1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 delayed_node->ins_root = RB_ROOT_CACHED;
61 delayed_node->del_root = RB_ROOT_CACHED;
62 mutex_init(&delayed_node->mutex);
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 xa_lock(&root->delayed_nodes);
81 node = xa_load(&root->delayed_nodes, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 xa_unlock(&root->delayed_nodes);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the xarray. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the xarray at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the xarray, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 xa_unlock(&root->delayed_nodes);
115 return node;
116 }
117 xa_unlock(&root->delayed_nodes);
118
119 return NULL;
120 }
121
122 /*
123 * Look up an existing delayed node associated with @btrfs_inode or create a new
124 * one and insert it to the delayed nodes of the root.
125 *
126 * Return the delayed node, or error pointer on failure.
127 */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)128 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
129 struct btrfs_inode *btrfs_inode)
130 {
131 struct btrfs_delayed_node *node;
132 struct btrfs_root *root = btrfs_inode->root;
133 u64 ino = btrfs_ino(btrfs_inode);
134 int ret;
135 void *ptr;
136
137 again:
138 node = btrfs_get_delayed_node(btrfs_inode);
139 if (node)
140 return node;
141
142 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
143 if (!node)
144 return ERR_PTR(-ENOMEM);
145 btrfs_init_delayed_node(node, root, ino);
146
147 /* Cached in the inode and can be accessed. */
148 refcount_set(&node->refs, 2);
149
150 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
151 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
152 if (ret == -ENOMEM) {
153 kmem_cache_free(delayed_node_cache, node);
154 return ERR_PTR(-ENOMEM);
155 }
156 xa_lock(&root->delayed_nodes);
157 ptr = xa_load(&root->delayed_nodes, ino);
158 if (ptr) {
159 /* Somebody inserted it, go back and read it. */
160 xa_unlock(&root->delayed_nodes);
161 kmem_cache_free(delayed_node_cache, node);
162 node = NULL;
163 goto again;
164 }
165 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
166 ASSERT(xa_err(ptr) != -EINVAL);
167 ASSERT(xa_err(ptr) != -ENOMEM);
168 ASSERT(ptr == NULL);
169 btrfs_inode->delayed_node = node;
170 xa_unlock(&root->delayed_nodes);
171
172 return node;
173 }
174
175 /*
176 * Call it when holding delayed_node->mutex
177 *
178 * If mod = 1, add this node into the prepared list.
179 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)180 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
181 struct btrfs_delayed_node *node,
182 int mod)
183 {
184 spin_lock(&root->lock);
185 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
186 if (!list_empty(&node->p_list))
187 list_move_tail(&node->p_list, &root->prepare_list);
188 else if (mod)
189 list_add_tail(&node->p_list, &root->prepare_list);
190 } else {
191 list_add_tail(&node->n_list, &root->node_list);
192 list_add_tail(&node->p_list, &root->prepare_list);
193 refcount_inc(&node->refs); /* inserted into list */
194 root->nodes++;
195 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 }
197 spin_unlock(&root->lock);
198 }
199
200 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)201 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
202 struct btrfs_delayed_node *node)
203 {
204 spin_lock(&root->lock);
205 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
206 root->nodes--;
207 refcount_dec(&node->refs); /* not in the list */
208 list_del_init(&node->n_list);
209 if (!list_empty(&node->p_list))
210 list_del_init(&node->p_list);
211 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
212 }
213 spin_unlock(&root->lock);
214 }
215
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)216 static struct btrfs_delayed_node *btrfs_first_delayed_node(
217 struct btrfs_delayed_root *delayed_root)
218 {
219 struct btrfs_delayed_node *node;
220
221 spin_lock(&delayed_root->lock);
222 node = list_first_entry_or_null(&delayed_root->node_list,
223 struct btrfs_delayed_node, n_list);
224 if (node)
225 refcount_inc(&node->refs);
226 spin_unlock(&delayed_root->lock);
227
228 return node;
229 }
230
btrfs_next_delayed_node(struct btrfs_delayed_node * node)231 static struct btrfs_delayed_node *btrfs_next_delayed_node(
232 struct btrfs_delayed_node *node)
233 {
234 struct btrfs_delayed_root *delayed_root;
235 struct list_head *p;
236 struct btrfs_delayed_node *next = NULL;
237
238 delayed_root = node->root->fs_info->delayed_root;
239 spin_lock(&delayed_root->lock);
240 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
241 /* not in the list */
242 if (list_empty(&delayed_root->node_list))
243 goto out;
244 p = delayed_root->node_list.next;
245 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
246 goto out;
247 else
248 p = node->n_list.next;
249
250 next = list_entry(p, struct btrfs_delayed_node, n_list);
251 refcount_inc(&next->refs);
252 out:
253 spin_unlock(&delayed_root->lock);
254
255 return next;
256 }
257
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)258 static void __btrfs_release_delayed_node(
259 struct btrfs_delayed_node *delayed_node,
260 int mod)
261 {
262 struct btrfs_delayed_root *delayed_root;
263
264 if (!delayed_node)
265 return;
266
267 delayed_root = delayed_node->root->fs_info->delayed_root;
268
269 mutex_lock(&delayed_node->mutex);
270 if (delayed_node->count)
271 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
272 else
273 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
274 mutex_unlock(&delayed_node->mutex);
275
276 if (refcount_dec_and_test(&delayed_node->refs)) {
277 struct btrfs_root *root = delayed_node->root;
278
279 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
280 /*
281 * Once our refcount goes to zero, nobody is allowed to bump it
282 * back up. We can delete it now.
