1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
158 enum event_type_t {
159 EVENT_FLEXIBLE = 0x01,
160 EVENT_PINNED = 0x02,
161 EVENT_TIME = 0x04,
162 EVENT_FROZEN = 0x08,
163 /* see ctx_resched() for details */
164 EVENT_CPU = 0x10,
165 EVENT_CGROUP = 0x20,
166
167 /* compound helpers */
168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171
__perf_ctx_lock(struct perf_event_context * ctx)172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 raw_spin_lock(&ctx->lock);
175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 struct perf_event_context *ctx)
180 {
181 __perf_ctx_lock(&cpuctx->ctx);
182 if (ctx)
183 __perf_ctx_lock(ctx);
184 }
185
__perf_ctx_unlock(struct perf_event_context * ctx)186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 /*
189 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 * after ctx_sched_out() by clearing is_active.
191 */
192 if (ctx->is_active & EVENT_FROZEN) {
193 if (!(ctx->is_active & EVENT_ALL))
194 ctx->is_active = 0;
195 else
196 ctx->is_active &= ~EVENT_FROZEN;
197 }
198 raw_spin_unlock(&ctx->lock);
199 }
200
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 struct perf_event_context *ctx)
203 {
204 if (ctx)
205 __perf_ctx_unlock(ctx);
206 __perf_ctx_unlock(&cpuctx->ctx);
207 }
208
209 #define TASK_TOMBSTONE ((void *)-1L)
210
is_kernel_event(struct perf_event * event)211 static bool is_kernel_event(struct perf_event *event)
212 {
213 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217
perf_cpu_task_ctx(void)218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 lockdep_assert_irqs_disabled();
221 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223
224 /*
225 * On task ctx scheduling...
226 *
227 * When !ctx->nr_events a task context will not be scheduled. This means
228 * we can disable the scheduler hooks (for performance) without leaving
229 * pending task ctx state.
230 *
231 * This however results in two special cases:
232 *
233 * - removing the last event from a task ctx; this is relatively straight
234 * forward and is done in __perf_remove_from_context.
235 *
236 * - adding the first event to a task ctx; this is tricky because we cannot
237 * rely on ctx->is_active and therefore cannot use event_function_call().
238 * See perf_install_in_context().
239 *
240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241 */
242
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 struct perf_event_context *, void *);
245
246 struct event_function_struct {
247 struct perf_event *event;
248 event_f func;
249 void *data;
250 };
251
event_function(void * info)252 static int event_function(void *info)
253 {
254 struct event_function_struct *efs = info;
255 struct perf_event *event = efs->event;
256 struct perf_event_context *ctx = event->ctx;
257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 int ret = 0;
260
261 lockdep_assert_irqs_disabled();
262
263 perf_ctx_lock(cpuctx, task_ctx);
264 /*
265 * Since we do the IPI call without holding ctx->lock things can have
266 * changed, double check we hit the task we set out to hit.
267 */
268 if (ctx->task) {
269 if (ctx->task != current) {
270 ret = -ESRCH;
271 goto unlock;
272 }
273
274 /*
275 * We only use event_function_call() on established contexts,
276 * and event_function() is only ever called when active (or
277 * rather, we'll have bailed in task_function_call() or the
278 * above ctx->task != current test), therefore we must have
279 * ctx->is_active here.
280 */
281 WARN_ON_ONCE(!ctx->is_active);
282 /*
283 * And since we have ctx->is_active, cpuctx->task_ctx must
284 * match.
285 */
286 WARN_ON_ONCE(task_ctx != ctx);
287 } else {
288 WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 }
290
291 efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 perf_ctx_unlock(cpuctx, task_ctx);
294
295 return ret;
296 }
297
event_function_call(struct perf_event * event,event_f func,void * data)298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 struct perf_cpu_context *cpuctx;
303 struct event_function_struct efs = {
304 .event = event,
305 .func = func,
306 .data = data,
307 };
308
309 if (!event->parent) {
310 /*
311 * If this is a !child event, we must hold ctx::mutex to
312 * stabilize the event->ctx relation. See
313 * perf_event_ctx_lock().
314 */
315 lockdep_assert_held(&ctx->mutex);
316 }
317
318 if (!task) {
319 cpu_function_call(event->cpu, event_function, &efs);
320 return;
321 }
322
323 if (task == TASK_TOMBSTONE)
324 return;
325
326 again:
327 if (!task_function_call(task, event_function, &efs))
328 return;
329
330 local_irq_disable();
331 cpuctx = this_cpu_ptr(&perf_cpu_context);
332 perf_ctx_lock(cpuctx, ctx);
333 /*
334 * Reload the task pointer, it might have been changed by
335 * a concurrent perf_event_context_sched_out().
336 */
337 task = ctx->task;
338 if (task == TASK_TOMBSTONE)
339 goto unlock;
340 if (ctx->is_active) {
341 perf_ctx_unlock(cpuctx, ctx);
342 local_irq_enable();
343 goto again;
344 }
345 func(event, NULL, ctx, data);
346 unlock:
347 perf_ctx_unlock(cpuctx, ctx);
348 local_irq_enable();
349 }
350
351 /*
352 * Similar to event_function_call() + event_function(), but hard assumes IRQs
353 * are already disabled and we're on the right CPU.
354 */
event_function_local(struct perf_event * event,event_f func,void * data)355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 struct perf_event_context *ctx = event->ctx;
358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 struct task_struct *task = READ_ONCE(ctx->task);
360 struct perf_event_context *task_ctx = NULL;
361
362 lockdep_assert_irqs_disabled();
363
364 if (task) {
365 if (task == TASK_TOMBSTONE)
366 return;
367
368 task_ctx = ctx;
369 }
370
371 perf_ctx_lock(cpuctx, task_ctx);
372
373 task = ctx->task;
374 if (task == TASK_TOMBSTONE)
375 goto unlock;
376
377 if (task) {
378 /*
379 * We must be either inactive or active and the right task,
380 * otherwise we're screwed, since we cannot IPI to somewhere
381 * else.
382 */
383 if (ctx->is_active) {
384 if (WARN_ON_ONCE(task != current))
385 goto unlock;
386
387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 goto unlock;
389 }
390 } else {
391 WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 }
393
394 func(event, cpuctx, ctx, data);
395 unlock:
396 perf_ctx_unlock(cpuctx, task_ctx);
397 }
398
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 PERF_FLAG_FD_OUTPUT |\
401 PERF_FLAG_PID_CGROUP |\
402 PERF_FLAG_FD_CLOEXEC)
403
404 /*
405 * branch priv levels that need permission checks
406 */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 (PERF_SAMPLE_BRANCH_KERNEL |\
409 PERF_SAMPLE_BRANCH_HV)
410
411 /*
412 * perf_sched_events : >0 events exist
413 */
414
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445
446 /*
447 * perf event paranoia level:
448 * -1 - not paranoid at all
449 * 0 - disallow raw tracepoint access for unpriv
450 * 1 - disallow cpu events for unpriv
451 * 2 - disallow kernel profiling for unpriv
452 */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457
458 /*
459 * max perf event sample rate
460 */
461 #define DEFAULT_MAX_SAMPLE_RATE 100000
462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
464
465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
466
467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
469
470 static int perf_sample_allowed_ns __read_mostly =
471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472
update_perf_cpu_limits(void)473 static void update_perf_cpu_limits(void)
474 {
475 u64 tmp = perf_sample_period_ns;
476
477 tmp *= sysctl_perf_cpu_time_max_percent;
478 tmp = div_u64(tmp, 100);
479 if (!tmp)
480 tmp = 1;
481
482 WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 int ret;
491 int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 /*
493 * If throttling is disabled don't allow the write:
494 */
495 if (write && (perf_cpu == 100 || perf_cpu == 0))
496 return -EINVAL;
497
498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 if (ret || !write)
500 return ret;
501
502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 update_perf_cpu_limits();
505
506 return 0;
507 }
508
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515
516 if (ret || !write)
517 return ret;
518
519 if (sysctl_perf_cpu_time_max_percent == 100 ||
520 sysctl_perf_cpu_time_max_percent == 0) {
521 printk(KERN_WARNING
522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 WRITE_ONCE(perf_sample_allowed_ns, 0);
524 } else {
525 update_perf_cpu_limits();
526 }
527
528 return 0;
529 }
530
531 /*
532 * perf samples are done in some very critical code paths (NMIs).
533 * If they take too much CPU time, the system can lock up and not
534 * get any real work done. This will drop the sample rate when
535 * we detect that events are taking too long.
536 */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539
540 static u64 __report_avg;
541 static u64 __report_allowed;
542
perf_duration_warn(struct irq_work * w)543 static void perf_duration_warn(struct irq_work *w)
544 {
545 printk_ratelimited(KERN_INFO
546 "perf: interrupt took too long (%lld > %lld), lowering "
547 "kernel.perf_event_max_sample_rate to %d\n",
548 __report_avg, __report_allowed,
549 sysctl_perf_event_sample_rate);
550 }
551
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553
perf_sample_event_took(u64 sample_len_ns)554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 u64 running_len;
558 u64 avg_len;
559 u32 max;
560
561 if (max_len == 0)
562 return;
563
564 /* Decay the counter by 1 average sample. */
565 running_len = __this_cpu_read(running_sample_length);
566 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 running_len += sample_len_ns;
568 __this_cpu_write(running_sample_length, running_len);
569
570 /*
571 * Note: this will be biased artificially low until we have
572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 * from having to maintain a count.
574 */
575 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 if (avg_len <= max_len)
577 return;
578
579 __report_avg = avg_len;
580 __report_allowed = max_len;
581
582 /*
583 * Compute a throttle threshold 25% below the current duration.
584 */
585 avg_len += avg_len / 4;
586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 if (avg_len < max)
588 max /= (u32)avg_len;
589 else
590 max = 1;
591
592 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 WRITE_ONCE(max_samples_per_tick, max);
594
595 sysctl_perf_event_sample_rate = max * HZ;
596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597
598 if (!irq_work_queue(&perf_duration_work)) {
599 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 "kernel.perf_event_max_sample_rate to %d\n",
601 __report_avg, __report_allowed,
602 sysctl_perf_event_sample_rate);
603 }
604 }
605
606 static atomic64_t perf_event_id;
607
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610
perf_event_print_debug(void)611 void __weak perf_event_print_debug(void) { }
612
perf_clock(void)613 static inline u64 perf_clock(void)
614 {
615 return local_clock();
616 }
617
perf_event_clock(struct perf_event * event)618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 return event->clock();
621 }
622
623 /*
624 * State based event timekeeping...
625 *
626 * The basic idea is to use event->state to determine which (if any) time
627 * fields to increment with the current delta. This means we only need to
628 * update timestamps when we change state or when they are explicitly requested
629 * (read).
630 *
631 * Event groups make things a little more complicated, but not terribly so. The
632 * rules for a group are that if the group leader is OFF the entire group is
633 * OFF, irrespective of what the group member states are. This results in
634 * __perf_effective_state().
635 *
636 * A further ramification is that when a group leader flips between OFF and
637 * !OFF, we need to update all group member times.
638 *
639 *
640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641 * need to make sure the relevant context time is updated before we try and
642 * update our timestamps.
643 */
644
645 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)646 __perf_effective_state(struct perf_event *event)
647 {
648 struct perf_event *leader = event->group_leader;
649
650 if (leader->state <= PERF_EVENT_STATE_OFF)
651 return leader->state;
652
653 return event->state;
654 }
655
656 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 enum perf_event_state state = __perf_effective_state(event);
660 u64 delta = now - event->tstamp;
661
662 *enabled = event->total_time_enabled;
663 if (state >= PERF_EVENT_STATE_INACTIVE)
664 *enabled += delta;
665
666 *running = event->total_time_running;
667 if (state >= PERF_EVENT_STATE_ACTIVE)
668 *running += delta;
669 }
670
perf_event_update_time(struct perf_event * event)671 static void perf_event_update_time(struct perf_event *event)
672 {
673 u64 now = perf_event_time(event);
674
675 __perf_update_times(event, now, &event->total_time_enabled,
676 &event->total_time_running);
677 event->tstamp = now;
678 }
679
perf_event_update_sibling_time(struct perf_event * leader)680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 struct perf_event *sibling;
683
684 for_each_sibling_event(sibling, leader)
685 perf_event_update_time(sibling);
686 }
687
688 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 if (event->state == state)
692 return;
693
694 perf_event_update_time(event);
695 /*
696 * If a group leader gets enabled/disabled all its siblings
697 * are affected too.
698 */
699 if ((event->state < 0) ^ (state < 0))
700 perf_event_update_sibling_time(event);
701
702 WRITE_ONCE(event->state, state);
703 }
704
705 /*
706 * UP store-release, load-acquire
707 */
708
709 #define __store_release(ptr, val) \
710 do { \
711 barrier(); \
712 WRITE_ONCE(*(ptr), (val)); \
713 } while (0)
714
715 #define __load_acquire(ptr) \
716 ({ \
717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
718 barrier(); \
719 ___p; \
720 })
721
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 if (_cgroup && !_epc->nr_cgroups) \
725 continue; \
726 else if (_pmu && _epc->pmu != _pmu) \
727 continue; \
728 else
729
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 struct perf_event_pmu_context *pmu_ctx;
733
734 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 perf_pmu_disable(pmu_ctx->pmu);
736 }
737
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 struct perf_event_pmu_context *pmu_ctx;
741
742 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 perf_pmu_enable(pmu_ctx->pmu);
744 }
745
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748
749 #ifdef CONFIG_CGROUP_PERF
750
751 static inline bool
perf_cgroup_match(struct perf_event * event)752 perf_cgroup_match(struct perf_event *event)
753 {
754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755
756 /* @event doesn't care about cgroup */
757 if (!event->cgrp)
758 return true;
759
760 /* wants specific cgroup scope but @cpuctx isn't associated with any */
761 if (!cpuctx->cgrp)
762 return false;
763
764 /*
765 * Cgroup scoping is recursive. An event enabled for a cgroup is
766 * also enabled for all its descendant cgroups. If @cpuctx's
767 * cgroup is a descendant of @event's (the test covers identity
768 * case), it's a match.
769 */
770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 event->cgrp->css.cgroup);
772 }
773
perf_detach_cgroup(struct perf_event * event)774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 css_put(&event->cgrp->css);
777 event->cgrp = NULL;
778 }
779
is_cgroup_event(struct perf_event * event)780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 return event->cgrp != NULL;
783 }
784
perf_cgroup_event_time(struct perf_event * event)785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 struct perf_cgroup_info *t;
788
789 t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 return t->time;
791 }
792
perf_cgroup_event_time_now(struct perf_event * event,u64 now)793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 struct perf_cgroup_info *t;
796
797 t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 if (!__load_acquire(&t->active))
799 return t->time;
800 now += READ_ONCE(t->timeoffset);
801 return now;
802 }
803
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 if (adv)
807 info->time += now - info->timestamp;
808 info->timestamp = now;
809 /*
810 * see update_context_time()
811 */
812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 struct perf_cgroup *cgrp = cpuctx->cgrp;
818 struct cgroup_subsys_state *css;
819 struct perf_cgroup_info *info;
820
821 if (cgrp) {
822 u64 now = perf_clock();
823
824 for (css = &cgrp->css; css; css = css->parent) {
825 cgrp = container_of(css, struct perf_cgroup, css);
826 info = this_cpu_ptr(cgrp->info);
827
828 __update_cgrp_time(info, now, true);
829 if (final)
830 __store_release(&info->active, 0);
831 }
832 }
833 }
834
update_cgrp_time_from_event(struct perf_event * event)835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 struct perf_cgroup_info *info;
838
839 /*
840 * ensure we access cgroup data only when needed and
841 * when we know the cgroup is pinned (css_get)
842 */
843 if (!is_cgroup_event(event))
844 return;
845
846 info = this_cpu_ptr(event->cgrp->info);
847 /*
848 * Do not update time when cgroup is not active
849 */
850 if (info->active)
851 __update_cgrp_time(info, perf_clock(), true);
852 }
853
854 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 struct perf_event_context *ctx = &cpuctx->ctx;
858 struct perf_cgroup *cgrp = cpuctx->cgrp;
859 struct perf_cgroup_info *info;
860 struct cgroup_subsys_state *css;
861
862 /*
863 * ctx->lock held by caller
864 * ensure we do not access cgroup data
865 * unless we have the cgroup pinned (css_get)
866 */
867 if (!cgrp)
868 return;
869
870 WARN_ON_ONCE(!ctx->nr_cgroups);
871
872 for (css = &cgrp->css; css; css = css->parent) {
873 cgrp = container_of(css, struct perf_cgroup, css);
874 info = this_cpu_ptr(cgrp->info);
875 __update_cgrp_time(info, ctx->timestamp, false);
876 __store_release(&info->active, 1);
877 }
878 }
879
880 /*
881 * reschedule events based on the cgroup constraint of task.
882 */
perf_cgroup_switch(struct task_struct * task)883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 struct perf_cgroup *cgrp;
887
888 /*
889 * cpuctx->cgrp is set when the first cgroup event enabled,
890 * and is cleared when the last cgroup event disabled.
891 */
892 if (READ_ONCE(cpuctx->cgrp) == NULL)
893 return;
894
895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896
897 cgrp = perf_cgroup_from_task(task, NULL);
898 if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 return;
900
901 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 perf_ctx_disable(&cpuctx->ctx, true);
903
904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 /*
906 * must not be done before ctxswout due
907 * to update_cgrp_time_from_cpuctx() in
908 * ctx_sched_out()
909 */
910 cpuctx->cgrp = cgrp;
911 /*
912 * set cgrp before ctxsw in to allow
913 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 * to not have to pass task around
915 */
916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917
918 perf_ctx_enable(&cpuctx->ctx, true);
919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 struct cgroup_subsys_state *css)
924 {
925 struct perf_cpu_context *cpuctx;
926 struct perf_event **storage;
927 int cpu, heap_size, ret = 0;
928
929 /*
930 * Allow storage to have sufficient space for an iterator for each
931 * possibly nested cgroup plus an iterator for events with no cgroup.
932 */
933 for (heap_size = 1; css; css = css->parent)
934 heap_size++;
935
936 for_each_possible_cpu(cpu) {
937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 if (heap_size <= cpuctx->heap_size)
939 continue;
940
941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 GFP_KERNEL, cpu_to_node(cpu));
943 if (!storage) {
944 ret = -ENOMEM;
945 break;
946 }
947
948 raw_spin_lock_irq(&cpuctx->ctx.lock);
949 if (cpuctx->heap_size < heap_size) {
950 swap(cpuctx->heap, storage);
951 if (storage == cpuctx->heap_default)
952 storage = NULL;
953 cpuctx->heap_size = heap_size;
954 }
955 raw_spin_unlock_irq(&cpuctx->ctx.lock);
956
957 kfree(storage);
958 }
959
960 return ret;
961 }
962
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 struct perf_event_attr *attr,
965 struct perf_event *group_leader)
966 {
967 struct perf_cgroup *cgrp;
968 struct cgroup_subsys_state *css;
969 struct fd f = fdget(fd);
970 int ret = 0;
971
972 if (!fd_file(f))
973 return -EBADF;
974
975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 &perf_event_cgrp_subsys);
977 if (IS_ERR(css)) {
978 ret = PTR_ERR(css);
979 goto out;
980 }
981
982 ret = perf_cgroup_ensure_storage(event, css);
983 if (ret)
984 goto out;
985
986 cgrp = container_of(css, struct perf_cgroup, css);
987 event->cgrp = cgrp;
988
989 /*
990 * all events in a group must monitor
991 * the same cgroup because a task belongs
992 * to only one perf cgroup at a time
993 */
994 if (group_leader && group_leader->cgrp != cgrp) {
995 perf_detach_cgroup(event);
996 ret = -EINVAL;
997 }
998 out:
999 fdput(f);
1000 return ret;
1001 }
1002
1003 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1004 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1005 {
1006 struct perf_cpu_context *cpuctx;
1007
1008 if (!is_cgroup_event(event))
1009 return;
1010
1011 event->pmu_ctx->nr_cgroups++;
1012
1013 /*
1014 * Because cgroup events are always per-cpu events,
1015 * @ctx == &cpuctx->ctx.
1016 */
1017 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1018
1019 if (ctx->nr_cgroups++)
1020 return;
1021
1022 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1023 }
1024
1025 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 struct perf_cpu_context *cpuctx;
1029
1030 if (!is_cgroup_event(event))
1031 return;
1032
1033 event->pmu_ctx->nr_cgroups--;
1034
1035 /*
1036 * Because cgroup events are always per-cpu events,
1037 * @ctx == &cpuctx->ctx.
1038 */
1039 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1040
1041 if (--ctx->nr_cgroups)
1042 return;
1043
1044 cpuctx->cgrp = NULL;
1045 }
1046
1047 #else /* !CONFIG_CGROUP_PERF */
1048
1049 static inline bool
perf_cgroup_match(struct perf_event * event)1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052 return true;
1053 }
1054
perf_detach_cgroup(struct perf_event * event)1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057
is_cgroup_event(struct perf_event * event)1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060 return 0;
1061 }
1062
update_cgrp_time_from_event(struct perf_event * event)1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1068 bool final)
1069 {
1070 }
1071
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1072 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1073 struct perf_event_attr *attr,
1074 struct perf_event *group_leader)
1075 {
1076 return -EINVAL;
1077 }
1078
1079 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1080 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1081 {
1082 }
1083
perf_cgroup_event_time(struct perf_event * event)1084 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1085 {
1086 return 0;
1087 }
1088
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1089 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1090 {
1091 return 0;
1092 }
1093
1094 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1095 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 }
1098
1099 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1100 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1101 {
1102 }
1103
perf_cgroup_switch(struct task_struct * task)1104 static void perf_cgroup_switch(struct task_struct *task)
1105 {
1106 }
1107 #endif
1108
1109 /*
1110 * set default to be dependent on timer tick just
1111 * like original code
1112 */
1113 #define PERF_CPU_HRTIMER (1000 / HZ)
1114 /*
1115 * function must be called with interrupts disabled
1116 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1117 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1118 {
1119 struct perf_cpu_pmu_context *cpc;
1120 bool rotations;
1121
1122 lockdep_assert_irqs_disabled();
1123
1124 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1125 rotations = perf_rotate_context(cpc);
1126
1127 raw_spin_lock(&cpc->hrtimer_lock);
1128 if (rotations)
1129 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1130 else
1131 cpc->hrtimer_active = 0;
1132 raw_spin_unlock(&cpc->hrtimer_lock);
1133
1134 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1135 }
1136
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1137 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1138 {
1139 struct hrtimer *timer = &cpc->hrtimer;
1140 struct pmu *pmu = cpc->epc.pmu;
1141 u64 interval;
1142
1143 /*
1144 * check default is sane, if not set then force to
1145 * default interval (1/tick)
1146 */
1147 interval = pmu->hrtimer_interval_ms;
1148 if (interval < 1)
1149 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1150
1151 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1152
1153 raw_spin_lock_init(&cpc->hrtimer_lock);
1154 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1155 timer->function = perf_mux_hrtimer_handler;
1156 }
1157
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1158 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1159 {
1160 struct hrtimer *timer = &cpc->hrtimer;
1161 unsigned long flags;
1162
1163 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1164 if (!cpc->hrtimer_active) {
1165 cpc->hrtimer_active = 1;
1166 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1167 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1168 }
1169 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1170
1171 return 0;
1172 }
1173
perf_mux_hrtimer_restart_ipi(void * arg)1174 static int perf_mux_hrtimer_restart_ipi(void *arg)
1175 {
1176 return perf_mux_hrtimer_restart(arg);
1177 }
1178
perf_pmu_disable(struct pmu * pmu)1179 void perf_pmu_disable(struct pmu *pmu)
1180 {
1181 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1182 if (!(*count)++)
1183 pmu->pmu_disable(pmu);
1184 }
1185
perf_pmu_enable(struct pmu * pmu)1186 void perf_pmu_enable(struct pmu *pmu)
1187 {
1188 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1189 if (!--(*count))
1190 pmu->pmu_enable(pmu);
1191 }
1192
perf_assert_pmu_disabled(struct pmu * pmu)1193 static void perf_assert_pmu_disabled(struct pmu *pmu)
1194 {
1195 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1196 }
1197
get_ctx(struct perf_event_context * ctx)1198 static void get_ctx(struct perf_event_context *ctx)
1199 {
1200 refcount_inc(&ctx->refcount);
1201 }
1202
alloc_task_ctx_data(struct pmu * pmu)1203 static void *alloc_task_ctx_data(struct pmu *pmu)
1204 {
1205 if (pmu->task_ctx_cache)
1206 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1207
1208 return NULL;
1209 }
1210
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1211 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1212 {
1213 if (pmu->task_ctx_cache && task_ctx_data)
1214 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1215 }
1216
free_ctx(struct rcu_head * head)1217 static void free_ctx(struct rcu_head *head)
1218 {
1219 struct perf_event_context *ctx;
1220
1221 ctx = container_of(head, struct perf_event_context, rcu_head);
1222 kfree(ctx);
1223 }
1224
put_ctx(struct perf_event_context * ctx)1225 static void put_ctx(struct perf_event_context *ctx)
1226 {
1227 if (refcount_dec_and_test(&ctx->refcount)) {
1228 if (ctx->parent_ctx)
1229 put_ctx(ctx->parent_ctx);
1230 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1231 put_task_struct(ctx->task);
1232 call_rcu(&ctx->rcu_head, free_ctx);
1233 }
1234 }
1235
1236 /*
1237 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1238 * perf_pmu_migrate_context() we need some magic.
1239 *
1240 * Those places that change perf_event::ctx will hold both
1241 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1242 *
1243 * Lock ordering is by mutex address. There are two other sites where
1244 * perf_event_context::mutex nests and those are:
1245 *
1246 * - perf_event_exit_task_context() [ child , 0 ]
1247 * perf_event_exit_event()
1248 * put_event() [ parent, 1 ]
1249 *
1250 * - perf_event_init_context() [ parent, 0 ]
1251 * inherit_task_group()
1252 * inherit_group()
1253 * inherit_event()
1254 * perf_event_alloc()
1255 * perf_init_event()
1256 * perf_try_init_event() [ child , 1 ]
1257 *
1258 * While it appears there is an obvious deadlock here -- the parent and child
1259 * nesting levels are inverted between the two. This is in fact safe because
1260 * life-time rules separate them. That is an exiting task cannot fork, and a
1261 * spawning task cannot (yet) exit.
1262 *
1263 * But remember that these are parent<->child context relations, and
1264 * migration does not affect children, therefore these two orderings should not
1265 * interact.
1266 *
1267 * The change in perf_event::ctx does not affect children (as claimed above)
1268 * because the sys_perf_event_open() case will install a new event and break
1269 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1270 * concerned with cpuctx and that doesn't have children.
1271 *
1272 * The places that change perf_event::ctx will issue:
1273 *
1274 * perf_remove_from_context();
1275 * synchronize_rcu();
1276 * perf_install_in_context();
1277 *
1278 * to affect the change. The remove_from_context() + synchronize_rcu() should
1279 * quiesce the event, after which we can install it in the new location. This
1280 * means that only external vectors (perf_fops, prctl) can perturb the event
1281 * while in transit. Therefore all such accessors should also acquire
1282 * perf_event_context::mutex to serialize against this.
1283 *
1284 * However; because event->ctx can change while we're waiting to acquire
1285 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1286 * function.
1287 *
1288 * Lock order:
1289 * exec_update_lock
1290 * task_struct::perf_event_mutex
1291 * perf_event_context::mutex
1292 * perf_event::child_mutex;
1293 * perf_event_context::lock
1294 * mmap_lock
1295 * perf_event::mmap_mutex
1296 * perf_buffer::aux_mutex
1297 * perf_addr_filters_head::lock
1298 *
1299 * cpu_hotplug_lock
1300 * pmus_lock
1301 * cpuctx->mutex / perf_event_context::mutex
1302 */
1303 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1304 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1305 {
1306 struct perf_event_context *ctx;
1307
1308 again:
1309 rcu_read_lock();
1310 ctx = READ_ONCE(event->ctx);
1311 if (!refcount_inc_not_zero(&ctx->refcount)) {
1312 rcu_read_unlock();
1313 goto again;
1314 }
1315 rcu_read_unlock();
1316
1317 mutex_lock_nested(&ctx->mutex, nesting);
1318 if (event->ctx != ctx) {
1319 mutex_unlock(&ctx->mutex);
1320 put_ctx(ctx);
1321 goto again;
1322 }
1323
1324 return ctx;
1325 }
1326
1327 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1328 perf_event_ctx_lock(struct perf_event *event)
1329 {
1330 return perf_event_ctx_lock_nested(event, 0);
1331 }
1332
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1333 static void perf_event_ctx_unlock(struct perf_event *event,
1334 struct perf_event_context *ctx)
1335 {
1336 mutex_unlock(&ctx->mutex);
1337 put_ctx(ctx);
1338 }
1339
1340 /*
1341 * This must be done under the ctx->lock, such as to serialize against
1342 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1343 * calling scheduler related locks and ctx->lock nests inside those.
1344 */
1345 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1346 unclone_ctx(struct perf_event_context *ctx)
1347 {
1348 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1349
1350 lockdep_assert_held(&ctx->lock);
1351
1352 if (parent_ctx)
1353 ctx->parent_ctx = NULL;
1354 ctx->generation++;
1355
1356 return parent_ctx;
1357 }
1358
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1359 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1360 enum pid_type type)
1361 {
1362 u32 nr;
1363 /*
1364 * only top level events have the pid namespace they were created in
1365 */
1366 if (event->parent)
1367 event = event->parent;
1368
1369 nr = __task_pid_nr_ns(p, type, event->ns);
1370 /* avoid -1 if it is idle thread or runs in another ns */
1371 if (!nr && !pid_alive(p))
1372 nr = -1;
1373 return nr;
1374 }
1375
perf_event_pid(struct perf_event * event,struct task_struct * p)1376 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1377 {
1378 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1379 }
1380
perf_event_tid(struct perf_event * event,struct task_struct * p)1381 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1382 {
1383 return perf_event_pid_type(event, p, PIDTYPE_PID);
1384 }
1385
1386 /*
1387 * If we inherit events we want to return the parent event id
1388 * to userspace.
1389 */
primary_event_id(struct perf_event * event)1390 static u64 primary_event_id(struct perf_event *event)
1391 {
1392 u64 id = event->id;
1393
1394 if (event->parent)
1395 id = event->parent->id;
1396
1397 return id;
1398 }
1399
1400 /*
1401 * Get the perf_event_context for a task and lock it.
1402 *
1403 * This has to cope with the fact that until it is locked,
1404 * the context could get moved to another task.
1405 */
1406 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1407 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1408 {
1409 struct perf_event_context *ctx;
1410
1411 retry:
1412 /*
1413 * One of the few rules of preemptible RCU is that one cannot do
1414 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1415 * part of the read side critical section was irqs-enabled -- see
1416 * rcu_read_unlock_special().
1417 *
1418 * Since ctx->lock nests under rq->lock we must ensure the entire read
1419 * side critical section has interrupts disabled.
1420 */
1421 local_irq_save(*flags);
1422 rcu_read_lock();
1423 ctx = rcu_dereference(task->perf_event_ctxp);
1424 if (ctx) {
1425 /*
1426 * If this context is a clone of another, it might
1427 * get swapped for another underneath us by
1428 * perf_event_task_sched_out, though the
1429 * rcu_read_lock() protects us from any context
1430 * getting freed. Lock the context and check if it
1431 * got swapped before we could get the lock, and retry
1432 * if so. If we locked the right context, then it
1433 * can't get swapped on us any more.
1434 */
1435 raw_spin_lock(&ctx->lock);
1436 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1437 raw_spin_unlock(&ctx->lock);
1438 rcu_read_unlock();
1439 local_irq_restore(*flags);
1440 goto retry;
1441 }
1442
1443 if (ctx->task == TASK_TOMBSTONE ||
1444 !refcount_inc_not_zero(&ctx->refcount)) {
1445 raw_spin_unlock(&ctx->lock);
1446 ctx = NULL;
1447 } else {
1448 WARN_ON_ONCE(ctx->task != task);
1449 }
1450 }
1451 rcu_read_unlock();
1452 if (!ctx)
1453 local_irq_restore(*flags);
1454 return ctx;
1455 }
1456
1457 /*
1458 * Get the context for a task and increment its pin_count so it
1459 * can't get swapped to another task. This also increments its
1460 * reference count so that the context can't get freed.
1461 */
1462 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1463 perf_pin_task_context(struct task_struct *task)
1464 {
1465 struct perf_event_context *ctx;
1466 unsigned long flags;
1467
1468 ctx = perf_lock_task_context(task, &flags);
1469 if (ctx) {
1470 ++ctx->pin_count;
1471 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1472 }
1473 return ctx;
1474 }
1475
perf_unpin_context(struct perf_event_context * ctx)1476 static void perf_unpin_context(struct perf_event_context *ctx)
1477 {
1478 unsigned long flags;
1479
1480 raw_spin_lock_irqsave(&ctx->lock, flags);
1481 --ctx->pin_count;
1482 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1483 }
1484
1485 /*
1486 * Update the record of the current time in a context.
1487 */
__update_context_time(struct perf_event_context * ctx,bool adv)1488 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1489 {
1490 u64 now = perf_clock();
1491
1492 lockdep_assert_held(&ctx->lock);
1493
1494 if (adv)
1495 ctx->time += now - ctx->timestamp;
1496 ctx->timestamp = now;
1497
1498 /*
1499 * The above: time' = time + (now - timestamp), can be re-arranged
1500 * into: time` = now + (time - timestamp), which gives a single value
1501 * offset to compute future time without locks on.
1502 *
1503 * See perf_event_time_now(), which can be used from NMI context where
1504 * it's (obviously) not possible to acquire ctx->lock in order to read
1505 * both the above values in a consistent manner.
1506 */
1507 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1508 }
1509
update_context_time(struct perf_event_context * ctx)1510 static void update_context_time(struct perf_event_context *ctx)
1511 {
1512 __update_context_time(ctx, true);
1513 }
1514
perf_event_time(struct perf_event * event)1515 static u64 perf_event_time(struct perf_event *event)
1516 {
1517 struct perf_event_context *ctx = event->ctx;
1518
1519 if (unlikely(!ctx))
1520 return 0;
1521
1522 if (is_cgroup_event(event))
1523 return perf_cgroup_event_time(event);
1524
1525 return ctx->time;
1526 }
1527
perf_event_time_now(struct perf_event * event,u64 now)1528 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1529 {
1530 struct perf_event_context *ctx = event->ctx;
1531
1532 if (unlikely(!ctx))
1533 return 0;
1534
1535 if (is_cgroup_event(event))
1536 return perf_cgroup_event_time_now(event, now);
1537
1538 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1539 return ctx->time;
1540
1541 now += READ_ONCE(ctx->timeoffset);
1542 return now;
1543 }
1544
get_event_type(struct perf_event * event)1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547 struct perf_event_context *ctx = event->ctx;
1548 enum event_type_t event_type;
1549
1550 lockdep_assert_held(&ctx->lock);
1551
1552 /*
1553 * It's 'group type', really, because if our group leader is
1554 * pinned, so are we.
1555 */
1556 if (event->group_leader != event)
1557 event = event->group_leader;
1558
1559 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560 if (!ctx->task)
1561 event_type |= EVENT_CPU;
1562
1563 return event_type;
1564 }
1565
1566 /*
1567 * Helper function to initialize event group nodes.
1568 */
init_event_group(struct perf_event * event)1569 static void init_event_group(struct perf_event *event)
1570 {
1571 RB_CLEAR_NODE(&event->group_node);
1572 event->group_index = 0;
1573 }
1574
1575 /*
1576 * Extract pinned or flexible groups from the context
1577 * based on event attrs bits.
1578 */
1579 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582 if (event->attr.pinned)
1583 return &ctx->pinned_groups;
1584 else
1585 return &ctx->flexible_groups;
1586 }
1587
1588 /*
1589 * Helper function to initializes perf_event_group trees.
1590 */
perf_event_groups_init(struct perf_event_groups * groups)1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593 groups->tree = RB_ROOT;
1594 groups->index = 0;
1595 }
1596
event_cgroup(const struct perf_event * event)1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599 struct cgroup *cgroup = NULL;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602 if (event->cgrp)
1603 cgroup = event->cgrp->css.cgroup;
1604 #endif
1605
1606 return cgroup;
1607 }
1608
1609 /*
1610 * Compare function for event groups;
1611 *
1612 * Implements complex key that first sorts by CPU and then by virtual index
1613 * which provides ordering when rotating groups for the same CPU.
1614 */
1615 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1616 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1617 const struct cgroup *left_cgroup, const u64 left_group_index,
1618 const struct perf_event *right)
1619 {
1620 if (left_cpu < right->cpu)
1621 return -1;
1622 if (left_cpu > right->cpu)
1623 return 1;
1624
1625 if (left_pmu) {
1626 if (left_pmu < right->pmu_ctx->pmu)
1627 return -1;
1628 if (left_pmu > right->pmu_ctx->pmu)
1629 return 1;
1630 }
1631
1632 #ifdef CONFIG_CGROUP_PERF
1633 {
1634 const struct cgroup *right_cgroup = event_cgroup(right);
1635
1636 if (left_cgroup != right_cgroup) {
1637 if (!left_cgroup) {
1638 /*
1639 * Left has no cgroup but right does, no
1640 * cgroups come first.
1641 */
1642 return -1;
1643 }
1644 if (!right_cgroup) {
1645 /*
1646 * Right has no cgroup but left does, no
1647 * cgroups come first.
1648 */
1649 return 1;
1650 }
1651 /* Two dissimilar cgroups, order by id. */
1652 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1653 return -1;
1654
1655 return 1;
1656 }
1657 }
1658 #endif
1659
1660 if (left_group_index < right->group_index)
1661 return -1;
1662 if (left_group_index > right->group_index)
1663 return 1;
1664
1665 return 0;
1666 }
1667
1668 #define __node_2_pe(node) \
1669 rb_entry((node), struct perf_event, group_node)
1670
__group_less(struct rb_node * a,const struct rb_node * b)1671 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1672 {
1673 struct perf_event *e = __node_2_pe(a);
1674 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1675 e->group_index, __node_2_pe(b)) < 0;
1676 }
1677
1678 struct __group_key {
1679 int cpu;
1680 struct pmu *pmu;
1681 struct cgroup *cgroup;
1682 };
1683
__group_cmp(const void * key,const struct rb_node * node)1684 static inline int __group_cmp(const void *key, const struct rb_node *node)
1685 {
1686 const struct __group_key *a = key;
1687 const struct perf_event *b = __node_2_pe(node);
1688
1689 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1690 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1691 }
1692
1693 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1694 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1695 {
1696 const struct __group_key *a = key;
1697 const struct perf_event *b = __node_2_pe(node);
1698
1699 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1700 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1701 b->group_index, b);
1702 }
1703
1704 /*
1705 * Insert @event into @groups' tree; using
1706 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1707 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1708 */
1709 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1710 perf_event_groups_insert(struct perf_event_groups *groups,
1711 struct perf_event *event)
1712 {
1713 event->group_index = ++groups->index;
1714
1715 rb_add(&event->group_node, &groups->tree, __group_less);
1716 }
1717
1718 /*
1719 * Helper function to insert event into the pinned or flexible groups.
1720 */
1721 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1722 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1723 {
1724 struct perf_event_groups *groups;
1725
1726 groups = get_event_groups(event, ctx);
1727 perf_event_groups_insert(groups, event);
1728 }
1729
1730 /*
1731 * Delete a group from a tree.
1732 */
1733 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1734 perf_event_groups_delete(struct perf_event_groups *groups,
1735 struct perf_event *event)
1736 {
1737 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1738 RB_EMPTY_ROOT(&groups->tree));
1739
1740 rb_erase(&event->group_node, &groups->tree);
1741 init_event_group(event);
1742 }
1743
1744 /*
1745 * Helper function to delete event from its groups.
1746 */
1747 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1748 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1749 {
1750 struct perf_event_groups *groups;
1751
1752 groups = get_event_groups(event, ctx);
1753 perf_event_groups_delete(groups, event);
1754 }
1755
1756 /*
1757 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1758 */
1759 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1760 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1761 struct pmu *pmu, struct cgroup *cgrp)
1762 {
1763 struct __group_key key = {
1764 .cpu = cpu,
1765 .pmu = pmu,
1766 .cgroup = cgrp,
1767 };
1768 struct rb_node *node;
1769
1770 node = rb_find_first(&key, &groups->tree, __group_cmp);
1771 if (node)
1772 return __node_2_pe(node);
1773
1774 return NULL;
1775 }
1776
1777 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1778 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1779 {
1780 struct __group_key key = {
1781 .cpu = event->cpu,
1782 .pmu = pmu,
1783 .cgroup = event_cgroup(event),
1784 };
1785 struct rb_node *next;
1786
1787 next = rb_next_match(&key, &event->group_node, __group_cmp);
1788 if (next)
1789 return __node_2_pe(next);
1790
1791 return NULL;
1792 }
1793
1794 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1795 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1796 event; event = perf_event_groups_next(event, pmu))
1797
1798 /*
1799 * Iterate through the whole groups tree.
1800 */
1801 #define perf_event_groups_for_each(event, groups) \
1802 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1803 typeof(*event), group_node); event; \
1804 event = rb_entry_safe(rb_next(&event->group_node), \
1805 typeof(*event), group_node))
1806
1807 /*
1808 * Does the event attribute request inherit with PERF_SAMPLE_READ
1809 */
has_inherit_and_sample_read(struct perf_event_attr * attr)1810 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1811 {
1812 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1813 }
1814
1815 /*
1816 * Add an event from the lists for its context.
1817 * Must be called with ctx->mutex and ctx->lock held.
1818 */
1819 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1820 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1821 {
1822 lockdep_assert_held(&ctx->lock);
1823
1824 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1825 event->attach_state |= PERF_ATTACH_CONTEXT;
1826
1827 event->tstamp = perf_event_time(event);
1828
1829 /*
1830 * If we're a stand alone event or group leader, we go to the context
1831 * list, group events are kept attached to the group so that
1832 * perf_group_detach can, at all times, locate all siblings.
1833 */
1834 if (event->group_leader == event) {
1835 event->group_caps = event->event_caps;
1836 add_event_to_groups(event, ctx);
1837 }
1838
1839 list_add_rcu(&event->event_entry, &ctx->event_list);
1840 ctx->nr_events++;
1841 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1842 ctx->nr_user++;
1843 if (event->attr.inherit_stat)
1844 ctx->nr_stat++;
1845 if (has_inherit_and_sample_read(&event->attr))
1846 local_inc(&ctx->nr_no_switch_fast);
1847
1848 if (event->state > PERF_EVENT_STATE_OFF)
1849 perf_cgroup_event_enable(event, ctx);
1850
1851 ctx->generation++;
1852 event->pmu_ctx->nr_events++;
1853 }
1854
1855 /*
1856 * Initialize event state based on the perf_event_attr::disabled.
1857 */
perf_event__state_init(struct perf_event * event)1858 static inline void perf_event__state_init(struct perf_event *event)
1859 {
1860 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1861 PERF_EVENT_STATE_INACTIVE;
1862 }
1863
__perf_event_read_size(u64 read_format,int nr_siblings)1864 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1865 {
1866 int entry = sizeof(u64); /* value */
1867 int size = 0;
1868 int nr = 1;
1869
1870 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1871 size += sizeof(u64);
1872
1873 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1874 size += sizeof(u64);
1875
1876 if (read_format & PERF_FORMAT_ID)
1877 entry += sizeof(u64);
1878
1879 if (read_format & PERF_FORMAT_LOST)
1880 entry += sizeof(u64);
1881
1882 if (read_format & PERF_FORMAT_GROUP) {
1883 nr += nr_siblings;
1884 size += sizeof(u64);
1885 }
1886
1887 /*
1888 * Since perf_event_validate_size() limits this to 16k and inhibits
1889 * adding more siblings, this will never overflow.
1890 */
1891 return size + nr * entry;
1892 }
1893
__perf_event_header_size(struct perf_event * event,u64 sample_type)1894 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1895 {
1896 struct perf_sample_data *data;
1897 u16 size = 0;
1898
1899 if (sample_type & PERF_SAMPLE_IP)
1900 size += sizeof(data->ip);
1901
1902 if (sample_type & PERF_SAMPLE_ADDR)
1903 size += sizeof(data->addr);
1904
1905 if (sample_type & PERF_SAMPLE_PERIOD)
1906 size += sizeof(data->period);
1907
1908 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1909 size += sizeof(data->weight.full);
1910
1911 if (sample_type & PERF_SAMPLE_READ)
1912 size += event->read_size;
1913
1914 if (sample_type & PERF_SAMPLE_DATA_SRC)
1915 size += sizeof(data->data_src.val);
1916
1917 if (sample_type & PERF_SAMPLE_TRANSACTION)
1918 size += sizeof(data->txn);
1919
1920 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1921 size += sizeof(data->phys_addr);
1922
1923 if (sample_type & PERF_SAMPLE_CGROUP)
1924 size += sizeof(data->cgroup);
1925
1926 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1927 size += sizeof(data->data_page_size);
1928
1929 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1930 size += sizeof(data->code_page_size);
1931
1932 event->header_size = size;
1933 }
1934
1935 /*
1936 * Called at perf_event creation and when events are attached/detached from a
1937 * group.
1938 */
perf_event__header_size(struct perf_event * event)1939 static void perf_event__header_size(struct perf_event *event)
1940 {
1941 event->read_size =
1942 __perf_event_read_size(event->attr.read_format,
1943 event->group_leader->nr_siblings);
1944 __perf_event_header_size(event, event->attr.sample_type);
1945 }
1946
perf_event__id_header_size(struct perf_event * event)1947 static void perf_event__id_header_size(struct perf_event *event)
1948 {
1949 struct perf_sample_data *data;
1950 u64 sample_type = event->attr.sample_type;
1951 u16 size = 0;
1952
1953 if (sample_type & PERF_SAMPLE_TID)
1954 size += sizeof(data->tid_entry);
1955
1956 if (sample_type & PERF_SAMPLE_TIME)
1957 size += sizeof(data->time);
1958
1959 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1960 size += sizeof(data->id);
1961
1962 if (sample_type & PERF_SAMPLE_ID)
1963 size += sizeof(data->id);
1964
1965 if (sample_type & PERF_SAMPLE_STREAM_ID)
1966 size += sizeof(data->stream_id);
1967
1968 if (sample_type & PERF_SAMPLE_CPU)
1969 size += sizeof(data->cpu_entry);
1970
1971 event->id_header_size = size;
1972 }
1973
1974 /*
1975 * Check that adding an event to the group does not result in anybody
1976 * overflowing the 64k event limit imposed by the output buffer.
1977 *
1978 * Specifically, check that the read_size for the event does not exceed 16k,
1979 * read_size being the one term that grows with groups size. Since read_size
1980 * depends on per-event read_format, also (re)check the existing events.
1981 *
1982 * This leaves 48k for the constant size fields and things like callchains,
1983 * branch stacks and register sets.
1984 */
perf_event_validate_size(struct perf_event * event)1985 static bool perf_event_validate_size(struct perf_event *event)
1986 {
1987 struct perf_event *sibling, *group_leader = event->group_leader;
1988
1989 if (__perf_event_read_size(event->attr.read_format,
1990 group_leader->nr_siblings + 1) > 16*1024)
1991 return false;
1992
1993 if (__perf_event_read_size(group_leader->attr.read_format,
1994 group_leader->nr_siblings + 1) > 16*1024)
1995 return false;
1996
1997 /*
1998 * When creating a new group leader, group_leader->ctx is initialized
1999 * after the size has been validated, but we cannot safely use
2000 * for_each_sibling_event() until group_leader->ctx is set. A new group
2001 * leader cannot have any siblings yet, so we can safely skip checking
2002 * the non-existent siblings.
2003 */
2004 if (event == group_leader)
2005 return true;
2006
2007 for_each_sibling_event(sibling, group_leader) {
2008 if (__perf_event_read_size(sibling->attr.read_format,
2009 group_leader->nr_siblings + 1) > 16*1024)
2010 return false;
2011 }
2012
2013 return true;
2014 }
2015
perf_group_attach(struct perf_event * event)2016 static void perf_group_attach(struct perf_event *event)
2017 {
2018 struct perf_event *group_leader = event->group_leader, *pos;
2019
2020 lockdep_assert_held(&event->ctx->lock);
2021
2022 /*
2023 * We can have double attach due to group movement (move_group) in
2024 * perf_event_open().
2025 */
2026 if (event->attach_state & PERF_ATTACH_GROUP)
2027 return;
2028
2029 event->attach_state |= PERF_ATTACH_GROUP;
2030
2031 if (group_leader == event)
2032 return;
2033
2034 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2035
2036 group_leader->group_caps &= event->event_caps;
2037
2038 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2039 group_leader->nr_siblings++;
2040 group_leader->group_generation++;
2041
2042 perf_event__header_size(group_leader);
2043
2044 for_each_sibling_event(pos, group_leader)
2045 perf_event__header_size(pos);
2046 }
2047
2048 /*
2049 * Remove an event from the lists for its context.
2050 * Must be called with ctx->mutex and ctx->lock held.
2051 */
2052 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2053 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2054 {
2055 WARN_ON_ONCE(event->ctx != ctx);
2056 lockdep_assert_held(&ctx->lock);
2057
2058 /*
2059 * We can have double detach due to exit/hot-unplug + close.
