1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/leafops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/shmem_fs.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/pgalloc.h> 80 #include <linux/uaccess.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_is_uffd_wp_marker(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376 { 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 unlink_file_vma_batch_init(&vb); 402 unlink_file_vma_batch_add(&vb, vma); 403 404 /* 405 * Optimization: gather nearby vmas into one call down 406 */ 407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 408 vma = next; 409 next = mas_find(mas, ceiling - 1); 410 if (unlikely(xa_is_zero(next))) 411 next = NULL; 412 if (mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 unlink_file_vma_batch_add(&vb, vma); 416 } 417 unlink_file_vma_batch_final(&vb); 418 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 vma = next; 422 } while (vma); 423 } 424 425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 426 { 427 spinlock_t *ptl = pmd_lock(mm, pmd); 428 429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 430 mm_inc_nr_ptes(mm); 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 pmd_populate(mm, pmd, *pte); 446 *pte = NULL; 447 } 448 spin_unlock(ptl); 449 } 450 451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 452 { 453 pgtable_t new = pte_alloc_one(mm); 454 if (!new) 455 return -ENOMEM; 456 457 pmd_install(mm, pmd, &new); 458 if (new) 459 pte_free(mm, new); 460 return 0; 461 } 462 463 int __pte_alloc_kernel(pmd_t *pmd) 464 { 465 pte_t *new = pte_alloc_one_kernel(&init_mm); 466 if (!new) 467 return -ENOMEM; 468 469 spin_lock(&init_mm.page_table_lock); 470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 471 smp_wmb(); /* See comment in pmd_install() */ 472 pmd_populate_kernel(&init_mm, pmd, new); 473 new = NULL; 474 } 475 spin_unlock(&init_mm.page_table_lock); 476 if (new) 477 pte_free_kernel(&init_mm, new); 478 return 0; 479 } 480 481 static inline void init_rss_vec(int *rss) 482 { 483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 484 } 485 486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 487 { 488 int i; 489 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 static bool is_bad_page_map_ratelimited(void) 496 { 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return true; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 return false; 520 } 521 522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 523 { 524 unsigned long long pgdv, p4dv, pudv, pmdv; 525 p4d_t p4d, *p4dp; 526 pud_t pud, *pudp; 527 pmd_t pmd, *pmdp; 528 pgd_t *pgdp; 529 530 /* 531 * Although this looks like a fully lockless pgtable walk, it is not: 532 * see locking requirements for print_bad_page_map(). 533 */ 534 pgdp = pgd_offset(mm, addr); 535 pgdv = pgd_val(*pgdp); 536 537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 538 pr_alert("pgd:%08llx\n", pgdv); 539 return; 540 } 541 542 p4dp = p4d_offset(pgdp, addr); 543 p4d = p4dp_get(p4dp); 544 p4dv = p4d_val(p4d); 545 546 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 548 return; 549 } 550 551 pudp = pud_offset(p4dp, addr); 552 pud = pudp_get(pudp); 553 pudv = pud_val(pud); 554 555 if (!pud_present(pud) || pud_leaf(pud)) { 556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 557 return; 558 } 559 560 pmdp = pmd_offset(pudp, addr); 561 pmd = pmdp_get(pmdp); 562 pmdv = pmd_val(pmd); 563 564 /* 565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 566 * because the table should already be mapped by the caller and 567 * doing another map would be bad. print_bad_page_map() should 568 * already take care of printing the PTE. 569 */ 570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 571 p4dv, pudv, pmdv); 572 } 573 574 /* 575 * This function is called to print an error when a bad page table entry (e.g., 576 * corrupted page table entry) is found. For example, we might have a 577 * PFN-mapped pte in a region that doesn't allow it. 578 * 579 * The calling function must still handle the error. 580 * 581 * This function must be called during a proper page table walk, as it will 582 * re-walk the page table to dump information: the caller MUST prevent page 583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 584 * page table lock. 585 */ 586 static void print_bad_page_map(struct vm_area_struct *vma, 587 unsigned long addr, unsigned long long entry, struct page *page, 588 enum pgtable_level level) 589 { 590 struct address_space *mapping; 591 pgoff_t index; 592 593 if (is_bad_page_map_ratelimited()) 594 return; 595 596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 597 index = linear_page_index(vma, addr); 598 599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 600 pgtable_level_to_str(level), entry); 601 __print_bad_page_map_pgtable(vma->vm_mm, addr); 602 if (page) 603 dump_page(page, "bad page map"); 604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 607 vma->vm_file, 608 vma->vm_ops ? vma->vm_ops->fault : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 611 mapping ? mapping->a_ops->read_folio : NULL); 612 dump_stack(); 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 } 615 #define print_bad_pte(vma, addr, pte, page) \ 616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 617 618 /** 619 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 620 * @vma: The VMA mapping the page table entry. 621 * @addr: The address where the page table entry is mapped. 622 * @pfn: The PFN stored in the page table entry. 623 * @special: Whether the page table entry is marked "special". 624 * @level: The page table level for error reporting purposes only. 625 * @entry: The page table entry value for error reporting purposes only. 626 * 627 * "Special" mappings do not wish to be associated with a "struct page" (either 628 * it doesn't exist, or it exists but they don't want to touch it). In this 629 * case, NULL is returned here. "Normal" mappings do have a struct page and 630 * are ordinarily refcounted. 631 * 632 * Page mappings of the shared zero folios are always considered "special", as 633 * they are not ordinarily refcounted: neither the refcount nor the mapcount 634 * of these folios is adjusted when mapping them into user page tables. 635 * Selected page table walkers (such as GUP) can still identify mappings of the 636 * shared zero folios and work with the underlying "struct page". 637 * 638 * There are 2 broad cases. Firstly, an architecture may define a "special" 639 * page table entry bit, such as pte_special(), in which case this function is 640 * trivial. Secondly, an architecture may not have a spare page table 641 * entry bit, which requires a more complicated scheme, described below. 642 * 643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 644 * page table entries that actually map "normal" pages: however, that page 645 * cannot be looked up through the PFN stored in the page table entry, but 646 * instead will be looked up through vm_ops->find_normal_page(). So far, this 647 * only applies to PTEs. 648 * 649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 650 * special mapping (even if there are underlying and valid "struct pages"). 651 * COWed pages of a VM_PFNMAP are always normal. 652 * 653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 656 * mapping will always honor the rule 657 * 658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 659 * 660 * And for normal mappings this is false. 661 * 662 * This restricts such mappings to be a linear translation from virtual address 663 * to pfn. To get around this restriction, we allow arbitrary mappings so long 664 * as the vma is not a COW mapping; in that case, we know that all ptes are 665 * special (because none can have been COWed). 666 * 667 * 668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 669 * 670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 671 * page" backing, however the difference is that _all_ pages with a struct 672 * page (that is, those where pfn_valid is true, except the shared zero 673 * folios) are refcounted and considered normal pages by the VM. 674 * 675 * The disadvantage is that pages are refcounted (which can be slower and 676 * simply not an option for some PFNMAP users). The advantage is that we 677 * don't have to follow the strict linearity rule of PFNMAP mappings in 678 * order to support COWable mappings. 679 * 680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 681 * NULL if this is a "special" mapping. 682 */ 683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 684 unsigned long addr, unsigned long pfn, bool special, 685 unsigned long long entry, enum pgtable_level level) 686 { 687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 688 if (unlikely(special)) { 689 #ifdef CONFIG_FIND_NORMAL_PAGE 690 if (vma->vm_ops && vma->vm_ops->find_normal_page) 691 return vma->vm_ops->find_normal_page(vma, addr); 692 #endif /* CONFIG_FIND_NORMAL_PAGE */ 693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 694 return NULL; 695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 696 return NULL; 697 698 print_bad_page_map(vma, addr, entry, NULL, level); 699 return NULL; 700 } 701 /* 702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 703 * mappings (incl. shared zero folios) are marked accordingly. 704 */ 705 } else { 706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 707 if (vma->vm_flags & VM_MIXEDMAP) { 708 /* If it has a "struct page", it's "normal". */ 709 if (!pfn_valid(pfn)) 710 return NULL; 711 } else { 712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 713 714 /* Only CoW'ed anon folios are "normal". */ 715 if (pfn == vma->vm_pgoff + off) 716 return NULL; 717 if (!is_cow_mapping(vma->vm_flags)) 718 return NULL; 719 } 720 } 721 722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 723 return NULL; 724 } 725 726 if (unlikely(pfn > highest_memmap_pfn)) { 727 /* Corrupted page table entry. */ 728 print_bad_page_map(vma, addr, entry, NULL, level); 729 return NULL; 730 } 731 /* 732 * NOTE! We still have PageReserved() pages in the page tables. 733 * For example, VDSO mappings can cause them to exist. 734 */ 735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 736 return pfn_to_page(pfn); 737 } 738 739 /** 740 * vm_normal_page() - Get the "struct page" associated with a PTE 741 * @vma: The VMA mapping the @pte. 742 * @addr: The address where the @pte is mapped. 743 * @pte: The PTE. 744 * 745 * Get the "struct page" associated with a PTE. See __vm_normal_page() 746 * for details on "normal" and "special" mappings. 747 * 748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 749 * NULL if this is a "special" mapping. 750 */ 751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 752 pte_t pte) 753 { 754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 755 pte_val(pte), PGTABLE_LEVEL_PTE); 756 } 757 758 /** 759 * vm_normal_folio() - Get the "struct folio" associated with a PTE 760 * @vma: The VMA mapping the @pte. 761 * @addr: The address where the @pte is mapped. 762 * @pte: The PTE. 763 * 764 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 765 * for details on "normal" and "special" mappings. 766 * 767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 768 * NULL if this is a "special" mapping. 769 */ 770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772 { 773 struct page *page = vm_normal_page(vma, addr, pte); 774 775 if (page) 776 return page_folio(page); 777 return NULL; 778 } 779 780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 781 /** 782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 783 * @vma: The VMA mapping the @pmd. 784 * @addr: The address where the @pmd is mapped. 785 * @pmd: The PMD. 786 * 787 * Get the "struct page" associated with a PTE. See __vm_normal_page() 788 * for details on "normal" and "special" mappings. 789 * 790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 791 * NULL if this is a "special" mapping. 792 */ 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 797 pmd_val(pmd), PGTABLE_LEVEL_PMD); 798 } 799 800 /** 801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 802 * @vma: The VMA mapping the @pmd. 803 * @addr: The address where the @pmd is mapped. 804 * @pmd: The PMD. 805 * 806 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 807 * for details on "normal" and "special" mappings. 808 * 809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 810 * NULL if this is a "special" mapping. 811 */ 812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 813 unsigned long addr, pmd_t pmd) 814 { 815 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 816 817 if (page) 818 return page_folio(page); 819 return NULL; 820 } 821 822 /** 823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 824 * @vma: The VMA mapping the @pud. 825 * @addr: The address where the @pud is mapped. 826 * @pud: The PUD. 827 * 828 * Get the "struct page" associated with a PUD. See __vm_normal_page() 829 * for details on "normal" and "special" mappings. 830 * 831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 832 * NULL if this is a "special" mapping. 833 */ 834 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 835 unsigned long addr, pud_t pud) 836 { 837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 838 pud_val(pud), PGTABLE_LEVEL_PUD); 839 } 840 #endif 841 842 /** 843 * restore_exclusive_pte - Restore a device-exclusive entry 844 * @vma: VMA covering @address 845 * @folio: the mapped folio 846 * @page: the mapped folio page 847 * @address: the virtual address 848 * @ptep: pte pointer into the locked page table mapping the folio page 849 * @orig_pte: pte value at @ptep 850 * 851 * Restore a device-exclusive non-swap entry to an ordinary present pte. 852 * 853 * The folio and the page table must be locked, and MMU notifiers must have 854 * been called to invalidate any (exclusive) device mappings. 855 * 856 * Locking the folio makes sure that anybody who just converted the pte to 857 * a device-exclusive entry can map it into the device to make forward 858 * progress without others converting it back until the folio was unlocked. 859 * 860 * If the folio lock ever becomes an issue, we can stop relying on the folio 861 * lock; it might make some scenarios with heavy thrashing less likely to 862 * make forward progress, but these scenarios might not be valid use cases. 863 * 864 * Note that the folio lock does not protect against all cases of concurrent 865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 866 * must use MMU notifiers to sync against any concurrent changes. 867 */ 868 static void restore_exclusive_pte(struct vm_area_struct *vma, 869 struct folio *folio, struct page *page, unsigned long address, 870 pte_t *ptep, pte_t orig_pte) 871 { 872 pte_t pte; 873 874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 875 876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 877 if (pte_swp_soft_dirty(orig_pte)) 878 pte = pte_mksoft_dirty(pte); 879 880 if (pte_swp_uffd_wp(orig_pte)) 881 pte = pte_mkuffd_wp(pte); 882 883 if ((vma->vm_flags & VM_WRITE) && 884 can_change_pte_writable(vma, address, pte)) { 885 if (folio_test_dirty(folio)) 886 pte = pte_mkdirty(pte); 887 pte = pte_mkwrite(pte, vma); 888 } 889 set_pte_at(vma->vm_mm, address, ptep, pte); 890 891 /* 892 * No need to invalidate - it was non-present before. However 893 * secondary CPUs may have mappings that need invalidating. 894 */ 895 update_mmu_cache(vma, address, ptep); 896 } 897 898 /* 899 * Tries to restore an exclusive pte if the page lock can be acquired without 900 * sleeping. 901 */ 902 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep, pte_t orig_pte) 904 { 905 const softleaf_t entry = softleaf_from_pte(orig_pte); 906 struct page *page = softleaf_to_page(entry); 907 struct folio *folio = page_folio(page); 908 909 if (folio_trylock(folio)) { 910 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 911 folio_unlock(folio); 912 return 0; 913 } 914 915 return -EBUSY; 916 } 917 918 /* 919 * copy one vm_area from one task to the other. Assumes the page tables 920 * already present in the new task to be cleared in the whole range 921 * covered by this vma. 922 */ 923 924 static unsigned long 925 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 926 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 927 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 928 { 929 vm_flags_t vm_flags = dst_vma->vm_flags; 930 pte_t orig_pte = ptep_get(src_pte); 931 softleaf_t entry = softleaf_from_pte(orig_pte); 932 pte_t pte = orig_pte; 933 struct folio *folio; 934 struct page *page; 935 936 if (likely(softleaf_is_swap(entry))) { 937 if (swap_dup_entry_direct(entry) < 0) 938 return -EIO; 939 940 /* make sure dst_mm is on swapoff's mmlist. */ 941 if (unlikely(list_empty(&dst_mm->mmlist))) { 942 spin_lock(&mmlist_lock); 943 if (list_empty(&dst_mm->mmlist)) 944 list_add(&dst_mm->mmlist, 945 &src_mm->mmlist); 946 spin_unlock(&mmlist_lock); 947 } 948 /* Mark the swap entry as shared. */ 949 if (pte_swp_exclusive(orig_pte)) { 950 pte = pte_swp_clear_exclusive(orig_pte); 951 set_pte_at(src_mm, addr, src_pte, pte); 952 } 953 rss[MM_SWAPENTS]++; 954 } else if (softleaf_is_migration(entry)) { 955 folio = softleaf_to_folio(entry); 956 957 rss[mm_counter(folio)]++; 958 959 if (!softleaf_is_migration_read(entry) && 960 is_cow_mapping(vm_flags)) { 961 /* 962 * COW mappings require pages in both parent and child 963 * to be set to read. A previously exclusive entry is 964 * now shared. 965 */ 966 entry = make_readable_migration_entry( 967 swp_offset(entry)); 968 pte = softleaf_to_pte(entry); 969 if (pte_swp_soft_dirty(orig_pte)) 970 pte = pte_swp_mksoft_dirty(pte); 971 if (pte_swp_uffd_wp(orig_pte)) 972 pte = pte_swp_mkuffd_wp(pte); 973 set_pte_at(src_mm, addr, src_pte, pte); 974 } 975 } else if (softleaf_is_device_private(entry)) { 976 page = softleaf_to_page(entry); 977 folio = page_folio(page); 978 979 /* 980 * Update rss count even for unaddressable pages, as 981 * they should treated just like normal pages in this 982 * respect. 983 * 984 * We will likely want to have some new rss counters 985 * for unaddressable pages, at some point. But for now 986 * keep things as they are. 987 */ 988 folio_get(folio); 989 rss[mm_counter(folio)]++; 990 /* Cannot fail as these pages cannot get pinned. */ 991 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 992 993 /* 994 * We do not preserve soft-dirty information, because so 995 * far, checkpoint/restore is the only feature that 996 * requires that. And checkpoint/restore does not work 997 * when a device driver is involved (you cannot easily 998 * save and restore device driver state). 999 */ 1000 if (softleaf_is_device_private_write(entry) && 1001 is_cow_mapping(vm_flags)) { 1002 entry = make_readable_device_private_entry( 1003 swp_offset(entry)); 1004 pte = swp_entry_to_pte(entry); 1005 if (pte_swp_uffd_wp(orig_pte)) 1006 pte = pte_swp_mkuffd_wp(pte); 1007 set_pte_at(src_mm, addr, src_pte, pte); 1008 } 1009 } else if (softleaf_is_device_exclusive(entry)) { 1010 /* 1011 * Make device exclusive entries present by restoring the 1012 * original entry then copying as for a present pte. Device 1013 * exclusive entries currently only support private writable 1014 * (ie. COW) mappings. 1015 */ 1016 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1017 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1018 return -EBUSY; 1019 return -ENOENT; 1020 } else if (softleaf_is_marker(entry)) { 1021 pte_marker marker = copy_pte_marker(entry, dst_vma); 1022 1023 if (marker) 1024 set_pte_at(dst_mm, addr, dst_pte, 1025 make_pte_marker(marker)); 1026 return 0; 1027 } 1028 if (!userfaultfd_wp(dst_vma)) 1029 pte = pte_swp_clear_uffd_wp(pte); 1030 set_pte_at(dst_mm, addr, dst_pte, pte); 1031 return 0; 1032 } 1033 1034 /* 1035 * Copy a present and normal page. 1036 * 1037 * NOTE! The usual case is that this isn't required; 1038 * instead, the caller can just increase the page refcount 1039 * and re-use the pte the traditional way. 1040 * 1041 * And if we need a pre-allocated page but don't yet have 1042 * one, return a negative error to let the preallocation 1043 * code know so that it can do so outside the page table 1044 * lock. 1045 */ 1046 static inline int 1047 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1048 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1049 struct folio **prealloc, struct page *page) 1050 { 1051 struct folio *new_folio; 1052 pte_t pte; 1053 1054 new_folio = *prealloc; 1055 if (!new_folio) 1056 return -EAGAIN; 1057 1058 /* 1059 * We have a prealloc page, all good! Take it 1060 * over and copy the page & arm it. 1061 */ 1062 1063 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1064 return -EHWPOISON; 1065 1066 *prealloc = NULL; 1067 __folio_mark_uptodate(new_folio); 1068 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1069 folio_add_lru_vma(new_folio, dst_vma); 1070 rss[MM_ANONPAGES]++; 1071 1072 /* All done, just insert the new page copy in the child */ 1073 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1074 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1075 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1076 /* Uffd-wp needs to be delivered to dest pte as well */ 1077 pte = pte_mkuffd_wp(pte); 1078 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1079 return 0; 1080 } 1081 1082 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1083 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1084 pte_t pte, unsigned long addr, int nr) 1085 { 1086 struct mm_struct *src_mm = src_vma->vm_mm; 1087 1088 /* If it's a COW mapping, write protect it both processes. */ 1089 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1090 wrprotect_ptes(src_mm, addr, src_pte, nr); 1091 pte = pte_wrprotect(pte); 1092 } 1093 1094 /* If it's a shared mapping, mark it clean in the child. */ 1095 if (src_vma->vm_flags & VM_SHARED) 1096 pte = pte_mkclean(pte); 1097 pte = pte_mkold(pte); 1098 1099 if (!userfaultfd_wp(dst_vma)) 1100 pte = pte_clear_uffd_wp(pte); 1101 1102 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1103 } 1104 1105 /* 1106 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1107 * consecutive pages of the same folio by copying them as well. 1108 * 1109 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1110 * Otherwise, returns the number of copied PTEs (at least 1). 1111 */ 1112 static inline int 1113 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1114 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1115 int max_nr, int *rss, struct folio **prealloc) 1116 { 1117 fpb_t flags = FPB_MERGE_WRITE; 1118 struct page *page; 1119 struct folio *folio; 1120 int err, nr; 1121 1122 page = vm_normal_page(src_vma, addr, pte); 1123 if (unlikely(!page)) 1124 goto copy_pte; 1125 1126 folio = page_folio(page); 1127 1128 /* 1129 * If we likely have to copy, just don't bother with batching. Make 1130 * sure that the common "small folio" case is as fast as possible 1131 * by keeping the batching logic separate. 1132 */ 1133 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1134 if (!(src_vma->vm_flags & VM_SHARED)) 1135 flags |= FPB_RESPECT_DIRTY; 1136 if (vma_soft_dirty_enabled(src_vma)) 1137 flags |= FPB_RESPECT_SOFT_DIRTY; 1138 1139 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1140 folio_ref_add(folio, nr); 1141 if (folio_test_anon(folio)) { 1142 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1143 nr, dst_vma, src_vma))) { 1144 folio_ref_sub(folio, nr); 1145 return -EAGAIN; 1146 } 1147 rss[MM_ANONPAGES] += nr; 1148 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1149 } else { 1150 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1151 rss[mm_counter_file(folio)] += nr; 1152 } 1153 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1154 addr, nr); 1155 return nr; 1156 } 1157 1158 folio_get(folio); 1159 if (folio_test_anon(folio)) { 1160 /* 1161 * If this page may have been pinned by the parent process, 1162 * copy the page immediately for the child so that we'll always 1163 * guarantee the pinned page won't be randomly replaced in the 1164 * future. 1165 */ 1166 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1167 /* Page may be pinned, we have to copy. */ 1168 folio_put(folio); 1169 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1170 addr, rss, prealloc, page); 1171 return err ? err : 1; 1172 } 1173 rss[MM_ANONPAGES]++; 1174 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1175 } else { 1176 folio_dup_file_rmap_pte(folio, page, dst_vma); 1177 rss[mm_counter_file(folio)]++; 1178 } 1179 1180 copy_pte: 1181 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1182 return 1; 1183 } 1184 1185 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1186 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1187 { 1188 struct folio *new_folio; 1189 1190 if (need_zero) 1191 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1192 else 1193 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1194 1195 if (!new_folio) 1196 return NULL; 1197 1198 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1199 folio_put(new_folio); 1200 return NULL; 1201 } 1202 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1203 1204 return new_folio; 1205 } 1206 1207 static int 1208 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1209 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1210 unsigned long end) 1211 { 1212 struct mm_struct *dst_mm = dst_vma->vm_mm; 1213 struct mm_struct *src_mm = src_vma->vm_mm; 1214 pte_t *orig_src_pte, *orig_dst_pte; 1215 pte_t *src_pte, *dst_pte; 1216 pmd_t dummy_pmdval; 1217 pte_t ptent; 1218 spinlock_t *src_ptl, *dst_ptl; 1219 int progress, max_nr, ret = 0; 1220 int rss[NR_MM_COUNTERS]; 1221 softleaf_t entry = softleaf_mk_none(); 1222 struct folio *prealloc = NULL; 1223 int nr; 1224 1225 again: 1226 progress = 0; 1227 init_rss_vec(rss); 1228 1229 /* 1230 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1231 * error handling here, assume that exclusive mmap_lock on dst and src 1232 * protects anon from unexpected THP transitions; with shmem and file 1233 * protected by mmap_lock-less collapse skipping areas with anon_vma 1234 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1235 * can remove such assumptions later, but this is good enough for now. 1236 */ 1237 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1238 if (!dst_pte) { 1239 ret = -ENOMEM; 1240 goto out; 1241 } 1242 1243 /* 1244 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1245 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1246 * the PTE page is stable, and there is no need to get pmdval and do 1247 * pmd_same() check. 1248 */ 1249 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1250 &src_ptl); 1251 if (!src_pte) { 1252 pte_unmap_unlock(dst_pte, dst_ptl); 1253 /* ret == 0 */ 1254 goto out; 1255 } 1256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1257 orig_src_pte = src_pte; 1258 orig_dst_pte = dst_pte; 1259 lazy_mmu_mode_enable(); 1260 1261 do { 1262 nr = 1; 1263 1264 /* 1265 * We are holding two locks at this point - either of them 1266 * could generate latencies in another task on another CPU. 1267 */ 1268 if (progress >= 32) { 1269 progress = 0; 1270 if (need_resched() || 1271 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1272 break; 1273 } 1274 ptent = ptep_get(src_pte); 1275 if (pte_none(ptent)) { 1276 progress++; 1277 continue; 1278 } 1279 if (unlikely(!pte_present(ptent))) { 1280 ret = copy_nonpresent_pte(dst_mm, src_mm, 1281 dst_pte, src_pte, 1282 dst_vma, src_vma, 1283 addr, rss); 1284 if (ret == -EIO) { 1285 entry = softleaf_from_pte(ptep_get(src_pte)); 1286 break; 1287 } else if (ret == -EBUSY) { 1288 break; 1289 } else if (!ret) { 1290 progress += 8; 1291 continue; 1292 } 1293 ptent = ptep_get(src_pte); 1294 VM_WARN_ON_ONCE(!pte_present(ptent)); 1295 1296 /* 1297 * Device exclusive entry restored, continue by copying 1298 * the now present pte. 1299 */ 1300 WARN_ON_ONCE(ret != -ENOENT); 1301 } 1302 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1303 max_nr = (end - addr) / PAGE_SIZE; 1304 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1305 ptent, addr, max_nr, rss, &prealloc); 1306 /* 1307 * If we need a pre-allocated page for this pte, drop the 1308 * locks, allocate, and try again. 