash_and_lookup - hash the qstr then search for a dentry
2475  * @dir: Directory to search in
2476  * @name: qstr of name we wish to find
2477  *
2478  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2479  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2480 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2481 {
2482 	/*
2483 	 * Check for a fs-specific hash function. Note that we must
2484 	 * calculate the standard hash first, as the d_op->d_hash()
2485 	 * routine may choose to leave the hash value unchanged.
2486 	 */
2487 	name->hash = full_name_hash(dir, name->name, name->len);
2488 	if (dir->d_flags & DCACHE_OP_HASH) {
2489 		int err = dir->d_op->d_hash(dir, name);
2490 		if (unlikely(err < 0))
2491 			return ERR_PTR(err);
2492 	}
2493 	return d_lookup(dir, name);
2494 }
2495 
2496 /*
2497  * When a file is deleted, we have two options:
2498  * - turn this dentry into a negative dentry
2499  * - unhash this dentry and free it.
2500  *
2501  * Usually, we want to just turn this into
2502  * a negative dentry, but if anybody else is
2503  * currently using the dentry or the inode
2504  * we can't do that and we fall back on removing
2505  * it from the hash queues and waiting for
2506  * it to be deleted later when it has no users
2507  */
2508 
2509 /**
2510  * d_delete - delete a dentry
2511  * @dentry: The dentry to delete
2512  *
2513  * Turn the dentry into a negative dentry if possible, otherwise
2514  * remove it from the hash queues so it can be deleted later
2515  */
2516 
d_delete(struct dentry * dentry)2517 void d_delete(struct dentry * dentry)
2518 {
2519 	struct inode *inode = dentry->d_inode;
2520 
2521 	spin_lock(&inode->i_lock);
2522 	spin_lock(&dentry->d_lock);
2523 	/*
2524 	 * Are we the only user?
2525 	 */
2526 	if (dentry->d_lockref.count == 1) {
2527 		if (dentry_negative_policy)
2528 			__d_drop(dentry);
2529 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2530 		dentry_unlink_inode(dentry);
2531 	} else {
2532 		__d_drop(dentry);
2533 		spin_unlock(&dentry->d_lock);
2534 		spin_unlock(&inode->i_lock);
2535 	}
2536 }
2537 EXPORT_SYMBOL(d_delete);
2538 
__d_rehash(struct dentry * entry)2539 static void __d_rehash(struct dentry *entry)
2540 {
2541 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2542 
2543 	hlist_bl_lock(b);
2544 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2545 	hlist_bl_unlock(b);
2546 }
2547 
2548 /**
2549  * d_rehash	- add an entry back to the hash
2550  * @entry: dentry to add to the hash
2551  *
2552  * Adds a dentry to the hash according to its name.
2553  */
2554 
d_rehash(struct dentry * entry)2555 void d_rehash(struct dentry * entry)
2556 {
2557 	spin_lock(&entry->d_lock);
2558 	__d_rehash(entry);
2559 	spin_unlock(&entry->d_lock);
2560 }
2561 EXPORT_SYMBOL(d_rehash);
2562 
start_dir_add(struct inode * dir)2563 static inline unsigned start_dir_add(struct inode *dir)
2564 {
2565 	preempt_disable_nested();
2566 	for (;;) {
2567 		unsigned n = READ_ONCE(dir->i_dir_seq);
2568 		if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2569 			return n;
2570 		cpu_relax();
2571 	}
2572 }
2573 
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2574 static inline void end_dir_add(struct inode *dir, unsigned int n,
2575 			       wait_queue_head_t *d_wait)
2576 {
2577 	smp_store_release(&dir->i_dir_seq, n + 2);
2578 	preempt_enable_nested();
2579 	if (wq_has_sleeper(d_wait))
2580 		wake_up_all(d_wait);
