1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24
25 #include <linux/unaligned.h>
26
27 #include <acpi/cppc_acpi.h>
28
29 static struct cpufreq_driver cppc_cpufreq_driver;
30
31 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32 static enum {
33 FIE_UNSET = -1,
34 FIE_ENABLED,
35 FIE_DISABLED
36 } fie_disabled = FIE_UNSET;
37
38 module_param(fie_disabled, int, 0444);
39 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40
41 /* Frequency invariance support */
42 struct cppc_freq_invariance {
43 int cpu;
44 struct irq_work irq_work;
45 struct kthread_work work;
46 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47 struct cppc_cpudata *cpu_data;
48 };
49
50 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51 static struct kthread_worker *kworker_fie;
52
53 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
54 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
55
56 /**
57 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
58 * @work: The work item.
59 *
60 * The CPPC driver register itself with the topology core to provide its own
61 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
62 * gets called by the scheduler on every tick.
63 *
64 * Note that the arch specific counters have higher priority than CPPC counters,
65 * if available, though the CPPC driver doesn't need to have any special
66 * handling for that.
67 *
68 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
69 * reach here from hard-irq context), which then schedules a normal work item
70 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
71 * based on the counter updates since the last tick.
72 */
cppc_scale_freq_workfn(struct kthread_work * work)73 static void cppc_scale_freq_workfn(struct kthread_work *work)
74 {
75 struct cppc_freq_invariance *cppc_fi;
76 struct cppc_perf_fb_ctrs fb_ctrs = {0};
77 struct cppc_cpudata *cpu_data;
78 unsigned long local_freq_scale;
79 u64 perf;
80
81 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
82 cpu_data = cppc_fi->cpu_data;
83
84 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
85 pr_warn("%s: failed to read perf counters\n", __func__);
86 return;
87 }
88
89 perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs);
90 if (!perf)
91 return;
92
93 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
94
95 perf <<= SCHED_CAPACITY_SHIFT;
96 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
97
98 /* This can happen due to counter's overflow */
99 if (unlikely(local_freq_scale > 1024))
100 local_freq_scale = 1024;
101
102 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
103 }
104
cppc_irq_work(struct irq_work * irq_work)105 static void cppc_irq_work(struct irq_work *irq_work)
106 {
107 struct cppc_freq_invariance *cppc_fi;
108
109 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
110 kthread_queue_work(kworker_fie, &cppc_fi->work);
111 }
112
cppc_scale_freq_tick(void)113 static void cppc_scale_freq_tick(void)
114 {
115 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
116
117 /*
118 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
119 * context.
120 */
121 irq_work_queue(&cppc_fi->irq_work);
122 }
123
124 static struct scale_freq_data cppc_sftd = {
125 .source = SCALE_FREQ_SOURCE_CPPC,
126 .set_freq_scale = cppc_scale_freq_tick,
127 };
128
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)129 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
130 {
131 struct cppc_freq_invariance *cppc_fi;
132 int cpu, ret;
133
134 if (fie_disabled)
135 return;
136
137 for_each_cpu(cpu, policy->cpus) {
138 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
139 cppc_fi->cpu = cpu;
140 cppc_fi->cpu_data = policy->driver_data;
141 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
142 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
143
144 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
145 if (ret) {
146 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
147 __func__, cpu, ret);
148
149 /*
150 * Don't abort if the CPU was offline while the driver
151 * was getting registered.
152 */
153 if (cpu_online(cpu))
154 return;
155 }
156 }
157
158 /* Register for freq-invariance */
159 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
160 }
161
162 /*
163 * We free all the resources on policy's removal and not on CPU removal as the
164 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
165 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
166 * fires on another CPU after the concerned CPU is removed, it won't harm.
167 *
168 * We just need to make sure to remove them all on policy->exit().
169 */
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)170 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
171 {
172 struct cppc_freq_invariance *cppc_fi;
173 int cpu;
174
175 if (fie_disabled)
176 return;
177
178 /* policy->cpus will be empty here, use related_cpus instead */
179 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
180
181 for_each_cpu(cpu, policy->related_cpus) {
182 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
183 irq_work_sync(&cppc_fi->irq_work);
184 kthread_cancel_work_sync(&cppc_fi->work);
185 }
186 }
187
cppc_freq_invariance_init(void)188 static void __init cppc_freq_invariance_init(void)
189 {
190 struct sched_attr attr = {
191 .size = sizeof(struct sched_attr),
192 .sched_policy = SCHED_DEADLINE,
193 .sched_nice = 0,
194 .sched_priority = 0,
195 /*
196 * Fake (unused) bandwidth; workaround to "fix"
197 * priority inheritance.