2060 */
2061 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2062 return;
2063
2064 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2065
2066 ctx->nr_events--;
2067 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2068 ctx->nr_user--;
2069 if (event->attr.inherit_stat)
2070 ctx->nr_stat--;
2071 if (has_inherit_and_sample_read(&event->attr))
2072 local_dec(&ctx->nr_no_switch_fast);
2073
2074 list_del_rcu(&event->event_entry);
2075
2076 if (event->group_leader == event)
2077 del_event_from_groups(event, ctx);
2078
2079 /*
2080 * If event was in error state, then keep it
2081 * that way, otherwise bogus counts will be
2082 * returned on read(). The only way to get out
2083 * of error state is by explicit re-enabling
2084 * of the event
2085 */
2086 if (event->state > PERF_EVENT_STATE_OFF) {
2087 perf_cgroup_event_disable(event, ctx);
2088 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2089 }
2090
2091 ctx->generation++;
2092 event->pmu_ctx->nr_events--;
2093 }
2094
2095 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2096 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2097 {
2098 if (!has_aux(aux_event))
2099 return 0;
2100
2101 if (!event->pmu->aux_output_match)
2102 return 0;
2103
2104 return event->pmu->aux_output_match(aux_event);
2105 }
2106
2107 static void put_event(struct perf_event *event);
2108 static void event_sched_out(struct perf_event *event,
2109 struct perf_event_context *ctx);
2110
perf_put_aux_event(struct perf_event * event)2111 static void perf_put_aux_event(struct perf_event *event)
2112 {
2113 struct perf_event_context *ctx = event->ctx;
2114 struct perf_event *iter;
2115
2116 /*
2117 * If event uses aux_event tear down the link
2118 */
2119 if (event->aux_event) {
2120 iter = event->aux_event;
2121 event->aux_event = NULL;
2122 put_event(iter);
2123 return;
2124 }
2125
2126 /*
2127 * If the event is an aux_event, tear down all links to
2128 * it from other events.
2129 */
2130 for_each_sibling_event(iter, event->group_leader) {
2131 if (iter->aux_event != event)
2132 continue;
2133
2134 iter->aux_event = NULL;
2135 put_event(event);
2136
2137 /*
2138 * If it's ACTIVE, schedule it out and put it into ERROR
2139 * state so that we don't try to schedule it again. Note
2140 * that perf_event_enable() will clear the ERROR status.
2141 */
2142 event_sched_out(iter, ctx);
2143 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2144 }
2145 }
2146
perf_need_aux_event(struct perf_event * event)2147 static bool perf_need_aux_event(struct perf_event *event)
2148 {
2149 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2150 }
2151
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2152 static int perf_get_aux_event(struct perf_event *event,
2153 struct perf_event *group_leader)
2154 {
2155 /*
2156 * Our group leader must be an aux event if we want to be
2157 * an aux_output. This way, the aux event will precede its
2158 * aux_output events in the group, and therefore will always
2159 * schedule first.
2160 */
2161 if (!group_leader)
2162 return 0;
2163
2164 /*
2165 * aux_output and aux_sample_size are mutually exclusive.
2166 */
2167 if (event->attr.aux_output && event->attr.aux_sample_size)
2168 return 0;
2169
2170 if (event->attr.aux_output &&
2171 !perf_aux_output_match(event, group_leader))
2172 return 0;
2173
2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 return 0;
2176
2177 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 return 0;
2179
2180 /*
2181 * Link aux_outputs to their aux event; this is undone in
2182 * perf_group_detach() by perf_put_aux_event(). When the
2183 * group in torn down, the aux_output events loose their
2184 * link to the aux_event and can't schedule any more.
2185 */
2186 event->aux_event = group_leader;
2187
2188 return 1;
2189 }
2190
get_event_list(struct perf_event * event)2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 &event->pmu_ctx->flexible_active;
2195 }
2196
2197 /*
2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199 * cannot exist on their own, schedule them out and move them into the ERROR
2200 * state. Also see _perf_event_enable(), it will not be able to recover
2201 * this ERROR state.
2202 */
perf_remove_sibling_event(struct perf_event * event)2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 event_sched_out(event, event->ctx);
2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208
perf_group_detach(struct perf_event * event)2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 struct perf_event *leader = event->group_leader;
2212 struct perf_event *sibling, *tmp;
2213 struct perf_event_context *ctx = event->ctx;
2214
2215 lockdep_assert_held(&ctx->lock);
2216
2217 /*
2218 * We can have double detach due to exit/hot-unplug + close.
2219 */
2220 if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 return;
2222
2223 event->attach_state &= ~PERF_ATTACH_GROUP;
2224
2225 perf_put_aux_event(event);
2226
2227 /*
2228 * If this is a sibling, remove it from its group.
2229 */
2230 if (leader != event) {
2231 list_del_init(&event->sibling_list);
2232 event->group_leader->nr_siblings--;
2233 event->group_leader->group_generation++;
2234 goto out;
2235 }
2236
2237 /*
2238 * If this was a group event with sibling events then
2239 * upgrade the siblings to singleton events by adding them
2240 * to whatever list we are on.
2241 */
2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243
2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 perf_remove_sibling_event(sibling);
2246
2247 sibling->group_leader = sibling;
2248 list_del_init(&sibling->sibling_list);
2249
2250 /* Inherit group flags from the previous leader */
2251 sibling->group_caps = event->group_caps;
2252
2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 add_event_to_groups(sibling, event->ctx);
2255
2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 }
2259
2260 WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 }
2262
2263 out:
2264 for_each_sibling_event(tmp, leader)
2265 perf_event__header_size(tmp);
2266
2267 perf_event__header_size(leader);
2268 }
2269
2270 static void sync_child_event(struct perf_event *child_event);
2271
perf_child_detach(struct perf_event * event)2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 struct perf_event *parent_event = event->parent;
2275
2276 if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 return;
2278
2279 event->attach_state &= ~PERF_ATTACH_CHILD;
2280
2281 if (WARN_ON_ONCE(!parent_event))
2282 return;
2283
2284 lockdep_assert_held(&parent_event->child_mutex);
2285
2286 sync_child_event(event);
2287 list_del_init(&event->child_list);
2288 }
2289
is_orphaned_event(struct perf_event * event)2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294
2295 static inline int
event_filter_match(struct perf_event * event)2296 event_filter_match(struct perf_event *event)
2297 {
2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 perf_cgroup_match(event);
2300 }
2301
2302 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308
2309 // XXX cpc serialization, probably per-cpu IRQ disabled
2310
2311 WARN_ON_ONCE(event->ctx != ctx);
2312 lockdep_assert_held(&ctx->lock);
2313
2314 if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 return;
2316
2317 /*
2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 * we can schedule events _OUT_ individually through things like
2320 * __perf_remove_from_context().
2321 */
2322 list_del_init(&event->active_list);
2323
2324 perf_pmu_disable(event->pmu);
2325
2326 event->pmu->del(event, 0);
2327 event->oncpu = -1;
2328
2329 if (event->pending_disable) {
2330 event->pending_disable = 0;
2331 perf_cgroup_event_disable(event, ctx);
2332 state = PERF_EVENT_STATE_OFF;
2333 }
2334
2335 perf_event_set_state(event, state);
2336
2337 if (!is_software_event(event))
2338 cpc->active_oncpu--;
2339 if (event->attr.freq && event->attr.sample_freq) {
2340 ctx->nr_freq--;
2341 epc->nr_freq--;
2342 }
2343 if (event->attr.exclusive || !cpc->active_oncpu)
2344 cpc->exclusive = 0;
2345
2346 perf_pmu_enable(event->pmu);
2347 }
2348
2349 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 struct perf_event *event;
2353
2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 return;
2356
2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358
2359 event_sched_out(group_event, ctx);
2360
2361 /*
2362 * Schedule out siblings (if any):
2363 */
2364 for_each_sibling_event(event, group_event)
2365 event_sched_out(event, ctx);
2366 }
2367
2368 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 if (ctx->is_active & EVENT_TIME) {
2372 if (ctx->is_active & EVENT_FROZEN)
2373 return;
2374 update_context_time(ctx);
2375 update_cgrp_time_from_cpuctx(cpuctx, final);
2376 }
2377 }
2378
2379 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 __ctx_time_update(cpuctx, ctx, false);
2383 }
2384
2385 /*
2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387 */
2388 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 ctx_time_update(cpuctx, ctx);
2392 if (ctx->is_active & EVENT_TIME)
2393 ctx->is_active |= EVENT_FROZEN;
2394 }
2395
2396 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 if (ctx->is_active & EVENT_TIME) {
2400 if (ctx->is_active & EVENT_FROZEN)
2401 return;
2402 update_context_time(ctx);
2403 update_cgrp_time_from_event(event);
2404 }
2405 }
2406
2407 #define DETACH_GROUP 0x01UL
2408 #define DETACH_CHILD 0x02UL
2409 #define DETACH_DEAD 0x04UL
2410
2411 /*
2412 * Cross CPU call to remove a performance event
2413 *
2414 * We disable the event on the hardware level first. After that we
2415 * remove it from the context list.
2416 */
2417 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2418 __perf_remove_from_context(struct perf_event *event,
2419 struct perf_cpu_context *cpuctx,
2420 struct perf_event_context *ctx,
2421 void *info)
2422 {
2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 unsigned long flags = (unsigned long)info;
2425
2426 ctx_time_update(cpuctx, ctx);
2427
2428 /*
2429 * Ensure event_sched_out() switches to OFF, at the very least
2430 * this avoids raising perf_pending_task() at this time.
2431 */
2432 if (flags & DETACH_DEAD)
2433 event->pending_disable = 1;
2434 event_sched_out(event, ctx);
2435 if (flags & DETACH_GROUP)
2436 perf_group_detach(event);
2437 if (flags & DETACH_CHILD)
2438 perf_child_detach(event);
2439 list_del_event(event, ctx);
2440 if (flags & DETACH_DEAD)
2441 event->state = PERF_EVENT_STATE_DEAD;
2442
2443 if (!pmu_ctx->nr_events) {
2444 pmu_ctx->rotate_necessary = 0;
2445
2446 if (ctx->task && ctx->is_active) {
2447 struct perf_cpu_pmu_context *cpc;
2448
2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 cpc->task_epc = NULL;
2452 }
2453 }
2454
2455 if (!ctx->nr_events && ctx->is_active) {
2456 if (ctx == &cpuctx->ctx)
2457 update_cgrp_time_from_cpuctx(cpuctx, true);
2458
2459 ctx->is_active = 0;
2460 if (ctx->task) {
2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 cpuctx->task_ctx = NULL;
2463 }
2464 }
2465 }
2466
2467 /*
2468 * Remove the event from a task's (or a CPU's) list of events.
2469 *
2470 * If event->ctx is a cloned context, callers must make sure that
2471 * every task struct that event->ctx->task could possibly point to
2472 * remains valid. This is OK when called from perf_release since
2473 * that only calls us on the top-level context, which can't be a clone.
2474 * When called from perf_event_exit_task, it's OK because the
2475 * context has been detached from its task.
2476 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 struct perf_event_context *ctx = event->ctx;
2480
2481 lockdep_assert_held(&ctx->mutex);
2482
2483 /*
2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 * event_function_call() user.
2487 */
2488 raw_spin_lock_irq(&ctx->lock);
2489 if (!ctx->is_active) {
2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 ctx, (void *)flags);
2492 raw_spin_unlock_irq(&ctx->lock);
2493 return;
2494 }
2495 raw_spin_unlock_irq(&ctx->lock);
2496
2497 event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499
2500 /*
2501 * Cross CPU call to disable a performance event
2502 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2503 static void __perf_event_disable(struct perf_event *event,
2504 struct perf_cpu_context *cpuctx,
2505 struct perf_event_context *ctx,
2506 void *info)
2507 {
2508 if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 return;
2510
2511 perf_pmu_disable(event->pmu_ctx->pmu);
2512 ctx_time_update_event(ctx, event);
2513
2514 if (event == event->group_leader)
2515 group_sched_out(event, ctx);
2516 else
2517 event_sched_out(event, ctx);
2518
2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 perf_cgroup_event_disable(event, ctx);
2521
2522 perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524
2525 /*
2526 * Disable an event.
2527 *
2528 * If event->ctx is a cloned context, callers must make sure that
2529 * every task struct that event->ctx->task could possibly point to
2530 * remains valid. This condition is satisfied when called through
2531 * perf_event_for_each_child or perf_event_for_each because they
2532 * hold the top-level event's child_mutex, so any descendant that
2533 * goes to exit will block in perf_event_exit_event().
2534 *
2535 * When called from perf_pending_disable it's OK because event->ctx
2536 * is the current context on this CPU and preemption is disabled,
2537 * hence we can't get into perf_event_task_sched_out for this context.
2538 */
_perf_event_disable(struct perf_event * event)2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 struct perf_event_context *ctx = event->ctx;
2542
2543 raw_spin_lock_irq(&ctx->lock);
2544 if (event->state <= PERF_EVENT_STATE_OFF) {
2545 raw_spin_unlock_irq(&ctx->lock);
2546 return;
2547 }
2548 raw_spin_unlock_irq(&ctx->lock);
2549
2550 event_function_call(event, __perf_event_disable, NULL);
2551 }
2552
perf_event_disable_local(struct perf_event * event)2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 event_function_local(event, __perf_event_disable, NULL);
2556 }
2557
2558 /*
2559 * Strictly speaking kernel users cannot create groups and therefore this
2560 * interface does not need the perf_event_ctx_lock() magic.
2561 */
perf_event_disable(struct perf_event * event)2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 struct perf_event_context *ctx;
2565
2566 ctx = perf_event_ctx_lock(event);
2567 _perf_event_disable(event);
2568 perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571
perf_event_disable_inatomic(struct perf_event * event)2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 event->pending_disable = 1;
2575 irq_work_queue(&event->pending_disable_irq);
2576 }
2577
2578 #define MAX_INTERRUPTS (~0ULL)
2579
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582
2583 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 int ret = 0;
2589
2590 WARN_ON_ONCE(event->ctx != ctx);
2591
2592 lockdep_assert_held(&ctx->lock);
2593
2594 if (event->state <= PERF_EVENT_STATE_OFF)
2595 return 0;
2596
2597 WRITE_ONCE(event->oncpu, smp_processor_id());
2598 /*
2599 * Order event::oncpu write to happen before the ACTIVE state is
2600 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 * ->oncpu if it sees ACTIVE.
2602 */
2603 smp_wmb();
2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605
2606 /*
2607 * Unthrottle events, since we scheduled we might have missed several
2608 * ticks already, also for a heavily scheduling task there is little
2609 * guarantee it'll get a tick in a timely manner.
2610 */
2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 perf_log_throttle(event, 1);
2613 event->hw.interrupts = 0;
2614 }
2615
2616 perf_pmu_disable(event->pmu);
2617
2618 perf_log_itrace_start(event);
2619
2620 if (event->pmu->add(event, PERF_EF_START)) {
2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 event->oncpu = -1;
2623 ret = -EAGAIN;
2624 goto out;
2625 }
2626
2627 if (!is_software_event(event))
2628 cpc->active_oncpu++;
2629 if (event->attr.freq && event->attr.sample_freq) {
2630 ctx->nr_freq++;
2631 epc->nr_freq++;
2632 }
2633 if (event->attr.exclusive)
2634 cpc->exclusive = 1;
2635
2636 out:
2637 perf_pmu_enable(event->pmu);
2638
2639 return ret;
2640 }
2641
2642 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 struct perf_event *event, *partial_group = NULL;
2646 struct pmu *pmu = group_event->pmu_ctx->pmu;
2647
2648 if (group_event->state == PERF_EVENT_STATE_OFF)
2649 return 0;
2650
2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652
2653 if (event_sched_in(group_event, ctx))
2654 goto error;
2655
2656 /*
2657 * Schedule in siblings as one group (if any):
2658 */
2659 for_each_sibling_event(event, group_event) {
2660 if (event_sched_in(event, ctx)) {
2661 partial_group = event;
2662 goto group_error;
2663 }
2664 }
2665
2666 if (!pmu->commit_txn(pmu))
2667 return 0;
2668
2669 group_error:
2670 /*
2671 * Groups can be scheduled in as one unit only, so undo any
2672 * partial group before returning:
2673 * The events up to the failed event are scheduled out normally.
2674 */
2675 for_each_sibling_event(event, group_event) {
2676 if (event == partial_group)
2677 break;
2678
2679 event_sched_out(event, ctx);
2680 }
2681 event_sched_out(group_event, ctx);
2682
2683 error:
2684 pmu->cancel_txn(pmu);
2685 return -EAGAIN;
2686 }
2687
2688 /*
2689 * Work out whether we can put this event group on the CPU now.
2690 */
group_can_go_on(struct perf_event * event,int can_add_hw)2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695
2696 /*
2697 * Groups consisting entirely of software events can always go on.
2698 */
2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 return 1;
2701 /*
2702 * If an exclusive group is already on, no other hardware
2703 * events can go on.
2704 */
2705 if (cpc->exclusive)
2706 return 0;
2707 /*
2708 * If this group is exclusive and there are already
2709 * events on the CPU, it can't go on.
2710 */
2711 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 return 0;
2713 /*
2714 * Otherwise, try to add it if all previous groups were able
2715 * to go on.
2716 */
2717 return can_add_hw;
2718 }
2719
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2720 static void add_event_to_ctx(struct perf_event *event,
2721 struct perf_event_context *ctx)
2722 {
2723 list_add_event(event, ctx);
2724 perf_group_attach(event);
2725 }
2726
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 struct pmu *pmu,
2729 enum event_type_t event_type)
2730 {
2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732
2733 if (!cpuctx->task_ctx)
2734 return;
2735
2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 return;
2738
2739 ctx_sched_out(ctx, pmu, event_type);
2740 }
2741
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 struct pmu *pmu)
2745 {
2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 if (ctx)
2748 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 if (ctx)
2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753
2754 /*
2755 * We want to maintain the following priority of scheduling:
2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757 * - task pinned (EVENT_PINNED)
2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759 * - task flexible (EVENT_FLEXIBLE).
2760 *
2761 * In order to avoid unscheduling and scheduling back in everything every
2762 * time an event is added, only do it for the groups of equal priority and
2763 * below.
2764 *
2765 * This can be called after a batch operation on task events, in which case
2766 * event_type is a bit mask of the types of events involved. For CPU events,
2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 struct perf_event_context *task_ctx,
2771 struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 bool cpu_event = !!(event_type & EVENT_CPU);
2774 struct perf_event_pmu_context *epc;
2775
2776 /*
2777 * If pinned groups are involved, flexible groups also need to be
2778 * scheduled out.
2779 */
2780 if (event_type & EVENT_PINNED)
2781 event_type |= EVENT_FLEXIBLE;
2782
2783 event_type &= EVENT_ALL;
2784
2785 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 perf_pmu_disable(epc->pmu);
2787
2788 if (task_ctx) {
2789 for_each_epc(epc, task_ctx, pmu, false)
2790 perf_pmu_disable(epc->pmu);
2791
2792 task_ctx_sched_out(task_ctx, pmu, event_type);
2793 }
2794
2795 /*
2796 * Decide which cpu ctx groups to schedule out based on the types
2797 * of events that caused rescheduling:
2798 * - EVENT_CPU: schedule out corresponding groups;
2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 * - otherwise, do nothing more.
2801 */
2802 if (cpu_event)
2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 else if (event_type & EVENT_PINNED)
2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806
2807 perf_event_sched_in(cpuctx, task_ctx, pmu);
2808
2809 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 perf_pmu_enable(epc->pmu);
2811
2812 if (task_ctx) {
2813 for_each_epc(epc, task_ctx, pmu, false)
2814 perf_pmu_enable(epc->pmu);
2815 }
2816 }
2817
perf_pmu_resched(struct pmu * pmu)2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822
2823 perf_ctx_lock(cpuctx, task_ctx);
2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827
2828 /*
2829 * Cross CPU call to install and enable a performance event
2830 *
2831 * Very similar to remote_function() + event_function() but cannot assume that
2832 * things like ctx->is_active and cpuctx->task_ctx are set.
2833 */
__perf_install_in_context(void * info)2834 static int __perf_install_in_context(void *info)
2835 {
2836 struct perf_event *event = info;
2837 struct perf_event_context *ctx = event->ctx;
2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 bool reprogram = true;
2841 int ret = 0;
2842
2843 raw_spin_lock(&cpuctx->ctx.lock);
2844 if (ctx->task) {
2845 raw_spin_lock(&ctx->lock);
2846 task_ctx = ctx;
2847
2848 reprogram = (ctx->task == current);
2849
2850 /*
2851 * If the task is running, it must be running on this CPU,
2852 * otherwise we cannot reprogram things.
2853 *
2854 * If its not running, we don't care, ctx->lock will
2855 * serialize against it becoming runnable.
2856 */
2857 if (task_curr(ctx->task) && !reprogram) {
2858 ret = -ESRCH;
2859 goto unlock;
2860 }
2861
2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 } else if (task_ctx) {
2864 raw_spin_lock(&task_ctx->lock);
2865 }
2866
2867 #ifdef CONFIG_CGROUP_PERF
2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 /*
2870 * If the current cgroup doesn't match the event's
2871 * cgroup, we should not try to schedule it.
2872 */
2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 event->cgrp->css.cgroup);
2876 }
2877 #endif
2878
2879 if (reprogram) {
2880 ctx_time_freeze(cpuctx, ctx);
2881 add_event_to_ctx(event, ctx);
2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 get_event_type(event));
2884 } else {
2885 add_event_to_ctx(event, ctx);
2886 }
2887
2888 unlock:
2889 perf_ctx_unlock(cpuctx, task_ctx);
2890
2891 return ret;
2892 }
2893
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 struct perf_event_context *ctx);
2896
2897 /*
2898 * Attach a performance event to a context.
2899 *
2900 * Very similar to event_function_call, see comment there.
2901 */
2902 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2903 perf_install_in_context(struct perf_event_context *ctx,
2904 struct perf_event *event,
2905 int cpu)
2906 {
2907 struct task_struct *task = READ_ONCE(ctx->task);
2908
2909 lockdep_assert_held(&ctx->mutex);
2910
2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912
2913 if (event->cpu != -1)
2914 WARN_ON_ONCE(event->cpu != cpu);
2915
2916 /*
2917 * Ensures that if we can observe event->ctx, both the event and ctx
2918 * will be 'complete'. See perf_iterate_sb_cpu().
2919 */
2920 smp_store_release(&event->ctx, ctx);
2921
2922 /*
2923 * perf_event_attr::disabled events will not run and can be initialized
2924 * without IPI. Except when this is the first event for the context, in
2925 * that case we need the magic of the IPI to set ctx->is_active.
2926 *
2927 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 * event will issue the IPI and reprogram the hardware.
2929 */
2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 ctx->nr_events && !is_cgroup_event(event)) {
2932 raw_spin_lock_irq(&ctx->lock);
2933 if (ctx->task == TASK_TOMBSTONE) {
2934 raw_spin_unlock_irq(&ctx->lock);
2935 return;
2936 }
2937 add_event_to_ctx(event, ctx);
2938 raw_spin_unlock_irq(&ctx->lock);
2939 return;
2940 }
2941
2942 if (!task) {
2943 cpu_function_call(cpu, __perf_install_in_context, event);
2944 return;
2945 }
2946
2947 /*
2948 * Should not happen, we validate the ctx is still alive before calling.
2949 */
2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 return;
2952
2953 /*
2954 * Installing events is tricky because we cannot rely on ctx->is_active
2955 * to be set in case this is the nr_events 0 -> 1 transition.
2956 *
2957 * Instead we use task_curr(), which tells us if the task is running.
2958 * However, since we use task_curr() outside of rq::lock, we can race
2959 * against the actual state. This means the result can be wrong.
2960 *
2961 * If we get a false positive, we retry, this is harmless.
2962 *
2963 * If we get a false negative, things are complicated. If we are after
2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 * value must be correct. If we're before, it doesn't matter since
2966 * perf_event_context_sched_in() will program the counter.
2967 *
2968 * However, this hinges on the remote context switch having observed
2969 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 * ctx::lock in perf_event_context_sched_in().
2971 *
2972 * We do this by task_function_call(), if the IPI fails to hit the task
2973 * we know any future context switch of task must see the
2974 * perf_event_ctpx[] store.
2975 */
2976
2977 /*
2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 * task_cpu() load, such that if the IPI then does not find the task
2980 * running, a future context switch of that task must observe the
2981 * store.
2982 */
2983 smp_mb();
2984 again:
2985 if (!task_function_call(task, __perf_install_in_context, event))
2986 return;
2987
2988 raw_spin_lock_irq(&ctx->lock);
2989 task = ctx->task;
2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 /*
2992 * Cannot happen because we already checked above (which also
2993 * cannot happen), and we hold ctx->mutex, which serializes us
2994 * against perf_event_exit_task_context().
2995 */
2996 raw_spin_unlock_irq(&ctx->lock);
2997 return;
2998 }
2999 /*
3000 * If the task is not running, ctx->lock will avoid it becoming so,
3001 * thus we can safely install the event.
3002 */
3003 if (task_curr(task)) {
3004 raw_spin_unlock_irq(&ctx->lock);
3005 goto again;
3006 }
3007 add_event_to_ctx(event, ctx);
3008 raw_spin_unlock_irq(&ctx->lock);
3009 }
3010
3011 /*
3012 * Cross CPU call to enable a performance event
3013 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3014 static void __perf_event_enable(struct perf_event *event,
3015 struct perf_cpu_context *cpuctx,
3016 struct perf_event_context *ctx,
3017 void *info)
3018 {
3019 struct perf_event *leader = event->group_leader;
3020 struct perf_event_context *task_ctx;
3021
3022 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 event->state <= PERF_EVENT_STATE_ERROR)
3024 return;
3025
3026 ctx_time_freeze(cpuctx, ctx);
3027
3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 perf_cgroup_event_enable(event, ctx);
3030
3031 if (!ctx->is_active)
3032 return;
3033
3034 if (!event_filter_match(event))
3035 return;
3036
3037 /*
3038 * If the event is in a group and isn't the group leader,
3039 * then don't put it on unless the group is on.
3040 */
3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 return;
3043
3044 task_ctx = cpuctx->task_ctx;
3045 if (ctx->task)
3046 WARN_ON_ONCE(task_ctx != ctx);
3047
3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050
3051 /*
3052 * Enable an event.
3053 *
3054 * If event->ctx is a cloned context, callers must make sure that
3055 * every task struct that event->ctx->task could possibly point to
3056 * remains valid. This condition is satisfied when called through
3057 * perf_event_for_each_child or perf_event_for_each as described
3058 * for perf_event_disable.
3059 */
_perf_event_enable(struct perf_event * event)3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 struct perf_event_context *ctx = event->ctx;
3063
3064 raw_spin_lock_irq(&ctx->lock);
3065 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 event->state < PERF_EVENT_STATE_ERROR) {
3067 out:
3068 raw_spin_unlock_irq(&ctx->lock);
3069 return;
3070 }
3071
3072 /*
3073 * If the event is in error state, clear that first.
3074 *
3075 * That way, if we see the event in error state below, we know that it
3076 * has gone back into error state, as distinct from the task having
3077 * been scheduled away before the cross-call arrived.
3078 */
3079 if (event->state == PERF_EVENT_STATE_ERROR) {
3080 /*
3081 * Detached SIBLING events cannot leave ERROR state.
3082 */
3083 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 event->group_leader == event)
3085 goto out;
3086
3087 event->state = PERF_EVENT_STATE_OFF;
3088 }
3089 raw_spin_unlock_irq(&ctx->lock);
3090
3091 event_function_call(event, __perf_event_enable, NULL);
3092 }
3093
3094 /*
3095 * See perf_event_disable();
3096 */
perf_event_enable(struct perf_event * event)3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 struct perf_event_context *ctx;
3100
3101 ctx = perf_event_ctx_lock(event);
3102 _perf_event_enable(event);
3103 perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106
3107 struct stop_event_data {
3108 struct perf_event *event;
3109 unsigned int restart;
3110 };
3111
__perf_event_stop(void * info)3112 static int __perf_event_stop(void *info)
3113 {
3114 struct stop_event_data *sd = info;
3115 struct perf_event *event = sd->event;
3116
3117 /* if it's already INACTIVE, do nothing */
3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 return 0;
3120
3121 /* matches smp_wmb() in event_sched_in() */
3122 smp_rmb();
3123
3124 /*
3125 * There is a window with interrupts enabled before we get here,
3126 * so we need to check again lest we try to stop another CPU's event.
3127 */
3128 if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 return -EAGAIN;
3130
3131 event->pmu->stop(event, PERF_EF_UPDATE);
3132
3133 /*
3134 * May race with the actual stop (through perf_pmu_output_stop()),
3135 * but it is only used for events with AUX ring buffer, and such
3136 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 * see comments in perf_aux_output_begin().
3138 *
3139 * Since this is happening on an event-local CPU, no trace is lost
3140 * while restarting.
3141 */
3142 if (sd->restart)
3143 event->pmu->start(event, 0);
3144
3145 return 0;
3146 }
3147
perf_event_stop(struct perf_event * event,int restart)3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 struct stop_event_data sd = {
3151 .event = event,
3152 .restart = restart,
3153 };
3154 int ret = 0;
3155
3156 do {
3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 return 0;
3159
3160 /* matches smp_wmb() in event_sched_in() */
3161 smp_rmb();
3162
3163 /*
3164 * We only want to restart ACTIVE events, so if the event goes
3165 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 * fall through with ret==-ENXIO.
3167 */
3168 ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 __perf_event_stop, &sd);
3170 } while (ret == -EAGAIN);
3171
3172 return ret;
3173 }
3174
3175 /*
3176 * In order to contain the amount of racy and tricky in the address filter
3177 * configuration management, it is a two part process:
3178 *
3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180 * we update the addresses of corresponding vmas in
3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182 * (p2) when an event is scheduled in (pmu::add), it calls
3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184 * if the generation has changed since the previous call.
3185 *
3186 * If (p1) happens while the event is active, we restart it to force (p2).
3187 *
3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3190 * ioctl;
3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3193 * for reading;
3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195 * of exec.
3196 */
perf_event_addr_filters_sync(struct perf_event * event)3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200
3201 if (!has_addr_filter(event))
3202 return;
3203
3204 raw_spin_lock(&ifh->lock);
3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 event->pmu->addr_filters_sync(event);
3207 event->hw.addr_filters_gen = event->addr_filters_gen;
3208 }
3209 raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212
_perf_event_refresh(struct perf_event * event,int refresh)3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 /*
3216 * not supported on inherited events
3217 */
3218 if (event->attr.inherit || !is_sampling_event(event))
3219 return -EINVAL;
3220
3221 atomic_add(refresh, &event->event_limit);
3222 _perf_event_enable(event);
3223
3224 return 0;
3225 }
3226
3227 /*
3228 * See perf_event_disable()
3229 */
perf_event_refresh(struct perf_event * event,int refresh)3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 struct perf_event_context *ctx;
3233 int ret;
3234
3235 ctx = perf_event_ctx_lock(event);
3236 ret = _perf_event_refresh(event, refresh);
3237 perf_event_ctx_unlock(event, ctx);
3238
3239 return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 struct perf_event_attr *attr)
3245 {
3246 int err;
3247
3248 _perf_event_disable(bp);
3249
3250 err = modify_user_hw_breakpoint_check(bp, attr, true);
3251
3252 if (!bp->attr.disabled)
3253 _perf_event_enable(bp);
3254
3255 return err;
3256 }
3257
3258 /*
3259 * Copy event-type-independent attributes that may be modified.
3260 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 const struct perf_event_attr *from)
3263 {
3264 to->sig_data = from->sig_data;
3265 }
3266
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3267 static int perf_event_modify_attr(struct perf_event *event,
3268 struct perf_event_attr *attr)
3269 {
3270 int (*func)(struct perf_event *, struct perf_event_attr *);
3271 struct perf_event *child;
3272 int err;
3273
3274 if (event->attr.type != attr->type)
3275 return -EINVAL;
3276
3277 switch (event->attr.type) {
3278 case PERF_TYPE_BREAKPOINT:
3279 func = perf_event_modify_breakpoint;
3280 break;
3281 default:
3282 /* Place holder for future additions. */
3283 return -EOPNOTSUPP;
3284 }
3285
3286 WARN_ON_ONCE(event->ctx->parent_ctx);
3287
3288 mutex_lock(&event->child_mutex);
3289 /*
3290 * Event-type-independent attributes must be copied before event-type
3291 * modification, which will validate that final attributes match the
3292 * source attributes after all relevant attributes have been copied.
3293 */
3294 perf_event_modify_copy_attr(&event->attr, attr);
3295 err = func(event, attr);
3296 if (err)
3297 goto out;
3298 list_for_each_entry(child, &event->child_list, child_list) {
3299 perf_event_modify_copy_attr(&child->attr, attr);
3300 err = func(child, attr);
3301 if (err)
3302 goto out;
3303 }
3304 out:
3305 mutex_unlock(&event->child_mutex);
3306 return err;
3307 }
3308
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 enum event_type_t event_type)
3311 {
3312 struct perf_event_context *ctx = pmu_ctx->ctx;
3313 struct perf_event *event, *tmp;
3314 struct pmu *pmu = pmu_ctx->pmu;
3315
3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 struct perf_cpu_pmu_context *cpc;
3318
3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 cpc->task_epc = NULL;
3322 }
3323
3324 if (!(event_type & EVENT_ALL))
3325 return;
3326
3327 perf_pmu_disable(pmu);
3328 if (event_type & EVENT_PINNED) {
3329 list_for_each_entry_safe(event, tmp,
3330 &pmu_ctx->pinned_active,
3331 active_list)
3332 group_sched_out(event, ctx);
3333 }
3334
3335 if (event_type & EVENT_FLEXIBLE) {
3336 list_for_each_entry_safe(event, tmp,
3337 &pmu_ctx->flexible_active,
3338 active_list)
3339 group_sched_out(event, ctx);
3340 /*
3341 * Since we cleared EVENT_FLEXIBLE, also clear
3342 * rotate_necessary, is will be reset by
3343 * ctx_flexible_sched_in() when needed.
3344 */
3345 pmu_ctx->rotate_necessary = 0;
3346 }
3347 perf_pmu_enable(pmu);
3348 }
3349
3350 /*
3351 * Be very careful with the @pmu argument since this will change ctx state.
3352 * The @pmu argument works for ctx_resched(), because that is symmetric in
3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354 *
3355 * However, if you were to be asymmetrical, you could end up with messed up
3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357 * be active.
3358 */
3359 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 struct perf_event_pmu_context *pmu_ctx;
3364 int is_active = ctx->is_active;
3365 bool cgroup = event_type & EVENT_CGROUP;
3366
3367 event_type &= ~EVENT_CGROUP;
3368
3369 lockdep_assert_held(&ctx->lock);
3370
3371 if (likely(!ctx->nr_events)) {
3372 /*
3373 * See __perf_remove_from_context().
3374 */
3375 WARN_ON_ONCE(ctx->is_active);
3376 if (ctx->task)
3377 WARN_ON_ONCE(cpuctx->task_ctx);
3378 return;
3379 }
3380
3381 /*
3382 * Always update time if it was set; not only when it changes.
3383 * Otherwise we can 'forget' to update time for any but the last
3384 * context we sched out. For example:
3385 *
3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 * ctx_sched_out(.event_type = EVENT_PINNED)
3388 *
3389 * would only update time for the pinned events.
3390 */
3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392
3393 /*
3394 * CPU-release for the below ->is_active store,
3395 * see __load_acquire() in perf_event_time_now()
3396 */
3397 barrier();
3398 ctx->is_active &= ~event_type;
3399
3400 if (!(ctx->is_active & EVENT_ALL)) {
3401 /*
3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 */
3405 if (ctx->is_active & EVENT_FROZEN)
3406 ctx->is_active &= EVENT_TIME_FROZEN;
3407 else
3408 ctx->is_active = 0;
3409 }
3410
3411 if (ctx->task) {
3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 if (!(ctx->is_active & EVENT_ALL))
3414 cpuctx->task_ctx = NULL;
3415 }
3416
3417 is_active ^= ctx->is_active; /* changed bits */
3418
3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 __pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422
3423 /*
3424 * Test whether two contexts are equivalent, i.e. whether they have both been
3425 * cloned from the same version of the same context.
3426 *
3427 * Equivalence is measured using a generation number in the context that is
3428 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429 * and list_del_event().
3430 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3431 static int context_equiv(struct perf_event_context *ctx1,
3432 struct perf_event_context *ctx2)
3433 {
3434 lockdep_assert_held(&ctx1->lock);
3435 lockdep_assert_held(&ctx2->lock);
3436
3437 /* Pinning disables the swap optimization */
3438 if (ctx1->pin_count || ctx2->pin_count)
3439 return 0;
3440
3441 /* If ctx1 is the parent of ctx2 */
3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 return 1;
3444
3445 /* If ctx2 is the parent of ctx1 */
3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 return 1;
3448
3449 /*
3450 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 * hierarchy, see perf_event_init_context().
3452 */
3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 ctx1->parent_gen == ctx2->parent_gen)
3455 return 1;
3456
3457 /* Unmatched */
3458 return 0;
3459 }
3460
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 struct perf_event *next_event)
3463 {
3464 u64 value;
3465
3466 if (!event->attr.inherit_stat)
3467 return;
3468
3469 /*
3470 * Update the event value, we cannot use perf_event_read()
3471 * because we're in the middle of a context switch and have IRQs
3472 * disabled, which upsets smp_call_function_single(), however
3473 * we know the event must be on the current CPU, therefore we
3474 * don't need to use it.
3475 */
3476 if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 event->pmu->read(event);
3478
3479 perf_event_update_time(event);
3480
3481 /*
3482 * In order to keep per-task stats reliable we need to flip the event
3483 * values when we flip the contexts.
3484 */
3485 value = local64_read(&next_event->count);
3486 value = local64_xchg(&event->count, value);
3487 local64_set(&next_event->count, value);
3488
3489 swap(event->total_time_enabled, next_event->total_time_enabled);
3490 swap(event->total_time_running, next_event->total_time_running);
3491
3492 /*
3493 * Since we swizzled the values, update the user visible data too.
3494 */
3495 perf_event_update_userpage(event);
3496 perf_event_update_userpage(next_event);
3497 }
3498
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 struct perf_event_context *next_ctx)
3501 {
3502 struct perf_event *event, *next_event;
3503
3504 if (!ctx->nr_stat)
3505 return;
3506
3507 update_context_time(ctx);
3508
3509 event = list_first_entry(&ctx->event_list,
3510 struct perf_event, event_entry);
3511
3512 next_event = list_first_entry(&next_ctx->event_list,
3513 struct perf_event, event_entry);
3514
3515 while (&event->event_entry != &ctx->event_list &&
3516 &next_event->event_entry != &next_ctx->event_list) {
3517
3518 __perf_event_sync_stat(event, next_event);
3519
3520 event = list_next_entry(event, event_entry);
3521 next_event = list_next_entry(next_event, event_entry);
3522 }
3523 }
3524
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3528 !list_entry_is_head(pos1, head1, member) && \
3529 !list_entry_is_head(pos2, head2, member); \
3530 pos1 = list_next_entry(pos1, member), \
3531 pos2 = list_next_entry(pos2, member))
3532
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 struct perf_event_context *next_ctx)
3535 {
3536 struct perf_event_pmu_context *prev_epc, *next_epc;
3537
3538 if (!prev_ctx->nr_task_data)
3539 return;
3540
3541 double_list_for_each_entry(prev_epc, next_epc,
3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 pmu_ctx_entry) {
3544
3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 continue;
3547
3548 /*
3549 * PMU specific parts of task perf context can require
3550 * additional synchronization. As an example of such
3551 * synchronization see implementation details of Intel
3552 * LBR call stack data profiling;
3553 */
3554 if (prev_epc->pmu->swap_task_ctx)
3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 else
3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 }
3559 }
3560
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 struct perf_event_pmu_context *pmu_ctx;
3564 struct perf_cpu_pmu_context *cpc;
3565
3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568
3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 }
3572 }
3573
3574 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 struct perf_event_context *ctx = task->perf_event_ctxp;
3578 struct perf_event_context *next_ctx;
3579 struct perf_event_context *parent, *next_parent;
3580 int do_switch = 1;
3581
3582 if (likely(!ctx))
3583 return;
3584
3585 rcu_read_lock();
3586 next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 if (!next_ctx)
3588 goto unlock;
3589
3590 parent = rcu_dereference(ctx->parent_ctx);
3591 next_parent = rcu_dereference(next_ctx->parent_ctx);
3592
3593 /* If neither context have a parent context; they cannot be clones. */
3594 if (!parent && !next_parent)
3595 goto unlock;
3596
3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 /*
3599 * Looks like the two contexts are clones, so we might be
3600 * able to optimize the context switch. We lock both
3601 * contexts and check that they are clones under the
3602 * lock (including re-checking that neither has been
3603 * uncloned in the meantime). It doesn't matter which
3604 * order we take the locks because no other cpu could
3605 * be trying to lock both of these tasks.
3606 */
3607 raw_spin_lock(&ctx->lock);
3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 if (context_equiv(ctx, next_ctx)) {
3610
3611 perf_ctx_disable(ctx, false);
3612
3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 if (local_read(&ctx->nr_no_switch_fast) ||
3615 local_read(&next_ctx->nr_no_switch_fast)) {
3616 /*
3617 * Must not swap out ctx when there's pending
3618 * events that rely on the ctx->task relation.
3619 *
3620 * Likewise, when a context contains inherit +
3621 * SAMPLE_READ events they should be switched
3622 * out using the slow path so that they are
3623 * treated as if they were distinct contexts.
3624 */
3625 raw_spin_unlock(&next_ctx->lock);
3626 rcu_read_unlock();
3627 goto inside_switch;
3628 }
3629
3630 WRITE_ONCE(ctx->task, next);
3631 WRITE_ONCE(next_ctx->task, task);
3632
3633 perf_ctx_sched_task_cb(ctx, false);
3634 perf_event_swap_task_ctx_data(ctx, next_ctx);
3635
3636 perf_ctx_enable(ctx, false);
3637
3638 /*
3639 * RCU_INIT_POINTER here is safe because we've not
3640 * modified the ctx and the above modification of
3641 * ctx->task and ctx->task_ctx_data are immaterial
3642 * since those values are always verified under
3643 * ctx->lock which we're now holding.
3644 */
3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647
3648 do_switch = 0;
3649
3650 perf_event_sync_stat(ctx, next_ctx);
3651 }
3652 raw_spin_unlock(&next_ctx->lock);
3653 raw_spin_unlock(&ctx->lock);
3654 }
3655 unlock:
3656 rcu_read_unlock();
3657
3658 if (do_switch) {
3659 raw_spin_lock(&ctx->lock);
3660 perf_ctx_disable(ctx, false);
3661
3662 inside_switch:
3663 perf_ctx_sched_task_cb(ctx, false);
3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665
3666 perf_ctx_enable(ctx, false);
3667 raw_spin_unlock(&ctx->lock);
3668 }
3669 }
3670
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673
perf_sched_cb_dec(struct pmu * pmu)3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677
3678 this_cpu_dec(perf_sched_cb_usages);
3679 barrier();
3680
3681 if (!--cpc->sched_cb_usage)
3682 list_del(&cpc->sched_cb_entry);
3683 }
3684
3685
perf_sched_cb_inc(struct pmu * pmu)3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689
3690 if (!cpc->sched_cb_usage++)
3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692
3693 barrier();
3694 this_cpu_inc(perf_sched_cb_usages);
3695 }
3696
3697 /*
3698 * This function provides the context switch callback to the lower code
3699 * layer. It is invoked ONLY when the context switch callback is enabled.
3700 *
3701 * This callback is relevant even to per-cpu events; for example multi event
3702 * PEBS requires this to provide PID/TID information. This requires we flush
3703 * all queued PEBS records before we context switch to a new task.
3704 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 struct pmu *pmu;
3709
3710 pmu = cpc->epc.pmu;
3711
3712 /* software PMUs will not have sched_task */
3713 if (WARN_ON_ONCE(!pmu->sched_task))
3714 return;
3715
3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 perf_pmu_disable(pmu);
3718
3719 pmu->sched_task(cpc->task_epc, sched_in);
3720
3721 perf_pmu_enable(pmu);
3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 struct task_struct *next,
3727 bool sched_in)
3728 {
3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 struct perf_cpu_pmu_context *cpc;
3731
3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 if (prev == next || cpuctx->task_ctx)
3734 return;
3735
3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 __perf_pmu_sched_task(cpc, sched_in);
3738 }
3739
3740 static void perf_event_switch(struct task_struct *task,
3741 struct task_struct *next_prev, bool sched_in);
3742
3743 /*
3744 * Called from scheduler to remove the events of the current task,
3745 * with interrupts disabled.
3746 *
3747 * We stop each event and update the event value in event->count.
3748 *
3749 * This does not protect us against NMI, but disable()
3750 * sets the disabled bit in the control field of event _before_
3751 * accessing the event control register. If a NMI hits, then it will
3752 * not restart the event.
3753 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 struct task_struct *next)
3756 {
3757 if (__this_cpu_read(perf_sched_cb_usages))
3758 perf_pmu_sched_task(task, next, false);
3759
3760 if (atomic_read(&nr_switch_events))
3761 perf_event_switch(task, next, false);
3762
3763 perf_event_context_sched_out(task, next);
3764
3765 /*
3766 * if cgroup events exist on this CPU, then we need
3767 * to check if we have to switch out PMU state.
3768 * cgroup event are system-wide mode only
3769 */
3770 perf_cgroup_switch(next);
3771 }
3772
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 const struct perf_event *le = *(const struct perf_event **)l;
3776 const struct perf_event *re = *(const struct perf_event **)r;
3777
3778 return le->group_index < re->group_index;
3779 }
3780
swap_ptr(void * l,void * r,void __always_unused * args)3781 static void swap_ptr(void *l, void *r, void __always_unused *args)
3782 {
3783 void **lp = l, **rp = r;
3784
3785 swap(*lp, *rp);
3786 }
3787
3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3789
3790 static const struct min_heap_callbacks perf_min_heap = {
3791 .less = perf_less_group_idx,
3792 .swp = swap_ptr,
3793 };
3794
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3796 {
3797 struct perf_event **itrs = heap->data;
3798
3799 if (event) {
3800 itrs[heap->nr] = event;
3801 heap->nr++;
3802 }
3803 }
3804
__link_epc(struct perf_event_pmu_context * pmu_ctx)3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3806 {
3807 struct perf_cpu_pmu_context *cpc;
3808
3809 if (!pmu_ctx->ctx->task)
3810 return;
3811
3812 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3813 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3814 cpc->task_epc = pmu_ctx;
3815 }
3816
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3817 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3818 struct perf_event_groups *groups, int cpu,
3819 struct pmu *pmu,
3820 int (*func)(struct perf_event *, void *),
3821 void *data)
3822 {
3823 #ifdef CONFIG_CGROUP_PERF
3824 struct cgroup_subsys_state *css = NULL;
3825 #endif
3826 struct perf_cpu_context *cpuctx = NULL;
3827 /* Space for per CPU and/or any CPU event iterators. */
3828 struct perf_event *itrs[2];
3829 struct perf_event_min_heap event_heap;
3830 struct perf_event **evt;
3831 int ret;
3832
3833 if (pmu->filter && pmu->filter(pmu, cpu))
3834 return 0;
3835
3836 if (!ctx->task) {
3837 cpuctx = this_cpu_ptr(&perf_cpu_context);
3838 event_heap = (struct perf_event_min_heap){
3839 .data = cpuctx->heap,
3840 .nr = 0,
3841 .size = cpuctx->heap_size,
3842 };
3843
3844 lockdep_assert_held(&cpuctx->ctx.lock);
3845
3846 #ifdef CONFIG_CGROUP_PERF
3847 if (cpuctx->cgrp)
3848 css = &cpuctx->cgrp->css;
3849 #endif
3850 } else {
3851 event_heap = (struct perf_event_min_heap){
3852 .data = itrs,
3853 .nr = 0,
3854 .size = ARRAY_SIZE(itrs),
3855 };
3856 /* Events not within a CPU context may be on any CPU. */
3857 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3858 }
3859 evt = event_heap.data;
3860
3861 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3862
3863 #ifdef CONFIG_CGROUP_PERF
3864 for (; css; css = css->parent)
3865 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3866 #endif
3867
3868 if (event_heap.nr) {
3869 __link_epc((*evt)->pmu_ctx);
3870 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3871 }
3872
3873 min_heapify_all(&event_heap, &perf_min_heap, NULL);
3874
3875 while (event_heap.nr) {
3876 ret = func(*evt, data);
3877 if (ret)
3878 return ret;
3879
3880 *evt = perf_event_groups_next(*evt, pmu);
3881 if (*evt)
3882 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3883 else
3884 min_heap_pop(&event_heap, &perf_min_heap, NULL);
3885 }
3886
3887 return 0;
3888 }
3889
3890 /*
3891 * Because the userpage is strictly per-event (there is no concept of context,
3892 * so there cannot be a context indirection), every userpage must be updated
3893 * when context time starts :-(
3894 *
3895 * IOW, we must not miss EVENT_TIME edges.
3896 */
event_update_userpage(struct perf_event * event)3897 static inline bool event_update_userpage(struct perf_event *event)
3898 {
3899 if (likely(!atomic_read(&event->mmap_count)))
3900 return false;
3901
3902 perf_event_update_time(event);
3903 perf_event_update_userpage(event);
3904
3905 return true;
3906 }
3907
group_update_userpage(struct perf_event * group_event)3908 static inline void group_update_userpage(struct perf_event *group_event)
3909 {
3910 struct perf_event *event;
3911
3912 if (!event_update_userpage(group_event))
3913 return;
3914
3915 for_each_sibling_event(event, group_event)
3916 event_update_userpage(event);
3917 }
3918
merge_sched_in(struct perf_event * event,void * data)3919 static int merge_sched_in(struct perf_event *event, void *data)
3920 {
3921 struct perf_event_context *ctx = event->ctx;
3922 int *can_add_hw = data;
3923
3924 if (event->state <= PERF_EVENT_STATE_OFF)
3925 return 0;
3926
3927 if (!event_filter_match(event))
3928 return 0;
3929
3930 if (group_can_go_on(event, *can_add_hw)) {
3931 if (!group_sched_in(event, ctx))
3932 list_add_tail(&event->active_list, get_event_list(event));
3933 }
3934
3935 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3936 *can_add_hw = 0;
3937 if (event->attr.pinned) {
3938 perf_cgroup_event_disable(event, ctx);
3939 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3940 } else {
3941 struct perf_cpu_pmu_context *cpc;
3942
3943 event->pmu_ctx->rotate_necessary = 1;
3944 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3945 perf_mux_hrtimer_restart(cpc);
3946 group_update_userpage(event);
3947 }
3948 }
3949
3950 return 0;
3951 }
3952
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3953 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3954 struct perf_event_groups *groups,
3955 struct pmu *pmu)
3956 {
3957 int can_add_hw = 1;
3958 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3959 merge_sched_in, &can_add_hw);
3960 }
3961
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3963 enum event_type_t event_type)
3964 {
3965 struct perf_event_context *ctx = pmu_ctx->ctx;
3966
3967 if (event_type & EVENT_PINNED)
3968 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3969 if (event_type & EVENT_FLEXIBLE)
3970 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3971 }
3972
3973 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3975 {
3976 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3977 struct perf_event_pmu_context *pmu_ctx;
3978 int is_active = ctx->is_active;
3979 bool cgroup = event_type & EVENT_CGROUP;
3980
3981 event_type &= ~EVENT_CGROUP;
3982
3983 lockdep_assert_held(&ctx->lock);
3984
3985 if (likely(!ctx->nr_events))
3986 return;
3987
3988 if (!(is_active & EVENT_TIME)) {
3989 /* start ctx time */
3990 __update_context_time(ctx, false);
3991 perf_cgroup_set_timestamp(cpuctx);
3992 /*
3993 * CPU-release for the below ->is_active store,
3994 * see __load_acquire() in perf_event_time_now()
3995 */
3996 barrier();
3997 }
3998
3999 ctx->is_active |= (event_type | EVENT_TIME);
4000 if (ctx->task) {
4001 if (!(is_active & EVENT_ALL))
4002 cpuctx->task_ctx = ctx;
4003 else
4004 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4005 }
4006
4007 is_active ^= ctx->is_active; /* changed bits */
4008
4009 /*
4010 * First go through the list and put on any pinned groups
4011 * in order to give them the best chance of going on.