283 */
284 ASSERT(refcount_read(&delayed_node->refs) == 0);
285 kmem_cache_free(delayed_node_cache, delayed_node);
286 }
287 }
288
btrfs_release_delayed_node(struct btrfs_delayed_node * node)289 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
290 {
291 __btrfs_release_delayed_node(node, 0);
292 }
293
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)294 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
295 struct btrfs_delayed_root *delayed_root)
296 {
297 struct btrfs_delayed_node *node;
298
299 spin_lock(&delayed_root->lock);
300 node = list_first_entry_or_null(&delayed_root->prepare_list,
301 struct btrfs_delayed_node, p_list);
302 if (node) {
303 list_del_init(&node->p_list);
304 refcount_inc(&node->refs);
305 }
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309 }
310
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313 {
314 __btrfs_release_delayed_node(node, 1);
315 }
316
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
318 struct btrfs_delayed_node *node,
319 enum btrfs_delayed_item_type type)
320 {
321 struct btrfs_delayed_item *item;
322
323 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
324 if (item) {
325 item->data_len = data_len;
326 item->type = type;
327 item->bytes_reserved = 0;
328 item->delayed_node = node;
329 RB_CLEAR_NODE(&item->rb_node);
330 INIT_LIST_HEAD(&item->log_list);
331 item->logged = false;
332 refcount_set(&item->refs, 1);
333 }
334 return item;
335 }
336
delayed_item_index_cmp(const void * key,const struct rb_node * node)337 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
338 {
339 const u64 *index = key;
340 const struct btrfs_delayed_item *delayed_item = rb_entry(node,
341 struct btrfs_delayed_item, rb_node);
342
343 if (delayed_item->index < *index)
344 return 1;
345 else if (delayed_item->index > *index)
346 return -1;
347
348 return 0;
349 }
350
351 /*
352 * Look up the delayed item by key.
353 *
354 * @delayed_node: pointer to the delayed node
355 * @index: the dir index value to lookup (offset of a dir index key)
356 *
357 * Note: if we don't find the right item, we will return the prev item and
358 * the next item.
359 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)360 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
361 struct rb_root *root,
362 u64 index)
363 {
364 struct rb_node *node;
365
366 node = rb_find(&index, root, delayed_item_index_cmp);
367 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
368 }
369
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)370 static int btrfs_delayed_item_cmp(const struct rb_node *new,
371 const struct rb_node *exist)
372 {
373 const struct btrfs_delayed_item *new_item =
374 rb_entry(new, struct btrfs_delayed_item, rb_node);
375
376 return delayed_item_index_cmp(&new_item->index, exist);
377 }
378
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)379 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
380 struct btrfs_delayed_item *ins)
381 {
382 struct rb_root_cached *root;
383 struct rb_node *exist;
384
385 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
386 root = &delayed_node->ins_root;
387 else
388 root = &delayed_node->del_root;
389
390 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
391 if (exist)
392 return -EEXIST;
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401 }
402
finish_one_item(struct btrfs_delayed_root * delayed_root)403 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404 {
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411 }
412
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414 {
415 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
416 struct rb_root_cached *root;
417 struct btrfs_delayed_root *delayed_root;
418
419 /* Not inserted, ignore it. */
420 if (RB_EMPTY_NODE(&delayed_item->rb_node))
421 return;
422
423 /* If it's in a rbtree, then we need to have delayed node locked. */
424 lockdep_assert_held(&delayed_node->mutex);
425
426 delayed_root = delayed_node->root->fs_info->delayed_root;
427
428 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
429 root = &delayed_node->ins_root;
430 else
431 root = &delayed_node->del_root;
432
433 rb_erase_cached(&delayed_item->rb_node, root);
434 RB_CLEAR_NODE(&delayed_item->rb_node);
435 delayed_node->count--;
436
437 finish_one_item(delayed_root);
438 }
439
btrfs_release_delayed_item(struct btrfs_delayed_item * item)440 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
441 {
442 if (item) {
443 __btrfs_remove_delayed_item(item);
444 if (refcount_dec_and_test(&item->refs))
445 kfree(item);
446 }
447 }
448
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)449 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
450 struct btrfs_delayed_node *delayed_node)
451 {
452 struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
453
454 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
455 }
456
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)457 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
458 struct btrfs_delayed_node *delayed_node)
459 {
460 struct rb_node *p = rb_first_cached(&delayed_node->del_root);
461
462 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
463 }
464
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)465 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
466 struct btrfs_delayed_item *item)
467 {
468 struct rb_node *p = rb_next(&item->rb_node);
469
470 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
471 }
472
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)473 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
474 struct btrfs_delayed_item *item)
475 {
476 struct btrfs_block_rsv *src_rsv;
477 struct btrfs_block_rsv *dst_rsv;
478 struct btrfs_fs_info *fs_info = trans->fs_info;
479 u64 num_bytes;
480 int ret;
481
482 if (!trans->bytes_reserved)
483 return 0;
484
485 src_rsv = trans->block_rsv;
486 dst_rsv = &fs_info->delayed_block_rsv;
487
488 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
489
490 /*
491 * Here we migrate space rsv from transaction rsv, since have already
492 * reserved space when starting a transaction. So no need to reserve
493 * qgroup space here.
