xref: /linux/include/linux/uaccess.h (revision 0fc810ae3ae110f9e2fcccce80fc8c8d62f97907)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_UACCESS_H__
3 #define __LINUX_UACCESS_H__
4 
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/instrumented.h>
7 #include <linux/minmax.h>
8 #include <linux/nospec.h>
9 #include <linux/sched.h>
10 #include <linux/thread_info.h>
11 
12 #include <asm/uaccess.h>
13 
14 /*
15  * Architectures that support memory tagging (assigning tags to memory regions,
16  * embedding these tags into addresses that point to these memory regions, and
17  * checking that the memory and the pointer tags match on memory accesses)
18  * redefine this macro to strip tags from pointers.
19  *
20  * Passing down mm_struct allows to define untagging rules on per-process
21  * basis.
22  *
23  * It's defined as noop for architectures that don't support memory tagging.
24  */
25 #ifndef untagged_addr
26 #define untagged_addr(addr) (addr)
27 #endif
28 
29 #ifndef untagged_addr_remote
30 #define untagged_addr_remote(mm, addr)	({		\
31 	mmap_assert_locked(mm);				\
32 	untagged_addr(addr);				\
33 })
34 #endif
35 
36 #ifdef masked_user_access_begin
37  #define can_do_masked_user_access() 1
38 #else
39  #define can_do_masked_user_access() 0
40  #define masked_user_access_begin(src) NULL
41  #define mask_user_address(src) (src)
42 #endif
43 
44 /*
45  * Architectures should provide two primitives (raw_copy_{to,from}_user())
46  * and get rid of their private instances of copy_{to,from}_user() and
47  * __copy_{to,from}_user{,_inatomic}().
48  *
49  * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
50  * return the amount left to copy.  They should assume that access_ok() has
51  * already been checked (and succeeded); they should *not* zero-pad anything.
52  * No KASAN or object size checks either - those belong here.
53  *
54  * Both of these functions should attempt to copy size bytes starting at from
55  * into the area starting at to.  They must not fetch or store anything
56  * outside of those areas.  Return value must be between 0 (everything
57  * copied successfully) and size (nothing copied).
58  *
59  * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
60  * at to must become equal to the bytes fetched from the corresponding area
61  * starting at from.  All data past to + size - N must be left unmodified.
62  *
63  * If copying succeeds, the return value must be 0.  If some data cannot be
64  * fetched, it is permitted to copy less than had been fetched; the only
65  * hard requirement is that not storing anything at all (i.e. returning size)
66  * should happen only when nothing could be copied.  In other words, you don't
67  * have to squeeze as much as possible - it is allowed, but not necessary.
68  *
69  * For raw_copy_from_user() to always points to kernel memory and no faults
70  * on store should happen.  Interpretation of from is affected by set_fs().
71  * For raw_copy_to_user() it's the other way round.
72  *
73  * Both can be inlined - it's up to architectures whether it wants to bother
74  * with that.  They should not be used directly; they are used to implement
75  * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
76  * that are used instead.  Out of those, __... ones are inlined.  Plain
77  * copy_{to,from}_user() might or might not be inlined.  If you want them
78  * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
79  *
80  * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
81  * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
82  * at all; their callers absolutely must check the return value.
83  *
84  * Biarch ones should also provide raw_copy_in_user() - similar to the above,
85  * but both source and destination are __user pointers (affected by set_fs()
86  * as usual) and both source and destination can trigger faults.
87  */
88 
89 static __always_inline __must_check unsigned long
__copy_from_user_inatomic(void * to,const void __user * from,unsigned long n)90 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
91 {
92 	unsigned long res;
93 
94 	instrument_copy_from_user_before(to, from, n);
95 	check_object_size(to, n, false);
96 	res = raw_copy_from_user(to, from, n);
97 	instrument_copy_from_user_after(to, from, n, res);
98 	return res;
99 }
100 
101 static __always_inline __must_check unsigned long
__copy_from_user(void * to,const void __user * from,unsigned long n)102 __copy_from_user(void *to, const void __user *from, unsigned long n)
103 {
104 	unsigned long res;
105 
106 	might_fault();
107 	instrument_copy_from_user_before(to, from, n);
108 	if (should_fail_usercopy())
109 		return n;
110 	check_object_size(to, n, false);
111 	res = raw_copy_from_user(to, from, n);
112 	instrument_copy_from_user_after(to, from, n, res);
113 	return res;
114 }
115 
116 /**
117  * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
118  * @to:   Destination address, in user space.
