1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sched_clock() for unstable CPU clocks 4 * 5 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 6 * 7 * Updates and enhancements: 8 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 9 * 10 * Based on code by: 11 * Ingo Molnar <mingo@redhat.com> 12 * Guillaume Chazarain <guichaz@gmail.com> 13 * 14 * 15 * What this file implements: 16 * 17 * cpu_clock(i) provides a fast (execution time) high resolution 18 * clock with bounded drift between CPUs. The value of cpu_clock(i) 19 * is monotonic for constant i. The timestamp returned is in nanoseconds. 20 * 21 * ######################### BIG FAT WARNING ########################## 22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 23 * # go backwards !! # 24 * #################################################################### 25 * 26 * There is no strict promise about the base, although it tends to start 27 * at 0 on boot (but people really shouldn't rely on that). 28 * 29 * cpu_clock(i) -- can be used from any context, including NMI. 30 * local_clock() -- is cpu_clock() on the current CPU. 31 * 32 * sched_clock_cpu(i) 33 * 34 * How it is implemented: 35 * 36 * The implementation either uses sched_clock() when 37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 38 * sched_clock() is assumed to provide these properties (mostly it means 39 * the architecture provides a globally synchronized highres time source). 40 * 41 * Otherwise it tries to create a semi stable clock from a mixture of other 42 * clocks, including: 43 * 44 * - GTOD (clock monotonic) 45 * - sched_clock() 46 * - explicit idle events 47 * 48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 49 * deltas are filtered to provide monotonicity and keeping it within an 50 * expected window. 51 * 52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 53 * that is otherwise invisible (TSC gets stopped). 54 * 55 */ 56 57 #include <linux/sched/clock.h> 58 #include "sched.h" 59 60 /* 61 * Scheduler clock - returns current time in nanosec units. 62 * This is default implementation. 63 * Architectures and sub-architectures can override this. 64 */ 65 notrace unsigned long long __weak sched_clock(void) 66 { 67 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 68 * (NSEC_PER_SEC / HZ); 69 } 70 EXPORT_SYMBOL_GPL(sched_clock); 71 72 static DEFINE_STATIC_KEY_FALSE(sched_clock_running); 73 74 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 75 /* 76 * We must start with !__sched_clock_stable because the unstable -> stable 77 * transition is accurate, while the stable -> unstable transition is not. 78 * 79 * Similarly we start with __sched_clock_stable_early, thereby assuming we 80 * will become stable, such that there's only a single 1 -> 0 transition. 81 */ 82 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 83 static int __sched_clock_stable_early = 1; 84 85 /* 86 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset 87 */ 88 __read_mostly u64 __sched_clock_offset; 89 static __read_mostly u64 __gtod_offset; 90 91 struct sched_clock_data { 92 u64 tick_raw; 93 u64 tick_gtod; 94 u64 clock; 95 }; 96 97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 98 99 static __always_inline struct sched_clock_data *this_scd(void) 100 { 101 return this_cpu_ptr(&sched_clock_data); 102 } 103 104 notrace static inline struct sched_clock_data *cpu_sdc(int cpu) 105 { 106 return &per_cpu(sched_clock_data, cpu); 107 } 108 109 notrace int sched_clock_stable(void) 110 { 111 return static_branch_likely(&__sched_clock_stable); 112 } 113 114 notrace static void __scd_stamp(struct sched_clock_data *scd) 115 { 116 scd->tick_gtod = ktime_get_ns(); 117 scd->tick_raw = sched_clock(); 118 } 119 120 notrace static void __set_sched_clock_stable(void) 121 { 122 struct sched_clock_data *scd; 123 124 /* 125 * Since we're still unstable and the tick is already running, we have 126 * to disable IRQs in order to get a consistent scd->tick* reading. 127 */ 128 local_irq_disable(); 129 scd = this_scd(); 130 /* 131 * Attempt to make the (initial) unstable->stable transition continuous. 132 */ 133 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); 134 local_irq_enable(); 135 136 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 137 scd->tick_gtod, __gtod_offset, 138 scd->tick_raw, __sched_clock_offset); 139 140 static_branch_enable(&__sched_clock_stable); 141 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 142 } 143 144 /* 145 * If we ever get here, we're screwed, because we found out -- typically after 146 * the fact -- that TSC wasn't good. This means all our clocksources (including 147 * ktime) could have reported wrong values. 148 * 149 * What we do here is an attempt to fix up and continue sort of where we left 150 * off in a coherent manner. 