1309 * If copy failed due to hwpoison in source page, break out. 1310 */ 1311 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1312 break; 1313 if (unlikely(prealloc)) { 1314 /* 1315 * pre-alloc page cannot be reused by next time so as 1316 * to strictly follow mempolicy (e.g., alloc_page_vma() 1317 * will allocate page according to address). This 1318 * could only happen if one pinned pte changed. 1319 */ 1320 folio_put(prealloc); 1321 prealloc = NULL; 1322 } 1323 nr = ret; 1324 progress += 8 * nr; 1325 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1326 addr != end); 1327 1328 lazy_mmu_mode_disable(); 1329 pte_unmap_unlock(orig_src_pte, src_ptl); 1330 add_mm_rss_vec(dst_mm, rss); 1331 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1332 cond_resched(); 1333 1334 if (ret == -EIO) { 1335 VM_WARN_ON_ONCE(!entry.val); 1336 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1337 ret = -ENOMEM; 1338 goto out; 1339 } 1340 entry.val = 0; 1341 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1342 goto out; 1343 } else if (ret == -EAGAIN) { 1344 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1345 if (!prealloc) 1346 return -ENOMEM; 1347 } else if (ret < 0) { 1348 VM_WARN_ON_ONCE(1); 1349 } 1350 1351 /* We've captured and resolved the error. Reset, try again. */ 1352 ret = 0; 1353 1354 if (addr != end) 1355 goto again; 1356 out: 1357 if (unlikely(prealloc)) 1358 folio_put(prealloc); 1359 return ret; 1360 } 1361 1362 static inline int 1363 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1364 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1365 unsigned long end) 1366 { 1367 struct mm_struct *dst_mm = dst_vma->vm_mm; 1368 struct mm_struct *src_mm = src_vma->vm_mm; 1369 pmd_t *src_pmd, *dst_pmd; 1370 unsigned long next; 1371 1372 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1373 if (!dst_pmd) 1374 return -ENOMEM; 1375 src_pmd = pmd_offset(src_pud, addr); 1376 do { 1377 next = pmd_addr_end(addr, end); 1378 if (pmd_is_huge(*src_pmd)) { 1379 int err; 1380 1381 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1382 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1383 addr, dst_vma, src_vma); 1384 if (err == -ENOMEM) 1385 return -ENOMEM; 1386 if (!err) 1387 continue; 1388 /* fall through */ 1389 } 1390 if (pmd_none_or_clear_bad(src_pmd)) 1391 continue; 1392 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1393 addr, next)) 1394 return -ENOMEM; 1395 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1396 return 0; 1397 } 1398 1399 static inline int 1400 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1401 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1402 unsigned long end) 1403 { 1404 struct mm_struct *dst_mm = dst_vma->vm_mm; 1405 struct mm_struct *src_mm = src_vma->vm_mm; 1406 pud_t *src_pud, *dst_pud; 1407 unsigned long next; 1408 1409 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1410 if (!dst_pud) 1411 return -ENOMEM; 1412 src_pud = pud_offset(src_p4d, addr); 1413 do { 1414 next = pud_addr_end(addr, end); 1415 if (pud_trans_huge(*src_pud)) { 1416 int err; 1417 1418 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1419 err = copy_huge_pud(dst_mm, src_mm, 1420 dst_pud, src_pud, addr, src_vma); 1421 if (err == -ENOMEM) 1422 return -ENOMEM; 1423 if (!err) 1424 continue; 1425 /* fall through */ 1426 } 1427 if (pud_none_or_clear_bad(src_pud)) 1428 continue; 1429 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1430 addr, next)) 1431 return -ENOMEM; 1432 } while (dst_pud++, src_pud++, addr = next, addr != end); 1433 return 0; 1434 } 1435 1436 static inline int 1437 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1438 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1439 unsigned long end) 1440 { 1441 struct mm_struct *dst_mm = dst_vma->vm_mm; 1442 p4d_t *src_p4d, *dst_p4d; 1443 unsigned long next; 1444 1445 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1446 if (!dst_p4d) 1447 return -ENOMEM; 1448 src_p4d = p4d_offset(src_pgd, addr); 1449 do { 1450 next = p4d_addr_end(addr, end); 1451 if (p4d_none_or_clear_bad(src_p4d)) 1452 continue; 1453 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1454 addr, next)) 1455 return -ENOMEM; 1456 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1457 return 0; 1458 } 1459 1460 /* 1461 * Return true if the vma needs to copy the pgtable during this fork(). Return 1462 * false when we can speed up fork() by allowing lazy page faults later until 1463 * when the child accesses the memory range. 1464 */ 1465 static bool 1466 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1467 { 1468 /* 1469 * We check against dst_vma as while sane VMA flags will have been 1470 * copied, VM_UFFD_WP may be set only on dst_vma. 1471 */ 1472 if (dst_vma->vm_flags & VM_COPY_ON_FORK) 1473 return true; 1474 /* 1475 * The presence of an anon_vma indicates an anonymous VMA has page 1476 * tables which naturally cannot be reconstituted on page fault. 1477 */ 1478 if (src_vma->anon_vma) 1479 return true; 1480 1481 /* 1482 * Don't copy ptes where a page fault will fill them correctly. Fork 1483 * becomes much lighter when there are big shared or private readonly 1484 * mappings. The tradeoff is that copy_page_range is more efficient 1485 * than faulting. 1486 */ 1487 return false; 1488 } 1489 1490 int 1491 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1492 { 1493 pgd_t *src_pgd, *dst_pgd; 1494 unsigned long addr = src_vma->vm_start; 1495 unsigned long end = src_vma->vm_end; 1496 struct mm_struct *dst_mm = dst_vma->vm_mm; 1497 struct mm_struct *src_mm = src_vma->vm_mm; 1498 struct mmu_notifier_range range; 1499 unsigned long next; 1500 bool is_cow; 1501 int ret; 1502 1503 if (!vma_needs_copy(dst_vma, src_vma)) 1504 return 0; 1505 1506 if (is_vm_hugetlb_page(src_vma)) 1507 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1508 1509 /* 1510 * We need to invalidate the secondary MMU mappings only when 1511 * there could be a permission downgrade on the ptes of the 1512 * parent mm. And a permission downgrade will only happen if 1513 * is_cow_mapping() returns true. 1514 */ 1515 is_cow = is_cow_mapping(src_vma->vm_flags); 1516 1517 if (is_cow) { 1518 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1519 0, src_mm, addr, end); 1520 mmu_notifier_invalidate_range_start(&range); 1521 /* 1522 * Disabling preemption is not needed for the write side, as 1523 * the read side doesn't spin, but goes to the mmap_lock. 1524 * 1525 * Use the raw variant of the seqcount_t write API to avoid 1526 * lockdep complaining about preemptibility. 1527 */ 1528 vma_assert_write_locked(src_vma); 1529 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1530 } 1531 1532 ret = 0; 1533 dst_pgd = pgd_offset(dst_mm, addr); 1534 src_pgd = pgd_offset(src_mm, addr); 1535 do { 1536 next = pgd_addr_end(addr, end); 1537 if (pgd_none_or_clear_bad(src_pgd)) 1538 continue; 1539 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1540 addr, next))) { 1541 ret = -ENOMEM; 1542 break; 1543 } 1544 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1545 1546 if (is_cow) { 1547 raw_write_seqcount_end(&src_mm->write_protect_seq); 1548 mmu_notifier_invalidate_range_end(&range); 1549 } 1550 return ret; 1551 } 1552 1553 /* Whether we should zap all COWed (private) pages too */ 1554 static inline bool should_zap_cows(struct zap_details *details) 1555 { 1556 /* By default, zap all pages */ 1557 if (!details || details->reclaim_pt) 1558 return true; 1559 1560 /* Or, we zap COWed pages only if the caller wants to */ 1561 return details->even_cows; 1562 } 1563 1564 /* Decides whether we should zap this folio with the folio pointer specified */ 1565 static inline bool should_zap_folio(struct zap_details *details, 1566 struct folio *folio) 1567 { 1568 /* If we can make a decision without *folio.. */ 1569 if (should_zap_cows(details)) 1570 return true; 1571 1572 /* Otherwise we should only zap non-anon folios */ 1573 return !folio_test_anon(folio); 1574 } 1575 1576 static inline bool zap_drop_markers(struct zap_details *details) 1577 { 1578 if (!details) 1579 return false; 1580 1581 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1582 } 1583 1584 /* 1585 * This function makes sure that we'll replace the none pte with an uffd-wp 1586 * swap special pte marker when necessary. Must be with the pgtable lock held. 1587 * 1588 * Returns true if uffd-wp ptes was installed, false otherwise. 1589 */ 1590 static inline bool 1591 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1592 unsigned long addr, pte_t *pte, int nr, 1593 struct zap_details *details, pte_t pteval) 1594 { 1595 bool was_installed = false; 1596 1597 if (!uffd_supports_wp_marker()) 1598 return false; 1599 1600 /* Zap on anonymous always means dropping everything */ 1601 if (vma_is_anonymous(vma)) 1602 return false; 1603 1604 if (zap_drop_markers(details)) 1605 return false; 1606 1607 for (;;) { 1608 /* the PFN in the PTE is irrelevant. */ 1609 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1610 was_installed = true; 1611 if (--nr == 0) 1612 break; 1613 pte++; 1614 addr += PAGE_SIZE; 1615 } 1616 1617 return was_installed; 1618 } 1619 1620 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1621 struct vm_area_struct *vma, struct folio *folio, 1622 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1623 unsigned long addr, struct zap_details *details, int *rss, 1624 bool *force_flush, bool *force_break, bool *any_skipped) 1625 { 1626 struct mm_struct *mm = tlb->mm; 1627 bool delay_rmap = false; 1628 1629 if (!folio_test_anon(folio)) { 1630 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1631 if (pte_dirty(ptent)) { 1632 folio_mark_dirty(folio); 1633 if (tlb_delay_rmap(tlb)) { 1634 delay_rmap = true; 1635 *force_flush = true; 1636 } 1637 } 1638 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1639 folio_mark_accessed(folio); 1640 rss[mm_counter(folio)] -= nr; 1641 } else { 1642 /* We don't need up-to-date accessed/dirty bits. */ 1643 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1644 rss[MM_ANONPAGES] -= nr; 1645 } 1646 /* Checking a single PTE in a batch is sufficient. */ 1647 arch_check_zapped_pte(vma, ptent); 1648 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1649 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1650 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1651 nr, details, ptent); 1652 1653 if (!delay_rmap) { 1654 folio_remove_rmap_ptes(folio, page, nr, vma); 1655 1656 if (unlikely(folio_mapcount(folio) < 0)) 1657 print_bad_pte(vma, addr, ptent, page); 1658 } 1659 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1660 *force_flush = true; 1661 *force_break = true; 1662 } 1663 } 1664 1665 /* 1666 * Zap or skip at least one present PTE, trying to batch-process subsequent 1667 * PTEs that map consecutive pages of the same folio. 1668 * 1669 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1670 */ 1671 static inline int zap_present_ptes(struct mmu_gather *tlb, 1672 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1673 unsigned int max_nr, unsigned long addr, 1674 struct zap_details *details, int *rss, bool *force_flush, 1675 bool *force_break, bool *any_skipped) 1676 { 1677 struct mm_struct *mm = tlb->mm; 1678 struct folio *folio; 1679 struct page *page; 1680 int nr; 1681 1682 page = vm_normal_page(vma, addr, ptent); 1683 if (!page) { 1684 /* We don't need up-to-date accessed/dirty bits. */ 1685 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1686 arch_check_zapped_pte(vma, ptent); 1687 tlb_remove_tlb_entry(tlb, pte, addr); 1688 if (userfaultfd_pte_wp(vma, ptent)) 1689 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1690 pte, 1, details, ptent); 1691 ksm_might_unmap_zero_page(mm, ptent); 1692 return 1; 1693 } 1694 1695 folio = page_folio(page); 1696 if (unlikely(!should_zap_folio(details, folio))) { 1697 *any_skipped = true; 1698 return 1; 1699 } 1700 1701 /* 1702 * Make sure that the common "small folio" case is as fast as possible 1703 * by keeping the batching logic separate. 1704 */ 1705 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1706 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1707 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1708 addr, details, rss, force_flush, 1709 force_break, any_skipped); 1710 return nr; 1711 } 1712 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1713 details, rss, force_flush, force_break, any_skipped); 1714 return 1; 1715 } 1716 1717 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1718 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1719 unsigned int max_nr, unsigned long addr, 1720 struct zap_details *details, int *rss, bool *any_skipped) 1721 { 1722 softleaf_t entry; 1723 int nr = 1; 1724 1725 *any_skipped = true; 1726 entry = softleaf_from_pte(ptent); 1727 if (softleaf_is_device_private(entry) || 1728 softleaf_is_device_exclusive(entry)) { 1729 struct page *page = softleaf_to_page(entry); 1730 struct folio *folio = page_folio(page); 1731 1732 if (unlikely(!should_zap_folio(details, folio))) 1733 return 1; 1734 /* 1735 * Both device private/exclusive mappings should only 1736 * work with anonymous page so far, so we don't need to 1737 * consider uffd-wp bit when zap. For more information, 1738 * see zap_install_uffd_wp_if_needed(). 1739 */ 1740 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1741 rss[mm_counter(folio)]--; 1742 folio_remove_rmap_pte(folio, page, vma); 1743 folio_put(folio); 1744 } else if (softleaf_is_swap(entry)) { 1745 /* Genuine swap entries, hence a private anon pages */ 1746 if (!should_zap_cows(details)) 1747 return 1; 1748 1749 nr = swap_pte_batch(pte, max_nr, ptent); 1750 rss[MM_SWAPENTS] -= nr; 1751 swap_put_entries_direct(entry, nr); 1752 } else if (softleaf_is_migration(entry)) { 1753 struct folio *folio = softleaf_to_folio(entry); 1754 1755 if (!should_zap_folio(details, folio)) 1756 return 1; 1757 rss[mm_counter(folio)]--; 1758 } else if (softleaf_is_uffd_wp_marker(entry)) { 1759 /* 1760 * For anon: always drop the marker; for file: only 1761 * drop the marker if explicitly requested. 1762 */ 1763 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1764 return 1; 1765 } else if (softleaf_is_guard_marker(entry)) { 1766 /* 1767 * Ordinary zapping should not remove guard PTE 1768 * markers. Only do so if we should remove PTE markers 1769 * in general. 1770 */ 1771 if (!zap_drop_markers(details)) 1772 return 1; 1773 } else if (softleaf_is_hwpoison(entry) || 1774 softleaf_is_poison_marker(entry)) { 1775 if (!should_zap_cows(details)) 1776 return 1; 1777 } else { 1778 /* We should have covered all the swap entry types */ 1779 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1780 WARN_ON_ONCE(1); 1781 } 1782 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1783 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1784 1785 return nr; 1786 } 1787 1788 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1789 struct vm_area_struct *vma, pte_t *pte, 1790 unsigned long addr, unsigned long end, 1791 struct zap_details *details, int *rss, 1792 bool *force_flush, bool *force_break, 1793 bool *any_skipped) 1794 { 1795 pte_t ptent = ptep_get(pte); 1796 int max_nr = (end - addr) / PAGE_SIZE; 1797 int nr = 0; 1798 1799 /* Skip all consecutive none ptes */ 1800 if (pte_none(ptent)) { 1801 for (nr = 1; nr < max_nr; nr++) { 1802 ptent = ptep_get(pte + nr); 1803 if (!pte_none(ptent)) 1804 break; 1805 } 1806 max_nr -= nr; 1807 if (!max_nr) 1808 return nr; 1809 pte += nr; 1810 addr += nr * PAGE_SIZE; 1811 } 1812 1813 if (pte_present(ptent)) 1814 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1815 details, rss, force_flush, force_break, 1816 any_skipped); 1817 else 1818 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1819 details, rss, any_skipped); 1820 1821 return nr; 1822 } 1823 1824 static bool pte_table_reclaim_possible(unsigned long start, unsigned long end, 1825 struct zap_details *details) 1826 { 1827 if (!IS_ENABLED(CONFIG_PT_RECLAIM)) 1828 return false; 1829 /* Only zap if we are allowed to and cover the full page table. */ 1830 return details && details->reclaim_pt && (end - start >= PMD_SIZE); 1831 } 1832 1833 static bool zap_empty_pte_table(struct mm_struct *mm, pmd_t *pmd, 1834 spinlock_t *ptl, pmd_t *pmdval) 1835 { 1836 spinlock_t *pml = pmd_lockptr(mm, pmd); 1837 1838 if (ptl != pml && !spin_trylock(pml)) 1839 return false; 1840 1841 *pmdval = pmdp_get(pmd); 1842 pmd_clear(pmd); 1843 if (ptl != pml) 1844 spin_unlock(pml); 1845 return true; 1846 } 1847 1848 static bool zap_pte_table_if_empty(struct mm_struct *mm, pmd_t *pmd, 1849 unsigned long addr, pmd_t *pmdval) 1850 { 1851 spinlock_t *pml, *ptl = NULL; 1852 pte_t *start_pte, *pte; 1853 int i; 1854 1855 pml = pmd_lock(mm, pmd); 1856 start_pte = pte_offset_map_rw_nolock(mm, pmd, addr, pmdval, &ptl); 1857 if (!start_pte) 1858 goto out_ptl; 1859 if (ptl != pml) 1860 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1861 1862 for (i = 0, pte = start_pte; i < PTRS_PER_PTE; i++, pte++) { 1863 if (!pte_none(ptep_get(pte))) 1864 goto out_ptl; 1865 } 1866 pte_unmap(start_pte); 1867 1868 pmd_clear(pmd); 1869 1870 if (ptl != pml) 1871 spin_unlock(ptl); 1872 spin_unlock(pml); 1873 return true; 1874 out_ptl: 1875 if (start_pte) 1876 pte_unmap_unlock(start_pte, ptl); 1877 if (ptl != pml) 1878 spin_unlock(pml); 1879 return false; 1880 } 1881 1882 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1883 struct vm_area_struct *vma, pmd_t *pmd, 1884 unsigned long addr, unsigned long end, 1885 struct zap_details *details) 1886 { 1887 bool can_reclaim_pt = pte_table_reclaim_possible(addr, end, details); 1888 bool force_flush = false, force_break = false; 1889 struct mm_struct *mm = tlb->mm; 1890 int rss[NR_MM_COUNTERS]; 1891 spinlock_t *ptl; 1892 pte_t *start_pte; 1893 pte_t *pte; 1894 pmd_t pmdval; 1895 unsigned long start = addr; 1896 bool direct_reclaim = true; 1897 int nr; 1898 1899 retry: 1900 tlb_change_page_size(tlb, PAGE_SIZE); 1901 init_rss_vec(rss); 1902 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1903 if (!pte) 1904 return addr; 1905 1906 flush_tlb_batched_pending(mm); 1907 lazy_mmu_mode_enable(); 1908 do { 1909 bool any_skipped = false; 1910 1911 if (need_resched()) { 1912 direct_reclaim = false; 1913 break; 1914 } 1915 1916 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1917 &force_flush, &force_break, &any_skipped); 1918 if (any_skipped) 1919 can_reclaim_pt = false; 1920 if (unlikely(force_break)) { 1921 addr += nr * PAGE_SIZE; 1922 direct_reclaim = false; 1923 break; 1924 } 1925 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1926 1927 /* 1928 * Fast path: try to hold the pmd lock and unmap the PTE page. 1929 * 1930 * If the pte lock was released midway (retry case), or if the attempt 1931 * to hold the pmd lock failed, then we need to recheck all pte entries 1932 * to ensure they are still none, thereby preventing the pte entries 1933 * from being repopulated by another thread. 1934 */ 1935 if (can_reclaim_pt && direct_reclaim && addr == end) 1936 direct_reclaim = zap_empty_pte_table(mm, pmd, ptl, &pmdval); 1937 1938 add_mm_rss_vec(mm, rss); 1939 lazy_mmu_mode_disable(); 1940 1941 /* Do the actual TLB flush before dropping ptl */ 1942 if (force_flush) { 1943 tlb_flush_mmu_tlbonly(tlb); 1944 tlb_flush_rmaps(tlb, vma); 1945 } 1946 pte_unmap_unlock(start_pte, ptl); 1947 1948 /* 1949 * If we forced a TLB flush (either due to running out of 1950 * batch buffers or because we needed to flush dirty TLB 1951 * entries before releasing the ptl), free the batched 1952 * memory too. Come back again if we didn't do everything. 1953 */ 1954 if (force_flush) 1955 tlb_flush_mmu(tlb); 1956 1957 if (addr != end) { 1958 cond_resched(); 1959 force_flush = false; 1960 force_break = false; 1961 goto retry; 1962 } 1963 1964 if (can_reclaim_pt) { 1965 if (direct_reclaim || zap_pte_table_if_empty(mm, pmd, start, &pmdval)) { 1966 pte_free_tlb(tlb, pmd_pgtable(pmdval), addr); 1967 mm_dec_nr_ptes(mm); 1968 } 1969 } 1970 1971 return addr; 1972 } 1973 1974 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1975 struct vm_area_struct *vma, pud_t *pud, 1976 unsigned long addr, unsigned long end, 1977 struct zap_details *details) 1978 { 1979 pmd_t *pmd; 1980 unsigned long next; 1981 1982 pmd = pmd_offset(pud, addr); 1983 do { 1984 next = pmd_addr_end(addr, end); 1985 if (pmd_is_huge(*pmd)) { 1986 if (next - addr != HPAGE_PMD_SIZE) 1987 __split_huge_pmd(vma, pmd, addr, false); 1988 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1989 addr = next; 1990 continue; 1991 } 1992 /* fall through */ 1993 } else if (details && details->single_folio && 1994 folio_test_pmd_mappable(details->single_folio) && 1995 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1996 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1997 /* 1998 * Take and drop THP pmd lock so that we cannot return 1999 * prematurely, while zap_huge_pmd() has cleared *pmd, 2000 * but not yet decremented compound_mapcount(). 2001 */ 2002 spin_unlock(ptl); 2003 } 2004 if (pmd_none(*pmd)) { 2005 addr = next; 2006 continue; 2007 } 2008 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 2009 if (addr != next) 2010 pmd--; 2011 } while (pmd++, cond_resched(), addr != end); 2012 2013 return addr; 2014 } 2015 2016 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 2017 struct vm_area_struct *vma, p4d_t *p4d, 2018 unsigned long addr, unsigned long end, 2019 struct zap_details *details) 2020 { 2021 pud_t *pud; 2022 unsigned long next; 2023 2024 pud = pud_offset(p4d, addr); 2025 do { 2026 next = pud_addr_end(addr, end); 2027 if (pud_trans_huge(*pud)) { 2028 if (next - addr != HPAGE_PUD_SIZE) 2029 split_huge_pud(vma, pud, addr); 2030 else if (zap_huge_pud(tlb, vma, pud, addr)) 2031 goto next; 2032 /* fall through */ 2033 } 2034 if (pud_none_or_clear_bad(pud)) 2035 continue; 2036 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 2037 next: 2038 cond_resched(); 2039 } while (pud++, addr = next, addr != end); 2040 2041 return addr; 2042 } 2043 2044 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 2045 struct vm_area_struct *vma, pgd_t *pgd, 2046 unsigned long addr, unsigned long end, 2047 struct zap_details *details) 2048 { 2049 p4d_t *p4d; 2050 unsigned long next; 2051 2052 p4d = p4d_offset(pgd, addr); 2053 do { 2054 next = p4d_addr_end(addr, end); 2055 if (p4d_none_or_clear_bad(p4d)) 2056 continue; 2057 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 2058 } while (p4d++, addr = next, addr != end); 2059 2060 return addr; 2061 } 2062 2063 void unmap_page_range(struct mmu_gather *tlb, 2064 struct vm_area_struct *vma, 2065 unsigned long addr, unsigned long end, 2066 struct zap_details *details) 2067 { 2068 pgd_t *pgd; 2069 unsigned long next; 2070 2071 BUG_ON(addr >= end); 2072 tlb_start_vma(tlb, vma); 2073 pgd = pgd_offset(vma->vm_mm, addr); 2074 do { 2075 next = pgd_addr_end(addr, end); 2076 if (pgd_none_or_clear_bad(pgd)) 2077 continue; 2078 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2079 } while (pgd++, addr = next, addr != end); 2080 tlb_end_vma(tlb, vma); 2081 } 2082 2083 2084 static void unmap_single_vma(struct mmu_gather *tlb, 2085 struct vm_area_struct *vma, unsigned long start_addr, 2086 unsigned long end_addr, struct zap_details *details) 2087 { 2088 unsigned long start = max(vma->vm_start, start_addr); 2089 unsigned long end; 2090 2091 if (start >= vma->vm_end) 2092 return; 2093 end = min(vma->vm_end, end_addr); 2094 if (end <= vma->vm_start) 2095 return; 2096 2097 if (vma->vm_file) 2098 uprobe_munmap(vma, start, end); 2099 2100 if (start != end) { 2101 if (unlikely(is_vm_hugetlb_page(vma))) { 2102 /* 2103 * It is undesirable to test vma->vm_file as it 2104 * should be non-null for valid hugetlb area. 2105 * However, vm_file will be NULL in the error 2106 * cleanup path of mmap_region. When 2107 * hugetlbfs ->mmap method fails, 2108 * mmap_region() nullifies vma->vm_file 2109 * before calling this function to clean up. 2110 * Since no pte has actually been setup, it is 2111 * safe to do nothing in this case. 2112 */ 2113 if (vma->vm_file) { 2114 zap_flags_t zap_flags = details ? 2115 details->zap_flags : 0; 2116 __unmap_hugepage_range(tlb, vma, start, end, 2117 NULL, zap_flags); 2118 } 2119 } else 2120 unmap_page_range(tlb, vma, start, end, details); 2121 } 2122 } 2123 2124 /** 2125 * unmap_vmas - unmap a range of memory covered by a list of vma's 2126 * @tlb: address of the caller's struct mmu_gather 2127 * @mas: the maple state 2128 * @vma: the starting vma 2129 * @start_addr: virtual address at which to start unmapping 2130 * @end_addr: virtual address at which to end unmapping 2131 * @tree_end: The maximum index to check 2132 * 2133 * Unmap all pages in the vma list. 2134 * 2135 * Only addresses between `start' and `end' will be unmapped. 2136 * 2137 * The VMA list must be sorted in ascending virtual address order. 2138 * 2139 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2140 * range after unmap_vmas() returns. So the only responsibility here is to 2141 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2142 * drops the lock and schedules. 2143 */ 2144 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2145 struct vm_area_struct *vma, unsigned long start_addr, 2146 unsigned long end_addr, unsigned long tree_end) 2147 { 2148 struct mmu_notifier_range range; 2149 struct zap_details details = { 2150 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2151 /* Careful - we need to zap private pages too! */ 2152 .even_cows = true, 2153 }; 2154 2155 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2156 start_addr, end_addr); 2157 mmu_notifier_invalidate_range_start(&range); 2158 do { 2159 unsigned long start = start_addr; 2160 unsigned long end = end_addr; 2161 hugetlb_zap_begin(vma, &start, &end); 2162 unmap_single_vma(tlb, vma, start, end, &details); 2163 hugetlb_zap_end(vma, &details); 2164 vma = mas_find(mas, tree_end - 1); 2165 } while (vma && likely(!xa_is_zero(vma))); 2166 mmu_notifier_invalidate_range_end(&range); 2167 } 2168 2169 /** 2170 * zap_page_range_single_batched - remove user pages in a given range 2171 * @tlb: pointer to the caller's struct mmu_gather 2172 * @vma: vm_area_struct holding the applicable pages 2173 * @address: starting address of pages to remove 2174 * @size: number of bytes to remove 2175 * @details: details of shared cache invalidation 2176 * 2177 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2178 * hugetlb, @tlb is flushed and re-initialized by this function. 