1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18
19 #include <asm/hpet.h>
20 #include <asm/timer.h>
21 #include <asm/vgtod.h>
22 #include <asm/time.h>
23 #include <asm/delay.h>
24 #include <asm/hypervisor.h>
25 #include <asm/nmi.h>
26 #include <asm/x86_init.h>
27 #include <asm/geode.h>
28 #include <asm/apic.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/i8259.h>
31 #include <asm/topology.h>
32 #include <asm/uv/uv.h>
33
34 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
35 EXPORT_SYMBOL(cpu_khz);
36
37 unsigned int __read_mostly tsc_khz;
38 EXPORT_SYMBOL(tsc_khz);
39
40 #define KHZ 1000
41
42 /*
43 * TSC can be unstable due to cpufreq or due to unsynced TSCs
44 */
45 static int __read_mostly tsc_unstable;
46 static unsigned int __initdata tsc_early_khz;
47
48 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
49
50 int tsc_clocksource_reliable;
51
52 static int __read_mostly tsc_force_recalibrate;
53
54 static struct clocksource_base art_base_clk = {
55 .id = CSID_X86_ART,
56 };
57 static bool have_art;
58
59 struct cyc2ns {
60 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
61 seqcount_latch_t seq; /* 32 + 4 = 36 */
62
63 }; /* fits one cacheline */
64
65 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
66
tsc_early_khz_setup(char * buf)67 static int __init tsc_early_khz_setup(char *buf)
68 {
69 return kstrtouint(buf, 0, &tsc_early_khz);
70 }
71 early_param("tsc_early_khz", tsc_early_khz_setup);
72
__cyc2ns_read(struct cyc2ns_data * data)73 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
74 {
75 int seq, idx;
76
77 do {
78 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
79 idx = seq & 1;
80
81 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
82 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
83 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
84
85 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
86 }
87
cyc2ns_read_begin(struct cyc2ns_data * data)88 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
89 {
90 preempt_disable_notrace();
91 __cyc2ns_read(data);
92 }
93
cyc2ns_read_end(void)94 __always_inline void cyc2ns_read_end(void)
95 {
96 preempt_enable_notrace();
97 }
98
99 /*
100 * Accelerators for sched_clock()
101 * convert from cycles(64bits) => nanoseconds (64bits)
102 * basic equation:
103 * ns = cycles / (freq / ns_per_sec)
104 * ns = cycles * (ns_per_sec / freq)
105 * ns = cycles * (10^9 / (cpu_khz * 10^3))
106 * ns = cycles * (10^6 / cpu_khz)
107 *
108 * Then we use scaling math (suggested by george@mvista.com) to get:
109 * ns = cycles * (10^6 * SC / cpu_khz) / SC
110 * ns = cycles * cyc2ns_scale / SC
111 *
112 * And since SC is a constant power of two, we can convert the div
113 * into a shift. The larger SC is, the more accurate the conversion, but
114 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
115 * (64-bit result) can be used.
116 *
117 * We can use khz divisor instead of mhz to keep a better precision.
118 * (mathieu.desnoyers@polymtl.ca)
119 *
120 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
121 */
122
__cycles_2_ns(unsigned long long cyc)123 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
124 {
125 struct cyc2ns_data data;
126 unsigned long long ns;
127
128 __cyc2ns_read(&data);
129
130 ns = data.cyc2ns_offset;
131 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
132
133 return ns;
134 }
135
cycles_2_ns(unsigned long long cyc)136 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
137 {
138 unsigned long long ns;
139 preempt_disable_notrace();
140 ns = __cycles_2_ns(cyc);
141 preempt_enable_notrace();
142 return ns;
143 }
144
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)145 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
146 {
147 unsigned long long ns_now;
148 struct cyc2ns_data data;
149 struct cyc2ns *c2n;
150
151 ns_now = cycles_2_ns(tsc_now);
152
153 /*
154 * Compute a new multiplier as per the above comment and ensure our
155 * time function is continuous; see the comment near struct
156 * cyc2ns_data.
157 */
158 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
159 NSEC_PER_MSEC, 0);
160
161 /*
162 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163 * not expected to be greater than 31 due to the original published
164 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165 * value) - refer perf_event_mmap_page documentation in perf_event.h.
166 */
167 if (data.cyc2ns_shift == 32) {
168 data.cyc2ns_shift = 31;
169 data.cyc2ns_mul >>= 1;
170 }
171
172 data.cyc2ns_offset = ns_now -
173 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
174
175 c2n = per_cpu_ptr(&cyc2ns, cpu);
176
177 raw_write_seqcount_latch(&c2n->seq);
178 c2n->data[0] = data;
179 raw_write_seqcount_latch(&c2n->seq);
180 c2n->data[1] = data;
181 }
182
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)183 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
184 {
185 unsigned long flags;
186
187 local_irq_save(flags);
188 sched_clock_idle_sleep_event();
189
190 if (khz)
191 __set_cyc2ns_scale(khz, cpu, tsc_now);
192
193 sched_clock_idle_wakeup_event();
194 local_irq_restore(flags);
195 }
196
197 /*
198 * Initialize cyc2ns for boot cpu
199 */
cyc2ns_init_boot_cpu(void)200 static void __init cyc2ns_init_boot_cpu(void)
201 {
202 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
203
204 seqcount_latch_init(&c2n->seq);
205 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
206 }
207
208 /*
209 * Secondary CPUs do not run through tsc_init(), so set up
210 * all the scale factors for all CPUs, assuming the same
211 * speed as the bootup CPU.
212 */
cyc2ns_init_secondary_cpus(void)213 static void __init cyc2ns_init_secondary_cpus(void)
214 {
215 unsigned int cpu, this_cpu = smp_processor_id();
216 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
217 struct cyc2ns_data *data = c2n->data;
218
219 for_each_possible_cpu(cpu) {
220 if (cpu != this_cpu) {
221 seqcount_latch_init(&c2n->seq);
222 c2n = per_cpu_ptr(&cyc2ns, cpu);
223 c2n->data[0] = data[0];
224 c2n->data[1] = data[1];
225 }
226 }
227 }
228
229 /*
230 * Scheduler clock - returns current time in nanosec units.
