xref: /linux/net/ipv4/syncookies.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Syncookies implementation for the Linux kernel
4  *
5  *  Copyright (C) 1997 Andi Kleen
6  *  Based on ideas by D.J.Bernstein and Eric Schenk.
7  */
8 
9 #include <linux/tcp.h>
10 #include <linux/siphash.h>
11 #include <linux/kernel.h>
12 #include <linux/export.h>
13 #include <net/secure_seq.h>
14 #include <net/tcp.h>
15 #include <net/tcp_ecn.h>
16 #include <net/route.h>
17 
18 static siphash_aligned_key_t syncookie_secret[2];
19 
20 #define COOKIEBITS 24	/* Upper bits store count */
21 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
22 
23 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
24  * stores TCP options:
25  *
26  * MSB                               LSB
27  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
28  * |  Timestamp | ECN | SACK | WScale  |
29  *
30  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
31  * any) to figure out which TCP options we should use for the rebuilt
32  * connection.
33  *
34  * A WScale setting of '0xf' (which is an invalid scaling value)
35  * means that original syn did not include the TCP window scaling option.
36  */
37 #define TS_OPT_WSCALE_MASK	0xf
38 #define TS_OPT_SACK		BIT(4)
39 #define TS_OPT_ECN		BIT(5)
40 /* There is no TS_OPT_TIMESTAMP:
41  * if ACK contains timestamp option, we already know it was
42  * requested/supported by the syn/synack exchange.
43  */
44 #define TSBITS	6
45 
46 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
47 		       u32 count, int c)
48 {
49 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
50 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
51 			    (__force u32)sport << 16 | (__force u32)dport,
52 			    count, &syncookie_secret[c]);
53 }
54 
55 /*
56  * when syncookies are in effect and tcp timestamps are enabled we encode
57  * tcp options in the lower bits of the timestamp value that will be
58  * sent in the syn-ack.
59  * Since subsequent timestamps use the normal tcp_time_stamp value, we
60  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
61  */
62 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
63 {
64 	const struct inet_request_sock *ireq = inet_rsk(req);
65 	u64 ts, ts_now = tcp_ns_to_ts(false, now);
66 	u32 options = 0;
67 
68 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
69 	if (ireq->sack_ok)
70 		options |= TS_OPT_SACK;
71 	if (ireq->ecn_ok)
72 		options |= TS_OPT_ECN;
73 
74 	ts = (ts_now >> TSBITS) << TSBITS;
75 	ts |= options;
76 	if (ts > ts_now)
77 		ts -= (1UL << TSBITS);
78 
79 	if (tcp_rsk(req)->req_usec_ts)
80 		return ts * NSEC_PER_USEC;
81 	return ts * NSEC_PER_MSEC;
82 }
83 
84 
85 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
86 				   __be16 dport, __u32 sseq, __u32 data)
87 {
88 	/*
89 	 * Compute the secure sequence number.
90 	 * The output should be:
91 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
92 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
93 	 * Where sseq is their sequence number and count increases every
94 	 * minute by 1.
95 	 * As an extra hack, we add a small "data" value that encodes the
96 	 * MSS into the second hash value.
97 	 */
98 	u32 count = tcp_cookie_time();
99 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
100 		sseq + (count << COOKIEBITS) +
101 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
102 		 & COOKIEMASK));
103 }
104 
105 /*
106  * This retrieves the small "data" value from the syncookie.
107  * If the syncookie is bad, the data returned will be out of
108  * range.  This must be checked by the caller.
109  *
110  * The count value used to generate the cookie must be less than
111  * MAX_SYNCOOKIE_AGE minutes in the past.
112  * The return value (__u32)-1 if this test fails.
113  */
114 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
115 				  __be16 sport, __be16 dport, __u32 sseq)
116 {
117 	u32 diff, count = tcp_cookie_time();
118 
119 	/* Strip away the layers from the cookie */
120 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
121 
122 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
123 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
124 	if (diff >= MAX_SYNCOOKIE_AGE)
125 		return (__u32)-1;
126 
127 	return (cookie -
128 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
129 		& COOKIEMASK;	/* Leaving the data behind */
130 }
131 
132 /*
133  * MSS Values are chosen based on the 2011 paper
134  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
135  * Values ..