2581 }
2582 
d_wait_lookup(struct dentry * dentry)2583 static void d_wait_lookup(struct dentry *dentry)
2584 {
2585 	if (d_in_lookup(dentry)) {
2586 		DECLARE_WAITQUEUE(wait, current);
2587 		add_wait_queue(dentry->d_wait, &wait);
2588 		do {
2589 			set_current_state(TASK_UNINTERRUPTIBLE);
2590 			spin_unlock(&dentry->d_lock);
2591 			schedule();
2592 			spin_lock(&dentry->d_lock);
2593 		} while (d_in_lookup(dentry));
2594 	}
2595 }
2596 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2597 struct dentry *d_alloc_parallel(struct dentry *parent,
2598 				const struct qstr *name,
2599 				wait_queue_head_t *wq)
2600 {
2601 	unsigned int hash = name->hash;
2602 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2603 	struct hlist_bl_node *node;
2604 	struct dentry *new = __d_alloc(parent->d_sb, name);
2605 	struct dentry *dentry;
2606 	unsigned seq, r_seq, d_seq;
2607 
2608 	if (unlikely(!new))
2609 		return ERR_PTR(-ENOMEM);
2610 
2611 	new->d_flags |= DCACHE_PAR_LOOKUP;
2612 	spin_lock(&parent->d_lock);
2613 	new->d_parent = dget_dlock(parent);
2614 	hlist_add_head(&new->d_sib, &parent->d_children);
2615 	if (parent->d_flags & DCACHE_DISCONNECTED)
2616 		new->d_flags |= DCACHE_DISCONNECTED;
2617 	spin_unlock(&parent->d_lock);
2618 
2619 retry:
2620 	rcu_read_lock();
2621 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2622 	r_seq = read_seqbegin(&rename_lock);
2623 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2624 	if (unlikely(dentry)) {
2625 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2626 			rcu_read_unlock();
2627 			goto retry;
2628 		}
2629 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2630 			rcu_read_unlock();
2631 			dput(dentry);
2632 			goto retry;
2633 		}
2634 		rcu_read_unlock();
2635 		dput(new);
2636 		return dentry;
2637 	}
2638 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2639 		rcu_read_unlock();
2640 		goto retry;
2641 	}
2642 
2643 	if (unlikely(seq & 1)) {
2644 		rcu_read_unlock();
2645 		goto retry;
2646 	}
2647 
2648 	hlist_bl_lock(b);
2649 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2650 		hlist_bl_unlock(b);
2651 		rcu_read_unlock();
2652 		goto retry;
2653 	}
2654 	/*
2655 	 * No changes for the parent since the beginning of d_lookup().
2656 	 * Since all removals from the chain happen with hlist_bl_lock(),
2657 	 * any potential in-lookup matches are going to stay here until
2658 	 * we unlock the chain.  All fields are stable in everything
2659 	 * we encounter.
2660 	 */
2661 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2662 		if (dentry->d_name.hash != hash)
2663 			continue;
2664 		if (dentry->d_parent != parent)
2665 			continue;
2666 		if (!d_same_name(dentry, parent, name))
2667 			continue;
2668 		hlist_bl_unlock(b);
2669 		/* now we can try to grab a reference */
2670 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2671 			rcu_read_unlock();
2672 			goto retry;
2673 		}
2674 
2675 		rcu_read_unlock();
2676 		/*
2677 		 * somebody is likely to be still doing lookup for it;
2678 		 * wait for them to finish
2679 		 */
2680 		spin_lock(&dentry->d_lock);
2681 		d_wait_lookup(dentry);
2682 		/*
2683 		 * it's not in-lookup anymore; in principle we should repeat
2684 		 * everything from dcache lookup, but it's likely to be what
2685 		 * d_lookup() would've found anyway.  If it is, just return it;
2686 		 * otherwise we really have to repeat the whole thing.