494 */
495 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
496 if (!ret) {
497 trace_btrfs_space_reservation(fs_info, "delayed_item",
498 item->delayed_node->inode_id,
499 num_bytes, 1);
500 /*
501 * For insertions we track reserved metadata space by accounting
502 * for the number of leaves that will be used, based on the delayed
503 * node's curr_index_batch_size and index_item_leaves fields.
504 */
505 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
506 item->bytes_reserved = num_bytes;
507 }
508
509 return ret;
510 }
511
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)512 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
513 struct btrfs_delayed_item *item)
514 {
515 struct btrfs_block_rsv *rsv;
516 struct btrfs_fs_info *fs_info = root->fs_info;
517
518 if (!item->bytes_reserved)
519 return;
520
521 rsv = &fs_info->delayed_block_rsv;
522 /*
523 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
524 * to release/reserve qgroup space.
525 */
526 trace_btrfs_space_reservation(fs_info, "delayed_item",
527 item->delayed_node->inode_id,
528 item->bytes_reserved, 0);
529 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
530 }
531
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)532 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
533 unsigned int num_leaves)
534 {
535 struct btrfs_fs_info *fs_info = node->root->fs_info;
536 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
537
538 /* There are no space reservations during log replay, bail out. */
539 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
540 return;
541
542 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
543 bytes, 0);
544 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
545 }
546
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)547 static int btrfs_delayed_inode_reserve_metadata(
548 struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_node *node)
551 {
552 struct btrfs_fs_info *fs_info = root->fs_info;
553 struct btrfs_block_rsv *src_rsv;
554 struct btrfs_block_rsv *dst_rsv;
555 u64 num_bytes;
556 int ret;
557
558 src_rsv = trans->block_rsv;
559 dst_rsv = &fs_info->delayed_block_rsv;
560
561 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
562
563 /*
564 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
565 * which doesn't reserve space for speed. This is a problem since we
566 * still need to reserve space for this update, so try to reserve the
567 * space.
568 *
569 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
570 * we always reserve enough to update the inode item.
571 */
572 if (!src_rsv || (!trans->bytes_reserved &&
573 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
574 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
575 BTRFS_QGROUP_RSV_META_PREALLOC, true);
576 if (ret < 0)
577 return ret;
578 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
579 BTRFS_RESERVE_NO_FLUSH);
580 /* NO_FLUSH could only fail with -ENOSPC */
581 ASSERT(ret == 0 || ret == -ENOSPC);
582 if (ret)
583 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
584 } else {
585 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
586 }
587
588 if (!ret) {
589 trace_btrfs_space_reservation(fs_info, "delayed_inode",
590 node->inode_id, num_bytes, 1);
591 node->bytes_reserved = num_bytes;
592 }
593
594 return ret;
595 }
596
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)597 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
598 struct btrfs_delayed_node *node,
599 bool qgroup_free)
600 {
601 struct btrfs_block_rsv *rsv;
602
603 if (!node->bytes_reserved)
604 return;
605
606 rsv = &fs_info->delayed_block_rsv;
607 trace_btrfs_space_reservation(fs_info, "delayed_inode",
608 node->inode_id, node->bytes_reserved, 0);
609 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
610 if (qgroup_free)
611 btrfs_qgroup_free_meta_prealloc(node->root,
612 node->bytes_reserved);
613 else
614 btrfs_qgroup_convert_reserved_meta(node->root,
615 node->bytes_reserved);
616 node->bytes_reserved = 0;
617 }
618
619 /*
620 * Insert a single delayed item or a batch of delayed items, as many as possible
621 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
622 * in the rbtree, and if there's a gap between two consecutive dir index items,
623 * then it means at some point we had delayed dir indexes to add but they got
624 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
625 * into the subvolume tree. Dir index keys also have their offsets coming from a
626 * monotonically increasing counter, so we can't get new keys with an offset that
627 * fits within a gap between delayed dir index items.
628 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)629 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
630 struct btrfs_root *root,
631 struct btrfs_path *path,
632 struct btrfs_delayed_item *first_item)
633 {
634 struct btrfs_fs_info *fs_info = root->fs_info;
635 struct btrfs_delayed_node *node = first_item->delayed_node;
636 LIST_HEAD(item_list);
637 struct btrfs_delayed_item *curr;
638 struct btrfs_delayed_item *next;
639 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
640 struct btrfs_item_batch batch;
641 struct btrfs_key first_key;
642 const u32 first_data_size = first_item->data_len;
643 int total_size;
644 char *ins_data = NULL;
645 int ret;
646 bool continuous_keys_only = false;
647
648 lockdep_assert_held(&node->mutex);
649
650 /*
651 * During normal operation the delayed index offset is continuously
652 * increasing, so we can batch insert all items as there will not be any
653 * overlapping keys in the tree.