198 */
199 .sched_runtime = NSEC_PER_MSEC,
200 .sched_deadline = 10 * NSEC_PER_MSEC,
201 .sched_period = 10 * NSEC_PER_MSEC,
202 };
203 int ret;
204
205 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
206 fie_disabled = FIE_ENABLED;
207 if (cppc_perf_ctrs_in_pcc()) {
208 pr_info("FIE not enabled on systems with registers in PCC\n");
209 fie_disabled = FIE_DISABLED;
210 }
211 }
212
213 if (fie_disabled)
214 return;
215
216 kworker_fie = kthread_run_worker(0, "cppc_fie");
217 if (IS_ERR(kworker_fie)) {
218 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
219 PTR_ERR(kworker_fie));
220 fie_disabled = FIE_DISABLED;
221 return;
222 }
223
224 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
225 if (ret) {
226 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
227 ret);
228 kthread_destroy_worker(kworker_fie);
229 fie_disabled = FIE_DISABLED;
230 }
231 }
232
cppc_freq_invariance_exit(void)233 static void cppc_freq_invariance_exit(void)
234 {
235 if (fie_disabled)
236 return;
237
238 kthread_destroy_worker(kworker_fie);
239 }
240
241 #else
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)242 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
243 {
244 }
245
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)246 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
247 {
248 }
249
cppc_freq_invariance_init(void)250 static inline void cppc_freq_invariance_init(void)
251 {
252 }
253
cppc_freq_invariance_exit(void)254 static inline void cppc_freq_invariance_exit(void)
255 {
256 }
257 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
258
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)259 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
260 unsigned int target_freq,
261 unsigned int relation)
262 {
263 struct cppc_cpudata *cpu_data = policy->driver_data;
264 unsigned int cpu = policy->cpu;
265 struct cpufreq_freqs freqs;
266 int ret = 0;
267
268 cpu_data->perf_ctrls.desired_perf =
269 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
270 freqs.old = policy->cur;
271 freqs.new = target_freq;
272
273 cpufreq_freq_transition_begin(policy, &freqs);
274 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
275 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
276
277 if (ret)
278 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
279 cpu, ret);
280
281 return ret;
282 }
283
cppc_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)284 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
285 unsigned int target_freq)
286 {
287 struct cppc_cpudata *cpu_data = policy->driver_data;
288 unsigned int cpu = policy->cpu;
289 u32 desired_perf;
290 int ret;
291
292 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
293 cpu_data->perf_ctrls.desired_perf = desired_perf;
294 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
295
296 if (ret) {
297 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
298 cpu, ret);
299 return 0;
300 }
301
302 return target_freq;
303 }
304
cppc_verify_policy(struct cpufreq_policy_data * policy)305 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
306 {
307 cpufreq_verify_within_cpu_limits(policy);
308 return 0;
309 }
310
__cppc_cpufreq_get_transition_delay_us(unsigned int cpu)311 static unsigned int __cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
312 {
313 int transition_latency_ns = cppc_get_transition_latency(cpu);
314
315 if (transition_latency_ns < 0)
316 return CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS / NSEC_PER_USEC;
317
318 return transition_latency_ns / NSEC_PER_USEC;
319 }
320
321 /*
322 * The PCC subspace describes the rate at which platform can accept commands
323 * on the shared PCC channel (including READs which do not count towards freq
324 * transition requests), so ideally we need to use the PCC values as a fallback
325 * if we don't have a platform specific transition_delay_us
326 */
327 #ifdef CONFIG_ARM64
328 #include <asm/cputype.h>
329
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)330 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
331 {