2687 		 */
2688 		if (unlikely(dentry->d_name.hash != hash))
2689 			goto mismatch;
2690 		if (unlikely(dentry->d_parent != parent))
2691 			goto mismatch;
2692 		if (unlikely(d_unhashed(dentry)))
2693 			goto mismatch;
2694 		if (unlikely(!d_same_name(dentry, parent, name)))
2695 			goto mismatch;
2696 		/* OK, it *is* a hashed match; return it */
2697 		spin_unlock(&dentry->d_lock);
2698 		dput(new);
2699 		return dentry;
2700 	}
2701 	rcu_read_unlock();
2702 	new->d_wait = wq;
2703 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2704 	hlist_bl_unlock(b);
2705 	return new;
2706 mismatch:
2707 	spin_unlock(&dentry->d_lock);
2708 	dput(dentry);
2709 	goto retry;
2710 }
2711 EXPORT_SYMBOL(d_alloc_parallel);
2712 
2713 /*
2714  * - Unhash the dentry
2715  * - Retrieve and clear the waitqueue head in dentry
2716  * - Return the waitqueue head
2717  */
__d_lookup_unhash(struct dentry * dentry)2718 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2719 {
2720 	wait_queue_head_t *d_wait;
2721 	struct hlist_bl_head *b;
2722 
2723 	lockdep_assert_held(&dentry->d_lock);
2724 
2725 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2726 	hlist_bl_lock(b);
2727 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2728 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2729 	d_wait = dentry->d_wait;
2730 	dentry->d_wait = NULL;
2731 	hlist_bl_unlock(b);
2732 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2733 	INIT_LIST_HEAD(&dentry->d_lru);
2734 	return d_wait;
2735 }
2736 
__d_lookup_unhash_wake(struct dentry * dentry)2737 void __d_lookup_unhash_wake(struct dentry *dentry)
2738 {
2739 	spin_lock(&dentry->d_lock);
2740 	wake_up_all(__d_lookup_unhash(dentry));
2741 	spin_unlock(&dentry->d_lock);
2742 }
2743 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2744 
2745 /* inode->i_lock held if inode is non-NULL */
2746 
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2747 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2748 			   const struct dentry_operations *ops)
2749 {
2750 	wait_queue_head_t *d_wait;
2751 	struct inode *dir = NULL;
2752 	unsigned n;
2753 	spin_lock(&dentry->d_lock);
2754 	if (unlikely(d_in_lookup(dentry))) {
2755 		dir = dentry->d_parent->d_inode;
2756 		n = start_dir_add(dir);
2757 		d_wait = __d_lookup_unhash(dentry);
2758 	}
2759 	if (unlikely(ops))
2760 		d_set_d_op(dentry, ops);
2761 	if (inode) {
2762 		unsigned add_flags = d_flags_for_inode(inode);
2763 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2764 		raw_write_seqcount_begin(&dentry->d_seq);
2765 		__d_set_inode_and_type(dentry, inode, add_flags);
2766 		raw_write_seqcount_end(&dentry->d_seq);
2767 		fsnotify_update_flags(dentry);
2768 	}
2769 	__d_rehash(dentry);
2770 	if (dir)
2771 		end_dir_add(dir, n, d_wait);
2772 	spin_unlock(&dentry->d_lock);
2773 	if (inode)
2774 		spin_unlock(&inode->i_lock);
2775 }
2776 
2777 /**
2778  * d_add - add dentry to hash queues
2779  * @entry: dentry to add
2780  * @inode: The inode to attach to this dentry
2781  *
2782  * This adds the entry to the hash queues and initializes @inode.
2783  * The entry was actually filled in earlier during d_alloc().