2179 */ 2180 void zap_page_range_single_batched(struct mmu_gather *tlb, 2181 struct vm_area_struct *vma, unsigned long address, 2182 unsigned long size, struct zap_details *details) 2183 { 2184 const unsigned long end = address + size; 2185 struct mmu_notifier_range range; 2186 2187 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2188 2189 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2190 address, end); 2191 hugetlb_zap_begin(vma, &range.start, &range.end); 2192 update_hiwater_rss(vma->vm_mm); 2193 mmu_notifier_invalidate_range_start(&range); 2194 /* 2195 * unmap 'address-end' not 'range.start-range.end' as range 2196 * could have been expanded for hugetlb pmd sharing. 2197 */ 2198 unmap_single_vma(tlb, vma, address, end, details); 2199 mmu_notifier_invalidate_range_end(&range); 2200 if (is_vm_hugetlb_page(vma)) { 2201 /* 2202 * flush tlb and free resources before hugetlb_zap_end(), to 2203 * avoid concurrent page faults' allocation failure. 2204 */ 2205 tlb_finish_mmu(tlb); 2206 hugetlb_zap_end(vma, details); 2207 tlb_gather_mmu(tlb, vma->vm_mm); 2208 } 2209 } 2210 2211 /** 2212 * zap_page_range_single - remove user pages in a given range 2213 * @vma: vm_area_struct holding the applicable pages 2214 * @address: starting address of pages to zap 2215 * @size: number of bytes to zap 2216 * @details: details of shared cache invalidation 2217 * 2218 * The range must fit into one VMA. 2219 */ 2220 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2221 unsigned long size, struct zap_details *details) 2222 { 2223 struct mmu_gather tlb; 2224 2225 tlb_gather_mmu(&tlb, vma->vm_mm); 2226 zap_page_range_single_batched(&tlb, vma, address, size, details); 2227 tlb_finish_mmu(&tlb); 2228 } 2229 2230 /** 2231 * zap_vma_ptes - remove ptes mapping the vma 2232 * @vma: vm_area_struct holding ptes to be zapped 2233 * @address: starting address of pages to zap 2234 * @size: number of bytes to zap 2235 * 2236 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2237 * 2238 * The entire address range must be fully contained within the vma. 2239 * 2240 */ 2241 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2242 unsigned long size) 2243 { 2244 if (!range_in_vma(vma, address, address + size) || 2245 !(vma->vm_flags & VM_PFNMAP)) 2246 return; 2247 2248 zap_page_range_single(vma, address, size, NULL); 2249 } 2250 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2251 2252 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2253 { 2254 pgd_t *pgd; 2255 p4d_t *p4d; 2256 pud_t *pud; 2257 pmd_t *pmd; 2258 2259 pgd = pgd_offset(mm, addr); 2260 p4d = p4d_alloc(mm, pgd, addr); 2261 if (!p4d) 2262 return NULL; 2263 pud = pud_alloc(mm, p4d, addr); 2264 if (!pud) 2265 return NULL; 2266 pmd = pmd_alloc(mm, pud, addr); 2267 if (!pmd) 2268 return NULL; 2269 2270 VM_BUG_ON(pmd_trans_huge(*pmd)); 2271 return pmd; 2272 } 2273 2274 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2275 spinlock_t **ptl) 2276 { 2277 pmd_t *pmd = walk_to_pmd(mm, addr); 2278 2279 if (!pmd) 2280 return NULL; 2281 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2282 } 2283 2284 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2285 { 2286 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2287 /* 2288 * Whoever wants to forbid the zeropage after some zeropages 2289 * might already have been mapped has to scan the page tables and 2290 * bail out on any zeropages. Zeropages in COW mappings can 2291 * be unshared using FAULT_FLAG_UNSHARE faults. 2292 */ 2293 if (mm_forbids_zeropage(vma->vm_mm)) 2294 return false; 2295 /* zeropages in COW mappings are common and unproblematic. */ 2296 if (is_cow_mapping(vma->vm_flags)) 2297 return true; 2298 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2299 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2300 return true; 2301 /* 2302 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2303 * find the shared zeropage and longterm-pin it, which would 2304 * be problematic as soon as the zeropage gets replaced by a different 2305 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2306 * now differ to what GUP looked up. FSDAX is incompatible to 2307 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2308 * check_vma_flags). 2309 */ 2310 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2311 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2312 } 2313 2314 static int validate_page_before_insert(struct vm_area_struct *vma, 2315 struct page *page) 2316 { 2317 struct folio *folio = page_folio(page); 2318 2319 if (!folio_ref_count(folio)) 2320 return -EINVAL; 2321 if (unlikely(is_zero_folio(folio))) { 2322 if (!vm_mixed_zeropage_allowed(vma)) 2323 return -EINVAL; 2324 return 0; 2325 } 2326 if (folio_test_anon(folio) || page_has_type(page)) 2327 return -EINVAL; 2328 flush_dcache_folio(folio); 2329 return 0; 2330 } 2331 2332 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2333 unsigned long addr, struct page *page, 2334 pgprot_t prot, bool mkwrite) 2335 { 2336 struct folio *folio = page_folio(page); 2337 pte_t pteval = ptep_get(pte); 2338 2339 if (!pte_none(pteval)) { 2340 if (!mkwrite) 2341 return -EBUSY; 2342 2343 /* see insert_pfn(). */ 2344 if (pte_pfn(pteval) != page_to_pfn(page)) { 2345 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2346 return -EFAULT; 2347 } 2348 pteval = maybe_mkwrite(pteval, vma); 2349 pteval = pte_mkyoung(pteval); 2350 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2351 update_mmu_cache(vma, addr, pte); 2352 return 0; 2353 } 2354 2355 /* Ok, finally just insert the thing.. */ 2356 pteval = mk_pte(page, prot); 2357 if (unlikely(is_zero_folio(folio))) { 2358 pteval = pte_mkspecial(pteval); 2359 } else { 2360 folio_get(folio); 2361 pteval = mk_pte(page, prot); 2362 if (mkwrite) { 2363 pteval = pte_mkyoung(pteval); 2364 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2365 } 2366 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2367 folio_add_file_rmap_pte(folio, page, vma); 2368 } 2369 set_pte_at(vma->vm_mm, addr, pte, pteval); 2370 return 0; 2371 } 2372 2373 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2374 struct page *page, pgprot_t prot, bool mkwrite) 2375 { 2376 int retval; 2377 pte_t *pte; 2378 spinlock_t *ptl; 2379 2380 retval = validate_page_before_insert(vma, page); 2381 if (retval) 2382 goto out; 2383 retval = -ENOMEM; 2384 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2385 if (!pte) 2386 goto out; 2387 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2388 mkwrite); 2389 pte_unmap_unlock(pte, ptl); 2390 out: 2391 return retval; 2392 } 2393 2394 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2395 unsigned long addr, struct page *page, pgprot_t prot) 2396 { 2397 int err; 2398 2399 err = validate_page_before_insert(vma, page); 2400 if (err) 2401 return err; 2402 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2403 } 2404 2405 /* insert_pages() amortizes the cost of spinlock operations 2406 * when inserting pages in a loop. 2407 */ 2408 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2409 struct page **pages, unsigned long *num, pgprot_t prot) 2410 { 2411 pmd_t *pmd = NULL; 2412 pte_t *start_pte, *pte; 2413 spinlock_t *pte_lock; 2414 struct mm_struct *const mm = vma->vm_mm; 2415 unsigned long curr_page_idx = 0; 2416 unsigned long remaining_pages_total = *num; 2417 unsigned long pages_to_write_in_pmd; 2418 int ret; 2419 more: 2420 ret = -EFAULT; 2421 pmd = walk_to_pmd(mm, addr); 2422 if (!pmd) 2423 goto out; 2424 2425 pages_to_write_in_pmd = min_t(unsigned long, 2426 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2427 2428 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2429 ret = -ENOMEM; 2430 if (pte_alloc(mm, pmd)) 2431 goto out; 2432 2433 while (pages_to_write_in_pmd) { 2434 int pte_idx = 0; 2435 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2436 2437 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2438 if (!start_pte) { 2439 ret = -EFAULT; 2440 goto out; 2441 } 2442 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2443 int err = insert_page_in_batch_locked(vma, pte, 2444 addr, pages[curr_page_idx], prot); 2445 if (unlikely(err)) { 2446 pte_unmap_unlock(start_pte, pte_lock); 2447 ret = err; 2448 remaining_pages_total -= pte_idx; 2449 goto out; 2450 } 2451 addr += PAGE_SIZE; 2452 ++curr_page_idx; 2453 } 2454 pte_unmap_unlock(start_pte, pte_lock); 2455 pages_to_write_in_pmd -= batch_size; 2456 remaining_pages_total -= batch_size; 2457 } 2458 if (remaining_pages_total) 2459 goto more; 2460 ret = 0; 2461 out: 2462 *num = remaining_pages_total; 2463 return ret; 2464 } 2465 2466 /** 2467 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2468 * @vma: user vma to map to 2469 * @addr: target start user address of these pages 2470 * @pages: source kernel pages 2471 * @num: in: number of pages to map. out: number of pages that were *not* 2472 * mapped. (0 means all pages were successfully mapped). 2473 * 2474 * Preferred over vm_insert_page() when inserting multiple pages. 2475 * 2476 * In case of error, we may have mapped a subset of the provided 2477 * pages. It is the caller's responsibility to account for this case. 2478 * 2479 * The same restrictions apply as in vm_insert_page(). 2480 */ 2481 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2482 struct page **pages, unsigned long *num) 2483 { 2484 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2485 2486 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2487 return -EFAULT; 2488 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2489 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2490 BUG_ON(vma->vm_flags & VM_PFNMAP); 2491 vm_flags_set(vma, VM_MIXEDMAP); 2492 } 2493 /* Defer page refcount checking till we're about to map that page. */ 2494 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2495 } 2496 EXPORT_SYMBOL(vm_insert_pages); 2497 2498 /** 2499 * vm_insert_page - insert single page into user vma 2500 * @vma: user vma to map to 2501 * @addr: target user address of this page 2502 * @page: source kernel page 2503 * 2504 * This allows drivers to insert individual pages they've allocated 2505 * into a user vma. The zeropage is supported in some VMAs, 2506 * see vm_mixed_zeropage_allowed(). 2507 * 2508 * The page has to be a nice clean _individual_ kernel allocation. 2509 * If you allocate a compound page, you need to have marked it as 2510 * such (__GFP_COMP), or manually just split the page up yourself 2511 * (see split_page()). 2512 * 2513 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2514 * took an arbitrary page protection parameter. This doesn't allow 2515 * that. Your vma protection will have to be set up correctly, which 2516 * means that if you want a shared writable mapping, you'd better 2517 * ask for a shared writable mapping! 2518 * 2519 * The page does not need to be reserved. 2520 * 2521 * Usually this function is called from f_op->mmap() handler 2522 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2523 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2524 * function from other places, for example from page-fault handler. 2525 * 2526 * Return: %0 on success, negative error code otherwise. 2527 */ 2528 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2529 struct page *page) 2530 { 2531 if (addr < vma->vm_start || addr >= vma->vm_end) 2532 return -EFAULT; 2533 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2534 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2535 BUG_ON(vma->vm_flags & VM_PFNMAP); 2536 vm_flags_set(vma, VM_MIXEDMAP); 2537 } 2538 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2539 } 2540 EXPORT_SYMBOL(vm_insert_page); 2541 2542 /* 2543 * __vm_map_pages - maps range of kernel pages into user vma 2544 * @vma: user vma to map to 2545 * @pages: pointer to array of source kernel pages 2546 * @num: number of pages in page array 2547 * @offset: user's requested vm_pgoff 2548 * 2549 * This allows drivers to map range of kernel pages into a user vma. 2550 * The zeropage is supported in some VMAs, see 2551 * vm_mixed_zeropage_allowed(). 2552 * 2553 * Return: 0 on success and error code otherwise. 2554 */ 2555 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2556 unsigned long num, unsigned long offset) 2557 { 2558 unsigned long count = vma_pages(vma); 2559 unsigned long uaddr = vma->vm_start; 2560 2561 /* Fail if the user requested offset is beyond the end of the object */ 2562 if (offset >= num) 2563 return -ENXIO; 2564 2565 /* Fail if the user requested size exceeds available object size */ 2566 if (count > num - offset) 2567 return -ENXIO; 2568 2569 return vm_insert_pages(vma, uaddr, pages + offset, &count); 2570 } 2571 2572 /** 2573 * vm_map_pages - maps range of kernel pages starts with non zero offset 2574 * @vma: user vma to map to 2575 * @pages: pointer to array of source kernel pages 2576 * @num: number of pages in page array 2577 * 2578 * Maps an object consisting of @num pages, catering for the user's 2579 * requested vm_pgoff 2580 * 2581 * If we fail to insert any page into the vma, the function will return 2582 * immediately leaving any previously inserted pages present. Callers 2583 * from the mmap handler may immediately return the error as their caller 2584 * will destroy the vma, removing any successfully inserted pages. Other 2585 * callers should make their own arrangements for calling unmap_region(). 2586 * 2587 * Context: Process context. Called by mmap handlers. 2588 * Return: 0 on success and error code otherwise. 2589 */ 2590 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2591 unsigned long num) 2592 { 2593 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2594 } 2595 EXPORT_SYMBOL(vm_map_pages); 2596 2597 /** 2598 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2599 * @vma: user vma to map to 2600 * @pages: pointer to array of source kernel pages 2601 * @num: number of pages in page array 2602 * 2603 * Similar to vm_map_pages(), except that it explicitly sets the offset 2604 * to 0. This function is intended for the drivers that did not consider 2605 * vm_pgoff. 2606 * 2607 * Context: Process context. Called by mmap handlers. 2608 * Return: 0 on success and error code otherwise. 2609 */ 2610 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2611 unsigned long num) 2612 { 2613 return __vm_map_pages(vma, pages, num, 0); 2614 } 2615 EXPORT_SYMBOL(vm_map_pages_zero); 2616 2617 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2618 unsigned long pfn, pgprot_t prot, bool mkwrite) 2619 { 2620 struct mm_struct *mm = vma->vm_mm; 2621 pte_t *pte, entry; 2622 spinlock_t *ptl; 2623 2624 pte = get_locked_pte(mm, addr, &ptl); 2625 if (!pte) 2626 return VM_FAULT_OOM; 2627 entry = ptep_get(pte); 2628 if (!pte_none(entry)) { 2629 if (mkwrite) { 2630 /* 2631 * For read faults on private mappings the PFN passed 2632 * in may not match the PFN we have mapped if the 2633 * mapped PFN is a writeable COW page. In the mkwrite 2634 * case we are creating a writable PTE for a shared 2635 * mapping and we expect the PFNs to match. If they 2636 * don't match, we are likely racing with block 2637 * allocation and mapping invalidation so just skip the 2638 * update. 2639 */ 2640 if (pte_pfn(entry) != pfn) { 2641 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2642 goto out_unlock; 2643 } 2644 entry = pte_mkyoung(entry); 2645 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2646 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2647 update_mmu_cache(vma, addr, pte); 2648 } 2649 goto out_unlock; 2650 } 2651 2652 /* Ok, finally just insert the thing.. */ 2653 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2654 2655 if (mkwrite) { 2656 entry = pte_mkyoung(entry); 2657 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2658 } 2659 2660 set_pte_at(mm, addr, pte, entry); 2661 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2662 2663 out_unlock: 2664 pte_unmap_unlock(pte, ptl); 2665 return VM_FAULT_NOPAGE; 2666 } 2667 2668 /** 2669 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2670 * @vma: user vma to map to 2671 * @addr: target user address of this page 2672 * @pfn: source kernel pfn 2673 * @pgprot: pgprot flags for the inserted page 2674 * 2675 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2676 * to override pgprot on a per-page basis. 2677 * 2678 * This only makes sense for IO mappings, and it makes no sense for 2679 * COW mappings. In general, using multiple vmas is preferable; 2680 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2681 * impractical. 2682 * 2683 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2684 * caching- and encryption bits different than those of @vma->vm_page_prot, 2685 * because the caching- or encryption mode may not be known at mmap() time. 2686 * 2687 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2688 * to set caching and encryption bits for those vmas (except for COW pages). 2689 * This is ensured by core vm only modifying these page table entries using 2690 * functions that don't touch caching- or encryption bits, using pte_modify() 2691 * if needed. (See for example mprotect()). 2692 * 2693 * Also when new page-table entries are created, this is only done using the 2694 * fault() callback, and never using the value of vma->vm_page_prot, 2695 * except for page-table entries that point to anonymous pages as the result 2696 * of COW. 2697 * 2698 * Context: Process context. May allocate using %GFP_KERNEL. 2699 * Return: vm_fault_t value. 2700 */ 2701 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2702 unsigned long pfn, pgprot_t pgprot) 2703 { 2704 /* 2705 * Technically, architectures with pte_special can avoid all these 2706 * restrictions (same for remap_pfn_range). However we would like 2707 * consistency in testing and feature parity among all, so we should 2708 * try to keep these invariants in place for everybody. 2709 */ 2710 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2711 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2712 (VM_PFNMAP|VM_MIXEDMAP)); 2713 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2714 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2715 2716 if (addr < vma->vm_start || addr >= vma->vm_end) 2717 return VM_FAULT_SIGBUS; 2718 2719 if (!pfn_modify_allowed(pfn, pgprot)) 2720 return VM_FAULT_SIGBUS; 2721 2722 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2723 2724 return insert_pfn(vma, addr, pfn, pgprot, false); 2725 } 2726 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2727 2728 /** 2729 * vmf_insert_pfn - insert single pfn into user vma 2730 * @vma: user vma to map to 2731 * @addr: target user address of this page 2732 * @pfn: source kernel pfn 2733 * 2734 * Similar to vm_insert_page, this allows drivers to insert individual pages 2735 * they've allocated into a user vma. Same comments apply. 2736 * 2737 * This function should only be called from a vm_ops->fault handler, and 2738 * in that case the handler should return the result of this function. 2739 * 2740 * vma cannot be a COW mapping. 2741 * 2742 * As this is called only for pages that do not currently exist, we 2743 * do not need to flush old virtual caches or the TLB. 2744 * 2745 * Context: Process context. May allocate using %GFP_KERNEL. 2746 * Return: vm_fault_t value. 2747 */ 2748 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2749 unsigned long pfn) 2750 { 2751 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2752 } 2753 EXPORT_SYMBOL(vmf_insert_pfn); 2754 2755 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2756 bool mkwrite) 2757 { 2758 if (unlikely(is_zero_pfn(pfn)) && 2759 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2760 return false; 2761 /* these checks mirror the abort conditions in vm_normal_page */ 2762 if (vma->vm_flags & VM_MIXEDMAP) 2763 return true; 2764 if (is_zero_pfn(pfn)) 2765 return true; 2766 return false; 2767 } 2768 2769 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2770 unsigned long addr, unsigned long pfn, bool mkwrite) 2771 { 2772 pgprot_t pgprot = vma->vm_page_prot; 2773 int err; 2774 2775 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2776 return VM_FAULT_SIGBUS; 2777 2778 if (addr < vma->vm_start || addr >= vma->vm_end) 2779 return VM_FAULT_SIGBUS; 2780 2781 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2782 2783 if (!pfn_modify_allowed(pfn, pgprot)) 2784 return VM_FAULT_SIGBUS; 2785 2786 /* 2787 * If we don't have pte special, then we have to use the pfn_valid() 2788 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2789 * refcount the page if pfn_valid is true (hence insert_page rather 2790 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2791 * without pte special, it would there be refcounted as a normal page. 2792 */ 2793 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2794 struct page *page; 2795 2796 /* 2797 * At this point we are committed to insert_page() 2798 * regardless of whether the caller specified flags that 2799 * result in pfn_t_has_page() == false. 2800 */ 2801 page = pfn_to_page(pfn); 2802 err = insert_page(vma, addr, page, pgprot, mkwrite); 2803 } else { 2804 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2805 } 2806 2807 if (err == -ENOMEM) 2808 return VM_FAULT_OOM; 2809 if (err < 0 && err != -EBUSY) 2810 return VM_FAULT_SIGBUS; 2811 2812 return VM_FAULT_NOPAGE; 2813 } 2814 2815 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2816 bool write) 2817 { 2818 pgprot_t pgprot = vmf->vma->vm_page_prot; 2819 unsigned long addr = vmf->address; 2820 int err; 2821 2822 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2823 return VM_FAULT_SIGBUS; 2824 2825 err = insert_page(vmf->vma, addr, page, pgprot, write); 2826 if (err == -ENOMEM) 2827 return VM_FAULT_OOM; 2828 if (err < 0 && err != -EBUSY) 2829 return VM_FAULT_SIGBUS; 2830 2831 return VM_FAULT_NOPAGE; 2832 } 2833 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2834 2835 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2836 unsigned long pfn) 2837 { 2838 return __vm_insert_mixed(vma, addr, pfn, false); 2839 } 2840 EXPORT_SYMBOL(vmf_insert_mixed); 2841 2842 /* 2843 * If the insertion of PTE failed because someone else already added a 2844 * different entry in the mean time, we treat that as success as we assume 2845 * the same entry was actually inserted. 2846 */ 2847 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2848 unsigned long addr, unsigned long pfn) 2849 { 2850 return __vm_insert_mixed(vma, addr, pfn, true); 2851 } 2852 2853 /* 2854 * maps a range of physical memory into the requested pages. the old 2855 * mappings are removed. any references to nonexistent pages results 2856 * in null mappings (currently treated as "copy-on-access") 2857 */ 2858 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2859 unsigned long addr, unsigned long end, 2860 unsigned long pfn, pgprot_t prot) 2861 { 2862 pte_t *pte, *mapped_pte; 2863 spinlock_t *ptl; 2864 int err = 0; 2865 2866 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2867 if (!pte) 2868 return -ENOMEM; 2869 lazy_mmu_mode_enable(); 2870 do { 2871 BUG_ON(!pte_none(ptep_get(pte))); 2872 if (!pfn_modify_allowed(pfn, prot)) { 2873 err = -EACCES; 2874 break; 2875 } 2876 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2877 pfn++; 2878 } while (pte++, addr += PAGE_SIZE, addr != end); 2879 lazy_mmu_mode_disable(); 2880 pte_unmap_unlock(mapped_pte, ptl); 2881 return err; 2882 } 2883 2884 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2885 unsigned long addr, unsigned long end, 2886 unsigned long pfn, pgprot_t prot) 2887 { 2888 pmd_t *pmd; 2889 unsigned long next; 2890 int err; 2891 2892 pfn -= addr >> PAGE_SHIFT; 2893 pmd = pmd_alloc(mm, pud, addr); 2894 if (!pmd) 2895 return -ENOMEM; 2896 VM_BUG_ON(pmd_trans_huge(*pmd)); 2897 do { 2898 next = pmd_addr_end(addr, end); 2899 err = remap_pte_range(mm, pmd, addr, next, 2900 pfn + (addr >> PAGE_SHIFT), prot); 2901 if (err) 2902 return err; 2903 } while (pmd++, addr = next, addr != end); 2904 return 0; 2905 } 2906 2907 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2908 unsigned long addr, unsigned long end, 2909 unsigned long pfn, pgprot_t prot) 2910 { 2911 pud_t *pud; 2912 unsigned long next; 2913 int err; 2914 2915 pfn -= addr >> PAGE_SHIFT; 2916 pud = pud_alloc(mm, p4d, addr); 2917 if (!pud) 2918 return -ENOMEM; 2919 do { 2920 next = pud_addr_end(addr, end); 2921 err = remap_pmd_range(mm, pud, addr, next, 2922 pfn + (addr >> PAGE_SHIFT), prot); 2923 if (err) 2924 return err; 2925 } while (pud++, addr = next, addr != end); 2926 return 0; 2927 } 2928 2929 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2930 unsigned long addr, unsigned long end, 2931 unsigned long pfn, pgprot_t prot) 2932 { 2933 p4d_t *p4d; 2934 unsigned long next; 2935 int err; 2936 2937 pfn -= addr >> PAGE_SHIFT; 2938 p4d = p4d_alloc(mm, pgd, addr); 2939 if (!p4d) 2940 return -ENOMEM; 2941 do { 2942 next = p4d_addr_end(addr, end); 2943 err = remap_pud_range(mm, p4d, addr, next, 2944 pfn + (addr >> PAGE_SHIFT), prot); 2945 if (err) 2946 return err; 2947 } while (p4d++, addr = next, addr != end); 2948 return 0; 2949 } 2950 2951 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr, 2952 unsigned long end, unsigned long vm_start, unsigned long vm_end, 2953 unsigned long pfn, pgoff_t *vm_pgoff_p) 2954 { 2955 /* 2956 * There's a horrible special case to handle copy-on-write 2957 * behaviour that some programs depend on. We mark the "original" 2958 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2959 * See vm_normal_page() for details. 2960 */ 2961 if (is_cow_mapping(vm_flags)) { 2962 if (addr != vm_start || end != vm_end) 2963 return -EINVAL; 2964 *vm_pgoff_p = pfn; 2965 } 2966 2967 return 0; 2968 } 2969 2970 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2971 unsigned long pfn, unsigned long size, pgprot_t prot) 2972 { 2973 pgd_t *pgd; 2974 unsigned long next; 2975 unsigned long end = addr + PAGE_ALIGN(size); 2976 struct mm_struct *mm = vma->vm_mm; 2977 int err; 2978 2979 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2980 return -EINVAL; 2981 2982 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS); 2983 2984 BUG_ON(addr >= end); 2985 pfn -= addr >> PAGE_SHIFT; 2986 pgd = pgd_offset(mm, addr); 2987 flush_cache_range(vma, addr, end); 2988 do { 2989 next = pgd_addr_end(addr, end); 2990 err = remap_p4d_range(mm, pgd, addr, next, 2991 pfn + (addr >> PAGE_SHIFT), prot); 2992 if (err) 2993 return err; 2994 } while (pgd++, addr = next, addr != end); 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 3001 * must have pre-validated the caching bits of the pgprot_t. 3002 */ 3003 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3004 unsigned long pfn, unsigned long size, pgprot_t prot) 3005 { 3006 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 3007 3008 if (!error) 3009 return 0; 3010 3011 /* 3012 * A partial pfn range mapping is dangerous: it does not 3013 * maintain page reference counts, and callers may free 3014 * pages due to the error. So zap it early. 3015 */ 3016 zap_page_range_single(vma, addr, size, NULL); 3017 return error; 3018 } 3019 3020 #ifdef __HAVE_PFNMAP_TRACKING 3021 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 3022 unsigned long size, pgprot_t *prot) 3023 { 3024 struct pfnmap_track_ctx *ctx; 3025 3026 if (pfnmap_track(pfn, size, prot)) 3027 return ERR_PTR(-EINVAL); 3028 3029 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 3030 if (unlikely(!ctx)) { 3031 pfnmap_untrack(pfn, size); 3032 return ERR_PTR(-ENOMEM); 3033 } 3034 3035 ctx->pfn = pfn; 3036 ctx->size = size; 3037 kref_init(&ctx->kref); 3038 return ctx; 3039 } 3040 3041 void pfnmap_track_ctx_release(struct kref *ref) 3042 { 3043 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 3044 3045 pfnmap_untrack(ctx->pfn, ctx->size); 3046 kfree(ctx); 3047 } 3048 3049 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr, 3050 unsigned long pfn, unsigned long size, pgprot_t prot) 3051 { 3052 struct pfnmap_track_ctx *ctx = NULL; 3053 int err; 3054 3055 size = PAGE_ALIGN(size); 3056 3057 /* 3058 * If we cover the full VMA, we'll perform actual tracking, and 3059 * remember to untrack when the last reference to our tracking 3060 * context from a VMA goes away. We'll keep tracking the whole pfn 3061 * range even during VMA splits and partial unmapping. 