332 unsigned long implementor = read_cpuid_implementor();
333 unsigned long part_num = read_cpuid_part_number();
334
335 switch (implementor) {
336 case ARM_CPU_IMP_QCOM:
337 switch (part_num) {
338 case QCOM_CPU_PART_FALKOR_V1:
339 case QCOM_CPU_PART_FALKOR:
340 return 10000;
341 }
342 }
343 return __cppc_cpufreq_get_transition_delay_us(cpu);
344 }
345 #else
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)346 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
347 {
348 return __cppc_cpufreq_get_transition_delay_us(cpu);
349 }
350 #endif
351
352 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
353
354 static DEFINE_PER_CPU(unsigned int, efficiency_class);
355
356 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
357 #define CPPC_EM_CAP_STEP (20)
358 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
359 #define CPPC_EM_COST_STEP (1)
360 /* Add a cost gap correspnding to the energy of 4 CPUs. */
361 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
362 / CPPC_EM_CAP_STEP)
363
get_perf_level_count(struct cpufreq_policy * policy)364 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
365 {
366 struct cppc_perf_caps *perf_caps;
367 unsigned int min_cap, max_cap;
368 struct cppc_cpudata *cpu_data;
369 int cpu = policy->cpu;
370
371 cpu_data = policy->driver_data;
372 perf_caps = &cpu_data->perf_caps;
373 max_cap = arch_scale_cpu_capacity(cpu);
374 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
375 perf_caps->highest_perf);
376 if ((min_cap == 0) || (max_cap < min_cap))
377 return 0;
378 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
379 }
380
381 /*
382 * The cost is defined as:
383 * cost = power * max_frequency / frequency
384 */
compute_cost(int cpu,int step)385 static inline unsigned long compute_cost(int cpu, int step)
386 {
387 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
388 step * CPPC_EM_COST_STEP;
389 }
390
cppc_get_cpu_power(struct device * cpu_dev,unsigned long * power,unsigned long * KHz)391 static int cppc_get_cpu_power(struct device *cpu_dev,
392 unsigned long *power, unsigned long *KHz)
393 {
394 unsigned long perf_step, perf_prev, perf, perf_check;
395 unsigned int min_step, max_step, step, step_check;
396 unsigned long prev_freq = *KHz;
397 unsigned int min_cap, max_cap;
398 struct cpufreq_policy *policy;
399
400 struct cppc_perf_caps *perf_caps;
401 struct cppc_cpudata *cpu_data;
402
403 policy = cpufreq_cpu_get_raw(cpu_dev->id);
404 if (!policy)
405 return -EINVAL;
406
407 cpu_data = policy->driver_data;
408 perf_caps = &cpu_data->perf_caps;
409 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
410 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
411 perf_caps->highest_perf);
412 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
413 max_cap);
414 min_step = min_cap / CPPC_EM_CAP_STEP;
415 max_step = max_cap / CPPC_EM_CAP_STEP;
416
417 perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
418 step = perf_prev / perf_step;
419
420 if (step > max_step)
421 return -EINVAL;
422
423 if (min_step == max_step) {
424 step = max_step;
425 perf = perf_caps->highest_perf;
426 } else if (step < min_step) {
427 step = min_step;
428 perf = perf_caps->lowest_perf;
429 } else {
430 step++;
431 if (step == max_step)
432 perf = perf_caps->highest_perf;
433 else
434 perf = step * perf_step;
435 }
436
437 *KHz = cppc_perf_to_khz(perf_caps, perf);
438 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
439 step_check = perf_check / perf_step;
440
441 /*
442 * To avoid bad integer approximation, check that new frequency value
443 * increased and that the new frequency will be converted to the
444 * desired step value.
445 */
446 while ((*KHz == prev_freq) || (step_check != step)) {
447 perf++;
448 *KHz = cppc_perf_to_khz(perf_caps, perf);
449 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
450 step_check = perf_check / perf_step;
451 }
452
453 /*
454 * With an artificial EM, only the cost value is used. Still the power
455 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
456 * more sense to the artificial performance states.