2784  */
2785 
d_add(struct dentry * entry,struct inode * inode)2786 void d_add(struct dentry *entry, struct inode *inode)
2787 {
2788 	if (inode) {
2789 		security_d_instantiate(entry, inode);
2790 		spin_lock(&inode->i_lock);
2791 	}
2792 	__d_add(entry, inode, NULL);
2793 }
2794 EXPORT_SYMBOL(d_add);
2795 
d_make_persistent(struct dentry * dentry,struct inode * inode)2796 struct dentry *d_make_persistent(struct dentry *dentry, struct inode *inode)
2797 {
2798 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
2799 	WARN_ON(!inode);
2800 	security_d_instantiate(dentry, inode);
2801 	spin_lock(&inode->i_lock);
2802 	spin_lock(&dentry->d_lock);
2803 	__d_instantiate(dentry, inode);
2804 	dentry->d_flags |= DCACHE_PERSISTENT;
2805 	dget_dlock(dentry);
2806 	if (d_unhashed(dentry))
2807 		__d_rehash(dentry);
2808 	spin_unlock(&dentry->d_lock);
2809 	spin_unlock(&inode->i_lock);
2810 	return dentry;
2811 }
2812 EXPORT_SYMBOL(d_make_persistent);
2813 
swap_names(struct dentry * dentry,struct dentry * target)2814 static void swap_names(struct dentry *dentry, struct dentry *target)
2815 {
2816 	if (unlikely(dname_external(target))) {
2817 		if (unlikely(dname_external(dentry))) {
2818 			/*
2819 			 * Both external: swap the pointers
2820 			 */
2821 			swap(target->__d_name.name, dentry->__d_name.name);
2822 		} else {
2823 			/*
2824 			 * dentry:internal, target:external.  Steal target's
2825 			 * storage and make target internal.
2826 			 */
2827 			dentry->__d_name.name = target->__d_name.name;
2828 			target->d_shortname = dentry->d_shortname;
2829 			target->__d_name.name = target->d_shortname.string;
2830 		}
2831 	} else {
2832 		if (unlikely(dname_external(dentry))) {
2833 			/*
2834 			 * dentry:external, target:internal.  Give dentry's
2835 			 * storage to target and make dentry internal
2836 			 */
2837 			target->__d_name.name = dentry->__d_name.name;
2838 			dentry->d_shortname = target->d_shortname;
2839 			dentry->__d_name.name = dentry->d_shortname.string;
2840 		} else {
2841 			/*
2842 			 * Both are internal.
2843 			 */
2844 			for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2845 				swap(dentry->d_shortname.words[i],
2846 				     target->d_shortname.words[i]);
2847 		}
2848 	}
2849 	swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2850 }
2851 
copy_name(struct dentry * dentry,struct dentry * target)2852 static void copy_name(struct dentry *dentry, struct dentry *target)
2853 {
2854 	struct external_name *old_name = NULL;
2855 	if (unlikely(dname_external(dentry)))
2856 		old_name = external_name(dentry);
2857 	if (unlikely(dname_external(target))) {
2858 		atomic_inc(&external_name(target)->count);
2859 		dentry->__d_name = target->__d_name;
2860 	} else {
2861 		dentry->d_shortname = target->d_shortname;
2862 		dentry->__d_name.name = dentry->d_shortname.string;
2863 		dentry->__d_name.hash_len = target->__d_name.hash_len;
2864 	}
2865 	if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2866 		kfree_rcu(old_name, head);
2867 }
2868 
2869 /*
2870  * __d_move - move a dentry
2871  * @dentry: entry to move
2872  * @target: new dentry
2873  * @exchange: exchange the two dentries
2874  *
2875  * Update the dcache to reflect the move of a file name. Negative dcache
2876  * entries should not be moved in this way. Caller must hold rename_lock, the
2877  * i_rwsem of the source and target directories (exclusively), and the sb->
2878  * s_vfs_rename_mutex if they differ. See lock_rename().