4012 */
4013 if (is_active & EVENT_PINNED) {
4014 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4015 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4016 }
4017
4018 /* Then walk through the lower prio flexible groups */
4019 if (is_active & EVENT_FLEXIBLE) {
4020 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4021 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4022 }
4023 }
4024
perf_event_context_sched_in(struct task_struct * task)4025 static void perf_event_context_sched_in(struct task_struct *task)
4026 {
4027 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4028 struct perf_event_context *ctx;
4029
4030 rcu_read_lock();
4031 ctx = rcu_dereference(task->perf_event_ctxp);
4032 if (!ctx)
4033 goto rcu_unlock;
4034
4035 if (cpuctx->task_ctx == ctx) {
4036 perf_ctx_lock(cpuctx, ctx);
4037 perf_ctx_disable(ctx, false);
4038
4039 perf_ctx_sched_task_cb(ctx, true);
4040
4041 perf_ctx_enable(ctx, false);
4042 perf_ctx_unlock(cpuctx, ctx);
4043 goto rcu_unlock;
4044 }
4045
4046 perf_ctx_lock(cpuctx, ctx);
4047 /*
4048 * We must check ctx->nr_events while holding ctx->lock, such
4049 * that we serialize against perf_install_in_context().
4050 */
4051 if (!ctx->nr_events)
4052 goto unlock;
4053
4054 perf_ctx_disable(ctx, false);
4055 /*
4056 * We want to keep the following priority order:
4057 * cpu pinned (that don't need to move), task pinned,
4058 * cpu flexible, task flexible.
4059 *
4060 * However, if task's ctx is not carrying any pinned
4061 * events, no need to flip the cpuctx's events around.
4062 */
4063 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4064 perf_ctx_disable(&cpuctx->ctx, false);
4065 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4066 }
4067
4068 perf_event_sched_in(cpuctx, ctx, NULL);
4069
4070 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4071
4072 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4073 perf_ctx_enable(&cpuctx->ctx, false);
4074
4075 perf_ctx_enable(ctx, false);
4076
4077 unlock:
4078 perf_ctx_unlock(cpuctx, ctx);
4079 rcu_unlock:
4080 rcu_read_unlock();
4081 }
4082
4083 /*
4084 * Called from scheduler to add the events of the current task
4085 * with interrupts disabled.
4086 *
4087 * We restore the event value and then enable it.
4088 *
4089 * This does not protect us against NMI, but enable()
4090 * sets the enabled bit in the control field of event _before_
4091 * accessing the event control register. If a NMI hits, then it will
4092 * keep the event running.
4093 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4094 void __perf_event_task_sched_in(struct task_struct *prev,
4095 struct task_struct *task)
4096 {
4097 perf_event_context_sched_in(task);
4098
4099 if (atomic_read(&nr_switch_events))
4100 perf_event_switch(task, prev, true);
4101
4102 if (__this_cpu_read(perf_sched_cb_usages))
4103 perf_pmu_sched_task(prev, task, true);
4104 }
4105
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4107 {
4108 u64 frequency = event->attr.sample_freq;
4109 u64 sec = NSEC_PER_SEC;
4110 u64 divisor, dividend;
4111
4112 int count_fls, nsec_fls, frequency_fls, sec_fls;
4113
4114 count_fls = fls64(count);
4115 nsec_fls = fls64(nsec);
4116 frequency_fls = fls64(frequency);
4117 sec_fls = 30;
4118
4119 /*
4120 * We got @count in @nsec, with a target of sample_freq HZ
4121 * the target period becomes:
4122 *
4123 * @count * 10^9
4124 * period = -------------------
4125 * @nsec * sample_freq
4126 *
4127 */
4128
4129 /*
4130 * Reduce accuracy by one bit such that @a and @b converge
4131 * to a similar magnitude.
4132 */
4133 #define REDUCE_FLS(a, b) \
4134 do { \
4135 if (a##_fls > b##_fls) { \
4136 a >>= 1; \
4137 a##_fls--; \
4138 } else { \
4139 b >>= 1; \
4140 b##_fls--; \
4141 } \
4142 } while (0)
4143
4144 /*
4145 * Reduce accuracy until either term fits in a u64, then proceed with
4146 * the other, so that finally we can do a u64/u64 division.
4147 */
4148 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4149 REDUCE_FLS(nsec, frequency);
4150 REDUCE_FLS(sec, count);
4151 }
4152
4153 if (count_fls + sec_fls > 64) {
4154 divisor = nsec * frequency;
4155
4156 while (count_fls + sec_fls > 64) {
4157 REDUCE_FLS(count, sec);
4158 divisor >>= 1;
4159 }
4160
4161 dividend = count * sec;
4162 } else {
4163 dividend = count * sec;
4164
4165 while (nsec_fls + frequency_fls > 64) {
4166 REDUCE_FLS(nsec, frequency);
4167 dividend >>= 1;
4168 }
4169
4170 divisor = nsec * frequency;
4171 }
4172
4173 if (!divisor)
4174 return dividend;
4175
4176 return div64_u64(dividend, divisor);
4177 }
4178
4179 static DEFINE_PER_CPU(int, perf_throttled_count);
4180 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4181
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4183 {
4184 struct hw_perf_event *hwc = &event->hw;
4185 s64 period, sample_period;
4186 s64 delta;
4187
4188 period = perf_calculate_period(event, nsec, count);
4189
4190 delta = (s64)(period - hwc->sample_period);
4191 if (delta >= 0)
4192 delta += 7;
4193 else
4194 delta -= 7;
4195 delta /= 8; /* low pass filter */
4196
4197 sample_period = hwc->sample_period + delta;
4198
4199 if (!sample_period)
4200 sample_period = 1;
4201
4202 hwc->sample_period = sample_period;
4203
4204 if (local64_read(&hwc->period_left) > 8*sample_period) {
4205 if (disable)
4206 event->pmu->stop(event, PERF_EF_UPDATE);
4207
4208 local64_set(&hwc->period_left, 0);
4209
4210 if (disable)
4211 event->pmu->start(event, PERF_EF_RELOAD);
4212 }
4213 }
4214
perf_adjust_freq_unthr_events(struct list_head * event_list)4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4216 {
4217 struct perf_event *event;
4218 struct hw_perf_event *hwc;
4219 u64 now, period = TICK_NSEC;
4220 s64 delta;
4221
4222 list_for_each_entry(event, event_list, active_list) {
4223 if (event->state != PERF_EVENT_STATE_ACTIVE)
4224 continue;
4225
4226 // XXX use visit thingy to avoid the -1,cpu match
4227 if (!event_filter_match(event))
4228 continue;
4229
4230 hwc = &event->hw;
4231
4232 if (hwc->interrupts == MAX_INTERRUPTS) {
4233 hwc->interrupts = 0;
4234 perf_log_throttle(event, 1);
4235 if (!event->attr.freq || !event->attr.sample_freq)
4236 event->pmu->start(event, 0);
4237 }
4238
4239 if (!event->attr.freq || !event->attr.sample_freq)
4240 continue;
4241
4242 /*
4243 * stop the event and update event->count
4244 */
4245 event->pmu->stop(event, PERF_EF_UPDATE);
4246
4247 now = local64_read(&event->count);
4248 delta = now - hwc->freq_count_stamp;
4249 hwc->freq_count_stamp = now;
4250
4251 /*
4252 * restart the event
4253 * reload only if value has changed
4254 * we have stopped the event so tell that
4255 * to perf_adjust_period() to avoid stopping it
4256 * twice.
4257 */
4258 if (delta > 0)
4259 perf_adjust_period(event, period, delta, false);
4260
4261 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4262 }
4263 }
4264
4265 /*
4266 * combine freq adjustment with unthrottling to avoid two passes over the
4267 * events. At the same time, make sure, having freq events does not change
4268 * the rate of unthrottling as that would introduce bias.
4269 */
4270 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4272 {
4273 struct perf_event_pmu_context *pmu_ctx;
4274
4275 /*
4276 * only need to iterate over all events iff:
4277 * - context have events in frequency mode (needs freq adjust)
4278 * - there are events to unthrottle on this cpu
4279 */
4280 if (!(ctx->nr_freq || unthrottle))
4281 return;
4282
4283 raw_spin_lock(&ctx->lock);
4284
4285 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4286 if (!(pmu_ctx->nr_freq || unthrottle))
4287 continue;
4288 if (!perf_pmu_ctx_is_active(pmu_ctx))
4289 continue;
4290 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4291 continue;
4292
4293 perf_pmu_disable(pmu_ctx->pmu);
4294 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4295 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4296 perf_pmu_enable(pmu_ctx->pmu);
4297 }
4298
4299 raw_spin_unlock(&ctx->lock);
4300 }
4301
4302 /*
4303 * Move @event to the tail of the @ctx's elegible events.
4304 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4306 {
4307 /*
4308 * Rotate the first entry last of non-pinned groups. Rotation might be
4309 * disabled by the inheritance code.
4310 */
4311 if (ctx->rotate_disable)
4312 return;
4313
4314 perf_event_groups_delete(&ctx->flexible_groups, event);
4315 perf_event_groups_insert(&ctx->flexible_groups, event);
4316 }
4317
4318 /* pick an event from the flexible_groups to rotate */
4319 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4321 {
4322 struct perf_event *event;
4323 struct rb_node *node;
4324 struct rb_root *tree;
4325 struct __group_key key = {
4326 .pmu = pmu_ctx->pmu,
4327 };
4328
4329 /* pick the first active flexible event */
4330 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4331 struct perf_event, active_list);
4332 if (event)
4333 goto out;
4334
4335 /* if no active flexible event, pick the first event */
4336 tree = &pmu_ctx->ctx->flexible_groups.tree;
4337
4338 if (!pmu_ctx->ctx->task) {
4339 key.cpu = smp_processor_id();
4340
4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 if (node)
4343 event = __node_2_pe(node);
4344 goto out;
4345 }
4346
4347 key.cpu = -1;
4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 if (node) {
4350 event = __node_2_pe(node);
4351 goto out;
4352 }
4353
4354 key.cpu = smp_processor_id();
4355 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4356 if (node)
4357 event = __node_2_pe(node);
4358
4359 out:
4360 /*
4361 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4362 * finds there are unschedulable events, it will set it again.
4363 */
4364 pmu_ctx->rotate_necessary = 0;
4365
4366 return event;
4367 }
4368
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4370 {
4371 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4372 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4373 struct perf_event *cpu_event = NULL, *task_event = NULL;
4374 int cpu_rotate, task_rotate;
4375 struct pmu *pmu;
4376
4377 /*
4378 * Since we run this from IRQ context, nobody can install new
4379 * events, thus the event count values are stable.
4380 */
4381
4382 cpu_epc = &cpc->epc;
4383 pmu = cpu_epc->pmu;
4384 task_epc = cpc->task_epc;
4385
4386 cpu_rotate = cpu_epc->rotate_necessary;
4387 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4388
4389 if (!(cpu_rotate || task_rotate))
4390 return false;
4391
4392 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4393 perf_pmu_disable(pmu);
4394
4395 if (task_rotate)
4396 task_event = ctx_event_to_rotate(task_epc);
4397 if (cpu_rotate)
4398 cpu_event = ctx_event_to_rotate(cpu_epc);
4399
4400 /*
4401 * As per the order given at ctx_resched() first 'pop' task flexible
4402 * and then, if needed CPU flexible.
4403 */
4404 if (task_event || (task_epc && cpu_event)) {
4405 update_context_time(task_epc->ctx);
4406 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4407 }
4408
4409 if (cpu_event) {
4410 update_context_time(&cpuctx->ctx);
4411 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4412 rotate_ctx(&cpuctx->ctx, cpu_event);
4413 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4414 }
4415
4416 if (task_event)
4417 rotate_ctx(task_epc->ctx, task_event);
4418
4419 if (task_event || (task_epc && cpu_event))
4420 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4421
4422 perf_pmu_enable(pmu);
4423 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4424
4425 return true;
4426 }
4427
perf_event_task_tick(void)4428 void perf_event_task_tick(void)
4429 {
4430 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4431 struct perf_event_context *ctx;
4432 int throttled;
4433
4434 lockdep_assert_irqs_disabled();
4435
4436 __this_cpu_inc(perf_throttled_seq);
4437 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4438 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4439
4440 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4441
4442 rcu_read_lock();
4443 ctx = rcu_dereference(current->perf_event_ctxp);
4444 if (ctx)
4445 perf_adjust_freq_unthr_context(ctx, !!throttled);
4446 rcu_read_unlock();
4447 }
4448
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4449 static int event_enable_on_exec(struct perf_event *event,
4450 struct perf_event_context *ctx)
4451 {
4452 if (!event->attr.enable_on_exec)
4453 return 0;
4454
4455 event->attr.enable_on_exec = 0;
4456 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4457 return 0;
4458
4459 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4460
4461 return 1;
4462 }
4463
4464 /*
4465 * Enable all of a task's events that have been marked enable-on-exec.
4466 * This expects task == current.
4467 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4469 {
4470 struct perf_event_context *clone_ctx = NULL;
4471 enum event_type_t event_type = 0;
4472 struct perf_cpu_context *cpuctx;
4473 struct perf_event *event;
4474 unsigned long flags;
4475 int enabled = 0;
4476
4477 local_irq_save(flags);
4478 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4479 goto out;
4480
4481 if (!ctx->nr_events)
4482 goto out;
4483
4484 cpuctx = this_cpu_ptr(&perf_cpu_context);
4485 perf_ctx_lock(cpuctx, ctx);
4486 ctx_time_freeze(cpuctx, ctx);
4487
4488 list_for_each_entry(event, &ctx->event_list, event_entry) {
4489 enabled |= event_enable_on_exec(event, ctx);
4490 event_type |= get_event_type(event);
4491 }
4492
4493 /*
4494 * Unclone and reschedule this context if we enabled any event.
4495 */
4496 if (enabled) {
4497 clone_ctx = unclone_ctx(ctx);
4498 ctx_resched(cpuctx, ctx, NULL, event_type);
4499 }
4500 perf_ctx_unlock(cpuctx, ctx);
4501
4502 out:
4503 local_irq_restore(flags);
4504
4505 if (clone_ctx)
4506 put_ctx(clone_ctx);
4507 }
4508
4509 static void perf_remove_from_owner(struct perf_event *event);
4510 static void perf_event_exit_event(struct perf_event *event,
4511 struct perf_event_context *ctx);
4512
4513 /*
4514 * Removes all events from the current task that have been marked
4515 * remove-on-exec, and feeds their values back to parent events.
4516 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4518 {
4519 struct perf_event_context *clone_ctx = NULL;
4520 struct perf_event *event, *next;
4521 unsigned long flags;
4522 bool modified = false;
4523
4524 mutex_lock(&ctx->mutex);
4525
4526 if (WARN_ON_ONCE(ctx->task != current))
4527 goto unlock;
4528
4529 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4530 if (!event->attr.remove_on_exec)
4531 continue;
4532
4533 if (!is_kernel_event(event))
4534 perf_remove_from_owner(event);
4535
4536 modified = true;
4537
4538 perf_event_exit_event(event, ctx);
4539 }
4540
4541 raw_spin_lock_irqsave(&ctx->lock, flags);
4542 if (modified)
4543 clone_ctx = unclone_ctx(ctx);
4544 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4545
4546 unlock:
4547 mutex_unlock(&ctx->mutex);
4548
4549 if (clone_ctx)
4550 put_ctx(clone_ctx);
4551 }
4552
4553 struct perf_read_data {
4554 struct perf_event *event;
4555 bool group;
4556 int ret;
4557 };
4558
4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4560
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4562 {
4563 int local_cpu = smp_processor_id();
4564 u16 local_pkg, event_pkg;
4565
4566 if ((unsigned)event_cpu >= nr_cpu_ids)
4567 return event_cpu;
4568
4569 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4570 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4571
4572 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4573 return local_cpu;
4574 }
4575
4576 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4577 event_pkg = topology_physical_package_id(event_cpu);
4578 local_pkg = topology_physical_package_id(local_cpu);
4579
4580 if (event_pkg == local_pkg)
4581 return local_cpu;
4582 }
4583
4584 return event_cpu;
4585 }
4586
4587 /*
4588 * Cross CPU call to read the hardware event
4589 */
__perf_event_read(void * info)4590 static void __perf_event_read(void *info)
4591 {
4592 struct perf_read_data *data = info;
4593 struct perf_event *sub, *event = data->event;
4594 struct perf_event_context *ctx = event->ctx;
4595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4596 struct pmu *pmu = event->pmu;
4597
4598 /*
4599 * If this is a task context, we need to check whether it is
4600 * the current task context of this cpu. If not it has been
4601 * scheduled out before the smp call arrived. In that case
4602 * event->count would have been updated to a recent sample
4603 * when the event was scheduled out.
4604 */
4605 if (ctx->task && cpuctx->task_ctx != ctx)
4606 return;
4607
4608 raw_spin_lock(&ctx->lock);
4609 ctx_time_update_event(ctx, event);
4610
4611 perf_event_update_time(event);
4612 if (data->group)
4613 perf_event_update_sibling_time(event);
4614
4615 if (event->state != PERF_EVENT_STATE_ACTIVE)
4616 goto unlock;
4617
4618 if (!data->group) {
4619 pmu->read(event);
4620 data->ret = 0;
4621 goto unlock;
4622 }
4623
4624 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4625
4626 pmu->read(event);
4627
4628 for_each_sibling_event(sub, event) {
4629 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4630 /*
4631 * Use sibling's PMU rather than @event's since
4632 * sibling could be on different (eg: software) PMU.
4633 */
4634 sub->pmu->read(sub);
4635 }
4636 }
4637
4638 data->ret = pmu->commit_txn(pmu);
4639
4640 unlock:
4641 raw_spin_unlock(&ctx->lock);
4642 }
4643
perf_event_count(struct perf_event * event,bool self)4644 static inline u64 perf_event_count(struct perf_event *event, bool self)
4645 {
4646 if (self)
4647 return local64_read(&event->count);
4648
4649 return local64_read(&event->count) + atomic64_read(&event->child_count);
4650 }
4651
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4652 static void calc_timer_values(struct perf_event *event,
4653 u64 *now,
4654 u64 *enabled,
4655 u64 *running)
4656 {
4657 u64 ctx_time;
4658
4659 *now = perf_clock();
4660 ctx_time = perf_event_time_now(event, *now);
4661 __perf_update_times(event, ctx_time, enabled, running);
4662 }
4663
4664 /*
4665 * NMI-safe method to read a local event, that is an event that
4666 * is:
4667 * - either for the current task, or for this CPU
4668 * - does not have inherit set, for inherited task events
4669 * will not be local and we cannot read them atomically
4670 * - must not have a pmu::count method
4671 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4672 int perf_event_read_local(struct perf_event *event, u64 *value,
4673 u64 *enabled, u64 *running)
4674 {
4675 unsigned long flags;
4676 int event_oncpu;
4677 int event_cpu;
4678 int ret = 0;
4679
4680 /*
4681 * Disabling interrupts avoids all counter scheduling (context
4682 * switches, timer based rotation and IPIs).
4683 */
4684 local_irq_save(flags);
4685
4686 /*
4687 * It must not be an event with inherit set, we cannot read
4688 * all child counters from atomic context.
4689 */
4690 if (event->attr.inherit) {
4691 ret = -EOPNOTSUPP;
4692 goto out;
4693 }
4694
4695 /* If this is a per-task event, it must be for current */
4696 if ((event->attach_state & PERF_ATTACH_TASK) &&
4697 event->hw.target != current) {
4698 ret = -EINVAL;
4699 goto out;
4700 }
4701
4702 /*
4703 * Get the event CPU numbers, and adjust them to local if the event is
4704 * a per-package event that can be read locally
4705 */
4706 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4707 event_cpu = __perf_event_read_cpu(event, event->cpu);
4708
4709 /* If this is a per-CPU event, it must be for this CPU */
4710 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4711 event_cpu != smp_processor_id()) {
4712 ret = -EINVAL;
4713 goto out;
4714 }
4715
4716 /* If this is a pinned event it must be running on this CPU */
4717 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4718 ret = -EBUSY;
4719 goto out;
4720 }
4721
4722 /*
4723 * If the event is currently on this CPU, its either a per-task event,
4724 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4725 * oncpu == -1).
4726 */
4727 if (event_oncpu == smp_processor_id())
4728 event->pmu->read(event);
4729
4730 *value = local64_read(&event->count);
4731 if (enabled || running) {
4732 u64 __enabled, __running, __now;
4733
4734 calc_timer_values(event, &__now, &__enabled, &__running);
4735 if (enabled)
4736 *enabled = __enabled;
4737 if (running)
4738 *running = __running;
4739 }
4740 out:
4741 local_irq_restore(flags);
4742
4743 return ret;
4744 }
4745
perf_event_read(struct perf_event * event,bool group)4746 static int perf_event_read(struct perf_event *event, bool group)
4747 {
4748 enum perf_event_state state = READ_ONCE(event->state);
4749 int event_cpu, ret = 0;
4750
4751 /*
4752 * If event is enabled and currently active on a CPU, update the
4753 * value in the event structure:
4754 */
4755 again:
4756 if (state == PERF_EVENT_STATE_ACTIVE) {
4757 struct perf_read_data data;
4758
4759 /*
4760 * Orders the ->state and ->oncpu loads such that if we see
4761 * ACTIVE we must also see the right ->oncpu.
4762 *
4763 * Matches the smp_wmb() from event_sched_in().
4764 */
4765 smp_rmb();
4766
4767 event_cpu = READ_ONCE(event->oncpu);
4768 if ((unsigned)event_cpu >= nr_cpu_ids)
4769 return 0;
4770
4771 data = (struct perf_read_data){
4772 .event = event,
4773 .group = group,
4774 .ret = 0,
4775 };
4776
4777 preempt_disable();
4778 event_cpu = __perf_event_read_cpu(event, event_cpu);
4779
4780 /*
4781 * Purposely ignore the smp_call_function_single() return
4782 * value.
4783 *
4784 * If event_cpu isn't a valid CPU it means the event got
4785 * scheduled out and that will have updated the event count.
4786 *
4787 * Therefore, either way, we'll have an up-to-date event count
4788 * after this.
4789 */
4790 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4791 preempt_enable();
4792 ret = data.ret;
4793
4794 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4795 struct perf_event_context *ctx = event->ctx;
4796 unsigned long flags;
4797
4798 raw_spin_lock_irqsave(&ctx->lock, flags);
4799 state = event->state;
4800 if (state != PERF_EVENT_STATE_INACTIVE) {
4801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4802 goto again;
4803 }
4804
4805 /*
4806 * May read while context is not active (e.g., thread is
4807 * blocked), in that case we cannot update context time
4808 */
4809 ctx_time_update_event(ctx, event);
4810
4811 perf_event_update_time(event);
4812 if (group)
4813 perf_event_update_sibling_time(event);
4814 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4815 }
4816
4817 return ret;
4818 }
4819
4820 /*
4821 * Initialize the perf_event context in a task_struct:
4822 */
__perf_event_init_context(struct perf_event_context * ctx)4823 static void __perf_event_init_context(struct perf_event_context *ctx)
4824 {
4825 raw_spin_lock_init(&ctx->lock);
4826 mutex_init(&ctx->mutex);
4827 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4828 perf_event_groups_init(&ctx->pinned_groups);
4829 perf_event_groups_init(&ctx->flexible_groups);
4830 INIT_LIST_HEAD(&ctx->event_list);
4831 refcount_set(&ctx->refcount, 1);
4832 }
4833
4834 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4836 {
4837 epc->pmu = pmu;
4838 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4839 INIT_LIST_HEAD(&epc->pinned_active);
4840 INIT_LIST_HEAD(&epc->flexible_active);
4841 atomic_set(&epc->refcount, 1);
4842 }
4843
4844 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4845 alloc_perf_context(struct task_struct *task)
4846 {
4847 struct perf_event_context *ctx;
4848
4849 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4850 if (!ctx)
4851 return NULL;
4852
4853 __perf_event_init_context(ctx);
4854 if (task)
4855 ctx->task = get_task_struct(task);
4856
4857 return ctx;
4858 }
4859
4860 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4861 find_lively_task_by_vpid(pid_t vpid)
4862 {
4863 struct task_struct *task;
4864
4865 rcu_read_lock();
4866 if (!vpid)
4867 task = current;
4868 else
4869 task = find_task_by_vpid(vpid);
4870 if (task)
4871 get_task_struct(task);
4872 rcu_read_unlock();
4873
4874 if (!task)
4875 return ERR_PTR(-ESRCH);
4876
4877 return task;
4878 }
4879
4880 /*
4881 * Returns a matching context with refcount and pincount.
4882 */
4883 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4884 find_get_context(struct task_struct *task, struct perf_event *event)
4885 {
4886 struct perf_event_context *ctx, *clone_ctx = NULL;
4887 struct perf_cpu_context *cpuctx;
4888 unsigned long flags;
4889 int err;
4890
4891 if (!task) {
4892 /* Must be root to operate on a CPU event: */
4893 err = perf_allow_cpu(&event->attr);
4894 if (err)
4895 return ERR_PTR(err);
4896
4897 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4898 ctx = &cpuctx->ctx;
4899 get_ctx(ctx);
4900 raw_spin_lock_irqsave(&ctx->lock, flags);
4901 ++ctx->pin_count;
4902 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4903
4904 return ctx;
4905 }
4906
4907 err = -EINVAL;
4908 retry:
4909 ctx = perf_lock_task_context(task, &flags);
4910 if (ctx) {
4911 clone_ctx = unclone_ctx(ctx);
4912 ++ctx->pin_count;
4913
4914 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4915
4916 if (clone_ctx)
4917 put_ctx(clone_ctx);
4918 } else {
4919 ctx = alloc_perf_context(task);
4920 err = -ENOMEM;
4921 if (!ctx)
4922 goto errout;
4923
4924 err = 0;
4925 mutex_lock(&task->perf_event_mutex);
4926 /*
4927 * If it has already passed perf_event_exit_task().
4928 * we must see PF_EXITING, it takes this mutex too.
4929 */
4930 if (task->flags & PF_EXITING)
4931 err = -ESRCH;
4932 else if (task->perf_event_ctxp)
4933 err = -EAGAIN;
4934 else {
4935 get_ctx(ctx);
4936 ++ctx->pin_count;
4937 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4938 }
4939 mutex_unlock(&task->perf_event_mutex);
4940
4941 if (unlikely(err)) {
4942 put_ctx(ctx);
4943
4944 if (err == -EAGAIN)
4945 goto retry;
4946 goto errout;
4947 }
4948 }
4949
4950 return ctx;
4951
4952 errout:
4953 return ERR_PTR(err);
4954 }
4955
4956 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4958 struct perf_event *event)
4959 {
4960 struct perf_event_pmu_context *new = NULL, *epc;
4961 void *task_ctx_data = NULL;
4962
4963 if (!ctx->task) {
4964 /*
4965 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 * relies on the fact that find_get_pmu_context() cannot fail
4967 * for CPU contexts.
4968 */
4969 struct perf_cpu_pmu_context *cpc;
4970
4971 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 epc = &cpc->epc;
4973 raw_spin_lock_irq(&ctx->lock);
4974 if (!epc->ctx) {
4975 atomic_set(&epc->refcount, 1);
4976 epc->embedded = 1;
4977 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4978 epc->ctx = ctx;
4979 } else {
4980 WARN_ON_ONCE(epc->ctx != ctx);
4981 atomic_inc(&epc->refcount);
4982 }
4983 raw_spin_unlock_irq(&ctx->lock);
4984 return epc;
4985 }
4986
4987 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4988 if (!new)
4989 return ERR_PTR(-ENOMEM);
4990
4991 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4992 task_ctx_data = alloc_task_ctx_data(pmu);
4993 if (!task_ctx_data) {
4994 kfree(new);
4995 return ERR_PTR(-ENOMEM);
4996 }
4997 }
4998
4999 __perf_init_event_pmu_context(new, pmu);
5000
5001 /*
5002 * XXX
5003 *
5004 * lockdep_assert_held(&ctx->mutex);
5005 *
5006 * can't because perf_event_init_task() doesn't actually hold the
5007 * child_ctx->mutex.
5008 */
5009
5010 raw_spin_lock_irq(&ctx->lock);
5011 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5012 if (epc->pmu == pmu) {
5013 WARN_ON_ONCE(epc->ctx != ctx);
5014 atomic_inc(&epc->refcount);
5015 goto found_epc;
5016 }
5017 }
5018
5019 epc = new;
5020 new = NULL;
5021
5022 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5023 epc->ctx = ctx;
5024
5025 found_epc:
5026 if (task_ctx_data && !epc->task_ctx_data) {
5027 epc->task_ctx_data = task_ctx_data;
5028 task_ctx_data = NULL;
5029 ctx->nr_task_data++;
5030 }
5031 raw_spin_unlock_irq(&ctx->lock);
5032
5033 free_task_ctx_data(pmu, task_ctx_data);
5034 kfree(new);
5035
5036 return epc;
5037 }
5038
get_pmu_ctx(struct perf_event_pmu_context * epc)5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040 {
5041 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042 }
5043
free_epc_rcu(struct rcu_head * head)5044 static void free_epc_rcu(struct rcu_head *head)
5045 {
5046 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047
5048 kfree(epc->task_ctx_data);
5049 kfree(epc);
5050 }
5051
put_pmu_ctx(struct perf_event_pmu_context * epc)5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053 {
5054 struct perf_event_context *ctx = epc->ctx;
5055 unsigned long flags;
5056
5057 /*
5058 * XXX
5059 *
5060 * lockdep_assert_held(&ctx->mutex);
5061 *
5062 * can't because of the call-site in _free_event()/put_event()
5063 * which isn't always called under ctx->mutex.
5064 */
5065 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066 return;
5067
5068 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069
5070 list_del_init(&epc->pmu_ctx_entry);
5071 epc->ctx = NULL;
5072
5073 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075
5076 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077
5078 if (epc->embedded)
5079 return;
5080
5081 call_rcu(&epc->rcu_head, free_epc_rcu);
5082 }
5083
5084 static void perf_event_free_filter(struct perf_event *event);
5085
free_event_rcu(struct rcu_head * head)5086 static void free_event_rcu(struct rcu_head *head)
5087 {
5088 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089
5090 if (event->ns)
5091 put_pid_ns(event->ns);
5092 perf_event_free_filter(event);
5093 kmem_cache_free(perf_event_cache, event);
5094 }
5095
5096 static void ring_buffer_attach(struct perf_event *event,
5097 struct perf_buffer *rb);
5098
detach_sb_event(struct perf_event * event)5099 static void detach_sb_event(struct perf_event *event)
5100 {
5101 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102
5103 raw_spin_lock(&pel->lock);
5104 list_del_rcu(&event->sb_list);
5105 raw_spin_unlock(&pel->lock);
5106 }
5107
is_sb_event(struct perf_event * event)5108 static bool is_sb_event(struct perf_event *event)
5109 {
5110 struct perf_event_attr *attr = &event->attr;
5111
5112 if (event->parent)
5113 return false;
5114
5115 if (event->attach_state & PERF_ATTACH_TASK)
5116 return false;
5117
5118 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119 attr->comm || attr->comm_exec ||
5120 attr->task || attr->ksymbol ||
5121 attr->context_switch || attr->text_poke ||
5122 attr->bpf_event)
5123 return true;
5124 return false;
5125 }
5126
unaccount_pmu_sb_event(struct perf_event * event)5127 static void unaccount_pmu_sb_event(struct perf_event *event)
5128 {
5129 if (is_sb_event(event))
5130 detach_sb_event(event);
5131 }
5132
5133 #ifdef CONFIG_NO_HZ_FULL
5134 static DEFINE_SPINLOCK(nr_freq_lock);
5135 #endif
5136
unaccount_freq_event_nohz(void)5137 static void unaccount_freq_event_nohz(void)
5138 {
5139 #ifdef CONFIG_NO_HZ_FULL
5140 spin_lock(&nr_freq_lock);
5141 if (atomic_dec_and_test(&nr_freq_events))
5142 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143 spin_unlock(&nr_freq_lock);
5144 #endif
5145 }
5146
unaccount_freq_event(void)5147 static void unaccount_freq_event(void)
5148 {
5149 if (tick_nohz_full_enabled())
5150 unaccount_freq_event_nohz();
5151 else
5152 atomic_dec(&nr_freq_events);
5153 }
5154
unaccount_event(struct perf_event * event)5155 static void unaccount_event(struct perf_event *event)
5156 {
5157 bool dec = false;
5158
5159 if (event->parent)
5160 return;
5161
5162 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163 dec = true;
5164 if (event->attr.mmap || event->attr.mmap_data)
5165 atomic_dec(&nr_mmap_events);
5166 if (event->attr.build_id)
5167 atomic_dec(&nr_build_id_events);
5168 if (event->attr.comm)
5169 atomic_dec(&nr_comm_events);
5170 if (event->attr.namespaces)
5171 atomic_dec(&nr_namespaces_events);
5172 if (event->attr.cgroup)
5173 atomic_dec(&nr_cgroup_events);
5174 if (event->attr.task)
5175 atomic_dec(&nr_task_events);
5176 if (event->attr.freq)
5177 unaccount_freq_event();
5178 if (event->attr.context_switch) {
5179 dec = true;
5180 atomic_dec(&nr_switch_events);
5181 }
5182 if (is_cgroup_event(event))
5183 dec = true;
5184 if (has_branch_stack(event))
5185 dec = true;
5186 if (event->attr.ksymbol)
5187 atomic_dec(&nr_ksymbol_events);
5188 if (event->attr.bpf_event)
5189 atomic_dec(&nr_bpf_events);
5190 if (event->attr.text_poke)
5191 atomic_dec(&nr_text_poke_events);
5192
5193 if (dec) {
5194 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195 schedule_delayed_work(&perf_sched_work, HZ);
5196 }
5197
5198 unaccount_pmu_sb_event(event);
5199 }
5200
perf_sched_delayed(struct work_struct * work)5201 static void perf_sched_delayed(struct work_struct *work)
5202 {
5203 mutex_lock(&perf_sched_mutex);
5204 if (atomic_dec_and_test(&perf_sched_count))
5205 static_branch_disable(&perf_sched_events);
5206 mutex_unlock(&perf_sched_mutex);
5207 }
5208
5209 /*
5210 * The following implement mutual exclusion of events on "exclusive" pmus
5211 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212 * at a time, so we disallow creating events that might conflict, namely:
5213 *
5214 * 1) cpu-wide events in the presence of per-task events,
5215 * 2) per-task events in the presence of cpu-wide events,
5216 * 3) two matching events on the same perf_event_context.
5217 *
5218 * The former two cases are handled in the allocation path (perf_event_alloc(),
5219 * _free_event()), the latter -- before the first perf_install_in_context().
5220 */
exclusive_event_init(struct perf_event * event)5221 static int exclusive_event_init(struct perf_event *event)
5222 {
5223 struct pmu *pmu = event->pmu;
5224
5225 if (!is_exclusive_pmu(pmu))
5226 return 0;
5227
5228 /*
5229 * Prevent co-existence of per-task and cpu-wide events on the
5230 * same exclusive pmu.
5231 *
5232 * Negative pmu::exclusive_cnt means there are cpu-wide
5233 * events on this "exclusive" pmu, positive means there are
5234 * per-task events.
5235 *
5236 * Since this is called in perf_event_alloc() path, event::ctx
5237 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238 * to mean "per-task event", because unlike other attach states it
5239 * never gets cleared.
5240 */
5241 if (event->attach_state & PERF_ATTACH_TASK) {
5242 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243 return -EBUSY;
5244 } else {
5245 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246 return -EBUSY;
5247 }
5248
5249 return 0;
5250 }
5251
exclusive_event_destroy(struct perf_event * event)5252 static void exclusive_event_destroy(struct perf_event *event)
5253 {
5254 struct pmu *pmu = event->pmu;
5255
5256 if (!is_exclusive_pmu(pmu))
5257 return;
5258
5259 /* see comment in exclusive_event_init() */
5260 if (event->attach_state & PERF_ATTACH_TASK)
5261 atomic_dec(&pmu->exclusive_cnt);
5262 else
5263 atomic_inc(&pmu->exclusive_cnt);
5264 }
5265
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267 {
5268 if ((e1->pmu == e2->pmu) &&
5269 (e1->cpu == e2->cpu ||
5270 e1->cpu == -1 ||
5271 e2->cpu == -1))
5272 return true;
5273 return false;
5274 }
5275
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5276 static bool exclusive_event_installable(struct perf_event *event,
5277 struct perf_event_context *ctx)
5278 {
5279 struct perf_event *iter_event;
5280 struct pmu *pmu = event->pmu;
5281
5282 lockdep_assert_held(&ctx->mutex);
5283
5284 if (!is_exclusive_pmu(pmu))
5285 return true;
5286
5287 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288 if (exclusive_event_match(iter_event, event))
5289 return false;
5290 }
5291
5292 return true;
5293 }
5294
5295 static void perf_addr_filters_splice(struct perf_event *event,
5296 struct list_head *head);
5297
perf_pending_task_sync(struct perf_event * event)5298 static void perf_pending_task_sync(struct perf_event *event)
5299 {
5300 struct callback_head *head = &event->pending_task;
5301
5302 if (!event->pending_work)
5303 return;
5304 /*
5305 * If the task is queued to the current task's queue, we
5306 * obviously can't wait for it to complete. Simply cancel it.
5307 */
5308 if (task_work_cancel(current, head)) {
5309 event->pending_work = 0;
5310 local_dec(&event->ctx->nr_no_switch_fast);
5311 return;
5312 }
5313
5314 /*
5315 * All accesses related to the event are within the same RCU section in
5316 * perf_pending_task(). The RCU grace period before the event is freed
5317 * will make sure all those accesses are complete by then.
5318 */
5319 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320 }
5321
_free_event(struct perf_event * event)5322 static void _free_event(struct perf_event *event)
5323 {
5324 irq_work_sync(&event->pending_irq);
5325 irq_work_sync(&event->pending_disable_irq);
5326 perf_pending_task_sync(event);
5327
5328 unaccount_event(event);
5329
5330 security_perf_event_free(event);
5331
5332 if (event->rb) {
5333 /*
5334 * Can happen when we close an event with re-directed output.
5335 *
5336 * Since we have a 0 refcount, perf_mmap_close() will skip
5337 * over us; possibly making our ring_buffer_put() the last.
5338 */
5339 mutex_lock(&event->mmap_mutex);
5340 ring_buffer_attach(event, NULL);
5341 mutex_unlock(&event->mmap_mutex);
5342 }
5343
5344 if (is_cgroup_event(event))
5345 perf_detach_cgroup(event);
5346
5347 if (!event->parent) {
5348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349 put_callchain_buffers();
5350 }
5351
5352 perf_event_free_bpf_prog(event);
5353 perf_addr_filters_splice(event, NULL);
5354 kfree(event->addr_filter_ranges);
5355
5356 if (event->destroy)
5357 event->destroy(event);
5358
5359 /*
5360 * Must be after ->destroy(), due to uprobe_perf_close() using
5361 * hw.target.
5362 */
5363 if (event->hw.target)
5364 put_task_struct(event->hw.target);
5365
5366 if (event->pmu_ctx)
5367 put_pmu_ctx(event->pmu_ctx);
5368
5369 /*
5370 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371 * all task references must be cleaned up.
5372 */
5373 if (event->ctx)
5374 put_ctx(event->ctx);
5375
5376 exclusive_event_destroy(event);
5377 module_put(event->pmu->module);
5378
5379 call_rcu(&event->rcu_head, free_event_rcu);
5380 }
5381
5382 /*
5383 * Used to free events which have a known refcount of 1, such as in error paths
5384 * where the event isn't exposed yet and inherited events.
5385 */
free_event(struct perf_event * event)5386 static void free_event(struct perf_event *event)
5387 {
5388 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389 "unexpected event refcount: %ld; ptr=%p\n",
5390 atomic_long_read(&event->refcount), event)) {
5391 /* leak to avoid use-after-free */
5392 return;
5393 }
5394
5395 _free_event(event);
5396 }
5397
5398 /*
5399 * Remove user event from the owner task.
5400 */
perf_remove_from_owner(struct perf_event * event)5401 static void perf_remove_from_owner(struct perf_event *event)
5402 {
5403 struct task_struct *owner;
5404
5405 rcu_read_lock();
5406 /*
5407 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408 * observe !owner it means the list deletion is complete and we can
5409 * indeed free this event, otherwise we need to serialize on
5410 * owner->perf_event_mutex.
5411 */
5412 owner = READ_ONCE(event->owner);
5413 if (owner) {
5414 /*
5415 * Since delayed_put_task_struct() also drops the last
5416 * task reference we can safely take a new reference
5417 * while holding the rcu_read_lock().
5418 */
5419 get_task_struct(owner);
5420 }
5421 rcu_read_unlock();
5422
5423 if (owner) {
5424 /*
5425 * If we're here through perf_event_exit_task() we're already
5426 * holding ctx->mutex which would be an inversion wrt. the
5427 * normal lock order.
5428 *
5429 * However we can safely take this lock because its the child
5430 * ctx->mutex.
5431 */
5432 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433
5434 /*
5435 * We have to re-check the event->owner field, if it is cleared
5436 * we raced with perf_event_exit_task(), acquiring the mutex
5437 * ensured they're done, and we can proceed with freeing the
5438 * event.
5439 */
5440 if (event->owner) {
5441 list_del_init(&event->owner_entry);
5442 smp_store_release(&event->owner, NULL);
5443 }
5444 mutex_unlock(&owner->perf_event_mutex);
5445 put_task_struct(owner);
5446 }
5447 }
5448
put_event(struct perf_event * event)5449 static void put_event(struct perf_event *event)
5450 {
5451 if (!atomic_long_dec_and_test(&event->refcount))
5452 return;
5453
5454 _free_event(event);
5455 }
5456
5457 /*
5458 * Kill an event dead; while event:refcount will preserve the event
5459 * object, it will not preserve its functionality. Once the last 'user'
5460 * gives up the object, we'll destroy the thing.
5461 */
perf_event_release_kernel(struct perf_event * event)5462 int perf_event_release_kernel(struct perf_event *event)
5463 {
5464 struct perf_event_context *ctx = event->ctx;
5465 struct perf_event *child, *tmp;
5466 LIST_HEAD(free_list);
5467
5468 /*
5469 * If we got here through err_alloc: free_event(event); we will not
5470 * have attached to a context yet.
5471 */
5472 if (!ctx) {
5473 WARN_ON_ONCE(event->attach_state &
5474 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475 goto no_ctx;
5476 }
5477
5478 if (!is_kernel_event(event))
5479 perf_remove_from_owner(event);
5480
5481 ctx = perf_event_ctx_lock(event);
5482 WARN_ON_ONCE(ctx->parent_ctx);
5483
5484 /*
5485 * Mark this event as STATE_DEAD, there is no external reference to it
5486 * anymore.
5487 *
5488 * Anybody acquiring event->child_mutex after the below loop _must_
5489 * also see this, most importantly inherit_event() which will avoid
5490 * placing more children on the list.
5491 *
5492 * Thus this guarantees that we will in fact observe and kill _ALL_
5493 * child events.
5494 */
5495 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496
5497 perf_event_ctx_unlock(event, ctx);
5498
5499 again:
5500 mutex_lock(&event->child_mutex);
5501 list_for_each_entry(child, &event->child_list, child_list) {
5502 void *var = NULL;
5503
5504 /*
5505 * Cannot change, child events are not migrated, see the
5506 * comment with perf_event_ctx_lock_nested().
5507 */
5508 ctx = READ_ONCE(child->ctx);
5509 /*
5510 * Since child_mutex nests inside ctx::mutex, we must jump
5511 * through hoops. We start by grabbing a reference on the ctx.
5512 *
5513 * Since the event cannot get freed while we hold the
5514 * child_mutex, the context must also exist and have a !0
5515 * reference count.
5516 */
5517 get_ctx(ctx);
5518
5519 /*
5520 * Now that we have a ctx ref, we can drop child_mutex, and
5521 * acquire ctx::mutex without fear of it going away. Then we
5522 * can re-acquire child_mutex.
5523 */
5524 mutex_unlock(&event->child_mutex);
5525 mutex_lock(&ctx->mutex);
5526 mutex_lock(&event->child_mutex);
5527
5528 /*
5529 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530 * state, if child is still the first entry, it didn't get freed
5531 * and we can continue doing so.
5532 */
5533 tmp = list_first_entry_or_null(&event->child_list,
5534 struct perf_event, child_list);
5535 if (tmp == child) {
5536 perf_remove_from_context(child, DETACH_GROUP);
5537 list_move(&child->child_list, &free_list);
5538 /*
5539 * This matches the refcount bump in inherit_event();
5540 * this can't be the last reference.
5541 */
5542 put_event(event);
5543 } else {
5544 var = &ctx->refcount;
5545 }
5546
5547 mutex_unlock(&event->child_mutex);
5548 mutex_unlock(&ctx->mutex);
5549 put_ctx(ctx);
5550
5551 if (var) {
5552 /*
5553 * If perf_event_free_task() has deleted all events from the
5554 * ctx while the child_mutex got released above, make sure to
5555 * notify about the preceding put_ctx().
5556 */
5557 smp_mb(); /* pairs with wait_var_event() */
5558 wake_up_var(var);
5559 }
5560 goto again;
5561 }
5562 mutex_unlock(&event->child_mutex);
5563
5564 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565 void *var = &child->ctx->refcount;
5566
5567 list_del(&child->child_list);
5568 free_event(child);
5569
5570 /*
5571 * Wake any perf_event_free_task() waiting for this event to be
5572 * freed.
5573 */
5574 smp_mb(); /* pairs with wait_var_event() */
5575 wake_up_var(var);
5576 }
5577
5578 no_ctx:
5579 put_event(event); /* Must be the 'last' reference */
5580 return 0;
5581 }
5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583
5584 /*
5585 * Called when the last reference to the file is gone.
5586 */
perf_release(struct inode * inode,struct file * file)5587 static int perf_release(struct inode *inode, struct file *file)
5588 {
5589 perf_event_release_kernel(file->private_data);
5590 return 0;
5591 }
5592
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594 {
5595 struct perf_event *child;
5596 u64 total = 0;
5597
5598 *enabled = 0;
5599 *running = 0;
5600
5601 mutex_lock(&event->child_mutex);
5602
5603 (void)perf_event_read(event, false);
5604 total += perf_event_count(event, false);
5605
5606 *enabled += event->total_time_enabled +
5607 atomic64_read(&event->child_total_time_enabled);
5608 *running += event->total_time_running +
5609 atomic64_read(&event->child_total_time_running);
5610
5611 list_for_each_entry(child, &event->child_list, child_list) {
5612 (void)perf_event_read(child, false);
5613 total += perf_event_count(child, false);
5614 *enabled += child->total_time_enabled;
5615 *running += child->total_time_running;
5616 }
5617 mutex_unlock(&event->child_mutex);
5618
5619 return total;
5620 }
5621
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623 {
5624 struct perf_event_context *ctx;
5625 u64 count;
5626
5627 ctx = perf_event_ctx_lock(event);
5628 count = __perf_event_read_value(event, enabled, running);
5629 perf_event_ctx_unlock(event, ctx);
5630
5631 return count;
5632 }
5633 EXPORT_SYMBOL_GPL(perf_event_read_value);
5634
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5635 static int __perf_read_group_add(struct perf_event *leader,
5636 u64 read_format, u64 *values)
5637 {
5638 struct perf_event_context *ctx = leader->ctx;
5639 struct perf_event *sub, *parent;
5640 unsigned long flags;
5641 int n = 1; /* skip @nr */
5642 int ret;
5643
5644 ret = perf_event_read(leader, true);
5645 if (ret)
5646 return ret;
5647
5648 raw_spin_lock_irqsave(&ctx->lock, flags);
5649 /*
5650 * Verify the grouping between the parent and child (inherited)
5651 * events is still in tact.
5652 *
5653 * Specifically:
5654 * - leader->ctx->lock pins leader->sibling_list
5655 * - parent->child_mutex pins parent->child_list
5656 * - parent->ctx->mutex pins parent->sibling_list
5657 *
5658 * Because parent->ctx != leader->ctx (and child_list nests inside
5659 * ctx->mutex), group destruction is not atomic between children, also
5660 * see perf_event_release_kernel(). Additionally, parent can grow the
5661 * group.
5662 *
5663 * Therefore it is possible to have parent and child groups in a
5664 * different configuration and summing over such a beast makes no sense
5665 * what so ever.
5666 *
5667 * Reject this.
5668 */
5669 parent = leader->parent;
5670 if (parent &&
5671 (parent->group_generation != leader->group_generation ||
5672 parent->nr_siblings != leader->nr_siblings)) {
5673 ret = -ECHILD;
5674 goto unlock;
5675 }
5676
5677 /*
5678 * Since we co-schedule groups, {enabled,running} times of siblings
5679 * will be identical to those of the leader, so we only publish one
5680 * set.
5681 */
5682 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683 values[n++] += leader->total_time_enabled +
5684 atomic64_read(&leader->child_total_time_enabled);
5685 }
5686
5687 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688 values[n++] += leader->total_time_running +
5689 atomic64_read(&leader->child_total_time_running);
5690 }
5691
5692 /*
5693 * Write {count,id} tuples for every sibling.