654 *
655 * The exception to this is log replay, where we may have interleaved
656 * offsets in the tree, so our batch needs to be continuous keys only in
657 * order to ensure we do not end up with out of order items in our leaf.
658 */
659 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
660 continuous_keys_only = true;
661
662 /*
663 * For delayed items to insert, we track reserved metadata bytes based
664 * on the number of leaves that we will use.
665 * See btrfs_insert_delayed_dir_index() and
666 * btrfs_delayed_item_reserve_metadata()).
667 */
668 ASSERT(first_item->bytes_reserved == 0);
669
670 list_add_tail(&first_item->tree_list, &item_list);
671 batch.total_data_size = first_data_size;
672 batch.nr = 1;
673 total_size = first_data_size + sizeof(struct btrfs_item);
674 curr = first_item;
675
676 while (true) {
677 int next_size;
678
679 next = __btrfs_next_delayed_item(curr);
680 if (!next)
681 break;
682
683 /*
684 * We cannot allow gaps in the key space if we're doing log
685 * replay.
686 */
687 if (continuous_keys_only && (next->index != curr->index + 1))
688 break;
689
690 ASSERT(next->bytes_reserved == 0);
691
692 next_size = next->data_len + sizeof(struct btrfs_item);
693 if (total_size + next_size > max_size)
694 break;
695
696 list_add_tail(&next->tree_list, &item_list);
697 batch.nr++;
698 total_size += next_size;
699 batch.total_data_size += next->data_len;
700 curr = next;
701 }
702
703 if (batch.nr == 1) {
704 first_key.objectid = node->inode_id;
705 first_key.type = BTRFS_DIR_INDEX_KEY;
706 first_key.offset = first_item->index;
707 batch.keys = &first_key;
708 batch.data_sizes = &first_data_size;
709 } else {
710 struct btrfs_key *ins_keys;
711 u32 *ins_sizes;
712 int i = 0;
713
714 ins_data = kmalloc(batch.nr * sizeof(u32) +
715 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
716 if (!ins_data) {
717 ret = -ENOMEM;
718 goto out;
719 }
720 ins_sizes = (u32 *)ins_data;
721 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
722 batch.keys = ins_keys;
723 batch.data_sizes = ins_sizes;
724 list_for_each_entry(curr, &item_list, tree_list) {
725 ins_keys[i].objectid = node->inode_id;
726 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
727 ins_keys[i].offset = curr->index;
728 ins_sizes[i] = curr->data_len;
729 i++;
730 }
731 }
732
733 ret = btrfs_insert_empty_items(trans, root, path, &batch);
734 if (ret)
735 goto out;
736
737 list_for_each_entry(curr, &item_list, tree_list) {
738 char *data_ptr;
739
740 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
741 write_extent_buffer(path->nodes[0], &curr->data,
742 (unsigned long)data_ptr, curr->data_len);
743 path->slots[0]++;
744 }
745
746 /*
747 * Now release our path before releasing the delayed items and their
748 * metadata reservations, so that we don't block other tasks for more
749 * time than needed.
750 */
751 btrfs_release_path(path);
752
753 ASSERT(node->index_item_leaves > 0);
754
755 /*
756 * For normal operations we will batch an entire leaf's worth of delayed
757 * items, so if there are more items to process we can decrement
758 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
759 *
760 * However for log replay we may not have inserted an entire leaf's
761 * worth of items, we may have not had continuous items, so decrementing
762 * here would mess up the index_item_leaves accounting. For this case
763 * only clean up the accounting when there are no items left.
764 */
765 if (next && !continuous_keys_only) {
766 /*
767 * We inserted one batch of items into a leaf a there are more
768 * items to flush in a future batch, now release one unit of
769 * metadata space from the delayed block reserve, corresponding
770 * the leaf we just flushed to.
771 */
772 btrfs_delayed_item_release_leaves(node, 1);
773 node->index_item_leaves--;
774 } else if (!next) {
775 /*
776 * There are no more items to insert. We can have a number of
777 * reserved leaves > 1 here - this happens when many dir index
778 * items are added and then removed before they are flushed (file
779 * names with a very short life, never span a transaction). So
780 * release all remaining leaves.
781 */
782 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
783 node->index_item_leaves = 0;
784 }
785
786 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
787 list_del(&curr->tree_list);
788 btrfs_release_delayed_item(curr);
789 }
790 out:
791 kfree(ins_data);
792 return ret;
793 }
794
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)795 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
796 struct btrfs_path *path,
797 struct btrfs_root *root,
798 struct btrfs_delayed_node *node)
799 {
800 int ret = 0;
801
802 while (ret == 0) {
803 struct btrfs_delayed_item *curr;
804
805 mutex_lock(&node->mutex);
806 curr = __btrfs_first_delayed_insertion_item(node);
807 if (!curr) {
808 mutex_unlock(&node->mutex);
809 break;
810 }
811 ret = btrfs_insert_delayed_item(trans, root, path, curr);
812 mutex_unlock(&node->mutex);
813 }
814
815 return ret;
816 }
817
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)818 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
819 struct btrfs_root *root,
820 struct btrfs_path *path,
821 struct btrfs_delayed_item *item)
822 {
823 const u64 ino = item->delayed_node->inode_id;
824 struct btrfs_fs_info *fs_info = root->fs_info;
825 struct btrfs_delayed_item *curr, *next;
826 struct extent_buffer *leaf = path->nodes[0];
827 LIST_HEAD(batch_list);
828 int nitems, slot, last_slot;
829 int ret;
830 u64 total_reserved_size = item->bytes_reserved;
831
832 ASSERT(leaf != NULL);
833
834 slot = path->slots[0];
835 last_slot = btrfs_header_nritems(leaf) - 1;
836 /*
837 * Our caller always gives us a path pointing to an existing item, so
838 * this can not happen.