3062 * 3063 * If we only cover parts of the VMA, we'll only setup the cachemode 3064 * in the pgprot for the pfn range. 3065 */ 3066 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3067 if (vma->pfnmap_track_ctx) 3068 return -EINVAL; 3069 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3070 if (IS_ERR(ctx)) 3071 return PTR_ERR(ctx); 3072 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3073 return -EINVAL; 3074 } 3075 3076 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3077 if (ctx) { 3078 if (err) 3079 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3080 else 3081 vma->pfnmap_track_ctx = ctx; 3082 } 3083 return err; 3084 } 3085 3086 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3087 unsigned long pfn, unsigned long size, pgprot_t prot) 3088 { 3089 return remap_pfn_range_track(vma, addr, pfn, size, prot); 3090 } 3091 #else 3092 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3093 unsigned long pfn, unsigned long size, pgprot_t prot) 3094 { 3095 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3096 } 3097 #endif 3098 3099 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 3100 { 3101 /* 3102 * We set addr=VMA start, end=VMA end here, so this won't fail, but we 3103 * check it again on complete and will fail there if specified addr is 3104 * invalid. 3105 */ 3106 get_remap_pgoff(desc->vm_flags, desc->start, desc->end, 3107 desc->start, desc->end, pfn, &desc->pgoff); 3108 desc->vm_flags |= VM_REMAP_FLAGS; 3109 } 3110 3111 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr, 3112 unsigned long pfn, unsigned long size) 3113 { 3114 unsigned long end = addr + PAGE_ALIGN(size); 3115 int err; 3116 3117 err = get_remap_pgoff(vma->vm_flags, addr, end, 3118 vma->vm_start, vma->vm_end, 3119 pfn, &vma->vm_pgoff); 3120 if (err) 3121 return err; 3122 3123 vm_flags_set(vma, VM_REMAP_FLAGS); 3124 return 0; 3125 } 3126 3127 /** 3128 * remap_pfn_range - remap kernel memory to userspace 3129 * @vma: user vma to map to 3130 * @addr: target page aligned user address to start at 3131 * @pfn: page frame number of kernel physical memory address 3132 * @size: size of mapping area 3133 * @prot: page protection flags for this mapping 3134 * 3135 * Note: this is only safe if the mm semaphore is held when called. 3136 * 3137 * Return: %0 on success, negative error code otherwise. 3138 */ 3139 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3140 unsigned long pfn, unsigned long size, pgprot_t prot) 3141 { 3142 int err; 3143 3144 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size); 3145 if (err) 3146 return err; 3147 3148 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3149 } 3150 EXPORT_SYMBOL(remap_pfn_range); 3151 3152 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 3153 unsigned long pfn, unsigned long size, pgprot_t prot) 3154 { 3155 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3156 } 3157 3158 /** 3159 * vm_iomap_memory - remap memory to userspace 3160 * @vma: user vma to map to 3161 * @start: start of the physical memory to be mapped 3162 * @len: size of area 3163 * 3164 * This is a simplified io_remap_pfn_range() for common driver use. The 3165 * driver just needs to give us the physical memory range to be mapped, 3166 * we'll figure out the rest from the vma information. 3167 * 3168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3169 * whatever write-combining details or similar. 3170 * 3171 * Return: %0 on success, negative error code otherwise. 3172 */ 3173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3174 { 3175 unsigned long vm_len, pfn, pages; 3176 3177 /* Check that the physical memory area passed in looks valid */ 3178 if (start + len < start) 3179 return -EINVAL; 3180 /* 3181 * You *really* shouldn't map things that aren't page-aligned, 3182 * but we've historically allowed it because IO memory might 3183 * just have smaller alignment. 3184 */ 3185 len += start & ~PAGE_MASK; 3186 pfn = start >> PAGE_SHIFT; 3187 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3188 if (pfn + pages < pfn) 3189 return -EINVAL; 3190 3191 /* We start the mapping 'vm_pgoff' pages into the area */ 3192 if (vma->vm_pgoff > pages) 3193 return -EINVAL; 3194 pfn += vma->vm_pgoff; 3195 pages -= vma->vm_pgoff; 3196 3197 /* Can we fit all of the mapping? */ 3198 vm_len = vma->vm_end - vma->vm_start; 3199 if (vm_len >> PAGE_SHIFT > pages) 3200 return -EINVAL; 3201 3202 /* Ok, let it rip */ 3203 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3204 } 3205 EXPORT_SYMBOL(vm_iomap_memory); 3206 3207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3208 unsigned long addr, unsigned long end, 3209 pte_fn_t fn, void *data, bool create, 3210 pgtbl_mod_mask *mask) 3211 { 3212 pte_t *pte, *mapped_pte; 3213 int err = 0; 3214 spinlock_t *ptl; 3215 3216 if (create) { 3217 mapped_pte = pte = (mm == &init_mm) ? 3218 pte_alloc_kernel_track(pmd, addr, mask) : 3219 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3220 if (!pte) 3221 return -ENOMEM; 3222 } else { 3223 mapped_pte = pte = (mm == &init_mm) ? 3224 pte_offset_kernel(pmd, addr) : 3225 pte_offset_map_lock(mm, pmd, addr, &ptl); 3226 if (!pte) 3227 return -EINVAL; 3228 } 3229 3230 lazy_mmu_mode_enable(); 3231 3232 if (fn) { 3233 do { 3234 if (create || !pte_none(ptep_get(pte))) { 3235 err = fn(pte, addr, data); 3236 if (err) 3237 break; 3238 } 3239 } while (pte++, addr += PAGE_SIZE, addr != end); 3240 } 3241 *mask |= PGTBL_PTE_MODIFIED; 3242 3243 lazy_mmu_mode_disable(); 3244 3245 if (mm != &init_mm) 3246 pte_unmap_unlock(mapped_pte, ptl); 3247 return err; 3248 } 3249 3250 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3251 unsigned long addr, unsigned long end, 3252 pte_fn_t fn, void *data, bool create, 3253 pgtbl_mod_mask *mask) 3254 { 3255 pmd_t *pmd; 3256 unsigned long next; 3257 int err = 0; 3258 3259 BUG_ON(pud_leaf(*pud)); 3260 3261 if (create) { 3262 pmd = pmd_alloc_track(mm, pud, addr, mask); 3263 if (!pmd) 3264 return -ENOMEM; 3265 } else { 3266 pmd = pmd_offset(pud, addr); 3267 } 3268 do { 3269 next = pmd_addr_end(addr, end); 3270 if (pmd_none(*pmd) && !create) 3271 continue; 3272 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3273 return -EINVAL; 3274 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3275 if (!create) 3276 continue; 3277 pmd_clear_bad(pmd); 3278 } 3279 err = apply_to_pte_range(mm, pmd, addr, next, 3280 fn, data, create, mask); 3281 if (err) 3282 break; 3283 } while (pmd++, addr = next, addr != end); 3284 3285 return err; 3286 } 3287 3288 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3289 unsigned long addr, unsigned long end, 3290 pte_fn_t fn, void *data, bool create, 3291 pgtbl_mod_mask *mask) 3292 { 3293 pud_t *pud; 3294 unsigned long next; 3295 int err = 0; 3296 3297 if (create) { 3298 pud = pud_alloc_track(mm, p4d, addr, mask); 3299 if (!pud) 3300 return -ENOMEM; 3301 } else { 3302 pud = pud_offset(p4d, addr); 3303 } 3304 do { 3305 next = pud_addr_end(addr, end); 3306 if (pud_none(*pud) && !create) 3307 continue; 3308 if (WARN_ON_ONCE(pud_leaf(*pud))) 3309 return -EINVAL; 3310 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3311 if (!create) 3312 continue; 3313 pud_clear_bad(pud); 3314 } 3315 err = apply_to_pmd_range(mm, pud, addr, next, 3316 fn, data, create, mask); 3317 if (err) 3318 break; 3319 } while (pud++, addr = next, addr != end); 3320 3321 return err; 3322 } 3323 3324 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3325 unsigned long addr, unsigned long end, 3326 pte_fn_t fn, void *data, bool create, 3327 pgtbl_mod_mask *mask) 3328 { 3329 p4d_t *p4d; 3330 unsigned long next; 3331 int err = 0; 3332 3333 if (create) { 3334 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3335 if (!p4d) 3336 return -ENOMEM; 3337 } else { 3338 p4d = p4d_offset(pgd, addr); 3339 } 3340 do { 3341 next = p4d_addr_end(addr, end); 3342 if (p4d_none(*p4d) && !create) 3343 continue; 3344 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3345 return -EINVAL; 3346 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3347 if (!create) 3348 continue; 3349 p4d_clear_bad(p4d); 3350 } 3351 err = apply_to_pud_range(mm, p4d, addr, next, 3352 fn, data, create, mask); 3353 if (err) 3354 break; 3355 } while (p4d++, addr = next, addr != end); 3356 3357 return err; 3358 } 3359 3360 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3361 unsigned long size, pte_fn_t fn, 3362 void *data, bool create) 3363 { 3364 pgd_t *pgd; 3365 unsigned long start = addr, next; 3366 unsigned long end = addr + size; 3367 pgtbl_mod_mask mask = 0; 3368 int err = 0; 3369 3370 if (WARN_ON(addr >= end)) 3371 return -EINVAL; 3372 3373 pgd = pgd_offset(mm, addr); 3374 do { 3375 next = pgd_addr_end(addr, end); 3376 if (pgd_none(*pgd) && !create) 3377 continue; 3378 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3379 err = -EINVAL; 3380 break; 3381 } 3382 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3383 if (!create) 3384 continue; 3385 pgd_clear_bad(pgd); 3386 } 3387 err = apply_to_p4d_range(mm, pgd, addr, next, 3388 fn, data, create, &mask); 3389 if (err) 3390 break; 3391 } while (pgd++, addr = next, addr != end); 3392 3393 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3394 arch_sync_kernel_mappings(start, start + size); 3395 3396 return err; 3397 } 3398 3399 /* 3400 * Scan a region of virtual memory, filling in page tables as necessary 3401 * and calling a provided function on each leaf page table. 3402 */ 3403 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3404 unsigned long size, pte_fn_t fn, void *data) 3405 { 3406 return __apply_to_page_range(mm, addr, size, fn, data, true); 3407 } 3408 EXPORT_SYMBOL_GPL(apply_to_page_range); 3409 3410 /* 3411 * Scan a region of virtual memory, calling a provided function on 3412 * each leaf page table where it exists. 3413 * 3414 * Unlike apply_to_page_range, this does _not_ fill in page tables 3415 * where they are absent. 3416 */ 3417 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3418 unsigned long size, pte_fn_t fn, void *data) 3419 { 3420 return __apply_to_page_range(mm, addr, size, fn, data, false); 3421 } 3422 3423 /* 3424 * handle_pte_fault chooses page fault handler according to an entry which was 3425 * read non-atomically. Before making any commitment, on those architectures 3426 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3427 * parts, do_swap_page must check under lock before unmapping the pte and 3428 * proceeding (but do_wp_page is only called after already making such a check; 3429 * and do_anonymous_page can safely check later on). 3430 */ 3431 static inline int pte_unmap_same(struct vm_fault *vmf) 3432 { 3433 int same = 1; 3434 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3435 if (sizeof(pte_t) > sizeof(unsigned long)) { 3436 spin_lock(vmf->ptl); 3437 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3438 spin_unlock(vmf->ptl); 3439 } 3440 #endif 3441 pte_unmap(vmf->pte); 3442 vmf->pte = NULL; 3443 return same; 3444 } 3445 3446 /* 3447 * Return: 3448 * 0: copied succeeded 3449 * -EHWPOISON: copy failed due to hwpoison in source page 3450 * -EAGAIN: copied failed (some other reason) 3451 */ 3452 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3453 struct vm_fault *vmf) 3454 { 3455 int ret; 3456 void *kaddr; 3457 void __user *uaddr; 3458 struct vm_area_struct *vma = vmf->vma; 3459 struct mm_struct *mm = vma->vm_mm; 3460 unsigned long addr = vmf->address; 3461 3462 if (likely(src)) { 3463 if (copy_mc_user_highpage(dst, src, addr, vma)) 3464 return -EHWPOISON; 3465 return 0; 3466 } 3467 3468 /* 3469 * If the source page was a PFN mapping, we don't have 3470 * a "struct page" for it. We do a best-effort copy by 3471 * just copying from the original user address. If that 3472 * fails, we just zero-fill it. Live with it. 3473 */ 3474 kaddr = kmap_local_page(dst); 3475 pagefault_disable(); 3476 uaddr = (void __user *)(addr & PAGE_MASK); 3477 3478 /* 3479 * On architectures with software "accessed" bits, we would 3480 * take a double page fault, so mark it accessed here. 3481 */ 3482 vmf->pte = NULL; 3483 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3484 pte_t entry; 3485 3486 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3487 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3488 /* 3489 * Other thread has already handled the fault 3490 * and update local tlb only 3491 */ 3492 if (vmf->pte) 3493 update_mmu_tlb(vma, addr, vmf->pte); 3494 ret = -EAGAIN; 3495 goto pte_unlock; 3496 } 3497 3498 entry = pte_mkyoung(vmf->orig_pte); 3499 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3500 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3501 } 3502 3503 /* 3504 * This really shouldn't fail, because the page is there 3505 * in the page tables. But it might just be unreadable, 3506 * in which case we just give up and fill the result with 3507 * zeroes. 3508 */ 3509 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3510 if (vmf->pte) 3511 goto warn; 3512 3513 /* Re-validate under PTL if the page is still mapped */ 3514 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3515 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3516 /* The PTE changed under us, update local tlb */ 3517 if (vmf->pte) 3518 update_mmu_tlb(vma, addr, vmf->pte); 3519 ret = -EAGAIN; 3520 goto pte_unlock; 3521 } 3522 3523 /* 3524 * The same page can be mapped back since last copy attempt. 3525 * Try to copy again under PTL. 3526 */ 3527 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3528 /* 3529 * Give a warn in case there can be some obscure 3530 * use-case 3531 */ 3532 warn: 3533 WARN_ON_ONCE(1); 3534 clear_page(kaddr); 3535 } 3536 } 3537 3538 ret = 0; 3539 3540 pte_unlock: 3541 if (vmf->pte) 3542 pte_unmap_unlock(vmf->pte, vmf->ptl); 3543 pagefault_enable(); 3544 kunmap_local(kaddr); 3545 flush_dcache_page(dst); 3546 3547 return ret; 3548 } 3549 3550 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3551 { 3552 struct file *vm_file = vma->vm_file; 3553 3554 if (vm_file) 3555 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3556 3557 /* 3558 * Special mappings (e.g. VDSO) do not have any file so fake 3559 * a default GFP_KERNEL for them. 3560 */ 3561 return GFP_KERNEL; 3562 } 3563 3564 /* 3565 * Notify the address space that the page is about to become writable so that 3566 * it can prohibit this or wait for the page to get into an appropriate state. 3567 * 3568 * We do this without the lock held, so that it can sleep if it needs to. 3569 */ 3570 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3571 { 3572 vm_fault_t ret; 3573 unsigned int old_flags = vmf->flags; 3574 3575 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3576 3577 if (vmf->vma->vm_file && 3578 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3579 return VM_FAULT_SIGBUS; 3580 3581 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3582 /* Restore original flags so that caller is not surprised */ 3583 vmf->flags = old_flags; 3584 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3585 return ret; 3586 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3587 folio_lock(folio); 3588 if (!folio->mapping) { 3589 folio_unlock(folio); 3590 return 0; /* retry */ 3591 } 3592 ret |= VM_FAULT_LOCKED; 3593 } else 3594 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3595 return ret; 3596 } 3597 3598 /* 3599 * Handle dirtying of a page in shared file mapping on a write fault. 3600 * 3601 * The function expects the page to be locked and unlocks it. 3602 */ 3603 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3604 { 3605 struct vm_area_struct *vma = vmf->vma; 3606 struct address_space *mapping; 3607 struct folio *folio = page_folio(vmf->page); 3608 bool dirtied; 3609 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3610 3611 dirtied = folio_mark_dirty(folio); 3612 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3613 /* 3614 * Take a local copy of the address_space - folio.mapping may be zeroed 3615 * by truncate after folio_unlock(). The address_space itself remains 3616 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3617 * release semantics to prevent the compiler from undoing this copying. 3618 */ 3619 mapping = folio_raw_mapping(folio); 3620 folio_unlock(folio); 3621 3622 if (!page_mkwrite) 3623 file_update_time(vma->vm_file); 3624 3625 /* 3626 * Throttle page dirtying rate down to writeback speed. 3627 * 3628 * mapping may be NULL here because some device drivers do not 3629 * set page.mapping but still dirty their pages 3630 * 3631 * Drop the mmap_lock before waiting on IO, if we can. The file 3632 * is pinning the mapping, as per above. 3633 */ 3634 if ((dirtied || page_mkwrite) && mapping) { 3635 struct file *fpin; 3636 3637 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3638 balance_dirty_pages_ratelimited(mapping); 3639 if (fpin) { 3640 fput(fpin); 3641 return VM_FAULT_COMPLETED; 3642 } 3643 } 3644 3645 return 0; 3646 } 3647 3648 /* 3649 * Handle write page faults for pages that can be reused in the current vma 3650 * 3651 * This can happen either due to the mapping being with the VM_SHARED flag, 3652 * or due to us being the last reference standing to the page. In either 3653 * case, all we need to do here is to mark the page as writable and update 3654 * any related book-keeping. 3655 */ 3656 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3657 __releases(vmf->ptl) 3658 { 3659 struct vm_area_struct *vma = vmf->vma; 3660 pte_t entry; 3661 3662 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3663 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3664 3665 if (folio) { 3666 VM_BUG_ON(folio_test_anon(folio) && 3667 !PageAnonExclusive(vmf->page)); 3668 /* 3669 * Clear the folio's cpupid information as the existing 3670 * information potentially belongs to a now completely 3671 * unrelated process. 3672 */ 3673 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3674 } 3675 3676 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3677 entry = pte_mkyoung(vmf->orig_pte); 3678 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3679 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3680 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3681 pte_unmap_unlock(vmf->pte, vmf->ptl); 3682 count_vm_event(PGREUSE); 3683 } 3684 3685 /* 3686 * We could add a bitflag somewhere, but for now, we know that all 3687 * vm_ops that have a ->map_pages have been audited and don't need 3688 * the mmap_lock to be held. 3689 */ 3690 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3691 { 3692 struct vm_area_struct *vma = vmf->vma; 3693 3694 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3695 return 0; 3696 vma_end_read(vma); 3697 return VM_FAULT_RETRY; 3698 } 3699 3700 /** 3701 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3702 * @vmf: The vm_fault descriptor passed from the fault handler. 3703 * 3704 * When preparing to insert an anonymous page into a VMA from a 3705 * fault handler, call this function rather than anon_vma_prepare(). 3706 * If this vma does not already have an associated anon_vma and we are 3707 * only protected by the per-VMA lock, the caller must retry with the 3708 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3709 * determine if this VMA can share its anon_vma, and that's not safe to 3710 * do with only the per-VMA lock held for this VMA. 3711 * 3712 * Return: 0 if fault handling can proceed. Any other value should be 3713 * returned to the caller. 3714 */ 3715 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3716 { 3717 struct vm_area_struct *vma = vmf->vma; 3718 vm_fault_t ret = 0; 3719 3720 if (likely(vma->anon_vma)) 3721 return 0; 3722 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3723 if (!mmap_read_trylock(vma->vm_mm)) 3724 return VM_FAULT_RETRY; 3725 } 3726 if (__anon_vma_prepare(vma)) 3727 ret = VM_FAULT_OOM; 3728 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3729 mmap_read_unlock(vma->vm_mm); 3730 return ret; 3731 } 3732 3733 /* 3734 * Handle the case of a page which we actually need to copy to a new page, 3735 * either due to COW or unsharing. 3736 * 3737 * Called with mmap_lock locked and the old page referenced, but 3738 * without the ptl held. 3739 * 3740 * High level logic flow: 3741 * 3742 * - Allocate a page, copy the content of the old page to the new one. 3743 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3744 * - Take the PTL. If the pte changed, bail out and release the allocated page 3745 * - If the pte is still the way we remember it, update the page table and all 3746 * relevant references. This includes dropping the reference the page-table 3747 * held to the old page, as well as updating the rmap. 3748 * - In any case, unlock the PTL and drop the reference we took to the old page. 3749 */ 3750 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3751 { 3752 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3753 struct vm_area_struct *vma = vmf->vma; 3754 struct mm_struct *mm = vma->vm_mm; 3755 struct folio *old_folio = NULL; 3756 struct folio *new_folio = NULL; 3757 pte_t entry; 3758 int page_copied = 0; 3759 struct mmu_notifier_range range; 3760 vm_fault_t ret; 3761 bool pfn_is_zero; 3762 3763 delayacct_wpcopy_start(); 3764 3765 if (vmf->page) 3766 old_folio = page_folio(vmf->page); 3767 ret = vmf_anon_prepare(vmf); 3768 if (unlikely(ret)) 3769 goto out; 3770 3771 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3772 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3773 if (!new_folio) 3774 goto oom; 3775 3776 if (!pfn_is_zero) { 3777 int err; 3778 3779 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3780 if (err) { 3781 /* 3782 * COW failed, if the fault was solved by other, 3783 * it's fine. If not, userspace would re-fault on 3784 * the same address and we will handle the fault 3785 * from the second attempt. 3786 * The -EHWPOISON case will not be retried. 3787 */ 3788 folio_put(new_folio); 3789 if (old_folio) 3790 folio_put(old_folio); 3791 3792 delayacct_wpcopy_end(); 3793 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3794 } 3795 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3796 } 3797 3798 __folio_mark_uptodate(new_folio); 3799 3800 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3801 vmf->address & PAGE_MASK, 3802 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3803 mmu_notifier_invalidate_range_start(&range); 3804 3805 /* 3806 * Re-check the pte - we dropped the lock 3807 */ 3808 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3809 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3810 if (old_folio) { 3811 if (!folio_test_anon(old_folio)) { 3812 dec_mm_counter(mm, mm_counter_file(old_folio)); 3813 inc_mm_counter(mm, MM_ANONPAGES); 3814 } 3815 } else { 3816 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3817 inc_mm_counter(mm, MM_ANONPAGES); 3818 } 3819 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3820 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3821 entry = pte_sw_mkyoung(entry); 3822 if (unlikely(unshare)) { 3823 if (pte_soft_dirty(vmf->orig_pte)) 3824 entry = pte_mksoft_dirty(entry); 3825 if (pte_uffd_wp(vmf->orig_pte)) 3826 entry = pte_mkuffd_wp(entry); 3827 } else { 3828 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3829 } 3830 3831 /* 3832 * Clear the pte entry and flush it first, before updating the 3833 * pte with the new entry, to keep TLBs on different CPUs in 3834 * sync. This code used to set the new PTE then flush TLBs, but 3835 * that left a window where the new PTE could be loaded into 3836 * some TLBs while the old PTE remains in others. 3837 */ 3838 ptep_clear_flush(vma, vmf->address, vmf->pte); 3839 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3840 folio_add_lru_vma(new_folio, vma); 3841 BUG_ON(unshare && pte_write(entry)); 3842 set_pte_at(mm, vmf->address, vmf->pte, entry); 3843 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3844 if (old_folio) { 3845 /* 3846 * Only after switching the pte to the new page may 3847 * we remove the mapcount here. Otherwise another 3848 * process may come and find the rmap count decremented 3849 * before the pte is switched to the new page, and 3850 * "reuse" the old page writing into it while our pte 3851 * here still points into it and can be read by other 3852 * threads. 3853 * 3854 * The critical issue is to order this 3855 * folio_remove_rmap_pte() with the ptp_clear_flush 3856 * above. Those stores are ordered by (if nothing else,) 3857 * the barrier present in the atomic_add_negative 3858 * in folio_remove_rmap_pte(); 3859 * 3860 * Then the TLB flush in ptep_clear_flush ensures that 3861 * no process can access the old page before the 3862 * decremented mapcount is visible. And the old page 3863 * cannot be reused until after the decremented 3864 * mapcount is visible. So transitively, TLBs to 3865 * old page will be flushed before it can be reused. 3866 */ 3867 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3868 } 3869 3870 /* Free the old page.. */ 3871 new_folio = old_folio; 3872 page_copied = 1; 3873 pte_unmap_unlock(vmf->pte, vmf->ptl); 3874 } else if (vmf->pte) { 3875 update_mmu_tlb(vma, vmf->address, vmf->pte); 3876 pte_unmap_unlock(vmf->pte, vmf->ptl); 3877 } 3878 3879 mmu_notifier_invalidate_range_end(&range); 3880 3881 if (new_folio) 3882 folio_put(new_folio); 3883 if (old_folio) { 3884 if (page_copied) 3885 free_swap_cache(old_folio); 3886 folio_put(old_folio); 3887 } 3888 3889 delayacct_wpcopy_end(); 3890 return 0; 3891 oom: 3892 ret = VM_FAULT_OOM; 3893 out: 3894 if (old_folio) 3895 folio_put(old_folio); 3896 3897 delayacct_wpcopy_end(); 3898 return ret; 3899 } 3900 3901 /** 3902 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3903 * writeable once the page is prepared 3904 * 3905 * @vmf: structure describing the fault 3906 * @folio: the folio of vmf->page 3907 * 3908 * This function handles all that is needed to finish a write page fault in a 3909 * shared mapping due to PTE being read-only once the mapped page is prepared. 3910 * It handles locking of PTE and modifying it. 3911 * 3912 * The function expects the page to be locked or other protection against 3913 * concurrent faults / writeback (such as DAX radix tree locks). 