457 */
458 *power = compute_cost(cpu_dev->id, step);
459
460 return 0;
461 }
462
cppc_get_cpu_cost(struct device * cpu_dev,unsigned long KHz,unsigned long * cost)463 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
464 unsigned long *cost)
465 {
466 unsigned long perf_step, perf_prev;
467 struct cppc_perf_caps *perf_caps;
468 struct cpufreq_policy *policy;
469 struct cppc_cpudata *cpu_data;
470 unsigned int max_cap;
471 int step;
472
473 policy = cpufreq_cpu_get_raw(cpu_dev->id);
474 if (!policy)
475 return -EINVAL;
476
477 cpu_data = policy->driver_data;
478 perf_caps = &cpu_data->perf_caps;
479 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
480
481 perf_prev = cppc_khz_to_perf(perf_caps, KHz);
482 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
483 step = perf_prev / perf_step;
484
485 *cost = compute_cost(cpu_dev->id, step);
486
487 return 0;
488 }
489
cppc_cpufreq_register_em(struct cpufreq_policy * policy)490 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
491 {
492 struct cppc_cpudata *cpu_data;
493 struct em_data_callback em_cb =
494 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
495
496 cpu_data = policy->driver_data;
497 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
498 get_perf_level_count(policy), &em_cb,
499 cpu_data->shared_cpu_map, 0);
500 }
501
populate_efficiency_class(void)502 static void populate_efficiency_class(void)
503 {
504 struct acpi_madt_generic_interrupt *gicc;
505 DECLARE_BITMAP(used_classes, 256) = {};
506 int class, cpu, index;
507
508 for_each_possible_cpu(cpu) {
509 gicc = acpi_cpu_get_madt_gicc(cpu);
510 class = gicc->efficiency_class;
511 bitmap_set(used_classes, class, 1);
512 }
513
514 if (bitmap_weight(used_classes, 256) <= 1) {
515 pr_debug("Efficiency classes are all equal (=%d). "
516 "No EM registered", class);
517 return;
518 }
519
520 /*
521 * Squeeze efficiency class values on [0:#efficiency_class-1].
522 * Values are per spec in [0:255].
523 */
524 index = 0;
525 for_each_set_bit(class, used_classes, 256) {
526 for_each_possible_cpu(cpu) {
527 gicc = acpi_cpu_get_madt_gicc(cpu);
528 if (gicc->efficiency_class == class)
529 per_cpu(efficiency_class, cpu) = index;
530 }
531 index++;
532 }
533 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
534 }
535
536 #else
populate_efficiency_class(void)537 static void populate_efficiency_class(void)
538 {
539 }
540 #endif
541
cppc_cpufreq_get_cpu_data(unsigned int cpu)542 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
543 {
544 struct cppc_cpudata *cpu_data;
545 int ret;
546
547 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
548 if (!cpu_data)
549 goto out;
550
551 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
552 goto free_cpu;
553
554 ret = acpi_get_psd_map(cpu, cpu_data);
555 if (ret) {
556 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
557 goto free_mask;
558 }
559
560 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
561 if (ret) {
562 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
563 goto free_mask;
564 }
565
566 return cpu_data;
567
568 free_mask:
569 free_cpumask_var(cpu_data->shared_cpu_map);
570 free_cpu:
571 kfree(cpu_data);
572 out:
573 return NULL;
574 }
575
cppc_cpufreq_put_cpu_data(struct cpufreq_policy * policy)576 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
577 {
578 struct cppc_cpudata *cpu_data = policy->driver_data;
579
580 free_cpumask_var(cpu_data->shared_cpu_map);
581 kfree(cpu_data);
582 policy->driver_data = NULL;
583 }
584
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)585 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
586 {
587 unsigned int cpu = policy->cpu;
588 struct cppc_cpudata *cpu_data;
589 struct cppc_perf_caps *caps;
590 int ret;
591
592 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
593 if (!cpu_data) {
594 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
595 return -ENODEV;
596 }
597 caps = &cpu_data->perf_caps;
598 policy->driver_data = cpu_data;
599
600 /*
601 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
602 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
603 */
604 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
605 policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
606 caps->highest_perf : caps->nominal_perf);
607
608 /*
609 * Set cpuinfo.min_freq to Lowest to make the full range of performance
610 * available if userspace wants to use any perf between lowest & lowest
611 * nonlinear perf
612 */
613 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
614 policy->cpuinfo.max_freq = policy->max;
615
616 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
617 policy->shared_type = cpu_data->shared_type;
618
619 switch (policy->shared_type) {
620 case CPUFREQ_SHARED_TYPE_HW:
621 case CPUFREQ_SHARED_TYPE_NONE:
622 /* Nothing to be done - we'll have a policy for each CPU */
623 break;
624 case CPUFREQ_SHARED_TYPE_ANY:
625 /*
626 * All CPUs in the domain will share a policy and all cpufreq
627 * operations will use a single cppc_cpudata structure stored
628 * in policy->driver_data.
629 */
630 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
631 break;
632 default:
633 pr_debug("Unsupported CPU co-ord type: %d\n",
634 policy->shared_type);
635 ret = -EFAULT;
636 goto out;
637 }
638
639 policy->fast_switch_possible = cppc_allow_fast_switch();
640 policy->dvfs_possible_from_any_cpu = true;
641
642 /*
643 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
644 * is supported.