231 */
native_sched_clock(void)232 noinstr u64 native_sched_clock(void)
233 {
234 if (static_branch_likely(&__use_tsc)) {
235 u64 tsc_now = rdtsc();
236
237 /* return the value in ns */
238 return __cycles_2_ns(tsc_now);
239 }
240
241 /*
242 * Fall back to jiffies if there's no TSC available:
243 * ( But note that we still use it if the TSC is marked
244 * unstable. We do this because unlike Time Of Day,
245 * the scheduler clock tolerates small errors and it's
246 * very important for it to be as fast as the platform
247 * can achieve it. )
248 */
249
250 /* No locking but a rare wrong value is not a big deal: */
251 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
252 }
253
254 /*
255 * Generate a sched_clock if you already have a TSC value.
256 */
native_sched_clock_from_tsc(u64 tsc)257 u64 native_sched_clock_from_tsc(u64 tsc)
258 {
259 return cycles_2_ns(tsc);
260 }
261
262 /* We need to define a real function for sched_clock, to override the
263 weak default version */
264 #ifdef CONFIG_PARAVIRT
sched_clock_noinstr(void)265 noinstr u64 sched_clock_noinstr(void)
266 {
267 return paravirt_sched_clock();
268 }
269
using_native_sched_clock(void)270 bool using_native_sched_clock(void)
271 {
272 return static_call_query(pv_sched_clock) == native_sched_clock;
273 }
274 #else
275 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
276
using_native_sched_clock(void)277 bool using_native_sched_clock(void) { return true; }
278 #endif
279
sched_clock(void)280 notrace u64 sched_clock(void)
281 {
282 u64 now;
283 preempt_disable_notrace();
284 now = sched_clock_noinstr();
285 preempt_enable_notrace();
286 return now;
287 }
288
check_tsc_unstable(void)289 int check_tsc_unstable(void)
290 {
291 return tsc_unstable;
292 }
293 EXPORT_SYMBOL_GPL(check_tsc_unstable);
294
295 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)296 int __init notsc_setup(char *str)
297 {
298 mark_tsc_unstable("boot parameter notsc");
299 return 1;
300 }
301 #else
302 /*
303 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
304 * in cpu/common.c
305 */
notsc_setup(char * str)306 int __init notsc_setup(char *str)
307 {
308 setup_clear_cpu_cap(X86_FEATURE_TSC);
309 return 1;
310 }
311 #endif
312
313 __setup("notsc", notsc_setup);
314
315 static int no_sched_irq_time;
316 static int no_tsc_watchdog;
317 static int tsc_as_watchdog;
318
tsc_setup(char * str)319 static int __init tsc_setup(char *str)
320 {
321 if (!strcmp(str, "reliable"))
322 tsc_clocksource_reliable = 1;
323 if (!strncmp(str, "noirqtime", 9))
324 no_sched_irq_time = 1;
325 if (!strcmp(str, "unstable"))
326 mark_tsc_unstable("boot parameter");
327 if (!strcmp(str, "nowatchdog")) {
328 no_tsc_watchdog = 1;
329 if (tsc_as_watchdog)
330 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
331 __func__);
332 tsc_as_watchdog = 0;
333 }
334 if (!strcmp(str, "recalibrate"))
335 tsc_force_recalibrate = 1;
336 if (!strcmp(str, "watchdog")) {
337 if (no_tsc_watchdog)
338 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
339 __func__);
340 else
341 tsc_as_watchdog = 1;
342 }
343 return 1;
344 }
345
346 __setup("tsc=", tsc_setup);
347
348 #define MAX_RETRIES 5
349 #define TSC_DEFAULT_THRESHOLD 0x20000
350
351 /*
352 * Read TSC and the reference counters. Take care of any disturbances
353 */
tsc_read_refs(u64 * p,int hpet)354 static u64 tsc_read_refs(u64 *p, int hpet)
355 {
356 u64 t1, t2;
357 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
358 int i;
359
360 for (i = 0; i < MAX_RETRIES; i++) {
361 t1 = get_cycles();
362 if (hpet)
363 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
364 else
365 *p = acpi_pm_read_early();
366 t2 = get_cycles();
367 if ((t2 - t1) < thresh)
368 return t2;
369 }
370 return ULLONG_MAX;
371 }
372
373 /*
374 * Calculate the TSC frequency from HPET reference
375 */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)376 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
377 {
378 u64 tmp;
379
380 if (hpet2 < hpet1)
381 hpet2 += 0x100000000ULL;
382 hpet2 -= hpet1;
383 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
384 do_div(tmp, 1000000);
385 deltatsc = div64_u64(deltatsc, tmp);
386
387 return (unsigned long) deltatsc;
388 }
389
390 /*
391 * Calculate the TSC frequency from PMTimer reference
392 */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)393 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
394 {
395 u64 tmp;
396
397 if (!pm1 && !pm2)
398 return ULONG_MAX;
399
400 if (pm2 < pm1)
401 pm2 += (u64)ACPI_PM_OVRRUN;
402 pm2 -= pm1;
403 tmp = pm2 * 1000000000LL;
404 do_div(tmp, PMTMR_TICKS_PER_SEC);
405 do_div(deltatsc, tmp);
406
407 return (unsigned long) deltatsc;
408 }
409
410 #define CAL_MS 10
411 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
412 #define CAL_PIT_LOOPS 1000
413
414 #define CAL2_MS 50
415 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
416 #define CAL2_PIT_LOOPS 5000
417
418
419 /*
420 * Try to calibrate the TSC against the Programmable
421 * Interrupt Timer and return the frequency of the TSC
422 * in kHz.
423 *
424 * Return ULONG_MAX on failure to calibrate.