839 */
840 ASSERT(slot <= last_slot);
841 if (WARN_ON(slot > last_slot))
842 return -ENOENT;
843
844 nitems = 1;
845 curr = item;
846 list_add_tail(&curr->tree_list, &batch_list);
847
848 /*
849 * Keep checking if the next delayed item matches the next item in the
850 * leaf - if so, we can add it to the batch of items to delete from the
851 * leaf.
852 */
853 while (slot < last_slot) {
854 struct btrfs_key key;
855
856 next = __btrfs_next_delayed_item(curr);
857 if (!next)
858 break;
859
860 slot++;
861 btrfs_item_key_to_cpu(leaf, &key, slot);
862 if (key.objectid != ino ||
863 key.type != BTRFS_DIR_INDEX_KEY ||
864 key.offset != next->index)
865 break;
866 nitems++;
867 curr = next;
868 list_add_tail(&curr->tree_list, &batch_list);
869 total_reserved_size += curr->bytes_reserved;
870 }
871
872 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
873 if (ret)
874 return ret;
875
876 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
877 if (total_reserved_size > 0) {
878 /*
879 * Check btrfs_delayed_item_reserve_metadata() to see why we
880 * don't need to release/reserve qgroup space.
881 */
882 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
883 total_reserved_size, 0);
884 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
885 total_reserved_size, NULL);
886 }
887
888 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
889 list_del(&curr->tree_list);
890 btrfs_release_delayed_item(curr);
891 }
892
893 return 0;
894 }
895
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)896 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
897 struct btrfs_path *path,
898 struct btrfs_root *root,
899 struct btrfs_delayed_node *node)
900 {
901 struct btrfs_key key;
902 int ret = 0;
903
904 key.objectid = node->inode_id;
905 key.type = BTRFS_DIR_INDEX_KEY;
906
907 while (ret == 0) {
908 struct btrfs_delayed_item *item;
909
910 mutex_lock(&node->mutex);
911 item = __btrfs_first_delayed_deletion_item(node);
912 if (!item) {
913 mutex_unlock(&node->mutex);
914 break;
915 }
916
917 key.offset = item->index;
918 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
919 if (ret > 0) {
920 /*
921 * There's no matching item in the leaf. This means we
922 * have already deleted this item in a past run of the
923 * delayed items. We ignore errors when running delayed
924 * items from an async context, through a work queue job
925 * running btrfs_async_run_delayed_root(), and don't
926 * release delayed items that failed to complete. This
927 * is because we will retry later, and at transaction
928 * commit time we always run delayed items and will
929 * then deal with errors if they fail to run again.
930 *
931 * So just release delayed items for which we can't find
932 * an item in the tree, and move to the next item.
933 */
934 btrfs_release_path(path);
935 btrfs_release_delayed_item(item);
936 ret = 0;
937 } else if (ret == 0) {
938 ret = btrfs_batch_delete_items(trans, root, path, item);
939 btrfs_release_path(path);
940 }
941
942 /*
943 * We unlock and relock on each iteration, this is to prevent
944 * blocking other tasks for too long while we are being run from
945 * the async context (work queue job). Those tasks are typically
946 * running system calls like creat/mkdir/rename/unlink/etc which
947 * need to add delayed items to this delayed node.
948 */
949 mutex_unlock(&node->mutex);
950 }
951
952 return ret;
953 }
954
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)955 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
956 {
957 struct btrfs_delayed_root *delayed_root;
958
959 if (delayed_node &&
960 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
961 ASSERT(delayed_node->root);
962 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
963 delayed_node->count--;
964
965 delayed_root = delayed_node->root->fs_info->delayed_root;
966 finish_one_item(delayed_root);
967 }
968 }
969
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)970 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
971 {
972
973 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
974 struct btrfs_delayed_root *delayed_root;
975
976 ASSERT(delayed_node->root);
977 delayed_node->count--;
978
979 delayed_root = delayed_node->root->fs_info->delayed_root;
980 finish_one_item(delayed_root);
981 }
982 }
983
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)984 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
985 struct btrfs_root *root,
986 struct btrfs_path *path,
987 struct btrfs_delayed_node *node)
988 {
989 struct btrfs_fs_info *fs_info = root->fs_info;
990 struct btrfs_key key;
991 struct btrfs_inode_item *inode_item;
992 struct extent_buffer *leaf;
993 int mod;
994 int ret;
995
996 key.objectid = node->inode_id;
997 key.type = BTRFS_INODE_ITEM_KEY;
998 key.offset = 0;
999
1000 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1001 mod = -1;
1002 else
1003 mod = 1;
1004
1005 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1006 if (ret > 0)
1007 ret = -ENOENT;
1008 if (ret < 0) {
1009 /*
1010 * If we fail to update the delayed inode we need to abort the
1011 * transaction, because we could leave the inode with the
1012 * improper counts behind.