119  * @from: Source address, in kernel space.
120  * @n:    Number of bytes to copy.
121  *
122  * Context: User context only.
123  *
124  * Copy data from kernel space to user space.  Caller must check
125  * the specified block with access_ok() before calling this function.
126  * The caller should also make sure he pins the user space address
127  * so that we don't result in page fault and sleep.
128  */
129 static __always_inline __must_check unsigned long
__copy_to_user_inatomic(void __user * to,const void * from,unsigned long n)130 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
131 {
132 	if (should_fail_usercopy())
133 		return n;
134 	instrument_copy_to_user(to, from, n);
135 	check_object_size(from, n, true);
136 	return raw_copy_to_user(to, from, n);
137 }
138 
139 static __always_inline __must_check unsigned long
__copy_to_user(void __user * to,const void * from,unsigned long n)140 __copy_to_user(void __user *to, const void *from, unsigned long n)
141 {
142 	might_fault();
143 	if (should_fail_usercopy())
144 		return n;
145 	instrument_copy_to_user(to, from, n);
146 	check_object_size(from, n, true);
147 	return raw_copy_to_user(to, from, n);
148 }
149 
150 /*
151  * Architectures that #define INLINE_COPY_TO_USER use this function
152  * directly in the normal copy_to/from_user(), the other ones go
153  * through an extern _copy_to/from_user(), which expands the same code
154  * here.
155  *
156  * Rust code always uses the extern definition.
157  */
158 static inline __must_check unsigned long
_inline_copy_from_user(void * to,const void __user * from,unsigned long n)159 _inline_copy_from_user(void *to, const void __user *from, unsigned long n)
160 {
161 	unsigned long res = n;
162 	might_fault();
163 	if (should_fail_usercopy())
164 		goto fail;
165 	if (can_do_masked_user_access())
166 		from = mask_user_address(from);
167 	else {
168 		if (!access_ok(from, n))
169 			goto fail;
170 		/*
171 		 * Ensure that bad access_ok() speculation will not
172 		 * lead to nasty side effects *after* the copy is
173 		 * finished:
174 		 */
175 		barrier_nospec();
176 	}
177 	instrument_copy_from_user_before(to, from, n);
178 	res = raw_copy_from_user(to, from, n);
179 	instrument_copy_from_user_after(to, from, n, res);
180 	if (likely(!res))
181 		return 0;
182 fail:
183 	memset(to + (n - res), 0, res);
184 	return res;
185 }
186 extern __must_check unsigned long
187 _copy_from_user(void *, const void __user *, unsigned long);
188 
189 static inline __must_check unsigned long
_inline_copy_to_user(void __user * to,const void * from,unsigned long n)190 _inline_copy_to_user(void __user *to, const void *from, unsigned long n)
191 {
192 	might_fault();
193 	if (should_fail_usercopy())
194 		return n;
195 	if (access_ok(to, n)) {
196 		instrument_copy_to_user(to, from, n);
197 		n = raw_copy_to_user(to, from, n);
198 	}
199 	return n;
200 }
201 extern __must_check unsigned long
202 _copy_to_user(void __user *, const void *, unsigned long);
203 
204 static __always_inline unsigned long __must_check
copy_from_user(void * to,const void __user * from,unsigned long n)205 copy_from_user(void *to, const void __user *from, unsigned long n)
206 {
207 	if (!check_copy_size(to, n, false))
208 		return n;
209 #ifdef INLINE_COPY_FROM_USER
210 	return _inline_copy_from_user(to, from, n);
211 #else
212 	return _copy_from_user(to, from, n);
213 #endif
214 }
215 
216 static __always_inline unsigned long __must_check
copy_to_user(void __user * to,const void * from,unsigned long n)217 copy_to_user(void __user *to, const void *from, unsigned long n)
218 {
219 	if (!check_copy_size(from, n, true))
220 		return n;
221 
222 #ifdef INLINE_COPY_TO_USER
223 	return _inline_copy_to_user(to, from, n);
224 #else
225 	return _copy_to_user(to, from, n);
226 #endif
227 }
228 
229 #ifndef copy_mc_to_kernel
230 /*
231  * Without arch opt-in this generic copy_mc_to_kernel() will not handle
232  * #MC (or arch equivalent) during source read.