425 */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)426 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
427 {
428 u64 tsc, t1, t2, delta;
429 unsigned long tscmin, tscmax;
430 int pitcnt;
431
432 if (!has_legacy_pic()) {
433 /*
434 * Relies on tsc_early_delay_calibrate() to have given us semi
435 * usable udelay(), wait for the same 50ms we would have with
436 * the PIT loop below.
437 */
438 udelay(10 * USEC_PER_MSEC);
439 udelay(10 * USEC_PER_MSEC);
440 udelay(10 * USEC_PER_MSEC);
441 udelay(10 * USEC_PER_MSEC);
442 udelay(10 * USEC_PER_MSEC);
443 return ULONG_MAX;
444 }
445
446 /* Set the Gate high, disable speaker */
447 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448
449 /*
450 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451 * count mode), binary count. Set the latch register to 50ms
452 * (LSB then MSB) to begin countdown.
453 */
454 outb(0xb0, 0x43);
455 outb(latch & 0xff, 0x42);
456 outb(latch >> 8, 0x42);
457
458 tsc = t1 = t2 = get_cycles();
459
460 pitcnt = 0;
461 tscmax = 0;
462 tscmin = ULONG_MAX;
463 while ((inb(0x61) & 0x20) == 0) {
464 t2 = get_cycles();
465 delta = t2 - tsc;
466 tsc = t2;
467 if ((unsigned long) delta < tscmin)
468 tscmin = (unsigned int) delta;
469 if ((unsigned long) delta > tscmax)
470 tscmax = (unsigned int) delta;
471 pitcnt++;
472 }
473
474 /*
475 * Sanity checks:
476 *
477 * If we were not able to read the PIT more than loopmin
478 * times, then we have been hit by a massive SMI
479 *
480 * If the maximum is 10 times larger than the minimum,
481 * then we got hit by an SMI as well.
482 */
483 if (pitcnt < loopmin || tscmax > 10 * tscmin)
484 return ULONG_MAX;
485
486 /* Calculate the PIT value */
487 delta = t2 - t1;
488 do_div(delta, ms);
489 return delta;
490 }
491
492 /*
493 * This reads the current MSB of the PIT counter, and
494 * checks if we are running on sufficiently fast and
495 * non-virtualized hardware.
496 *
497 * Our expectations are:
498 *
499 * - the PIT is running at roughly 1.19MHz
500 *
501 * - each IO is going to take about 1us on real hardware,
502 * but we allow it to be much faster (by a factor of 10) or
503 * _slightly_ slower (ie we allow up to a 2us read+counter
504 * update - anything else implies a unacceptably slow CPU
505 * or PIT for the fast calibration to work.
506 *
507 * - with 256 PIT ticks to read the value, we have 214us to
508 * see the same MSB (and overhead like doing a single TSC
509 * read per MSB value etc).
510 *
511 * - We're doing 2 reads per loop (LSB, MSB), and we expect
512 * them each to take about a microsecond on real hardware.
513 * So we expect a count value of around 100. But we'll be
514 * generous, and accept anything over 50.
515 *
516 * - if the PIT is stuck, and we see *many* more reads, we
517 * return early (and the next caller of pit_expect_msb()
518 * then consider it a failure when they don't see the
519 * next expected value).
520 *
521 * These expectations mean that we know that we have seen the
522 * transition from one expected value to another with a fairly
523 * high accuracy, and we didn't miss any events. We can thus
524 * use the TSC value at the transitions to calculate a pretty
525 * good value for the TSC frequency.
526 */
pit_verify_msb(unsigned char val)527 static inline int pit_verify_msb(unsigned char val)
528 {
529 /* Ignore LSB */
530 inb(0x42);
531 return inb(0x42) == val;
532 }
533
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)534 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
535 {
536 int count;
537 u64 tsc = 0, prev_tsc = 0;
538
539 for (count = 0; count < 50000; count++) {
540 if (!pit_verify_msb(val))
541 break;
542 prev_tsc = tsc;
543 tsc = get_cycles();
544 }
545 *deltap = get_cycles() - prev_tsc;
546 *tscp = tsc;
547
548 /*
549 * We require _some_ success, but the quality control
550 * will be based on the error terms on the TSC values.
551 */
552 return count > 5;
553 }
554
555 /*
556 * How many MSB values do we want to see? We aim for
557 * a maximum error rate of 500ppm (in practice the
558 * real error is much smaller), but refuse to spend
559 * more than 50ms on it.
560 */
561 #define MAX_QUICK_PIT_MS 50
562 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
563
quick_pit_calibrate(void)564 static unsigned long quick_pit_calibrate(void)
565 {
566 int i;
567 u64 tsc, delta;
568 unsigned long d1, d2;
569
570 if (!has_legacy_pic())
571 return 0;
572
573 /* Set the Gate high, disable speaker */
574 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
575
576 /*
577 * Counter 2, mode 0 (one-shot), binary count
578 *
579 * NOTE! Mode 2 decrements by two (and then the
580 * output is flipped each time, giving the same
581 * final output frequency as a decrement-by-one),
582 * so mode 0 is much better when looking at the
583 * individual counts.
584 */
585 outb(0xb0, 0x43);
586
587 /* Start at 0xffff */
588 outb(0xff, 0x42);
589 outb(0xff, 0x42);
590
591 /*
592 * The PIT starts counting at the next edge, so we
593 * need to delay for a microsecond. The easiest way
594 * to do that is to just read back the 16-bit counter
595 * once from the PIT.
596 */
597 pit_verify_msb(0);
598
599 if (pit_expect_msb(0xff, &tsc, &d1)) {
600 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
601 if (!pit_expect_msb(0xff-i, &delta, &d2))
602 break;
603
604 delta -= tsc;
605
606 /*
607 * Extrapolate the error and fail fast if the error will
608 * never be below 500 ppm.
609 */
610 if (i == 1 &&
611 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
612 return 0;
613
614 /*
615 * Iterate until the error is less than 500 ppm
616 */
617 if (d1+d2 >= delta >> 11)
618 continue;
619
620 /*
621 * Check the PIT one more time to verify that
622 * all TSC reads were stable wrt the PIT.