5694 */
5695 values[n++] += perf_event_count(leader, false);
5696 if (read_format & PERF_FORMAT_ID)
5697 values[n++] = primary_event_id(leader);
5698 if (read_format & PERF_FORMAT_LOST)
5699 values[n++] = atomic64_read(&leader->lost_samples);
5700
5701 for_each_sibling_event(sub, leader) {
5702 values[n++] += perf_event_count(sub, false);
5703 if (read_format & PERF_FORMAT_ID)
5704 values[n++] = primary_event_id(sub);
5705 if (read_format & PERF_FORMAT_LOST)
5706 values[n++] = atomic64_read(&sub->lost_samples);
5707 }
5708
5709 unlock:
5710 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711 return ret;
5712 }
5713
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5714 static int perf_read_group(struct perf_event *event,
5715 u64 read_format, char __user *buf)
5716 {
5717 struct perf_event *leader = event->group_leader, *child;
5718 struct perf_event_context *ctx = leader->ctx;
5719 int ret;
5720 u64 *values;
5721
5722 lockdep_assert_held(&ctx->mutex);
5723
5724 values = kzalloc(event->read_size, GFP_KERNEL);
5725 if (!values)
5726 return -ENOMEM;
5727
5728 values[0] = 1 + leader->nr_siblings;
5729
5730 mutex_lock(&leader->child_mutex);
5731
5732 ret = __perf_read_group_add(leader, read_format, values);
5733 if (ret)
5734 goto unlock;
5735
5736 list_for_each_entry(child, &leader->child_list, child_list) {
5737 ret = __perf_read_group_add(child, read_format, values);
5738 if (ret)
5739 goto unlock;
5740 }
5741
5742 mutex_unlock(&leader->child_mutex);
5743
5744 ret = event->read_size;
5745 if (copy_to_user(buf, values, event->read_size))
5746 ret = -EFAULT;
5747 goto out;
5748
5749 unlock:
5750 mutex_unlock(&leader->child_mutex);
5751 out:
5752 kfree(values);
5753 return ret;
5754 }
5755
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5756 static int perf_read_one(struct perf_event *event,
5757 u64 read_format, char __user *buf)
5758 {
5759 u64 enabled, running;
5760 u64 values[5];
5761 int n = 0;
5762
5763 values[n++] = __perf_event_read_value(event, &enabled, &running);
5764 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765 values[n++] = enabled;
5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767 values[n++] = running;
5768 if (read_format & PERF_FORMAT_ID)
5769 values[n++] = primary_event_id(event);
5770 if (read_format & PERF_FORMAT_LOST)
5771 values[n++] = atomic64_read(&event->lost_samples);
5772
5773 if (copy_to_user(buf, values, n * sizeof(u64)))
5774 return -EFAULT;
5775
5776 return n * sizeof(u64);
5777 }
5778
is_event_hup(struct perf_event * event)5779 static bool is_event_hup(struct perf_event *event)
5780 {
5781 bool no_children;
5782
5783 if (event->state > PERF_EVENT_STATE_EXIT)
5784 return false;
5785
5786 mutex_lock(&event->child_mutex);
5787 no_children = list_empty(&event->child_list);
5788 mutex_unlock(&event->child_mutex);
5789 return no_children;
5790 }
5791
5792 /*
5793 * Read the performance event - simple non blocking version for now
5794 */
5795 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5796 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797 {
5798 u64 read_format = event->attr.read_format;
5799 int ret;
5800
5801 /*
5802 * Return end-of-file for a read on an event that is in
5803 * error state (i.e. because it was pinned but it couldn't be
5804 * scheduled on to the CPU at some point).
5805 */
5806 if (event->state == PERF_EVENT_STATE_ERROR)
5807 return 0;
5808
5809 if (count < event->read_size)
5810 return -ENOSPC;
5811
5812 WARN_ON_ONCE(event->ctx->parent_ctx);
5813 if (read_format & PERF_FORMAT_GROUP)
5814 ret = perf_read_group(event, read_format, buf);
5815 else
5816 ret = perf_read_one(event, read_format, buf);
5817
5818 return ret;
5819 }
5820
5821 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823 {
5824 struct perf_event *event = file->private_data;
5825 struct perf_event_context *ctx;
5826 int ret;
5827
5828 ret = security_perf_event_read(event);
5829 if (ret)
5830 return ret;
5831
5832 ctx = perf_event_ctx_lock(event);
5833 ret = __perf_read(event, buf, count);
5834 perf_event_ctx_unlock(event, ctx);
5835
5836 return ret;
5837 }
5838
perf_poll(struct file * file,poll_table * wait)5839 static __poll_t perf_poll(struct file *file, poll_table *wait)
5840 {
5841 struct perf_event *event = file->private_data;
5842 struct perf_buffer *rb;
5843 __poll_t events = EPOLLHUP;
5844
5845 poll_wait(file, &event->waitq, wait);
5846
5847 if (is_event_hup(event))
5848 return events;
5849
5850 /*
5851 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853 */
5854 mutex_lock(&event->mmap_mutex);
5855 rb = event->rb;
5856 if (rb)
5857 events = atomic_xchg(&rb->poll, 0);
5858 mutex_unlock(&event->mmap_mutex);
5859 return events;
5860 }
5861
_perf_event_reset(struct perf_event * event)5862 static void _perf_event_reset(struct perf_event *event)
5863 {
5864 (void)perf_event_read(event, false);
5865 local64_set(&event->count, 0);
5866 perf_event_update_userpage(event);
5867 }
5868
5869 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5870 u64 perf_event_pause(struct perf_event *event, bool reset)
5871 {
5872 struct perf_event_context *ctx;
5873 u64 count;
5874
5875 ctx = perf_event_ctx_lock(event);
5876 WARN_ON_ONCE(event->attr.inherit);
5877 _perf_event_disable(event);
5878 count = local64_read(&event->count);
5879 if (reset)
5880 local64_set(&event->count, 0);
5881 perf_event_ctx_unlock(event, ctx);
5882
5883 return count;
5884 }
5885 EXPORT_SYMBOL_GPL(perf_event_pause);
5886
5887 /*
5888 * Holding the top-level event's child_mutex means that any
5889 * descendant process that has inherited this event will block
5890 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891 * task existence requirements of perf_event_enable/disable.
5892 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5893 static void perf_event_for_each_child(struct perf_event *event,
5894 void (*func)(struct perf_event *))
5895 {
5896 struct perf_event *child;
5897
5898 WARN_ON_ONCE(event->ctx->parent_ctx);
5899
5900 mutex_lock(&event->child_mutex);
5901 func(event);
5902 list_for_each_entry(child, &event->child_list, child_list)
5903 func(child);
5904 mutex_unlock(&event->child_mutex);
5905 }
5906
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5907 static void perf_event_for_each(struct perf_event *event,
5908 void (*func)(struct perf_event *))
5909 {
5910 struct perf_event_context *ctx = event->ctx;
5911 struct perf_event *sibling;
5912
5913 lockdep_assert_held(&ctx->mutex);
5914
5915 event = event->group_leader;
5916
5917 perf_event_for_each_child(event, func);
5918 for_each_sibling_event(sibling, event)
5919 perf_event_for_each_child(sibling, func);
5920 }
5921
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5922 static void __perf_event_period(struct perf_event *event,
5923 struct perf_cpu_context *cpuctx,
5924 struct perf_event_context *ctx,
5925 void *info)
5926 {
5927 u64 value = *((u64 *)info);
5928 bool active;
5929
5930 if (event->attr.freq) {
5931 event->attr.sample_freq = value;
5932 } else {
5933 event->attr.sample_period = value;
5934 event->hw.sample_period = value;
5935 }
5936
5937 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938 if (active) {
5939 perf_pmu_disable(event->pmu);
5940 /*
5941 * We could be throttled; unthrottle now to avoid the tick
5942 * trying to unthrottle while we already re-started the event.
5943 */
5944 if (event->hw.interrupts == MAX_INTERRUPTS) {
5945 event->hw.interrupts = 0;
5946 perf_log_throttle(event, 1);
5947 }
5948 event->pmu->stop(event, PERF_EF_UPDATE);
5949 }
5950
5951 local64_set(&event->hw.period_left, 0);
5952
5953 if (active) {
5954 event->pmu->start(event, PERF_EF_RELOAD);
5955 perf_pmu_enable(event->pmu);
5956 }
5957 }
5958
perf_event_check_period(struct perf_event * event,u64 value)5959 static int perf_event_check_period(struct perf_event *event, u64 value)
5960 {
5961 return event->pmu->check_period(event, value);
5962 }
5963
_perf_event_period(struct perf_event * event,u64 value)5964 static int _perf_event_period(struct perf_event *event, u64 value)
5965 {
5966 if (!is_sampling_event(event))
5967 return -EINVAL;
5968
5969 if (!value)
5970 return -EINVAL;
5971
5972 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5973 return -EINVAL;
5974
5975 if (perf_event_check_period(event, value))
5976 return -EINVAL;
5977
5978 if (!event->attr.freq && (value & (1ULL << 63)))
5979 return -EINVAL;
5980
5981 event_function_call(event, __perf_event_period, &value);
5982
5983 return 0;
5984 }
5985
perf_event_period(struct perf_event * event,u64 value)5986 int perf_event_period(struct perf_event *event, u64 value)
5987 {
5988 struct perf_event_context *ctx;
5989 int ret;
5990
5991 ctx = perf_event_ctx_lock(event);
5992 ret = _perf_event_period(event, value);
5993 perf_event_ctx_unlock(event, ctx);
5994
5995 return ret;
5996 }
5997 EXPORT_SYMBOL_GPL(perf_event_period);
5998
5999 static const struct file_operations perf_fops;
6000
perf_fget_light(int fd,struct fd * p)6001 static inline int perf_fget_light(int fd, struct fd *p)
6002 {
6003 struct fd f = fdget(fd);
6004 if (!fd_file(f))
6005 return -EBADF;
6006
6007 if (fd_file(f)->f_op != &perf_fops) {
6008 fdput(f);
6009 return -EBADF;
6010 }
6011 *p = f;
6012 return 0;
6013 }
6014
6015 static int perf_event_set_output(struct perf_event *event,
6016 struct perf_event *output_event);
6017 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6018 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6019 struct perf_event_attr *attr);
6020
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6021 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6022 {
6023 void (*func)(struct perf_event *);
6024 u32 flags = arg;
6025
6026 switch (cmd) {
6027 case PERF_EVENT_IOC_ENABLE:
6028 func = _perf_event_enable;
6029 break;
6030 case PERF_EVENT_IOC_DISABLE:
6031 func = _perf_event_disable;
6032 break;
6033 case PERF_EVENT_IOC_RESET:
6034 func = _perf_event_reset;
6035 break;
6036
6037 case PERF_EVENT_IOC_REFRESH:
6038 return _perf_event_refresh(event, arg);
6039
6040 case PERF_EVENT_IOC_PERIOD:
6041 {
6042 u64 value;
6043
6044 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6045 return -EFAULT;
6046
6047 return _perf_event_period(event, value);
6048 }
6049 case PERF_EVENT_IOC_ID:
6050 {
6051 u64 id = primary_event_id(event);
6052
6053 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6054 return -EFAULT;
6055 return 0;
6056 }
6057
6058 case PERF_EVENT_IOC_SET_OUTPUT:
6059 {
6060 int ret;
6061 if (arg != -1) {
6062 struct perf_event *output_event;
6063 struct fd output;
6064 ret = perf_fget_light(arg, &output);
6065 if (ret)
6066 return ret;
6067 output_event = fd_file(output)->private_data;
6068 ret = perf_event_set_output(event, output_event);
6069 fdput(output);
6070 } else {
6071 ret = perf_event_set_output(event, NULL);
6072 }
6073 return ret;
6074 }
6075
6076 case PERF_EVENT_IOC_SET_FILTER:
6077 return perf_event_set_filter(event, (void __user *)arg);
6078
6079 case PERF_EVENT_IOC_SET_BPF:
6080 {
6081 struct bpf_prog *prog;
6082 int err;
6083
6084 prog = bpf_prog_get(arg);
6085 if (IS_ERR(prog))
6086 return PTR_ERR(prog);
6087
6088 err = perf_event_set_bpf_prog(event, prog, 0);
6089 if (err) {
6090 bpf_prog_put(prog);
6091 return err;
6092 }
6093
6094 return 0;
6095 }
6096
6097 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6098 struct perf_buffer *rb;
6099
6100 rcu_read_lock();
6101 rb = rcu_dereference(event->rb);
6102 if (!rb || !rb->nr_pages) {
6103 rcu_read_unlock();
6104 return -EINVAL;
6105 }
6106 rb_toggle_paused(rb, !!arg);
6107 rcu_read_unlock();
6108 return 0;
6109 }
6110
6111 case PERF_EVENT_IOC_QUERY_BPF:
6112 return perf_event_query_prog_array(event, (void __user *)arg);
6113
6114 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6115 struct perf_event_attr new_attr;
6116 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6117 &new_attr);
6118
6119 if (err)
6120 return err;
6121
6122 return perf_event_modify_attr(event, &new_attr);
6123 }
6124 default:
6125 return -ENOTTY;
6126 }
6127
6128 if (flags & PERF_IOC_FLAG_GROUP)
6129 perf_event_for_each(event, func);
6130 else
6131 perf_event_for_each_child(event, func);
6132
6133 return 0;
6134 }
6135
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6137 {
6138 struct perf_event *event = file->private_data;
6139 struct perf_event_context *ctx;
6140 long ret;
6141
6142 /* Treat ioctl like writes as it is likely a mutating operation. */
6143 ret = security_perf_event_write(event);
6144 if (ret)
6145 return ret;
6146
6147 ctx = perf_event_ctx_lock(event);
6148 ret = _perf_ioctl(event, cmd, arg);
6149 perf_event_ctx_unlock(event, ctx);
6150
6151 return ret;
6152 }
6153
6154 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6155 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6156 unsigned long arg)
6157 {
6158 switch (_IOC_NR(cmd)) {
6159 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6160 case _IOC_NR(PERF_EVENT_IOC_ID):
6161 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6162 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6163 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6164 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6165 cmd &= ~IOCSIZE_MASK;
6166 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6167 }
6168 break;
6169 }
6170 return perf_ioctl(file, cmd, arg);
6171 }
6172 #else
6173 # define perf_compat_ioctl NULL
6174 #endif
6175
perf_event_task_enable(void)6176 int perf_event_task_enable(void)
6177 {
6178 struct perf_event_context *ctx;
6179 struct perf_event *event;
6180
6181 mutex_lock(¤t->perf_event_mutex);
6182 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6183 ctx = perf_event_ctx_lock(event);
6184 perf_event_for_each_child(event, _perf_event_enable);
6185 perf_event_ctx_unlock(event, ctx);
6186 }
6187 mutex_unlock(¤t->perf_event_mutex);
6188
6189 return 0;
6190 }
6191
perf_event_task_disable(void)6192 int perf_event_task_disable(void)
6193 {
6194 struct perf_event_context *ctx;
6195 struct perf_event *event;
6196
6197 mutex_lock(¤t->perf_event_mutex);
6198 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6199 ctx = perf_event_ctx_lock(event);
6200 perf_event_for_each_child(event, _perf_event_disable);
6201 perf_event_ctx_unlock(event, ctx);
6202 }
6203 mutex_unlock(¤t->perf_event_mutex);
6204
6205 return 0;
6206 }
6207
perf_event_index(struct perf_event * event)6208 static int perf_event_index(struct perf_event *event)
6209 {
6210 if (event->hw.state & PERF_HES_STOPPED)
6211 return 0;
6212
6213 if (event->state != PERF_EVENT_STATE_ACTIVE)
6214 return 0;
6215
6216 return event->pmu->event_idx(event);
6217 }
6218
perf_event_init_userpage(struct perf_event * event)6219 static void perf_event_init_userpage(struct perf_event *event)
6220 {
6221 struct perf_event_mmap_page *userpg;
6222 struct perf_buffer *rb;
6223
6224 rcu_read_lock();
6225 rb = rcu_dereference(event->rb);
6226 if (!rb)
6227 goto unlock;
6228
6229 userpg = rb->user_page;
6230
6231 /* Allow new userspace to detect that bit 0 is deprecated */
6232 userpg->cap_bit0_is_deprecated = 1;
6233 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6234 userpg->data_offset = PAGE_SIZE;
6235 userpg->data_size = perf_data_size(rb);
6236
6237 unlock:
6238 rcu_read_unlock();
6239 }
6240
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6241 void __weak arch_perf_update_userpage(
6242 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6243 {
6244 }
6245
6246 /*
6247 * Callers need to ensure there can be no nesting of this function, otherwise
6248 * the seqlock logic goes bad. We can not serialize this because the arch
6249 * code calls this from NMI context.
6250 */
perf_event_update_userpage(struct perf_event * event)6251 void perf_event_update_userpage(struct perf_event *event)
6252 {
6253 struct perf_event_mmap_page *userpg;
6254 struct perf_buffer *rb;
6255 u64 enabled, running, now;
6256
6257 rcu_read_lock();
6258 rb = rcu_dereference(event->rb);
6259 if (!rb)
6260 goto unlock;
6261
6262 /*
6263 * compute total_time_enabled, total_time_running
6264 * based on snapshot values taken when the event
6265 * was last scheduled in.
6266 *
6267 * we cannot simply called update_context_time()
6268 * because of locking issue as we can be called in
6269 * NMI context
6270 */
6271 calc_timer_values(event, &now, &enabled, &running);
6272
6273 userpg = rb->user_page;
6274 /*
6275 * Disable preemption to guarantee consistent time stamps are stored to
6276 * the user page.
6277 */
6278 preempt_disable();
6279 ++userpg->lock;
6280 barrier();
6281 userpg->index = perf_event_index(event);
6282 userpg->offset = perf_event_count(event, false);
6283 if (userpg->index)
6284 userpg->offset -= local64_read(&event->hw.prev_count);
6285
6286 userpg->time_enabled = enabled +
6287 atomic64_read(&event->child_total_time_enabled);
6288
6289 userpg->time_running = running +
6290 atomic64_read(&event->child_total_time_running);
6291
6292 arch_perf_update_userpage(event, userpg, now);
6293
6294 barrier();
6295 ++userpg->lock;
6296 preempt_enable();
6297 unlock:
6298 rcu_read_unlock();
6299 }
6300 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6301
perf_mmap_fault(struct vm_fault * vmf)6302 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6303 {
6304 struct perf_event *event = vmf->vma->vm_file->private_data;
6305 struct perf_buffer *rb;
6306 vm_fault_t ret = VM_FAULT_SIGBUS;
6307
6308 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6309 if (vmf->pgoff == 0)
6310 ret = 0;
6311 return ret;
6312 }
6313
6314 rcu_read_lock();
6315 rb = rcu_dereference(event->rb);
6316 if (!rb)
6317 goto unlock;
6318
6319 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6320 goto unlock;
6321
6322 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6323 if (!vmf->page)
6324 goto unlock;
6325
6326 get_page(vmf->page);
6327 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6328 vmf->page->index = vmf->pgoff;
6329
6330 ret = 0;
6331 unlock:
6332 rcu_read_unlock();
6333
6334 return ret;
6335 }
6336
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6337 static void ring_buffer_attach(struct perf_event *event,
6338 struct perf_buffer *rb)
6339 {
6340 struct perf_buffer *old_rb = NULL;
6341 unsigned long flags;
6342
6343 WARN_ON_ONCE(event->parent);
6344
6345 if (event->rb) {
6346 /*
6347 * Should be impossible, we set this when removing
6348 * event->rb_entry and wait/clear when adding event->rb_entry.
6349 */
6350 WARN_ON_ONCE(event->rcu_pending);
6351
6352 old_rb = event->rb;
6353 spin_lock_irqsave(&old_rb->event_lock, flags);
6354 list_del_rcu(&event->rb_entry);
6355 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6356
6357 event->rcu_batches = get_state_synchronize_rcu();
6358 event->rcu_pending = 1;
6359 }
6360
6361 if (rb) {
6362 if (event->rcu_pending) {
6363 cond_synchronize_rcu(event->rcu_batches);
6364 event->rcu_pending = 0;
6365 }
6366
6367 spin_lock_irqsave(&rb->event_lock, flags);
6368 list_add_rcu(&event->rb_entry, &rb->event_list);
6369 spin_unlock_irqrestore(&rb->event_lock, flags);
6370 }
6371
6372 /*
6373 * Avoid racing with perf_mmap_close(AUX): stop the event
6374 * before swizzling the event::rb pointer; if it's getting
6375 * unmapped, its aux_mmap_count will be 0 and it won't
6376 * restart. See the comment in __perf_pmu_output_stop().
6377 *
6378 * Data will inevitably be lost when set_output is done in
6379 * mid-air, but then again, whoever does it like this is
6380 * not in for the data anyway.
6381 */
6382 if (has_aux(event))
6383 perf_event_stop(event, 0);
6384
6385 rcu_assign_pointer(event->rb, rb);
6386
6387 if (old_rb) {
6388 ring_buffer_put(old_rb);
6389 /*
6390 * Since we detached before setting the new rb, so that we
6391 * could attach the new rb, we could have missed a wakeup.
6392 * Provide it now.
6393 */
6394 wake_up_all(&event->waitq);
6395 }
6396 }
6397
ring_buffer_wakeup(struct perf_event * event)6398 static void ring_buffer_wakeup(struct perf_event *event)
6399 {
6400 struct perf_buffer *rb;
6401
6402 if (event->parent)
6403 event = event->parent;
6404
6405 rcu_read_lock();
6406 rb = rcu_dereference(event->rb);
6407 if (rb) {
6408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6409 wake_up_all(&event->waitq);
6410 }
6411 rcu_read_unlock();
6412 }
6413
ring_buffer_get(struct perf_event * event)6414 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6415 {
6416 struct perf_buffer *rb;
6417
6418 if (event->parent)
6419 event = event->parent;
6420
6421 rcu_read_lock();
6422 rb = rcu_dereference(event->rb);
6423 if (rb) {
6424 if (!refcount_inc_not_zero(&rb->refcount))
6425 rb = NULL;
6426 }
6427 rcu_read_unlock();
6428
6429 return rb;
6430 }
6431
ring_buffer_put(struct perf_buffer * rb)6432 void ring_buffer_put(struct perf_buffer *rb)
6433 {
6434 if (!refcount_dec_and_test(&rb->refcount))
6435 return;
6436
6437 WARN_ON_ONCE(!list_empty(&rb->event_list));
6438
6439 call_rcu(&rb->rcu_head, rb_free_rcu);
6440 }
6441
perf_mmap_open(struct vm_area_struct * vma)6442 static void perf_mmap_open(struct vm_area_struct *vma)
6443 {
6444 struct perf_event *event = vma->vm_file->private_data;
6445
6446 atomic_inc(&event->mmap_count);
6447 atomic_inc(&event->rb->mmap_count);
6448
6449 if (vma->vm_pgoff)
6450 atomic_inc(&event->rb->aux_mmap_count);
6451
6452 if (event->pmu->event_mapped)
6453 event->pmu->event_mapped(event, vma->vm_mm);
6454 }
6455
6456 static void perf_pmu_output_stop(struct perf_event *event);
6457
6458 /*
6459 * A buffer can be mmap()ed multiple times; either directly through the same
6460 * event, or through other events by use of perf_event_set_output().
6461 *
6462 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6463 * the buffer here, where we still have a VM context. This means we need
6464 * to detach all events redirecting to us.
6465 */
perf_mmap_close(struct vm_area_struct * vma)6466 static void perf_mmap_close(struct vm_area_struct *vma)
6467 {
6468 struct perf_event *event = vma->vm_file->private_data;
6469 struct perf_buffer *rb = ring_buffer_get(event);
6470 struct user_struct *mmap_user = rb->mmap_user;
6471 int mmap_locked = rb->mmap_locked;
6472 unsigned long size = perf_data_size(rb);
6473 bool detach_rest = false;
6474
6475 if (event->pmu->event_unmapped)
6476 event->pmu->event_unmapped(event, vma->vm_mm);
6477
6478 /*
6479 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6480 * to avoid complications.
6481 */
6482 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6483 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6484 /*
6485 * Stop all AUX events that are writing to this buffer,
6486 * so that we can free its AUX pages and corresponding PMU
6487 * data. Note that after rb::aux_mmap_count dropped to zero,
6488 * they won't start any more (see perf_aux_output_begin()).
6489 */
6490 perf_pmu_output_stop(event);
6491
6492 /* now it's safe to free the pages */
6493 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6494 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6495
6496 /* this has to be the last one */
6497 rb_free_aux(rb);
6498 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6499
6500 mutex_unlock(&rb->aux_mutex);
6501 }
6502
6503 if (atomic_dec_and_test(&rb->mmap_count))
6504 detach_rest = true;
6505
6506 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6507 goto out_put;
6508
6509 ring_buffer_attach(event, NULL);
6510 mutex_unlock(&event->mmap_mutex);
6511
6512 /* If there's still other mmap()s of this buffer, we're done. */
6513 if (!detach_rest)
6514 goto out_put;
6515
6516 /*
6517 * No other mmap()s, detach from all other events that might redirect
6518 * into the now unreachable buffer. Somewhat complicated by the
6519 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6520 */
6521 again:
6522 rcu_read_lock();
6523 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6524 if (!atomic_long_inc_not_zero(&event->refcount)) {
6525 /*
6526 * This event is en-route to free_event() which will
6527 * detach it and remove it from the list.
6528 */
6529 continue;
6530 }
6531 rcu_read_unlock();
6532
6533 mutex_lock(&event->mmap_mutex);
6534 /*
6535 * Check we didn't race with perf_event_set_output() which can
6536 * swizzle the rb from under us while we were waiting to
6537 * acquire mmap_mutex.
6538 *
6539 * If we find a different rb; ignore this event, a next
6540 * iteration will no longer find it on the list. We have to
6541 * still restart the iteration to make sure we're not now
6542 * iterating the wrong list.
6543 */
6544 if (event->rb == rb)
6545 ring_buffer_attach(event, NULL);
6546
6547 mutex_unlock(&event->mmap_mutex);
6548 put_event(event);
6549
6550 /*
6551 * Restart the iteration; either we're on the wrong list or
6552 * destroyed its integrity by doing a deletion.
6553 */
6554 goto again;
6555 }
6556 rcu_read_unlock();
6557
6558 /*
6559 * It could be there's still a few 0-ref events on the list; they'll
6560 * get cleaned up by free_event() -- they'll also still have their
6561 * ref on the rb and will free it whenever they are done with it.
6562 *
6563 * Aside from that, this buffer is 'fully' detached and unmapped,
6564 * undo the VM accounting.
6565 */
6566
6567 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6568 &mmap_user->locked_vm);
6569 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6570 free_uid(mmap_user);
6571
6572 out_put:
6573 ring_buffer_put(rb); /* could be last */
6574 }
6575
6576 static const struct vm_operations_struct perf_mmap_vmops = {
6577 .open = perf_mmap_open,
6578 .close = perf_mmap_close, /* non mergeable */
6579 .fault = perf_mmap_fault,
6580 .page_mkwrite = perf_mmap_fault,
6581 };
6582
perf_mmap(struct file * file,struct vm_area_struct * vma)6583 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6584 {
6585 struct perf_event *event = file->private_data;
6586 unsigned long user_locked, user_lock_limit;
6587 struct user_struct *user = current_user();
6588 struct mutex *aux_mutex = NULL;
6589 struct perf_buffer *rb = NULL;
6590 unsigned long locked, lock_limit;
6591 unsigned long vma_size;
6592 unsigned long nr_pages;
6593 long user_extra = 0, extra = 0;
6594 int ret = 0, flags = 0;
6595
6596 /*
6597 * Don't allow mmap() of inherited per-task counters. This would
6598 * create a performance issue due to all children writing to the
6599 * same rb.
6600 */
6601 if (event->cpu == -1 && event->attr.inherit)
6602 return -EINVAL;
6603
6604 if (!(vma->vm_flags & VM_SHARED))
6605 return -EINVAL;
6606
6607 ret = security_perf_event_read(event);
6608 if (ret)
6609 return ret;
6610
6611 vma_size = vma->vm_end - vma->vm_start;
6612
6613 if (vma->vm_pgoff == 0) {
6614 nr_pages = (vma_size / PAGE_SIZE) - 1;
6615 } else {
6616 /*
6617 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6618 * mapped, all subsequent mappings should have the same size
6619 * and offset. Must be above the normal perf buffer.
6620 */
6621 u64 aux_offset, aux_size;
6622
6623 if (!event->rb)
6624 return -EINVAL;
6625
6626 nr_pages = vma_size / PAGE_SIZE;
6627 if (nr_pages > INT_MAX)
6628 return -ENOMEM;
6629
6630 mutex_lock(&event->mmap_mutex);
6631 ret = -EINVAL;
6632
6633 rb = event->rb;
6634 if (!rb)
6635 goto aux_unlock;
6636
6637 aux_mutex = &rb->aux_mutex;
6638 mutex_lock(aux_mutex);
6639
6640 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6641 aux_size = READ_ONCE(rb->user_page->aux_size);
6642
6643 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6644 goto aux_unlock;
6645
6646 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6647 goto aux_unlock;
6648
6649 /* already mapped with a different offset */
6650 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6651 goto aux_unlock;
6652
6653 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6654 goto aux_unlock;
6655
6656 /* already mapped with a different size */
6657 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6658 goto aux_unlock;
6659
6660 if (!is_power_of_2(nr_pages))
6661 goto aux_unlock;
6662
6663 if (!atomic_inc_not_zero(&rb->mmap_count))
6664 goto aux_unlock;
6665
6666 if (rb_has_aux(rb)) {
6667 atomic_inc(&rb->aux_mmap_count);
6668 ret = 0;
6669 goto unlock;
6670 }
6671
6672 atomic_set(&rb->aux_mmap_count, 1);
6673 user_extra = nr_pages;
6674
6675 goto accounting;
6676 }
6677
6678 /*
6679 * If we have rb pages ensure they're a power-of-two number, so we
6680 * can do bitmasks instead of modulo.
6681 */
6682 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6683 return -EINVAL;
6684
6685 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6686 return -EINVAL;
6687
6688 WARN_ON_ONCE(event->ctx->parent_ctx);
6689 again:
6690 mutex_lock(&event->mmap_mutex);
6691 if (event->rb) {
6692 if (data_page_nr(event->rb) != nr_pages) {
6693 ret = -EINVAL;
6694 goto unlock;
6695 }
6696
6697 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6698 /*
6699 * Raced against perf_mmap_close(); remove the
6700 * event and try again.
6701 */
6702 ring_buffer_attach(event, NULL);
6703 mutex_unlock(&event->mmap_mutex);
6704 goto again;
6705 }
6706
6707 goto unlock;
6708 }
6709
6710 user_extra = nr_pages + 1;
6711
6712 accounting:
6713 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6714
6715 /*
6716 * Increase the limit linearly with more CPUs:
6717 */
6718 user_lock_limit *= num_online_cpus();
6719
6720 user_locked = atomic_long_read(&user->locked_vm);
6721
6722 /*
6723 * sysctl_perf_event_mlock may have changed, so that
6724 * user->locked_vm > user_lock_limit
6725 */
6726 if (user_locked > user_lock_limit)
6727 user_locked = user_lock_limit;
6728 user_locked += user_extra;
6729
6730 if (user_locked > user_lock_limit) {
6731 /*
6732 * charge locked_vm until it hits user_lock_limit;
6733 * charge the rest from pinned_vm
6734 */
6735 extra = user_locked - user_lock_limit;
6736 user_extra -= extra;
6737 }
6738
6739 lock_limit = rlimit(RLIMIT_MEMLOCK);
6740 lock_limit >>= PAGE_SHIFT;
6741 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6742
6743 if ((locked > lock_limit) && perf_is_paranoid() &&
6744 !capable(CAP_IPC_LOCK)) {
6745 ret = -EPERM;
6746 goto unlock;
6747 }
6748
6749 WARN_ON(!rb && event->rb);
6750
6751 if (vma->vm_flags & VM_WRITE)
6752 flags |= RING_BUFFER_WRITABLE;
6753
6754 if (!rb) {
6755 rb = rb_alloc(nr_pages,
6756 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6757 event->cpu, flags);
6758
6759 if (!rb) {
6760 ret = -ENOMEM;
6761 goto unlock;
6762 }
6763
6764 atomic_set(&rb->mmap_count, 1);
6765 rb->mmap_user = get_current_user();
6766 rb->mmap_locked = extra;
6767
6768 ring_buffer_attach(event, rb);
6769
6770 perf_event_update_time(event);
6771 perf_event_init_userpage(event);
6772 perf_event_update_userpage(event);
6773 } else {
6774 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6775 event->attr.aux_watermark, flags);
6776 if (!ret)
6777 rb->aux_mmap_locked = extra;
6778 }
6779
6780 unlock:
6781 if (!ret) {
6782 atomic_long_add(user_extra, &user->locked_vm);
6783 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6784
6785 atomic_inc(&event->mmap_count);
6786 } else if (rb) {
6787 atomic_dec(&rb->mmap_count);
6788 }
6789 aux_unlock:
6790 if (aux_mutex)
6791 mutex_unlock(aux_mutex);
6792 mutex_unlock(&event->mmap_mutex);
6793
6794 /*
6795 * Since pinned accounting is per vm we cannot allow fork() to copy our
6796 * vma.
6797 */
6798 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6799 vma->vm_ops = &perf_mmap_vmops;
6800
6801 if (event->pmu->event_mapped)
6802 event->pmu->event_mapped(event, vma->vm_mm);
6803
6804 return ret;
6805 }
6806
perf_fasync(int fd,struct file * filp,int on)6807 static int perf_fasync(int fd, struct file *filp, int on)
6808 {
6809 struct inode *inode = file_inode(filp);
6810 struct perf_event *event = filp->private_data;
6811 int retval;
6812
6813 inode_lock(inode);
6814 retval = fasync_helper(fd, filp, on, &event->fasync);
6815 inode_unlock(inode);
6816
6817 if (retval < 0)
6818 return retval;
6819
6820 return 0;
6821 }
6822
6823 static const struct file_operations perf_fops = {
6824 .release = perf_release,
6825 .read = perf_read,
6826 .poll = perf_poll,
6827 .unlocked_ioctl = perf_ioctl,
6828 .compat_ioctl = perf_compat_ioctl,
6829 .mmap = perf_mmap,
6830 .fasync = perf_fasync,
6831 };
6832
6833 /*
6834 * Perf event wakeup
6835 *
6836 * If there's data, ensure we set the poll() state and publish everything
6837 * to user-space before waking everybody up.
6838 */
6839
perf_event_wakeup(struct perf_event * event)6840 void perf_event_wakeup(struct perf_event *event)
6841 {
6842 ring_buffer_wakeup(event);
6843
6844 if (event->pending_kill) {
6845 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6846 event->pending_kill = 0;
6847 }
6848 }
6849
perf_sigtrap(struct perf_event * event)6850 static void perf_sigtrap(struct perf_event *event)
6851 {
6852 /*
6853 * We'd expect this to only occur if the irq_work is delayed and either
6854 * ctx->task or current has changed in the meantime. This can be the
6855 * case on architectures that do not implement arch_irq_work_raise().
6856 */
6857 if (WARN_ON_ONCE(event->ctx->task != current))
6858 return;
6859
6860 /*
6861 * Both perf_pending_task() and perf_pending_irq() can race with the
6862 * task exiting.
6863 */
6864 if (current->flags & PF_EXITING)
6865 return;
6866
6867 send_sig_perf((void __user *)event->pending_addr,
6868 event->orig_type, event->attr.sig_data);
6869 }
6870
6871 /*
6872 * Deliver the pending work in-event-context or follow the context.
6873 */
__perf_pending_disable(struct perf_event * event)6874 static void __perf_pending_disable(struct perf_event *event)
6875 {
6876 int cpu = READ_ONCE(event->oncpu);
6877
6878 /*
6879 * If the event isn't running; we done. event_sched_out() will have
6880 * taken care of things.
6881 */
6882 if (cpu < 0)
6883 return;
6884
6885 /*
6886 * Yay, we hit home and are in the context of the event.
6887 */
6888 if (cpu == smp_processor_id()) {
6889 if (event->pending_disable) {
6890 event->pending_disable = 0;
6891 perf_event_disable_local(event);
6892 }
6893 return;
6894 }
6895
6896 /*
6897 * CPU-A CPU-B
6898 *
6899 * perf_event_disable_inatomic()
6900 * @pending_disable = CPU-A;
6901 * irq_work_queue();
6902 *
6903 * sched-out
6904 * @pending_disable = -1;
6905 *
6906 * sched-in
6907 * perf_event_disable_inatomic()
6908 * @pending_disable = CPU-B;
6909 * irq_work_queue(); // FAILS
6910 *
6911 * irq_work_run()
6912 * perf_pending_disable()
6913 *
6914 * But the event runs on CPU-B and wants disabling there.
6915 */
6916 irq_work_queue_on(&event->pending_disable_irq, cpu);
6917 }
6918
perf_pending_disable(struct irq_work * entry)6919 static void perf_pending_disable(struct irq_work *entry)
6920 {
6921 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6922 int rctx;
6923
6924 /*
6925 * If we 'fail' here, that's OK, it means recursion is already disabled
6926 * and we won't recurse 'further'.
6927 */
6928 rctx = perf_swevent_get_recursion_context();
6929 __perf_pending_disable(event);
6930 if (rctx >= 0)
6931 perf_swevent_put_recursion_context(rctx);
6932 }
6933
perf_pending_irq(struct irq_work * entry)6934 static void perf_pending_irq(struct irq_work *entry)
6935 {
6936 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6937 int rctx;
6938
6939 /*
6940 * If we 'fail' here, that's OK, it means recursion is already disabled
6941 * and we won't recurse 'further'.
6942 */
6943 rctx = perf_swevent_get_recursion_context();
6944
6945 /*
6946 * The wakeup isn't bound to the context of the event -- it can happen
6947 * irrespective of where the event is.
6948 */
6949 if (event->pending_wakeup) {
6950 event->pending_wakeup = 0;
6951 perf_event_wakeup(event);
6952 }
6953
6954 if (rctx >= 0)
6955 perf_swevent_put_recursion_context(rctx);
6956 }
6957
perf_pending_task(struct callback_head * head)6958 static void perf_pending_task(struct callback_head *head)
6959 {
6960 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6961 int rctx;
6962
6963 /*
6964 * All accesses to the event must belong to the same implicit RCU read-side
6965 * critical section as the ->pending_work reset. See comment in
6966 * perf_pending_task_sync().
6967 */
6968 rcu_read_lock();
6969 /*
6970 * If we 'fail' here, that's OK, it means recursion is already disabled
6971 * and we won't recurse 'further'.
6972 */
6973 rctx = perf_swevent_get_recursion_context();
6974
6975 if (event->pending_work) {
6976 event->pending_work = 0;
6977 perf_sigtrap(event);
6978 local_dec(&event->ctx->nr_no_switch_fast);
6979 rcuwait_wake_up(&event->pending_work_wait);
6980 }
6981 rcu_read_unlock();
6982
6983 if (rctx >= 0)
6984 perf_swevent_put_recursion_context(rctx);
6985 }
6986
6987 #ifdef CONFIG_GUEST_PERF_EVENTS
6988 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6989
6990 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6991 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6992 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6993
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6994 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6995 {
6996 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6997 return;
6998
6999 rcu_assign_pointer(perf_guest_cbs, cbs);
7000 static_call_update(__perf_guest_state, cbs->state);
7001 static_call_update(__perf_guest_get_ip, cbs->get_ip);
7002
7003 /* Implementing ->handle_intel_pt_intr is optional. */
7004 if (cbs->handle_intel_pt_intr)
7005 static_call_update(__perf_guest_handle_intel_pt_intr,
7006 cbs->handle_intel_pt_intr);
7007 }
7008 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7009
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7010 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7011 {
7012 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7013 return;
7014
7015 rcu_assign_pointer(perf_guest_cbs, NULL);
7016 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7017 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7018 static_call_update(__perf_guest_handle_intel_pt_intr,
7019 (void *)&__static_call_return0);
7020 synchronize_rcu();
7021 }
7022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7023 #endif
7024
7025 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7026 perf_output_sample_regs(struct perf_output_handle *handle,
7027 struct pt_regs *regs, u64 mask)
7028 {
7029 int bit;
7030 DECLARE_BITMAP(_mask, 64);
7031
7032 bitmap_from_u64(_mask, mask);
7033 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7034 u64 val;
7035
7036 val = perf_reg_value(regs, bit);
7037 perf_output_put(handle, val);
7038 }
7039 }
7040
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7041 static void perf_sample_regs_user(struct perf_regs *regs_user,
7042 struct pt_regs *regs)
7043 {
7044 if (user_mode(regs)) {
7045 regs_user->abi = perf_reg_abi(current);
7046 regs_user->regs = regs;
7047 } else if (!(current->flags & PF_KTHREAD)) {
7048 perf_get_regs_user(regs_user, regs);
7049 } else {
7050 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7051 regs_user->regs = NULL;
7052 }
7053 }
7054
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7055 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7056 struct pt_regs *regs)
7057 {
7058 regs_intr->regs = regs;
7059 regs_intr->abi = perf_reg_abi(current);
7060 }
7061
7062
7063 /*
7064 * Get remaining task size from user stack pointer.
7065 *
7066 * It'd be better to take stack vma map and limit this more
7067 * precisely, but there's no way to get it safely under interrupt,
7068 * so using TASK_SIZE as limit.
7069 */
perf_ustack_task_size(struct pt_regs * regs)7070 static u64 perf_ustack_task_size(struct pt_regs *regs)
7071 {
7072 unsigned long addr = perf_user_stack_pointer(regs);
7073
7074 if (!addr || addr >= TASK_SIZE)
7075 return 0;
7076
7077 return TASK_SIZE - addr;
7078 }
7079
7080 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7081 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7082 struct pt_regs *regs)
7083 {
7084 u64 task_size;
7085
7086 /* No regs, no stack pointer, no dump. */
7087 if (!regs)
7088 return 0;
7089
7090 /*
7091 * Check if we fit in with the requested stack size into the:
7092 * - TASK_SIZE
7093 * If we don't, we limit the size to the TASK_SIZE.
7094 *
7095 * - remaining sample size
7096 * If we don't, we customize the stack size to
7097 * fit in to the remaining sample size.
7098 */
7099
7100 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7101 stack_size = min(stack_size, (u16) task_size);
7102
7103 /* Current header size plus static size and dynamic size. */
7104 header_size += 2 * sizeof(u64);
7105
7106 /* Do we fit in with the current stack dump size? */
7107 if ((u16) (header_size + stack_size) < header_size) {
7108 /*
7109 * If we overflow the maximum size for the sample,
7110 * we customize the stack dump size to fit in.
7111 */
7112 stack_size = USHRT_MAX - header_size - sizeof(u64);
7113 stack_size = round_up(stack_size, sizeof(u64));
7114 }
7115
7116 return stack_size;
7117 }
7118
7119 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7120 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7121 struct pt_regs *regs)
7122 {
7123 /* Case of a kernel thread, nothing to dump */
7124 if (!regs) {
7125 u64 size = 0;
7126 perf_output_put(handle, size);
7127 } else {
7128 unsigned long sp;
7129 unsigned int rem;
7130 u64 dyn_size;
7131
7132 /*
7133 * We dump:
7134 * static size
7135 * - the size requested by user or the best one we can fit
7136 * in to the sample max size
7137 * data
7138 * - user stack dump data
7139 * dynamic size
7140 * - the actual dumped size
7141 */
7142
7143 /* Static size. */
7144 perf_output_put(handle, dump_size);
7145
7146 /* Data. */
7147 sp = perf_user_stack_pointer(regs);
7148 rem = __output_copy_user(handle, (void *) sp, dump_size);
7149 dyn_size = dump_size - rem;
7150
7151 perf_output_skip(handle, rem);
7152
7153 /* Dynamic size. */
7154 perf_output_put(handle, dyn_size);
7155 }
7156 }
7157
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7158 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7159 struct perf_sample_data *data,
7160 size_t size)
7161 {
7162 struct perf_event *sampler = event->aux_event;
7163 struct perf_buffer *rb;
7164
7165 data->aux_size = 0;
7166
7167 if (!sampler)
7168 goto out;
7169
7170 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7171 goto out;
7172
7173 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7174 goto out;
7175
7176 rb = ring_buffer_get(sampler);
7177 if (!rb)
7178 goto out;
7179
7180 /*
7181 * If this is an NMI hit inside sampling code, don't take
7182 * the sample. See also perf_aux_sample_output().
7183 */
7184 if (READ_ONCE(rb->aux_in_sampling)) {
7185 data->aux_size = 0;
7186 } else {
7187 size = min_t(size_t, size, perf_aux_size(rb));
7188 data->aux_size = ALIGN(size, sizeof(u64));
7189 }
7190 ring_buffer_put(rb);
7191
7192 out:
7193 return data->aux_size;
7194 }
7195
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7196 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7197 struct perf_event *event,
7198 struct perf_output_handle *handle,
7199 unsigned long size)
7200 {
7201 unsigned long flags;
7202 long ret;
7203
7204 /*
7205 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7206 * paths. If we start calling them in NMI context, they may race with
7207 * the IRQ ones, that is, for example, re-starting an event that's just
7208 * been stopped, which is why we're using a separate callback that
7209 * doesn't change the event state.
7210 *
7211 * IRQs need to be disabled to prevent IPIs from racing with us.
7212 */
7213 local_irq_save(flags);
7214 /*
7215 * Guard against NMI hits inside the critical section;
7216 * see also perf_prepare_sample_aux().
7217 */
7218 WRITE_ONCE(rb->aux_in_sampling, 1);
7219 barrier();
7220
7221 ret = event->pmu->snapshot_aux(event, handle, size);
7222
7223 barrier();
7224 WRITE_ONCE(rb->aux_in_sampling, 0);
7225 local_irq_restore(flags);
7226
7227 return ret;
7228 }
7229
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7230 static void perf_aux_sample_output(struct perf_event *event,
7231 struct perf_output_handle *handle,
7232 struct perf_sample_data *data)
7233 {
7234 struct perf_event *sampler = event->aux_event;
7235 struct perf_buffer *rb;
7236 unsigned long pad;
7237 long size;
7238
7239 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7240 return;
7241
7242 rb = ring_buffer_get(sampler);
7243 if (!rb)
7244 return;
7245
7246 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7247
7248 /*
7249 * An error here means that perf_output_copy() failed (returned a
7250 * non-zero surplus that it didn't copy), which in its current
7251 * enlightened implementation is not possible. If that changes, we'd
7252 * like to know.
7253 */
7254 if (WARN_ON_ONCE(size < 0))
7255 goto out_put;
7256
7257 /*
7258 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7259 * perf_prepare_sample_aux(), so should not be more than that.
7260 */
7261 pad = data->aux_size - size;
7262 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7263 pad = 8;
7264
7265 if (pad) {
7266 u64 zero = 0;
7267 perf_output_copy(handle, &zero, pad);
7268 }
7269
7270 out_put:
7271 ring_buffer_put(rb);
7272 }
7273
7274 /*
7275 * A set of common sample data types saved even for non-sample records
7276 * when event->attr.sample_id_all is set.
7277 */
7278 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7279 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7280 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7281
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7282 static void __perf_event_header__init_id(struct perf_sample_data *data,
7283 struct perf_event *event,
7284 u64 sample_type)
7285 {
7286 data->type = event->attr.sample_type;
7287 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7288
7289 if (sample_type & PERF_SAMPLE_TID) {
7290 /* namespace issues */
7291 data->tid_entry.pid = perf_event_pid(event, current);
7292 data->tid_entry.tid = perf_event_tid(event, current);
7293 }
7294
7295 if (sample_type & PERF_SAMPLE_TIME)
7296 data->time = perf_event_clock(event);
7297
7298 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7299 data->id = primary_event_id(event);
7300
7301 if (sample_type & PERF_SAMPLE_STREAM_ID)
7302 data->stream_id = event->id;
7303
7304 if (sample_type & PERF_SAMPLE_CPU) {
7305 data->cpu_entry.cpu = raw_smp_processor_id();
7306 data->cpu_entry.reserved = 0;
7307 }
7308 }
7309
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7310 void perf_event_header__init_id(struct perf_event_header *header,
7311 struct perf_sample_data *data,
7312 struct perf_event *event)
7313 {
7314 if (event->attr.sample_id_all) {
7315 header->size += event->id_header_size;
7316 __perf_event_header__init_id(data, event, event->attr.sample_type);
7317 }
7318 }
7319
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7320 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7321 struct perf_sample_data *data)
7322 {
7323 u64 sample_type = data->type;
7324
7325 if (sample_type & PERF_SAMPLE_TID)
7326 perf_output_put(handle, data->tid_entry);
7327
7328 if (sample_type & PERF_SAMPLE_TIME)
7329 perf_output_put(handle, data->time);
7330
7331 if (sample_type & PERF_SAMPLE_ID)
7332 perf_output_put(handle, data->id);
7333
7334 if (sample_type & PERF_SAMPLE_STREAM_ID)
7335 perf_output_put(handle, data->stream_id);
7336
7337 if (sample_type & PERF_SAMPLE_CPU)
7338 perf_output_put(handle, data->cpu_entry);
7339
7340 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7341 perf_output_put(handle, data->id);
7342 }
7343
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7344 void perf_event__output_id_sample(struct perf_event *event,
7345 struct perf_output_handle *handle,
7346 struct perf_sample_data *sample)
7347 {
7348 if (event->attr.sample_id_all)
7349 __perf_event__output_id_sample(handle, sample);
7350 }
7351
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7352 static void perf_output_read_one(struct perf_output_handle *handle,
7353 struct perf_event *event,
7354 u64 enabled, u64 running)
7355 {
7356 u64 read_format = event->attr.read_format;
7357 u64 values[5];
7358 int n = 0;
7359
7360 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7361 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7362 values[n++] = enabled +
7363 atomic64_read(&event->child_total_time_enabled);
7364 }
7365 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7366 values[n++] = running +
7367 atomic64_read(&event->child_total_time_running);
7368 }
7369 if (read_format & PERF_FORMAT_ID)
7370 values[n++] = primary_event_id(event);
7371 if (read_format & PERF_FORMAT_LOST)
7372 values[n++] = atomic64_read(&event->lost_samples);
7373
7374 __output_copy(handle, values, n * sizeof(u64));
7375 }
7376
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7377 static void perf_output_read_group(struct perf_output_handle *handle,
7378 struct perf_event *event,
7379 u64 enabled, u64 running)
7380 {
7381 struct perf_event *leader = event->group_leader, *sub;
7382 u64 read_format = event->attr.read_format;
7383 unsigned long flags;
7384 u64 values[6];
7385 int n = 0;
7386 bool self = has_inherit_and_sample_read(&event->attr);
7387
7388 /*
7389 * Disabling interrupts avoids all counter scheduling
7390 * (context switches, timer based rotation and IPIs).