1013 */
1014 if (ret != -ENOENT)
1015 btrfs_abort_transaction(trans, ret);
1016 goto out;
1017 }
1018
1019 leaf = path->nodes[0];
1020 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_inode_item);
1022 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1023 sizeof(struct btrfs_inode_item));
1024
1025 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026 goto out;
1027
1028 /*
1029 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1030 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1031 *
1032 * But if we're the last item already, release and search for the last
1033 * INODE_REF/EXTREF.
1034 */
1035 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1036 key.objectid = node->inode_id;
1037 key.type = BTRFS_INODE_EXTREF_KEY;
1038 key.offset = (u64)-1;
1039
1040 btrfs_release_path(path);
1041 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1042 if (ret < 0) {
1043 btrfs_abort_transaction(trans, ret);
1044 goto err_out;
1045 }
1046 ASSERT(ret > 0);
1047 ASSERT(path->slots[0] > 0);
1048 ret = 0;
1049 path->slots[0]--;
1050 leaf = path->nodes[0];
1051 } else {
1052 path->slots[0]++;
1053 }
1054 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1055 if (key.objectid != node->inode_id)
1056 goto out;
1057 if (key.type != BTRFS_INODE_REF_KEY &&
1058 key.type != BTRFS_INODE_EXTREF_KEY)
1059 goto out;
1060
1061 /*
1062 * Delayed iref deletion is for the inode who has only one link,
1063 * so there is only one iref. The case that several irefs are
1064 * in the same item doesn't exist.
1065 */
1066 ret = btrfs_del_item(trans, root, path);
1067 if (ret < 0)
1068 btrfs_abort_transaction(trans, ret);
1069 out:
1070 btrfs_release_delayed_iref(node);
1071 btrfs_release_path(path);
1072 err_out:
1073 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1074 btrfs_release_delayed_inode(node);
1075 return ret;
1076 }
1077
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1078 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1079 struct btrfs_root *root,
1080 struct btrfs_path *path,
1081 struct btrfs_delayed_node *node)
1082 {
1083 int ret;
1084
1085 mutex_lock(&node->mutex);
1086 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1087 mutex_unlock(&node->mutex);
1088 return 0;
1089 }
1090
1091 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1092 mutex_unlock(&node->mutex);
1093 return ret;
1094 }
1095
1096 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1097 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100 {
1101 int ret;
1102
1103 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1104 if (ret)
1105 return ret;
1106
1107 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1108 if (ret)
1109 return ret;
1110
1111 ret = btrfs_record_root_in_trans(trans, node->root);
1112 if (ret)
1113 return ret;
1114 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1115 return ret;
1116 }
1117
1118 /*
1119 * Called when committing the transaction.
1120 * Returns 0 on success.
1121 * Returns < 0 on error and returns with an aborted transaction with any
1122 * outstanding delayed items cleaned up.
1123 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1124 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1125 {
1126 struct btrfs_fs_info *fs_info = trans->fs_info;
1127 struct btrfs_delayed_root *delayed_root;
1128 struct btrfs_delayed_node *curr_node, *prev_node;
1129 struct btrfs_path *path;
1130 struct btrfs_block_rsv *block_rsv;
1131 int ret = 0;
1132 bool count = (nr > 0);
1133
1134 if (TRANS_ABORTED(trans))
1135 return -EIO;
1136
1137 path = btrfs_alloc_path();
1138 if (!path)
1139 return -ENOMEM;
1140
1141 block_rsv = trans->block_rsv;
1142 trans->block_rsv = &fs_info->delayed_block_rsv;
1143
1144 delayed_root = fs_info->delayed_root;
1145
1146 curr_node = btrfs_first_delayed_node(delayed_root);
1147 while (curr_node && (!count || nr--)) {
1148 ret = __btrfs_commit_inode_delayed_items(trans, path,
1149 curr_node);
1150 if (ret) {
1151 btrfs_abort_transaction(trans, ret);
1152 break;
1153 }
1154
1155 prev_node = curr_node;
1156 curr_node = btrfs_next_delayed_node(curr_node);
1157 /*
1158 * See the comment below about releasing path before releasing
1159 * node. If the commit of delayed items was successful the path
1160 * should always be released, but in case of an error, it may
1161 * point to locked extent buffers (a leaf at the very least).
1162 */
1163 ASSERT(path->nodes[0] == NULL);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 /*
1168 * Release the path to avoid a potential deadlock and lockdep splat when
1169 * releasing the delayed node, as that requires taking the delayed node's
1170 * mutex. If another task starts running delayed items before we take
1171 * the mutex, it will first lock the mutex and then it may try to lock
1172 * the same btree path (leaf).