623 *
624 * This also guarantees serialization of the
625 * last cycle read ('d2') in pit_expect_msb.
626 */
627 if (!pit_verify_msb(0xfe - i))
628 break;
629 goto success;
630 }
631 }
632 pr_info("Fast TSC calibration failed\n");
633 return 0;
634
635 success:
636 /*
637 * Ok, if we get here, then we've seen the
638 * MSB of the PIT decrement 'i' times, and the
639 * error has shrunk to less than 500 ppm.
640 *
641 * As a result, we can depend on there not being
642 * any odd delays anywhere, and the TSC reads are
643 * reliable (within the error).
644 *
645 * kHz = ticks / time-in-seconds / 1000;
646 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
647 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
648 */
649 delta *= PIT_TICK_RATE;
650 do_div(delta, i*256*1000);
651 pr_info("Fast TSC calibration using PIT\n");
652 return delta;
653 }
654
655 /**
656 * native_calibrate_tsc - determine TSC frequency
657 * Determine TSC frequency via CPUID, else return 0.
658 */
native_calibrate_tsc(void)659 unsigned long native_calibrate_tsc(void)
660 {
661 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
662 unsigned int crystal_khz;
663
664 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
665 return 0;
666
667 if (boot_cpu_data.cpuid_level < 0x15)
668 return 0;
669
670 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
671
672 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
673 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
674
675 if (ebx_numerator == 0 || eax_denominator == 0)
676 return 0;
677
678 crystal_khz = ecx_hz / 1000;
679
680 /*
681 * Denverton SoCs don't report crystal clock, and also don't support
682 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
683 * clock.
684 */
685 if (crystal_khz == 0 &&
686 boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
687 crystal_khz = 25000;
688
689 /*
690 * TSC frequency reported directly by CPUID is a "hardware reported"
691 * frequency and is the most accurate one so far we have. This
692 * is considered a known frequency.
693 */
694 if (crystal_khz != 0)
695 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
696
697 /*
698 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
699 * clock, but we can easily calculate it to a high degree of accuracy
700 * by considering the crystal ratio and the CPU speed.
701 */
702 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
703 unsigned int eax_base_mhz, ebx, ecx, edx;
704
705 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
706 crystal_khz = eax_base_mhz * 1000 *
707 eax_denominator / ebx_numerator;
708 }
709
710 if (crystal_khz == 0)
711 return 0;
712
713 /*
714 * For Atom SoCs TSC is the only reliable clocksource.
715 * Mark TSC reliable so no watchdog on it.
716 */
717 if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
718 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
719
720 #ifdef CONFIG_X86_LOCAL_APIC
721 /*
722 * The local APIC appears to be fed by the core crystal clock
723 * (which sounds entirely sensible). We can set the global
724 * lapic_timer_period here to avoid having to calibrate the APIC
725 * timer later.
726 */
727 lapic_timer_period = crystal_khz * 1000 / HZ;
728 #endif
729
730 return crystal_khz * ebx_numerator / eax_denominator;
731 }
732
cpu_khz_from_cpuid(void)733 static unsigned long cpu_khz_from_cpuid(void)
734 {
735 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
736
737 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
738 return 0;
739
740 if (boot_cpu_data.cpuid_level < 0x16)
741 return 0;
742
743 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
744
745 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
746
747 return eax_base_mhz * 1000;
748 }
749
750 /*
751 * calibrate cpu using pit, hpet, and ptimer methods. They are available
752 * later in boot after acpi is initialized.
753 */
pit_hpet_ptimer_calibrate_cpu(void)754 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
755 {
756 u64 tsc1, tsc2, delta, ref1, ref2;
757 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
758 unsigned long flags, latch, ms;
759 int hpet = is_hpet_enabled(), i, loopmin;
760
761 /*
762 * Run 5 calibration loops to get the lowest frequency value
763 * (the best estimate). We use two different calibration modes
764 * here:
765 *
766 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
767 * load a timeout of 50ms. We read the time right after we
768 * started the timer and wait until the PIT count down reaches
769 * zero. In each wait loop iteration we read the TSC and check
770 * the delta to the previous read. We keep track of the min
771 * and max values of that delta. The delta is mostly defined
772 * by the IO time of the PIT access, so we can detect when
773 * any disturbance happened between the two reads. If the
774 * maximum time is significantly larger than the minimum time,
775 * then we discard the result and have another try.
776 *
777 * 2) Reference counter. If available we use the HPET or the
778 * PMTIMER as a reference to check the sanity of that value.
779 * We use separate TSC readouts and check inside of the
780 * reference read for any possible disturbance. We discard
781 * disturbed values here as well. We do that around the PIT
782 * calibration delay loop as we have to wait for a certain
783 * amount of time anyway.
784 */
785
786 /* Preset PIT loop values */
787 latch = CAL_LATCH;
788 ms = CAL_MS;
789 loopmin = CAL_PIT_LOOPS;
790
791 for (i = 0; i < 3; i++) {
792 unsigned long tsc_pit_khz;
793
794 /*
795 * Read the start value and the reference count of
796 * hpet/pmtimer when available. Then do the PIT
797 * calibration, which will take at least 50ms, and
798 * read the end value.
799 */
800 local_irq_save(flags);
801 tsc1 = tsc_read_refs(&ref1, hpet);
802 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
803 tsc2 = tsc_read_refs(&ref2, hpet);
804 local_irq_restore(flags);
805
806 /* Pick the lowest PIT TSC calibration so far */
807 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
808
809 /* hpet or pmtimer available ? */
810 if (ref1 == ref2)
811 continue;
812
813 /* Check, whether the sampling was disturbed */
814 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
815 continue;
816
817 tsc2 = (tsc2 - tsc1) * 1000000LL;
818 if (hpet)
819 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
820 else
821 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
822
823 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
824
825 /* Check the reference deviation */
826 delta = ((u64) tsc_pit_min) * 100;
827 do_div(delta, tsc_ref_min);
828
829 /*
830 * If both calibration results are inside a 10% window
831 * then we can be sure, that the calibration
832 * succeeded. We break out of the loop right away. We
833 * use the reference value, as it is more precise.