3914 * 3915 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3916 * we acquired PTE lock. 3917 */ 3918 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3919 { 3920 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3921 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3922 &vmf->ptl); 3923 if (!vmf->pte) 3924 return VM_FAULT_NOPAGE; 3925 /* 3926 * We might have raced with another page fault while we released the 3927 * pte_offset_map_lock. 3928 */ 3929 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3930 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3931 pte_unmap_unlock(vmf->pte, vmf->ptl); 3932 return VM_FAULT_NOPAGE; 3933 } 3934 wp_page_reuse(vmf, folio); 3935 return 0; 3936 } 3937 3938 /* 3939 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3940 * mapping 3941 */ 3942 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3943 { 3944 struct vm_area_struct *vma = vmf->vma; 3945 3946 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3947 vm_fault_t ret; 3948 3949 pte_unmap_unlock(vmf->pte, vmf->ptl); 3950 ret = vmf_can_call_fault(vmf); 3951 if (ret) 3952 return ret; 3953 3954 vmf->flags |= FAULT_FLAG_MKWRITE; 3955 ret = vma->vm_ops->pfn_mkwrite(vmf); 3956 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3957 return ret; 3958 return finish_mkwrite_fault(vmf, NULL); 3959 } 3960 wp_page_reuse(vmf, NULL); 3961 return 0; 3962 } 3963 3964 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3965 __releases(vmf->ptl) 3966 { 3967 struct vm_area_struct *vma = vmf->vma; 3968 vm_fault_t ret = 0; 3969 3970 folio_get(folio); 3971 3972 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3973 vm_fault_t tmp; 3974 3975 pte_unmap_unlock(vmf->pte, vmf->ptl); 3976 tmp = vmf_can_call_fault(vmf); 3977 if (tmp) { 3978 folio_put(folio); 3979 return tmp; 3980 } 3981 3982 tmp = do_page_mkwrite(vmf, folio); 3983 if (unlikely(!tmp || (tmp & 3984 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3985 folio_put(folio); 3986 return tmp; 3987 } 3988 tmp = finish_mkwrite_fault(vmf, folio); 3989 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3990 folio_unlock(folio); 3991 folio_put(folio); 3992 return tmp; 3993 } 3994 } else { 3995 wp_page_reuse(vmf, folio); 3996 folio_lock(folio); 3997 } 3998 ret |= fault_dirty_shared_page(vmf); 3999 folio_put(folio); 4000 4001 return ret; 4002 } 4003 4004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4005 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4006 struct vm_area_struct *vma) 4007 { 4008 bool exclusive = false; 4009 4010 /* Let's just free up a large folio if only a single page is mapped. */ 4011 if (folio_large_mapcount(folio) <= 1) 4012 return false; 4013 4014 /* 4015 * The assumption for anonymous folios is that each page can only get 4016 * mapped once into each MM. The only exception are KSM folios, which 4017 * are always small. 4018 * 4019 * Each taken mapcount must be paired with exactly one taken reference, 4020 * whereby the refcount must be incremented before the mapcount when 4021 * mapping a page, and the refcount must be decremented after the 4022 * mapcount when unmapping a page. 4023 * 4024 * If all folio references are from mappings, and all mappings are in 4025 * the page tables of this MM, then this folio is exclusive to this MM. 4026 */ 4027 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 4028 return false; 4029 4030 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 4031 4032 if (unlikely(folio_test_swapcache(folio))) { 4033 /* 4034 * Note: freeing up the swapcache will fail if some PTEs are 4035 * still swap entries. 4036 */ 4037 if (!folio_trylock(folio)) 4038 return false; 4039 folio_free_swap(folio); 4040 folio_unlock(folio); 4041 } 4042 4043 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4044 return false; 4045 4046 /* Stabilize the mapcount vs. refcount and recheck. */ 4047 folio_lock_large_mapcount(folio); 4048 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 4049 4050 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 4051 goto unlock; 4052 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4053 goto unlock; 4054 4055 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 4056 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 4057 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 4058 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 4059 4060 /* 4061 * Do we need the folio lock? Likely not. If there would have been 4062 * references from page migration/swapout, we would have detected 4063 * an additional folio reference and never ended up here. 4064 */ 4065 exclusive = true; 4066 unlock: 4067 folio_unlock_large_mapcount(folio); 4068 return exclusive; 4069 } 4070 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4071 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4072 struct vm_area_struct *vma) 4073 { 4074 BUILD_BUG(); 4075 } 4076 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4077 4078 static bool wp_can_reuse_anon_folio(struct folio *folio, 4079 struct vm_area_struct *vma) 4080 { 4081 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 4082 return __wp_can_reuse_large_anon_folio(folio, vma); 4083 4084 /* 4085 * We have to verify under folio lock: these early checks are 4086 * just an optimization to avoid locking the folio and freeing 4087 * the swapcache if there is little hope that we can reuse. 4088 * 4089 * KSM doesn't necessarily raise the folio refcount. 4090 */ 4091 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4092 return false; 4093 if (!folio_test_lru(folio)) 4094 /* 4095 * We cannot easily detect+handle references from 4096 * remote LRU caches or references to LRU folios. 4097 */ 4098 lru_add_drain(); 4099 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4100 return false; 4101 if (!folio_trylock(folio)) 4102 return false; 4103 if (folio_test_swapcache(folio)) 4104 folio_free_swap(folio); 4105 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4106 folio_unlock(folio); 4107 return false; 4108 } 4109 /* 4110 * Ok, we've got the only folio reference from our mapping 4111 * and the folio is locked, it's dark out, and we're wearing 4112 * sunglasses. Hit it. 4113 */ 4114 folio_move_anon_rmap(folio, vma); 4115 folio_unlock(folio); 4116 return true; 4117 } 4118 4119 /* 4120 * This routine handles present pages, when 4121 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4122 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4123 * (FAULT_FLAG_UNSHARE) 4124 * 4125 * It is done by copying the page to a new address and decrementing the 4126 * shared-page counter for the old page. 4127 * 4128 * Note that this routine assumes that the protection checks have been 4129 * done by the caller (the low-level page fault routine in most cases). 4130 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4131 * done any necessary COW. 4132 * 4133 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4134 * though the page will change only once the write actually happens. This 4135 * avoids a few races, and potentially makes it more efficient. 4136 * 4137 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4138 * but allow concurrent faults), with pte both mapped and locked. 4139 * We return with mmap_lock still held, but pte unmapped and unlocked. 4140 */ 4141 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4142 __releases(vmf->ptl) 4143 { 4144 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4145 struct vm_area_struct *vma = vmf->vma; 4146 struct folio *folio = NULL; 4147 pte_t pte; 4148 4149 if (likely(!unshare)) { 4150 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4151 if (!userfaultfd_wp_async(vma)) { 4152 pte_unmap_unlock(vmf->pte, vmf->ptl); 4153 return handle_userfault(vmf, VM_UFFD_WP); 4154 } 4155 4156 /* 4157 * Nothing needed (cache flush, TLB invalidations, 4158 * etc.) because we're only removing the uffd-wp bit, 4159 * which is completely invisible to the user. 4160 */ 4161 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4162 4163 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4164 /* 4165 * Update this to be prepared for following up CoW 4166 * handling 4167 */ 4168 vmf->orig_pte = pte; 4169 } 4170 4171 /* 4172 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4173 * is flushed in this case before copying. 4174 */ 4175 if (unlikely(userfaultfd_wp(vmf->vma) && 4176 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4177 flush_tlb_page(vmf->vma, vmf->address); 4178 } 4179 4180 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4181 4182 if (vmf->page) 4183 folio = page_folio(vmf->page); 4184 4185 /* 4186 * Shared mapping: we are guaranteed to have VM_WRITE and 4187 * FAULT_FLAG_WRITE set at this point. 4188 */ 4189 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4190 /* 4191 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4192 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4193 * 4194 * We should not cow pages in a shared writeable mapping. 4195 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4196 */ 4197 if (!vmf->page || is_fsdax_page(vmf->page)) { 4198 vmf->page = NULL; 4199 return wp_pfn_shared(vmf); 4200 } 4201 return wp_page_shared(vmf, folio); 4202 } 4203 4204 /* 4205 * Private mapping: create an exclusive anonymous page copy if reuse 4206 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4207 * 4208 * If we encounter a page that is marked exclusive, we must reuse 4209 * the page without further checks. 4210 */ 4211 if (folio && folio_test_anon(folio) && 4212 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4213 if (!PageAnonExclusive(vmf->page)) 4214 SetPageAnonExclusive(vmf->page); 4215 if (unlikely(unshare)) { 4216 pte_unmap_unlock(vmf->pte, vmf->ptl); 4217 return 0; 4218 } 4219 wp_page_reuse(vmf, folio); 4220 return 0; 4221 } 4222 /* 4223 * Ok, we need to copy. Oh, well.. 4224 */ 4225 if (folio) 4226 folio_get(folio); 4227 4228 pte_unmap_unlock(vmf->pte, vmf->ptl); 4229 #ifdef CONFIG_KSM 4230 if (folio && folio_test_ksm(folio)) 4231 count_vm_event(COW_KSM); 4232 #endif 4233 return wp_page_copy(vmf); 4234 } 4235 4236 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4237 unsigned long start_addr, unsigned long end_addr, 4238 struct zap_details *details) 4239 { 4240 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4241 } 4242 4243 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4244 pgoff_t first_index, 4245 pgoff_t last_index, 4246 struct zap_details *details) 4247 { 4248 struct vm_area_struct *vma; 4249 pgoff_t vba, vea, zba, zea; 4250 4251 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4252 vba = vma->vm_pgoff; 4253 vea = vba + vma_pages(vma) - 1; 4254 zba = max(first_index, vba); 4255 zea = min(last_index, vea); 4256 4257 unmap_mapping_range_vma(vma, 4258 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4259 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4260 details); 4261 } 4262 } 4263 4264 /** 4265 * unmap_mapping_folio() - Unmap single folio from processes. 4266 * @folio: The locked folio to be unmapped. 4267 * 4268 * Unmap this folio from any userspace process which still has it mmaped. 4269 * Typically, for efficiency, the range of nearby pages has already been 4270 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4271 * truncation or invalidation holds the lock on a folio, it may find that 4272 * the page has been remapped again: and then uses unmap_mapping_folio() 4273 * to unmap it finally. 4274 */ 4275 void unmap_mapping_folio(struct folio *folio) 4276 { 4277 struct address_space *mapping = folio->mapping; 4278 struct zap_details details = { }; 4279 pgoff_t first_index; 4280 pgoff_t last_index; 4281 4282 VM_BUG_ON(!folio_test_locked(folio)); 4283 4284 first_index = folio->index; 4285 last_index = folio_next_index(folio) - 1; 4286 4287 details.even_cows = false; 4288 details.single_folio = folio; 4289 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4290 4291 i_mmap_lock_read(mapping); 4292 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4293 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4294 last_index, &details); 4295 i_mmap_unlock_read(mapping); 4296 } 4297 4298 /** 4299 * unmap_mapping_pages() - Unmap pages from processes. 4300 * @mapping: The address space containing pages to be unmapped. 4301 * @start: Index of first page to be unmapped. 4302 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4303 * @even_cows: Whether to unmap even private COWed pages. 4304 * 4305 * Unmap the pages in this address space from any userspace process which 4306 * has them mmaped. Generally, you want to remove COWed pages as well when 4307 * a file is being truncated, but not when invalidating pages from the page 4308 * cache. 4309 */ 4310 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4311 pgoff_t nr, bool even_cows) 4312 { 4313 struct zap_details details = { }; 4314 pgoff_t first_index = start; 4315 pgoff_t last_index = start + nr - 1; 4316 4317 details.even_cows = even_cows; 4318 if (last_index < first_index) 4319 last_index = ULONG_MAX; 4320 4321 i_mmap_lock_read(mapping); 4322 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4323 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4324 last_index, &details); 4325 i_mmap_unlock_read(mapping); 4326 } 4327 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4328 4329 /** 4330 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4331 * address_space corresponding to the specified byte range in the underlying 4332 * file. 4333 * 4334 * @mapping: the address space containing mmaps to be unmapped. 4335 * @holebegin: byte in first page to unmap, relative to the start of 4336 * the underlying file. This will be rounded down to a PAGE_SIZE 4337 * boundary. Note that this is different from truncate_pagecache(), which 4338 * must keep the partial page. In contrast, we must get rid of 4339 * partial pages. 4340 * @holelen: size of prospective hole in bytes. This will be rounded 4341 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4342 * end of the file. 4343 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4344 * but 0 when invalidating pagecache, don't throw away private data. 4345 */ 4346 void unmap_mapping_range(struct address_space *mapping, 4347 loff_t const holebegin, loff_t const holelen, int even_cows) 4348 { 4349 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4350 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4351 4352 /* Check for overflow. */ 4353 if (sizeof(holelen) > sizeof(hlen)) { 4354 long long holeend = 4355 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4356 if (holeend & ~(long long)ULONG_MAX) 4357 hlen = ULONG_MAX - hba + 1; 4358 } 4359 4360 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4361 } 4362 EXPORT_SYMBOL(unmap_mapping_range); 4363 4364 /* 4365 * Restore a potential device exclusive pte to a working pte entry 4366 */ 4367 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4368 { 4369 struct folio *folio = page_folio(vmf->page); 4370 struct vm_area_struct *vma = vmf->vma; 4371 struct mmu_notifier_range range; 4372 vm_fault_t ret; 4373 4374 /* 4375 * We need a reference to lock the folio because we don't hold 4376 * the PTL so a racing thread can remove the device-exclusive 4377 * entry and unmap it. If the folio is free the entry must 4378 * have been removed already. If it happens to have already 4379 * been re-allocated after being freed all we do is lock and 4380 * unlock it. 4381 */ 4382 if (!folio_try_get(folio)) 4383 return 0; 4384 4385 ret = folio_lock_or_retry(folio, vmf); 4386 if (ret) { 4387 folio_put(folio); 4388 return ret; 4389 } 4390 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4391 vma->vm_mm, vmf->address & PAGE_MASK, 4392 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4393 mmu_notifier_invalidate_range_start(&range); 4394 4395 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4396 &vmf->ptl); 4397 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4398 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4399 vmf->pte, vmf->orig_pte); 4400 4401 if (vmf->pte) 4402 pte_unmap_unlock(vmf->pte, vmf->ptl); 4403 folio_unlock(folio); 4404 folio_put(folio); 4405 4406 mmu_notifier_invalidate_range_end(&range); 4407 return 0; 4408 } 4409 4410 /* 4411 * Check if we should call folio_free_swap to free the swap cache. 4412 * folio_free_swap only frees the swap cache to release the slot if swap 4413 * count is zero, so we don't need to check the swap count here. 4414 */ 4415 static inline bool should_try_to_free_swap(struct swap_info_struct *si, 4416 struct folio *folio, 4417 struct vm_area_struct *vma, 4418 unsigned int extra_refs, 4419 unsigned int fault_flags) 4420 { 4421 if (!folio_test_swapcache(folio)) 4422 return false; 4423 /* 4424 * Always try to free swap cache for SWP_SYNCHRONOUS_IO devices. Swap 4425 * cache can help save some IO or memory overhead, but these devices 4426 * are fast, and meanwhile, swap cache pinning the slot deferring the 4427 * release of metadata or fragmentation is a more critical issue. 4428 */ 4429 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) 4430 return true; 4431 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4432 folio_test_mlocked(folio)) 4433 return true; 4434 /* 4435 * If we want to map a page that's in the swapcache writable, we 4436 * have to detect via the refcount if we're really the exclusive 4437 * user. Try freeing the swapcache to get rid of the swapcache 4438 * reference only in case it's likely that we'll be the exclusive user. 4439 */ 4440 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4441 folio_ref_count(folio) == (extra_refs + folio_nr_pages(folio)); 4442 } 4443 4444 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4445 { 4446 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4447 vmf->address, &vmf->ptl); 4448 if (!vmf->pte) 4449 return 0; 4450 /* 4451 * Be careful so that we will only recover a special uffd-wp pte into a 4452 * none pte. Otherwise it means the pte could have changed, so retry. 4453 * 4454 * This should also cover the case where e.g. the pte changed 4455 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4456 * So pte_is_marker() check is not enough to safely drop the pte. 4457 */ 4458 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4459 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4460 pte_unmap_unlock(vmf->pte, vmf->ptl); 4461 return 0; 4462 } 4463 4464 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4465 { 4466 if (vma_is_anonymous(vmf->vma)) 4467 return do_anonymous_page(vmf); 4468 else 4469 return do_fault(vmf); 4470 } 4471 4472 /* 4473 * This is actually a page-missing access, but with uffd-wp special pte 4474 * installed. It means this pte was wr-protected before being unmapped. 4475 */ 4476 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4477 { 4478 /* 4479 * Just in case there're leftover special ptes even after the region 4480 * got unregistered - we can simply clear them. 4481 */ 4482 if (unlikely(!userfaultfd_wp(vmf->vma))) 4483 return pte_marker_clear(vmf); 4484 4485 return do_pte_missing(vmf); 4486 } 4487 4488 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4489 { 4490 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte); 4491 const pte_marker marker = softleaf_to_marker(entry); 4492 4493 /* 4494 * PTE markers should never be empty. If anything weird happened, 4495 * the best thing to do is to kill the process along with its mm. 4496 */ 4497 if (WARN_ON_ONCE(!marker)) 4498 return VM_FAULT_SIGBUS; 4499 4500 /* Higher priority than uffd-wp when data corrupted */ 4501 if (marker & PTE_MARKER_POISONED) 4502 return VM_FAULT_HWPOISON; 4503 4504 /* Hitting a guard page is always a fatal condition. */ 4505 if (marker & PTE_MARKER_GUARD) 4506 return VM_FAULT_SIGSEGV; 4507 4508 if (softleaf_is_uffd_wp_marker(entry)) 4509 return pte_marker_handle_uffd_wp(vmf); 4510 4511 /* This is an unknown pte marker */ 4512 return VM_FAULT_SIGBUS; 4513 } 4514 4515 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4516 { 4517 struct vm_area_struct *vma = vmf->vma; 4518 struct folio *folio; 4519 softleaf_t entry; 4520 4521 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4522 if (!folio) 4523 return NULL; 4524 4525 entry = softleaf_from_pte(vmf->orig_pte); 4526 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4527 GFP_KERNEL, entry)) { 4528 folio_put(folio); 4529 return NULL; 4530 } 4531 4532 return folio; 4533 } 4534 4535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4536 /* 4537 * Check if the PTEs within a range are contiguous swap entries 4538 * and have consistent swapcache, zeromap. 4539 */ 4540 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4541 { 4542 unsigned long addr; 4543 softleaf_t entry; 4544 int idx; 4545 pte_t pte; 4546 4547 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4548 idx = (vmf->address - addr) / PAGE_SIZE; 4549 pte = ptep_get(ptep); 4550 4551 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4552 return false; 4553 entry = softleaf_from_pte(pte); 4554 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4555 return false; 4556 4557 /* 4558 * swap_read_folio() can't handle the case a large folio is hybridly 4559 * from different backends. And they are likely corner cases. Similar 4560 * things might be added once zswap support large folios. 4561 */ 4562 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4563 return false; 4564 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4565 return false; 4566 4567 return true; 4568 } 4569 4570 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4571 unsigned long addr, 4572 unsigned long orders) 4573 { 4574 int order, nr; 4575 4576 order = highest_order(orders); 4577 4578 /* 4579 * To swap in a THP with nr pages, we require that its first swap_offset 4580 * is aligned with that number, as it was when the THP was swapped out. 4581 * This helps filter out most invalid entries. 4582 */ 4583 while (orders) { 4584 nr = 1 << order; 4585 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4586 break; 4587 order = next_order(&orders, order); 4588 } 4589 4590 return orders; 4591 } 4592 4593 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4594 { 4595 struct vm_area_struct *vma = vmf->vma; 4596 unsigned long orders; 4597 struct folio *folio; 4598 unsigned long addr; 4599 softleaf_t entry; 4600 spinlock_t *ptl; 4601 pte_t *pte; 4602 gfp_t gfp; 4603 int order; 4604 4605 /* 4606 * If uffd is active for the vma we need per-page fault fidelity to 4607 * maintain the uffd semantics. 4608 */ 4609 if (unlikely(userfaultfd_armed(vma))) 4610 goto fallback; 4611 4612 /* 4613 * A large swapped out folio could be partially or fully in zswap. We 4614 * lack handling for such cases, so fallback to swapping in order-0 4615 * folio. 4616 */ 4617 if (!zswap_never_enabled()) 4618 goto fallback; 4619 4620 entry = softleaf_from_pte(vmf->orig_pte); 4621 /* 4622 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4623 * and suitable for swapping THP. 4624 */ 4625 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4626 BIT(PMD_ORDER) - 1); 4627 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4628 orders = thp_swap_suitable_orders(swp_offset(entry), 4629 vmf->address, orders); 4630 4631 if (!orders) 4632 goto fallback; 4633 4634 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4635 vmf->address & PMD_MASK, &ptl); 4636 if (unlikely(!pte)) 4637 goto fallback; 4638 4639 /* 4640 * For do_swap_page, find the highest order where the aligned range is 4641 * completely swap entries with contiguous swap offsets. 4642 */ 4643 order = highest_order(orders); 4644 while (orders) { 4645 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4646 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4647 break; 4648 order = next_order(&orders, order); 4649 } 4650 4651 pte_unmap_unlock(pte, ptl); 4652 4653 /* Try allocating the highest of the remaining orders. */ 4654 gfp = vma_thp_gfp_mask(vma); 4655 while (orders) { 4656 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4657 folio = vma_alloc_folio(gfp, order, vma, addr); 4658 if (folio) { 4659 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4660 gfp, entry)) 4661 return folio; 4662 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4663 folio_put(folio); 4664 } 4665 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4666 order = next_order(&orders, order); 4667 } 4668 4669 fallback: 4670 return __alloc_swap_folio(vmf); 4671 } 4672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4673 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4674 { 4675 return __alloc_swap_folio(vmf); 4676 } 4677 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4678 4679 /* Sanity check that a folio is fully exclusive */ 4680 static void check_swap_exclusive(struct folio *folio, swp_entry_t entry, 4681 unsigned int nr_pages) 4682 { 4683 /* Called under PT locked and folio locked, the swap count is stable */ 4684 do { 4685 VM_WARN_ON_ONCE_FOLIO(__swap_count(entry) != 1, folio); 4686 entry.val++; 4687 } while (--nr_pages); 4688 } 4689 4690 /* 4691 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4692 * but allow concurrent faults), and pte mapped but not yet locked. 4693 * We return with pte unmapped and unlocked. 4694 * 4695 * We return with the mmap_lock locked or unlocked in the same cases 4696 * as does filemap_fault(). 4697 */ 4698 vm_fault_t do_swap_page(struct vm_fault *vmf) 4699 { 4700 struct vm_area_struct *vma = vmf->vma; 4701 struct folio *swapcache = NULL, *folio; 4702 struct page *page; 4703 struct swap_info_struct *si = NULL; 4704 rmap_t rmap_flags = RMAP_NONE; 4705 bool exclusive = false; 4706 softleaf_t entry; 4707 pte_t pte; 4708 vm_fault_t ret = 0; 4709 int nr_pages; 4710 unsigned long page_idx; 4711 unsigned long address; 4712 pte_t *ptep; 4713 4714 if (!pte_unmap_same(vmf)) 4715 goto out; 4716 4717 entry = softleaf_from_pte(vmf->orig_pte); 4718 if (unlikely(!softleaf_is_swap(entry))) { 4719 if (softleaf_is_migration(entry)) { 4720 migration_entry_wait(vma->vm_mm, vmf->pmd, 4721 vmf->address); 4722 } else if (softleaf_is_device_exclusive(entry)) { 4723 vmf->page = softleaf_to_page(entry); 4724 ret = remove_device_exclusive_entry(vmf); 4725 } else if (softleaf_is_device_private(entry)) { 4726 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4727 /* 4728 * migrate_to_ram is not yet ready to operate 4729 * under VMA lock. 4730 */ 4731 vma_end_read(vma); 4732 ret = VM_FAULT_RETRY; 4733 goto out; 4734 } 4735 4736 vmf->page = softleaf_to_page(entry); 4737 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4738 vmf->address, &vmf->ptl); 4739 if (unlikely(!vmf->pte || 4740 !pte_same(ptep_get(vmf->pte), 4741 vmf->orig_pte))) 4742 goto unlock; 4743 4744 /* 4745 * Get a page reference while we know the page can't be 4746 * freed. 4747 */ 4748 if (trylock_page(vmf->page)) { 4749 struct dev_pagemap *pgmap; 4750 4751 get_page(vmf->page); 4752 pte_unmap_unlock(vmf->pte, vmf->ptl); 4753 pgmap = page_pgmap(vmf->page); 4754 ret = pgmap->ops->migrate_to_ram(vmf); 4755 unlock_page(vmf->page); 4756 put_page(vmf->page); 4757 } else { 4758 pte_unmap_unlock(vmf->pte, vmf->ptl); 4759 } 4760 } else if (softleaf_is_hwpoison(entry)) { 4761 ret = VM_FAULT_HWPOISON; 4762 } else if (softleaf_is_marker(entry)) { 4763 ret = handle_pte_marker(vmf); 4764 } else { 4765 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4766 ret = VM_FAULT_SIGBUS; 4767 } 4768 goto out; 4769 } 4770 4771 /* Prevent swapoff from happening to us. */ 4772 si = get_swap_device(entry); 4773 if (unlikely(!si)) 4774 goto out; 4775 4776 folio = swap_cache_get_folio(entry); 4777 if (folio) 4778 swap_update_readahead(folio, vma, vmf->address); 4779 if (!folio) { 4780 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 4781 folio = alloc_swap_folio(vmf); 4782 if (folio) { 4783 /* 4784 * folio is charged, so swapin can only fail due 4785 * to raced swapin and return NULL. 4786 */ 4787 swapcache = swapin_folio(entry, folio); 4788 if (swapcache != folio) 4789 folio_put(folio); 4790 folio = swapcache; 4791 } 4792 } else { 4793 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); 4794 } 4795 4796 if (!folio) { 4797 /* 4798 * Back out if somebody else faulted in this pte 4799 * while we released the pte lock. 4800 */ 4801 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4802 vmf->address, &vmf->ptl); 4803 if (likely(vmf->pte && 4804 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4805 ret = VM_FAULT_OOM; 4806 goto unlock; 4807 } 4808 4809 /* Had to read the page from swap area: Major fault */ 4810 ret = VM_FAULT_MAJOR; 4811 count_vm_event(PGMAJFAULT); 4812 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4813 } 4814 4815 swapcache = folio; 4816 ret |= folio_lock_or_retry(folio, vmf); 4817 if (ret & VM_FAULT_RETRY) 4818 goto out_release; 4819 4820 page = folio_file_page(folio, swp_offset(entry)); 4821 /* 4822 * Make sure folio_free_swap() or swapoff did not release the 4823 * swapcache from under us. The page pin, and pte_same test 4824 * below, are not enough to exclude that. Even if it is still 4825 * swapcache, we need to check that the page's swap has not 4826 * changed. 