7391 */
7392 local_irq_save(flags);
7393
7394 values[n++] = 1 + leader->nr_siblings;
7395
7396 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7397 values[n++] = enabled;
7398
7399 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7400 values[n++] = running;
7401
7402 if ((leader != event) &&
7403 (leader->state == PERF_EVENT_STATE_ACTIVE))
7404 leader->pmu->read(leader);
7405
7406 values[n++] = perf_event_count(leader, self);
7407 if (read_format & PERF_FORMAT_ID)
7408 values[n++] = primary_event_id(leader);
7409 if (read_format & PERF_FORMAT_LOST)
7410 values[n++] = atomic64_read(&leader->lost_samples);
7411
7412 __output_copy(handle, values, n * sizeof(u64));
7413
7414 for_each_sibling_event(sub, leader) {
7415 n = 0;
7416
7417 if ((sub != event) &&
7418 (sub->state == PERF_EVENT_STATE_ACTIVE))
7419 sub->pmu->read(sub);
7420
7421 values[n++] = perf_event_count(sub, self);
7422 if (read_format & PERF_FORMAT_ID)
7423 values[n++] = primary_event_id(sub);
7424 if (read_format & PERF_FORMAT_LOST)
7425 values[n++] = atomic64_read(&sub->lost_samples);
7426
7427 __output_copy(handle, values, n * sizeof(u64));
7428 }
7429
7430 local_irq_restore(flags);
7431 }
7432
7433 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7434 PERF_FORMAT_TOTAL_TIME_RUNNING)
7435
7436 /*
7437 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7438 *
7439 * The problem is that its both hard and excessively expensive to iterate the
7440 * child list, not to mention that its impossible to IPI the children running
7441 * on another CPU, from interrupt/NMI context.
7442 *
7443 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7444 * counts rather than attempting to accumulate some value across all children on
7445 * all cores.
7446 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7447 static void perf_output_read(struct perf_output_handle *handle,
7448 struct perf_event *event)
7449 {
7450 u64 enabled = 0, running = 0, now;
7451 u64 read_format = event->attr.read_format;
7452
7453 /*
7454 * compute total_time_enabled, total_time_running
7455 * based on snapshot values taken when the event
7456 * was last scheduled in.
7457 *
7458 * we cannot simply called update_context_time()
7459 * because of locking issue as we are called in
7460 * NMI context
7461 */
7462 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7463 calc_timer_values(event, &now, &enabled, &running);
7464
7465 if (event->attr.read_format & PERF_FORMAT_GROUP)
7466 perf_output_read_group(handle, event, enabled, running);
7467 else
7468 perf_output_read_one(handle, event, enabled, running);
7469 }
7470
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7471 void perf_output_sample(struct perf_output_handle *handle,
7472 struct perf_event_header *header,
7473 struct perf_sample_data *data,
7474 struct perf_event *event)
7475 {
7476 u64 sample_type = data->type;
7477
7478 perf_output_put(handle, *header);
7479
7480 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7481 perf_output_put(handle, data->id);
7482
7483 if (sample_type & PERF_SAMPLE_IP)
7484 perf_output_put(handle, data->ip);
7485
7486 if (sample_type & PERF_SAMPLE_TID)
7487 perf_output_put(handle, data->tid_entry);
7488
7489 if (sample_type & PERF_SAMPLE_TIME)
7490 perf_output_put(handle, data->time);
7491
7492 if (sample_type & PERF_SAMPLE_ADDR)
7493 perf_output_put(handle, data->addr);
7494
7495 if (sample_type & PERF_SAMPLE_ID)
7496 perf_output_put(handle, data->id);
7497
7498 if (sample_type & PERF_SAMPLE_STREAM_ID)
7499 perf_output_put(handle, data->stream_id);
7500
7501 if (sample_type & PERF_SAMPLE_CPU)
7502 perf_output_put(handle, data->cpu_entry);
7503
7504 if (sample_type & PERF_SAMPLE_PERIOD)
7505 perf_output_put(handle, data->period);
7506
7507 if (sample_type & PERF_SAMPLE_READ)
7508 perf_output_read(handle, event);
7509
7510 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7511 int size = 1;
7512
7513 size += data->callchain->nr;
7514 size *= sizeof(u64);
7515 __output_copy(handle, data->callchain, size);
7516 }
7517
7518 if (sample_type & PERF_SAMPLE_RAW) {
7519 struct perf_raw_record *raw = data->raw;
7520
7521 if (raw) {
7522 struct perf_raw_frag *frag = &raw->frag;
7523
7524 perf_output_put(handle, raw->size);
7525 do {
7526 if (frag->copy) {
7527 __output_custom(handle, frag->copy,
7528 frag->data, frag->size);
7529 } else {
7530 __output_copy(handle, frag->data,
7531 frag->size);
7532 }
7533 if (perf_raw_frag_last(frag))
7534 break;
7535 frag = frag->next;
7536 } while (1);
7537 if (frag->pad)
7538 __output_skip(handle, NULL, frag->pad);
7539 } else {
7540 struct {
7541 u32 size;
7542 u32 data;
7543 } raw = {
7544 .size = sizeof(u32),
7545 .data = 0,
7546 };
7547 perf_output_put(handle, raw);
7548 }
7549 }
7550
7551 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7552 if (data->br_stack) {
7553 size_t size;
7554
7555 size = data->br_stack->nr
7556 * sizeof(struct perf_branch_entry);
7557
7558 perf_output_put(handle, data->br_stack->nr);
7559 if (branch_sample_hw_index(event))
7560 perf_output_put(handle, data->br_stack->hw_idx);
7561 perf_output_copy(handle, data->br_stack->entries, size);
7562 /*
7563 * Add the extension space which is appended
7564 * right after the struct perf_branch_stack.
7565 */
7566 if (data->br_stack_cntr) {
7567 size = data->br_stack->nr * sizeof(u64);
7568 perf_output_copy(handle, data->br_stack_cntr, size);
7569 }
7570 } else {
7571 /*
7572 * we always store at least the value of nr
7573 */
7574 u64 nr = 0;
7575 perf_output_put(handle, nr);
7576 }
7577 }
7578
7579 if (sample_type & PERF_SAMPLE_REGS_USER) {
7580 u64 abi = data->regs_user.abi;
7581
7582 /*
7583 * If there are no regs to dump, notice it through
7584 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7585 */
7586 perf_output_put(handle, abi);
7587
7588 if (abi) {
7589 u64 mask = event->attr.sample_regs_user;
7590 perf_output_sample_regs(handle,
7591 data->regs_user.regs,
7592 mask);
7593 }
7594 }
7595
7596 if (sample_type & PERF_SAMPLE_STACK_USER) {
7597 perf_output_sample_ustack(handle,
7598 data->stack_user_size,
7599 data->regs_user.regs);
7600 }
7601
7602 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7603 perf_output_put(handle, data->weight.full);
7604
7605 if (sample_type & PERF_SAMPLE_DATA_SRC)
7606 perf_output_put(handle, data->data_src.val);
7607
7608 if (sample_type & PERF_SAMPLE_TRANSACTION)
7609 perf_output_put(handle, data->txn);
7610
7611 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7612 u64 abi = data->regs_intr.abi;
7613 /*
7614 * If there are no regs to dump, notice it through
7615 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7616 */
7617 perf_output_put(handle, abi);
7618
7619 if (abi) {
7620 u64 mask = event->attr.sample_regs_intr;
7621
7622 perf_output_sample_regs(handle,
7623 data->regs_intr.regs,
7624 mask);
7625 }
7626 }
7627
7628 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7629 perf_output_put(handle, data->phys_addr);
7630
7631 if (sample_type & PERF_SAMPLE_CGROUP)
7632 perf_output_put(handle, data->cgroup);
7633
7634 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7635 perf_output_put(handle, data->data_page_size);
7636
7637 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7638 perf_output_put(handle, data->code_page_size);
7639
7640 if (sample_type & PERF_SAMPLE_AUX) {
7641 perf_output_put(handle, data->aux_size);
7642
7643 if (data->aux_size)
7644 perf_aux_sample_output(event, handle, data);
7645 }
7646
7647 if (!event->attr.watermark) {
7648 int wakeup_events = event->attr.wakeup_events;
7649
7650 if (wakeup_events) {
7651 struct perf_buffer *rb = handle->rb;
7652 int events = local_inc_return(&rb->events);
7653
7654 if (events >= wakeup_events) {
7655 local_sub(wakeup_events, &rb->events);
7656 local_inc(&rb->wakeup);
7657 }
7658 }
7659 }
7660 }
7661
perf_virt_to_phys(u64 virt)7662 static u64 perf_virt_to_phys(u64 virt)
7663 {
7664 u64 phys_addr = 0;
7665
7666 if (!virt)
7667 return 0;
7668
7669 if (virt >= TASK_SIZE) {
7670 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7671 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7672 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7673 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7674 } else {
7675 /*
7676 * Walking the pages tables for user address.
7677 * Interrupts are disabled, so it prevents any tear down
7678 * of the page tables.
7679 * Try IRQ-safe get_user_page_fast_only first.
7680 * If failed, leave phys_addr as 0.
7681 */
7682 if (current->mm != NULL) {
7683 struct page *p;
7684
7685 pagefault_disable();
7686 if (get_user_page_fast_only(virt, 0, &p)) {
7687 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7688 put_page(p);
7689 }
7690 pagefault_enable();
7691 }
7692 }
7693
7694 return phys_addr;
7695 }
7696
7697 /*
7698 * Return the pagetable size of a given virtual address.
7699 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7700 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7701 {
7702 u64 size = 0;
7703
7704 #ifdef CONFIG_HAVE_GUP_FAST
7705 pgd_t *pgdp, pgd;
7706 p4d_t *p4dp, p4d;
7707 pud_t *pudp, pud;
7708 pmd_t *pmdp, pmd;
7709 pte_t *ptep, pte;
7710
7711 pgdp = pgd_offset(mm, addr);
7712 pgd = READ_ONCE(*pgdp);
7713 if (pgd_none(pgd))
7714 return 0;
7715
7716 if (pgd_leaf(pgd))
7717 return pgd_leaf_size(pgd);
7718
7719 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7720 p4d = READ_ONCE(*p4dp);
7721 if (!p4d_present(p4d))
7722 return 0;
7723
7724 if (p4d_leaf(p4d))
7725 return p4d_leaf_size(p4d);
7726
7727 pudp = pud_offset_lockless(p4dp, p4d, addr);
7728 pud = READ_ONCE(*pudp);
7729 if (!pud_present(pud))
7730 return 0;
7731
7732 if (pud_leaf(pud))
7733 return pud_leaf_size(pud);
7734
7735 pmdp = pmd_offset_lockless(pudp, pud, addr);
7736 again:
7737 pmd = pmdp_get_lockless(pmdp);
7738 if (!pmd_present(pmd))
7739 return 0;
7740
7741 if (pmd_leaf(pmd))
7742 return pmd_leaf_size(pmd);
7743
7744 ptep = pte_offset_map(&pmd, addr);
7745 if (!ptep)
7746 goto again;
7747
7748 pte = ptep_get_lockless(ptep);
7749 if (pte_present(pte))
7750 size = __pte_leaf_size(pmd, pte);
7751 pte_unmap(ptep);
7752 #endif /* CONFIG_HAVE_GUP_FAST */
7753
7754 return size;
7755 }
7756
perf_get_page_size(unsigned long addr)7757 static u64 perf_get_page_size(unsigned long addr)
7758 {
7759 struct mm_struct *mm;
7760 unsigned long flags;
7761 u64 size;
7762
7763 if (!addr)
7764 return 0;
7765
7766 /*
7767 * Software page-table walkers must disable IRQs,
7768 * which prevents any tear down of the page tables.
7769 */
7770 local_irq_save(flags);
7771
7772 mm = current->mm;
7773 if (!mm) {
7774 /*
7775 * For kernel threads and the like, use init_mm so that
7776 * we can find kernel memory.
7777 */
7778 mm = &init_mm;
7779 }
7780
7781 size = perf_get_pgtable_size(mm, addr);
7782
7783 local_irq_restore(flags);
7784
7785 return size;
7786 }
7787
7788 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7789
7790 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7791 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7792 {
7793 bool kernel = !event->attr.exclude_callchain_kernel;
7794 bool user = !event->attr.exclude_callchain_user;
7795 /* Disallow cross-task user callchains. */
7796 bool crosstask = event->ctx->task && event->ctx->task != current;
7797 const u32 max_stack = event->attr.sample_max_stack;
7798 struct perf_callchain_entry *callchain;
7799
7800 if (!kernel && !user)
7801 return &__empty_callchain;
7802
7803 callchain = get_perf_callchain(regs, 0, kernel, user,
7804 max_stack, crosstask, true);
7805 return callchain ?: &__empty_callchain;
7806 }
7807
__cond_set(u64 flags,u64 s,u64 d)7808 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7809 {
7810 return d * !!(flags & s);
7811 }
7812
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7813 void perf_prepare_sample(struct perf_sample_data *data,
7814 struct perf_event *event,
7815 struct pt_regs *regs)
7816 {
7817 u64 sample_type = event->attr.sample_type;
7818 u64 filtered_sample_type;
7819
7820 /*
7821 * Add the sample flags that are dependent to others. And clear the
7822 * sample flags that have already been done by the PMU driver.
7823 */
7824 filtered_sample_type = sample_type;
7825 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7826 PERF_SAMPLE_IP);
7827 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7828 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7829 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7830 PERF_SAMPLE_REGS_USER);
7831 filtered_sample_type &= ~data->sample_flags;
7832
7833 if (filtered_sample_type == 0) {
7834 /* Make sure it has the correct data->type for output */
7835 data->type = event->attr.sample_type;
7836 return;
7837 }
7838
7839 __perf_event_header__init_id(data, event, filtered_sample_type);
7840
7841 if (filtered_sample_type & PERF_SAMPLE_IP) {
7842 data->ip = perf_instruction_pointer(regs);
7843 data->sample_flags |= PERF_SAMPLE_IP;
7844 }
7845
7846 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7847 perf_sample_save_callchain(data, event, regs);
7848
7849 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7850 data->raw = NULL;
7851 data->dyn_size += sizeof(u64);
7852 data->sample_flags |= PERF_SAMPLE_RAW;
7853 }
7854
7855 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7856 data->br_stack = NULL;
7857 data->dyn_size += sizeof(u64);
7858 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7859 }
7860
7861 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7862 perf_sample_regs_user(&data->regs_user, regs);
7863
7864 /*
7865 * It cannot use the filtered_sample_type here as REGS_USER can be set
7866 * by STACK_USER (using __cond_set() above) and we don't want to update
7867 * the dyn_size if it's not requested by users.
7868 */
7869 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7870 /* regs dump ABI info */
7871 int size = sizeof(u64);
7872
7873 if (data->regs_user.regs) {
7874 u64 mask = event->attr.sample_regs_user;
7875 size += hweight64(mask) * sizeof(u64);
7876 }
7877
7878 data->dyn_size += size;
7879 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7880 }
7881
7882 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7883 /*
7884 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7885 * processed as the last one or have additional check added
7886 * in case new sample type is added, because we could eat
7887 * up the rest of the sample size.
7888 */
7889 u16 stack_size = event->attr.sample_stack_user;
7890 u16 header_size = perf_sample_data_size(data, event);
7891 u16 size = sizeof(u64);
7892
7893 stack_size = perf_sample_ustack_size(stack_size, header_size,
7894 data->regs_user.regs);
7895
7896 /*
7897 * If there is something to dump, add space for the dump
7898 * itself and for the field that tells the dynamic size,
7899 * which is how many have been actually dumped.
7900 */
7901 if (stack_size)
7902 size += sizeof(u64) + stack_size;
7903
7904 data->stack_user_size = stack_size;
7905 data->dyn_size += size;
7906 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7907 }
7908
7909 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7910 data->weight.full = 0;
7911 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7912 }
7913
7914 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7915 data->data_src.val = PERF_MEM_NA;
7916 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7917 }
7918
7919 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7920 data->txn = 0;
7921 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7922 }
7923
7924 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7925 data->addr = 0;
7926 data->sample_flags |= PERF_SAMPLE_ADDR;
7927 }
7928
7929 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7930 /* regs dump ABI info */
7931 int size = sizeof(u64);
7932
7933 perf_sample_regs_intr(&data->regs_intr, regs);
7934
7935 if (data->regs_intr.regs) {
7936 u64 mask = event->attr.sample_regs_intr;
7937
7938 size += hweight64(mask) * sizeof(u64);
7939 }
7940
7941 data->dyn_size += size;
7942 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7943 }
7944
7945 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7946 data->phys_addr = perf_virt_to_phys(data->addr);
7947 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7948 }
7949
7950 #ifdef CONFIG_CGROUP_PERF
7951 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7952 struct cgroup *cgrp;
7953
7954 /* protected by RCU */
7955 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7956 data->cgroup = cgroup_id(cgrp);
7957 data->sample_flags |= PERF_SAMPLE_CGROUP;
7958 }
7959 #endif
7960
7961 /*
7962 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7963 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7964 * but the value will not dump to the userspace.
7965 */
7966 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7967 data->data_page_size = perf_get_page_size(data->addr);
7968 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7969 }
7970
7971 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7972 data->code_page_size = perf_get_page_size(data->ip);
7973 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7974 }
7975
7976 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7977 u64 size;
7978 u16 header_size = perf_sample_data_size(data, event);
7979
7980 header_size += sizeof(u64); /* size */
7981
7982 /*
7983 * Given the 16bit nature of header::size, an AUX sample can
7984 * easily overflow it, what with all the preceding sample bits.
7985 * Make sure this doesn't happen by using up to U16_MAX bytes
7986 * per sample in total (rounded down to 8 byte boundary).
7987 */
7988 size = min_t(size_t, U16_MAX - header_size,
7989 event->attr.aux_sample_size);
7990 size = rounddown(size, 8);
7991 size = perf_prepare_sample_aux(event, data, size);
7992
7993 WARN_ON_ONCE(size + header_size > U16_MAX);
7994 data->dyn_size += size + sizeof(u64); /* size above */
7995 data->sample_flags |= PERF_SAMPLE_AUX;
7996 }
7997 }
7998
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7999 void perf_prepare_header(struct perf_event_header *header,
8000 struct perf_sample_data *data,
8001 struct perf_event *event,
8002 struct pt_regs *regs)
8003 {
8004 header->type = PERF_RECORD_SAMPLE;
8005 header->size = perf_sample_data_size(data, event);
8006 header->misc = perf_misc_flags(regs);
8007
8008 /*
8009 * If you're adding more sample types here, you likely need to do
8010 * something about the overflowing header::size, like repurpose the
8011 * lowest 3 bits of size, which should be always zero at the moment.
8012 * This raises a more important question, do we really need 512k sized
8013 * samples and why, so good argumentation is in order for whatever you
8014 * do here next.
8015 */
8016 WARN_ON_ONCE(header->size & 7);
8017 }
8018
8019 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8020 __perf_event_output(struct perf_event *event,
8021 struct perf_sample_data *data,
8022 struct pt_regs *regs,
8023 int (*output_begin)(struct perf_output_handle *,
8024 struct perf_sample_data *,
8025 struct perf_event *,
8026 unsigned int))
8027 {
8028 struct perf_output_handle handle;
8029 struct perf_event_header header;
8030 int err;
8031
8032 /* protect the callchain buffers */
8033 rcu_read_lock();
8034
8035 perf_prepare_sample(data, event, regs);
8036 perf_prepare_header(&header, data, event, regs);
8037
8038 err = output_begin(&handle, data, event, header.size);
8039 if (err)
8040 goto exit;
8041
8042 perf_output_sample(&handle, &header, data, event);
8043
8044 perf_output_end(&handle);
8045
8046 exit:
8047 rcu_read_unlock();
8048 return err;
8049 }
8050
8051 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8052 perf_event_output_forward(struct perf_event *event,
8053 struct perf_sample_data *data,
8054 struct pt_regs *regs)
8055 {
8056 __perf_event_output(event, data, regs, perf_output_begin_forward);
8057 }
8058
8059 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8060 perf_event_output_backward(struct perf_event *event,
8061 struct perf_sample_data *data,
8062 struct pt_regs *regs)
8063 {
8064 __perf_event_output(event, data, regs, perf_output_begin_backward);
8065 }
8066
8067 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8068 perf_event_output(struct perf_event *event,
8069 struct perf_sample_data *data,
8070 struct pt_regs *regs)
8071 {
8072 return __perf_event_output(event, data, regs, perf_output_begin);
8073 }
8074
8075 /*
8076 * read event_id
8077 */
8078
8079 struct perf_read_event {
8080 struct perf_event_header header;
8081
8082 u32 pid;
8083 u32 tid;
8084 };
8085
8086 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8087 perf_event_read_event(struct perf_event *event,
8088 struct task_struct *task)
8089 {
8090 struct perf_output_handle handle;
8091 struct perf_sample_data sample;
8092 struct perf_read_event read_event = {
8093 .header = {
8094 .type = PERF_RECORD_READ,
8095 .misc = 0,
8096 .size = sizeof(read_event) + event->read_size,
8097 },
8098 .pid = perf_event_pid(event, task),
8099 .tid = perf_event_tid(event, task),
8100 };
8101 int ret;
8102
8103 perf_event_header__init_id(&read_event.header, &sample, event);
8104 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8105 if (ret)
8106 return;
8107
8108 perf_output_put(&handle, read_event);
8109 perf_output_read(&handle, event);
8110 perf_event__output_id_sample(event, &handle, &sample);
8111
8112 perf_output_end(&handle);
8113 }
8114
8115 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8116
8117 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8118 perf_iterate_ctx(struct perf_event_context *ctx,
8119 perf_iterate_f output,
8120 void *data, bool all)
8121 {
8122 struct perf_event *event;
8123
8124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8125 if (!all) {
8126 if (event->state < PERF_EVENT_STATE_INACTIVE)
8127 continue;
8128 if (!event_filter_match(event))
8129 continue;
8130 }
8131
8132 output(event, data);
8133 }
8134 }
8135
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8136 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8137 {
8138 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8139 struct perf_event *event;
8140
8141 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8142 /*
8143 * Skip events that are not fully formed yet; ensure that
8144 * if we observe event->ctx, both event and ctx will be
8145 * complete enough. See perf_install_in_context().
8146 */
8147 if (!smp_load_acquire(&event->ctx))
8148 continue;
8149
8150 if (event->state < PERF_EVENT_STATE_INACTIVE)
8151 continue;
8152 if (!event_filter_match(event))
8153 continue;
8154 output(event, data);
8155 }
8156 }
8157
8158 /*
8159 * Iterate all events that need to receive side-band events.
8160 *
8161 * For new callers; ensure that account_pmu_sb_event() includes
8162 * your event, otherwise it might not get delivered.
8163 */
8164 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8165 perf_iterate_sb(perf_iterate_f output, void *data,
8166 struct perf_event_context *task_ctx)
8167 {
8168 struct perf_event_context *ctx;
8169
8170 rcu_read_lock();
8171 preempt_disable();
8172
8173 /*
8174 * If we have task_ctx != NULL we only notify the task context itself.
8175 * The task_ctx is set only for EXIT events before releasing task
8176 * context.
8177 */
8178 if (task_ctx) {
8179 perf_iterate_ctx(task_ctx, output, data, false);
8180 goto done;
8181 }
8182
8183 perf_iterate_sb_cpu(output, data);
8184
8185 ctx = rcu_dereference(current->perf_event_ctxp);
8186 if (ctx)
8187 perf_iterate_ctx(ctx, output, data, false);
8188 done:
8189 preempt_enable();
8190 rcu_read_unlock();
8191 }
8192
8193 /*
8194 * Clear all file-based filters at exec, they'll have to be
8195 * re-instated when/if these objects are mmapped again.
8196 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8197 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8198 {
8199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8200 struct perf_addr_filter *filter;
8201 unsigned int restart = 0, count = 0;
8202 unsigned long flags;
8203
8204 if (!has_addr_filter(event))
8205 return;
8206
8207 raw_spin_lock_irqsave(&ifh->lock, flags);
8208 list_for_each_entry(filter, &ifh->list, entry) {
8209 if (filter->path.dentry) {
8210 event->addr_filter_ranges[count].start = 0;
8211 event->addr_filter_ranges[count].size = 0;
8212 restart++;
8213 }
8214
8215 count++;
8216 }
8217
8218 if (restart)
8219 event->addr_filters_gen++;
8220 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8221
8222 if (restart)
8223 perf_event_stop(event, 1);
8224 }
8225
perf_event_exec(void)8226 void perf_event_exec(void)
8227 {
8228 struct perf_event_context *ctx;
8229
8230 ctx = perf_pin_task_context(current);
8231 if (!ctx)
8232 return;
8233
8234 perf_event_enable_on_exec(ctx);
8235 perf_event_remove_on_exec(ctx);
8236 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8237
8238 perf_unpin_context(ctx);
8239 put_ctx(ctx);
8240 }
8241
8242 struct remote_output {
8243 struct perf_buffer *rb;
8244 int err;
8245 };
8246
__perf_event_output_stop(struct perf_event * event,void * data)8247 static void __perf_event_output_stop(struct perf_event *event, void *data)
8248 {
8249 struct perf_event *parent = event->parent;
8250 struct remote_output *ro = data;
8251 struct perf_buffer *rb = ro->rb;
8252 struct stop_event_data sd = {
8253 .event = event,
8254 };
8255
8256 if (!has_aux(event))
8257 return;
8258
8259 if (!parent)
8260 parent = event;
8261
8262 /*
8263 * In case of inheritance, it will be the parent that links to the
8264 * ring-buffer, but it will be the child that's actually using it.
8265 *
8266 * We are using event::rb to determine if the event should be stopped,
8267 * however this may race with ring_buffer_attach() (through set_output),
8268 * which will make us skip the event that actually needs to be stopped.
8269 * So ring_buffer_attach() has to stop an aux event before re-assigning
8270 * its rb pointer.
8271 */
8272 if (rcu_dereference(parent->rb) == rb)
8273 ro->err = __perf_event_stop(&sd);
8274 }
8275
__perf_pmu_output_stop(void * info)8276 static int __perf_pmu_output_stop(void *info)
8277 {
8278 struct perf_event *event = info;
8279 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8280 struct remote_output ro = {
8281 .rb = event->rb,
8282 };
8283
8284 rcu_read_lock();
8285 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8286 if (cpuctx->task_ctx)
8287 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8288 &ro, false);
8289 rcu_read_unlock();
8290
8291 return ro.err;
8292 }
8293
perf_pmu_output_stop(struct perf_event * event)8294 static void perf_pmu_output_stop(struct perf_event *event)
8295 {
8296 struct perf_event *iter;
8297 int err, cpu;
8298
8299 restart:
8300 rcu_read_lock();
8301 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8302 /*
8303 * For per-CPU events, we need to make sure that neither they
8304 * nor their children are running; for cpu==-1 events it's
8305 * sufficient to stop the event itself if it's active, since
8306 * it can't have children.
8307 */
8308 cpu = iter->cpu;
8309 if (cpu == -1)
8310 cpu = READ_ONCE(iter->oncpu);
8311
8312 if (cpu == -1)
8313 continue;
8314
8315 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8316 if (err == -EAGAIN) {
8317 rcu_read_unlock();
8318 goto restart;
8319 }
8320 }
8321 rcu_read_unlock();
8322 }
8323
8324 /*
8325 * task tracking -- fork/exit
8326 *
8327 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8328 */
8329
8330 struct perf_task_event {
8331 struct task_struct *task;
8332 struct perf_event_context *task_ctx;
8333
8334 struct {
8335 struct perf_event_header header;
8336
8337 u32 pid;
8338 u32 ppid;
8339 u32 tid;
8340 u32 ptid;
8341 u64 time;
8342 } event_id;
8343 };
8344
perf_event_task_match(struct perf_event * event)8345 static int perf_event_task_match(struct perf_event *event)
8346 {
8347 return event->attr.comm || event->attr.mmap ||
8348 event->attr.mmap2 || event->attr.mmap_data ||
8349 event->attr.task;
8350 }
8351
perf_event_task_output(struct perf_event * event,void * data)8352 static void perf_event_task_output(struct perf_event *event,
8353 void *data)
8354 {
8355 struct perf_task_event *task_event = data;
8356 struct perf_output_handle handle;
8357 struct perf_sample_data sample;
8358 struct task_struct *task = task_event->task;
8359 int ret, size = task_event->event_id.header.size;
8360
8361 if (!perf_event_task_match(event))
8362 return;
8363
8364 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8365
8366 ret = perf_output_begin(&handle, &sample, event,
8367 task_event->event_id.header.size);
8368 if (ret)
8369 goto out;
8370
8371 task_event->event_id.pid = perf_event_pid(event, task);
8372 task_event->event_id.tid = perf_event_tid(event, task);
8373
8374 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8375 task_event->event_id.ppid = perf_event_pid(event,
8376 task->real_parent);
8377 task_event->event_id.ptid = perf_event_pid(event,
8378 task->real_parent);
8379 } else { /* PERF_RECORD_FORK */
8380 task_event->event_id.ppid = perf_event_pid(event, current);
8381 task_event->event_id.ptid = perf_event_tid(event, current);
8382 }
8383
8384 task_event->event_id.time = perf_event_clock(event);
8385
8386 perf_output_put(&handle, task_event->event_id);
8387
8388 perf_event__output_id_sample(event, &handle, &sample);
8389
8390 perf_output_end(&handle);
8391 out:
8392 task_event->event_id.header.size = size;
8393 }
8394
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8395 static void perf_event_task(struct task_struct *task,
8396 struct perf_event_context *task_ctx,
8397 int new)
8398 {
8399 struct perf_task_event task_event;
8400
8401 if (!atomic_read(&nr_comm_events) &&
8402 !atomic_read(&nr_mmap_events) &&
8403 !atomic_read(&nr_task_events))
8404 return;
8405
8406 task_event = (struct perf_task_event){
8407 .task = task,
8408 .task_ctx = task_ctx,
8409 .event_id = {
8410 .header = {
8411 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8412 .misc = 0,
8413 .size = sizeof(task_event.event_id),
8414 },
8415 /* .pid */
8416 /* .ppid */
8417 /* .tid */
8418 /* .ptid */
8419 /* .time */
8420 },
8421 };
8422
8423 perf_iterate_sb(perf_event_task_output,
8424 &task_event,
8425 task_ctx);
8426 }
8427
perf_event_fork(struct task_struct * task)8428 void perf_event_fork(struct task_struct *task)
8429 {
8430 perf_event_task(task, NULL, 1);
8431 perf_event_namespaces(task);
8432 }
8433
8434 /*
8435 * comm tracking
8436 */
8437
8438 struct perf_comm_event {
8439 struct task_struct *task;
8440 char *comm;
8441 int comm_size;
8442
8443 struct {
8444 struct perf_event_header header;
8445
8446 u32 pid;
8447 u32 tid;
8448 } event_id;
8449 };
8450
perf_event_comm_match(struct perf_event * event)8451 static int perf_event_comm_match(struct perf_event *event)
8452 {
8453 return event->attr.comm;
8454 }
8455
perf_event_comm_output(struct perf_event * event,void * data)8456 static void perf_event_comm_output(struct perf_event *event,
8457 void *data)
8458 {
8459 struct perf_comm_event *comm_event = data;
8460 struct perf_output_handle handle;
8461 struct perf_sample_data sample;
8462 int size = comm_event->event_id.header.size;
8463 int ret;
8464
8465 if (!perf_event_comm_match(event))
8466 return;
8467
8468 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8469 ret = perf_output_begin(&handle, &sample, event,
8470 comm_event->event_id.header.size);
8471
8472 if (ret)
8473 goto out;
8474
8475 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8476 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8477
8478 perf_output_put(&handle, comm_event->event_id);
8479 __output_copy(&handle, comm_event->comm,
8480 comm_event->comm_size);
8481
8482 perf_event__output_id_sample(event, &handle, &sample);
8483
8484 perf_output_end(&handle);
8485 out:
8486 comm_event->event_id.header.size = size;
8487 }
8488
perf_event_comm_event(struct perf_comm_event * comm_event)8489 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8490 {
8491 char comm[TASK_COMM_LEN];
8492 unsigned int size;
8493
8494 memset(comm, 0, sizeof(comm));
8495 strscpy(comm, comm_event->task->comm, sizeof(comm));
8496 size = ALIGN(strlen(comm)+1, sizeof(u64));
8497
8498 comm_event->comm = comm;
8499 comm_event->comm_size = size;
8500
8501 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8502
8503 perf_iterate_sb(perf_event_comm_output,
8504 comm_event,
8505 NULL);
8506 }
8507
perf_event_comm(struct task_struct * task,bool exec)8508 void perf_event_comm(struct task_struct *task, bool exec)
8509 {
8510 struct perf_comm_event comm_event;
8511
8512 if (!atomic_read(&nr_comm_events))
8513 return;
8514
8515 comm_event = (struct perf_comm_event){
8516 .task = task,
8517 /* .comm */
8518 /* .comm_size */
8519 .event_id = {
8520 .header = {
8521 .type = PERF_RECORD_COMM,
8522 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8523 /* .size */
8524 },
8525 /* .pid */
8526 /* .tid */
8527 },
8528 };
8529
8530 perf_event_comm_event(&comm_event);
8531 }
8532
8533 /*
8534 * namespaces tracking
8535 */
8536
8537 struct perf_namespaces_event {
8538 struct task_struct *task;
8539
8540 struct {
8541 struct perf_event_header header;
8542
8543 u32 pid;
8544 u32 tid;
8545 u64 nr_namespaces;
8546 struct perf_ns_link_info link_info[NR_NAMESPACES];
8547 } event_id;
8548 };
8549
perf_event_namespaces_match(struct perf_event * event)8550 static int perf_event_namespaces_match(struct perf_event *event)
8551 {
8552 return event->attr.namespaces;
8553 }
8554
perf_event_namespaces_output(struct perf_event * event,void * data)8555 static void perf_event_namespaces_output(struct perf_event *event,
8556 void *data)
8557 {
8558 struct perf_namespaces_event *namespaces_event = data;
8559 struct perf_output_handle handle;
8560 struct perf_sample_data sample;
8561 u16 header_size = namespaces_event->event_id.header.size;
8562 int ret;
8563
8564 if (!perf_event_namespaces_match(event))
8565 return;
8566
8567 perf_event_header__init_id(&namespaces_event->event_id.header,
8568 &sample, event);
8569 ret = perf_output_begin(&handle, &sample, event,
8570 namespaces_event->event_id.header.size);
8571 if (ret)
8572 goto out;
8573
8574 namespaces_event->event_id.pid = perf_event_pid(event,
8575 namespaces_event->task);
8576 namespaces_event->event_id.tid = perf_event_tid(event,
8577 namespaces_event->task);
8578
8579 perf_output_put(&handle, namespaces_event->event_id);
8580
8581 perf_event__output_id_sample(event, &handle, &sample);
8582
8583 perf_output_end(&handle);
8584 out:
8585 namespaces_event->event_id.header.size = header_size;
8586 }
8587
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8588 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8589 struct task_struct *task,
8590 const struct proc_ns_operations *ns_ops)
8591 {
8592 struct path ns_path;
8593 struct inode *ns_inode;
8594 int error;
8595
8596 error = ns_get_path(&ns_path, task, ns_ops);
8597 if (!error) {
8598 ns_inode = ns_path.dentry->d_inode;
8599 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8600 ns_link_info->ino = ns_inode->i_ino;
8601 path_put(&ns_path);
8602 }
8603 }
8604
perf_event_namespaces(struct task_struct * task)8605 void perf_event_namespaces(struct task_struct *task)
8606 {
8607 struct perf_namespaces_event namespaces_event;
8608 struct perf_ns_link_info *ns_link_info;
8609
8610 if (!atomic_read(&nr_namespaces_events))
8611 return;
8612
8613 namespaces_event = (struct perf_namespaces_event){
8614 .task = task,
8615 .event_id = {
8616 .header = {
8617 .type = PERF_RECORD_NAMESPACES,
8618 .misc = 0,
8619 .size = sizeof(namespaces_event.event_id),
8620 },
8621 /* .pid */
8622 /* .tid */
8623 .nr_namespaces = NR_NAMESPACES,
8624 /* .link_info[NR_NAMESPACES] */
8625 },
8626 };
8627
8628 ns_link_info = namespaces_event.event_id.link_info;
8629
8630 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8631 task, &mntns_operations);
8632
8633 #ifdef CONFIG_USER_NS
8634 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8635 task, &userns_operations);
8636 #endif
8637 #ifdef CONFIG_NET_NS
8638 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8639 task, &netns_operations);
8640 #endif
8641 #ifdef CONFIG_UTS_NS
8642 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8643 task, &utsns_operations);
8644 #endif
8645 #ifdef CONFIG_IPC_NS
8646 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8647 task, &ipcns_operations);
8648 #endif
8649 #ifdef CONFIG_PID_NS
8650 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8651 task, &pidns_operations);
8652 #endif
8653 #ifdef CONFIG_CGROUPS
8654 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8655 task, &cgroupns_operations);
8656 #endif
8657
8658 perf_iterate_sb(perf_event_namespaces_output,
8659 &namespaces_event,
8660 NULL);
8661 }
8662
8663 /*
8664 * cgroup tracking
8665 */
8666 #ifdef CONFIG_CGROUP_PERF
8667
8668 struct perf_cgroup_event {
8669 char *path;
8670 int path_size;
8671 struct {
8672 struct perf_event_header header;
8673 u64 id;
8674 char path[];
8675 } event_id;
8676 };
8677
perf_event_cgroup_match(struct perf_event * event)8678 static int perf_event_cgroup_match(struct perf_event *event)
8679 {
8680 return event->attr.cgroup;
8681 }
8682
perf_event_cgroup_output(struct perf_event * event,void * data)8683 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8684 {
8685 struct perf_cgroup_event *cgroup_event = data;
8686 struct perf_output_handle handle;
8687 struct perf_sample_data sample;
8688 u16 header_size = cgroup_event->event_id.header.size;
8689 int ret;
8690
8691 if (!perf_event_cgroup_match(event))
8692 return;
8693
8694 perf_event_header__init_id(&cgroup_event->event_id.header,
8695 &sample, event);
8696 ret = perf_output_begin(&handle, &sample, event,
8697 cgroup_event->event_id.header.size);
8698 if (ret)
8699 goto out;
8700
8701 perf_output_put(&handle, cgroup_event->event_id);
8702 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8703
8704 perf_event__output_id_sample(event, &handle, &sample);
8705
8706 perf_output_end(&handle);
8707 out:
8708 cgroup_event->event_id.header.size = header_size;
8709 }
8710
perf_event_cgroup(struct cgroup * cgrp)8711 static void perf_event_cgroup(struct cgroup *cgrp)
8712 {
8713 struct perf_cgroup_event cgroup_event;
8714 char path_enomem[16] = "//enomem";
8715 char *pathname;
8716 size_t size;
8717
8718 if (!atomic_read(&nr_cgroup_events))
8719 return;
8720
8721 cgroup_event = (struct perf_cgroup_event){
8722 .event_id = {
8723 .header = {
8724 .type = PERF_RECORD_CGROUP,
8725 .misc = 0,
8726 .size = sizeof(cgroup_event.event_id),
8727 },
8728 .id = cgroup_id(cgrp),
8729 },
8730 };
8731
8732 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8733 if (pathname == NULL) {
8734 cgroup_event.path = path_enomem;
8735 } else {
8736 /* just to be sure to have enough space for alignment */
8737 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8738 cgroup_event.path = pathname;
8739 }
8740
8741 /*
8742 * Since our buffer works in 8 byte units we need to align our string
8743 * size to a multiple of 8. However, we must guarantee the tail end is
8744 * zero'd out to avoid leaking random bits to userspace.
8745 */
8746 size = strlen(cgroup_event.path) + 1;
8747 while (!IS_ALIGNED(size, sizeof(u64)))
8748 cgroup_event.path[size++] = '\0';
8749
8750 cgroup_event.event_id.header.size += size;
8751 cgroup_event.path_size = size;
8752
8753 perf_iterate_sb(perf_event_cgroup_output,
8754 &cgroup_event,
8755 NULL);
8756
8757 kfree(pathname);
8758 }
8759
8760 #endif
8761
8762 /*
8763 * mmap tracking
8764 */
8765
8766 struct perf_mmap_event {
8767 struct vm_area_struct *vma;
8768
8769 const char *file_name;
8770 int file_size;
8771 int maj, min;
8772 u64 ino;
8773 u64 ino_generation;
8774 u32 prot, flags;
8775 u8 build_id[BUILD_ID_SIZE_MAX];
8776 u32 build_id_size;
8777
8778 struct {
8779 struct perf_event_header header;
8780
8781 u32 pid;
8782 u32 tid;
8783 u64 start;
8784 u64 len;
8785 u64 pgoff;
8786 } event_id;
8787 };
8788
perf_event_mmap_match(struct perf_event * event,void * data)8789 static int perf_event_mmap_match(struct perf_event *event,
8790 void *data)
8791 {
8792 struct perf_mmap_event *mmap_event = data;
8793 struct vm_area_struct *vma = mmap_event->vma;
8794 int executable = vma->vm_flags & VM_EXEC;
8795
8796 return (!executable && event->attr.mmap_data) ||
8797 (executable && (event->attr.mmap || event->attr.mmap2));
8798 }
8799
perf_event_mmap_output(struct perf_event * event,void * data)8800 static void perf_event_mmap_output(struct perf_event *event,
8801 void *data)
8802 {
8803 struct perf_mmap_event *mmap_event = data;
8804 struct perf_output_handle handle;
8805 struct perf_sample_data sample;
8806 int size = mmap_event->event_id.header.size;
8807 u32 type = mmap_event->event_id.header.type;
8808 bool use_build_id;
8809 int ret;
8810
8811 if (!perf_event_mmap_match(event, data))
8812 return;
8813
8814 if (event->attr.mmap2) {
8815 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8816 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8817 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8818 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8819 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8820 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8821 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8822 }
8823
8824 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8825 ret = perf_output_begin(&handle, &sample, event,
8826 mmap_event->event_id.header.size);
8827 if (ret)
8828 goto out;
8829
8830 mmap_event->event_id.pid = perf_event_pid(event, current);
8831 mmap_event->event_id.tid = perf_event_tid(event, current);
8832
8833 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8834
8835 if (event->attr.mmap2 && use_build_id)
8836 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8837
8838 perf_output_put(&handle, mmap_event->event_id);
8839
8840 if (event->attr.mmap2) {
8841 if (use_build_id) {
8842 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8843
8844 __output_copy(&handle, size, 4);
8845 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8846 } else {
8847 perf_output_put(&handle, mmap_event->maj);
8848 perf_output_put(&handle, mmap_event->min);
8849 perf_output_put(&handle, mmap_event->ino);
8850 perf_output_put(&handle, mmap_event->ino_generation);
8851 }
8852 perf_output_put(&handle, mmap_event->prot);
8853 perf_output_put(&handle, mmap_event->flags);
8854 }
8855
8856 __output_copy(&handle, mmap_event->file_name,
8857 mmap_event->file_size);
8858
8859 perf_event__output_id_sample(event, &handle, &sample);
8860
8861 perf_output_end(&handle);
8862 out:
8863 mmap_event->event_id.header.size = size;
8864 mmap_event->event_id.header.type = type;
8865 }
8866
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8867 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8868 {
8869 struct vm_area_struct *vma = mmap_event->vma;
8870 struct file *file = vma->vm_file;
8871 int maj = 0, min = 0;
8872 u64 ino = 0, gen = 0;
8873 u32 prot = 0, flags = 0;
8874 unsigned int size;
8875 char tmp[16];
8876 char *buf = NULL;
8877 char *name = NULL;
8878
8879 if (vma->vm_flags & VM_READ)
8880 prot |= PROT_READ;
8881 if (vma->vm_flags & VM_WRITE)
8882 prot |= PROT_WRITE;
8883 if (vma->vm_flags & VM_EXEC)
8884 prot |= PROT_EXEC;
8885
8886 if (vma->vm_flags & VM_MAYSHARE)
8887 flags = MAP_SHARED;
8888 else
8889 flags = MAP_PRIVATE;
8890
8891 if (vma->vm_flags & VM_LOCKED)
8892 flags |= MAP_LOCKED;
8893 if (is_vm_hugetlb_page(vma))
8894 flags |= MAP_HUGETLB;
8895
8896 if (file) {
8897 struct inode *inode;
8898 dev_t dev;
8899
8900 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8901 if (!buf) {
8902 name = "//enomem";
8903 goto cpy_name;
8904 }
8905 /*
8906 * d_path() works from the end of the rb backwards, so we
8907 * need to add enough zero bytes after the string to handle
8908 * the 64bit alignment we do later.
8909 */
8910 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8911 if (IS_ERR(name)) {
8912 name = "//toolong";
8913 goto cpy_name;
8914 }
8915 inode = file_inode(vma->vm_file);
8916 dev = inode->i_sb->s_dev;
8917 ino = inode->i_ino;
8918 gen = inode->i_generation;
8919 maj = MAJOR(dev);
8920 min = MINOR(dev);
8921
8922 goto got_name;
8923 } else {
8924 if (vma->vm_ops && vma->vm_ops->name)
8925 name = (char *) vma->vm_ops->name(vma);
8926 if (!name)
8927 name = (char *)arch_vma_name(vma);
8928 if (!name) {
8929 if (vma_is_initial_heap(vma))
8930 name = "[heap]";
8931 else if (vma_is_initial_stack(vma))
8932 name = "[stack]";
8933 else
8934 name = "//anon";
8935 }
8936 }
8937
8938 cpy_name:
8939 strscpy(tmp, name, sizeof(tmp));
8940 name = tmp;
8941 got_name:
8942 /*
8943 * Since our buffer works in 8 byte units we need to align our string
8944 * size to a multiple of 8. However, we must guarantee the tail end is
8945 * zero'd out to avoid leaking random bits to userspace.
8946 */
8947 size = strlen(name)+1;
8948 while (!IS_ALIGNED(size, sizeof(u64)))
8949 name[size++] = '\0';
8950
8951 mmap_event->file_name = name;
8952 mmap_event->file_size = size;
8953 mmap_event->maj = maj;
8954 mmap_event->min = min;
8955 mmap_event->ino = ino;
8956 mmap_event->ino_generation = gen;
8957 mmap_event->prot = prot;
8958 mmap_event->flags = flags;
8959
8960 if (!(vma->vm_flags & VM_EXEC))
8961 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8962
8963 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8964
8965 if (atomic_read(&nr_build_id_events))
8966 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
8967
8968 perf_iterate_sb(perf_event_mmap_output,
8969 mmap_event,
8970 NULL);
8971
8972 kfree(buf);
8973 }
8974
8975 /*
8976 * Check whether inode and address range match filter criteria.