834 */
835 if (delta >= 90 && delta <= 110) {
836 pr_info("PIT calibration matches %s. %d loops\n",
837 hpet ? "HPET" : "PMTIMER", i + 1);
838 return tsc_ref_min;
839 }
840
841 /*
842 * Check whether PIT failed more than once. This
843 * happens in virtualized environments. We need to
844 * give the virtual PC a slightly longer timeframe for
845 * the HPET/PMTIMER to make the result precise.
846 */
847 if (i == 1 && tsc_pit_min == ULONG_MAX) {
848 latch = CAL2_LATCH;
849 ms = CAL2_MS;
850 loopmin = CAL2_PIT_LOOPS;
851 }
852 }
853
854 /*
855 * Now check the results.
856 */
857 if (tsc_pit_min == ULONG_MAX) {
858 /* PIT gave no useful value */
859 pr_warn("Unable to calibrate against PIT\n");
860
861 /* We don't have an alternative source, disable TSC */
862 if (!hpet && !ref1 && !ref2) {
863 pr_notice("No reference (HPET/PMTIMER) available\n");
864 return 0;
865 }
866
867 /* The alternative source failed as well, disable TSC */
868 if (tsc_ref_min == ULONG_MAX) {
869 pr_warn("HPET/PMTIMER calibration failed\n");
870 return 0;
871 }
872
873 /* Use the alternative source */
874 pr_info("using %s reference calibration\n",
875 hpet ? "HPET" : "PMTIMER");
876
877 return tsc_ref_min;
878 }
879
880 /* We don't have an alternative source, use the PIT calibration value */
881 if (!hpet && !ref1 && !ref2) {
882 pr_info("Using PIT calibration value\n");
883 return tsc_pit_min;
884 }
885
886 /* The alternative source failed, use the PIT calibration value */
887 if (tsc_ref_min == ULONG_MAX) {
888 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
889 return tsc_pit_min;
890 }
891
892 /*
893 * The calibration values differ too much. In doubt, we use
894 * the PIT value as we know that there are PMTIMERs around
895 * running at double speed. At least we let the user know:
896 */
897 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
898 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
899 pr_info("Using PIT calibration value\n");
900 return tsc_pit_min;
901 }
902
903 /**
904 * native_calibrate_cpu_early - can calibrate the cpu early in boot
905 */
native_calibrate_cpu_early(void)906 unsigned long native_calibrate_cpu_early(void)
907 {
908 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
909
910 if (!fast_calibrate)
911 fast_calibrate = cpu_khz_from_msr();
912 if (!fast_calibrate) {
913 local_irq_save(flags);
914 fast_calibrate = quick_pit_calibrate();
915 local_irq_restore(flags);
916 }
917 return fast_calibrate;
918 }
919
920
921 /**
922 * native_calibrate_cpu - calibrate the cpu
923 */
native_calibrate_cpu(void)924 static unsigned long native_calibrate_cpu(void)
925 {
926 unsigned long tsc_freq = native_calibrate_cpu_early();
927
928 if (!tsc_freq)
929 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
930
931 return tsc_freq;
932 }
933
recalibrate_cpu_khz(void)934 void recalibrate_cpu_khz(void)
935 {
936 #ifndef CONFIG_SMP
937 unsigned long cpu_khz_old = cpu_khz;
938
939 if (!boot_cpu_has(X86_FEATURE_TSC))
940 return;
941
942 cpu_khz = x86_platform.calibrate_cpu();
943 tsc_khz = x86_platform.calibrate_tsc();
944 if (tsc_khz == 0)
945 tsc_khz = cpu_khz;
946 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
947 cpu_khz = tsc_khz;
948 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
949 cpu_khz_old, cpu_khz);
950 #endif
951 }
952 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
953
954
955 static unsigned long long cyc2ns_suspend;
956
tsc_save_sched_clock_state(void)957 void tsc_save_sched_clock_state(void)
958 {
959 if (!sched_clock_stable())
960 return;
961
962 cyc2ns_suspend = sched_clock();
963 }
964
965 /*
966 * Even on processors with invariant TSC, TSC gets reset in some the
967 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
968 * arbitrary value (still sync'd across cpu's) during resume from such sleep
969 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
970 * that sched_clock() continues from the point where it was left off during
971 * suspend.
972 */
tsc_restore_sched_clock_state(void)973 void tsc_restore_sched_clock_state(void)
974 {
975 unsigned long long offset;
976 unsigned long flags;
977 int cpu;
978
979 if (!sched_clock_stable())
980 return;
981
982 local_irq_save(flags);
983
984 /*
985 * We're coming out of suspend, there's no concurrency yet; don't
986 * bother being nice about the RCU stuff, just write to both
987 * data fields.
988 */
989
990 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
991 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
992
993 offset = cyc2ns_suspend - sched_clock();
994
995 for_each_possible_cpu(cpu) {
996 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
997 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
998 }
999
1000 local_irq_restore(flags);
1001 }
1002
1003 #ifdef CONFIG_CPU_FREQ
1004 /*
1005 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1006 * changes.
1007 *
1008 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1009 * as unstable and give up in those cases.
1010 *
1011 * Should fix up last_tsc too. Currently gettimeofday in the
1012 * first tick after the change will be slightly wrong.