4827 */ 4828 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4829 goto out_page; 4830 4831 if (unlikely(PageHWPoison(page))) { 4832 /* 4833 * hwpoisoned dirty swapcache pages are kept for killing 4834 * owner processes (which may be unknown at hwpoison time) 4835 */ 4836 ret = VM_FAULT_HWPOISON; 4837 goto out_page; 4838 } 4839 4840 /* 4841 * KSM sometimes has to copy on read faults, for example, if 4842 * folio->index of non-ksm folios would be nonlinear inside the 4843 * anon VMA -- the ksm flag is lost on actual swapout. 4844 */ 4845 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4846 if (unlikely(!folio)) { 4847 ret = VM_FAULT_OOM; 4848 folio = swapcache; 4849 goto out_page; 4850 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4851 ret = VM_FAULT_HWPOISON; 4852 folio = swapcache; 4853 goto out_page; 4854 } else if (folio != swapcache) 4855 page = folio_page(folio, 0); 4856 4857 /* 4858 * If we want to map a page that's in the swapcache writable, we 4859 * have to detect via the refcount if we're really the exclusive 4860 * owner. Try removing the extra reference from the local LRU 4861 * caches if required. 4862 */ 4863 if ((vmf->flags & FAULT_FLAG_WRITE) && 4864 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4865 lru_add_drain(); 4866 4867 folio_throttle_swaprate(folio, GFP_KERNEL); 4868 4869 /* 4870 * Back out if somebody else already faulted in this pte. 4871 */ 4872 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4873 &vmf->ptl); 4874 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4875 goto out_nomap; 4876 4877 if (unlikely(!folio_test_uptodate(folio))) { 4878 ret = VM_FAULT_SIGBUS; 4879 goto out_nomap; 4880 } 4881 4882 nr_pages = 1; 4883 page_idx = 0; 4884 address = vmf->address; 4885 ptep = vmf->pte; 4886 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4887 int nr = folio_nr_pages(folio); 4888 unsigned long idx = folio_page_idx(folio, page); 4889 unsigned long folio_start = address - idx * PAGE_SIZE; 4890 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4891 pte_t *folio_ptep; 4892 pte_t folio_pte; 4893 4894 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4895 goto check_folio; 4896 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4897 goto check_folio; 4898 4899 folio_ptep = vmf->pte - idx; 4900 folio_pte = ptep_get(folio_ptep); 4901 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4902 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4903 goto check_folio; 4904 4905 page_idx = idx; 4906 address = folio_start; 4907 ptep = folio_ptep; 4908 nr_pages = nr; 4909 entry = folio->swap; 4910 page = &folio->page; 4911 } 4912 4913 check_folio: 4914 /* 4915 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4916 * must never point at an anonymous page in the swapcache that is 4917 * PG_anon_exclusive. Sanity check that this holds and especially, that 4918 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4919 * check after taking the PT lock and making sure that nobody 4920 * concurrently faulted in this page and set PG_anon_exclusive. 4921 */ 4922 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4923 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4924 4925 /* 4926 * If a large folio already belongs to anon mapping, then we 4927 * can just go on and map it partially. 4928 * If not, with the large swapin check above failing, the page table 4929 * have changed, so sub pages might got charged to the wrong cgroup, 4930 * or even should be shmem. So we have to free it and fallback. 4931 * Nothing should have touched it, both anon and shmem checks if a 4932 * large folio is fully appliable before use. 4933 * 4934 * This will be removed once we unify folio allocation in the swap cache 4935 * layer, where allocation of a folio stabilizes the swap entries. 4936 */ 4937 if (!folio_test_anon(folio) && folio_test_large(folio) && 4938 nr_pages != folio_nr_pages(folio)) { 4939 if (!WARN_ON_ONCE(folio_test_dirty(folio))) 4940 swap_cache_del_folio(folio); 4941 goto out_nomap; 4942 } 4943 4944 /* 4945 * Check under PT lock (to protect against concurrent fork() sharing 4946 * the swap entry concurrently) for certainly exclusive pages. 4947 */ 4948 if (!folio_test_ksm(folio)) { 4949 /* 4950 * The can_swapin_thp check above ensures all PTE have 4951 * same exclusiveness. Checking just one PTE is fine. 4952 */ 4953 exclusive = pte_swp_exclusive(vmf->orig_pte); 4954 if (exclusive) 4955 check_swap_exclusive(folio, entry, nr_pages); 4956 if (folio != swapcache) { 4957 /* 4958 * We have a fresh page that is not exposed to the 4959 * swapcache -> certainly exclusive. 4960 */ 4961 exclusive = true; 4962 } else if (exclusive && folio_test_writeback(folio) && 4963 data_race(si->flags & SWP_STABLE_WRITES)) { 4964 /* 4965 * This is tricky: not all swap backends support 4966 * concurrent page modifications while under writeback. 4967 * 4968 * So if we stumble over such a page in the swapcache 4969 * we must not set the page exclusive, otherwise we can 4970 * map it writable without further checks and modify it 4971 * while still under writeback. 4972 * 4973 * For these problematic swap backends, simply drop the 4974 * exclusive marker: this is perfectly fine as we start 4975 * writeback only if we fully unmapped the page and 4976 * there are no unexpected references on the page after 4977 * unmapping succeeded. After fully unmapped, no 4978 * further GUP references (FOLL_GET and FOLL_PIN) can 4979 * appear, so dropping the exclusive marker and mapping 4980 * it only R/O is fine. 4981 */ 4982 exclusive = false; 4983 } 4984 } 4985 4986 /* 4987 * Some architectures may have to restore extra metadata to the page 4988 * when reading from swap. This metadata may be indexed by swap entry 4989 * so this must be called before folio_put_swap(). 4990 */ 4991 arch_swap_restore(folio_swap(entry, folio), folio); 4992 4993 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4994 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4995 pte = mk_pte(page, vma->vm_page_prot); 4996 if (pte_swp_soft_dirty(vmf->orig_pte)) 4997 pte = pte_mksoft_dirty(pte); 4998 if (pte_swp_uffd_wp(vmf->orig_pte)) 4999 pte = pte_mkuffd_wp(pte); 5000 5001 /* 5002 * Same logic as in do_wp_page(); however, optimize for pages that are 5003 * certainly not shared either because we just allocated them without 5004 * exposing them to the swapcache or because the swap entry indicates 5005 * exclusivity. 5006 */ 5007 if (!folio_test_ksm(folio) && 5008 (exclusive || folio_ref_count(folio) == 1)) { 5009 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 5010 !pte_needs_soft_dirty_wp(vma, pte)) { 5011 pte = pte_mkwrite(pte, vma); 5012 if (vmf->flags & FAULT_FLAG_WRITE) { 5013 pte = pte_mkdirty(pte); 5014 vmf->flags &= ~FAULT_FLAG_WRITE; 5015 } 5016 } 5017 rmap_flags |= RMAP_EXCLUSIVE; 5018 } 5019 folio_ref_add(folio, nr_pages - 1); 5020 flush_icache_pages(vma, page, nr_pages); 5021 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 5022 5023 /* ksm created a completely new copy */ 5024 if (unlikely(folio != swapcache)) { 5025 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 5026 folio_add_lru_vma(folio, vma); 5027 folio_put_swap(swapcache, NULL); 5028 } else if (!folio_test_anon(folio)) { 5029 /* 5030 * We currently only expect !anon folios that are fully 5031 * mappable. See the comment after can_swapin_thp above. 5032 */ 5033 VM_WARN_ON_ONCE_FOLIO(folio_nr_pages(folio) != nr_pages, folio); 5034 VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio); 5035 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 5036 folio_put_swap(folio, NULL); 5037 } else { 5038 VM_WARN_ON_ONCE(nr_pages != 1 && nr_pages != folio_nr_pages(folio)); 5039 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 5040 rmap_flags); 5041 folio_put_swap(folio, nr_pages == 1 ? page : NULL); 5042 } 5043 5044 VM_BUG_ON(!folio_test_anon(folio) || 5045 (pte_write(pte) && !PageAnonExclusive(page))); 5046 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 5047 arch_do_swap_page_nr(vma->vm_mm, vma, address, 5048 pte, pte, nr_pages); 5049 5050 /* 5051 * Remove the swap entry and conditionally try to free up the swapcache. 5052 * Do it after mapping, so raced page faults will likely see the folio 5053 * in swap cache and wait on the folio lock. 5054 */ 5055 if (should_try_to_free_swap(si, folio, vma, nr_pages, vmf->flags)) 5056 folio_free_swap(folio); 5057 5058 folio_unlock(folio); 5059 if (unlikely(folio != swapcache)) { 5060 /* 5061 * Hold the lock to avoid the swap entry to be reused 5062 * until we take the PT lock for the pte_same() check 5063 * (to avoid false positives from pte_same). For 5064 * further safety release the lock after the folio_put_swap 5065 * so that the swap count won't change under a 5066 * parallel locked swapcache. 5067 */ 5068 folio_unlock(swapcache); 5069 folio_put(swapcache); 5070 } 5071 5072 if (vmf->flags & FAULT_FLAG_WRITE) { 5073 ret |= do_wp_page(vmf); 5074 if (ret & VM_FAULT_ERROR) 5075 ret &= VM_FAULT_ERROR; 5076 goto out; 5077 } 5078 5079 /* No need to invalidate - it was non-present before */ 5080 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 5081 unlock: 5082 if (vmf->pte) 5083 pte_unmap_unlock(vmf->pte, vmf->ptl); 5084 out: 5085 if (si) 5086 put_swap_device(si); 5087 return ret; 5088 out_nomap: 5089 if (vmf->pte) 5090 pte_unmap_unlock(vmf->pte, vmf->ptl); 5091 out_page: 5092 if (folio_test_swapcache(folio)) 5093 folio_free_swap(folio); 5094 folio_unlock(folio); 5095 out_release: 5096 folio_put(folio); 5097 if (folio != swapcache) { 5098 folio_unlock(swapcache); 5099 folio_put(swapcache); 5100 } 5101 if (si) 5102 put_swap_device(si); 5103 return ret; 5104 } 5105 5106 static bool pte_range_none(pte_t *pte, int nr_pages) 5107 { 5108 int i; 5109 5110 for (i = 0; i < nr_pages; i++) { 5111 if (!pte_none(ptep_get_lockless(pte + i))) 5112 return false; 5113 } 5114 5115 return true; 5116 } 5117 5118 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5119 { 5120 struct vm_area_struct *vma = vmf->vma; 5121 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5122 unsigned long orders; 5123 struct folio *folio; 5124 unsigned long addr; 5125 pte_t *pte; 5126 gfp_t gfp; 5127 int order; 5128 5129 /* 5130 * If uffd is active for the vma we need per-page fault fidelity to 5131 * maintain the uffd semantics. 5132 */ 5133 if (unlikely(userfaultfd_armed(vma))) 5134 goto fallback; 5135 5136 /* 5137 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5138 * for this vma. Then filter out the orders that can't be allocated over 5139 * the faulting address and still be fully contained in the vma. 5140 */ 5141 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5142 BIT(PMD_ORDER) - 1); 5143 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5144 5145 if (!orders) 5146 goto fallback; 5147 5148 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5149 if (!pte) 5150 return ERR_PTR(-EAGAIN); 5151 5152 /* 5153 * Find the highest order where the aligned range is completely 5154 * pte_none(). Note that all remaining orders will be completely 5155 * pte_none(). 5156 */ 5157 order = highest_order(orders); 5158 while (orders) { 5159 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5160 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5161 break; 5162 order = next_order(&orders, order); 5163 } 5164 5165 pte_unmap(pte); 5166 5167 if (!orders) 5168 goto fallback; 5169 5170 /* Try allocating the highest of the remaining orders. */ 5171 gfp = vma_thp_gfp_mask(vma); 5172 while (orders) { 5173 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5174 folio = vma_alloc_folio(gfp, order, vma, addr); 5175 if (folio) { 5176 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5177 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5178 folio_put(folio); 5179 goto next; 5180 } 5181 folio_throttle_swaprate(folio, gfp); 5182 /* 5183 * When a folio is not zeroed during allocation 5184 * (__GFP_ZERO not used) or user folios require special 5185 * handling, folio_zero_user() is used to make sure 5186 * that the page corresponding to the faulting address 5187 * will be hot in the cache after zeroing. 5188 */ 5189 if (user_alloc_needs_zeroing()) 5190 folio_zero_user(folio, vmf->address); 5191 return folio; 5192 } 5193 next: 5194 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5195 order = next_order(&orders, order); 5196 } 5197 5198 fallback: 5199 #endif 5200 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5201 } 5202 5203 /* 5204 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5205 * but allow concurrent faults), and pte mapped but not yet locked. 5206 * We return with mmap_lock still held, but pte unmapped and unlocked. 5207 */ 5208 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5209 { 5210 struct vm_area_struct *vma = vmf->vma; 5211 unsigned long addr = vmf->address; 5212 struct folio *folio; 5213 vm_fault_t ret = 0; 5214 int nr_pages = 1; 5215 pte_t entry; 5216 5217 /* File mapping without ->vm_ops ? */ 5218 if (vma->vm_flags & VM_SHARED) 5219 return VM_FAULT_SIGBUS; 5220 5221 /* 5222 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5223 * be distinguished from a transient failure of pte_offset_map(). 5224 */ 5225 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5226 return VM_FAULT_OOM; 5227 5228 /* Use the zero-page for reads */ 5229 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5230 !mm_forbids_zeropage(vma->vm_mm)) { 5231 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5232 vma->vm_page_prot)); 5233 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5234 vmf->address, &vmf->ptl); 5235 if (!vmf->pte) 5236 goto unlock; 5237 if (vmf_pte_changed(vmf)) { 5238 update_mmu_tlb(vma, vmf->address, vmf->pte); 5239 goto unlock; 5240 } 5241 ret = check_stable_address_space(vma->vm_mm); 5242 if (ret) 5243 goto unlock; 5244 /* Deliver the page fault to userland, check inside PT lock */ 5245 if (userfaultfd_missing(vma)) { 5246 pte_unmap_unlock(vmf->pte, vmf->ptl); 5247 return handle_userfault(vmf, VM_UFFD_MISSING); 5248 } 5249 goto setpte; 5250 } 5251 5252 /* Allocate our own private page. */ 5253 ret = vmf_anon_prepare(vmf); 5254 if (ret) 5255 return ret; 5256 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5257 folio = alloc_anon_folio(vmf); 5258 if (IS_ERR(folio)) 5259 return 0; 5260 if (!folio) 5261 goto oom; 5262 5263 nr_pages = folio_nr_pages(folio); 5264 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5265 5266 /* 5267 * The memory barrier inside __folio_mark_uptodate makes sure that 5268 * preceding stores to the page contents become visible before 5269 * the set_pte_at() write. 5270 */ 5271 __folio_mark_uptodate(folio); 5272 5273 entry = folio_mk_pte(folio, vma->vm_page_prot); 5274 entry = pte_sw_mkyoung(entry); 5275 if (vma->vm_flags & VM_WRITE) 5276 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5277 5278 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5279 if (!vmf->pte) 5280 goto release; 5281 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5282 update_mmu_tlb(vma, addr, vmf->pte); 5283 goto release; 5284 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5285 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5286 goto release; 5287 } 5288 5289 ret = check_stable_address_space(vma->vm_mm); 5290 if (ret) 5291 goto release; 5292 5293 /* Deliver the page fault to userland, check inside PT lock */ 5294 if (userfaultfd_missing(vma)) { 5295 pte_unmap_unlock(vmf->pte, vmf->ptl); 5296 folio_put(folio); 5297 return handle_userfault(vmf, VM_UFFD_MISSING); 5298 } 5299 5300 folio_ref_add(folio, nr_pages - 1); 5301 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5302 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5303 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5304 folio_add_lru_vma(folio, vma); 5305 setpte: 5306 if (vmf_orig_pte_uffd_wp(vmf)) 5307 entry = pte_mkuffd_wp(entry); 5308 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5309 5310 /* No need to invalidate - it was non-present before */ 5311 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5312 unlock: 5313 if (vmf->pte) 5314 pte_unmap_unlock(vmf->pte, vmf->ptl); 5315 return ret; 5316 release: 5317 folio_put(folio); 5318 goto unlock; 5319 oom: 5320 return VM_FAULT_OOM; 5321 } 5322 5323 /* 5324 * The mmap_lock must have been held on entry, and may have been 5325 * released depending on flags and vma->vm_ops->fault() return value. 5326 * See filemap_fault() and __lock_page_retry(). 5327 */ 5328 static vm_fault_t __do_fault(struct vm_fault *vmf) 5329 { 5330 struct vm_area_struct *vma = vmf->vma; 5331 struct folio *folio; 5332 vm_fault_t ret; 5333 5334 /* 5335 * Preallocate pte before we take page_lock because this might lead to 5336 * deadlocks for memcg reclaim which waits for pages under writeback: 5337 * lock_page(A) 5338 * SetPageWriteback(A) 5339 * unlock_page(A) 5340 * lock_page(B) 5341 * lock_page(B) 5342 * pte_alloc_one 5343 * shrink_folio_list 5344 * wait_on_page_writeback(A) 5345 * SetPageWriteback(B) 5346 * unlock_page(B) 5347 * # flush A, B to clear the writeback 5348 */ 5349 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5350 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5351 if (!vmf->prealloc_pte) 5352 return VM_FAULT_OOM; 5353 } 5354 5355 ret = vma->vm_ops->fault(vmf); 5356 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5357 VM_FAULT_DONE_COW))) 5358 return ret; 5359 5360 folio = page_folio(vmf->page); 5361 if (unlikely(PageHWPoison(vmf->page))) { 5362 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5363 if (ret & VM_FAULT_LOCKED) { 5364 if (page_mapped(vmf->page)) 5365 unmap_mapping_folio(folio); 5366 /* Retry if a clean folio was removed from the cache. */ 5367 if (mapping_evict_folio(folio->mapping, folio)) 5368 poisonret = VM_FAULT_NOPAGE; 5369 folio_unlock(folio); 5370 } 5371 folio_put(folio); 5372 vmf->page = NULL; 5373 return poisonret; 5374 } 5375 5376 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5377 folio_lock(folio); 5378 else 5379 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5380 5381 return ret; 5382 } 5383 5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5385 static void deposit_prealloc_pte(struct vm_fault *vmf) 5386 { 5387 struct vm_area_struct *vma = vmf->vma; 5388 5389 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5390 /* 5391 * We are going to consume the prealloc table, 5392 * count that as nr_ptes. 5393 */ 5394 mm_inc_nr_ptes(vma->vm_mm); 5395 vmf->prealloc_pte = NULL; 5396 } 5397 5398 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5399 { 5400 struct vm_area_struct *vma = vmf->vma; 5401 bool write = vmf->flags & FAULT_FLAG_WRITE; 5402 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5403 pmd_t entry; 5404 vm_fault_t ret = VM_FAULT_FALLBACK; 5405 5406 /* 5407 * It is too late to allocate a small folio, we already have a large 5408 * folio in the pagecache: especially s390 KVM cannot tolerate any 5409 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5410 * PMD mappings if THPs are disabled. As we already have a THP, 5411 * behave as if we are forcing a collapse. 5412 */ 5413 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5414 /* forced_collapse=*/ true)) 5415 return ret; 5416 5417 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5418 return ret; 5419 5420 if (folio_order(folio) != HPAGE_PMD_ORDER) 5421 return ret; 5422 page = &folio->page; 5423 5424 /* 5425 * Just backoff if any subpage of a THP is corrupted otherwise 5426 * the corrupted page may mapped by PMD silently to escape the 5427 * check. This kind of THP just can be PTE mapped. Access to 5428 * the corrupted subpage should trigger SIGBUS as expected. 5429 */ 5430 if (unlikely(folio_test_has_hwpoisoned(folio))) 5431 return ret; 5432 5433 /* 5434 * Archs like ppc64 need additional space to store information 5435 * related to pte entry. Use the preallocated table for that. 5436 */ 5437 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5438 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5439 if (!vmf->prealloc_pte) 5440 return VM_FAULT_OOM; 5441 } 5442 5443 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5444 if (unlikely(!pmd_none(*vmf->pmd))) 5445 goto out; 5446 5447 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5448 5449 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5450 if (write) 5451 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5452 5453 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5454 folio_add_file_rmap_pmd(folio, page, vma); 5455 5456 /* 5457 * deposit and withdraw with pmd lock held 5458 */ 5459 if (arch_needs_pgtable_deposit()) 5460 deposit_prealloc_pte(vmf); 5461 5462 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5463 5464 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5465 5466 /* fault is handled */ 5467 ret = 0; 5468 count_vm_event(THP_FILE_MAPPED); 5469 out: 5470 spin_unlock(vmf->ptl); 5471 return ret; 5472 } 5473 #else 5474 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5475 { 5476 return VM_FAULT_FALLBACK; 5477 } 5478 #endif 5479 5480 /** 5481 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5482 * @vmf: Fault description. 5483 * @folio: The folio that contains @page. 5484 * @page: The first page to create a PTE for. 5485 * @nr: The number of PTEs to create. 5486 * @addr: The first address to create a PTE for. 5487 */ 5488 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5489 struct page *page, unsigned int nr, unsigned long addr) 5490 { 5491 struct vm_area_struct *vma = vmf->vma; 5492 bool write = vmf->flags & FAULT_FLAG_WRITE; 5493 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5494 pte_t entry; 5495 5496 flush_icache_pages(vma, page, nr); 5497 entry = mk_pte(page, vma->vm_page_prot); 5498 5499 if (prefault && arch_wants_old_prefaulted_pte()) 5500 entry = pte_mkold(entry); 5501 else 5502 entry = pte_sw_mkyoung(entry); 5503 5504 if (write) 5505 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5506 else if (pte_write(entry) && folio_test_dirty(folio)) 5507 entry = pte_mkdirty(entry); 5508 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5509 entry = pte_mkuffd_wp(entry); 5510 /* copy-on-write page */ 5511 if (write && !(vma->vm_flags & VM_SHARED)) { 5512 VM_BUG_ON_FOLIO(nr != 1, folio); 5513 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5514 folio_add_lru_vma(folio, vma); 5515 } else { 5516 folio_add_file_rmap_ptes(folio, page, nr, vma); 5517 } 5518 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5519 5520 /* no need to invalidate: a not-present page won't be cached */ 5521 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5522 } 5523 5524 static bool vmf_pte_changed(struct vm_fault *vmf) 5525 { 5526 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5527 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5528 5529 return !pte_none(ptep_get(vmf->pte)); 5530 } 5531 5532 /** 5533 * finish_fault - finish page fault once we have prepared the page to fault 5534 * 5535 * @vmf: structure describing the fault 5536 * 5537 * This function handles all that is needed to finish a page fault once the 5538 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5539 * given page, adds reverse page mapping, handles memcg charges and LRU 5540 * addition. 5541 * 5542 * The function expects the page to be locked and on success it consumes a 5543 * reference of a page being mapped (for the PTE which maps it). 5544 * 5545 * Return: %0 on success, %VM_FAULT_ code in case of error. 5546 */ 5547 vm_fault_t finish_fault(struct vm_fault *vmf) 5548 { 5549 struct vm_area_struct *vma = vmf->vma; 5550 struct page *page; 5551 struct folio *folio; 5552 vm_fault_t ret; 5553 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5554 !(vma->vm_flags & VM_SHARED); 5555 int type, nr_pages; 5556 unsigned long addr; 5557 bool needs_fallback = false; 5558 5559 fallback: 5560 addr = vmf->address; 5561 5562 /* Did we COW the page? */ 5563 if (is_cow) 5564 page = vmf->cow_page; 5565 else 5566 page = vmf->page; 5567 5568 folio = page_folio(page); 5569 /* 5570 * check even for read faults because we might have lost our CoWed 5571 * page 5572 */ 5573 if (!(vma->vm_flags & VM_SHARED)) { 5574 ret = check_stable_address_space(vma->vm_mm); 5575 if (ret) 5576 return ret; 5577 } 5578 5579 if (!needs_fallback && vma->vm_file) { 5580 struct address_space *mapping = vma->vm_file->f_mapping; 5581 pgoff_t file_end; 5582 5583 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5584 5585 /* 5586 * Do not allow to map with PTEs beyond i_size and with PMD 5587 * across i_size to preserve SIGBUS semantics. 5588 * 5589 * Make an exception for shmem/tmpfs that for long time 5590 * intentionally mapped with PMDs across i_size. 5591 */ 5592 needs_fallback = !shmem_mapping(mapping) && 5593 file_end < folio_next_index(folio); 5594 } 5595 5596 if (pmd_none(*vmf->pmd)) { 5597 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5598 ret = do_set_pmd(vmf, folio, page); 5599 if (ret != VM_FAULT_FALLBACK) 5600 return ret; 5601 } 5602 5603 if (vmf->prealloc_pte) 5604 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5605 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5606 return VM_FAULT_OOM; 5607 } 5608 5609 nr_pages = folio_nr_pages(folio); 5610 5611 /* Using per-page fault to maintain the uffd semantics */ 5612 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5613 nr_pages = 1; 5614 } else if (nr_pages > 1) { 5615 pgoff_t idx = folio_page_idx(folio, page); 5616 /* The page offset of vmf->address within the VMA. */ 5617 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5618 /* The index of the entry in the pagetable for fault page. */ 5619 pgoff_t pte_off = pte_index(vmf->address); 5620 5621 /* 5622 * Fallback to per-page fault in case the folio size in page 5623 * cache beyond the VMA limits and PMD pagetable limits. 5624 */ 5625 if (unlikely(vma_off < idx || 5626 vma_off + (nr_pages - idx) > vma_pages(vma) || 5627 pte_off < idx || 5628 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5629 nr_pages = 1; 5630 } else { 5631 /* Now we can set mappings for the whole large folio. */ 5632 addr = vmf->address - idx * PAGE_SIZE; 5633 page = &folio->page; 5634 } 5635 } 5636 5637 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5638 addr, &vmf->ptl); 5639 if (!vmf->pte) 5640 return VM_FAULT_NOPAGE; 5641 5642 /* Re-check under ptl */ 5643 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5644 update_mmu_tlb(vma, addr, vmf->pte); 5645 ret = VM_FAULT_NOPAGE; 5646 goto unlock; 5647 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5648 needs_fallback = true; 5649 pte_unmap_unlock(vmf->pte, vmf->ptl); 5650 goto fallback; 5651 } 5652 5653 folio_ref_add(folio, nr_pages - 1); 5654 set_pte_range(vmf, folio, page, nr_pages, addr); 5655 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5656 add_mm_counter(vma->vm_mm, type, nr_pages); 5657 ret = 0; 5658 5659 unlock: 5660 pte_unmap_unlock(vmf->pte, vmf->ptl); 5661 return ret; 5662 } 5663 5664 static unsigned long fault_around_pages __read_mostly = 5665 65536 >> PAGE_SHIFT; 5666 5667 #ifdef CONFIG_DEBUG_FS 5668 static int fault_around_bytes_get(void *data, u64 *val) 5669 { 5670 *val = fault_around_pages << PAGE_SHIFT; 5671 return 0; 5672 } 5673 5674 /* 5675 * fault_around_bytes must be rounded down to the nearest page order as it's 5676 * what do_fault_around() expects to see. 5677 */ 5678 static int fault_around_bytes_set(void *data, u64 val) 5679 { 5680 if (val / PAGE_SIZE > PTRS_PER_PTE) 5681 return -EINVAL; 5682 5683 /* 5684 * The minimum value is 1 page, however this results in no fault-around 5685 * at all. See should_fault_around(). 