136  *  .. lower than 536 are rare (< 0.2%)
137  *  .. between 537 and 1299 account for less than < 1.5% of observed values
138  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
139  *  .. exceeding 1460 are very rare (< 0.04%)
140  *
141  *  1460 is the single most frequently announced mss value (30 to 46% depending
142  *  on monitor location).  Table must be sorted.
143  */
144 static __u16 const msstab[] = {
145 	536,
146 	1300,
147 	1440,	/* 1440, 1452: PPPoE */
148 	1460,
149 };
150 
151 /*
152  * Generate a syncookie.  mssp points to the mss, which is returned
153  * rounded down to the value encoded in the cookie.
154  */
155 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
156 			      u16 *mssp)
157 {
158 	int mssind;
159 	const __u16 mss = *mssp;
160 
161 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
162 		if (mss >= msstab[mssind])
163 			break;
164 	*mssp = msstab[mssind];
165 
166 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
167 				     th->source, th->dest, ntohl(th->seq),
168 				     mssind);
169 }
170 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
171 
172 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
173 {
174 	const struct iphdr *iph = ip_hdr(skb);
175 	const struct tcphdr *th = tcp_hdr(skb);
176 
177 	return __cookie_v4_init_sequence(iph, th, mssp);
178 }
179 
180 /*
181  * Check if a ack sequence number is a valid syncookie.
182  * Return the decoded mss if it is, or 0 if not.
183  */
184 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th)
185 {
186 	__u32 cookie = ntohl(th->ack_seq) - 1;
187 	__u32 seq = ntohl(th->seq) - 1;
188 	__u32 mssind;
189 
190 	mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
191 				      th->source, th->dest, seq);
192 
193 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
194 }
195 EXPORT_SYMBOL_GPL(__cookie_v4_check);
196 
197 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
198 				 struct request_sock *req,
199 				 struct dst_entry *dst)
200 {
201 	struct inet_connection_sock *icsk = inet_csk(sk);
202 	struct sock *child;
203 	bool own_req;
204 
205 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
206 						 NULL, &own_req);
207 	if (child) {
208 		refcount_set(&req->rsk_refcnt, 1);
209 		sock_rps_save_rxhash(child, skb);
210 
211 		if (rsk_drop_req(req)) {
212 			reqsk_put(req);
213 			return child;
214 		}
215 
216 		if (inet_csk_reqsk_queue_add(sk, req, child))
217 			return child;
218 
219 		bh_unlock_sock(child);
220 		sock_put(child);
221 	}
222 	__reqsk_free(req);
223 
224 	return NULL;
225 }
226 EXPORT_IPV6_MOD(tcp_get_cookie_sock);
227 
228 /*
229  * when syncookies are in effect and tcp timestamps are enabled we stored
230  * additional tcp options in the timestamp.
231  * This extracts these options from the timestamp echo.
232  *
233  * return false if we decode a tcp option that is disabled
234  * on the host.