1173 */
1174 btrfs_free_path(path);
1175
1176 if (curr_node)
1177 btrfs_release_delayed_node(curr_node);
1178 trans->block_rsv = block_rsv;
1179
1180 return ret;
1181 }
1182
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1183 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1184 {
1185 return __btrfs_run_delayed_items(trans, -1);
1186 }
1187
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1188 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1189 {
1190 return __btrfs_run_delayed_items(trans, nr);
1191 }
1192
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 struct btrfs_inode *inode)
1195 {
1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 BTRFS_PATH_AUTO_FREE(path);
1198 struct btrfs_block_rsv *block_rsv;
1199 int ret;
1200
1201 if (!delayed_node)
1202 return 0;
1203
1204 mutex_lock(&delayed_node->mutex);
1205 if (!delayed_node->count) {
1206 mutex_unlock(&delayed_node->mutex);
1207 btrfs_release_delayed_node(delayed_node);
1208 return 0;
1209 }
1210 mutex_unlock(&delayed_node->mutex);
1211
1212 path = btrfs_alloc_path();
1213 if (!path) {
1214 btrfs_release_delayed_node(delayed_node);
1215 return -ENOMEM;
1216 }
1217
1218 block_rsv = trans->block_rsv;
1219 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1220
1221 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1222
1223 btrfs_release_delayed_node(delayed_node);
1224 trans->block_rsv = block_rsv;
1225
1226 return ret;
1227 }
1228
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1229 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1230 {
1231 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1232 struct btrfs_trans_handle *trans;
1233 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1234 struct btrfs_path *path;
1235 struct btrfs_block_rsv *block_rsv;
1236 int ret;
1237
1238 if (!delayed_node)
1239 return 0;
1240
1241 mutex_lock(&delayed_node->mutex);
1242 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1243 mutex_unlock(&delayed_node->mutex);
1244 btrfs_release_delayed_node(delayed_node);
1245 return 0;
1246 }
1247 mutex_unlock(&delayed_node->mutex);
1248
1249 trans = btrfs_join_transaction(delayed_node->root);
1250 if (IS_ERR(trans)) {
1251 ret = PTR_ERR(trans);
1252 goto out;
1253 }
1254
1255 path = btrfs_alloc_path();
1256 if (!path) {
1257 ret = -ENOMEM;
1258 goto trans_out;
1259 }
1260
1261 block_rsv = trans->block_rsv;
1262 trans->block_rsv = &fs_info->delayed_block_rsv;
1263
1264 mutex_lock(&delayed_node->mutex);
1265 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1266 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1267 path, delayed_node);
1268 else
1269 ret = 0;
1270 mutex_unlock(&delayed_node->mutex);
1271
1272 btrfs_free_path(path);
1273 trans->block_rsv = block_rsv;
1274 trans_out:
1275 btrfs_end_transaction(trans);
1276 btrfs_btree_balance_dirty(fs_info);
1277 out:
1278 btrfs_release_delayed_node(delayed_node);
1279
1280 return ret;
1281 }
1282
btrfs_remove_delayed_node(struct btrfs_inode * inode)1283 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1284 {
1285 struct btrfs_delayed_node *delayed_node;
1286
1287 delayed_node = READ_ONCE(inode->delayed_node);
1288 if (!delayed_node)
1289 return;
1290
1291 inode->delayed_node = NULL;
1292 btrfs_release_delayed_node(delayed_node);
1293 }
1294
1295 struct btrfs_async_delayed_work {
1296 struct btrfs_delayed_root *delayed_root;
1297 int nr;
1298 struct btrfs_work work;
1299 };
1300
btrfs_async_run_delayed_root(struct btrfs_work * work)1301 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1302 {
1303 struct btrfs_async_delayed_work *async_work;
1304 struct btrfs_delayed_root *delayed_root;
1305 struct btrfs_trans_handle *trans;
1306 struct btrfs_path *path;
1307 struct btrfs_delayed_node *delayed_node = NULL;
1308 struct btrfs_root *root;
1309 struct btrfs_block_rsv *block_rsv;
1310 int total_done = 0;
1311
1312 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1313 delayed_root = async_work->delayed_root;
1314
1315 path = btrfs_alloc_path();
1316 if (!path)
1317 goto out;
1318
1319 do {
1320 if (atomic_read(&delayed_root->items) <
1321 BTRFS_DELAYED_BACKGROUND / 2)
1322 break;
1323
1324 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1325 if (!delayed_node)
1326 break;
1327
1328 root = delayed_node->root;
1329
1330 trans = btrfs_join_transaction(root);
1331 if (IS_ERR(trans)) {
1332 btrfs_release_path(path);
1333 btrfs_release_prepared_delayed_node(delayed_node);
1334 total_done++;
1335 continue;
1336 }
1337
1338 block_rsv = trans->block_rsv;
1339 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1340
1341 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1342
1343 trans->block_rsv = block_rsv;
1344 btrfs_end_transaction(trans);
1345 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1346
1347 btrfs_release_path(path);
1348 btrfs_release_prepared_delayed_node(delayed_node);
1349 total_done++;
1350
1351 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1352 || total_done < async_work->nr);
1353
1354 btrfs_free_path(path);
1355 out:
1356 wake_up(&delayed_root->wait);
1357 kfree(async_work);
1358 }
1359
1360
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1362 struct btrfs_fs_info *fs_info, int nr)
1363 {
1364 struct btrfs_async_delayed_work *async_work;
1365
1366 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1367 if (!async_work)
1368 return -ENOMEM;
1369
1370 async_work->delayed_root = delayed_root;
1371 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376 }
1377
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379 {
1380 struct btrfs_delayed_node *node = btrfs_first_delayed_node(fs_info->delayed_root);
1381
1382 if (WARN_ON(node))
1383 refcount_dec(&node->refs);
1384 }
1385
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1386 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1387 {
1388 int val = atomic_read(&delayed_root->items_seq);
1389
1390 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1391 return true;
1392
1393 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1394 return true;
1395
1396 return false;
1397 }
1398
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1399 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1400 {
1401 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1402
1403 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1404 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1405 return;
1406
1407 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1408 int seq;
1409 int ret;
1410
1411 seq = atomic_read(&delayed_root->items_seq);
1412
1413 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1414 if (ret)
1415 return;
1416
1417 wait_event_interruptible(delayed_root->wait,
1418 could_end_wait(delayed_root, seq));
1419 return;
1420 }
1421
1422 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1423 }
1424
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1425 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1426 {
1427 struct btrfs_fs_info *fs_info = trans->fs_info;
1428 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1429
1430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1431 return;
1432
1433 /*
1434 * Adding the new dir index item does not require touching another
1435 * leaf, so we can release 1 unit of metadata that was previously
1436 * reserved when starting the transaction. This applies only to
1437 * the case where we had a transaction start and excludes the
1438 * transaction join case (when replaying log trees).