1013 */
1014
1015 static unsigned int ref_freq;
1016 static unsigned long loops_per_jiffy_ref;
1017 static unsigned long tsc_khz_ref;
1018
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)1019 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1020 void *data)
1021 {
1022 struct cpufreq_freqs *freq = data;
1023
1024 if (num_online_cpus() > 1) {
1025 mark_tsc_unstable("cpufreq changes on SMP");
1026 return 0;
1027 }
1028
1029 if (!ref_freq) {
1030 ref_freq = freq->old;
1031 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1032 tsc_khz_ref = tsc_khz;
1033 }
1034
1035 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1036 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1037 boot_cpu_data.loops_per_jiffy =
1038 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1039
1040 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1041 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1042 mark_tsc_unstable("cpufreq changes");
1043
1044 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1045 }
1046
1047 return 0;
1048 }
1049
1050 static struct notifier_block time_cpufreq_notifier_block = {
1051 .notifier_call = time_cpufreq_notifier
1052 };
1053
cpufreq_register_tsc_scaling(void)1054 static int __init cpufreq_register_tsc_scaling(void)
1055 {
1056 if (!boot_cpu_has(X86_FEATURE_TSC))
1057 return 0;
1058 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1059 return 0;
1060 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1061 CPUFREQ_TRANSITION_NOTIFIER);
1062 return 0;
1063 }
1064
1065 core_initcall(cpufreq_register_tsc_scaling);
1066
1067 #endif /* CONFIG_CPU_FREQ */
1068
1069 #define ART_CPUID_LEAF (0x15)
1070 #define ART_MIN_DENOMINATOR (1)
1071
1072
1073 /*
1074 * If ART is present detect the numerator:denominator to convert to TSC
1075 */
detect_art(void)1076 static void __init detect_art(void)
1077 {
1078 unsigned int unused;
1079
1080 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1081 return;
1082
1083 /*
1084 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1085 * and the TSC counter resets must not occur asynchronously.
1086 */
1087 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1088 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1089 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1090 tsc_async_resets)
1091 return;
1092
1093 cpuid(ART_CPUID_LEAF, &art_base_clk.denominator,
1094 &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1095
1096 art_base_clk.freq_khz /= KHZ;
1097 if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1098 return;
1099
1100 rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1101
1102 /* Make this sticky over multiple CPU init calls */
1103 setup_force_cpu_cap(X86_FEATURE_ART);
1104 }
1105
1106
1107 /* clocksource code */
1108
tsc_resume(struct clocksource * cs)1109 static void tsc_resume(struct clocksource *cs)
1110 {
1111 tsc_verify_tsc_adjust(true);
1112 }
1113
1114 /*
1115 * We used to compare the TSC to the cycle_last value in the clocksource
1116 * structure to avoid a nasty time-warp. This can be observed in a
1117 * very small window right after one CPU updated cycle_last under
1118 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1119 * is smaller than the cycle_last reference value due to a TSC which
1120 * is slightly behind. This delta is nowhere else observable, but in
1121 * that case it results in a forward time jump in the range of hours
1122 * due to the unsigned delta calculation of the time keeping core
1123 * code, which is necessary to support wrapping clocksources like pm
1124 * timer.
1125 *
1126 * This sanity check is now done in the core timekeeping code.
1127 * checking the result of read_tsc() - cycle_last for being negative.
1128 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1129 */
read_tsc(struct clocksource * cs)1130 static u64 read_tsc(struct clocksource *cs)
1131 {
1132 return (u64)rdtsc_ordered();
1133 }
1134
tsc_cs_mark_unstable(struct clocksource * cs)1135 static void tsc_cs_mark_unstable(struct clocksource *cs)
1136 {
1137 if (tsc_unstable)
1138 return;
1139
1140 tsc_unstable = 1;
1141 if (using_native_sched_clock())
1142 clear_sched_clock_stable();
1143 disable_sched_clock_irqtime();
1144 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1145 }
1146
tsc_cs_tick_stable(struct clocksource * cs)1147 static void tsc_cs_tick_stable(struct clocksource *cs)
1148 {
1149 if (tsc_unstable)
1150 return;
1151
1152 if (using_native_sched_clock())
1153 sched_clock_tick_stable();
1154 }
1155
tsc_cs_enable(struct clocksource * cs)1156 static int tsc_cs_enable(struct clocksource *cs)
1157 {
1158 vclocks_set_used(VDSO_CLOCKMODE_TSC);
1159 return 0;
1160 }
1161
1162 /*
1163 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1164 */
1165 static struct clocksource clocksource_tsc_early = {
1166 .name = "tsc-early",
1167 .rating = 299,
1168 .uncertainty_margin = 32 * NSEC_PER_MSEC,
1169 .read = read_tsc,
1170 .mask = CLOCKSOURCE_MASK(64),
1171 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1172 CLOCK_SOURCE_MUST_VERIFY,
1173 .id = CSID_X86_TSC_EARLY,
1174 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1175 .enable = tsc_cs_enable,
1176 .resume = tsc_resume,
1177 .mark_unstable = tsc_cs_mark_unstable,
1178 .tick_stable = tsc_cs_tick_stable,
1179 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1180 };
1181
1182 /*
1183 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1184 * this one will immediately take over. We will only register if TSC has
1185 * been found good.