5686 */ 5687 val = max(val, PAGE_SIZE); 5688 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5689 5690 return 0; 5691 } 5692 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5693 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5694 5695 static int __init fault_around_debugfs(void) 5696 { 5697 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5698 &fault_around_bytes_fops); 5699 return 0; 5700 } 5701 late_initcall(fault_around_debugfs); 5702 #endif 5703 5704 /* 5705 * do_fault_around() tries to map few pages around the fault address. The hope 5706 * is that the pages will be needed soon and this will lower the number of 5707 * faults to handle. 5708 * 5709 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5710 * not ready to be mapped: not up-to-date, locked, etc. 5711 * 5712 * This function doesn't cross VMA or page table boundaries, in order to call 5713 * map_pages() and acquire a PTE lock only once. 5714 * 5715 * fault_around_pages defines how many pages we'll try to map. 5716 * do_fault_around() expects it to be set to a power of two less than or equal 5717 * to PTRS_PER_PTE. 5718 * 5719 * The virtual address of the area that we map is naturally aligned to 5720 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5721 * (and therefore to page order). This way it's easier to guarantee 5722 * that we don't cross page table boundaries. 5723 */ 5724 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5725 { 5726 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5727 pgoff_t pte_off = pte_index(vmf->address); 5728 /* The page offset of vmf->address within the VMA. */ 5729 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5730 pgoff_t from_pte, to_pte; 5731 vm_fault_t ret; 5732 5733 /* The PTE offset of the start address, clamped to the VMA. */ 5734 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5735 pte_off - min(pte_off, vma_off)); 5736 5737 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5738 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5739 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5740 5741 if (pmd_none(*vmf->pmd)) { 5742 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5743 if (!vmf->prealloc_pte) 5744 return VM_FAULT_OOM; 5745 } 5746 5747 rcu_read_lock(); 5748 ret = vmf->vma->vm_ops->map_pages(vmf, 5749 vmf->pgoff + from_pte - pte_off, 5750 vmf->pgoff + to_pte - pte_off); 5751 rcu_read_unlock(); 5752 5753 return ret; 5754 } 5755 5756 /* Return true if we should do read fault-around, false otherwise */ 5757 static inline bool should_fault_around(struct vm_fault *vmf) 5758 { 5759 /* No ->map_pages? No way to fault around... */ 5760 if (!vmf->vma->vm_ops->map_pages) 5761 return false; 5762 5763 if (uffd_disable_fault_around(vmf->vma)) 5764 return false; 5765 5766 /* A single page implies no faulting 'around' at all. */ 5767 return fault_around_pages > 1; 5768 } 5769 5770 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5771 { 5772 vm_fault_t ret = 0; 5773 struct folio *folio; 5774 5775 /* 5776 * Let's call ->map_pages() first and use ->fault() as fallback 5777 * if page by the offset is not ready to be mapped (cold cache or 5778 * something). 5779 */ 5780 if (should_fault_around(vmf)) { 5781 ret = do_fault_around(vmf); 5782 if (ret) 5783 return ret; 5784 } 5785 5786 ret = vmf_can_call_fault(vmf); 5787 if (ret) 5788 return ret; 5789 5790 ret = __do_fault(vmf); 5791 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5792 return ret; 5793 5794 ret |= finish_fault(vmf); 5795 folio = page_folio(vmf->page); 5796 folio_unlock(folio); 5797 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5798 folio_put(folio); 5799 return ret; 5800 } 5801 5802 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5803 { 5804 struct vm_area_struct *vma = vmf->vma; 5805 struct folio *folio; 5806 vm_fault_t ret; 5807 5808 ret = vmf_can_call_fault(vmf); 5809 if (!ret) 5810 ret = vmf_anon_prepare(vmf); 5811 if (ret) 5812 return ret; 5813 5814 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5815 if (!folio) 5816 return VM_FAULT_OOM; 5817 5818 vmf->cow_page = &folio->page; 5819 5820 ret = __do_fault(vmf); 5821 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5822 goto uncharge_out; 5823 if (ret & VM_FAULT_DONE_COW) 5824 return ret; 5825 5826 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5827 ret = VM_FAULT_HWPOISON; 5828 goto unlock; 5829 } 5830 __folio_mark_uptodate(folio); 5831 5832 ret |= finish_fault(vmf); 5833 unlock: 5834 unlock_page(vmf->page); 5835 put_page(vmf->page); 5836 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5837 goto uncharge_out; 5838 return ret; 5839 uncharge_out: 5840 folio_put(folio); 5841 return ret; 5842 } 5843 5844 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5845 { 5846 struct vm_area_struct *vma = vmf->vma; 5847 vm_fault_t ret, tmp; 5848 struct folio *folio; 5849 5850 ret = vmf_can_call_fault(vmf); 5851 if (ret) 5852 return ret; 5853 5854 ret = __do_fault(vmf); 5855 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5856 return ret; 5857 5858 folio = page_folio(vmf->page); 5859 5860 /* 5861 * Check if the backing address space wants to know that the page is 5862 * about to become writable 5863 */ 5864 if (vma->vm_ops->page_mkwrite) { 5865 folio_unlock(folio); 5866 tmp = do_page_mkwrite(vmf, folio); 5867 if (unlikely(!tmp || 5868 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5869 folio_put(folio); 5870 return tmp; 5871 } 5872 } 5873 5874 ret |= finish_fault(vmf); 5875 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5876 VM_FAULT_RETRY))) { 5877 folio_unlock(folio); 5878 folio_put(folio); 5879 return ret; 5880 } 5881 5882 ret |= fault_dirty_shared_page(vmf); 5883 return ret; 5884 } 5885 5886 /* 5887 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5888 * but allow concurrent faults). 5889 * The mmap_lock may have been released depending on flags and our 5890 * return value. See filemap_fault() and __folio_lock_or_retry(). 5891 * If mmap_lock is released, vma may become invalid (for example 5892 * by other thread calling munmap()). 5893 */ 5894 static vm_fault_t do_fault(struct vm_fault *vmf) 5895 { 5896 struct vm_area_struct *vma = vmf->vma; 5897 struct mm_struct *vm_mm = vma->vm_mm; 5898 vm_fault_t ret; 5899 5900 /* 5901 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5902 */ 5903 if (!vma->vm_ops->fault) { 5904 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5905 vmf->address, &vmf->ptl); 5906 if (unlikely(!vmf->pte)) 5907 ret = VM_FAULT_SIGBUS; 5908 else { 5909 /* 5910 * Make sure this is not a temporary clearing of pte 5911 * by holding ptl and checking again. A R/M/W update 5912 * of pte involves: take ptl, clearing the pte so that 5913 * we don't have concurrent modification by hardware 5914 * followed by an update. 5915 */ 5916 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5917 ret = VM_FAULT_SIGBUS; 5918 else 5919 ret = VM_FAULT_NOPAGE; 5920 5921 pte_unmap_unlock(vmf->pte, vmf->ptl); 5922 } 5923 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5924 ret = do_read_fault(vmf); 5925 else if (!(vma->vm_flags & VM_SHARED)) 5926 ret = do_cow_fault(vmf); 5927 else 5928 ret = do_shared_fault(vmf); 5929 5930 /* preallocated pagetable is unused: free it */ 5931 if (vmf->prealloc_pte) { 5932 pte_free(vm_mm, vmf->prealloc_pte); 5933 vmf->prealloc_pte = NULL; 5934 } 5935 return ret; 5936 } 5937 5938 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5939 unsigned long addr, int *flags, 5940 bool writable, int *last_cpupid) 5941 { 5942 struct vm_area_struct *vma = vmf->vma; 5943 5944 /* 5945 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5946 * much anyway since they can be in shared cache state. This misses 5947 * the case where a mapping is writable but the process never writes 5948 * to it but pte_write gets cleared during protection updates and 5949 * pte_dirty has unpredictable behaviour between PTE scan updates, 5950 * background writeback, dirty balancing and application behaviour. 5951 */ 5952 if (!writable) 5953 *flags |= TNF_NO_GROUP; 5954 5955 /* 5956 * Flag if the folio is shared between multiple address spaces. This 5957 * is later used when determining whether to group tasks together 5958 */ 5959 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5960 *flags |= TNF_SHARED; 5961 /* 5962 * For memory tiering mode, cpupid of slow memory page is used 5963 * to record page access time. So use default value. 5964 */ 5965 if (folio_use_access_time(folio)) 5966 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5967 else 5968 *last_cpupid = folio_last_cpupid(folio); 5969 5970 /* Record the current PID accessing VMA */ 5971 vma_set_access_pid_bit(vma); 5972 5973 count_vm_numa_event(NUMA_HINT_FAULTS); 5974 #ifdef CONFIG_NUMA_BALANCING 5975 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5976 #endif 5977 if (folio_nid(folio) == numa_node_id()) { 5978 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5979 *flags |= TNF_FAULT_LOCAL; 5980 } 5981 5982 return mpol_misplaced(folio, vmf, addr); 5983 } 5984 5985 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5986 unsigned long fault_addr, pte_t *fault_pte, 5987 bool writable) 5988 { 5989 pte_t pte, old_pte; 5990 5991 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5992 pte = pte_modify(old_pte, vma->vm_page_prot); 5993 pte = pte_mkyoung(pte); 5994 if (writable) 5995 pte = pte_mkwrite(pte, vma); 5996 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5997 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5998 } 5999 6000 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 6001 struct folio *folio, pte_t fault_pte, 6002 bool ignore_writable, bool pte_write_upgrade) 6003 { 6004 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 6005 unsigned long start, end, addr = vmf->address; 6006 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 6007 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 6008 pte_t *start_ptep; 6009 6010 /* Stay within the VMA and within the page table. */ 6011 start = max3(addr_start, pt_start, vma->vm_start); 6012 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 6013 vma->vm_end); 6014 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 6015 6016 /* Restore all PTEs' mapping of the large folio */ 6017 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 6018 pte_t ptent = ptep_get(start_ptep); 6019 bool writable = false; 6020 6021 if (!pte_present(ptent) || !pte_protnone(ptent)) 6022 continue; 6023 6024 if (pfn_folio(pte_pfn(ptent)) != folio) 6025 continue; 6026 6027 if (!ignore_writable) { 6028 ptent = pte_modify(ptent, vma->vm_page_prot); 6029 writable = pte_write(ptent); 6030 if (!writable && pte_write_upgrade && 6031 can_change_pte_writable(vma, addr, ptent)) 6032 writable = true; 6033 } 6034 6035 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 6036 } 6037 } 6038 6039 static vm_fault_t do_numa_page(struct vm_fault *vmf) 6040 { 6041 struct vm_area_struct *vma = vmf->vma; 6042 struct folio *folio = NULL; 6043 int nid = NUMA_NO_NODE; 6044 bool writable = false, ignore_writable = false; 6045 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 6046 int last_cpupid; 6047 int target_nid; 6048 pte_t pte, old_pte; 6049 int flags = 0, nr_pages; 6050 6051 /* 6052 * The pte cannot be used safely until we verify, while holding the page 6053 * table lock, that its contents have not changed during fault handling. 6054 */ 6055 spin_lock(vmf->ptl); 6056 /* Read the live PTE from the page tables: */ 6057 old_pte = ptep_get(vmf->pte); 6058 6059 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 6060 pte_unmap_unlock(vmf->pte, vmf->ptl); 6061 return 0; 6062 } 6063 6064 pte = pte_modify(old_pte, vma->vm_page_prot); 6065 6066 /* 6067 * Detect now whether the PTE could be writable; this information 6068 * is only valid while holding the PT lock. 6069 */ 6070 writable = pte_write(pte); 6071 if (!writable && pte_write_upgrade && 6072 can_change_pte_writable(vma, vmf->address, pte)) 6073 writable = true; 6074 6075 folio = vm_normal_folio(vma, vmf->address, pte); 6076 if (!folio || folio_is_zone_device(folio)) 6077 goto out_map; 6078 6079 nid = folio_nid(folio); 6080 nr_pages = folio_nr_pages(folio); 6081 6082 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6083 writable, &last_cpupid); 6084 if (target_nid == NUMA_NO_NODE) 6085 goto out_map; 6086 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6087 flags |= TNF_MIGRATE_FAIL; 6088 goto out_map; 6089 } 6090 /* The folio is isolated and isolation code holds a folio reference. */ 6091 pte_unmap_unlock(vmf->pte, vmf->ptl); 6092 writable = false; 6093 ignore_writable = true; 6094 6095 /* Migrate to the requested node */ 6096 if (!migrate_misplaced_folio(folio, target_nid)) { 6097 nid = target_nid; 6098 flags |= TNF_MIGRATED; 6099 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6100 return 0; 6101 } 6102 6103 flags |= TNF_MIGRATE_FAIL; 6104 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6105 vmf->address, &vmf->ptl); 6106 if (unlikely(!vmf->pte)) 6107 return 0; 6108 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6109 pte_unmap_unlock(vmf->pte, vmf->ptl); 6110 return 0; 6111 } 6112 out_map: 6113 /* 6114 * Make it present again, depending on how arch implements 6115 * non-accessible ptes, some can allow access by kernel mode. 6116 */ 6117 if (folio && folio_test_large(folio)) 6118 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6119 pte_write_upgrade); 6120 else 6121 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6122 writable); 6123 pte_unmap_unlock(vmf->pte, vmf->ptl); 6124 6125 if (nid != NUMA_NO_NODE) 6126 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6127 return 0; 6128 } 6129 6130 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6131 { 6132 struct vm_area_struct *vma = vmf->vma; 6133 if (vma_is_anonymous(vma)) 6134 return do_huge_pmd_anonymous_page(vmf); 6135 if (vma->vm_ops->huge_fault) 6136 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6137 return VM_FAULT_FALLBACK; 6138 } 6139 6140 /* `inline' is required to avoid gcc 4.1.2 build error */ 6141 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6142 { 6143 struct vm_area_struct *vma = vmf->vma; 6144 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6145 vm_fault_t ret; 6146 6147 if (vma_is_anonymous(vma)) { 6148 if (likely(!unshare) && 6149 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6150 if (userfaultfd_wp_async(vmf->vma)) 6151 goto split; 6152 return handle_userfault(vmf, VM_UFFD_WP); 6153 } 6154 return do_huge_pmd_wp_page(vmf); 6155 } 6156 6157 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6158 if (vma->vm_ops->huge_fault) { 6159 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6160 if (!(ret & VM_FAULT_FALLBACK)) 6161 return ret; 6162 } 6163 } 6164 6165 split: 6166 /* COW or write-notify handled on pte level: split pmd. */ 6167 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6168 6169 return VM_FAULT_FALLBACK; 6170 } 6171 6172 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6173 { 6174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6175 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6176 struct vm_area_struct *vma = vmf->vma; 6177 /* No support for anonymous transparent PUD pages yet */ 6178 if (vma_is_anonymous(vma)) 6179 return VM_FAULT_FALLBACK; 6180 if (vma->vm_ops->huge_fault) 6181 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6182 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6183 return VM_FAULT_FALLBACK; 6184 } 6185 6186 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6187 { 6188 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6189 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6190 struct vm_area_struct *vma = vmf->vma; 6191 vm_fault_t ret; 6192 6193 /* No support for anonymous transparent PUD pages yet */ 6194 if (vma_is_anonymous(vma)) 6195 goto split; 6196 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6197 if (vma->vm_ops->huge_fault) { 6198 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6199 if (!(ret & VM_FAULT_FALLBACK)) 6200 return ret; 6201 } 6202 } 6203 split: 6204 /* COW or write-notify not handled on PUD level: split pud.*/ 6205 __split_huge_pud(vma, vmf->pud, vmf->address); 6206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6207 return VM_FAULT_FALLBACK; 6208 } 6209 6210 /* 6211 * The page faults may be spurious because of the racy access to the 6212 * page table. For example, a non-populated virtual page is accessed 6213 * on 2 CPUs simultaneously, thus the page faults are triggered on 6214 * both CPUs. However, it's possible that one CPU (say CPU A) cannot 6215 * find the reason for the page fault if the other CPU (say CPU B) has 6216 * changed the page table before the PTE is checked on CPU A. Most of 6217 * the time, the spurious page faults can be ignored safely. However, 6218 * if the page fault is for the write access, it's possible that a 6219 * stale read-only TLB entry exists in the local CPU and needs to be 6220 * flushed on some architectures. This is called the spurious page 6221 * fault fixing. 6222 * 6223 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page() 6224 * by default and used as such on most architectures, while 6225 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and 6226 * used as such on most architectures. 6227 */ 6228 static void fix_spurious_fault(struct vm_fault *vmf, 6229 enum pgtable_level ptlevel) 6230 { 6231 /* Skip spurious TLB flush for retried page fault */ 6232 if (vmf->flags & FAULT_FLAG_TRIED) 6233 return; 6234 /* 6235 * This is needed only for protection faults but the arch code 6236 * is not yet telling us if this is a protection fault or not. 6237 * This still avoids useless tlb flushes for .text page faults 6238 * with threads. 6239 */ 6240 if (vmf->flags & FAULT_FLAG_WRITE) { 6241 if (ptlevel == PGTABLE_LEVEL_PTE) 6242 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6243 vmf->pte); 6244 else 6245 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address, 6246 vmf->pmd); 6247 } 6248 } 6249 /* 6250 * These routines also need to handle stuff like marking pages dirty 6251 * and/or accessed for architectures that don't do it in hardware (most 6252 * RISC architectures). The early dirtying is also good on the i386. 6253 * 6254 * There is also a hook called "update_mmu_cache()" that architectures 6255 * with external mmu caches can use to update those (ie the Sparc or 6256 * PowerPC hashed page tables that act as extended TLBs). 6257 * 6258 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6259 * concurrent faults). 6260 * 6261 * The mmap_lock may have been released depending on flags and our return value. 6262 * See filemap_fault() and __folio_lock_or_retry(). 6263 */ 6264 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6265 { 6266 pte_t entry; 6267 6268 if (unlikely(pmd_none(*vmf->pmd))) { 6269 /* 6270 * Leave __pte_alloc() until later: because vm_ops->fault may 6271 * want to allocate huge page, and if we expose page table 6272 * for an instant, it will be difficult to retract from 6273 * concurrent faults and from rmap lookups. 6274 */ 6275 vmf->pte = NULL; 6276 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6277 } else { 6278 pmd_t dummy_pmdval; 6279 6280 /* 6281 * A regular pmd is established and it can't morph into a huge 6282 * pmd by anon khugepaged, since that takes mmap_lock in write 6283 * mode; but shmem or file collapse to THP could still morph 6284 * it into a huge pmd: just retry later if so. 6285 * 6286 * Use the maywrite version to indicate that vmf->pte may be 6287 * modified, but since we will use pte_same() to detect the 6288 * change of the !pte_none() entry, there is no need to recheck 6289 * the pmdval. Here we choose to pass a dummy variable instead 6290 * of NULL, which helps new user think about why this place is 6291 * special. 6292 */ 6293 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6294 vmf->address, &dummy_pmdval, 6295 &vmf->ptl); 6296 if (unlikely(!vmf->pte)) 6297 return 0; 6298 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6299 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6300 6301 if (pte_none(vmf->orig_pte)) { 6302 pte_unmap(vmf->pte); 6303 vmf->pte = NULL; 6304 } 6305 } 6306 6307 if (!vmf->pte) 6308 return do_pte_missing(vmf); 6309 6310 if (!pte_present(vmf->orig_pte)) 6311 return do_swap_page(vmf); 6312 6313 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6314 return do_numa_page(vmf); 6315 6316 spin_lock(vmf->ptl); 6317 entry = vmf->orig_pte; 6318 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6319 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6320 goto unlock; 6321 } 6322 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6323 if (!pte_write(entry)) 6324 return do_wp_page(vmf); 6325 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6326 entry = pte_mkdirty(entry); 6327 } 6328 entry = pte_mkyoung(entry); 6329 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6330 vmf->flags & FAULT_FLAG_WRITE)) 6331 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6332 vmf->pte, 1); 6333 else 6334 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE); 6335 unlock: 6336 pte_unmap_unlock(vmf->pte, vmf->ptl); 6337 return 0; 6338 } 6339 6340 /* 6341 * On entry, we hold either the VMA lock or the mmap_lock 6342 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6343 * the result, the mmap_lock is not held on exit. See filemap_fault() 6344 * and __folio_lock_or_retry(). 6345 */ 6346 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6347 unsigned long address, unsigned int flags) 6348 { 6349 struct vm_fault vmf = { 6350 .vma = vma, 6351 .address = address & PAGE_MASK, 6352 .real_address = address, 6353 .flags = flags, 6354 .pgoff = linear_page_index(vma, address), 6355 .gfp_mask = __get_fault_gfp_mask(vma), 6356 }; 6357 struct mm_struct *mm = vma->vm_mm; 6358 vm_flags_t vm_flags = vma->vm_flags; 6359 pgd_t *pgd; 6360 p4d_t *p4d; 6361 vm_fault_t ret; 6362 6363 pgd = pgd_offset(mm, address); 6364 p4d = p4d_alloc(mm, pgd, address); 6365 if (!p4d) 6366 return VM_FAULT_OOM; 6367 6368 vmf.pud = pud_alloc(mm, p4d, address); 6369 if (!vmf.pud) 6370 return VM_FAULT_OOM; 6371 retry_pud: 6372 if (pud_none(*vmf.pud) && 6373 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6374 ret = create_huge_pud(&vmf); 6375 if (!(ret & VM_FAULT_FALLBACK)) 6376 return ret; 6377 } else { 6378 pud_t orig_pud = *vmf.pud; 6379 6380 barrier(); 6381 if (pud_trans_huge(orig_pud)) { 6382 6383 /* 6384 * TODO once we support anonymous PUDs: NUMA case and 6385 * FAULT_FLAG_UNSHARE handling. 6386 */ 6387 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6388 ret = wp_huge_pud(&vmf, orig_pud); 6389 if (!(ret & VM_FAULT_FALLBACK)) 6390 return ret; 6391 } else { 6392 huge_pud_set_accessed(&vmf, orig_pud); 6393 return 0; 6394 } 6395 } 6396 } 6397 6398 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6399 if (!vmf.pmd) 6400 return VM_FAULT_OOM; 6401 6402 /* Huge pud page fault raced with pmd_alloc? */ 6403 if (pud_trans_unstable(vmf.pud)) 6404 goto retry_pud; 6405 6406 if (pmd_none(*vmf.pmd) && 6407 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6408 ret = create_huge_pmd(&vmf); 6409 if (ret & VM_FAULT_FALLBACK) 6410 goto fallback; 6411 else 6412 return ret; 6413 } 6414 6415 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6416 if (pmd_none(vmf.orig_pmd)) 6417 goto fallback; 6418 6419 if (unlikely(!pmd_present(vmf.orig_pmd))) { 6420 if (pmd_is_device_private_entry(vmf.orig_pmd)) 6421 return do_huge_pmd_device_private(&vmf); 6422 6423 if (pmd_is_migration_entry(vmf.orig_pmd)) 6424 pmd_migration_entry_wait(mm, vmf.pmd); 6425 return 0; 6426 } 6427 if (pmd_trans_huge(vmf.orig_pmd)) { 6428 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6429 return do_huge_pmd_numa_page(&vmf); 6430 6431 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6432 !pmd_write(vmf.orig_pmd)) { 6433 ret = wp_huge_pmd(&vmf); 6434 if (!(ret & VM_FAULT_FALLBACK)) 6435 return ret; 6436 } else { 6437 vmf.ptl = pmd_lock(mm, vmf.pmd); 6438 if (!huge_pmd_set_accessed(&vmf)) 6439 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD); 6440 spin_unlock(vmf.ptl); 6441 return 0; 6442 } 6443 } 6444 6445 fallback: 6446 return handle_pte_fault(&vmf); 6447 } 6448 6449 /** 6450 * mm_account_fault - Do page fault accounting 6451 * @mm: mm from which memcg should be extracted. It can be NULL. 6452 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6453 * of perf event counters, but we'll still do the per-task accounting to 6454 * the task who triggered this page fault. 6455 * @address: the faulted address. 6456 * @flags: the fault flags. 6457 * @ret: the fault retcode. 6458 * 6459 * This will take care of most of the page fault accounting. Meanwhile, it 6460 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6461 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6462 * still be in per-arch page fault handlers at the entry of page fault. 6463 */ 6464 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6465 unsigned long address, unsigned int flags, 6466 vm_fault_t ret) 6467 { 6468 bool major; 6469 6470 /* Incomplete faults will be accounted upon completion. */ 6471 if (ret & VM_FAULT_RETRY) 6472 return; 6473 6474 /* 6475 * To preserve the behavior of older kernels, PGFAULT counters record 6476 * both successful and failed faults, as opposed to perf counters, 6477 * which ignore failed cases. 6478 */ 6479 count_vm_event(PGFAULT); 6480 count_memcg_event_mm(mm, PGFAULT); 6481 6482 /* 6483 * Do not account for unsuccessful faults (e.g. when the address wasn't 6484 * valid). That includes arch_vma_access_permitted() failing before 6485 * reaching here. So this is not a "this many hardware page faults" 6486 * counter. We should use the hw profiling for that. 6487 */ 6488 if (ret & VM_FAULT_ERROR) 6489 return; 6490 6491 /* 6492 * We define the fault as a major fault when the final successful fault 6493 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6494 * handle it immediately previously). 6495 */ 6496 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6497 6498 if (major) 6499 current->maj_flt++; 6500 else 6501 current->min_flt++; 6502 6503 /* 6504 * If the fault is done for GUP, regs will be NULL. We only do the 6505 * accounting for the per thread fault counters who triggered the 6506 * fault, and we skip the perf event updates. 