645 */
646 if (caps->highest_perf > caps->nominal_perf)
647 policy->boost_supported = true;
648
649 /* Set policy->cur to max now. The governors will adjust later. */
650 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
651 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
652
653 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
654 if (ret) {
655 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
656 caps->highest_perf, cpu, ret);
657 goto out;
658 }
659
660 cppc_cpufreq_cpu_fie_init(policy);
661 return 0;
662
663 out:
664 cppc_cpufreq_put_cpu_data(policy);
665 return ret;
666 }
667
cppc_cpufreq_cpu_exit(struct cpufreq_policy * policy)668 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
669 {
670 struct cppc_cpudata *cpu_data = policy->driver_data;
671 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
672 unsigned int cpu = policy->cpu;
673 int ret;
674
675 cppc_cpufreq_cpu_fie_exit(policy);
676
677 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
678
679 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
680 if (ret)
681 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
682 caps->lowest_perf, cpu, ret);
683
684 cppc_cpufreq_put_cpu_data(policy);
685 }
686
get_delta(u64 t1,u64 t0)687 static inline u64 get_delta(u64 t1, u64 t0)
688 {
689 if (t1 > t0 || t0 > ~(u32)0)
690 return t1 - t0;
691
692 return (u32)t1 - (u32)t0;
693 }
694
cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)695 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
696 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
697 {
698 u64 delta_reference, delta_delivered;
699 u64 reference_perf;
700
701 reference_perf = fb_ctrs_t0->reference_perf;
702
703 delta_reference = get_delta(fb_ctrs_t1->reference,
704 fb_ctrs_t0->reference);
705 delta_delivered = get_delta(fb_ctrs_t1->delivered,
706 fb_ctrs_t0->delivered);
707
708 /*
709 * Avoid divide-by zero and unchanged feedback counters.
710 * Leave it for callers to handle.
711 */
712 if (!delta_reference || !delta_delivered)
713 return 0;
714
715 return (reference_perf * delta_delivered) / delta_reference;
716 }
717
cppc_get_perf_ctrs_sample(int cpu,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)718 static int cppc_get_perf_ctrs_sample(int cpu,
719 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
720 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
721 {
722 int ret;
723
724 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
725 if (ret)
726 return ret;
727
728 udelay(2); /* 2usec delay between sampling */
729
730 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
731 }
732
cppc_cpufreq_get_rate(unsigned int cpu)733 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
734 {
735 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
736 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
737 struct cppc_cpudata *cpu_data;
738 u64 delivered_perf;
739 int ret;
740
741 if (!policy)
742 return 0;
743
744 cpu_data = policy->driver_data;
745
746 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
747 if (ret) {
748 if (ret == -EFAULT)
749 /* Any of the associated CPPC regs is 0. */
750 goto out_invalid_counters;
751 else
752 return 0;
753 }
754
755 delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1);
756 if (!delivered_perf)
757 goto out_invalid_counters;
758
759 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
760
761 out_invalid_counters:
762 /*
763 * Feedback counters could be unchanged or 0 when a cpu enters a
764 * low-power idle state, e.g. clock-gated or power-gated.
765 * Use desired perf for reflecting frequency. Get the latest register
766 * value first as some platforms may update the actual delivered perf
767 * there; if failed, resort to the cached desired perf.