1186 */
1187 static struct clocksource clocksource_tsc = {
1188 .name = "tsc",
1189 .rating = 300,
1190 .read = read_tsc,
1191 .mask = CLOCKSOURCE_MASK(64),
1192 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1193 CLOCK_SOURCE_VALID_FOR_HRES |
1194 CLOCK_SOURCE_MUST_VERIFY |
1195 CLOCK_SOURCE_VERIFY_PERCPU,
1196 .id = CSID_X86_TSC,
1197 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1198 .enable = tsc_cs_enable,
1199 .resume = tsc_resume,
1200 .mark_unstable = tsc_cs_mark_unstable,
1201 .tick_stable = tsc_cs_tick_stable,
1202 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1203 };
1204
mark_tsc_unstable(char * reason)1205 void mark_tsc_unstable(char *reason)
1206 {
1207 if (tsc_unstable)
1208 return;
1209
1210 tsc_unstable = 1;
1211 if (using_native_sched_clock())
1212 clear_sched_clock_stable();
1213 disable_sched_clock_irqtime();
1214 pr_info("Marking TSC unstable due to %s\n", reason);
1215
1216 clocksource_mark_unstable(&clocksource_tsc_early);
1217 clocksource_mark_unstable(&clocksource_tsc);
1218 }
1219
1220 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1221
tsc_disable_clocksource_watchdog(void)1222 static void __init tsc_disable_clocksource_watchdog(void)
1223 {
1224 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1225 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226 }
1227
tsc_clocksource_watchdog_disabled(void)1228 bool tsc_clocksource_watchdog_disabled(void)
1229 {
1230 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1231 tsc_as_watchdog && !no_tsc_watchdog;
1232 }
1233
check_system_tsc_reliable(void)1234 static void __init check_system_tsc_reliable(void)
1235 {
1236 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1237 if (is_geode_lx()) {
1238 /* RTSC counts during suspend */
1239 #define RTSC_SUSP 0x100
1240 unsigned long res_low, res_high;
1241
1242 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1243 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1244 if (res_low & RTSC_SUSP)
1245 tsc_clocksource_reliable = 1;
1246 }
1247 #endif
1248 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1249 tsc_clocksource_reliable = 1;
1250
1251 /*
1252 * Disable the clocksource watchdog when the system has:
1253 * - TSC running at constant frequency
1254 * - TSC which does not stop in C-States
1255 * - the TSC_ADJUST register which allows to detect even minimal
1256 * modifications
1257 * - not more than four packages
1258 */
1259 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1260 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1261 boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1262 topology_max_packages() <= 4)
1263 tsc_disable_clocksource_watchdog();
1264 }
1265
1266 /*
1267 * Make an educated guess if the TSC is trustworthy and synchronized
1268 * over all CPUs.
1269 */
unsynchronized_tsc(void)1270 int unsynchronized_tsc(void)
1271 {
1272 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1273 return 1;
1274
1275 #ifdef CONFIG_SMP
1276 if (apic_is_clustered_box())
1277 return 1;
1278 #endif
1279
1280 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1281 return 0;
1282
1283 if (tsc_clocksource_reliable)
1284 return 0;
1285 /*
1286 * Intel systems are normally all synchronized.
1287 * Exceptions must mark TSC as unstable:
1288 */
1289 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1290 /* assume multi socket systems are not synchronized: */
1291 if (topology_max_packages() > 1)
1292 return 1;
1293 }
1294
1295 return 0;
1296 }
1297
1298 static void tsc_refine_calibration_work(struct work_struct *work);
1299 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1300 /**
1301 * tsc_refine_calibration_work - Further refine tsc freq calibration
1302 * @work: ignored.
1303 *
1304 * This functions uses delayed work over a period of a
1305 * second to further refine the TSC freq value. Since this is
1306 * timer based, instead of loop based, we don't block the boot
1307 * process while this longer calibration is done.
1308 *
1309 * If there are any calibration anomalies (too many SMIs, etc),
1310 * or the refined calibration is off by 1% of the fast early
1311 * calibration, we throw out the new calibration and use the
1312 * early calibration.
1313 */
tsc_refine_calibration_work(struct work_struct * work)1314 static void tsc_refine_calibration_work(struct work_struct *work)
1315 {
1316 static u64 tsc_start = ULLONG_MAX, ref_start;
1317 static int hpet;
1318 u64 tsc_stop, ref_stop, delta;
1319 unsigned long freq;
1320 int cpu;
1321
1322 /* Don't bother refining TSC on unstable systems */
1323 if (tsc_unstable)
1324 goto unreg;
1325
1326 /*
1327 * Since the work is started early in boot, we may be
1328 * delayed the first time we expire. So set the workqueue
1329 * again once we know timers are working.
1330 */
1331 if (tsc_start == ULLONG_MAX) {
1332 restart:
1333 /*
1334 * Only set hpet once, to avoid mixing hardware
1335 * if the hpet becomes enabled later.
1336 */
1337 hpet = is_hpet_enabled();
1338 tsc_start = tsc_read_refs(&ref_start, hpet);
1339 schedule_delayed_work(&tsc_irqwork, HZ);
1340 return;
1341 }
1342
1343 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1344
1345 /* hpet or pmtimer available ? */
1346 if (ref_start == ref_stop)
1347 goto out;
1348
1349 /* Check, whether the sampling was disturbed */
1350 if (tsc_stop == ULLONG_MAX)
1351 goto restart;
1352
1353 delta = tsc_stop - tsc_start;
1354 delta *= 1000000LL;
1355 if (hpet)
1356 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1357 else
1358 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1359
1360 /* Will hit this only if tsc_force_recalibrate has been set */
1361 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1362
1363 /* Warn if the deviation exceeds 500 ppm */
1364 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1365 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1366 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1367 (unsigned long)tsc_khz / 1000,
1368 (unsigned long)tsc_khz % 1000);
1369 }
1370
1371 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1372 hpet ? "HPET" : "PM_TIMER",
1373 (unsigned long)freq / 1000,
1374 (unsigned long)freq % 1000);
1375
1376 return;
1377 }
1378
1379 /* Make sure we're within 1% */
1380 if (abs(tsc_khz - freq) > tsc_khz/100)
1381 goto out;
1382
1383 tsc_khz = freq;
1384 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1385 (unsigned long)tsc_khz / 1000,
1386 (unsigned long)tsc_khz % 1000);
1387
1388 /* Inform the TSC deadline clockevent devices about the recalibration */
1389 lapic_update_tsc_freq();
1390
1391 /* Update the sched_clock() rate to match the clocksource one */
1392 for_each_possible_cpu(cpu)
1393 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1394
1395 out:
1396 if (tsc_unstable)
1397 goto unreg;
1398
1399 if (boot_cpu_has(X86_FEATURE_ART)) {
1400 have_art = true;
1401 clocksource_tsc.base = &art_base_clk;
1402 }
1403 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1404 unreg:
1405 clocksource_unregister(&clocksource_tsc_early);
1406 }
1407
1408
init_tsc_clocksource(void)1409 static int __init init_tsc_clocksource(void)
1410 {
1411 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1412 return 0;
1413
1414 if (tsc_unstable) {
1415 clocksource_unregister(&clocksource_tsc_early);
1416 return 0;
1417 }
1418
1419 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1420 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1421
1422 /*
1423 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1424 * the refined calibration and directly register it as a clocksource.