8977 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8978 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8979 struct file *file, unsigned long offset,
8980 unsigned long size)
8981 {
8982 /* d_inode(NULL) won't be equal to any mapped user-space file */
8983 if (!filter->path.dentry)
8984 return false;
8985
8986 if (d_inode(filter->path.dentry) != file_inode(file))
8987 return false;
8988
8989 if (filter->offset > offset + size)
8990 return false;
8991
8992 if (filter->offset + filter->size < offset)
8993 return false;
8994
8995 return true;
8996 }
8997
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8998 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8999 struct vm_area_struct *vma,
9000 struct perf_addr_filter_range *fr)
9001 {
9002 unsigned long vma_size = vma->vm_end - vma->vm_start;
9003 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9004 struct file *file = vma->vm_file;
9005
9006 if (!perf_addr_filter_match(filter, file, off, vma_size))
9007 return false;
9008
9009 if (filter->offset < off) {
9010 fr->start = vma->vm_start;
9011 fr->size = min(vma_size, filter->size - (off - filter->offset));
9012 } else {
9013 fr->start = vma->vm_start + filter->offset - off;
9014 fr->size = min(vma->vm_end - fr->start, filter->size);
9015 }
9016
9017 return true;
9018 }
9019
__perf_addr_filters_adjust(struct perf_event * event,void * data)9020 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9021 {
9022 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9023 struct vm_area_struct *vma = data;
9024 struct perf_addr_filter *filter;
9025 unsigned int restart = 0, count = 0;
9026 unsigned long flags;
9027
9028 if (!has_addr_filter(event))
9029 return;
9030
9031 if (!vma->vm_file)
9032 return;
9033
9034 raw_spin_lock_irqsave(&ifh->lock, flags);
9035 list_for_each_entry(filter, &ifh->list, entry) {
9036 if (perf_addr_filter_vma_adjust(filter, vma,
9037 &event->addr_filter_ranges[count]))
9038 restart++;
9039
9040 count++;
9041 }
9042
9043 if (restart)
9044 event->addr_filters_gen++;
9045 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9046
9047 if (restart)
9048 perf_event_stop(event, 1);
9049 }
9050
9051 /*
9052 * Adjust all task's events' filters to the new vma
9053 */
perf_addr_filters_adjust(struct vm_area_struct * vma)9054 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9055 {
9056 struct perf_event_context *ctx;
9057
9058 /*
9059 * Data tracing isn't supported yet and as such there is no need
9060 * to keep track of anything that isn't related to executable code:
9061 */
9062 if (!(vma->vm_flags & VM_EXEC))
9063 return;
9064
9065 rcu_read_lock();
9066 ctx = rcu_dereference(current->perf_event_ctxp);
9067 if (ctx)
9068 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9069 rcu_read_unlock();
9070 }
9071
perf_event_mmap(struct vm_area_struct * vma)9072 void perf_event_mmap(struct vm_area_struct *vma)
9073 {
9074 struct perf_mmap_event mmap_event;
9075
9076 if (!atomic_read(&nr_mmap_events))
9077 return;
9078
9079 mmap_event = (struct perf_mmap_event){
9080 .vma = vma,
9081 /* .file_name */
9082 /* .file_size */
9083 .event_id = {
9084 .header = {
9085 .type = PERF_RECORD_MMAP,
9086 .misc = PERF_RECORD_MISC_USER,
9087 /* .size */
9088 },
9089 /* .pid */
9090 /* .tid */
9091 .start = vma->vm_start,
9092 .len = vma->vm_end - vma->vm_start,
9093 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9094 },
9095 /* .maj (attr_mmap2 only) */
9096 /* .min (attr_mmap2 only) */
9097 /* .ino (attr_mmap2 only) */
9098 /* .ino_generation (attr_mmap2 only) */
9099 /* .prot (attr_mmap2 only) */
9100 /* .flags (attr_mmap2 only) */
9101 };
9102
9103 perf_addr_filters_adjust(vma);
9104 perf_event_mmap_event(&mmap_event);
9105 }
9106
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9107 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9108 unsigned long size, u64 flags)
9109 {
9110 struct perf_output_handle handle;
9111 struct perf_sample_data sample;
9112 struct perf_aux_event {
9113 struct perf_event_header header;
9114 u64 offset;
9115 u64 size;
9116 u64 flags;
9117 } rec = {
9118 .header = {
9119 .type = PERF_RECORD_AUX,
9120 .misc = 0,
9121 .size = sizeof(rec),
9122 },
9123 .offset = head,
9124 .size = size,
9125 .flags = flags,
9126 };
9127 int ret;
9128
9129 perf_event_header__init_id(&rec.header, &sample, event);
9130 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9131
9132 if (ret)
9133 return;
9134
9135 perf_output_put(&handle, rec);
9136 perf_event__output_id_sample(event, &handle, &sample);
9137
9138 perf_output_end(&handle);
9139 }
9140
9141 /*
9142 * Lost/dropped samples logging
9143 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9144 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9145 {
9146 struct perf_output_handle handle;
9147 struct perf_sample_data sample;
9148 int ret;
9149
9150 struct {
9151 struct perf_event_header header;
9152 u64 lost;
9153 } lost_samples_event = {
9154 .header = {
9155 .type = PERF_RECORD_LOST_SAMPLES,
9156 .misc = 0,
9157 .size = sizeof(lost_samples_event),
9158 },
9159 .lost = lost,
9160 };
9161
9162 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9163
9164 ret = perf_output_begin(&handle, &sample, event,
9165 lost_samples_event.header.size);
9166 if (ret)
9167 return;
9168
9169 perf_output_put(&handle, lost_samples_event);
9170 perf_event__output_id_sample(event, &handle, &sample);
9171 perf_output_end(&handle);
9172 }
9173
9174 /*
9175 * context_switch tracking
9176 */
9177
9178 struct perf_switch_event {
9179 struct task_struct *task;
9180 struct task_struct *next_prev;
9181
9182 struct {
9183 struct perf_event_header header;
9184 u32 next_prev_pid;
9185 u32 next_prev_tid;
9186 } event_id;
9187 };
9188
perf_event_switch_match(struct perf_event * event)9189 static int perf_event_switch_match(struct perf_event *event)
9190 {
9191 return event->attr.context_switch;
9192 }
9193
perf_event_switch_output(struct perf_event * event,void * data)9194 static void perf_event_switch_output(struct perf_event *event, void *data)
9195 {
9196 struct perf_switch_event *se = data;
9197 struct perf_output_handle handle;
9198 struct perf_sample_data sample;
9199 int ret;
9200
9201 if (!perf_event_switch_match(event))
9202 return;
9203
9204 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9205 if (event->ctx->task) {
9206 se->event_id.header.type = PERF_RECORD_SWITCH;
9207 se->event_id.header.size = sizeof(se->event_id.header);
9208 } else {
9209 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9210 se->event_id.header.size = sizeof(se->event_id);
9211 se->event_id.next_prev_pid =
9212 perf_event_pid(event, se->next_prev);
9213 se->event_id.next_prev_tid =
9214 perf_event_tid(event, se->next_prev);
9215 }
9216
9217 perf_event_header__init_id(&se->event_id.header, &sample, event);
9218
9219 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9220 if (ret)
9221 return;
9222
9223 if (event->ctx->task)
9224 perf_output_put(&handle, se->event_id.header);
9225 else
9226 perf_output_put(&handle, se->event_id);
9227
9228 perf_event__output_id_sample(event, &handle, &sample);
9229
9230 perf_output_end(&handle);
9231 }
9232
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9233 static void perf_event_switch(struct task_struct *task,
9234 struct task_struct *next_prev, bool sched_in)
9235 {
9236 struct perf_switch_event switch_event;
9237
9238 /* N.B. caller checks nr_switch_events != 0 */
9239
9240 switch_event = (struct perf_switch_event){
9241 .task = task,
9242 .next_prev = next_prev,
9243 .event_id = {
9244 .header = {
9245 /* .type */
9246 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9247 /* .size */
9248 },
9249 /* .next_prev_pid */
9250 /* .next_prev_tid */
9251 },
9252 };
9253
9254 if (!sched_in && task_is_runnable(task)) {
9255 switch_event.event_id.header.misc |=
9256 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9257 }
9258
9259 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9260 }
9261
9262 /*
9263 * IRQ throttle logging
9264 */
9265
perf_log_throttle(struct perf_event * event,int enable)9266 static void perf_log_throttle(struct perf_event *event, int enable)
9267 {
9268 struct perf_output_handle handle;
9269 struct perf_sample_data sample;
9270 int ret;
9271
9272 struct {
9273 struct perf_event_header header;
9274 u64 time;
9275 u64 id;
9276 u64 stream_id;
9277 } throttle_event = {
9278 .header = {
9279 .type = PERF_RECORD_THROTTLE,
9280 .misc = 0,
9281 .size = sizeof(throttle_event),
9282 },
9283 .time = perf_event_clock(event),
9284 .id = primary_event_id(event),
9285 .stream_id = event->id,
9286 };
9287
9288 if (enable)
9289 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9290
9291 perf_event_header__init_id(&throttle_event.header, &sample, event);
9292
9293 ret = perf_output_begin(&handle, &sample, event,
9294 throttle_event.header.size);
9295 if (ret)
9296 return;
9297
9298 perf_output_put(&handle, throttle_event);
9299 perf_event__output_id_sample(event, &handle, &sample);
9300 perf_output_end(&handle);
9301 }
9302
9303 /*
9304 * ksymbol register/unregister tracking
9305 */
9306
9307 struct perf_ksymbol_event {
9308 const char *name;
9309 int name_len;
9310 struct {
9311 struct perf_event_header header;
9312 u64 addr;
9313 u32 len;
9314 u16 ksym_type;
9315 u16 flags;
9316 } event_id;
9317 };
9318
perf_event_ksymbol_match(struct perf_event * event)9319 static int perf_event_ksymbol_match(struct perf_event *event)
9320 {
9321 return event->attr.ksymbol;
9322 }
9323
perf_event_ksymbol_output(struct perf_event * event,void * data)9324 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9325 {
9326 struct perf_ksymbol_event *ksymbol_event = data;
9327 struct perf_output_handle handle;
9328 struct perf_sample_data sample;
9329 int ret;
9330
9331 if (!perf_event_ksymbol_match(event))
9332 return;
9333
9334 perf_event_header__init_id(&ksymbol_event->event_id.header,
9335 &sample, event);
9336 ret = perf_output_begin(&handle, &sample, event,
9337 ksymbol_event->event_id.header.size);
9338 if (ret)
9339 return;
9340
9341 perf_output_put(&handle, ksymbol_event->event_id);
9342 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9343 perf_event__output_id_sample(event, &handle, &sample);
9344
9345 perf_output_end(&handle);
9346 }
9347
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9348 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9349 const char *sym)
9350 {
9351 struct perf_ksymbol_event ksymbol_event;
9352 char name[KSYM_NAME_LEN];
9353 u16 flags = 0;
9354 int name_len;
9355
9356 if (!atomic_read(&nr_ksymbol_events))
9357 return;
9358
9359 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9360 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9361 goto err;
9362
9363 strscpy(name, sym, KSYM_NAME_LEN);
9364 name_len = strlen(name) + 1;
9365 while (!IS_ALIGNED(name_len, sizeof(u64)))
9366 name[name_len++] = '\0';
9367 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9368
9369 if (unregister)
9370 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9371
9372 ksymbol_event = (struct perf_ksymbol_event){
9373 .name = name,
9374 .name_len = name_len,
9375 .event_id = {
9376 .header = {
9377 .type = PERF_RECORD_KSYMBOL,
9378 .size = sizeof(ksymbol_event.event_id) +
9379 name_len,
9380 },
9381 .addr = addr,
9382 .len = len,
9383 .ksym_type = ksym_type,
9384 .flags = flags,
9385 },
9386 };
9387
9388 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9389 return;
9390 err:
9391 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9392 }
9393
9394 /*
9395 * bpf program load/unload tracking
9396 */
9397
9398 struct perf_bpf_event {
9399 struct bpf_prog *prog;
9400 struct {
9401 struct perf_event_header header;
9402 u16 type;
9403 u16 flags;
9404 u32 id;
9405 u8 tag[BPF_TAG_SIZE];
9406 } event_id;
9407 };
9408
perf_event_bpf_match(struct perf_event * event)9409 static int perf_event_bpf_match(struct perf_event *event)
9410 {
9411 return event->attr.bpf_event;
9412 }
9413
perf_event_bpf_output(struct perf_event * event,void * data)9414 static void perf_event_bpf_output(struct perf_event *event, void *data)
9415 {
9416 struct perf_bpf_event *bpf_event = data;
9417 struct perf_output_handle handle;
9418 struct perf_sample_data sample;
9419 int ret;
9420
9421 if (!perf_event_bpf_match(event))
9422 return;
9423
9424 perf_event_header__init_id(&bpf_event->event_id.header,
9425 &sample, event);
9426 ret = perf_output_begin(&handle, &sample, event,
9427 bpf_event->event_id.header.size);
9428 if (ret)
9429 return;
9430
9431 perf_output_put(&handle, bpf_event->event_id);
9432 perf_event__output_id_sample(event, &handle, &sample);
9433
9434 perf_output_end(&handle);
9435 }
9436
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9437 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9438 enum perf_bpf_event_type type)
9439 {
9440 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9441 int i;
9442
9443 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9444 (u64)(unsigned long)prog->bpf_func,
9445 prog->jited_len, unregister,
9446 prog->aux->ksym.name);
9447
9448 for (i = 1; i < prog->aux->func_cnt; i++) {
9449 struct bpf_prog *subprog = prog->aux->func[i];
9450
9451 perf_event_ksymbol(
9452 PERF_RECORD_KSYMBOL_TYPE_BPF,
9453 (u64)(unsigned long)subprog->bpf_func,
9454 subprog->jited_len, unregister,
9455 subprog->aux->ksym.name);
9456 }
9457 }
9458
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9459 void perf_event_bpf_event(struct bpf_prog *prog,
9460 enum perf_bpf_event_type type,
9461 u16 flags)
9462 {
9463 struct perf_bpf_event bpf_event;
9464
9465 switch (type) {
9466 case PERF_BPF_EVENT_PROG_LOAD:
9467 case PERF_BPF_EVENT_PROG_UNLOAD:
9468 if (atomic_read(&nr_ksymbol_events))
9469 perf_event_bpf_emit_ksymbols(prog, type);
9470 break;
9471 default:
9472 return;
9473 }
9474
9475 if (!atomic_read(&nr_bpf_events))
9476 return;
9477
9478 bpf_event = (struct perf_bpf_event){
9479 .prog = prog,
9480 .event_id = {
9481 .header = {
9482 .type = PERF_RECORD_BPF_EVENT,
9483 .size = sizeof(bpf_event.event_id),
9484 },
9485 .type = type,
9486 .flags = flags,
9487 .id = prog->aux->id,
9488 },
9489 };
9490
9491 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9492
9493 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9494 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9495 }
9496
9497 struct perf_text_poke_event {
9498 const void *old_bytes;
9499 const void *new_bytes;
9500 size_t pad;
9501 u16 old_len;
9502 u16 new_len;
9503
9504 struct {
9505 struct perf_event_header header;
9506
9507 u64 addr;
9508 } event_id;
9509 };
9510
perf_event_text_poke_match(struct perf_event * event)9511 static int perf_event_text_poke_match(struct perf_event *event)
9512 {
9513 return event->attr.text_poke;
9514 }
9515
perf_event_text_poke_output(struct perf_event * event,void * data)9516 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9517 {
9518 struct perf_text_poke_event *text_poke_event = data;
9519 struct perf_output_handle handle;
9520 struct perf_sample_data sample;
9521 u64 padding = 0;
9522 int ret;
9523
9524 if (!perf_event_text_poke_match(event))
9525 return;
9526
9527 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9528
9529 ret = perf_output_begin(&handle, &sample, event,
9530 text_poke_event->event_id.header.size);
9531 if (ret)
9532 return;
9533
9534 perf_output_put(&handle, text_poke_event->event_id);
9535 perf_output_put(&handle, text_poke_event->old_len);
9536 perf_output_put(&handle, text_poke_event->new_len);
9537
9538 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9539 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9540
9541 if (text_poke_event->pad)
9542 __output_copy(&handle, &padding, text_poke_event->pad);
9543
9544 perf_event__output_id_sample(event, &handle, &sample);
9545
9546 perf_output_end(&handle);
9547 }
9548
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9549 void perf_event_text_poke(const void *addr, const void *old_bytes,
9550 size_t old_len, const void *new_bytes, size_t new_len)
9551 {
9552 struct perf_text_poke_event text_poke_event;
9553 size_t tot, pad;
9554
9555 if (!atomic_read(&nr_text_poke_events))
9556 return;
9557
9558 tot = sizeof(text_poke_event.old_len) + old_len;
9559 tot += sizeof(text_poke_event.new_len) + new_len;
9560 pad = ALIGN(tot, sizeof(u64)) - tot;
9561
9562 text_poke_event = (struct perf_text_poke_event){
9563 .old_bytes = old_bytes,
9564 .new_bytes = new_bytes,
9565 .pad = pad,
9566 .old_len = old_len,
9567 .new_len = new_len,
9568 .event_id = {
9569 .header = {
9570 .type = PERF_RECORD_TEXT_POKE,
9571 .misc = PERF_RECORD_MISC_KERNEL,
9572 .size = sizeof(text_poke_event.event_id) + tot + pad,
9573 },
9574 .addr = (unsigned long)addr,
9575 },
9576 };
9577
9578 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9579 }
9580
perf_event_itrace_started(struct perf_event * event)9581 void perf_event_itrace_started(struct perf_event *event)
9582 {
9583 event->attach_state |= PERF_ATTACH_ITRACE;
9584 }
9585
perf_log_itrace_start(struct perf_event * event)9586 static void perf_log_itrace_start(struct perf_event *event)
9587 {
9588 struct perf_output_handle handle;
9589 struct perf_sample_data sample;
9590 struct perf_aux_event {
9591 struct perf_event_header header;
9592 u32 pid;
9593 u32 tid;
9594 } rec;
9595 int ret;
9596
9597 if (event->parent)
9598 event = event->parent;
9599
9600 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9601 event->attach_state & PERF_ATTACH_ITRACE)
9602 return;
9603
9604 rec.header.type = PERF_RECORD_ITRACE_START;
9605 rec.header.misc = 0;
9606 rec.header.size = sizeof(rec);
9607 rec.pid = perf_event_pid(event, current);
9608 rec.tid = perf_event_tid(event, current);
9609
9610 perf_event_header__init_id(&rec.header, &sample, event);
9611 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9612
9613 if (ret)
9614 return;
9615
9616 perf_output_put(&handle, rec);
9617 perf_event__output_id_sample(event, &handle, &sample);
9618
9619 perf_output_end(&handle);
9620 }
9621
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9622 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9623 {
9624 struct perf_output_handle handle;
9625 struct perf_sample_data sample;
9626 struct perf_aux_event {
9627 struct perf_event_header header;
9628 u64 hw_id;
9629 } rec;
9630 int ret;
9631
9632 if (event->parent)
9633 event = event->parent;
9634
9635 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9636 rec.header.misc = 0;
9637 rec.header.size = sizeof(rec);
9638 rec.hw_id = hw_id;
9639
9640 perf_event_header__init_id(&rec.header, &sample, event);
9641 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9642
9643 if (ret)
9644 return;
9645
9646 perf_output_put(&handle, rec);
9647 perf_event__output_id_sample(event, &handle, &sample);
9648
9649 perf_output_end(&handle);
9650 }
9651 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9652
9653 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9654 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9655 {
9656 struct hw_perf_event *hwc = &event->hw;
9657 int ret = 0;
9658 u64 seq;
9659
9660 seq = __this_cpu_read(perf_throttled_seq);
9661 if (seq != hwc->interrupts_seq) {
9662 hwc->interrupts_seq = seq;
9663 hwc->interrupts = 1;
9664 } else {
9665 hwc->interrupts++;
9666 if (unlikely(throttle &&
9667 hwc->interrupts > max_samples_per_tick)) {
9668 __this_cpu_inc(perf_throttled_count);
9669 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9670 hwc->interrupts = MAX_INTERRUPTS;
9671 perf_log_throttle(event, 0);
9672 ret = 1;
9673 }
9674 }
9675
9676 if (event->attr.freq) {
9677 u64 now = perf_clock();
9678 s64 delta = now - hwc->freq_time_stamp;
9679
9680 hwc->freq_time_stamp = now;
9681
9682 if (delta > 0 && delta < 2*TICK_NSEC)
9683 perf_adjust_period(event, delta, hwc->last_period, true);
9684 }
9685
9686 return ret;
9687 }
9688
perf_event_account_interrupt(struct perf_event * event)9689 int perf_event_account_interrupt(struct perf_event *event)
9690 {
9691 return __perf_event_account_interrupt(event, 1);
9692 }
9693
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9694 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9695 {
9696 /*
9697 * Due to interrupt latency (AKA "skid"), we may enter the
9698 * kernel before taking an overflow, even if the PMU is only
9699 * counting user events.
9700 */
9701 if (event->attr.exclude_kernel && !user_mode(regs))
9702 return false;
9703
9704 return true;
9705 }
9706
9707 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9708 static int bpf_overflow_handler(struct perf_event *event,
9709 struct perf_sample_data *data,
9710 struct pt_regs *regs)
9711 {
9712 struct bpf_perf_event_data_kern ctx = {
9713 .data = data,
9714 .event = event,
9715 };
9716 struct bpf_prog *prog;
9717 int ret = 0;
9718
9719 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9720 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9721 goto out;
9722 rcu_read_lock();
9723 prog = READ_ONCE(event->prog);
9724 if (prog) {
9725 perf_prepare_sample(data, event, regs);
9726 ret = bpf_prog_run(prog, &ctx);
9727 }
9728 rcu_read_unlock();
9729 out:
9730 __this_cpu_dec(bpf_prog_active);
9731
9732 return ret;
9733 }
9734
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9735 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9736 struct bpf_prog *prog,
9737 u64 bpf_cookie)
9738 {
9739 if (event->overflow_handler_context)
9740 /* hw breakpoint or kernel counter */
9741 return -EINVAL;
9742
9743 if (event->prog)
9744 return -EEXIST;
9745
9746 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9747 return -EINVAL;
9748
9749 if (event->attr.precise_ip &&
9750 prog->call_get_stack &&
9751 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9752 event->attr.exclude_callchain_kernel ||
9753 event->attr.exclude_callchain_user)) {
9754 /*
9755 * On perf_event with precise_ip, calling bpf_get_stack()
9756 * may trigger unwinder warnings and occasional crashes.
9757 * bpf_get_[stack|stackid] works around this issue by using
9758 * callchain attached to perf_sample_data. If the
9759 * perf_event does not full (kernel and user) callchain
9760 * attached to perf_sample_data, do not allow attaching BPF
9761 * program that calls bpf_get_[stack|stackid].
9762 */
9763 return -EPROTO;
9764 }
9765
9766 event->prog = prog;
9767 event->bpf_cookie = bpf_cookie;
9768 return 0;
9769 }
9770
perf_event_free_bpf_handler(struct perf_event * event)9771 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9772 {
9773 struct bpf_prog *prog = event->prog;
9774
9775 if (!prog)
9776 return;
9777
9778 event->prog = NULL;
9779 bpf_prog_put(prog);
9780 }
9781 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9782 static inline int bpf_overflow_handler(struct perf_event *event,
9783 struct perf_sample_data *data,
9784 struct pt_regs *regs)
9785 {
9786 return 1;
9787 }
9788
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9789 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9790 struct bpf_prog *prog,
9791 u64 bpf_cookie)
9792 {
9793 return -EOPNOTSUPP;
9794 }
9795
perf_event_free_bpf_handler(struct perf_event * event)9796 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9797 {
9798 }
9799 #endif
9800
9801 /*
9802 * Generic event overflow handling, sampling.
9803 */
9804
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9805 static int __perf_event_overflow(struct perf_event *event,
9806 int throttle, struct perf_sample_data *data,
9807 struct pt_regs *regs)
9808 {
9809 int events = atomic_read(&event->event_limit);
9810 int ret = 0;
9811
9812 /*
9813 * Non-sampling counters might still use the PMI to fold short
9814 * hardware counters, ignore those.
9815 */
9816 if (unlikely(!is_sampling_event(event)))
9817 return 0;
9818
9819 ret = __perf_event_account_interrupt(event, throttle);
9820
9821 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9822 !bpf_overflow_handler(event, data, regs))
9823 return ret;
9824
9825 /*
9826 * XXX event_limit might not quite work as expected on inherited
9827 * events
9828 */
9829
9830 event->pending_kill = POLL_IN;
9831 if (events && atomic_dec_and_test(&event->event_limit)) {
9832 ret = 1;
9833 event->pending_kill = POLL_HUP;
9834 perf_event_disable_inatomic(event);
9835 }
9836
9837 if (event->attr.sigtrap) {
9838 /*
9839 * The desired behaviour of sigtrap vs invalid samples is a bit
9840 * tricky; on the one hand, one should not loose the SIGTRAP if
9841 * it is the first event, on the other hand, we should also not
9842 * trigger the WARN or override the data address.
9843 */
9844 bool valid_sample = sample_is_allowed(event, regs);
9845 unsigned int pending_id = 1;
9846 enum task_work_notify_mode notify_mode;
9847
9848 if (regs)
9849 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9850
9851 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9852
9853 if (!event->pending_work &&
9854 !task_work_add(current, &event->pending_task, notify_mode)) {
9855 event->pending_work = pending_id;
9856 local_inc(&event->ctx->nr_no_switch_fast);
9857
9858 event->pending_addr = 0;
9859 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9860 event->pending_addr = data->addr;
9861
9862 } else if (event->attr.exclude_kernel && valid_sample) {
9863 /*
9864 * Should not be able to return to user space without
9865 * consuming pending_work; with exceptions:
9866 *
9867 * 1. Where !exclude_kernel, events can overflow again
9868 * in the kernel without returning to user space.
9869 *
9870 * 2. Events that can overflow again before the IRQ-
9871 * work without user space progress (e.g. hrtimer).
9872 * To approximate progress (with false negatives),
9873 * check 32-bit hash of the current IP.
9874 */
9875 WARN_ON_ONCE(event->pending_work != pending_id);
9876 }
9877 }
9878
9879 READ_ONCE(event->overflow_handler)(event, data, regs);
9880
9881 if (*perf_event_fasync(event) && event->pending_kill) {
9882 event->pending_wakeup = 1;
9883 irq_work_queue(&event->pending_irq);
9884 }
9885
9886 return ret;
9887 }
9888
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9889 int perf_event_overflow(struct perf_event *event,
9890 struct perf_sample_data *data,
9891 struct pt_regs *regs)
9892 {
9893 return __perf_event_overflow(event, 1, data, regs);
9894 }
9895
9896 /*
9897 * Generic software event infrastructure
9898 */
9899
9900 struct swevent_htable {
9901 struct swevent_hlist *swevent_hlist;
9902 struct mutex hlist_mutex;
9903 int hlist_refcount;
9904 };
9905 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9906
9907 /*
9908 * We directly increment event->count and keep a second value in
9909 * event->hw.period_left to count intervals. This period event
9910 * is kept in the range [-sample_period, 0] so that we can use the
9911 * sign as trigger.
9912 */
9913
perf_swevent_set_period(struct perf_event * event)9914 u64 perf_swevent_set_period(struct perf_event *event)
9915 {
9916 struct hw_perf_event *hwc = &event->hw;
9917 u64 period = hwc->last_period;
9918 u64 nr, offset;
9919 s64 old, val;
9920
9921 hwc->last_period = hwc->sample_period;
9922
9923 old = local64_read(&hwc->period_left);
9924 do {
9925 val = old;
9926 if (val < 0)
9927 return 0;
9928
9929 nr = div64_u64(period + val, period);
9930 offset = nr * period;
9931 val -= offset;
9932 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9933
9934 return nr;
9935 }
9936
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9937 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9938 struct perf_sample_data *data,
9939 struct pt_regs *regs)
9940 {
9941 struct hw_perf_event *hwc = &event->hw;
9942 int throttle = 0;
9943
9944 if (!overflow)
9945 overflow = perf_swevent_set_period(event);
9946
9947 if (hwc->interrupts == MAX_INTERRUPTS)
9948 return;
9949
9950 for (; overflow; overflow--) {
9951 if (__perf_event_overflow(event, throttle,
9952 data, regs)) {
9953 /*
9954 * We inhibit the overflow from happening when
9955 * hwc->interrupts == MAX_INTERRUPTS.
9956 */
9957 break;
9958 }
9959 throttle = 1;
9960 }
9961 }
9962
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9963 static void perf_swevent_event(struct perf_event *event, u64 nr,
9964 struct perf_sample_data *data,
9965 struct pt_regs *regs)
9966 {
9967 struct hw_perf_event *hwc = &event->hw;
9968
9969 local64_add(nr, &event->count);
9970
9971 if (!regs)
9972 return;
9973
9974 if (!is_sampling_event(event))
9975 return;
9976
9977 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9978 data->period = nr;
9979 return perf_swevent_overflow(event, 1, data, regs);
9980 } else
9981 data->period = event->hw.last_period;
9982
9983 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9984 return perf_swevent_overflow(event, 1, data, regs);
9985
9986 if (local64_add_negative(nr, &hwc->period_left))
9987 return;
9988
9989 perf_swevent_overflow(event, 0, data, regs);
9990 }
9991
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9992 static int perf_exclude_event(struct perf_event *event,
9993 struct pt_regs *regs)
9994 {
9995 if (event->hw.state & PERF_HES_STOPPED)
9996 return 1;
9997
9998 if (regs) {
9999 if (event->attr.exclude_user && user_mode(regs))
10000 return 1;
10001
10002 if (event->attr.exclude_kernel && !user_mode(regs))
10003 return 1;
10004 }
10005
10006 return 0;
10007 }
10008
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10009 static int perf_swevent_match(struct perf_event *event,
10010 enum perf_type_id type,
10011 u32 event_id,
10012 struct perf_sample_data *data,
10013 struct pt_regs *regs)
10014 {
10015 if (event->attr.type != type)
10016 return 0;
10017
10018 if (event->attr.config != event_id)
10019 return 0;
10020
10021 if (perf_exclude_event(event, regs))
10022 return 0;
10023
10024 return 1;
10025 }
10026
swevent_hash(u64 type,u32 event_id)10027 static inline u64 swevent_hash(u64 type, u32 event_id)
10028 {
10029 u64 val = event_id | (type << 32);
10030
10031 return hash_64(val, SWEVENT_HLIST_BITS);
10032 }
10033
10034 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10035 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10036 {
10037 u64 hash = swevent_hash(type, event_id);
10038
10039 return &hlist->heads[hash];
10040 }
10041
10042 /* For the read side: events when they trigger */
10043 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10044 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10045 {
10046 struct swevent_hlist *hlist;
10047
10048 hlist = rcu_dereference(swhash->swevent_hlist);
10049 if (!hlist)
10050 return NULL;
10051
10052 return __find_swevent_head(hlist, type, event_id);
10053 }
10054
10055 /* For the event head insertion and removal in the hlist */
10056 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10057 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10058 {
10059 struct swevent_hlist *hlist;
10060 u32 event_id = event->attr.config;
10061 u64 type = event->attr.type;
10062
10063 /*
10064 * Event scheduling is always serialized against hlist allocation
10065 * and release. Which makes the protected version suitable here.
10066 * The context lock guarantees that.
10067 */
10068 hlist = rcu_dereference_protected(swhash->swevent_hlist,
10069 lockdep_is_held(&event->ctx->lock));
10070 if (!hlist)
10071 return NULL;
10072
10073 return __find_swevent_head(hlist, type, event_id);
10074 }
10075
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10076 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10077 u64 nr,
10078 struct perf_sample_data *data,
10079 struct pt_regs *regs)
10080 {
10081 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10082 struct perf_event *event;
10083 struct hlist_head *head;
10084
10085 rcu_read_lock();
10086 head = find_swevent_head_rcu(swhash, type, event_id);
10087 if (!head)
10088 goto end;
10089
10090 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10091 if (perf_swevent_match(event, type, event_id, data, regs))
10092 perf_swevent_event(event, nr, data, regs);
10093 }
10094 end:
10095 rcu_read_unlock();
10096 }
10097
10098 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10099
perf_swevent_get_recursion_context(void)10100 int perf_swevent_get_recursion_context(void)
10101 {
10102 return get_recursion_context(current->perf_recursion);
10103 }
10104 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10105
perf_swevent_put_recursion_context(int rctx)10106 void perf_swevent_put_recursion_context(int rctx)
10107 {
10108 put_recursion_context(current->perf_recursion, rctx);
10109 }
10110
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10111 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10112 {
10113 struct perf_sample_data data;
10114
10115 if (WARN_ON_ONCE(!regs))
10116 return;
10117
10118 perf_sample_data_init(&data, addr, 0);
10119 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10120 }
10121
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10122 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10123 {
10124 int rctx;
10125
10126 preempt_disable_notrace();
10127 rctx = perf_swevent_get_recursion_context();
10128 if (unlikely(rctx < 0))
10129 goto fail;
10130
10131 ___perf_sw_event(event_id, nr, regs, addr);
10132
10133 perf_swevent_put_recursion_context(rctx);
10134 fail:
10135 preempt_enable_notrace();
10136 }
10137
perf_swevent_read(struct perf_event * event)10138 static void perf_swevent_read(struct perf_event *event)
10139 {
10140 }
10141
perf_swevent_add(struct perf_event * event,int flags)10142 static int perf_swevent_add(struct perf_event *event, int flags)
10143 {
10144 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10145 struct hw_perf_event *hwc = &event->hw;
10146 struct hlist_head *head;
10147
10148 if (is_sampling_event(event)) {
10149 hwc->last_period = hwc->sample_period;
10150 perf_swevent_set_period(event);
10151 }
10152
10153 hwc->state = !(flags & PERF_EF_START);
10154
10155 head = find_swevent_head(swhash, event);
10156 if (WARN_ON_ONCE(!head))
10157 return -EINVAL;
10158
10159 hlist_add_head_rcu(&event->hlist_entry, head);
10160 perf_event_update_userpage(event);
10161
10162 return 0;
10163 }
10164
perf_swevent_del(struct perf_event * event,int flags)10165 static void perf_swevent_del(struct perf_event *event, int flags)
10166 {
10167 hlist_del_rcu(&event->hlist_entry);
10168 }
10169
perf_swevent_start(struct perf_event * event,int flags)10170 static void perf_swevent_start(struct perf_event *event, int flags)
10171 {
10172 event->hw.state = 0;
10173 }
10174
perf_swevent_stop(struct perf_event * event,int flags)10175 static void perf_swevent_stop(struct perf_event *event, int flags)
10176 {
10177 event->hw.state = PERF_HES_STOPPED;
10178 }
10179
10180 /* Deref the hlist from the update side */
10181 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10182 swevent_hlist_deref(struct swevent_htable *swhash)
10183 {
10184 return rcu_dereference_protected(swhash->swevent_hlist,
10185 lockdep_is_held(&swhash->hlist_mutex));
10186 }
10187
swevent_hlist_release(struct swevent_htable * swhash)10188 static void swevent_hlist_release(struct swevent_htable *swhash)
10189 {
10190 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10191
10192 if (!hlist)
10193 return;
10194
10195 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10196 kfree_rcu(hlist, rcu_head);
10197 }
10198
swevent_hlist_put_cpu(int cpu)10199 static void swevent_hlist_put_cpu(int cpu)
10200 {
10201 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10202
10203 mutex_lock(&swhash->hlist_mutex);
10204
10205 if (!--swhash->hlist_refcount)
10206 swevent_hlist_release(swhash);
10207
10208 mutex_unlock(&swhash->hlist_mutex);
10209 }
10210
swevent_hlist_put(void)10211 static void swevent_hlist_put(void)
10212 {
10213 int cpu;
10214
10215 for_each_possible_cpu(cpu)
10216 swevent_hlist_put_cpu(cpu);
10217 }
10218
swevent_hlist_get_cpu(int cpu)10219 static int swevent_hlist_get_cpu(int cpu)
10220 {
10221 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10222 int err = 0;
10223
10224 mutex_lock(&swhash->hlist_mutex);
10225 if (!swevent_hlist_deref(swhash) &&
10226 cpumask_test_cpu(cpu, perf_online_mask)) {
10227 struct swevent_hlist *hlist;
10228
10229 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10230 if (!hlist) {
10231 err = -ENOMEM;
10232 goto exit;
10233 }
10234 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10235 }
10236 swhash->hlist_refcount++;
10237 exit:
10238 mutex_unlock(&swhash->hlist_mutex);
10239
10240 return err;
10241 }
10242
swevent_hlist_get(void)10243 static int swevent_hlist_get(void)
10244 {
10245 int err, cpu, failed_cpu;
10246
10247 mutex_lock(&pmus_lock);
10248 for_each_possible_cpu(cpu) {
10249 err = swevent_hlist_get_cpu(cpu);
10250 if (err) {
10251 failed_cpu = cpu;
10252 goto fail;
10253 }
10254 }
10255 mutex_unlock(&pmus_lock);
10256 return 0;
10257 fail:
10258 for_each_possible_cpu(cpu) {
10259 if (cpu == failed_cpu)
10260 break;
10261 swevent_hlist_put_cpu(cpu);
10262 }
10263 mutex_unlock(&pmus_lock);
10264 return err;
10265 }
10266
10267 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10268
sw_perf_event_destroy(struct perf_event * event)10269 static void sw_perf_event_destroy(struct perf_event *event)
10270 {
10271 u64 event_id = event->attr.config;
10272
10273 WARN_ON(event->parent);
10274
10275 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10276 swevent_hlist_put();
10277 }
10278
10279 static struct pmu perf_cpu_clock; /* fwd declaration */
10280 static struct pmu perf_task_clock;
10281
perf_swevent_init(struct perf_event * event)10282 static int perf_swevent_init(struct perf_event *event)
10283 {
10284 u64 event_id = event->attr.config;
10285
10286 if (event->attr.type != PERF_TYPE_SOFTWARE)
10287 return -ENOENT;
10288
10289 /*
10290 * no branch sampling for software events
10291 */
10292 if (has_branch_stack(event))
10293 return -EOPNOTSUPP;
10294
10295 switch (event_id) {
10296 case PERF_COUNT_SW_CPU_CLOCK:
10297 event->attr.type = perf_cpu_clock.type;
10298 return -ENOENT;
10299 case PERF_COUNT_SW_TASK_CLOCK:
10300 event->attr.type = perf_task_clock.type;
10301 return -ENOENT;
10302
10303 default:
10304 break;
10305 }
10306
10307 if (event_id >= PERF_COUNT_SW_MAX)
10308 return -ENOENT;
10309
10310 if (!event->parent) {
10311 int err;
10312
10313 err = swevent_hlist_get();
10314 if (err)
10315 return err;
10316
10317 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10318 event->destroy = sw_perf_event_destroy;
10319 }
10320
10321 return 0;
10322 }
10323
10324 static struct pmu perf_swevent = {
10325 .task_ctx_nr = perf_sw_context,
10326
10327 .capabilities = PERF_PMU_CAP_NO_NMI,
10328
10329 .event_init = perf_swevent_init,
10330 .add = perf_swevent_add,
10331 .del = perf_swevent_del,
10332 .start = perf_swevent_start,
10333 .stop = perf_swevent_stop,
10334 .read = perf_swevent_read,
10335 };
10336
10337 #ifdef CONFIG_EVENT_TRACING
10338
tp_perf_event_destroy(struct perf_event * event)10339 static void tp_perf_event_destroy(struct perf_event *event)
10340 {
10341 perf_trace_destroy(event);
10342 }
10343
perf_tp_event_init(struct perf_event * event)10344 static int perf_tp_event_init(struct perf_event *event)
10345 {
10346 int err;
10347
10348 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10349 return -ENOENT;
10350
10351 /*
10352 * no branch sampling for tracepoint events
10353 */
10354 if (has_branch_stack(event))
10355 return -EOPNOTSUPP;
10356
10357 err = perf_trace_init(event);
10358 if (err)
10359 return err;
10360
10361 event->destroy = tp_perf_event_destroy;
10362
10363 return 0;
10364 }
10365
10366 static struct pmu perf_tracepoint = {
10367 .task_ctx_nr = perf_sw_context,
10368
10369 .event_init = perf_tp_event_init,
10370 .add = perf_trace_add,
10371 .del = perf_trace_del,
10372 .start = perf_swevent_start,
10373 .stop = perf_swevent_stop,
10374 .read = perf_swevent_read,
10375 };
10376
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)10377 static int perf_tp_filter_match(struct perf_event *event,
10378 struct perf_sample_data *data)
10379 {
10380 void *record = data->raw->frag.data;
10381
10382 /* only top level events have filters set */
10383 if (event->parent)
10384 event = event->parent;
10385
10386 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10387 return 1;
10388 return 0;
10389 }
10390
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10391 static int perf_tp_event_match(struct perf_event *event,
10392 struct perf_sample_data *data,
10393 struct pt_regs *regs)
10394 {
10395 if (event->hw.state & PERF_HES_STOPPED)
10396 return 0;
10397 /*
10398 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10399 */
10400 if (event->attr.exclude_kernel && !user_mode(regs))
10401 return 0;
10402
10403 if (!perf_tp_filter_match(event, data))
10404 return 0;
10405
10406 return 1;
10407 }
10408
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10409 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10410 struct trace_event_call *call, u64 count,
10411 struct pt_regs *regs, struct hlist_head *head,
10412 struct task_struct *task)
10413 {
10414 if (bpf_prog_array_valid(call)) {
10415 *(struct pt_regs **)raw_data = regs;
10416 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10417 perf_swevent_put_recursion_context(rctx);
10418 return;
10419 }
10420 }
10421 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10422 rctx, task);
10423 }
10424 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10425
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event * event)10426 static void __perf_tp_event_target_task(u64 count, void *record,
10427 struct pt_regs *regs,
10428 struct perf_sample_data *data,
10429 struct perf_event *event)
10430 {
10431 struct trace_entry *entry = record;
10432
10433 if (event->attr.config != entry->type)
10434 return;
10435 /* Cannot deliver synchronous signal to other task. */
10436 if (event->attr.sigtrap)
10437 return;
10438 if (perf_tp_event_match(event, data, regs))
10439 perf_swevent_event(event, count, data, regs);
10440 }
10441
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event_context * ctx)10442 static void perf_tp_event_target_task(u64 count, void *record,
10443 struct pt_regs *regs,
10444 struct perf_sample_data *data,
10445 struct perf_event_context *ctx)
10446 {
10447 unsigned int cpu = smp_processor_id();
10448 struct pmu *pmu = &perf_tracepoint;
10449 struct perf_event *event, *sibling;
10450
10451 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10452 __perf_tp_event_target_task(count, record, regs, data, event);
10453 for_each_sibling_event(sibling, event)
10454 __perf_tp_event_target_task(count, record, regs, data, sibling);
10455 }
10456
10457 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10458 __perf_tp_event_target_task(count, record, regs, data, event);
10459 for_each_sibling_event(sibling, event)
10460 __perf_tp_event_target_task(count, record, regs, data, sibling);
10461 }
10462 }
10463
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10464 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10465 struct pt_regs *regs, struct hlist_head *head, int rctx,
10466 struct task_struct *task)
10467 {
10468 struct perf_sample_data data;
10469 struct perf_event *event;
10470
10471 struct perf_raw_record raw = {
10472 .frag = {
10473 .size = entry_size,
10474 .data = record,
10475 },
10476 };
10477
10478 perf_sample_data_init(&data, 0, 0);
10479 perf_sample_save_raw_data(&data, &raw);
10480
10481 perf_trace_buf_update(record, event_type);
10482
10483 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10484 if (perf_tp_event_match(event, &data, regs)) {
10485 perf_swevent_event(event, count, &data, regs);
10486
10487 /*
10488 * Here use the same on-stack perf_sample_data,
10489 * some members in data are event-specific and
10490 * need to be re-computed for different sweveents.
10491 * Re-initialize data->sample_flags safely to avoid
10492 * the problem that next event skips preparing data
10493 * because data->sample_flags is set.
10494 */
10495 perf_sample_data_init(&data, 0, 0);
10496 perf_sample_save_raw_data(&data, &raw);
10497 }
10498 }
10499
10500 /*
10501 * If we got specified a target task, also iterate its context and
10502 * deliver this event there too.
10503 */
10504 if (task && task != current) {
10505 struct perf_event_context *ctx;
10506
10507 rcu_read_lock();
10508 ctx = rcu_dereference(task->perf_event_ctxp);
10509 if (!ctx)
10510 goto unlock;
10511
10512 raw_spin_lock(&ctx->lock);
10513 perf_tp_event_target_task(count, record, regs, &data, ctx);
10514 raw_spin_unlock(&ctx->lock);
10515 unlock:
10516 rcu_read_unlock();
10517 }
10518
10519 perf_swevent_put_recursion_context(rctx);
10520 }
10521 EXPORT_SYMBOL_GPL(perf_tp_event);
10522
10523 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10524 /*
10525 * Flags in config, used by dynamic PMU kprobe and uprobe
10526 * The flags should match following PMU_FORMAT_ATTR().
10527 *
10528 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10529 * if not set, create kprobe/uprobe
10530 *
10531 * The following values specify a reference counter (or semaphore in the
10532 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10533 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10534 *
10535 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10536 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10537 */
10538 enum perf_probe_config {
10539 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10540 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10541 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10542 };
10543
10544 PMU_FORMAT_ATTR(retprobe, "config:0");
10545 #endif
10546
10547 #ifdef CONFIG_KPROBE_EVENTS
10548 static struct attribute *kprobe_attrs[] = {
10549 &format_attr_retprobe.attr,
10550 NULL,
10551 };
10552
10553 static struct attribute_group kprobe_format_group = {
10554 .name = "format",
10555 .attrs = kprobe_attrs,
10556 };
10557
10558 static const struct attribute_group *kprobe_attr_groups[] = {
10559 &kprobe_format_group,
10560 NULL,
10561 };
10562
10563 static int perf_kprobe_event_init(struct perf_event *event);
10564 static struct pmu perf_kprobe = {
10565 .task_ctx_nr = perf_sw_context,
10566 .event_init = perf_kprobe_event_init,
10567 .add = perf_trace_add,
10568 .del = perf_trace_del,
10569 .start = perf_swevent_start,
10570 .stop = perf_swevent_stop,
10571 .read = perf_swevent_read,
10572 .attr_groups = kprobe_attr_groups,
10573 };
10574
perf_kprobe_event_init(struct perf_event * event)10575 static int perf_kprobe_event_init(struct perf_event *event)
10576 {
10577 int err;
10578 bool is_retprobe;
10579
10580 if (event->attr.type != perf_kprobe.type)
10581 return -ENOENT;
10582
10583 if (!perfmon_capable())
10584 return -EACCES;
10585
10586 /*
10587 * no branch sampling for probe events
10588 */
10589 if (has_branch_stack(event))
10590 return -EOPNOTSUPP;
10591
10592 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10593 err = perf_kprobe_init(event, is_retprobe);
10594 if (err)
10595 return err;
10596
10597 event->destroy = perf_kprobe_destroy;
10598
10599 return 0;
10600 }
10601 #endif /* CONFIG_KPROBE_EVENTS */
10602
10603 #ifdef CONFIG_UPROBE_EVENTS
10604 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10605
10606 static struct attribute *uprobe_attrs[] = {
10607 &format_attr_retprobe.attr,
10608 &format_attr_ref_ctr_offset.attr,
10609 NULL,
10610 };
10611
10612 static struct attribute_group uprobe_format_group = {
10613 .name = "format",
10614 .attrs = uprobe_attrs,
10615 };
10616
10617 static const struct attribute_group *uprobe_attr_groups[] = {
10618 &uprobe_format_group,
10619 NULL,
10620 };
10621
10622 static int perf_uprobe_event_init(struct perf_event *event);
10623 static struct pmu perf_uprobe = {
10624 .task_ctx_nr = perf_sw_context,
10625 .event_init = perf_uprobe_event_init,
10626 .add = perf_trace_add,
10627 .del = perf_trace_del,
10628 .start = perf_swevent_start,
10629 .stop = perf_swevent_stop,
10630 .read = perf_swevent_read,
10631 .attr_groups = uprobe_attr_groups,
10632 };
10633
perf_uprobe_event_init(struct perf_event * event)10634 static int perf_uprobe_event_init(struct perf_event *event)
10635 {
10636 int err;
10637 unsigned long ref_ctr_offset;
10638 bool is_retprobe;
10639
10640 if (event->attr.type != perf_uprobe.type)
10641 return -ENOENT;
10642
10643 if (!perfmon_capable())
10644 return -EACCES;
10645
10646 /*
10647 * no branch sampling for probe events
10648 */
10649 if (has_branch_stack(event))
10650 return -EOPNOTSUPP;
10651
10652 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10653 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10654 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10655 if (err)
10656 return err;
10657
10658 event->destroy = perf_uprobe_destroy;
10659
10660 return 0;
10661 }
10662 #endif /* CONFIG_UPROBE_EVENTS */
10663
perf_tp_register(void)10664 static inline void perf_tp_register(void)
10665 {
10666 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10667 #ifdef CONFIG_KPROBE_EVENTS
10668 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10669 #endif
10670 #ifdef CONFIG_UPROBE_EVENTS
10671 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10672 #endif
10673 }
10674
perf_event_free_filter(struct perf_event * event)10675 static void perf_event_free_filter(struct perf_event *event)
10676 {
10677 ftrace_profile_free_filter(event);
10678 }
10679
10680 /*
10681 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10682 * with perf_event_open()
10683 */
perf_event_is_tracing(struct perf_event * event)10684 static inline bool perf_event_is_tracing(struct perf_event *event)
10685 {
10686 if (event->pmu == &perf_tracepoint)
10687 return true;
10688 #ifdef CONFIG_KPROBE_EVENTS
10689 if (event->pmu == &perf_kprobe)
10690 return true;
10691 #endif
10692 #ifdef CONFIG_UPROBE_EVENTS
10693 if (event->pmu == &perf_uprobe)
10694 return true;
10695 #endif
10696 return false;
10697 }
10698
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10699 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10700 u64 bpf_cookie)
10701 {
10702 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10703
10704 if (!perf_event_is_tracing(event))
10705 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10706
10707 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10708 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10709 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10710 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10711 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10712 /* bpf programs can only be attached to u/kprobe or tracepoint */
10713 return -EINVAL;
10714
10715 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10716 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10717 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10718 return -EINVAL;
10719
10720 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10721 /* only uprobe programs are allowed to be sleepable */
10722 return -EINVAL;
10723
10724 /* Kprobe override only works for kprobes, not uprobes. */
10725 if (prog->kprobe_override && !is_kprobe)
10726 return -EINVAL;
10727
10728 if (is_tracepoint || is_syscall_tp) {
10729 int off = trace_event_get_offsets(event->tp_event);
10730
10731 if (prog->aux->max_ctx_offset > off)
10732 return -EACCES;
10733 }
10734
10735 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10736 }
10737
perf_event_free_bpf_prog(struct perf_event * event)10738 void perf_event_free_bpf_prog(struct perf_event *event)
10739 {
10740 if (!perf_event_is_tracing(event)) {
10741 perf_event_free_bpf_handler(event);
10742 return;
10743 }
10744 perf_event_detach_bpf_prog(event);
10745 }
10746
10747 #else
10748
perf_tp_register(void)10749 static inline void perf_tp_register(void)
10750 {
10751 }
10752
perf_event_free_filter(struct perf_event * event)10753 static void perf_event_free_filter(struct perf_event *event)
10754 {
10755 }
10756
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10757 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10758 u64 bpf_cookie)
10759 {
10760 return -ENOENT;
10761 }
10762
perf_event_free_bpf_prog(struct perf_event * event)10763 void perf_event_free_bpf_prog(struct perf_event *event)
10764 {
10765 }
10766 #endif /* CONFIG_EVENT_TRACING */
10767
10768 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10769 void perf_bp_event(struct perf_event *bp, void *data)
10770 {
10771 struct perf_sample_data sample;
10772 struct pt_regs *regs = data;
10773
10774 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10775
10776 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10777 perf_swevent_event(bp, 1, &sample, regs);
10778 }
10779 #endif
10780
10781 /*
10782 * Allocate a new address filter
10783 */
10784 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10785 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10786 {
10787 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10788 struct perf_addr_filter *filter;
10789
10790 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10791 if (!filter)
10792 return NULL;
10793
10794 INIT_LIST_HEAD(&filter->entry);
10795 list_add_tail(&filter->entry, filters);
10796
10797 return filter;
10798 }
10799
free_filters_list(struct list_head * filters)10800 static void free_filters_list(struct list_head *filters)
10801 {
10802 struct perf_addr_filter *filter, *iter;
10803
10804 list_for_each_entry_safe(filter, iter, filters, entry) {
10805 path_put(&filter->path);
10806 list_del(&filter->entry);
10807 kfree(filter);
10808 }
10809 }
10810
10811 /*
10812 * Free existing address filters and optionally install new ones
10813 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10814 static void perf_addr_filters_splice(struct perf_event *event,
10815 struct list_head *head)
10816 {
10817 unsigned long flags;
10818 LIST_HEAD(list);
10819
10820 if (!has_addr_filter(event))
10821 return;
10822
10823 /* don't bother with children, they don't have their own filters */
10824 if (event->parent)
10825 return;
10826
10827 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10828
10829 list_splice_init(&event->addr_filters.list, &list);
10830 if (head)
10831 list_splice(head, &event->addr_filters.list);
10832
10833 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10834
10835 free_filters_list(&list);
10836 }
10837
10838 /*
10839 * Scan through mm's vmas and see if one of them matches the
10840 * @filter; if so, adjust filter's address range.