151 * 152 * The only way to fully avoid random clock jumps is to boot with: 153 * "tsc=unstable". 154 */ 155 notrace static void __sched_clock_work(struct work_struct *work) 156 { 157 struct sched_clock_data *scd; 158 int cpu; 159 160 /* take a current timestamp and set 'now' */ 161 preempt_disable(); 162 scd = this_scd(); 163 __scd_stamp(scd); 164 scd->clock = scd->tick_gtod + __gtod_offset; 165 preempt_enable(); 166 167 /* clone to all CPUs */ 168 for_each_possible_cpu(cpu) 169 per_cpu(sched_clock_data, cpu) = *scd; 170 171 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); 172 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 173 scd->tick_gtod, __gtod_offset, 174 scd->tick_raw, __sched_clock_offset); 175 176 disable_sched_clock_irqtime(); 177 static_branch_disable(&__sched_clock_stable); 178 } 179 180 static DECLARE_WORK(sched_clock_work, __sched_clock_work); 181 182 notrace static void __clear_sched_clock_stable(void) 183 { 184 if (!sched_clock_stable()) 185 return; 186 187 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 188 schedule_work(&sched_clock_work); 189 } 190 191 notrace void clear_sched_clock_stable(void) 192 { 193 __sched_clock_stable_early = 0; 194 195 smp_mb(); /* matches sched_clock_init_late() */ 196 197 if (static_key_count(&sched_clock_running.key) == 2) 198 __clear_sched_clock_stable(); 199 } 200 201 notrace static void __sched_clock_gtod_offset(void) 202 { 203 struct sched_clock_data *scd = this_scd(); 204 205 __scd_stamp(scd); 206 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod; 207 } 208 209 void __init sched_clock_init(void) 210 { 211 /* 212 * Set __gtod_offset such that once we mark sched_clock_running, 213 * sched_clock_tick() continues where sched_clock() left off. 214 * 215 * Even if TSC is buggered, we're still UP at this point so it 216 * can't really be out of sync. 217 */ 218 local_irq_disable(); 219 __sched_clock_gtod_offset(); 220 local_irq_enable(); 221 222 static_branch_inc(&sched_clock_running); 223 } 224 /* 225 * We run this as late_initcall() such that it runs after all built-in drivers, 226 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. 227 */ 228 static int __init sched_clock_init_late(void) 229 { 230 static_branch_inc(&sched_clock_running); 231 /* 232 * Ensure that it is impossible to not do a static_key update. 233 * 234 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 235 * and do the update, or we must see their __sched_clock_stable_early 236 * and do the update, or both. 237 */ 238 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 239 240 if (__sched_clock_stable_early) 241 __set_sched_clock_stable(); 242 else 243 disable_sched_clock_irqtime(); /* disable if clock unstable. */ 244 245 return 0; 246 } 247 late_initcall(sched_clock_init_late); 248 249 /* 250 * min, max except they take wrapping into account 251 */ 252 253 static __always_inline u64 wrap_min(u64 x, u64 y) 254 { 255 return (s64)(x - y) < 0 ? x : y; 256 } 257 258 static __always_inline u64 wrap_max(u64 x, u64 y) 259 { 260 return (s64)(x - y) > 0 ? x : y; 261 } 262 263 /* 264 * update the percpu scd from the raw @now value 265 * 266 * - filter out backward motion 267 * - use the GTOD tick value to create a window to filter crazy TSC values 268 */ 269 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd) 270 { 271 u64 now, clock, old_clock, min_clock, max_clock, gtod; 272 s64 delta; 273 274 again: 275 now = sched_clock_noinstr(); 276 delta = now - scd->tick_raw; 277 if (unlikely(delta < 0)) 278 delta = 0; 279 280 old_clock = scd->clock; 281 282 /* 283 * scd->clock = clamp(scd->tick_gtod + delta, 284 * max(scd->tick_gtod, scd->clock), 285 * scd->tick_gtod + TICK_NSEC); 286 */ 287 288 gtod = scd->tick_gtod + __gtod_offset; 289 clock = gtod + delta; 290 min_clock = wrap_max(gtod, old_clock); 291 max_clock = wrap_max(old_clock, gtod + TICK_NSEC); 292 293 clock = wrap_max(clock, min_clock); 294 clock = wrap_min(clock, max_clock); 295 296 if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock)) 297 goto again; 298 299 return clock; 300 } 301 302 noinstr u64 local_clock_noinstr(void) 303 { 304 u64 clock; 305 306 if (static_branch_likely(&__sched_clock_stable)) 307 return sched_clock_noinstr() + __sched_clock_offset; 308 309 if (!static_branch_likely(&sched_clock_running)) 310 return sched_clock_noinstr(); 311 312 clock = sched_clock_local(this_scd()); 313 314 return clock; 315 } 316 317 u64 local_clock(void) 318 { 319 u64 now; 320 preempt_disable_notrace(); 321 now = local_clock_noinstr(); 322 preempt_enable_notrace(); 323 return now; 324 } 325 EXPORT_SYMBOL_GPL(local_clock); 326 327 static notrace u64 sched_clock_remote(struct sched_clock_data *scd) 328 { 329 struct sched_clock_data *my_scd = this_scd(); 330 u64 this_clock, remote_clock; 331 u64 *ptr, old_val, val; 332 333 #if BITS_PER_LONG != 64 334 again: 335 /* 336 * Careful here: The local and the remote clock values need to 337 * be read out atomic as we need to compare the values and 338 * then update either the local or the remote side. So the 339 * cmpxchg64 below only protects one readout. 