233  */
234 static inline unsigned long __must_check
copy_mc_to_kernel(void * dst,const void * src,size_t cnt)235 copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
236 {
237 	memcpy(dst, src, cnt);
238 	return 0;
239 }
240 #endif
241 
pagefault_disabled_inc(void)242 static __always_inline void pagefault_disabled_inc(void)
243 {
244 	current->pagefault_disabled++;
245 }
246 
pagefault_disabled_dec(void)247 static __always_inline void pagefault_disabled_dec(void)
248 {
249 	current->pagefault_disabled--;
250 }
251 
252 /*
253  * These routines enable/disable the pagefault handler. If disabled, it will
254  * not take any locks and go straight to the fixup table.
255  *
256  * User access methods will not sleep when called from a pagefault_disabled()
257  * environment.
258  */
pagefault_disable(void)259 static inline void pagefault_disable(void)
260 {
261 	pagefault_disabled_inc();
262 	/*
263 	 * make sure to have issued the store before a pagefault
264 	 * can hit.
265 	 */
266 	barrier();
267 }
268 
pagefault_enable(void)269 static inline void pagefault_enable(void)
270 {
271 	/*
272 	 * make sure to issue those last loads/stores before enabling
273 	 * the pagefault handler again.
274 	 */
275 	barrier();
276 	pagefault_disabled_dec();
277 }
278 
279 /*
280  * Is the pagefault handler disabled? If so, user access methods will not sleep.
281  */
pagefault_disabled(void)282 static inline bool pagefault_disabled(void)
283 {
284 	return current->pagefault_disabled != 0;
285 }
286 
287 /*
288  * The pagefault handler is in general disabled by pagefault_disable() or
289  * when in irq context (via in_atomic()).
290  *
291  * This function should only be used by the fault handlers. Other users should
292  * stick to pagefault_disabled().
293  * Please NEVER use preempt_disable() to disable the fault handler. With
294  * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
295  * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
296  */
297 #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
298 
299 #ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
300 
301 /**
302  * probe_subpage_writeable: probe the user range for write faults at sub-page
303  *			    granularity (e.g. arm64 MTE)
304  * @uaddr: start of address range
305  * @size: size of address range
306  *
307  * Returns 0 on success, the number of bytes not probed on fault.
308  *
309  * It is expected that the caller checked for the write permission of each
310  * page in the range either by put_user() or GUP. The architecture port can
311  * implement a more efficient get_user() probing if the same sub-page faults
312  * are triggered by either a read or a write.
313  */
probe_subpage_writeable(char __user * uaddr,size_t size)314 static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
315 {
316 	return 0;
317 }
318 
319 #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
320 
321 #ifndef ARCH_HAS_NOCACHE_UACCESS
322 
323 static inline __must_check unsigned long
__copy_from_user_inatomic_nocache(void * to,const void __user * from,unsigned long n)324 __copy_from_user_inatomic_nocache(void *to, const void __user *from,
325 				  unsigned long n)
326 {
327 	return __copy_from_user_inatomic(to, from, n);
328 }
329 
330 #endif		/* ARCH_HAS_NOCACHE_UACCESS */
331 
332 extern __must_check int check_zeroed_user(const void __user *from, size_t size);
333 
334 /**
335  * copy_struct_from_user: copy a struct from userspace
336  * @dst:   Destination address, in kernel space. This buffer must be @ksize
337  *         bytes long.
338  * @ksize: Size of @dst struct.
339  * @src:   Source address, in userspace.
340  * @usize: (Alleged) size of @src struct.
341  *
342  * Copies a struct from userspace to kernel space, in a way that guarantees
343  * backwards-compatibility for struct syscall arguments (as long as future
344  * struct extensions are made such that all new fields are *appended* to the
345  * old struct, and zeroed-out new fields have the same meaning as the old
346  * struct).