10841 * Called with mm::mmap_lock down for reading.
10842 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10843 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10844 struct mm_struct *mm,
10845 struct perf_addr_filter_range *fr)
10846 {
10847 struct vm_area_struct *vma;
10848 VMA_ITERATOR(vmi, mm, 0);
10849
10850 for_each_vma(vmi, vma) {
10851 if (!vma->vm_file)
10852 continue;
10853
10854 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10855 return;
10856 }
10857 }
10858
10859 /*
10860 * Update event's address range filters based on the
10861 * task's existing mappings, if any.
10862 */
perf_event_addr_filters_apply(struct perf_event * event)10863 static void perf_event_addr_filters_apply(struct perf_event *event)
10864 {
10865 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10866 struct task_struct *task = READ_ONCE(event->ctx->task);
10867 struct perf_addr_filter *filter;
10868 struct mm_struct *mm = NULL;
10869 unsigned int count = 0;
10870 unsigned long flags;
10871
10872 /*
10873 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10874 * will stop on the parent's child_mutex that our caller is also holding
10875 */
10876 if (task == TASK_TOMBSTONE)
10877 return;
10878
10879 if (ifh->nr_file_filters) {
10880 mm = get_task_mm(task);
10881 if (!mm)
10882 goto restart;
10883
10884 mmap_read_lock(mm);
10885 }
10886
10887 raw_spin_lock_irqsave(&ifh->lock, flags);
10888 list_for_each_entry(filter, &ifh->list, entry) {
10889 if (filter->path.dentry) {
10890 /*
10891 * Adjust base offset if the filter is associated to a
10892 * binary that needs to be mapped:
10893 */
10894 event->addr_filter_ranges[count].start = 0;
10895 event->addr_filter_ranges[count].size = 0;
10896
10897 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10898 } else {
10899 event->addr_filter_ranges[count].start = filter->offset;
10900 event->addr_filter_ranges[count].size = filter->size;
10901 }
10902
10903 count++;
10904 }
10905
10906 event->addr_filters_gen++;
10907 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10908
10909 if (ifh->nr_file_filters) {
10910 mmap_read_unlock(mm);
10911
10912 mmput(mm);
10913 }
10914
10915 restart:
10916 perf_event_stop(event, 1);
10917 }
10918
10919 /*
10920 * Address range filtering: limiting the data to certain
10921 * instruction address ranges. Filters are ioctl()ed to us from
10922 * userspace as ascii strings.
10923 *
10924 * Filter string format:
10925 *
10926 * ACTION RANGE_SPEC
10927 * where ACTION is one of the
10928 * * "filter": limit the trace to this region
10929 * * "start": start tracing from this address
10930 * * "stop": stop tracing at this address/region;
10931 * RANGE_SPEC is
10932 * * for kernel addresses: <start address>[/<size>]
10933 * * for object files: <start address>[/<size>]@</path/to/object/file>
10934 *
10935 * if <size> is not specified or is zero, the range is treated as a single
10936 * address; not valid for ACTION=="filter".
10937 */
10938 enum {
10939 IF_ACT_NONE = -1,
10940 IF_ACT_FILTER,
10941 IF_ACT_START,
10942 IF_ACT_STOP,
10943 IF_SRC_FILE,
10944 IF_SRC_KERNEL,
10945 IF_SRC_FILEADDR,
10946 IF_SRC_KERNELADDR,
10947 };
10948
10949 enum {
10950 IF_STATE_ACTION = 0,
10951 IF_STATE_SOURCE,
10952 IF_STATE_END,
10953 };
10954
10955 static const match_table_t if_tokens = {
10956 { IF_ACT_FILTER, "filter" },
10957 { IF_ACT_START, "start" },
10958 { IF_ACT_STOP, "stop" },
10959 { IF_SRC_FILE, "%u/%u@%s" },
10960 { IF_SRC_KERNEL, "%u/%u" },
10961 { IF_SRC_FILEADDR, "%u@%s" },
10962 { IF_SRC_KERNELADDR, "%u" },
10963 { IF_ACT_NONE, NULL },
10964 };
10965
10966 /*
10967 * Address filter string parser
10968 */
10969 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10970 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10971 struct list_head *filters)
10972 {
10973 struct perf_addr_filter *filter = NULL;
10974 char *start, *orig, *filename = NULL;
10975 substring_t args[MAX_OPT_ARGS];
10976 int state = IF_STATE_ACTION, token;
10977 unsigned int kernel = 0;
10978 int ret = -EINVAL;
10979
10980 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10981 if (!fstr)
10982 return -ENOMEM;
10983
10984 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10985 static const enum perf_addr_filter_action_t actions[] = {
10986 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10987 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10988 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10989 };
10990 ret = -EINVAL;
10991
10992 if (!*start)
10993 continue;
10994
10995 /* filter definition begins */
10996 if (state == IF_STATE_ACTION) {
10997 filter = perf_addr_filter_new(event, filters);
10998 if (!filter)
10999 goto fail;
11000 }
11001
11002 token = match_token(start, if_tokens, args);
11003 switch (token) {
11004 case IF_ACT_FILTER:
11005 case IF_ACT_START:
11006 case IF_ACT_STOP:
11007 if (state != IF_STATE_ACTION)
11008 goto fail;
11009
11010 filter->action = actions[token];
11011 state = IF_STATE_SOURCE;
11012 break;
11013
11014 case IF_SRC_KERNELADDR:
11015 case IF_SRC_KERNEL:
11016 kernel = 1;
11017 fallthrough;
11018
11019 case IF_SRC_FILEADDR:
11020 case IF_SRC_FILE:
11021 if (state != IF_STATE_SOURCE)
11022 goto fail;
11023
11024 *args[0].to = 0;
11025 ret = kstrtoul(args[0].from, 0, &filter->offset);
11026 if (ret)
11027 goto fail;
11028
11029 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11030 *args[1].to = 0;
11031 ret = kstrtoul(args[1].from, 0, &filter->size);
11032 if (ret)
11033 goto fail;
11034 }
11035
11036 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11037 int fpos = token == IF_SRC_FILE ? 2 : 1;
11038
11039 kfree(filename);
11040 filename = match_strdup(&args[fpos]);
11041 if (!filename) {
11042 ret = -ENOMEM;
11043 goto fail;
11044 }
11045 }
11046
11047 state = IF_STATE_END;
11048 break;
11049
11050 default:
11051 goto fail;
11052 }
11053
11054 /*
11055 * Filter definition is fully parsed, validate and install it.
11056 * Make sure that it doesn't contradict itself or the event's
11057 * attribute.
11058 */
11059 if (state == IF_STATE_END) {
11060 ret = -EINVAL;
11061
11062 /*
11063 * ACTION "filter" must have a non-zero length region
11064 * specified.
11065 */
11066 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11067 !filter->size)
11068 goto fail;
11069
11070 if (!kernel) {
11071 if (!filename)
11072 goto fail;
11073
11074 /*
11075 * For now, we only support file-based filters
11076 * in per-task events; doing so for CPU-wide
11077 * events requires additional context switching
11078 * trickery, since same object code will be
11079 * mapped at different virtual addresses in
11080 * different processes.
11081 */
11082 ret = -EOPNOTSUPP;
11083 if (!event->ctx->task)
11084 goto fail;
11085
11086 /* look up the path and grab its inode */
11087 ret = kern_path(filename, LOOKUP_FOLLOW,
11088 &filter->path);
11089 if (ret)
11090 goto fail;
11091
11092 ret = -EINVAL;
11093 if (!filter->path.dentry ||
11094 !S_ISREG(d_inode(filter->path.dentry)
11095 ->i_mode))
11096 goto fail;
11097
11098 event->addr_filters.nr_file_filters++;
11099 }
11100
11101 /* ready to consume more filters */
11102 kfree(filename);
11103 filename = NULL;
11104 state = IF_STATE_ACTION;
11105 filter = NULL;
11106 kernel = 0;
11107 }
11108 }
11109
11110 if (state != IF_STATE_ACTION)
11111 goto fail;
11112
11113 kfree(filename);
11114 kfree(orig);
11115
11116 return 0;
11117
11118 fail:
11119 kfree(filename);
11120 free_filters_list(filters);
11121 kfree(orig);
11122
11123 return ret;
11124 }
11125
11126 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11127 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11128 {
11129 LIST_HEAD(filters);
11130 int ret;
11131
11132 /*
11133 * Since this is called in perf_ioctl() path, we're already holding
11134 * ctx::mutex.
11135 */
11136 lockdep_assert_held(&event->ctx->mutex);
11137
11138 if (WARN_ON_ONCE(event->parent))
11139 return -EINVAL;
11140
11141 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11142 if (ret)
11143 goto fail_clear_files;
11144
11145 ret = event->pmu->addr_filters_validate(&filters);
11146 if (ret)
11147 goto fail_free_filters;
11148
11149 /* remove existing filters, if any */
11150 perf_addr_filters_splice(event, &filters);
11151
11152 /* install new filters */
11153 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11154
11155 return ret;
11156
11157 fail_free_filters:
11158 free_filters_list(&filters);
11159
11160 fail_clear_files:
11161 event->addr_filters.nr_file_filters = 0;
11162
11163 return ret;
11164 }
11165
perf_event_set_filter(struct perf_event * event,void __user * arg)11166 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11167 {
11168 int ret = -EINVAL;
11169 char *filter_str;
11170
11171 filter_str = strndup_user(arg, PAGE_SIZE);
11172 if (IS_ERR(filter_str))
11173 return PTR_ERR(filter_str);
11174
11175 #ifdef CONFIG_EVENT_TRACING
11176 if (perf_event_is_tracing(event)) {
11177 struct perf_event_context *ctx = event->ctx;
11178
11179 /*
11180 * Beware, here be dragons!!
11181 *
11182 * the tracepoint muck will deadlock against ctx->mutex, but
11183 * the tracepoint stuff does not actually need it. So
11184 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11185 * already have a reference on ctx.
11186 *
11187 * This can result in event getting moved to a different ctx,
11188 * but that does not affect the tracepoint state.
11189 */
11190 mutex_unlock(&ctx->mutex);
11191 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11192 mutex_lock(&ctx->mutex);
11193 } else
11194 #endif
11195 if (has_addr_filter(event))
11196 ret = perf_event_set_addr_filter(event, filter_str);
11197
11198 kfree(filter_str);
11199 return ret;
11200 }
11201
11202 /*
11203 * hrtimer based swevent callback
11204 */
11205
perf_swevent_hrtimer(struct hrtimer * hrtimer)11206 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11207 {
11208 enum hrtimer_restart ret = HRTIMER_RESTART;
11209 struct perf_sample_data data;
11210 struct pt_regs *regs;
11211 struct perf_event *event;
11212 u64 period;
11213
11214 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11215
11216 if (event->state != PERF_EVENT_STATE_ACTIVE)
11217 return HRTIMER_NORESTART;
11218
11219 event->pmu->read(event);
11220
11221 perf_sample_data_init(&data, 0, event->hw.last_period);
11222 regs = get_irq_regs();
11223
11224 if (regs && !perf_exclude_event(event, regs)) {
11225 if (!(event->attr.exclude_idle && is_idle_task(current)))
11226 if (__perf_event_overflow(event, 1, &data, regs))
11227 ret = HRTIMER_NORESTART;
11228 }
11229
11230 period = max_t(u64, 10000, event->hw.sample_period);
11231 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11232
11233 return ret;
11234 }
11235
perf_swevent_start_hrtimer(struct perf_event * event)11236 static void perf_swevent_start_hrtimer(struct perf_event *event)
11237 {
11238 struct hw_perf_event *hwc = &event->hw;
11239 s64 period;
11240
11241 if (!is_sampling_event(event))
11242 return;
11243
11244 period = local64_read(&hwc->period_left);
11245 if (period) {
11246 if (period < 0)
11247 period = 10000;
11248
11249 local64_set(&hwc->period_left, 0);
11250 } else {
11251 period = max_t(u64, 10000, hwc->sample_period);
11252 }
11253 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11254 HRTIMER_MODE_REL_PINNED_HARD);
11255 }
11256
perf_swevent_cancel_hrtimer(struct perf_event * event)11257 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11258 {
11259 struct hw_perf_event *hwc = &event->hw;
11260
11261 if (is_sampling_event(event)) {
11262 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11263 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11264
11265 hrtimer_cancel(&hwc->hrtimer);
11266 }
11267 }
11268
perf_swevent_init_hrtimer(struct perf_event * event)11269 static void perf_swevent_init_hrtimer(struct perf_event *event)
11270 {
11271 struct hw_perf_event *hwc = &event->hw;
11272
11273 if (!is_sampling_event(event))
11274 return;
11275
11276 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11277 hwc->hrtimer.function = perf_swevent_hrtimer;
11278
11279 /*
11280 * Since hrtimers have a fixed rate, we can do a static freq->period
11281 * mapping and avoid the whole period adjust feedback stuff.
11282 */
11283 if (event->attr.freq) {
11284 long freq = event->attr.sample_freq;
11285
11286 event->attr.sample_period = NSEC_PER_SEC / freq;
11287 hwc->sample_period = event->attr.sample_period;
11288 local64_set(&hwc->period_left, hwc->sample_period);
11289 hwc->last_period = hwc->sample_period;
11290 event->attr.freq = 0;
11291 }
11292 }
11293
11294 /*
11295 * Software event: cpu wall time clock
11296 */
11297
cpu_clock_event_update(struct perf_event * event)11298 static void cpu_clock_event_update(struct perf_event *event)
11299 {
11300 s64 prev;
11301 u64 now;
11302
11303 now = local_clock();
11304 prev = local64_xchg(&event->hw.prev_count, now);
11305 local64_add(now - prev, &event->count);
11306 }
11307
cpu_clock_event_start(struct perf_event * event,int flags)11308 static void cpu_clock_event_start(struct perf_event *event, int flags)
11309 {
11310 local64_set(&event->hw.prev_count, local_clock());
11311 perf_swevent_start_hrtimer(event);
11312 }
11313
cpu_clock_event_stop(struct perf_event * event,int flags)11314 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11315 {
11316 perf_swevent_cancel_hrtimer(event);
11317 cpu_clock_event_update(event);
11318 }
11319
cpu_clock_event_add(struct perf_event * event,int flags)11320 static int cpu_clock_event_add(struct perf_event *event, int flags)
11321 {
11322 if (flags & PERF_EF_START)
11323 cpu_clock_event_start(event, flags);
11324 perf_event_update_userpage(event);
11325
11326 return 0;
11327 }
11328
cpu_clock_event_del(struct perf_event * event,int flags)11329 static void cpu_clock_event_del(struct perf_event *event, int flags)
11330 {
11331 cpu_clock_event_stop(event, flags);
11332 }
11333
cpu_clock_event_read(struct perf_event * event)11334 static void cpu_clock_event_read(struct perf_event *event)
11335 {
11336 cpu_clock_event_update(event);
11337 }
11338
cpu_clock_event_init(struct perf_event * event)11339 static int cpu_clock_event_init(struct perf_event *event)
11340 {
11341 if (event->attr.type != perf_cpu_clock.type)
11342 return -ENOENT;
11343
11344 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11345 return -ENOENT;
11346
11347 /*
11348 * no branch sampling for software events
11349 */
11350 if (has_branch_stack(event))
11351 return -EOPNOTSUPP;
11352
11353 perf_swevent_init_hrtimer(event);
11354
11355 return 0;
11356 }
11357
11358 static struct pmu perf_cpu_clock = {
11359 .task_ctx_nr = perf_sw_context,
11360
11361 .capabilities = PERF_PMU_CAP_NO_NMI,
11362 .dev = PMU_NULL_DEV,
11363
11364 .event_init = cpu_clock_event_init,
11365 .add = cpu_clock_event_add,
11366 .del = cpu_clock_event_del,
11367 .start = cpu_clock_event_start,
11368 .stop = cpu_clock_event_stop,
11369 .read = cpu_clock_event_read,
11370 };
11371
11372 /*
11373 * Software event: task time clock
11374 */
11375
task_clock_event_update(struct perf_event * event,u64 now)11376 static void task_clock_event_update(struct perf_event *event, u64 now)
11377 {
11378 u64 prev;
11379 s64 delta;
11380
11381 prev = local64_xchg(&event->hw.prev_count, now);
11382 delta = now - prev;
11383 local64_add(delta, &event->count);
11384 }
11385
task_clock_event_start(struct perf_event * event,int flags)11386 static void task_clock_event_start(struct perf_event *event, int flags)
11387 {
11388 local64_set(&event->hw.prev_count, event->ctx->time);
11389 perf_swevent_start_hrtimer(event);
11390 }
11391
task_clock_event_stop(struct perf_event * event,int flags)11392 static void task_clock_event_stop(struct perf_event *event, int flags)
11393 {
11394 perf_swevent_cancel_hrtimer(event);
11395 task_clock_event_update(event, event->ctx->time);
11396 }
11397
task_clock_event_add(struct perf_event * event,int flags)11398 static int task_clock_event_add(struct perf_event *event, int flags)
11399 {
11400 if (flags & PERF_EF_START)
11401 task_clock_event_start(event, flags);
11402 perf_event_update_userpage(event);
11403
11404 return 0;
11405 }
11406
task_clock_event_del(struct perf_event * event,int flags)11407 static void task_clock_event_del(struct perf_event *event, int flags)
11408 {
11409 task_clock_event_stop(event, PERF_EF_UPDATE);
11410 }
11411
task_clock_event_read(struct perf_event * event)11412 static void task_clock_event_read(struct perf_event *event)
11413 {
11414 u64 now = perf_clock();
11415 u64 delta = now - event->ctx->timestamp;
11416 u64 time = event->ctx->time + delta;
11417
11418 task_clock_event_update(event, time);
11419 }
11420
task_clock_event_init(struct perf_event * event)11421 static int task_clock_event_init(struct perf_event *event)
11422 {
11423 if (event->attr.type != perf_task_clock.type)
11424 return -ENOENT;
11425
11426 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11427 return -ENOENT;
11428
11429 /*
11430 * no branch sampling for software events
11431 */
11432 if (has_branch_stack(event))
11433 return -EOPNOTSUPP;
11434
11435 perf_swevent_init_hrtimer(event);
11436
11437 return 0;
11438 }
11439
11440 static struct pmu perf_task_clock = {
11441 .task_ctx_nr = perf_sw_context,
11442
11443 .capabilities = PERF_PMU_CAP_NO_NMI,
11444 .dev = PMU_NULL_DEV,
11445
11446 .event_init = task_clock_event_init,
11447 .add = task_clock_event_add,
11448 .del = task_clock_event_del,
11449 .start = task_clock_event_start,
11450 .stop = task_clock_event_stop,
11451 .read = task_clock_event_read,
11452 };
11453
perf_pmu_nop_void(struct pmu * pmu)11454 static void perf_pmu_nop_void(struct pmu *pmu)
11455 {
11456 }
11457
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11458 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11459 {
11460 }
11461
perf_pmu_nop_int(struct pmu * pmu)11462 static int perf_pmu_nop_int(struct pmu *pmu)
11463 {
11464 return 0;
11465 }
11466
perf_event_nop_int(struct perf_event * event,u64 value)11467 static int perf_event_nop_int(struct perf_event *event, u64 value)
11468 {
11469 return 0;
11470 }
11471
11472 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11473
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11474 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11475 {
11476 __this_cpu_write(nop_txn_flags, flags);
11477
11478 if (flags & ~PERF_PMU_TXN_ADD)
11479 return;
11480
11481 perf_pmu_disable(pmu);
11482 }
11483
perf_pmu_commit_txn(struct pmu * pmu)11484 static int perf_pmu_commit_txn(struct pmu *pmu)
11485 {
11486 unsigned int flags = __this_cpu_read(nop_txn_flags);
11487
11488 __this_cpu_write(nop_txn_flags, 0);
11489
11490 if (flags & ~PERF_PMU_TXN_ADD)
11491 return 0;
11492
11493 perf_pmu_enable(pmu);
11494 return 0;
11495 }
11496
perf_pmu_cancel_txn(struct pmu * pmu)11497 static void perf_pmu_cancel_txn(struct pmu *pmu)
11498 {
11499 unsigned int flags = __this_cpu_read(nop_txn_flags);
11500
11501 __this_cpu_write(nop_txn_flags, 0);
11502
11503 if (flags & ~PERF_PMU_TXN_ADD)
11504 return;
11505
11506 perf_pmu_enable(pmu);
11507 }
11508
perf_event_idx_default(struct perf_event * event)11509 static int perf_event_idx_default(struct perf_event *event)
11510 {
11511 return 0;
11512 }
11513
free_pmu_context(struct pmu * pmu)11514 static void free_pmu_context(struct pmu *pmu)
11515 {
11516 free_percpu(pmu->cpu_pmu_context);
11517 }
11518
11519 /*
11520 * Let userspace know that this PMU supports address range filtering:
11521 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11522 static ssize_t nr_addr_filters_show(struct device *dev,
11523 struct device_attribute *attr,
11524 char *page)
11525 {
11526 struct pmu *pmu = dev_get_drvdata(dev);
11527
11528 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11529 }
11530 DEVICE_ATTR_RO(nr_addr_filters);
11531
11532 static struct idr pmu_idr;
11533
11534 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11535 type_show(struct device *dev, struct device_attribute *attr, char *page)
11536 {
11537 struct pmu *pmu = dev_get_drvdata(dev);
11538
11539 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11540 }
11541 static DEVICE_ATTR_RO(type);
11542
11543 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11544 perf_event_mux_interval_ms_show(struct device *dev,
11545 struct device_attribute *attr,
11546 char *page)
11547 {
11548 struct pmu *pmu = dev_get_drvdata(dev);
11549
11550 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11551 }
11552
11553 static DEFINE_MUTEX(mux_interval_mutex);
11554
11555 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11556 perf_event_mux_interval_ms_store(struct device *dev,
11557 struct device_attribute *attr,
11558 const char *buf, size_t count)
11559 {
11560 struct pmu *pmu = dev_get_drvdata(dev);
11561 int timer, cpu, ret;
11562
11563 ret = kstrtoint(buf, 0, &timer);
11564 if (ret)
11565 return ret;
11566
11567 if (timer < 1)
11568 return -EINVAL;
11569
11570 /* same value, noting to do */
11571 if (timer == pmu->hrtimer_interval_ms)
11572 return count;
11573
11574 mutex_lock(&mux_interval_mutex);
11575 pmu->hrtimer_interval_ms = timer;
11576
11577 /* update all cpuctx for this PMU */
11578 cpus_read_lock();
11579 for_each_online_cpu(cpu) {
11580 struct perf_cpu_pmu_context *cpc;
11581 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11582 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11583
11584 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11585 }
11586 cpus_read_unlock();
11587 mutex_unlock(&mux_interval_mutex);
11588
11589 return count;
11590 }
11591 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11592
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11593 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11594 {
11595 switch (scope) {
11596 case PERF_PMU_SCOPE_CORE:
11597 return topology_sibling_cpumask(cpu);
11598 case PERF_PMU_SCOPE_DIE:
11599 return topology_die_cpumask(cpu);
11600 case PERF_PMU_SCOPE_CLUSTER:
11601 return topology_cluster_cpumask(cpu);
11602 case PERF_PMU_SCOPE_PKG:
11603 return topology_core_cpumask(cpu);
11604 case PERF_PMU_SCOPE_SYS_WIDE:
11605 return cpu_online_mask;
11606 }
11607
11608 return NULL;
11609 }
11610
perf_scope_cpumask(unsigned int scope)11611 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11612 {
11613 switch (scope) {
11614 case PERF_PMU_SCOPE_CORE:
11615 return perf_online_core_mask;
11616 case PERF_PMU_SCOPE_DIE:
11617 return perf_online_die_mask;
11618 case PERF_PMU_SCOPE_CLUSTER:
11619 return perf_online_cluster_mask;
11620 case PERF_PMU_SCOPE_PKG:
11621 return perf_online_pkg_mask;
11622 case PERF_PMU_SCOPE_SYS_WIDE:
11623 return perf_online_sys_mask;
11624 }
11625
11626 return NULL;
11627 }
11628
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11629 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11630 char *buf)
11631 {
11632 struct pmu *pmu = dev_get_drvdata(dev);
11633 struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11634
11635 if (mask)
11636 return cpumap_print_to_pagebuf(true, buf, mask);
11637 return 0;
11638 }
11639
11640 static DEVICE_ATTR_RO(cpumask);
11641
11642 static struct attribute *pmu_dev_attrs[] = {
11643 &dev_attr_type.attr,
11644 &dev_attr_perf_event_mux_interval_ms.attr,
11645 &dev_attr_nr_addr_filters.attr,
11646 &dev_attr_cpumask.attr,
11647 NULL,
11648 };
11649
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11650 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11651 {
11652 struct device *dev = kobj_to_dev(kobj);
11653 struct pmu *pmu = dev_get_drvdata(dev);
11654
11655 if (n == 2 && !pmu->nr_addr_filters)
11656 return 0;
11657
11658 /* cpumask */
11659 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11660 return 0;
11661
11662 return a->mode;
11663 }
11664
11665 static struct attribute_group pmu_dev_attr_group = {
11666 .is_visible = pmu_dev_is_visible,
11667 .attrs = pmu_dev_attrs,
11668 };
11669
11670 static const struct attribute_group *pmu_dev_groups[] = {
11671 &pmu_dev_attr_group,
11672 NULL,
11673 };
11674
11675 static int pmu_bus_running;
11676 static struct bus_type pmu_bus = {
11677 .name = "event_source",
11678 .dev_groups = pmu_dev_groups,
11679 };
11680
pmu_dev_release(struct device * dev)11681 static void pmu_dev_release(struct device *dev)
11682 {
11683 kfree(dev);
11684 }
11685
pmu_dev_alloc(struct pmu * pmu)11686 static int pmu_dev_alloc(struct pmu *pmu)
11687 {
11688 int ret = -ENOMEM;
11689
11690 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11691 if (!pmu->dev)
11692 goto out;
11693
11694 pmu->dev->groups = pmu->attr_groups;
11695 device_initialize(pmu->dev);
11696
11697 dev_set_drvdata(pmu->dev, pmu);
11698 pmu->dev->bus = &pmu_bus;
11699 pmu->dev->parent = pmu->parent;
11700 pmu->dev->release = pmu_dev_release;
11701
11702 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11703 if (ret)
11704 goto free_dev;
11705
11706 ret = device_add(pmu->dev);
11707 if (ret)
11708 goto free_dev;
11709
11710 if (pmu->attr_update) {
11711 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11712 if (ret)
11713 goto del_dev;
11714 }
11715
11716 out:
11717 return ret;
11718
11719 del_dev:
11720 device_del(pmu->dev);
11721
11722 free_dev:
11723 put_device(pmu->dev);
11724 goto out;
11725 }
11726
11727 static struct lock_class_key cpuctx_mutex;
11728 static struct lock_class_key cpuctx_lock;
11729
perf_pmu_register(struct pmu * pmu,const char * name,int type)11730 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11731 {
11732 int cpu, ret, max = PERF_TYPE_MAX;
11733
11734 mutex_lock(&pmus_lock);
11735 ret = -ENOMEM;
11736 pmu->pmu_disable_count = alloc_percpu(int);
11737 if (!pmu->pmu_disable_count)
11738 goto unlock;
11739
11740 pmu->type = -1;
11741 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11742 ret = -EINVAL;
11743 goto free_pdc;
11744 }
11745
11746 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11747 ret = -EINVAL;
11748 goto free_pdc;
11749 }
11750
11751 pmu->name = name;
11752
11753 if (type >= 0)
11754 max = type;
11755
11756 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11757 if (ret < 0)
11758 goto free_pdc;
11759
11760 WARN_ON(type >= 0 && ret != type);
11761
11762 type = ret;
11763 pmu->type = type;
11764
11765 if (pmu_bus_running && !pmu->dev) {
11766 ret = pmu_dev_alloc(pmu);
11767 if (ret)
11768 goto free_idr;
11769 }
11770
11771 ret = -ENOMEM;
11772 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11773 if (!pmu->cpu_pmu_context)
11774 goto free_dev;
11775
11776 for_each_possible_cpu(cpu) {
11777 struct perf_cpu_pmu_context *cpc;
11778
11779 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11780 __perf_init_event_pmu_context(&cpc->epc, pmu);
11781 __perf_mux_hrtimer_init(cpc, cpu);
11782 }
11783
11784 if (!pmu->start_txn) {
11785 if (pmu->pmu_enable) {
11786 /*
11787 * If we have pmu_enable/pmu_disable calls, install
11788 * transaction stubs that use that to try and batch
11789 * hardware accesses.
11790 */
11791 pmu->start_txn = perf_pmu_start_txn;
11792 pmu->commit_txn = perf_pmu_commit_txn;
11793 pmu->cancel_txn = perf_pmu_cancel_txn;
11794 } else {
11795 pmu->start_txn = perf_pmu_nop_txn;
11796 pmu->commit_txn = perf_pmu_nop_int;
11797 pmu->cancel_txn = perf_pmu_nop_void;
11798 }
11799 }
11800
11801 if (!pmu->pmu_enable) {
11802 pmu->pmu_enable = perf_pmu_nop_void;
11803 pmu->pmu_disable = perf_pmu_nop_void;
11804 }
11805
11806 if (!pmu->check_period)
11807 pmu->check_period = perf_event_nop_int;
11808
11809 if (!pmu->event_idx)
11810 pmu->event_idx = perf_event_idx_default;
11811
11812 list_add_rcu(&pmu->entry, &pmus);
11813 atomic_set(&pmu->exclusive_cnt, 0);
11814 ret = 0;
11815 unlock:
11816 mutex_unlock(&pmus_lock);
11817
11818 return ret;
11819
11820 free_dev:
11821 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11822 device_del(pmu->dev);
11823 put_device(pmu->dev);
11824 }
11825
11826 free_idr:
11827 idr_remove(&pmu_idr, pmu->type);
11828
11829 free_pdc:
11830 free_percpu(pmu->pmu_disable_count);
11831 goto unlock;
11832 }
11833 EXPORT_SYMBOL_GPL(perf_pmu_register);
11834
perf_pmu_unregister(struct pmu * pmu)11835 void perf_pmu_unregister(struct pmu *pmu)
11836 {
11837 mutex_lock(&pmus_lock);
11838 list_del_rcu(&pmu->entry);
11839
11840 /*
11841 * We dereference the pmu list under both SRCU and regular RCU, so
11842 * synchronize against both of those.
11843 */
11844 synchronize_srcu(&pmus_srcu);
11845 synchronize_rcu();
11846
11847 free_percpu(pmu->pmu_disable_count);
11848 idr_remove(&pmu_idr, pmu->type);
11849 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11850 if (pmu->nr_addr_filters)
11851 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11852 device_del(pmu->dev);
11853 put_device(pmu->dev);
11854 }
11855 free_pmu_context(pmu);
11856 mutex_unlock(&pmus_lock);
11857 }
11858 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11859
has_extended_regs(struct perf_event * event)11860 static inline bool has_extended_regs(struct perf_event *event)
11861 {
11862 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11863 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11864 }
11865
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11866 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11867 {
11868 struct perf_event_context *ctx = NULL;
11869 int ret;
11870
11871 if (!try_module_get(pmu->module))
11872 return -ENODEV;
11873
11874 /*
11875 * A number of pmu->event_init() methods iterate the sibling_list to,
11876 * for example, validate if the group fits on the PMU. Therefore,
11877 * if this is a sibling event, acquire the ctx->mutex to protect
11878 * the sibling_list.
11879 */
11880 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11881 /*
11882 * This ctx->mutex can nest when we're called through
11883 * inheritance. See the perf_event_ctx_lock_nested() comment.
11884 */
11885 ctx = perf_event_ctx_lock_nested(event->group_leader,
11886 SINGLE_DEPTH_NESTING);
11887 BUG_ON(!ctx);
11888 }
11889
11890 event->pmu = pmu;
11891 ret = pmu->event_init(event);
11892
11893 if (ctx)
11894 perf_event_ctx_unlock(event->group_leader, ctx);
11895
11896 if (!ret) {
11897 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11898 has_extended_regs(event))
11899 ret = -EOPNOTSUPP;
11900
11901 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11902 event_has_any_exclude_flag(event))
11903 ret = -EINVAL;
11904
11905 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11906 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11907 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11908 int cpu;
11909
11910 if (pmu_cpumask && cpumask) {
11911 cpu = cpumask_any_and(pmu_cpumask, cpumask);
11912 if (cpu >= nr_cpu_ids)
11913 ret = -ENODEV;
11914 else
11915 event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11916 } else {
11917 ret = -ENODEV;
11918 }
11919 }
11920
11921 if (ret && event->destroy)
11922 event->destroy(event);
11923 }
11924
11925 if (ret)
11926 module_put(pmu->module);
11927
11928 return ret;
11929 }
11930
perf_init_event(struct perf_event * event)11931 static struct pmu *perf_init_event(struct perf_event *event)
11932 {
11933 bool extended_type = false;
11934 int idx, type, ret;
11935 struct pmu *pmu;
11936
11937 idx = srcu_read_lock(&pmus_srcu);
11938
11939 /*
11940 * Save original type before calling pmu->event_init() since certain
11941 * pmus overwrites event->attr.type to forward event to another pmu.
11942 */
11943 event->orig_type = event->attr.type;
11944
11945 /* Try parent's PMU first: */
11946 if (event->parent && event->parent->pmu) {
11947 pmu = event->parent->pmu;
11948 ret = perf_try_init_event(pmu, event);
11949 if (!ret)
11950 goto unlock;
11951 }
11952
11953 /*
11954 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11955 * are often aliases for PERF_TYPE_RAW.
11956 */
11957 type = event->attr.type;
11958 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11959 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11960 if (!type) {
11961 type = PERF_TYPE_RAW;
11962 } else {
11963 extended_type = true;
11964 event->attr.config &= PERF_HW_EVENT_MASK;
11965 }
11966 }
11967
11968 again:
11969 rcu_read_lock();
11970 pmu = idr_find(&pmu_idr, type);
11971 rcu_read_unlock();
11972 if (pmu) {
11973 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11974 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11975 goto fail;
11976
11977 ret = perf_try_init_event(pmu, event);
11978 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11979 type = event->attr.type;
11980 goto again;
11981 }
11982
11983 if (ret)
11984 pmu = ERR_PTR(ret);
11985
11986 goto unlock;
11987 }
11988
11989 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11990 ret = perf_try_init_event(pmu, event);
11991 if (!ret)
11992 goto unlock;
11993
11994 if (ret != -ENOENT) {
11995 pmu = ERR_PTR(ret);
11996 goto unlock;
11997 }
11998 }
11999 fail:
12000 pmu = ERR_PTR(-ENOENT);
12001 unlock:
12002 srcu_read_unlock(&pmus_srcu, idx);
12003
12004 return pmu;
12005 }
12006
attach_sb_event(struct perf_event * event)12007 static void attach_sb_event(struct perf_event *event)
12008 {
12009 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12010
12011 raw_spin_lock(&pel->lock);
12012 list_add_rcu(&event->sb_list, &pel->list);
12013 raw_spin_unlock(&pel->lock);
12014 }
12015
12016 /*
12017 * We keep a list of all !task (and therefore per-cpu) events
12018 * that need to receive side-band records.
12019 *
12020 * This avoids having to scan all the various PMU per-cpu contexts
12021 * looking for them.
12022 */
account_pmu_sb_event(struct perf_event * event)12023 static void account_pmu_sb_event(struct perf_event *event)
12024 {
12025 if (is_sb_event(event))
12026 attach_sb_event(event);
12027 }
12028
12029 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12030 static void account_freq_event_nohz(void)
12031 {
12032 #ifdef CONFIG_NO_HZ_FULL
12033 /* Lock so we don't race with concurrent unaccount */
12034 spin_lock(&nr_freq_lock);
12035 if (atomic_inc_return(&nr_freq_events) == 1)
12036 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12037 spin_unlock(&nr_freq_lock);
12038 #endif
12039 }
12040
account_freq_event(void)12041 static void account_freq_event(void)
12042 {
12043 if (tick_nohz_full_enabled())
12044 account_freq_event_nohz();
12045 else
12046 atomic_inc(&nr_freq_events);
12047 }
12048
12049
account_event(struct perf_event * event)12050 static void account_event(struct perf_event *event)
12051 {
12052 bool inc = false;
12053
12054 if (event->parent)
12055 return;
12056
12057 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12058 inc = true;
12059 if (event->attr.mmap || event->attr.mmap_data)
12060 atomic_inc(&nr_mmap_events);
12061 if (event->attr.build_id)
12062 atomic_inc(&nr_build_id_events);
12063 if (event->attr.comm)
12064 atomic_inc(&nr_comm_events);
12065 if (event->attr.namespaces)
12066 atomic_inc(&nr_namespaces_events);
12067 if (event->attr.cgroup)
12068 atomic_inc(&nr_cgroup_events);
12069 if (event->attr.task)
12070 atomic_inc(&nr_task_events);
12071 if (event->attr.freq)
12072 account_freq_event();
12073 if (event->attr.context_switch) {
12074 atomic_inc(&nr_switch_events);
12075 inc = true;
12076 }
12077 if (has_branch_stack(event))
12078 inc = true;
12079 if (is_cgroup_event(event))
12080 inc = true;
12081 if (event->attr.ksymbol)
12082 atomic_inc(&nr_ksymbol_events);
12083 if (event->attr.bpf_event)
12084 atomic_inc(&nr_bpf_events);
12085 if (event->attr.text_poke)
12086 atomic_inc(&nr_text_poke_events);
12087
12088 if (inc) {
12089 /*
12090 * We need the mutex here because static_branch_enable()
12091 * must complete *before* the perf_sched_count increment
12092 * becomes visible.
12093 */
12094 if (atomic_inc_not_zero(&perf_sched_count))
12095 goto enabled;
12096
12097 mutex_lock(&perf_sched_mutex);
12098 if (!atomic_read(&perf_sched_count)) {
12099 static_branch_enable(&perf_sched_events);
12100 /*
12101 * Guarantee that all CPUs observe they key change and
12102 * call the perf scheduling hooks before proceeding to
12103 * install events that need them.
12104 */
12105 synchronize_rcu();
12106 }
12107 /*
12108 * Now that we have waited for the sync_sched(), allow further
12109 * increments to by-pass the mutex.
12110 */
12111 atomic_inc(&perf_sched_count);
12112 mutex_unlock(&perf_sched_mutex);
12113 }
12114 enabled:
12115
12116 account_pmu_sb_event(event);
12117 }
12118
12119 /*
12120 * Allocate and initialize an event structure
12121 */
12122 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12123 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12124 struct task_struct *task,
12125 struct perf_event *group_leader,
12126 struct perf_event *parent_event,
12127 perf_overflow_handler_t overflow_handler,
12128 void *context, int cgroup_fd)
12129 {
12130 struct pmu *pmu;
12131 struct perf_event *event;
12132 struct hw_perf_event *hwc;
12133 long err = -EINVAL;
12134 int node;
12135
12136 if ((unsigned)cpu >= nr_cpu_ids) {
12137 if (!task || cpu != -1)
12138 return ERR_PTR(-EINVAL);
12139 }
12140 if (attr->sigtrap && !task) {
12141 /* Requires a task: avoid signalling random tasks. */
12142 return ERR_PTR(-EINVAL);
12143 }
12144
12145 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12146 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12147 node);
12148 if (!event)
12149 return ERR_PTR(-ENOMEM);
12150
12151 /*
12152 * Single events are their own group leaders, with an
12153 * empty sibling list:
12154 */
12155 if (!group_leader)
12156 group_leader = event;
12157
12158 mutex_init(&event->child_mutex);
12159 INIT_LIST_HEAD(&event->child_list);
12160
12161 INIT_LIST_HEAD(&event->event_entry);
12162 INIT_LIST_HEAD(&event->sibling_list);
12163 INIT_LIST_HEAD(&event->active_list);
12164 init_event_group(event);
12165 INIT_LIST_HEAD(&event->rb_entry);
12166 INIT_LIST_HEAD(&event->active_entry);
12167 INIT_LIST_HEAD(&event->addr_filters.list);
12168 INIT_HLIST_NODE(&event->hlist_entry);
12169
12170
12171 init_waitqueue_head(&event->waitq);
12172 init_irq_work(&event->pending_irq, perf_pending_irq);
12173 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12174 init_task_work(&event->pending_task, perf_pending_task);
12175 rcuwait_init(&event->pending_work_wait);
12176
12177 mutex_init(&event->mmap_mutex);
12178 raw_spin_lock_init(&event->addr_filters.lock);
12179
12180 atomic_long_set(&event->refcount, 1);
12181 event->cpu = cpu;
12182 event->attr = *attr;
12183 event->group_leader = group_leader;
12184 event->pmu = NULL;
12185 event->oncpu = -1;
12186
12187 event->parent = parent_event;
12188
12189 event->ns = get_pid_ns(task_active_pid_ns(current));
12190 event->id = atomic64_inc_return(&perf_event_id);
12191
12192 event->state = PERF_EVENT_STATE_INACTIVE;
12193
12194 if (parent_event)
12195 event->event_caps = parent_event->event_caps;
12196
12197 if (task) {
12198 event->attach_state = PERF_ATTACH_TASK;
12199 /*
12200 * XXX pmu::event_init needs to know what task to account to
12201 * and we cannot use the ctx information because we need the
12202 * pmu before we get a ctx.
12203 */
12204 event->hw.target = get_task_struct(task);
12205 }
12206
12207 event->clock = &local_clock;
12208 if (parent_event)
12209 event->clock = parent_event->clock;
12210
12211 if (!overflow_handler && parent_event) {
12212 overflow_handler = parent_event->overflow_handler;
12213 context = parent_event->overflow_handler_context;
12214 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12215 if (parent_event->prog) {
12216 struct bpf_prog *prog = parent_event->prog;
12217
12218 bpf_prog_inc(prog);
12219 event->prog = prog;
12220 }
12221 #endif
12222 }
12223
12224 if (overflow_handler) {
12225 event->overflow_handler = overflow_handler;
12226 event->overflow_handler_context = context;
12227 } else if (is_write_backward(event)){
12228 event->overflow_handler = perf_event_output_backward;
12229 event->overflow_handler_context = NULL;
12230 } else {
12231 event->overflow_handler = perf_event_output_forward;
12232 event->overflow_handler_context = NULL;
12233 }
12234
12235 perf_event__state_init(event);
12236
12237 pmu = NULL;
12238
12239 hwc = &event->hw;
12240 hwc->sample_period = attr->sample_period;
12241 if (attr->freq && attr->sample_freq)
12242 hwc->sample_period = 1;
12243 hwc->last_period = hwc->sample_period;
12244
12245 local64_set(&hwc->period_left, hwc->sample_period);
12246
12247 /*
12248 * We do not support PERF_SAMPLE_READ on inherited events unless
12249 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12250 * collect per-thread samples.
12251 * See perf_output_read().
12252 */
12253 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12254 goto err_ns;
12255
12256 if (!has_branch_stack(event))
12257 event->attr.branch_sample_type = 0;
12258
12259 pmu = perf_init_event(event);
12260 if (IS_ERR(pmu)) {
12261 err = PTR_ERR(pmu);
12262 goto err_ns;
12263 }
12264
12265 /*
12266 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12267 * events (they don't make sense as the cgroup will be different
12268 * on other CPUs in the uncore mask).
12269 */
12270 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12271 err = -EINVAL;
12272 goto err_pmu;
12273 }
12274
12275 if (event->attr.aux_output &&
12276 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12277 err = -EOPNOTSUPP;
12278 goto err_pmu;
12279 }
12280
12281 if (cgroup_fd != -1) {
12282 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12283 if (err)
12284 goto err_pmu;
12285 }
12286
12287 err = exclusive_event_init(event);
12288 if (err)
12289 goto err_pmu;
12290
12291 if (has_addr_filter(event)) {
12292 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12293 sizeof(struct perf_addr_filter_range),
12294 GFP_KERNEL);
12295 if (!event->addr_filter_ranges) {
12296 err = -ENOMEM;
12297 goto err_per_task;
12298 }
12299
12300 /*
12301 * Clone the parent's vma offsets: they are valid until exec()
12302 * even if the mm is not shared with the parent.
12303 */
12304 if (event->parent) {
12305 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12306
12307 raw_spin_lock_irq(&ifh->lock);
12308 memcpy(event->addr_filter_ranges,
12309 event->parent->addr_filter_ranges,
12310 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12311 raw_spin_unlock_irq(&ifh->lock);
12312 }
12313
12314 /* force hw sync on the address filters */
12315 event->addr_filters_gen = 1;
12316 }
12317
12318 if (!event->parent) {
12319 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12320 err = get_callchain_buffers(attr->sample_max_stack);
12321 if (err)
12322 goto err_addr_filters;
12323 }
12324 }
12325
12326 err = security_perf_event_alloc(event);
12327 if (err)
12328 goto err_callchain_buffer;
12329
12330 /* symmetric to unaccount_event() in _free_event() */
12331 account_event(event);
12332
12333 return event;
12334
12335 err_callchain_buffer:
12336 if (!event->parent) {
12337 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12338 put_callchain_buffers();
12339 }
12340 err_addr_filters:
12341 kfree(event->addr_filter_ranges);
12342
12343 err_per_task:
12344 exclusive_event_destroy(event);
12345
12346 err_pmu:
12347 if (is_cgroup_event(event))
12348 perf_detach_cgroup(event);
12349 if (event->destroy)
12350 event->destroy(event);
12351 module_put(pmu->module);
12352 err_ns:
12353 if (event->hw.target)
12354 put_task_struct(event->hw.target);
12355 call_rcu(&event->rcu_head, free_event_rcu);
12356
12357 return ERR_PTR(err);
12358 }
12359
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12360 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12361 struct perf_event_attr *attr)
12362 {
12363 u32 size;
12364 int ret;
12365
12366 /* Zero the full structure, so that a short copy will be nice. */
12367 memset(attr, 0, sizeof(*attr));
12368
12369 ret = get_user(size, &uattr->size);
12370 if (ret)
12371 return ret;
12372
12373 /* ABI compatibility quirk: */
12374 if (!size)
12375 size = PERF_ATTR_SIZE_VER0;
12376 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12377 goto err_size;
12378
12379 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12380 if (ret) {
12381 if (ret == -E2BIG)
12382 goto err_size;
12383 return ret;
12384 }
12385
12386 attr->size = size;
12387
12388 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12389 return -EINVAL;
12390
12391 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12392 return -EINVAL;
12393
12394 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12395 return -EINVAL;
12396
12397 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12398 u64 mask = attr->branch_sample_type;
12399
12400 /* only using defined bits */
12401 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12402 return -EINVAL;
12403
12404 /* at least one branch bit must be set */
12405 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12406 return -EINVAL;
12407
12408 /* propagate priv level, when not set for branch */
12409 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12410
12411 /* exclude_kernel checked on syscall entry */
12412 if (!attr->exclude_kernel)
12413 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12414
12415 if (!attr->exclude_user)
12416 mask |= PERF_SAMPLE_BRANCH_USER;
12417
12418 if (!attr->exclude_hv)
12419 mask |= PERF_SAMPLE_BRANCH_HV;
12420 /*
12421 * adjust user setting (for HW filter setup)
12422 */
12423 attr->branch_sample_type = mask;
12424 }
12425 /* privileged levels capture (kernel, hv): check permissions */
12426 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12427 ret = perf_allow_kernel(attr);
12428 if (ret)
12429 return ret;
12430 }
12431 }
12432
12433 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12434 ret = perf_reg_validate(attr->sample_regs_user);
12435 if (ret)
12436 return ret;
12437 }
12438
12439 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12440 if (!arch_perf_have_user_stack_dump())
12441 return -ENOSYS;
12442
12443 /*
12444 * We have __u32 type for the size, but so far
12445 * we can only use __u16 as maximum due to the
12446 * __u16 sample size limit.
12447 */
12448 if (attr->sample_stack_user >= USHRT_MAX)
12449 return -EINVAL;
12450 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12451 return -EINVAL;
12452 }
12453
12454 if (!attr->sample_max_stack)
12455 attr->sample_max_stack = sysctl_perf_event_max_stack;
12456
12457 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12458 ret = perf_reg_validate(attr->sample_regs_intr);
12459
12460 #ifndef CONFIG_CGROUP_PERF
12461 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12462 return -EINVAL;
12463 #endif
12464 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12465 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12466 return -EINVAL;
12467
12468 if (!attr->inherit && attr->inherit_thread)
12469 return -EINVAL;
12470
12471 if (attr->remove_on_exec && attr->enable_on_exec)
12472 return -EINVAL;
12473
12474 if (attr->sigtrap && !attr->remove_on_exec)
12475 return -EINVAL;
12476
12477 out:
12478 return ret;
12479
12480 err_size:
12481 put_user(sizeof(*attr), &uattr->size);
12482 ret = -E2BIG;
12483 goto out;
12484 }
12485
mutex_lock_double(struct mutex * a,struct mutex * b)12486 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12487 {
12488 if (b < a)
12489 swap(a, b);
12490
12491 mutex_lock(a);
12492 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12493 }
12494
12495 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12496 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12497 {
12498 struct perf_buffer *rb = NULL;
12499 int ret = -EINVAL;
12500
12501 if (!output_event) {
12502 mutex_lock(&event->mmap_mutex);
12503 goto set;
12504 }
12505
12506 /* don't allow circular references */
12507 if (event == output_event)
12508 goto out;
12509
12510 /*
12511 * Don't allow cross-cpu buffers
12512 */
12513 if (output_event->cpu != event->cpu)
12514 goto out;
12515
12516 /*
12517 * If its not a per-cpu rb, it must be the same task.
12518 */
12519 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12520 goto out;
12521
12522 /*
12523 * Mixing clocks in the same buffer is trouble you don't need.
12524 */
12525 if (output_event->clock != event->clock)
12526 goto out;
12527
12528 /*
12529 * Either writing ring buffer from beginning or from end.
12530 * Mixing is not allowed.