768 */
769 if (cppc_get_desired_perf(cpu, &delivered_perf))
770 delivered_perf = cpu_data->perf_ctrls.desired_perf;
771
772 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
773 }
774
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)775 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
776 {
777 struct cppc_cpudata *cpu_data = policy->driver_data;
778 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
779 int ret;
780
781 if (state)
782 policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
783 else
784 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
785 policy->cpuinfo.max_freq = policy->max;
786
787 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
788 if (ret < 0)
789 return ret;
790
791 return 0;
792 }
793
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
795 {
796 struct cppc_cpudata *cpu_data = policy->driver_data;
797
798 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
799 }
800
show_auto_select(struct cpufreq_policy * policy,char * buf)801 static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
802 {
803 bool val;
804 int ret;
805
806 ret = cppc_get_auto_sel(policy->cpu, &val);
807
808 /* show "<unsupported>" when this register is not supported by cpc */
809 if (ret == -EOPNOTSUPP)
810 return sysfs_emit(buf, "<unsupported>\n");
811
812 if (ret)
813 return ret;
814
815 return sysfs_emit(buf, "%d\n", val);
816 }
817
store_auto_select(struct cpufreq_policy * policy,const char * buf,size_t count)818 static ssize_t store_auto_select(struct cpufreq_policy *policy,
819 const char *buf, size_t count)
820 {
821 bool val;
822 int ret;
823
824 ret = kstrtobool(buf, &val);
825 if (ret)
826 return ret;
827
828 ret = cppc_set_auto_sel(policy->cpu, val);
829 if (ret)
830 return ret;
831
832 return count;
833 }
834
show_auto_act_window(struct cpufreq_policy * policy,char * buf)835 static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
836 {
837 u64 val;
838 int ret;
839
840 ret = cppc_get_auto_act_window(policy->cpu, &val);
841
842 /* show "<unsupported>" when this register is not supported by cpc */
843 if (ret == -EOPNOTSUPP)
844 return sysfs_emit(buf, "<unsupported>\n");
845
846 if (ret)
847 return ret;
848
849 return sysfs_emit(buf, "%llu\n", val);
850 }
851
store_auto_act_window(struct cpufreq_policy * policy,const char * buf,size_t count)852 static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
853 const char *buf, size_t count)
854 {
855 u64 usec;
856 int ret;
857
858 ret = kstrtou64(buf, 0, &usec);
859 if (ret)
860 return ret;
861
862 ret = cppc_set_auto_act_window(policy->cpu, usec);
863 if (ret)
864 return ret;
865
866 return count;
867 }
868
show_energy_performance_preference_val(struct cpufreq_policy * policy,char * buf)869 static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
870 {
871 u64 val;
872 int ret;
873
874 ret = cppc_get_epp_perf(policy->cpu, &val);
875
876 /* show "<unsupported>" when this register is not supported by cpc */
877 if (ret == -EOPNOTSUPP)
878 return sysfs_emit(buf, "<unsupported>\n");
879
880 if (ret)
881 return ret;
882
883 return sysfs_emit(buf, "%llu\n", val);
884 }
885
store_energy_performance_preference_val(struct cpufreq_policy * policy,const char * buf,size_t count)886 static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
887 const char *buf, size_t count)
888 {
889 u64 val;
890 int ret;
891
892 ret = kstrtou64(buf, 0, &val);
893 if (ret)
894 return ret;
895
896 ret = cppc_set_epp(policy->cpu, val);
897 if (ret)
898 return ret;
899
900 return count;
901 }
902
903 cpufreq_freq_attr_ro(freqdomain_cpus);
904 cpufreq_freq_attr_rw(auto_select);
905 cpufreq_freq_attr_rw(auto_act_window);
906 cpufreq_freq_attr_rw(energy_performance_preference_val);
907
908 static struct freq_attr *cppc_cpufreq_attr[] = {
909 &freqdomain_cpus,
910 &auto_select,
911 &auto_act_window,
912 &energy_performance_preference_val,
913 NULL,
914 };
915
916 static struct cpufreq_driver cppc_cpufreq_driver = {
917 .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
918 .verify = cppc_verify_policy,
919 .target = cppc_cpufreq_set_target,
920 .get = cppc_cpufreq_get_rate,
921 .fast_switch = cppc_cpufreq_fast_switch,
922 .init = cppc_cpufreq_cpu_init,
923 .exit = cppc_cpufreq_cpu_exit,
924 .set_boost = cppc_cpufreq_set_boost,
925 .attr = cppc_cpufreq_attr,
926 .name = "cppc_cpufreq",
927 };
928
cppc_cpufreq_init(void)929 static int __init cppc_cpufreq_init(void)
930 {
931 int ret;
932
933 if (!acpi_cpc_valid())
934 return -ENODEV;
935
936 cppc_freq_invariance_init();
937 populate_efficiency_class();
938
939 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
940 if (ret)
941 cppc_freq_invariance_exit();
942
943 return ret;
944 }
945
cppc_cpufreq_exit(void)946 static void __exit cppc_cpufreq_exit(void)
947 {
948 cpufreq_unregister_driver(&cppc_cpufreq_driver);
949 cppc_freq_invariance_exit();
950 }
951
952 module_exit(cppc_cpufreq_exit);
953 MODULE_AUTHOR("Ashwin Chaugule");
954 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
955 MODULE_LICENSE("GPL");
956
957 late_initcall(cppc_cpufreq_init);
958
959 static const struct acpi_device_id cppc_acpi_ids[] __used = {
960 {ACPI_PROCESSOR_DEVICE_HID, },
961 {}
962 };
963
964 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
965