2879  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2880 static void __d_move(struct dentry *dentry, struct dentry *target,
2881 		     bool exchange)
2882 {
2883 	struct dentry *old_parent, *p;
2884 	wait_queue_head_t *d_wait;
2885 	struct inode *dir = NULL;
2886 	unsigned n;
2887 
2888 	WARN_ON(!dentry->d_inode);
2889 	if (WARN_ON(dentry == target))
2890 		return;
2891 
2892 	BUG_ON(d_ancestor(target, dentry));
2893 	old_parent = dentry->d_parent;
2894 	p = d_ancestor(old_parent, target);
2895 	if (IS_ROOT(dentry)) {
2896 		BUG_ON(p);
2897 		spin_lock(&target->d_parent->d_lock);
2898 	} else if (!p) {
2899 		/* target is not a descendent of dentry->d_parent */
2900 		spin_lock(&target->d_parent->d_lock);
2901 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2902 	} else {
2903 		BUG_ON(p == dentry);
2904 		spin_lock(&old_parent->d_lock);
2905 		if (p != target)
2906 			spin_lock_nested(&target->d_parent->d_lock,
2907 					DENTRY_D_LOCK_NESTED);
2908 	}
2909 	spin_lock_nested(&dentry->d_lock, 2);
2910 	spin_lock_nested(&target->d_lock, 3);
2911 
2912 	if (unlikely(d_in_lookup(target))) {
2913 		dir = target->d_parent->d_inode;
2914 		n = start_dir_add(dir);
2915 		d_wait = __d_lookup_unhash(target);
2916 	}
2917 
2918 	write_seqcount_begin(&dentry->d_seq);
2919 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2920 
2921 	/* unhash both */
2922 	if (!d_unhashed(dentry))
2923 		___d_drop(dentry);
2924 	if (!d_unhashed(target))
2925 		___d_drop(target);
2926 
2927 	/* ... and switch them in the tree */
2928 	dentry->d_parent = target->d_parent;
2929 	if (!exchange) {
2930 		copy_name(dentry, target);
2931 		target->d_hash.pprev = NULL;
2932 		dentry->d_parent->d_lockref.count++;
2933 		if (dentry != old_parent) /* wasn't IS_ROOT */
2934 			WARN_ON(!--old_parent->d_lockref.count);
2935 	} else {
2936 		target->d_parent = old_parent;
2937 		swap_names(dentry, target);
2938 		if (!hlist_unhashed(&target->d_sib))
2939 			__hlist_del(&target->d_sib);
2940 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2941 		__d_rehash(target);
2942 		fsnotify_update_flags(target);
2943 	}
2944 	if (!hlist_unhashed(&dentry->d_sib))
2945 		__hlist_del(&dentry->d_sib);
2946 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2947 	__d_rehash(dentry);
2948 	fsnotify_update_flags(dentry);
2949 	fscrypt_handle_d_move(dentry);
2950 
2951 	write_seqcount_end(&target->d_seq);
2952 	write_seqcount_end(&dentry->d_seq);
2953 
2954 	if (dir)
2955 		end_dir_add(dir, n, d_wait);
2956 
2957 	if (dentry->d_parent != old_parent)
2958 		spin_unlock(&dentry->d_parent->d_lock);
2959 	if (dentry != old_parent)
2960 		spin_unlock(&old_parent->d_lock);
2961 	spin_unlock(&target->d_lock);
2962 	spin_unlock(&dentry->d_lock);
2963 }
2964 
2965 /*
2966  * d_move - move a dentry
2967  * @dentry: entry to move
2968  * @target: new dentry
2969  *
2970  * Update the dcache to reflect the move of a file name. Negative
2971  * dcache entries should not be moved in this way. See the locking
2972  * requirements for __d_move.
2973  */
d_move(struct dentry * dentry,struct dentry * target)2974 void d_move(struct dentry *dentry, struct dentry *target)
2975 {
2976 	write_seqlock(&rename_lock);
2977 	__d_move(dentry, target, false);
2978 	write_sequnlock(&rename_lock);
2979 }
2980 EXPORT_SYMBOL(d_move);
2981 
2982 /*
2983  * d_exchange - exchange two dentries
2984  * @dentry1: first dentry
2985  * @dentry2: second dentry
2986  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2987 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2988 {
2989 	write_seqlock(&rename_lock);
2990 
2991 	WARN_ON(!dentry1->d_inode);
2992 	WARN_ON(!dentry2->d_inode);
2993 	WARN_ON(IS_ROOT(dentry1));
2994 	WARN_ON(IS_ROOT(dentry2));
2995 
2996 	__d_move(dentry1, dentry2, true);
2997 
2998 	write_sequnlock(&rename_lock);
2999 }
3000 EXPORT_SYMBOL(d_exchange);
3001 
3002 /**
3003  * d_ancestor - search for an ancestor
3004  * @p1: ancestor dentry
3005  * @p2: child dentry
3006  *
3007  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3008  * an ancestor of p2, else NULL.