6507 */ 6508 if (!regs) 6509 return; 6510 6511 if (major) 6512 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6513 else 6514 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6515 } 6516 6517 #ifdef CONFIG_LRU_GEN 6518 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6519 { 6520 /* the LRU algorithm only applies to accesses with recency */ 6521 current->in_lru_fault = vma_has_recency(vma); 6522 } 6523 6524 static void lru_gen_exit_fault(void) 6525 { 6526 current->in_lru_fault = false; 6527 } 6528 #else 6529 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6530 { 6531 } 6532 6533 static void lru_gen_exit_fault(void) 6534 { 6535 } 6536 #endif /* CONFIG_LRU_GEN */ 6537 6538 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6539 unsigned int *flags) 6540 { 6541 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6542 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6543 return VM_FAULT_SIGSEGV; 6544 /* 6545 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6546 * just treat it like an ordinary read-fault otherwise. 6547 */ 6548 if (!is_cow_mapping(vma->vm_flags)) 6549 *flags &= ~FAULT_FLAG_UNSHARE; 6550 } else if (*flags & FAULT_FLAG_WRITE) { 6551 /* Write faults on read-only mappings are impossible ... */ 6552 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6553 return VM_FAULT_SIGSEGV; 6554 /* ... and FOLL_FORCE only applies to COW mappings. */ 6555 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6556 !is_cow_mapping(vma->vm_flags))) 6557 return VM_FAULT_SIGSEGV; 6558 } 6559 #ifdef CONFIG_PER_VMA_LOCK 6560 /* 6561 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6562 * the assumption that lock is dropped on VM_FAULT_RETRY. 6563 */ 6564 if (WARN_ON_ONCE((*flags & 6565 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6566 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6567 return VM_FAULT_SIGSEGV; 6568 #endif 6569 6570 return 0; 6571 } 6572 6573 /* 6574 * By the time we get here, we already hold either the VMA lock or the 6575 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6576 * 6577 * The mmap_lock may have been released depending on flags and our 6578 * return value. See filemap_fault() and __folio_lock_or_retry(). 6579 */ 6580 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6581 unsigned int flags, struct pt_regs *regs) 6582 { 6583 /* If the fault handler drops the mmap_lock, vma may be freed */ 6584 struct mm_struct *mm = vma->vm_mm; 6585 vm_fault_t ret; 6586 bool is_droppable; 6587 6588 __set_current_state(TASK_RUNNING); 6589 6590 ret = sanitize_fault_flags(vma, &flags); 6591 if (ret) 6592 goto out; 6593 6594 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6595 flags & FAULT_FLAG_INSTRUCTION, 6596 flags & FAULT_FLAG_REMOTE)) { 6597 ret = VM_FAULT_SIGSEGV; 6598 goto out; 6599 } 6600 6601 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6602 6603 /* 6604 * Enable the memcg OOM handling for faults triggered in user 6605 * space. Kernel faults are handled more gracefully. 6606 */ 6607 if (flags & FAULT_FLAG_USER) 6608 mem_cgroup_enter_user_fault(); 6609 6610 lru_gen_enter_fault(vma); 6611 6612 if (unlikely(is_vm_hugetlb_page(vma))) 6613 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6614 else 6615 ret = __handle_mm_fault(vma, address, flags); 6616 6617 /* 6618 * Warning: It is no longer safe to dereference vma-> after this point, 6619 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6620 * vma might be destroyed from underneath us. 6621 */ 6622 6623 lru_gen_exit_fault(); 6624 6625 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6626 if (is_droppable) 6627 ret &= ~VM_FAULT_OOM; 6628 6629 if (flags & FAULT_FLAG_USER) { 6630 mem_cgroup_exit_user_fault(); 6631 /* 6632 * The task may have entered a memcg OOM situation but 6633 * if the allocation error was handled gracefully (no 6634 * VM_FAULT_OOM), there is no need to kill anything. 6635 * Just clean up the OOM state peacefully. 6636 */ 6637 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6638 mem_cgroup_oom_synchronize(false); 6639 } 6640 out: 6641 mm_account_fault(mm, regs, address, flags, ret); 6642 6643 return ret; 6644 } 6645 EXPORT_SYMBOL_GPL(handle_mm_fault); 6646 6647 #ifndef __PAGETABLE_P4D_FOLDED 6648 /* 6649 * Allocate p4d page table. 6650 * We've already handled the fast-path in-line. 6651 */ 6652 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6653 { 6654 p4d_t *new = p4d_alloc_one(mm, address); 6655 if (!new) 6656 return -ENOMEM; 6657 6658 spin_lock(&mm->page_table_lock); 6659 if (pgd_present(*pgd)) { /* Another has populated it */ 6660 p4d_free(mm, new); 6661 } else { 6662 smp_wmb(); /* See comment in pmd_install() */ 6663 pgd_populate(mm, pgd, new); 6664 } 6665 spin_unlock(&mm->page_table_lock); 6666 return 0; 6667 } 6668 #endif /* __PAGETABLE_P4D_FOLDED */ 6669 6670 #ifndef __PAGETABLE_PUD_FOLDED 6671 /* 6672 * Allocate page upper directory. 6673 * We've already handled the fast-path in-line. 6674 */ 6675 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6676 { 6677 pud_t *new = pud_alloc_one(mm, address); 6678 if (!new) 6679 return -ENOMEM; 6680 6681 spin_lock(&mm->page_table_lock); 6682 if (!p4d_present(*p4d)) { 6683 mm_inc_nr_puds(mm); 6684 smp_wmb(); /* See comment in pmd_install() */ 6685 p4d_populate(mm, p4d, new); 6686 } else /* Another has populated it */ 6687 pud_free(mm, new); 6688 spin_unlock(&mm->page_table_lock); 6689 return 0; 6690 } 6691 #endif /* __PAGETABLE_PUD_FOLDED */ 6692 6693 #ifndef __PAGETABLE_PMD_FOLDED 6694 /* 6695 * Allocate page middle directory. 6696 * We've already handled the fast-path in-line. 6697 */ 6698 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6699 { 6700 spinlock_t *ptl; 6701 pmd_t *new = pmd_alloc_one(mm, address); 6702 if (!new) 6703 return -ENOMEM; 6704 6705 ptl = pud_lock(mm, pud); 6706 if (!pud_present(*pud)) { 6707 mm_inc_nr_pmds(mm); 6708 smp_wmb(); /* See comment in pmd_install() */ 6709 pud_populate(mm, pud, new); 6710 } else { /* Another has populated it */ 6711 pmd_free(mm, new); 6712 } 6713 spin_unlock(ptl); 6714 return 0; 6715 } 6716 #endif /* __PAGETABLE_PMD_FOLDED */ 6717 6718 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6719 spinlock_t *lock, pte_t *ptep, 6720 pgprot_t pgprot, unsigned long pfn_base, 6721 unsigned long addr_mask, bool writable, 6722 bool special) 6723 { 6724 args->lock = lock; 6725 args->ptep = ptep; 6726 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6727 args->addr_mask = addr_mask; 6728 args->pgprot = pgprot; 6729 args->writable = writable; 6730 args->special = special; 6731 } 6732 6733 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6734 { 6735 #ifdef CONFIG_LOCKDEP 6736 struct file *file = vma->vm_file; 6737 struct address_space *mapping = file ? file->f_mapping : NULL; 6738 6739 if (mapping) 6740 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6741 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6742 else 6743 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6744 #endif 6745 } 6746 6747 /** 6748 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6749 * @args: Pointer to struct @follow_pfnmap_args 6750 * 6751 * The caller needs to setup args->vma and args->address to point to the 6752 * virtual address as the target of such lookup. On a successful return, 6753 * the results will be put into other output fields. 6754 * 6755 * After the caller finished using the fields, the caller must invoke 6756 * another follow_pfnmap_end() to proper releases the locks and resources 6757 * of such look up request. 6758 * 6759 * During the start() and end() calls, the results in @args will be valid 6760 * as proper locks will be held. After the end() is called, all the fields 6761 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6762 * use of such information after end() may require proper synchronizations 6763 * by the caller with page table updates, otherwise it can create a 6764 * security bug. 6765 * 6766 * If the PTE maps a refcounted page, callers are responsible to protect 6767 * against invalidation with MMU notifiers; otherwise access to the PFN at 6768 * a later point in time can trigger use-after-free. 6769 * 6770 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6771 * should be taken for read, and the mmap semaphore cannot be released 6772 * before the end() is invoked. 6773 * 6774 * This function must not be used to modify PTE content. 6775 * 6776 * Return: zero on success, negative otherwise. 6777 */ 6778 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6779 { 6780 struct vm_area_struct *vma = args->vma; 6781 unsigned long address = args->address; 6782 struct mm_struct *mm = vma->vm_mm; 6783 spinlock_t *lock; 6784 pgd_t *pgdp; 6785 p4d_t *p4dp, p4d; 6786 pud_t *pudp, pud; 6787 pmd_t *pmdp, pmd; 6788 pte_t *ptep, pte; 6789 6790 pfnmap_lockdep_assert(vma); 6791 6792 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6793 goto out; 6794 6795 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6796 goto out; 6797 retry: 6798 pgdp = pgd_offset(mm, address); 6799 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6800 goto out; 6801 6802 p4dp = p4d_offset(pgdp, address); 6803 p4d = p4dp_get(p4dp); 6804 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6805 goto out; 6806 6807 pudp = pud_offset(p4dp, address); 6808 pud = pudp_get(pudp); 6809 if (pud_none(pud)) 6810 goto out; 6811 if (pud_leaf(pud)) { 6812 lock = pud_lock(mm, pudp); 6813 if (!unlikely(pud_leaf(pud))) { 6814 spin_unlock(lock); 6815 goto retry; 6816 } 6817 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6818 pud_pfn(pud), PUD_MASK, pud_write(pud), 6819 pud_special(pud)); 6820 return 0; 6821 } 6822 6823 pmdp = pmd_offset(pudp, address); 6824 pmd = pmdp_get_lockless(pmdp); 6825 if (pmd_leaf(pmd)) { 6826 lock = pmd_lock(mm, pmdp); 6827 if (!unlikely(pmd_leaf(pmd))) { 6828 spin_unlock(lock); 6829 goto retry; 6830 } 6831 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6832 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6833 pmd_special(pmd)); 6834 return 0; 6835 } 6836 6837 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6838 if (!ptep) 6839 goto out; 6840 pte = ptep_get(ptep); 6841 if (!pte_present(pte)) 6842 goto unlock; 6843 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6844 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6845 pte_special(pte)); 6846 return 0; 6847 unlock: 6848 pte_unmap_unlock(ptep, lock); 6849 out: 6850 return -EINVAL; 6851 } 6852 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6853 6854 /** 6855 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6856 * @args: Pointer to struct @follow_pfnmap_args 6857 * 6858 * Must be used in pair of follow_pfnmap_start(). See the start() function 6859 * above for more information. 6860 */ 6861 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6862 { 6863 if (args->lock) 6864 spin_unlock(args->lock); 6865 if (args->ptep) 6866 pte_unmap(args->ptep); 6867 } 6868 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6869 6870 #ifdef CONFIG_HAVE_IOREMAP_PROT 6871 /** 6872 * generic_access_phys - generic implementation for iomem mmap access 6873 * @vma: the vma to access 6874 * @addr: userspace address, not relative offset within @vma 6875 * @buf: buffer to read/write 6876 * @len: length of transfer 6877 * @write: set to FOLL_WRITE when writing, otherwise reading 6878 * 6879 * This is a generic implementation for &vm_operations_struct.access for an 6880 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6881 * not page based. 6882 */ 6883 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6884 void *buf, int len, int write) 6885 { 6886 resource_size_t phys_addr; 6887 pgprot_t prot = __pgprot(0); 6888 void __iomem *maddr; 6889 int offset = offset_in_page(addr); 6890 int ret = -EINVAL; 6891 bool writable; 6892 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6893 6894 retry: 6895 if (follow_pfnmap_start(&args)) 6896 return -EINVAL; 6897 prot = args.pgprot; 6898 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6899 writable = args.writable; 6900 follow_pfnmap_end(&args); 6901 6902 if ((write & FOLL_WRITE) && !writable) 6903 return -EINVAL; 6904 6905 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6906 if (!maddr) 6907 return -ENOMEM; 6908 6909 if (follow_pfnmap_start(&args)) 6910 goto out_unmap; 6911 6912 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6913 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6914 (writable != args.writable)) { 6915 follow_pfnmap_end(&args); 6916 iounmap(maddr); 6917 goto retry; 6918 } 6919 6920 if (write) 6921 memcpy_toio(maddr + offset, buf, len); 6922 else 6923 memcpy_fromio(buf, maddr + offset, len); 6924 ret = len; 6925 follow_pfnmap_end(&args); 6926 out_unmap: 6927 iounmap(maddr); 6928 6929 return ret; 6930 } 6931 EXPORT_SYMBOL_GPL(generic_access_phys); 6932 #endif 6933 6934 /* 6935 * Access another process' address space as given in mm. 6936 */ 6937 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6938 void *buf, int len, unsigned int gup_flags) 6939 { 6940 void *old_buf = buf; 6941 int write = gup_flags & FOLL_WRITE; 6942 6943 if (mmap_read_lock_killable(mm)) 6944 return 0; 6945 6946 /* Untag the address before looking up the VMA */ 6947 addr = untagged_addr_remote(mm, addr); 6948 6949 /* Avoid triggering the temporary warning in __get_user_pages */ 6950 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6951 return 0; 6952 6953 /* ignore errors, just check how much was successfully transferred */ 6954 while (len) { 6955 int bytes, offset; 6956 void *maddr; 6957 struct folio *folio; 6958 struct vm_area_struct *vma = NULL; 6959 struct page *page = get_user_page_vma_remote(mm, addr, 6960 gup_flags, &vma); 6961 6962 if (IS_ERR(page)) { 6963 /* We might need to expand the stack to access it */ 6964 vma = vma_lookup(mm, addr); 6965 if (!vma) { 6966 vma = expand_stack(mm, addr); 6967 6968 /* mmap_lock was dropped on failure */ 6969 if (!vma) 6970 return buf - old_buf; 6971 6972 /* Try again if stack expansion worked */ 6973 continue; 6974 } 6975 6976 /* 6977 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6978 * we can access using slightly different code. 6979 */ 6980 bytes = 0; 6981 #ifdef CONFIG_HAVE_IOREMAP_PROT 6982 if (vma->vm_ops && vma->vm_ops->access) 6983 bytes = vma->vm_ops->access(vma, addr, buf, 6984 len, write); 6985 #endif 6986 if (bytes <= 0) 6987 break; 6988 } else { 6989 folio = page_folio(page); 6990 bytes = len; 6991 offset = addr & (PAGE_SIZE-1); 6992 if (bytes > PAGE_SIZE-offset) 6993 bytes = PAGE_SIZE-offset; 6994 6995 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6996 if (write) { 6997 copy_to_user_page(vma, page, addr, 6998 maddr + offset, buf, bytes); 6999 folio_mark_dirty_lock(folio); 7000 } else { 7001 copy_from_user_page(vma, page, addr, 7002 buf, maddr + offset, bytes); 7003 } 7004 folio_release_kmap(folio, maddr); 7005 } 7006 len -= bytes; 7007 buf += bytes; 7008 addr += bytes; 7009 } 7010 mmap_read_unlock(mm); 7011 7012 return buf - old_buf; 7013 } 7014 7015 /** 7016 * access_remote_vm - access another process' address space 7017 * @mm: the mm_struct of the target address space 7018 * @addr: start address to access 7019 * @buf: source or destination buffer 7020 * @len: number of bytes to transfer 7021 * @gup_flags: flags modifying lookup behaviour 7022 * 7023 * The caller must hold a reference on @mm. 7024 * 7025 * Return: number of bytes copied from source to destination. 7026 */ 7027 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 7028 void *buf, int len, unsigned int gup_flags) 7029 { 7030 return __access_remote_vm(mm, addr, buf, len, gup_flags); 7031 } 7032 7033 /* 7034 * Access another process' address space. 7035 * Source/target buffer must be kernel space, 7036 * Do not walk the page table directly, use get_user_pages 7037 */ 7038 int access_process_vm(struct task_struct *tsk, unsigned long addr, 7039 void *buf, int len, unsigned int gup_flags) 7040 { 7041 struct mm_struct *mm; 7042 int ret; 7043 7044 mm = get_task_mm(tsk); 7045 if (!mm) 7046 return 0; 7047 7048 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 7049 7050 mmput(mm); 7051 7052 return ret; 7053 } 7054 EXPORT_SYMBOL_GPL(access_process_vm); 7055 7056 #ifdef CONFIG_BPF_SYSCALL 7057 /* 7058 * Copy a string from another process's address space as given in mm. 7059 * If there is any error return -EFAULT. 7060 */ 7061 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 7062 void *buf, int len, unsigned int gup_flags) 7063 { 7064 void *old_buf = buf; 7065 int err = 0; 7066 7067 *(char *)buf = '\0'; 7068 7069 if (mmap_read_lock_killable(mm)) 7070 return -EFAULT; 7071 7072 addr = untagged_addr_remote(mm, addr); 7073 7074 /* Avoid triggering the temporary warning in __get_user_pages */ 7075 if (!vma_lookup(mm, addr)) { 7076 err = -EFAULT; 7077 goto out; 7078 } 7079 7080 while (len) { 7081 int bytes, offset, retval; 7082 void *maddr; 7083 struct folio *folio; 7084 struct page *page; 7085 struct vm_area_struct *vma = NULL; 7086 7087 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7088 if (IS_ERR(page)) { 7089 /* 7090 * Treat as a total failure for now until we decide how 7091 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7092 * stack expansion. 7093 */ 7094 *(char *)buf = '\0'; 7095 err = -EFAULT; 7096 goto out; 7097 } 7098 7099 folio = page_folio(page); 7100 bytes = len; 7101 offset = addr & (PAGE_SIZE - 1); 7102 if (bytes > PAGE_SIZE - offset) 7103 bytes = PAGE_SIZE - offset; 7104 7105 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7106 retval = strscpy(buf, maddr + offset, bytes); 7107 if (retval >= 0) { 7108 /* Found the end of the string */ 7109 buf += retval; 7110 folio_release_kmap(folio, maddr); 7111 break; 7112 } 7113 7114 buf += bytes - 1; 7115 /* 7116 * Because strscpy always NUL terminates we need to 7117 * copy the last byte in the page if we are going to 7118 * load more pages 7119 */ 7120 if (bytes != len) { 7121 addr += bytes - 1; 7122 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7123 buf += 1; 7124 addr += 1; 7125 } 7126 len -= bytes; 7127 7128 folio_release_kmap(folio, maddr); 7129 } 7130 7131 out: 7132 mmap_read_unlock(mm); 7133 if (err) 7134 return err; 7135 return buf - old_buf; 7136 } 7137 7138 /** 7139 * copy_remote_vm_str - copy a string from another process's address space. 7140 * @tsk: the task of the target address space 7141 * @addr: start address to read from 7142 * @buf: destination buffer 7143 * @len: number of bytes to copy 7144 * @gup_flags: flags modifying lookup behaviour 7145 * 7146 * The caller must hold a reference on @mm. 7147 * 7148 * Return: number of bytes copied from @addr (source) to @buf (destination); 7149 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7150 * buffer. On any error, return -EFAULT. 7151 */ 7152 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7153 void *buf, int len, unsigned int gup_flags) 7154 { 7155 struct mm_struct *mm; 7156 int ret; 7157 7158 if (unlikely(len == 0)) 7159 return 0; 7160 7161 mm = get_task_mm(tsk); 7162 if (!mm) { 7163 *(char *)buf = '\0'; 7164 return -EFAULT; 7165 } 7166 7167 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7168 7169 mmput(mm); 7170 7171 return ret; 7172 } 7173 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7174 #endif /* CONFIG_BPF_SYSCALL */ 7175 7176 /* 7177 * Print the name of a VMA. 7178 */ 7179 void print_vma_addr(char *prefix, unsigned long ip) 7180 { 7181 struct mm_struct *mm = current->mm; 7182 struct vm_area_struct *vma; 7183 7184 /* 7185 * we might be running from an atomic context so we cannot sleep 7186 */ 7187 if (!mmap_read_trylock(mm)) 7188 return; 7189 7190 vma = vma_lookup(mm, ip); 7191 if (vma && vma->vm_file) { 7192 struct file *f = vma->vm_file; 7193 ip -= vma->vm_start; 7194 ip += vma->vm_pgoff << PAGE_SHIFT; 7195 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7196 vma->vm_start, 7197 vma->vm_end - vma->vm_start); 7198 } 7199 mmap_read_unlock(mm); 7200 } 7201 7202 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7203 void __might_fault(const char *file, int line) 7204 { 7205 if (pagefault_disabled()) 7206 return; 7207 __might_sleep(file, line); 7208 if (current->mm) 7209 might_lock_read(¤t->mm->mmap_lock); 7210 } 7211 EXPORT_SYMBOL(__might_fault); 7212 #endif 7213 7214 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7215 /* 7216 * Process all subpages of the specified huge page with the specified 7217 * operation. The target subpage will be processed last to keep its 7218 * cache lines hot. 7219 */ 7220 static inline int process_huge_page( 7221 unsigned long addr_hint, unsigned int nr_pages, 7222 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7223 void *arg) 7224 { 7225 int i, n, base, l, ret; 7226 unsigned long addr = addr_hint & 7227 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7228 7229 /* Process target subpage last to keep its cache lines hot */ 7230 might_sleep(); 7231 n = (addr_hint - addr) / PAGE_SIZE; 7232 if (2 * n <= nr_pages) { 7233 /* If target subpage in first half of huge page */ 7234 base = 0; 7235 l = n; 7236 /* Process subpages at the end of huge page */ 7237 for (i = nr_pages - 1; i >= 2 * n; i--) { 7238 cond_resched(); 7239 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7240 if (ret) 7241 return ret; 7242 } 7243 } else { 7244 /* If target subpage in second half of huge page */ 7245 base = nr_pages - 2 * (nr_pages - n); 7246 l = nr_pages - n; 7247 /* Process subpages at the begin of huge page */ 7248 for (i = 0; i < base; i++) { 7249 cond_resched(); 7250 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7251 if (ret) 7252 return ret; 7253 } 7254 } 7255 /* 7256 * Process remaining subpages in left-right-left-right pattern 7257 * towards the target subpage 7258 */ 7259 for (i = 0; i < l; i++) { 7260 int left_idx = base + i; 7261 int right_idx = base + 2 * l - 1 - i; 7262 7263 cond_resched(); 7264 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7265 if (ret) 7266 return ret; 7267 cond_resched(); 7268 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7269 if (ret) 7270 return ret; 7271 } 7272 return 0; 7273 } 7274 7275 static void clear_contig_highpages(struct page *page, unsigned long addr, 7276 unsigned int nr_pages) 7277 { 7278 unsigned int i, count; 7279 /* 7280 * When clearing we want to operate on the largest extent possible to 7281 * allow for architecture specific extent based optimizations. 7282 * 7283 * However, since clear_user_highpages() (and primitives clear_user_pages(), 7284 * clear_pages()), do not call cond_resched(), limit the unit size when 7285 * running under non-preemptible scheduling models. 7286 */ 7287 const unsigned int unit = preempt_model_preemptible() ? 7288 nr_pages : PROCESS_PAGES_NON_PREEMPT_BATCH; 7289 7290 might_sleep(); 7291 7292 for (i = 0; i < nr_pages; i += count) { 7293 cond_resched(); 7294 7295 count = min(unit, nr_pages - i); 7296 clear_user_highpages(page + i, addr + i * PAGE_SIZE, count); 7297 } 7298 } 7299 7300 /* 7301 * When zeroing a folio, we want to differentiate between pages in the 7302 * vicinity of the faulting address where we have spatial and temporal 7303 * locality, and those far away where we don't. 7304 * 7305 * Use a radius of 2 for determining the local neighbourhood. 7306 */ 7307 #define FOLIO_ZERO_LOCALITY_RADIUS 2 7308 7309 /** 7310 * folio_zero_user - Zero a folio which will be mapped to userspace. 7311 * @folio: The folio to zero. 7312 * @addr_hint: The address accessed by the user or the base address. 7313 */ 7314 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7315 { 7316 const unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7317 const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE; 7318 const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1); 7319 const int radius = FOLIO_ZERO_LOCALITY_RADIUS; 7320 struct range r[3]; 7321 int i; 7322 7323 /* 7324 * Faulting page and its immediate neighbourhood. Will be cleared at the 7325 * end to keep its cachelines hot. 7326 */ 7327 r[2] = DEFINE_RANGE(clamp_t(s64, fault_idx - radius, pg.start, pg.end), 7328 clamp_t(s64, fault_idx + radius, pg.start, pg.end)); 7329 7330 /* Region to the left of the fault */ 7331 r[1] = DEFINE_RANGE(pg.start, 7332 clamp_t(s64, r[2].start - 1, pg.start - 1, r[2].start)); 7333 7334 /* Region to the right of the fault: always valid for the common fault_idx=0 case. */ 7335 r[0] = DEFINE_RANGE(clamp_t(s64, r[2].end + 1, r[2].end, pg.end + 1), 7336 pg.end); 7337 7338 for (i = 0; i < ARRAY_SIZE(r); i++) { 7339 const unsigned long addr = base_addr + r[i].start * PAGE_SIZE; 7340 const unsigned int nr_pages = range_len(&r[i]); 7341 struct page *page = folio_page(folio, r[i].start); 7342 7343 if (nr_pages > 0) 7344 clear_contig_highpages(page, addr, nr_pages); 7345 } 7346 } 7347 7348 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7349 unsigned long addr_hint, 7350 struct vm_area_struct *vma, 7351 unsigned int nr_pages) 7352 { 7353 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7354 struct page *dst_page; 7355 struct page *src_page; 7356 int i; 7357 7358 for (i = 0; i < nr_pages; i++) { 7359 dst_page = folio_page(dst, i); 7360 src_page = folio_page(src, i); 7361 7362 cond_resched(); 7363 if (copy_mc_user_highpage(dst_page, src_page, 7364 addr + i*PAGE_SIZE, vma)) 7365 return -EHWPOISON; 7366 } 7367 return 0; 7368 } 7369 7370 struct copy_subpage_arg { 7371 struct folio *dst; 7372 struct folio *src; 7373 struct vm_area_struct *vma; 7374 }; 7375 7376 static int copy_subpage(unsigned long addr, int idx, void *arg) 7377 { 7378 struct copy_subpage_arg *copy_arg = arg; 7379 struct page *dst = folio_page(copy_arg->dst, idx); 7380 struct page *src = folio_page(copy_arg->src, idx); 7381 7382 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7383 return -EHWPOISON; 7384 return 0; 7385 } 7386 7387 int copy_user_large_folio(struct folio *dst, struct folio *src, 7388 unsigned long addr_hint, struct vm_area_struct *vma) 7389 { 7390 unsigned int nr_pages = folio_nr_pages(dst); 7391 struct copy_subpage_arg arg = { 7392 .dst = dst, 7393 .src = src, 7394 .vma = vma, 7395 }; 7396 7397 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7398 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7399 7400 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7401 } 7402 7403 long copy_folio_from_user(struct folio *dst_folio, 7404 const void __user *usr_src, 7405 bool allow_pagefault) 7406 { 7407 void *kaddr; 7408 unsigned long i, rc = 0; 7409 unsigned int nr_pages = folio_nr_pages(dst_folio); 7410 unsigned long ret_val = nr_pages * PAGE_SIZE; 7411 struct page *subpage; 7412 7413 for (i = 0; i < nr_pages; i++) { 7414 subpage = folio_page(dst_folio, i); 7415 kaddr = kmap_local_page(subpage); 7416 if (!allow_pagefault) 7417 pagefault_disable(); 7418 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7419 if (!allow_pagefault) 7420 pagefault_enable(); 7421 kunmap_local(kaddr); 7422 7423 ret_val -= (PAGE_SIZE - rc); 7424 if (rc) 7425 break; 7426 7427 flush_dcache_page(subpage); 7428 7429 cond_resched(); 7430 } 7431 return ret_val; 7432 } 7433 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7434 7435 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7436 7437 static struct kmem_cache *page_ptl_cachep; 7438 7439 void __init ptlock_cache_init(void) 7440 { 7441 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7442 SLAB_PANIC, NULL); 7443 } 7444 7445 bool ptlock_alloc(struct ptdesc *ptdesc) 7446 { 7447 spinlock_t *ptl; 7448 7449 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7450 if (!ptl) 7451 return false; 7452 ptdesc->ptl = ptl; 7453 return true; 7454 } 7455 7456 void ptlock_free(struct ptdesc *ptdesc) 7457 { 7458 if (ptdesc->ptl) 7459 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7460 } 7461 #endif 7462 7463 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7464 { 7465 if (is_vm_hugetlb_page(vma)) 7466 hugetlb_vma_lock_read(vma); 7467 } 7468 7469 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7470 { 7471 if (is_vm_hugetlb_page(vma)) 7472 hugetlb_vma_unlock_read(vma); 7473 } 7474