235  */
236 bool cookie_timestamp_decode(const struct net *net,
237 			     struct tcp_options_received *tcp_opt)
238 {
239 	/* echoed timestamp, lowest bits contain options */
240 	u32 options = tcp_opt->rcv_tsecr;
241 
242 	if (!tcp_opt->saw_tstamp)  {
243 		tcp_clear_options(tcp_opt);
244 		return true;
245 	}
246 
247 	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
248 		return false;
249 
250 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
251 
252 	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
253 		return false;
254 
255 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
256 		return true; /* no window scaling */
257 
258 	tcp_opt->wscale_ok = 1;
259 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
260 
261 	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
262 }
263 EXPORT_IPV6_MOD(cookie_timestamp_decode);
264 
265 static int cookie_tcp_reqsk_init(struct sock *sk, struct sk_buff *skb,
266 				 struct request_sock *req)
267 {
268 	struct inet_request_sock *ireq = inet_rsk(req);
269 	struct tcp_request_sock *treq = tcp_rsk(req);
270 	const struct tcphdr *th = tcp_hdr(skb);
271 
272 	req->num_retrans = 0;
273 
274 	ireq->ir_num = ntohs(th->dest);
275 	ireq->ir_rmt_port = th->source;
276 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
277 	ireq->ir_mark = inet_request_mark(sk, skb);
278 
279 	if (IS_ENABLED(CONFIG_SMC))
280 		ireq->smc_ok = 0;
281 
282 	treq->snt_synack = 0;
283 	treq->snt_tsval_first = 0;
284 	treq->tfo_listener = false;
285 	treq->txhash = net_tx_rndhash();
286 	treq->rcv_isn = ntohl(th->seq) - 1;
287 	treq->snt_isn = ntohl(th->ack_seq) - 1;
288 	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
289 	treq->req_usec_ts = false;
290 
291 #if IS_ENABLED(CONFIG_MPTCP)
292 	treq->is_mptcp = sk_is_mptcp(sk);
293 	if (treq->is_mptcp)
294 		return mptcp_subflow_init_cookie_req(req, sk, skb);
295 #endif
296 
297 	return 0;
298 }
299 
300 #if IS_ENABLED(CONFIG_BPF)
301 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb)
302 {
303 	struct request_sock *req = inet_reqsk(skb->sk);
304 
305 	skb->sk = NULL;
306 	skb->destructor = NULL;
307 
308 	if (cookie_tcp_reqsk_init(sk, skb, req)) {
309 		reqsk_free(req);
310 		req = NULL;
311 	}
312 
313 	return req;
314 }
315 EXPORT_IPV6_MOD_GPL(cookie_bpf_check);
316 #endif
317 
318 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
319 					    struct sock *sk, struct sk_buff *skb,
320 					    struct tcp_options_received *tcp_opt,
321 					    int mss, u32 tsoff)
322 {
323 	struct inet_request_sock *ireq;
324 	struct tcp_request_sock *treq;
325 	struct request_sock *req;
326 
327 	if (sk_is_mptcp(sk))
328 		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
329 	else
330 		req = inet_reqsk_alloc(ops, sk, false);
331 
332 	if (!req)
333 		return NULL;
334 
335 	if (cookie_tcp_reqsk_init(sk, skb, req)) {
336 		reqsk_free(req);
337 		return NULL;
338 	}
339 
340 	ireq = inet_rsk(req);
341 	treq = tcp_rsk(req);
342 
343 	req->mss = mss;
344 	req->ts_recent = tcp_opt->saw_tstamp ? tcp_opt->rcv_tsval : 0;
345 
346 	ireq->snd_wscale = tcp_opt->snd_wscale;
347 	ireq->tstamp_ok = tcp_opt->saw_tstamp;
348 	ireq->sack_ok = tcp_opt->sack_ok;
349 	ireq->wscale_ok = tcp_opt->wscale_ok;
350 	ireq->ecn_ok = !!(tcp_opt->rcv_tsecr & TS_OPT_ECN);
351 
352 	treq->ts_off = tsoff;
353 
354 	return req;
355 }
356 EXPORT_IPV6_MOD_GPL(cookie_tcp_reqsk_alloc);
357 
358 static struct request_sock *cookie_tcp_check(struct net *net, struct sock *sk,
359 					     struct sk_buff *skb)
360 {
361 	struct tcp_options_received tcp_opt;
362 	u32 tsoff = 0;
363 	int mss;
364 
365 	if (tcp_synq_no_recent_overflow(sk))
366 		goto out;
367 
368 	mss = __cookie_v4_check(ip_hdr(skb), tcp_hdr(skb));
369 	if (!mss) {
370 		__NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESFAILED);
371 		goto out;
372 	}
373 
374 	__NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESRECV);
375 
376 	/* check for timestamp cookie support */
377 	memset(&tcp_opt, 0, sizeof(tcp_opt));
378 	tcp_parse_options(net, skb, &tcp_opt, 0, NULL);
379 
380 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
381 		tsoff = secure_tcp_ts_off(net,
382 					  ip_hdr(skb)->daddr,
383 					  ip_hdr(skb)->saddr);
384 		tcp_opt.rcv_tsecr -= tsoff;
385 	}
386 
387 	if (!cookie_timestamp_decode(net, &tcp_opt))
388 		goto out;
389 
390 	return cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb,
391 				      &tcp_opt, mss, tsoff);
392 out:
393 	return ERR_PTR(-EINVAL);
394 }
395 
396 /* On input, sk is a listener.