3009  */
d_ancestor(struct dentry * p1,struct dentry * p2)3010 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3011 {
3012 	struct dentry *p;
3013 
3014 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3015 		if (p->d_parent == p1)
3016 			return p;
3017 	}
3018 	return NULL;
3019 }
3020 
3021 /*
3022  * This helper attempts to cope with remotely renamed directories
3023  *
3024  * It assumes that the caller is already holding
3025  * dentry->d_parent->d_inode->i_rwsem, and rename_lock
3026  *
3027  * Note: If ever the locking in lock_rename() changes, then please
3028  * remember to update this too...
3029  */
__d_unalias(struct dentry * dentry,struct dentry * alias)3030 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
3031 {
3032 	struct mutex *m1 = NULL;
3033 	struct rw_semaphore *m2 = NULL;
3034 	int ret = -ESTALE;
3035 
3036 	/* If alias and dentry share a parent, then no extra locks required */
3037 	if (alias->d_parent == dentry->d_parent)
3038 		goto out_unalias;
3039 
3040 	/* See lock_rename() */
3041 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3042 		goto out_err;
3043 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3044 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3045 		goto out_err;
3046 	m2 = &alias->d_parent->d_inode->i_rwsem;
3047 out_unalias:
3048 	if (alias->d_op && alias->d_op->d_unalias_trylock &&
3049 	    !alias->d_op->d_unalias_trylock(alias))
3050 		goto out_err;
3051 	__d_move(alias, dentry, false);
3052 	if (alias->d_op && alias->d_op->d_unalias_unlock)
3053 		alias->d_op->d_unalias_unlock(alias);
3054 	ret = 0;
3055 out_err:
3056 	if (m2)
3057 		up_read(m2);
3058 	if (m1)
3059 		mutex_unlock(m1);
3060 	return ret;
3061 }
3062 
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)3063 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
3064 				  const struct dentry_operations *ops)
3065 {
3066 	if (IS_ERR(inode))
3067 		return ERR_CAST(inode);
3068 
3069 	BUG_ON(!d_unhashed(dentry));
3070 
3071 	if (!inode)
3072 		goto out;
3073 
3074 	security_d_instantiate(dentry, inode);
3075 	spin_lock(&inode->i_lock);
3076 	if (S_ISDIR(inode->i_mode)) {
3077 		struct dentry *new = __d_find_any_alias(inode);
3078 		if (unlikely(new)) {
3079 			/* The reference to new ensures it remains an alias */
3080 			spin_unlock(&inode->i_lock);
3081 			write_seqlock(&rename_lock);
3082 			if (unlikely(d_ancestor(new, dentry))) {
3083 				write_sequnlock(&rename_lock);
3084 				dput(new);
3085 				new = ERR_PTR(-ELOOP);
3086 				pr_warn_ratelimited(
3087 					"VFS: Lookup of '%s' in %s %s"
3088 					" would have caused loop\n",
3089 					dentry->d_name.name,
3090 					inode->i_sb->s_type->name,
3091 					inode->i_sb->s_id);
3092 			} else if (!IS_ROOT(new)) {
3093 				struct dentry *old_parent = dget(new->d_parent);
3094 				int err = __d_unalias(dentry, new);
3095 				write_sequnlock(&rename_lock);
3096 				if (err) {
3097 					dput(new);
3098 					new = ERR_PTR(err);
3099 				}
3100 				dput(old_parent);
3101 			} else {
3102 				__d_move(new, dentry, false);
3103 				write_sequnlock(&rename_lock);
3104 			}
3105 			iput(inode);
3106 			return new;
3107 		}
3108 	}
3109 out:
3110 	__d_add(dentry, inode, ops);
3111 	return NULL;
3112 }
3113 
3114 /**
3115  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116  * @inode:  the inode which may have a disconnected dentry
3117  * @dentry: a negative dentry which we want to point to the inode.