340 * 341 * We must reread via sched_clock_local() in the retry case on 342 * 32-bit kernels as an NMI could use sched_clock_local() via the 343 * tracer and hit between the readout of 344 * the low 32-bit and the high 32-bit portion. 345 */ 346 this_clock = sched_clock_local(my_scd); 347 /* 348 * We must enforce atomic readout on 32-bit, otherwise the 349 * update on the remote CPU can hit in between the readout of 350 * the low 32-bit and the high 32-bit portion. 351 */ 352 remote_clock = cmpxchg64(&scd->clock, 0, 0); 353 #else 354 /* 355 * On 64-bit kernels the read of [my]scd->clock is atomic versus the 356 * update, so we can avoid the above 32-bit dance. 357 */ 358 sched_clock_local(my_scd); 359 again: 360 this_clock = my_scd->clock; 361 remote_clock = scd->clock; 362 #endif 363 364 /* 365 * Use the opportunity that we have both locks 366 * taken to couple the two clocks: we take the 367 * larger time as the latest time for both 368 * runqueues. (this creates monotonic movement) 369 */ 370 if (likely((s64)(remote_clock - this_clock) < 0)) { 371 ptr = &scd->clock; 372 old_val = remote_clock; 373 val = this_clock; 374 } else { 375 /* 376 * Should be rare, but possible: 377 */ 378 ptr = &my_scd->clock; 379 old_val = this_clock; 380 val = remote_clock; 381 } 382 383 if (!try_cmpxchg64(ptr, &old_val, val)) 384 goto again; 385 386 return val; 387 } 388 389 /* 390 * Similar to cpu_clock(), but requires local IRQs to be disabled. 391 * 392 * See cpu_clock(). 393 */ 394 notrace u64 sched_clock_cpu(int cpu) 395 { 396 struct sched_clock_data *scd; 397 u64 clock; 398 399 if (sched_clock_stable()) 400 return sched_clock() + __sched_clock_offset; 401 402 if (!static_branch_likely(&sched_clock_running)) 403 return sched_clock(); 404 405 preempt_disable_notrace(); 406 scd = cpu_sdc(cpu); 407 408 if (cpu != smp_processor_id()) 409 clock = sched_clock_remote(scd); 410 else 411 clock = sched_clock_local(scd); 412 preempt_enable_notrace(); 413 414 return clock; 415 } 416 EXPORT_SYMBOL_GPL(sched_clock_cpu); 417 418 notrace void sched_clock_tick(void) 419 { 420 struct sched_clock_data *scd; 421 422 if (sched_clock_stable()) 423 return; 424 425 if (!static_branch_likely(&sched_clock_running)) 426 return; 427 428 lockdep_assert_irqs_disabled(); 429 430 scd = this_scd(); 431 __scd_stamp(scd); 432 sched_clock_local(scd); 433 } 434 435 notrace void sched_clock_tick_stable(void) 436 { 437 if (!sched_clock_stable()) 438 return; 439 440 /* 441 * Called under watchdog_lock. 442 * 443 * The watchdog just found this TSC to (still) be stable, so now is a 444 * good moment to update our __gtod_offset. Because once we find the 445 * TSC to be unstable, any computation will be computing crap. 446 */ 447 local_irq_disable(); 448 __sched_clock_gtod_offset(); 449 local_irq_enable(); 450 } 451 452 /* 453 * We are going deep-idle (IRQs are disabled): 454 */ 455 notrace void sched_clock_idle_sleep_event(void) 456 { 457 sched_clock_cpu(smp_processor_id()); 458 } 459 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 460 461 /* 462 * We just idled; resync with ktime. 463 */ 464 notrace void sched_clock_idle_wakeup_event(void) 465 { 466 unsigned long flags; 467 468 if (sched_clock_stable()) 469 return; 470 471 if (unlikely(timekeeping_suspended)) 472 return; 473 474 local_irq_save(flags); 475 sched_clock_tick(); 476 local_irq_restore(flags); 477 } 478 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 479 480 #else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */ 481 482 void __init sched_clock_init(void) 483 { 484 static_branch_inc(&sched_clock_running); 485 local_irq_disable(); 486 generic_sched_clock_init(); 487 local_irq_enable(); 488 } 489 490 notrace u64 sched_clock_cpu(int cpu) 491 { 492 if (!static_branch_likely(&sched_clock_running)) 493 return 0; 494 495 return sched_clock(); 496 } 497 498 #endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 499 500 /* 501 * Running clock - returns the time that has elapsed while a guest has been 502 * running. 503 * On a guest this value should be local_clock minus the time the guest was 504 * suspended by the hypervisor (for any reason). 505 * On bare metal this function should return the same as local_clock. 506 * Architectures and sub-architectures can override this. 507 */ 508 notrace u64 __weak running_clock(void) 509 { 510 return local_clock(); 511 } 512