397  * Output is listener if incoming packet would not create a child
398  *           NULL if memory could not be allocated.
399  */
400 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
401 {
402 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
403 	const struct tcphdr *th = tcp_hdr(skb);
404 	struct tcp_sock *tp = tcp_sk(sk);
405 	struct inet_request_sock *ireq;
406 	struct net *net = sock_net(sk);
407 	struct tcp_request_sock *treq;
408 	struct request_sock *req;
409 	struct sock *ret = sk;
410 	struct flowi4 fl4;
411 	struct rtable *rt;
412 	__u8 rcv_wscale;
413 	int full_space;
414 	SKB_DR(reason);
415 
416 	if (!READ_ONCE(net->ipv4.sysctl_tcp_syncookies) ||
417 	    !th->ack || th->rst)
418 		goto out;
419 
420 	if (cookie_bpf_ok(skb)) {
421 		req = cookie_bpf_check(sk, skb);
422 	} else {
423 		req = cookie_tcp_check(net, sk, skb);
424 		if (IS_ERR(req))
425 			goto out;
426 	}
427 	if (!req) {
428 		SKB_DR_SET(reason, NO_SOCKET);
429 		goto out_drop;
430 	}
431 
432 	ireq = inet_rsk(req);
433 	treq = tcp_rsk(req);
434 
435 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
436 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
437 
438 	/* We throwed the options of the initial SYN away, so we hope
439 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
440 	 */
441 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
442 
443 	if (security_inet_conn_request(sk, skb, req)) {
444 		SKB_DR_SET(reason, SECURITY_HOOK);
445 		goto out_free;
446 	}
447 
448 	tcp_ao_syncookie(sk, skb, req, AF_INET);
449 
450 	/*
451 	 * We need to lookup the route here to get at the correct
452 	 * window size. We should better make sure that the window size
453 	 * hasn't changed since we received the original syn, but I see
454 	 * no easy way to do this.
455 	 */
456 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
457 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
458 			   IPPROTO_TCP, inet_sk_flowi_flags(sk),
459 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
460 			   ireq->ir_loc_addr, th->source, th->dest,
461 			   sk_uid(sk));
462 	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
463 	rt = ip_route_output_key(net, &fl4);
464 	if (IS_ERR(rt)) {
465 		SKB_DR_SET(reason, IP_OUTNOROUTES);
466 		goto out_free;
467 	}
468 
469 	/* Try to redo what tcp_v4_send_synack did. */
470 	req->rsk_window_clamp = READ_ONCE(tp->window_clamp) ? :
471 				dst_metric(&rt->dst, RTAX_WINDOW);
472 	/* limit the window selection if the user enforce a smaller rx buffer */
473 	full_space = tcp_full_space(sk);
474 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
475 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
476 		req->rsk_window_clamp = full_space;
477 
478 	tcp_select_initial_window(sk, full_space, req->mss,
479 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
480 				  ireq->wscale_ok, &rcv_wscale,
481 				  dst_metric(&rt->dst, RTAX_INITRWND));
482 
483 	/* req->syncookie is set true only if ACK is validated
484 	 * by BPF kfunc, then, rcv_wscale is already configured.
485 	 */
486 	if (!req->syncookie)
487 		ireq->rcv_wscale = rcv_wscale;
488 	ireq->ecn_ok &= cookie_ecn_ok(net, &rt->dst);
489 	treq->accecn_ok = ireq->ecn_ok && cookie_accecn_ok(th);
490 
491 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
492 	/* ip_queue_xmit() depends on our flow being setup
493 	 * Normal sockets get it right from inet_csk_route_child_sock()
494 	 */
495 	if (!ret) {
496 		SKB_DR_SET(reason, NO_SOCKET);
497 		goto out_drop;
498 	}
499 	inet_sk(ret)->cork.fl.u.ip4 = fl4;
500 out:
501 	return ret;
502 out_free:
503 	reqsk_free(req);
504 out_drop:
505 	sk_skb_reason_drop(sk, skb, reason);
506 	return NULL;
507 }
508