3118  *
3119  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120  * place of the given dentry and return it, else simply d_add the inode
3121  * to the dentry and return NULL.
3122  *
3123  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124  * we should error out: directories can't have multiple aliases.
3125  *
3126  * This is needed in the lookup routine of any filesystem that is exportable
3127  * (via knfsd) so that we can build dcache paths to directories effectively.
3128  *
3129  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3130  * is returned.  This matches the expected return value of ->lookup.
3131  *
3132  * Cluster filesystems may call this function with a negative, hashed dentry.
3133  * In that case, we know that the inode will be a regular file, and also this
3134  * will only occur during atomic_open. So we need to check for the dentry
3135  * being already hashed only in the final case.
3136  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138 {
3139 	return d_splice_alias_ops(inode, dentry, NULL);
3140 }
3141 EXPORT_SYMBOL(d_splice_alias);
3142 
3143 /*
3144  * Test whether new_dentry is a subdirectory of old_dentry.
3145  *
3146  * Trivially implemented using the dcache structure
3147  */
3148 
3149 /**
3150  * is_subdir - is new dentry a subdirectory of old_dentry
3151  * @new_dentry: new dentry
3152  * @old_dentry: old dentry
3153  *
3154  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3155  * Returns false otherwise.
3156  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3157  */
3158 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3159 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3160 {
3161 	bool subdir;
3162 	unsigned seq;
3163 
3164 	if (new_dentry == old_dentry)
3165 		return true;
3166 
3167 	/* Access d_parent under rcu as d_move() may change it. */
3168 	rcu_read_lock();
3169 	seq = read_seqbegin(&rename_lock);
3170 	subdir = d_ancestor(old_dentry, new_dentry);
3171 	 /* Try lockless once... */
3172 	if (read_seqretry(&rename_lock, seq)) {
3173 		/* ...else acquire lock for progress even on deep chains. */
3174 		read_seqlock_excl(&rename_lock);
3175 		subdir = d_ancestor(old_dentry, new_dentry);
3176 		read_sequnlock_excl(&rename_lock);
3177 	}
3178 	rcu_read_unlock();
3179 	return subdir;
3180 }
3181 EXPORT_SYMBOL(is_subdir);
3182 
d_mark_tmpfile(struct file * file,struct inode * inode)3183 void d_mark_tmpfile(struct file *file, struct inode *inode)
3184 {
3185 	struct dentry *dentry = file->f_path.dentry;
3186 
3187 	BUG_ON(dname_external(dentry) ||
3188 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3189 		!d_unlinked(dentry));
3190 	spin_lock(&dentry->d_parent->d_lock);
3191 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3192 	dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3193 				(unsigned long long)inode->i_ino);
3194 	spin_unlock(&dentry->d_lock);
3195 	spin_unlock(&dentry->d_parent->d_lock);
3196 }
3197 EXPORT_SYMBOL(d_mark_tmpfile);
3198 
d_tmpfile(struct file * file,struct inode * inode)3199 void d_tmpfile(struct file *file, struct inode *inode)
3200 {
3201 	struct dentry *dentry = file->f_path.dentry;
3202 
3203 	inode_dec_link_count(inode);
3204 	d_mark_tmpfile(file, inode);
3205 	d_instantiate(dentry, inode);
3206 }
3207 EXPORT_SYMBOL(d_tmpfile);
3208 
3209 /*
3210  * Obtain inode number of the parent dentry.