12531 */
12532 if (is_write_backward(output_event) != is_write_backward(event))
12533 goto out;
12534
12535 /*
12536 * If both events generate aux data, they must be on the same PMU
12537 */
12538 if (has_aux(event) && has_aux(output_event) &&
12539 event->pmu != output_event->pmu)
12540 goto out;
12541
12542 /*
12543 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12544 * output_event is already on rb->event_list, and the list iteration
12545 * restarts after every removal, it is guaranteed this new event is
12546 * observed *OR* if output_event is already removed, it's guaranteed we
12547 * observe !rb->mmap_count.
12548 */
12549 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12550 set:
12551 /* Can't redirect output if we've got an active mmap() */
12552 if (atomic_read(&event->mmap_count))
12553 goto unlock;
12554
12555 if (output_event) {
12556 /* get the rb we want to redirect to */
12557 rb = ring_buffer_get(output_event);
12558 if (!rb)
12559 goto unlock;
12560
12561 /* did we race against perf_mmap_close() */
12562 if (!atomic_read(&rb->mmap_count)) {
12563 ring_buffer_put(rb);
12564 goto unlock;
12565 }
12566 }
12567
12568 ring_buffer_attach(event, rb);
12569
12570 ret = 0;
12571 unlock:
12572 mutex_unlock(&event->mmap_mutex);
12573 if (output_event)
12574 mutex_unlock(&output_event->mmap_mutex);
12575
12576 out:
12577 return ret;
12578 }
12579
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12580 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12581 {
12582 bool nmi_safe = false;
12583
12584 switch (clk_id) {
12585 case CLOCK_MONOTONIC:
12586 event->clock = &ktime_get_mono_fast_ns;
12587 nmi_safe = true;
12588 break;
12589
12590 case CLOCK_MONOTONIC_RAW:
12591 event->clock = &ktime_get_raw_fast_ns;
12592 nmi_safe = true;
12593 break;
12594
12595 case CLOCK_REALTIME:
12596 event->clock = &ktime_get_real_ns;
12597 break;
12598
12599 case CLOCK_BOOTTIME:
12600 event->clock = &ktime_get_boottime_ns;
12601 break;
12602
12603 case CLOCK_TAI:
12604 event->clock = &ktime_get_clocktai_ns;
12605 break;
12606
12607 default:
12608 return -EINVAL;
12609 }
12610
12611 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12612 return -EINVAL;
12613
12614 return 0;
12615 }
12616
12617 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12618 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12619 {
12620 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12621 bool is_capable = perfmon_capable();
12622
12623 if (attr->sigtrap) {
12624 /*
12625 * perf_event_attr::sigtrap sends signals to the other task.
12626 * Require the current task to also have CAP_KILL.
12627 */
12628 rcu_read_lock();
12629 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12630 rcu_read_unlock();
12631
12632 /*
12633 * If the required capabilities aren't available, checks for
12634 * ptrace permissions: upgrade to ATTACH, since sending signals
12635 * can effectively change the target task.
12636 */
12637 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12638 }
12639
12640 /*
12641 * Preserve ptrace permission check for backwards compatibility. The
12642 * ptrace check also includes checks that the current task and other
12643 * task have matching uids, and is therefore not done here explicitly.
12644 */
12645 return is_capable || ptrace_may_access(task, ptrace_mode);
12646 }
12647
12648 /**
12649 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12650 *
12651 * @attr_uptr: event_id type attributes for monitoring/sampling
12652 * @pid: target pid
12653 * @cpu: target cpu
12654 * @group_fd: group leader event fd
12655 * @flags: perf event open flags
12656 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12657 SYSCALL_DEFINE5(perf_event_open,
12658 struct perf_event_attr __user *, attr_uptr,
12659 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12660 {
12661 struct perf_event *group_leader = NULL, *output_event = NULL;
12662 struct perf_event_pmu_context *pmu_ctx;
12663 struct perf_event *event, *sibling;
12664 struct perf_event_attr attr;
12665 struct perf_event_context *ctx;
12666 struct file *event_file = NULL;
12667 struct fd group = EMPTY_FD;
12668 struct task_struct *task = NULL;
12669 struct pmu *pmu;
12670 int event_fd;
12671 int move_group = 0;
12672 int err;
12673 int f_flags = O_RDWR;
12674 int cgroup_fd = -1;
12675
12676 /* for future expandability... */
12677 if (flags & ~PERF_FLAG_ALL)
12678 return -EINVAL;
12679
12680 err = perf_copy_attr(attr_uptr, &attr);
12681 if (err)
12682 return err;
12683
12684 /* Do we allow access to perf_event_open(2) ? */
12685 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12686 if (err)
12687 return err;
12688
12689 if (!attr.exclude_kernel) {
12690 err = perf_allow_kernel(&attr);
12691 if (err)
12692 return err;
12693 }
12694
12695 if (attr.namespaces) {
12696 if (!perfmon_capable())
12697 return -EACCES;
12698 }
12699
12700 if (attr.freq) {
12701 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12702 return -EINVAL;
12703 } else {
12704 if (attr.sample_period & (1ULL << 63))
12705 return -EINVAL;
12706 }
12707
12708 /* Only privileged users can get physical addresses */
12709 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12710 err = perf_allow_kernel(&attr);
12711 if (err)
12712 return err;
12713 }
12714
12715 /* REGS_INTR can leak data, lockdown must prevent this */
12716 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12717 err = security_locked_down(LOCKDOWN_PERF);
12718 if (err)
12719 return err;
12720 }
12721
12722 /*
12723 * In cgroup mode, the pid argument is used to pass the fd
12724 * opened to the cgroup directory in cgroupfs. The cpu argument
12725 * designates the cpu on which to monitor threads from that
12726 * cgroup.
12727 */
12728 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12729 return -EINVAL;
12730
12731 if (flags & PERF_FLAG_FD_CLOEXEC)
12732 f_flags |= O_CLOEXEC;
12733
12734 event_fd = get_unused_fd_flags(f_flags);
12735 if (event_fd < 0)
12736 return event_fd;
12737
12738 if (group_fd != -1) {
12739 err = perf_fget_light(group_fd, &group);
12740 if (err)
12741 goto err_fd;
12742 group_leader = fd_file(group)->private_data;
12743 if (flags & PERF_FLAG_FD_OUTPUT)
12744 output_event = group_leader;
12745 if (flags & PERF_FLAG_FD_NO_GROUP)
12746 group_leader = NULL;
12747 }
12748
12749 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12750 task = find_lively_task_by_vpid(pid);
12751 if (IS_ERR(task)) {
12752 err = PTR_ERR(task);
12753 goto err_group_fd;
12754 }
12755 }
12756
12757 if (task && group_leader &&
12758 group_leader->attr.inherit != attr.inherit) {
12759 err = -EINVAL;
12760 goto err_task;
12761 }
12762
12763 if (flags & PERF_FLAG_PID_CGROUP)
12764 cgroup_fd = pid;
12765
12766 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12767 NULL, NULL, cgroup_fd);
12768 if (IS_ERR(event)) {
12769 err = PTR_ERR(event);
12770 goto err_task;
12771 }
12772
12773 if (is_sampling_event(event)) {
12774 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12775 err = -EOPNOTSUPP;
12776 goto err_alloc;
12777 }
12778 }
12779
12780 /*
12781 * Special case software events and allow them to be part of
12782 * any hardware group.
12783 */
12784 pmu = event->pmu;
12785
12786 if (attr.use_clockid) {
12787 err = perf_event_set_clock(event, attr.clockid);
12788 if (err)
12789 goto err_alloc;
12790 }
12791
12792 if (pmu->task_ctx_nr == perf_sw_context)
12793 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12794
12795 if (task) {
12796 err = down_read_interruptible(&task->signal->exec_update_lock);
12797 if (err)
12798 goto err_alloc;
12799
12800 /*
12801 * We must hold exec_update_lock across this and any potential
12802 * perf_install_in_context() call for this new event to
12803 * serialize against exec() altering our credentials (and the
12804 * perf_event_exit_task() that could imply).
12805 */
12806 err = -EACCES;
12807 if (!perf_check_permission(&attr, task))
12808 goto err_cred;
12809 }
12810
12811 /*
12812 * Get the target context (task or percpu):
12813 */
12814 ctx = find_get_context(task, event);
12815 if (IS_ERR(ctx)) {
12816 err = PTR_ERR(ctx);
12817 goto err_cred;
12818 }
12819
12820 mutex_lock(&ctx->mutex);
12821
12822 if (ctx->task == TASK_TOMBSTONE) {
12823 err = -ESRCH;
12824 goto err_locked;
12825 }
12826
12827 if (!task) {
12828 /*
12829 * Check if the @cpu we're creating an event for is online.
12830 *
12831 * We use the perf_cpu_context::ctx::mutex to serialize against
12832 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12833 */
12834 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12835
12836 if (!cpuctx->online) {
12837 err = -ENODEV;
12838 goto err_locked;
12839 }
12840 }
12841
12842 if (group_leader) {
12843 err = -EINVAL;
12844
12845 /*
12846 * Do not allow a recursive hierarchy (this new sibling
12847 * becoming part of another group-sibling):
12848 */
12849 if (group_leader->group_leader != group_leader)
12850 goto err_locked;
12851
12852 /* All events in a group should have the same clock */
12853 if (group_leader->clock != event->clock)
12854 goto err_locked;
12855
12856 /*
12857 * Make sure we're both events for the same CPU;
12858 * grouping events for different CPUs is broken; since
12859 * you can never concurrently schedule them anyhow.
12860 */
12861 if (group_leader->cpu != event->cpu)
12862 goto err_locked;
12863
12864 /*
12865 * Make sure we're both on the same context; either task or cpu.
12866 */
12867 if (group_leader->ctx != ctx)
12868 goto err_locked;
12869
12870 /*
12871 * Only a group leader can be exclusive or pinned
12872 */
12873 if (attr.exclusive || attr.pinned)
12874 goto err_locked;
12875
12876 if (is_software_event(event) &&
12877 !in_software_context(group_leader)) {
12878 /*
12879 * If the event is a sw event, but the group_leader
12880 * is on hw context.
12881 *
12882 * Allow the addition of software events to hw
12883 * groups, this is safe because software events
12884 * never fail to schedule.
12885 *
12886 * Note the comment that goes with struct
12887 * perf_event_pmu_context.
12888 */
12889 pmu = group_leader->pmu_ctx->pmu;
12890 } else if (!is_software_event(event)) {
12891 if (is_software_event(group_leader) &&
12892 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12893 /*
12894 * In case the group is a pure software group, and we
12895 * try to add a hardware event, move the whole group to
12896 * the hardware context.
12897 */
12898 move_group = 1;
12899 }
12900
12901 /* Don't allow group of multiple hw events from different pmus */
12902 if (!in_software_context(group_leader) &&
12903 group_leader->pmu_ctx->pmu != pmu)
12904 goto err_locked;
12905 }
12906 }
12907
12908 /*
12909 * Now that we're certain of the pmu; find the pmu_ctx.
12910 */
12911 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12912 if (IS_ERR(pmu_ctx)) {
12913 err = PTR_ERR(pmu_ctx);
12914 goto err_locked;
12915 }
12916 event->pmu_ctx = pmu_ctx;
12917
12918 if (output_event) {
12919 err = perf_event_set_output(event, output_event);
12920 if (err)
12921 goto err_context;
12922 }
12923
12924 if (!perf_event_validate_size(event)) {
12925 err = -E2BIG;
12926 goto err_context;
12927 }
12928
12929 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12930 err = -EINVAL;
12931 goto err_context;
12932 }
12933
12934 /*
12935 * Must be under the same ctx::mutex as perf_install_in_context(),
12936 * because we need to serialize with concurrent event creation.
12937 */
12938 if (!exclusive_event_installable(event, ctx)) {
12939 err = -EBUSY;
12940 goto err_context;
12941 }
12942
12943 WARN_ON_ONCE(ctx->parent_ctx);
12944
12945 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12946 if (IS_ERR(event_file)) {
12947 err = PTR_ERR(event_file);
12948 event_file = NULL;
12949 goto err_context;
12950 }
12951
12952 /*
12953 * This is the point on no return; we cannot fail hereafter. This is
12954 * where we start modifying current state.
12955 */
12956
12957 if (move_group) {
12958 perf_remove_from_context(group_leader, 0);
12959 put_pmu_ctx(group_leader->pmu_ctx);
12960
12961 for_each_sibling_event(sibling, group_leader) {
12962 perf_remove_from_context(sibling, 0);
12963 put_pmu_ctx(sibling->pmu_ctx);
12964 }
12965
12966 /*
12967 * Install the group siblings before the group leader.
12968 *
12969 * Because a group leader will try and install the entire group
12970 * (through the sibling list, which is still in-tact), we can
12971 * end up with siblings installed in the wrong context.
12972 *
12973 * By installing siblings first we NO-OP because they're not
12974 * reachable through the group lists.
12975 */
12976 for_each_sibling_event(sibling, group_leader) {
12977 sibling->pmu_ctx = pmu_ctx;
12978 get_pmu_ctx(pmu_ctx);
12979 perf_event__state_init(sibling);
12980 perf_install_in_context(ctx, sibling, sibling->cpu);
12981 }
12982
12983 /*
12984 * Removing from the context ends up with disabled
12985 * event. What we want here is event in the initial
12986 * startup state, ready to be add into new context.
12987 */
12988 group_leader->pmu_ctx = pmu_ctx;
12989 get_pmu_ctx(pmu_ctx);
12990 perf_event__state_init(group_leader);
12991 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12992 }
12993
12994 /*
12995 * Precalculate sample_data sizes; do while holding ctx::mutex such
12996 * that we're serialized against further additions and before
12997 * perf_install_in_context() which is the point the event is active and
12998 * can use these values.
12999 */
13000 perf_event__header_size(event);
13001 perf_event__id_header_size(event);
13002
13003 event->owner = current;
13004
13005 perf_install_in_context(ctx, event, event->cpu);
13006 perf_unpin_context(ctx);
13007
13008 mutex_unlock(&ctx->mutex);
13009
13010 if (task) {
13011 up_read(&task->signal->exec_update_lock);
13012 put_task_struct(task);
13013 }
13014
13015 mutex_lock(¤t->perf_event_mutex);
13016 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
13017 mutex_unlock(¤t->perf_event_mutex);
13018
13019 /*
13020 * Drop the reference on the group_event after placing the
13021 * new event on the sibling_list. This ensures destruction
13022 * of the group leader will find the pointer to itself in
13023 * perf_group_detach().
13024 */
13025 fdput(group);
13026 fd_install(event_fd, event_file);
13027 return event_fd;
13028
13029 err_context:
13030 put_pmu_ctx(event->pmu_ctx);
13031 event->pmu_ctx = NULL; /* _free_event() */
13032 err_locked:
13033 mutex_unlock(&ctx->mutex);
13034 perf_unpin_context(ctx);
13035 put_ctx(ctx);
13036 err_cred:
13037 if (task)
13038 up_read(&task->signal->exec_update_lock);
13039 err_alloc:
13040 free_event(event);
13041 err_task:
13042 if (task)
13043 put_task_struct(task);
13044 err_group_fd:
13045 fdput(group);
13046 err_fd:
13047 put_unused_fd(event_fd);
13048 return err;
13049 }
13050
13051 /**
13052 * perf_event_create_kernel_counter
13053 *
13054 * @attr: attributes of the counter to create
13055 * @cpu: cpu in which the counter is bound
13056 * @task: task to profile (NULL for percpu)
13057 * @overflow_handler: callback to trigger when we hit the event
13058 * @context: context data could be used in overflow_handler callback
13059 */
13060 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13061 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13062 struct task_struct *task,
13063 perf_overflow_handler_t overflow_handler,
13064 void *context)
13065 {
13066 struct perf_event_pmu_context *pmu_ctx;
13067 struct perf_event_context *ctx;
13068 struct perf_event *event;
13069 struct pmu *pmu;
13070 int err;
13071
13072 /*
13073 * Grouping is not supported for kernel events, neither is 'AUX',
13074 * make sure the caller's intentions are adjusted.
13075 */
13076 if (attr->aux_output)
13077 return ERR_PTR(-EINVAL);
13078
13079 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13080 overflow_handler, context, -1);
13081 if (IS_ERR(event)) {
13082 err = PTR_ERR(event);
13083 goto err;
13084 }
13085
13086 /* Mark owner so we could distinguish it from user events. */
13087 event->owner = TASK_TOMBSTONE;
13088 pmu = event->pmu;
13089
13090 if (pmu->task_ctx_nr == perf_sw_context)
13091 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13092
13093 /*
13094 * Get the target context (task or percpu):
13095 */
13096 ctx = find_get_context(task, event);
13097 if (IS_ERR(ctx)) {
13098 err = PTR_ERR(ctx);
13099 goto err_alloc;
13100 }
13101
13102 WARN_ON_ONCE(ctx->parent_ctx);
13103 mutex_lock(&ctx->mutex);
13104 if (ctx->task == TASK_TOMBSTONE) {
13105 err = -ESRCH;
13106 goto err_unlock;
13107 }
13108
13109 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13110 if (IS_ERR(pmu_ctx)) {
13111 err = PTR_ERR(pmu_ctx);
13112 goto err_unlock;
13113 }
13114 event->pmu_ctx = pmu_ctx;
13115
13116 if (!task) {
13117 /*
13118 * Check if the @cpu we're creating an event for is online.
13119 *
13120 * We use the perf_cpu_context::ctx::mutex to serialize against
13121 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13122 */
13123 struct perf_cpu_context *cpuctx =
13124 container_of(ctx, struct perf_cpu_context, ctx);
13125 if (!cpuctx->online) {
13126 err = -ENODEV;
13127 goto err_pmu_ctx;
13128 }
13129 }
13130
13131 if (!exclusive_event_installable(event, ctx)) {
13132 err = -EBUSY;
13133 goto err_pmu_ctx;
13134 }
13135
13136 perf_install_in_context(ctx, event, event->cpu);
13137 perf_unpin_context(ctx);
13138 mutex_unlock(&ctx->mutex);
13139
13140 return event;
13141
13142 err_pmu_ctx:
13143 put_pmu_ctx(pmu_ctx);
13144 event->pmu_ctx = NULL; /* _free_event() */
13145 err_unlock:
13146 mutex_unlock(&ctx->mutex);
13147 perf_unpin_context(ctx);
13148 put_ctx(ctx);
13149 err_alloc:
13150 free_event(event);
13151 err:
13152 return ERR_PTR(err);
13153 }
13154 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13155
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13156 static void __perf_pmu_remove(struct perf_event_context *ctx,
13157 int cpu, struct pmu *pmu,
13158 struct perf_event_groups *groups,
13159 struct list_head *events)
13160 {
13161 struct perf_event *event, *sibling;
13162
13163 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13164 perf_remove_from_context(event, 0);
13165 put_pmu_ctx(event->pmu_ctx);
13166 list_add(&event->migrate_entry, events);
13167
13168 for_each_sibling_event(sibling, event) {
13169 perf_remove_from_context(sibling, 0);
13170 put_pmu_ctx(sibling->pmu_ctx);
13171 list_add(&sibling->migrate_entry, events);
13172 }
13173 }
13174 }
13175
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13176 static void __perf_pmu_install_event(struct pmu *pmu,
13177 struct perf_event_context *ctx,
13178 int cpu, struct perf_event *event)
13179 {
13180 struct perf_event_pmu_context *epc;
13181 struct perf_event_context *old_ctx = event->ctx;
13182
13183 get_ctx(ctx); /* normally find_get_context() */
13184
13185 event->cpu = cpu;
13186 epc = find_get_pmu_context(pmu, ctx, event);
13187 event->pmu_ctx = epc;
13188
13189 if (event->state >= PERF_EVENT_STATE_OFF)
13190 event->state = PERF_EVENT_STATE_INACTIVE;
13191 perf_install_in_context(ctx, event, cpu);
13192
13193 /*
13194 * Now that event->ctx is updated and visible, put the old ctx.
13195 */
13196 put_ctx(old_ctx);
13197 }
13198
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13199 static void __perf_pmu_install(struct perf_event_context *ctx,
13200 int cpu, struct pmu *pmu, struct list_head *events)
13201 {
13202 struct perf_event *event, *tmp;
13203
13204 /*
13205 * Re-instate events in 2 passes.
13206 *
13207 * Skip over group leaders and only install siblings on this first
13208 * pass, siblings will not get enabled without a leader, however a
13209 * leader will enable its siblings, even if those are still on the old
13210 * context.
13211 */
13212 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13213 if (event->group_leader == event)
13214 continue;
13215
13216 list_del(&event->migrate_entry);
13217 __perf_pmu_install_event(pmu, ctx, cpu, event);
13218 }
13219
13220 /*
13221 * Once all the siblings are setup properly, install the group leaders
13222 * to make it go.
13223 */
13224 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13225 list_del(&event->migrate_entry);
13226 __perf_pmu_install_event(pmu, ctx, cpu, event);
13227 }
13228 }
13229
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13230 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13231 {
13232 struct perf_event_context *src_ctx, *dst_ctx;
13233 LIST_HEAD(events);
13234
13235 /*
13236 * Since per-cpu context is persistent, no need to grab an extra
13237 * reference.
13238 */
13239 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13240 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13241
13242 /*
13243 * See perf_event_ctx_lock() for comments on the details
13244 * of swizzling perf_event::ctx.
13245 */
13246 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13247
13248 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13249 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13250
13251 if (!list_empty(&events)) {
13252 /*
13253 * Wait for the events to quiesce before re-instating them.
13254 */
13255 synchronize_rcu();
13256
13257 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13258 }
13259
13260 mutex_unlock(&dst_ctx->mutex);
13261 mutex_unlock(&src_ctx->mutex);
13262 }
13263 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13264
sync_child_event(struct perf_event * child_event)13265 static void sync_child_event(struct perf_event *child_event)
13266 {
13267 struct perf_event *parent_event = child_event->parent;
13268 u64 child_val;
13269
13270 if (child_event->attr.inherit_stat) {
13271 struct task_struct *task = child_event->ctx->task;
13272
13273 if (task && task != TASK_TOMBSTONE)
13274 perf_event_read_event(child_event, task);
13275 }
13276
13277 child_val = perf_event_count(child_event, false);
13278
13279 /*
13280 * Add back the child's count to the parent's count:
13281 */
13282 atomic64_add(child_val, &parent_event->child_count);
13283 atomic64_add(child_event->total_time_enabled,
13284 &parent_event->child_total_time_enabled);
13285 atomic64_add(child_event->total_time_running,
13286 &parent_event->child_total_time_running);
13287 }
13288
13289 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13290 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13291 {
13292 struct perf_event *parent_event = event->parent;
13293 unsigned long detach_flags = 0;
13294
13295 if (parent_event) {
13296 /*
13297 * Do not destroy the 'original' grouping; because of the
13298 * context switch optimization the original events could've
13299 * ended up in a random child task.
13300 *
13301 * If we were to destroy the original group, all group related
13302 * operations would cease to function properly after this
13303 * random child dies.
13304 *
13305 * Do destroy all inherited groups, we don't care about those
13306 * and being thorough is better.
13307 */
13308 detach_flags = DETACH_GROUP | DETACH_CHILD;
13309 mutex_lock(&parent_event->child_mutex);
13310 }
13311
13312 perf_remove_from_context(event, detach_flags);
13313
13314 raw_spin_lock_irq(&ctx->lock);
13315 if (event->state > PERF_EVENT_STATE_EXIT)
13316 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13317 raw_spin_unlock_irq(&ctx->lock);
13318
13319 /*
13320 * Child events can be freed.
13321 */
13322 if (parent_event) {
13323 mutex_unlock(&parent_event->child_mutex);
13324 /*
13325 * Kick perf_poll() for is_event_hup();
13326 */
13327 perf_event_wakeup(parent_event);
13328 free_event(event);
13329 put_event(parent_event);
13330 return;
13331 }
13332
13333 /*
13334 * Parent events are governed by their filedesc, retain them.
13335 */
13336 perf_event_wakeup(event);
13337 }
13338
perf_event_exit_task_context(struct task_struct * child)13339 static void perf_event_exit_task_context(struct task_struct *child)
13340 {
13341 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13342 struct perf_event *child_event, *next;
13343
13344 WARN_ON_ONCE(child != current);
13345
13346 child_ctx = perf_pin_task_context(child);
13347 if (!child_ctx)
13348 return;
13349
13350 /*
13351 * In order to reduce the amount of tricky in ctx tear-down, we hold
13352 * ctx::mutex over the entire thing. This serializes against almost
13353 * everything that wants to access the ctx.
13354 *
13355 * The exception is sys_perf_event_open() /
13356 * perf_event_create_kernel_count() which does find_get_context()
13357 * without ctx::mutex (it cannot because of the move_group double mutex
13358 * lock thing). See the comments in perf_install_in_context().
13359 */
13360 mutex_lock(&child_ctx->mutex);
13361
13362 /*
13363 * In a single ctx::lock section, de-schedule the events and detach the
13364 * context from the task such that we cannot ever get it scheduled back
13365 * in.
13366 */
13367 raw_spin_lock_irq(&child_ctx->lock);
13368 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13369
13370 /*
13371 * Now that the context is inactive, destroy the task <-> ctx relation
13372 * and mark the context dead.
13373 */
13374 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13375 put_ctx(child_ctx); /* cannot be last */
13376 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13377 put_task_struct(current); /* cannot be last */
13378
13379 clone_ctx = unclone_ctx(child_ctx);
13380 raw_spin_unlock_irq(&child_ctx->lock);
13381
13382 if (clone_ctx)
13383 put_ctx(clone_ctx);
13384
13385 /*
13386 * Report the task dead after unscheduling the events so that we
13387 * won't get any samples after PERF_RECORD_EXIT. We can however still
13388 * get a few PERF_RECORD_READ events.
13389 */
13390 perf_event_task(child, child_ctx, 0);
13391
13392 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13393 perf_event_exit_event(child_event, child_ctx);
13394
13395 mutex_unlock(&child_ctx->mutex);
13396
13397 put_ctx(child_ctx);
13398 }
13399
13400 /*
13401 * When a child task exits, feed back event values to parent events.
13402 *
13403 * Can be called with exec_update_lock held when called from
13404 * setup_new_exec().
13405 */
perf_event_exit_task(struct task_struct * child)13406 void perf_event_exit_task(struct task_struct *child)
13407 {
13408 struct perf_event *event, *tmp;
13409
13410 mutex_lock(&child->perf_event_mutex);
13411 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13412 owner_entry) {
13413 list_del_init(&event->owner_entry);
13414
13415 /*
13416 * Ensure the list deletion is visible before we clear
13417 * the owner, closes a race against perf_release() where
13418 * we need to serialize on the owner->perf_event_mutex.
13419 */
13420 smp_store_release(&event->owner, NULL);
13421 }
13422 mutex_unlock(&child->perf_event_mutex);
13423
13424 perf_event_exit_task_context(child);
13425
13426 /*
13427 * The perf_event_exit_task_context calls perf_event_task
13428 * with child's task_ctx, which generates EXIT events for
13429 * child contexts and sets child->perf_event_ctxp[] to NULL.
13430 * At this point we need to send EXIT events to cpu contexts.
13431 */
13432 perf_event_task(child, NULL, 0);
13433 }
13434
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13435 static void perf_free_event(struct perf_event *event,
13436 struct perf_event_context *ctx)
13437 {
13438 struct perf_event *parent = event->parent;
13439
13440 if (WARN_ON_ONCE(!parent))
13441 return;
13442
13443 mutex_lock(&parent->child_mutex);
13444 list_del_init(&event->child_list);
13445 mutex_unlock(&parent->child_mutex);
13446
13447 put_event(parent);
13448
13449 raw_spin_lock_irq(&ctx->lock);
13450 perf_group_detach(event);
13451 list_del_event(event, ctx);
13452 raw_spin_unlock_irq(&ctx->lock);
13453 free_event(event);
13454 }
13455
13456 /*
13457 * Free a context as created by inheritance by perf_event_init_task() below,
13458 * used by fork() in case of fail.
13459 *
13460 * Even though the task has never lived, the context and events have been
13461 * exposed through the child_list, so we must take care tearing it all down.
13462 */
perf_event_free_task(struct task_struct * task)13463 void perf_event_free_task(struct task_struct *task)
13464 {
13465 struct perf_event_context *ctx;
13466 struct perf_event *event, *tmp;
13467
13468 ctx = rcu_access_pointer(task->perf_event_ctxp);
13469 if (!ctx)
13470 return;
13471
13472 mutex_lock(&ctx->mutex);
13473 raw_spin_lock_irq(&ctx->lock);
13474 /*
13475 * Destroy the task <-> ctx relation and mark the context dead.
13476 *
13477 * This is important because even though the task hasn't been
13478 * exposed yet the context has been (through child_list).
13479 */
13480 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13481 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13482 put_task_struct(task); /* cannot be last */
13483 raw_spin_unlock_irq(&ctx->lock);
13484
13485
13486 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13487 perf_free_event(event, ctx);
13488
13489 mutex_unlock(&ctx->mutex);
13490
13491 /*
13492 * perf_event_release_kernel() could've stolen some of our
13493 * child events and still have them on its free_list. In that
13494 * case we must wait for these events to have been freed (in
13495 * particular all their references to this task must've been
13496 * dropped).
13497 *
13498 * Without this copy_process() will unconditionally free this
13499 * task (irrespective of its reference count) and
13500 * _free_event()'s put_task_struct(event->hw.target) will be a
13501 * use-after-free.
13502 *
13503 * Wait for all events to drop their context reference.
13504 */
13505 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13506 put_ctx(ctx); /* must be last */
13507 }
13508
perf_event_delayed_put(struct task_struct * task)13509 void perf_event_delayed_put(struct task_struct *task)
13510 {
13511 WARN_ON_ONCE(task->perf_event_ctxp);
13512 }
13513
perf_event_get(unsigned int fd)13514 struct file *perf_event_get(unsigned int fd)
13515 {
13516 struct file *file = fget(fd);
13517 if (!file)
13518 return ERR_PTR(-EBADF);
13519
13520 if (file->f_op != &perf_fops) {
13521 fput(file);
13522 return ERR_PTR(-EBADF);
13523 }
13524
13525 return file;
13526 }
13527
perf_get_event(struct file * file)13528 const struct perf_event *perf_get_event(struct file *file)
13529 {
13530 if (file->f_op != &perf_fops)
13531 return ERR_PTR(-EINVAL);
13532
13533 return file->private_data;
13534 }
13535
perf_event_attrs(struct perf_event * event)13536 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13537 {
13538 if (!event)
13539 return ERR_PTR(-EINVAL);
13540
13541 return &event->attr;
13542 }
13543
perf_allow_kernel(struct perf_event_attr * attr)13544 int perf_allow_kernel(struct perf_event_attr *attr)
13545 {
13546 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13547 return -EACCES;
13548
13549 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13550 }
13551 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13552
13553 /*
13554 * Inherit an event from parent task to child task.
13555 *
13556 * Returns:
13557 * - valid pointer on success
13558 * - NULL for orphaned events
13559 * - IS_ERR() on error
13560 */
13561 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13562 inherit_event(struct perf_event *parent_event,
13563 struct task_struct *parent,
13564 struct perf_event_context *parent_ctx,
13565 struct task_struct *child,
13566 struct perf_event *group_leader,
13567 struct perf_event_context *child_ctx)
13568 {
13569 enum perf_event_state parent_state = parent_event->state;
13570 struct perf_event_pmu_context *pmu_ctx;
13571 struct perf_event *child_event;
13572 unsigned long flags;
13573
13574 /*
13575 * Instead of creating recursive hierarchies of events,
13576 * we link inherited events back to the original parent,
13577 * which has a filp for sure, which we use as the reference
13578 * count:
13579 */
13580 if (parent_event->parent)
13581 parent_event = parent_event->parent;
13582
13583 child_event = perf_event_alloc(&parent_event->attr,
13584 parent_event->cpu,
13585 child,
13586 group_leader, parent_event,
13587 NULL, NULL, -1);
13588 if (IS_ERR(child_event))
13589 return child_event;
13590
13591 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13592 if (IS_ERR(pmu_ctx)) {
13593 free_event(child_event);
13594 return ERR_CAST(pmu_ctx);
13595 }
13596 child_event->pmu_ctx = pmu_ctx;
13597
13598 /*
13599 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13600 * must be under the same lock in order to serialize against
13601 * perf_event_release_kernel(), such that either we must observe
13602 * is_orphaned_event() or they will observe us on the child_list.
13603 */
13604 mutex_lock(&parent_event->child_mutex);
13605 if (is_orphaned_event(parent_event) ||
13606 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13607 mutex_unlock(&parent_event->child_mutex);
13608 /* task_ctx_data is freed with child_ctx */
13609 free_event(child_event);
13610 return NULL;
13611 }
13612
13613 get_ctx(child_ctx);
13614
13615 /*
13616 * Make the child state follow the state of the parent event,
13617 * not its attr.disabled bit. We hold the parent's mutex,
13618 * so we won't race with perf_event_{en, dis}able_family.
13619 */
13620 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13621 child_event->state = PERF_EVENT_STATE_INACTIVE;
13622 else
13623 child_event->state = PERF_EVENT_STATE_OFF;
13624
13625 if (parent_event->attr.freq) {
13626 u64 sample_period = parent_event->hw.sample_period;
13627 struct hw_perf_event *hwc = &child_event->hw;
13628
13629 hwc->sample_period = sample_period;
13630 hwc->last_period = sample_period;
13631
13632 local64_set(&hwc->period_left, sample_period);
13633 }
13634
13635 child_event->ctx = child_ctx;
13636 child_event->overflow_handler = parent_event->overflow_handler;
13637 child_event->overflow_handler_context
13638 = parent_event->overflow_handler_context;
13639
13640 /*
13641 * Precalculate sample_data sizes
13642 */
13643 perf_event__header_size(child_event);
13644 perf_event__id_header_size(child_event);
13645
13646 /*
13647 * Link it up in the child's context:
13648 */
13649 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13650 add_event_to_ctx(child_event, child_ctx);
13651 child_event->attach_state |= PERF_ATTACH_CHILD;
13652 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13653
13654 /*
13655 * Link this into the parent event's child list
13656 */
13657 list_add_tail(&child_event->child_list, &parent_event->child_list);
13658 mutex_unlock(&parent_event->child_mutex);
13659
13660 return child_event;
13661 }
13662
13663 /*
13664 * Inherits an event group.
13665 *
13666 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13667 * This matches with perf_event_release_kernel() removing all child events.
13668 *
13669 * Returns:
13670 * - 0 on success
13671 * - <0 on error
13672 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13673 static int inherit_group(struct perf_event *parent_event,
13674 struct task_struct *parent,
13675 struct perf_event_context *parent_ctx,
13676 struct task_struct *child,
13677 struct perf_event_context *child_ctx)
13678 {
13679 struct perf_event *leader;
13680 struct perf_event *sub;
13681 struct perf_event *child_ctr;
13682
13683 leader = inherit_event(parent_event, parent, parent_ctx,
13684 child, NULL, child_ctx);
13685 if (IS_ERR(leader))
13686 return PTR_ERR(leader);
13687 /*
13688 * @leader can be NULL here because of is_orphaned_event(). In this
13689 * case inherit_event() will create individual events, similar to what
13690 * perf_group_detach() would do anyway.
13691 */
13692 for_each_sibling_event(sub, parent_event) {
13693 child_ctr = inherit_event(sub, parent, parent_ctx,
13694 child, leader, child_ctx);
13695 if (IS_ERR(child_ctr))
13696 return PTR_ERR(child_ctr);
13697
13698 if (sub->aux_event == parent_event && child_ctr &&
13699 !perf_get_aux_event(child_ctr, leader))
13700 return -EINVAL;
13701 }
13702 if (leader)
13703 leader->group_generation = parent_event->group_generation;
13704 return 0;
13705 }
13706
13707 /*
13708 * Creates the child task context and tries to inherit the event-group.
13709 *
13710 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13711 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13712 * consistent with perf_event_release_kernel() removing all child events.
13713 *
13714 * Returns:
13715 * - 0 on success
13716 * - <0 on error
13717 */
13718 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13719 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13720 struct perf_event_context *parent_ctx,
13721 struct task_struct *child,
13722 u64 clone_flags, int *inherited_all)
13723 {
13724 struct perf_event_context *child_ctx;
13725 int ret;
13726
13727 if (!event->attr.inherit ||
13728 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13729 /* Do not inherit if sigtrap and signal handlers were cleared. */
13730 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13731 *inherited_all = 0;
13732 return 0;
13733 }
13734
13735 child_ctx = child->perf_event_ctxp;
13736 if (!child_ctx) {
13737 /*
13738 * This is executed from the parent task context, so
13739 * inherit events that have been marked for cloning.
13740 * First allocate and initialize a context for the
13741 * child.
13742 */
13743 child_ctx = alloc_perf_context(child);
13744 if (!child_ctx)
13745 return -ENOMEM;
13746
13747 child->perf_event_ctxp = child_ctx;
13748 }
13749
13750 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13751 if (ret)
13752 *inherited_all = 0;
13753
13754 return ret;
13755 }
13756
13757 /*
13758 * Initialize the perf_event context in task_struct
13759 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13760 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13761 {
13762 struct perf_event_context *child_ctx, *parent_ctx;
13763 struct perf_event_context *cloned_ctx;
13764 struct perf_event *event;
13765 struct task_struct *parent = current;
13766 int inherited_all = 1;
13767 unsigned long flags;
13768 int ret = 0;
13769
13770 if (likely(!parent->perf_event_ctxp))
13771 return 0;
13772
13773 /*
13774 * If the parent's context is a clone, pin it so it won't get
13775 * swapped under us.
13776 */
13777 parent_ctx = perf_pin_task_context(parent);
13778 if (!parent_ctx)
13779 return 0;
13780
13781 /*
13782 * No need to check if parent_ctx != NULL here; since we saw
13783 * it non-NULL earlier, the only reason for it to become NULL
13784 * is if we exit, and since we're currently in the middle of
13785 * a fork we can't be exiting at the same time.
13786 */
13787
13788 /*
13789 * Lock the parent list. No need to lock the child - not PID
13790 * hashed yet and not running, so nobody can access it.
13791 */
13792 mutex_lock(&parent_ctx->mutex);
13793
13794 /*
13795 * We dont have to disable NMIs - we are only looking at
13796 * the list, not manipulating it:
13797 */
13798 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13799 ret = inherit_task_group(event, parent, parent_ctx,
13800 child, clone_flags, &inherited_all);
13801 if (ret)
13802 goto out_unlock;
13803 }
13804
13805 /*
13806 * We can't hold ctx->lock when iterating the ->flexible_group list due
13807 * to allocations, but we need to prevent rotation because
13808 * rotate_ctx() will change the list from interrupt context.
13809 */
13810 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13811 parent_ctx->rotate_disable = 1;
13812 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13813
13814 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13815 ret = inherit_task_group(event, parent, parent_ctx,
13816 child, clone_flags, &inherited_all);
13817 if (ret)
13818 goto out_unlock;
13819 }
13820
13821 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13822 parent_ctx->rotate_disable = 0;
13823
13824 child_ctx = child->perf_event_ctxp;
13825
13826 if (child_ctx && inherited_all) {
13827 /*
13828 * Mark the child context as a clone of the parent
13829 * context, or of whatever the parent is a clone of.
13830 *
13831 * Note that if the parent is a clone, the holding of
13832 * parent_ctx->lock avoids it from being uncloned.
13833 */
13834 cloned_ctx = parent_ctx->parent_ctx;
13835 if (cloned_ctx) {
13836 child_ctx->parent_ctx = cloned_ctx;
13837 child_ctx->parent_gen = parent_ctx->parent_gen;
13838 } else {
13839 child_ctx->parent_ctx = parent_ctx;
13840 child_ctx->parent_gen = parent_ctx->generation;
13841 }
13842 get_ctx(child_ctx->parent_ctx);
13843 }
13844
13845 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13846 out_unlock:
13847 mutex_unlock(&parent_ctx->mutex);
13848
13849 perf_unpin_context(parent_ctx);
13850 put_ctx(parent_ctx);
13851
13852 return ret;
13853 }
13854
13855 /*
13856 * Initialize the perf_event context in task_struct
13857 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13858 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13859 {
13860 int ret;
13861
13862 memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13863 child->perf_event_ctxp = NULL;
13864 mutex_init(&child->perf_event_mutex);
13865 INIT_LIST_HEAD(&child->perf_event_list);
13866
13867 ret = perf_event_init_context(child, clone_flags);
13868 if (ret) {
13869 perf_event_free_task(child);
13870 return ret;
13871 }
13872
13873 return 0;
13874 }
13875
perf_event_init_all_cpus(void)13876 static void __init perf_event_init_all_cpus(void)
13877 {
13878 struct swevent_htable *swhash;
13879 struct perf_cpu_context *cpuctx;
13880 int cpu;
13881
13882 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13883 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13884 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13885 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13886 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13887 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13888
13889
13890 for_each_possible_cpu(cpu) {
13891 swhash = &per_cpu(swevent_htable, cpu);
13892 mutex_init(&swhash->hlist_mutex);
13893
13894 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13895 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13896
13897 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13898
13899 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13900 __perf_event_init_context(&cpuctx->ctx);
13901 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13902 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13903 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13904 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13905 cpuctx->heap = cpuctx->heap_default;
13906 }
13907 }
13908
perf_swevent_init_cpu(unsigned int cpu)13909 static void perf_swevent_init_cpu(unsigned int cpu)
13910 {
13911 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13912
13913 mutex_lock(&swhash->hlist_mutex);
13914 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13915 struct swevent_hlist *hlist;
13916
13917 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13918 WARN_ON(!hlist);
13919 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13920 }
13921 mutex_unlock(&swhash->hlist_mutex);
13922 }
13923
13924 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13925 static void __perf_event_exit_context(void *__info)
13926 {
13927 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13928 struct perf_event_context *ctx = __info;
13929 struct perf_event *event;
13930
13931 raw_spin_lock(&ctx->lock);
13932 ctx_sched_out(ctx, NULL, EVENT_TIME);
13933 list_for_each_entry(event, &ctx->event_list, event_entry)
13934 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13935 raw_spin_unlock(&ctx->lock);
13936 }
13937
perf_event_clear_cpumask(unsigned int cpu)13938 static void perf_event_clear_cpumask(unsigned int cpu)
13939 {
13940 int target[PERF_PMU_MAX_SCOPE];
13941 unsigned int scope;
13942 struct pmu *pmu;
13943
13944 cpumask_clear_cpu(cpu, perf_online_mask);
13945
13946 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
13947 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
13948 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
13949
13950 target[scope] = -1;
13951 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
13952 continue;
13953
13954 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
13955 continue;
13956 target[scope] = cpumask_any_but(cpumask, cpu);
13957 if (target[scope] < nr_cpu_ids)
13958 cpumask_set_cpu(target[scope], pmu_cpumask);
13959 }
13960
13961 /* migrate */
13962 list_for_each_entry(pmu, &pmus, entry) {
13963 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
13964 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
13965 continue;
13966
13967 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
13968 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
13969 }
13970 }
13971
perf_event_exit_cpu_context(int cpu)13972 static void perf_event_exit_cpu_context(int cpu)
13973 {
13974 struct perf_cpu_context *cpuctx;
13975 struct perf_event_context *ctx;
13976
13977 // XXX simplify cpuctx->online
13978 mutex_lock(&pmus_lock);
13979 /*
13980 * Clear the cpumasks, and migrate to other CPUs if possible.
13981 * Must be invoked before the __perf_event_exit_context.
13982 */
13983 perf_event_clear_cpumask(cpu);
13984 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13985 ctx = &cpuctx->ctx;
13986
13987 mutex_lock(&ctx->mutex);
13988 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13989 cpuctx->online = 0;
13990 mutex_unlock(&ctx->mutex);
13991 mutex_unlock(&pmus_lock);
13992 }
13993 #else
13994
perf_event_exit_cpu_context(int cpu)13995 static void perf_event_exit_cpu_context(int cpu) { }
13996
13997 #endif
13998
perf_event_setup_cpumask(unsigned int cpu)13999 static void perf_event_setup_cpumask(unsigned int cpu)
14000 {
14001 struct cpumask *pmu_cpumask;
14002 unsigned int scope;
14003
14004 /*
14005 * Early boot stage, the cpumask hasn't been set yet.
14006 * The perf_online_<domain>_masks includes the first CPU of each domain.
14007 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14008 */
14009 if (cpumask_empty(perf_online_mask)) {
14010 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14011 pmu_cpumask = perf_scope_cpumask(scope);
14012 if (WARN_ON_ONCE(!pmu_cpumask))
14013 continue;
14014 cpumask_set_cpu(cpu, pmu_cpumask);
14015 }
14016 goto end;
14017 }
14018
14019 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14020 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14021
14022 pmu_cpumask = perf_scope_cpumask(scope);
14023
14024 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14025 continue;
14026
14027 if (!cpumask_empty(cpumask) &&
14028 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14029 cpumask_set_cpu(cpu, pmu_cpumask);
14030 }
14031 end:
14032 cpumask_set_cpu(cpu, perf_online_mask);
14033 }
14034
perf_event_init_cpu(unsigned int cpu)14035 int perf_event_init_cpu(unsigned int cpu)
14036 {
14037 struct perf_cpu_context *cpuctx;
14038 struct perf_event_context *ctx;
14039
14040 perf_swevent_init_cpu(cpu);
14041
14042 mutex_lock(&pmus_lock);
14043 perf_event_setup_cpumask(cpu);
14044 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14045 ctx = &cpuctx->ctx;
14046
14047 mutex_lock(&ctx->mutex);
14048 cpuctx->online = 1;
14049 mutex_unlock(&ctx->mutex);
14050 mutex_unlock(&pmus_lock);
14051
14052 return 0;
14053 }
14054
perf_event_exit_cpu(unsigned int cpu)14055 int perf_event_exit_cpu(unsigned int cpu)
14056 {
14057 perf_event_exit_cpu_context(cpu);
14058 return 0;
14059 }
14060
14061 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14062 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14063 {
14064 int cpu;
14065
14066 for_each_online_cpu(cpu)
14067 perf_event_exit_cpu(cpu);
14068
14069 return NOTIFY_OK;
14070 }
14071
14072 /*
14073 * Run the perf reboot notifier at the very last possible moment so that
14074 * the generic watchdog code runs as long as possible.
14075 */
14076 static struct notifier_block perf_reboot_notifier = {
14077 .notifier_call = perf_reboot,
14078 .priority = INT_MIN,
14079 };
14080
perf_event_init(void)14081 void __init perf_event_init(void)
14082 {
14083 int ret;
14084
14085 idr_init(&pmu_idr);
14086
14087 perf_event_init_all_cpus();
14088 init_srcu_struct(&pmus_srcu);
14089 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14090 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14091 perf_pmu_register(&perf_task_clock, "task_clock", -1);
14092 perf_tp_register();
14093 perf_event_init_cpu(smp_processor_id());
14094 register_reboot_notifier(&perf_reboot_notifier);
14095
14096 ret = init_hw_breakpoint();
14097 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14098
14099 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14100
14101 /*
14102 * Build time assertion that we keep the data_head at the intended
14103 * location. IOW, validation we got the __reserved[] size right.
14104 */
14105 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14106 != 1024);
14107 }
14108
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14109 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14110 char *page)
14111 {
14112 struct perf_pmu_events_attr *pmu_attr =
14113 container_of(attr, struct perf_pmu_events_attr, attr);
14114
14115 if (pmu_attr->event_str)
14116 return sprintf(page, "%s\n", pmu_attr->event_str);
14117
14118 return 0;
14119 }
14120 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14121
perf_event_sysfs_init(void)14122 static int __init perf_event_sysfs_init(void)
14123 {
14124 struct pmu *pmu;
14125 int ret;
14126
14127 mutex_lock(&pmus_lock);
14128
14129 ret = bus_register(&pmu_bus);
14130 if (ret)
14131 goto unlock;
14132
14133 list_for_each_entry(pmu, &pmus, entry) {
14134 if (pmu->dev)
14135 continue;
14136
14137 ret = pmu_dev_alloc(pmu);
14138 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14139 }
14140 pmu_bus_running = 1;
14141 ret = 0;
14142
14143 unlock:
14144 mutex_unlock(&pmus_lock);
14145
14146 return ret;
14147 }
14148 device_initcall(perf_event_sysfs_init);
14149
14150 #ifdef CONFIG_CGROUP_PERF
14151 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14152 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14153 {
14154 struct perf_cgroup *jc;
14155
14156 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14157 if (!jc)
14158 return ERR_PTR(-ENOMEM);
14159
14160 jc->info = alloc_percpu(struct perf_cgroup_info);
14161 if (!jc->info) {
14162 kfree(jc);
14163 return ERR_PTR(-ENOMEM);
14164 }
14165
14166 return &jc->css;
14167 }
14168
perf_cgroup_css_free(struct cgroup_subsys_state * css)14169 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14170 {
14171 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14172
14173 free_percpu(jc->info);
14174 kfree(jc);
14175 }
14176
perf_cgroup_css_online(struct cgroup_subsys_state * css)14177 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14178 {
14179 perf_event_cgroup(css->cgroup);
14180 return 0;
14181 }
14182
__perf_cgroup_move(void * info)14183 static int __perf_cgroup_move(void *info)
14184 {
14185 struct task_struct *task = info;
14186
14187 preempt_disable();
14188 perf_cgroup_switch(task);
14189 preempt_enable();
14190
14191 return 0;
14192 }
14193
perf_cgroup_attach(struct cgroup_taskset * tset)14194 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14195 {
14196 struct task_struct *task;
14197 struct cgroup_subsys_state *css;
14198
14199 cgroup_taskset_for_each(task, css, tset)
14200 task_function_call(task, __perf_cgroup_move, task);
14201 }
14202
14203 struct cgroup_subsys perf_event_cgrp_subsys = {
14204 .css_alloc = perf_cgroup_css_alloc,
14205 .css_free = perf_cgroup_css_free,
14206 .css_online = perf_cgroup_css_online,
14207 .attach = perf_cgroup_attach,
14208 /*
14209 * Implicitly enable on dfl hierarchy so that perf events can
14210 * always be filtered by cgroup2 path as long as perf_event
14211 * controller is not mounted on a legacy hierarchy.
14212 */
14213 .implicit_on_dfl = true,
14214 .threaded = true,
14215 };
14216 #endif /* CONFIG_CGROUP_PERF */
14217
14218 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14219