347  *
348  * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
349  * The recommended usage is something like the following:
350  *
351  *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
352  *   {
353  *      int err;
354  *      struct foo karg = {};
355  *
356  *      if (usize > PAGE_SIZE)
357  *        return -E2BIG;
358  *      if (usize < FOO_SIZE_VER0)
359  *        return -EINVAL;
360  *
361  *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
362  *      if (err)
363  *        return err;
364  *
365  *      // ...
366  *   }
367  *
368  * There are three cases to consider:
369  *  * If @usize == @ksize, then it's copied verbatim.
370  *  * If @usize < @ksize, then the userspace has passed an old struct to a
371  *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
372  *    are to be zero-filled.
373  *  * If @usize > @ksize, then the userspace has passed a new struct to an
374  *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
375  *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
376  *
377  * Returns (in all cases, some data may have been copied):
378  *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
379  *  * -EFAULT: access to userspace failed.
380  */
381 static __always_inline __must_check int
copy_struct_from_user(void * dst,size_t ksize,const void __user * src,size_t usize)382 copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
383 		      size_t usize)
384 {
385 	size_t size = min(ksize, usize);
386 	size_t rest = max(ksize, usize) - size;
387 
388 	/* Double check if ksize is larger than a known object size. */
389 	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
390 		return -E2BIG;
391 
392 	/* Deal with trailing bytes. */
393 	if (usize < ksize) {
394 		memset(dst + size, 0, rest);
395 	} else if (usize > ksize) {
396 		int ret = check_zeroed_user(src + size, rest);
397 		if (ret <= 0)
398 			return ret ?: -E2BIG;
399 	}
400 	/* Copy the interoperable parts of the struct. */
401 	if (copy_from_user(dst, src, size))
402 		return -EFAULT;
403 	return 0;
404 }
405 
406 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
407 
408 long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
409 long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
410 
411 long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
412 long notrace copy_to_user_nofault(void __user *dst, const void *src,
413 		size_t size);
414 
415 long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
416 		long count);
417 
418 long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
419 		long count);
420 long strnlen_user_nofault(const void __user *unsafe_addr, long count);
421 
422 #ifndef __get_kernel_nofault
423 #define __get_kernel_nofault(dst, src, type, label)	\
424 do {							\
425 	type __user *p = (type __force __user *)(src);	\
426 	type data;					\
427 	if (__get_user(data, p))			\
428 		goto label;				\
429 	*(type *)dst = data;				\
430 } while (0)
431 
432 #define __put_kernel_nofault(dst, src, type, label)	\
433 do {							\
434 	type __user *p = (type __force __user *)(dst);	\
435 	type data = *(type *)src;			\
436 	if (__put_user(data, p))			\
437 		goto label;				\
438 } while (0)
439 #endif
440 
441 /**
442  * get_kernel_nofault(): safely attempt to read from a location
443  * @val: read into this variable
444  * @ptr: address to read from
445  *
446  * Returns 0 on success, or -EFAULT.
447  */
448 #define get_kernel_nofault(val, ptr) ({				\
449 	const typeof(val) *__gk_ptr = (ptr);			\
450 	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
451 })
452 
453 #ifndef user_access_begin
454 #define user_access_begin(ptr,len) access_ok(ptr, len)
455 #define user_access_end() do { } while (0)
456 #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
457 #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
458 #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
459 #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
460 #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
user_access_save(void)461 static inline unsigned long user_access_save(void) { return 0UL; }
user_access_restore(unsigned long flags)462 static inline void user_access_restore(unsigned long flags) { }
463 #endif
464 #ifndef user_write_access_begin
465 #define user_write_access_begin user_access_begin
466 #define user_write_access_end user_access_end
467 #endif
468 #ifndef user_read_access_begin
469 #define user_read_access_begin user_access_begin
470 #define user_read_access_end user_access_end
471 #endif
472 
473 #ifdef CONFIG_HARDENED_USERCOPY
474 void __noreturn usercopy_abort(const char *name, const char *detail,
475 			       bool to_user, unsigned long offset,
476 			       unsigned long len);
477 #endif
478 
479 #endif		/* __LINUX_UACCESS_H__ */
480