1425 */
1426 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1427 if (boot_cpu_has(X86_FEATURE_ART)) {
1428 have_art = true;
1429 clocksource_tsc.base = &art_base_clk;
1430 }
1431 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1432 clocksource_unregister(&clocksource_tsc_early);
1433
1434 if (!tsc_force_recalibrate)
1435 return 0;
1436 }
1437
1438 schedule_delayed_work(&tsc_irqwork, 0);
1439 return 0;
1440 }
1441 /*
1442 * We use device_initcall here, to ensure we run after the hpet
1443 * is fully initialized, which may occur at fs_initcall time.
1444 */
1445 device_initcall(init_tsc_clocksource);
1446
determine_cpu_tsc_frequencies(bool early)1447 static bool __init determine_cpu_tsc_frequencies(bool early)
1448 {
1449 /* Make sure that cpu and tsc are not already calibrated */
1450 WARN_ON(cpu_khz || tsc_khz);
1451
1452 if (early) {
1453 cpu_khz = x86_platform.calibrate_cpu();
1454 if (tsc_early_khz) {
1455 tsc_khz = tsc_early_khz;
1456 } else {
1457 tsc_khz = x86_platform.calibrate_tsc();
1458 clocksource_tsc.freq_khz = tsc_khz;
1459 }
1460 } else {
1461 /* We should not be here with non-native cpu calibration */
1462 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1463 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1464 }
1465
1466 /*
1467 * Trust non-zero tsc_khz as authoritative,
1468 * and use it to sanity check cpu_khz,
1469 * which will be off if system timer is off.
1470 */
1471 if (tsc_khz == 0)
1472 tsc_khz = cpu_khz;
1473 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1474 cpu_khz = tsc_khz;
1475
1476 if (tsc_khz == 0)
1477 return false;
1478
1479 pr_info("Detected %lu.%03lu MHz processor\n",
1480 (unsigned long)cpu_khz / KHZ,
1481 (unsigned long)cpu_khz % KHZ);
1482
1483 if (cpu_khz != tsc_khz) {
1484 pr_info("Detected %lu.%03lu MHz TSC",
1485 (unsigned long)tsc_khz / KHZ,
1486 (unsigned long)tsc_khz % KHZ);
1487 }
1488 return true;
1489 }
1490
get_loops_per_jiffy(void)1491 static unsigned long __init get_loops_per_jiffy(void)
1492 {
1493 u64 lpj = (u64)tsc_khz * KHZ;
1494
1495 do_div(lpj, HZ);
1496 return lpj;
1497 }
1498
tsc_enable_sched_clock(void)1499 static void __init tsc_enable_sched_clock(void)
1500 {
1501 loops_per_jiffy = get_loops_per_jiffy();
1502 use_tsc_delay();
1503
1504 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1505 tsc_store_and_check_tsc_adjust(true);
1506 cyc2ns_init_boot_cpu();
1507 static_branch_enable(&__use_tsc);
1508 }
1509
tsc_early_init(void)1510 void __init tsc_early_init(void)
1511 {
1512 if (!boot_cpu_has(X86_FEATURE_TSC))
1513 return;
1514 /* Don't change UV TSC multi-chassis synchronization */
1515 if (is_early_uv_system())
1516 return;
1517 if (!determine_cpu_tsc_frequencies(true))
1518 return;
1519 tsc_enable_sched_clock();
1520 }
1521
tsc_init(void)1522 void __init tsc_init(void)
1523 {
1524 if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1525 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1526 return;
1527 }
1528
1529 /*
1530 * native_calibrate_cpu_early can only calibrate using methods that are
1531 * available early in boot.
1532 */
1533 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1534 x86_platform.calibrate_cpu = native_calibrate_cpu;
1535
1536 if (!tsc_khz) {
1537 /* We failed to determine frequencies earlier, try again */
1538 if (!determine_cpu_tsc_frequencies(false)) {
1539 mark_tsc_unstable("could not calculate TSC khz");
1540 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1541 return;
1542 }
1543 tsc_enable_sched_clock();
1544 }
1545
1546 cyc2ns_init_secondary_cpus();
1547
1548 if (!no_sched_irq_time)
1549 enable_sched_clock_irqtime();
1550
1551 lpj_fine = get_loops_per_jiffy();
1552
1553 check_system_tsc_reliable();
1554
1555 if (unsynchronized_tsc()) {
1556 mark_tsc_unstable("TSCs unsynchronized");
1557 return;
1558 }
1559
1560 if (tsc_clocksource_reliable || no_tsc_watchdog)
1561 tsc_disable_clocksource_watchdog();
1562
1563 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1564 detect_art();
1565 }
1566
1567 #ifdef CONFIG_SMP
1568 /*
1569 * Check whether existing calibration data can be reused.
1570 */
calibrate_delay_is_known(void)1571 unsigned long calibrate_delay_is_known(void)
1572 {
1573 int sibling, cpu = smp_processor_id();
1574 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1575 const struct cpumask *mask = topology_core_cpumask(cpu);
1576
1577 /*
1578 * If TSC has constant frequency and TSC is synchronized across
1579 * sockets then reuse CPU0 calibration.
1580 */
1581 if (constant_tsc && !tsc_unstable)
1582 return cpu_data(0).loops_per_jiffy;
1583
1584 /*
1585 * If TSC has constant frequency and TSC is not synchronized across
1586 * sockets and this is not the first CPU in the socket, then reuse
1587 * the calibration value of an already online CPU on that socket.
1588 *
1589 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1590 * socket.
1591 */
1592 if (!constant_tsc || !mask)
1593 return 0;
1594
1595 sibling = cpumask_any_but(mask, cpu);
1596 if (sibling < nr_cpu_ids)
1597 return cpu_data(sibling).loops_per_jiffy;
1598 return 0;
1599 }
1600 #endif
1601