3211  */
d_parent_ino(struct dentry * dentry)3212 ino_t d_parent_ino(struct dentry *dentry)
3213 {
3214 	struct dentry *parent;
3215 	struct inode *iparent;
3216 	unsigned seq;
3217 	ino_t ret;
3218 
3219 	scoped_guard(rcu) {
3220 		seq = raw_seqcount_begin(&dentry->d_seq);
3221 		parent = READ_ONCE(dentry->d_parent);
3222 		iparent = d_inode_rcu(parent);
3223 		if (likely(iparent)) {
3224 			ret = iparent->i_ino;
3225 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3226 				return ret;
3227 		}
3228 	}
3229 
3230 	spin_lock(&dentry->d_lock);
3231 	ret = dentry->d_parent->d_inode->i_ino;
3232 	spin_unlock(&dentry->d_lock);
3233 	return ret;
3234 }
3235 EXPORT_SYMBOL(d_parent_ino);
3236 
3237 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3238 static int __init set_dhash_entries(char *str)
3239 {
3240 	if (!str)
3241 		return 0;
3242 	dhash_entries = simple_strtoul(str, &str, 0);
3243 	return 1;
3244 }
3245 __setup("dhash_entries=", set_dhash_entries);
3246 
dcache_init_early(void)3247 static void __init dcache_init_early(void)
3248 {
3249 	/* If hashes are distributed across NUMA nodes, defer
3250 	 * hash allocation until vmalloc space is available.
3251 	 */
3252 	if (hashdist)
3253 		return;
3254 
3255 	dentry_hashtable =
3256 		alloc_large_system_hash("Dentry cache",
3257 					sizeof(struct hlist_bl_head),
3258 					dhash_entries,
3259 					13,
3260 					HASH_EARLY | HASH_ZERO,
3261 					&d_hash_shift,
3262 					NULL,
3263 					0,
3264 					0);
3265 	d_hash_shift = 32 - d_hash_shift;
3266 
3267 	runtime_const_init(shift, d_hash_shift);
3268 	runtime_const_init(ptr, dentry_hashtable);
3269 }
3270 
dcache_init(void)3271 static void __init dcache_init(void)
3272 {
3273 	/*
3274 	 * A constructor could be added for stable state like the lists,
3275 	 * but it is probably not worth it because of the cache nature
3276 	 * of the dcache.
3277 	 */
3278 	__dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3279 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3280 		d_shortname.string);
3281 	runtime_const_init(ptr, __dentry_cache);
3282 
3283 	/* Hash may have been set up in dcache_init_early */
3284 	if (!hashdist)
3285 		return;
3286 
3287 	dentry_hashtable =
3288 		alloc_large_system_hash("Dentry cache",
3289 					sizeof(struct hlist_bl_head),
3290 					dhash_entries,
3291 					13,
3292 					HASH_ZERO,
3293 					&d_hash_shift,
3294 					NULL,
3295 					0,
3296 					0);
3297 	d_hash_shift = 32 - d_hash_shift;
3298 
3299 	runtime_const_init(shift, d_hash_shift);
3300 	runtime_const_init(ptr, dentry_hashtable);
3301 }
3302 
3303 /* SLAB cache for __getname() consumers */
3304 struct kmem_cache *names_cachep __ro_after_init;
3305 EXPORT_SYMBOL(names_cachep);
3306 
vfs_caches_init_early(void)3307 void __init vfs_caches_init_early(void)
3308 {
3309 	int i;
3310 
3311 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3312 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3313 
3314 	dcache_init_early();
3315 	inode_init_early();
3316 }
3317 
vfs_caches_init(void)3318 void __init vfs_caches_init(void)
3319 {
3320 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3321 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3322 
3323 	dcache_init();
3324 	inode_init();
3325 	files_init();
3326 	files_maxfiles_init();
3327 	mnt_init();
3328 	bdev_cache_init();
3329 	chrdev_init();
3330 }
3331