1439 */
1440 trace_btrfs_space_reservation(fs_info, "transaction",
1441 trans->transid, bytes, 0);
1442 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1443 ASSERT(trans->bytes_reserved >= bytes);
1444 trans->bytes_reserved -= bytes;
1445 }
1446
1447 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1448 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1449 const char *name, int name_len,
1450 struct btrfs_inode *dir,
1451 const struct btrfs_disk_key *disk_key, u8 flags,
1452 u64 index)
1453 {
1454 struct btrfs_fs_info *fs_info = trans->fs_info;
1455 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1456 struct btrfs_delayed_node *delayed_node;
1457 struct btrfs_delayed_item *delayed_item;
1458 struct btrfs_dir_item *dir_item;
1459 bool reserve_leaf_space;
1460 u32 data_len;
1461 int ret;
1462
1463 delayed_node = btrfs_get_or_create_delayed_node(dir);
1464 if (IS_ERR(delayed_node))
1465 return PTR_ERR(delayed_node);
1466
1467 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1468 delayed_node,
1469 BTRFS_DELAYED_INSERTION_ITEM);
1470 if (!delayed_item) {
1471 ret = -ENOMEM;
1472 goto release_node;
1473 }
1474
1475 delayed_item->index = index;
1476
1477 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1478 dir_item->location = *disk_key;
1479 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1480 btrfs_set_stack_dir_data_len(dir_item, 0);
1481 btrfs_set_stack_dir_name_len(dir_item, name_len);
1482 btrfs_set_stack_dir_flags(dir_item, flags);
1483 memcpy((char *)(dir_item + 1), name, name_len);
1484
1485 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1486
1487 mutex_lock(&delayed_node->mutex);
1488
1489 /*
1490 * First attempt to insert the delayed item. This is to make the error
1491 * handling path simpler in case we fail (-EEXIST). There's no risk of
1492 * any other task coming in and running the delayed item before we do
1493 * the metadata space reservation below, because we are holding the
1494 * delayed node's mutex and that mutex must also be locked before the
1495 * node's delayed items can be run.
1496 */
1497 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1498 if (unlikely(ret)) {
1499 btrfs_err(trans->fs_info,
1500 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1501 name_len, name, index, btrfs_root_id(delayed_node->root),
1502 delayed_node->inode_id, dir->index_cnt,
1503 delayed_node->index_cnt, ret);
1504 btrfs_release_delayed_item(delayed_item);
1505 btrfs_release_dir_index_item_space(trans);
1506 mutex_unlock(&delayed_node->mutex);
1507 goto release_node;
1508 }
1509
1510 if (delayed_node->index_item_leaves == 0 ||
1511 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1512 delayed_node->curr_index_batch_size = data_len;
1513 reserve_leaf_space = true;
1514 } else {
1515 delayed_node->curr_index_batch_size += data_len;
1516 reserve_leaf_space = false;
1517 }
1518
1519 if (reserve_leaf_space) {
1520 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1521 /*
1522 * Space was reserved for a dir index item insertion when we
1523 * started the transaction, so getting a failure here should be
1524 * impossible.
1525 */
1526 if (WARN_ON(ret)) {
1527 btrfs_release_delayed_item(delayed_item);
1528 mutex_unlock(&delayed_node->mutex);
1529 goto release_node;
1530 }
1531
1532 delayed_node->index_item_leaves++;
1533 } else {
1534 btrfs_release_dir_index_item_space(trans);
1535 }
1536 mutex_unlock(&delayed_node->mutex);
1537
1538 release_node:
1539 btrfs_release_delayed_node(delayed_node);
1540 return ret;
1541 }
1542
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1543 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1544 u64 index)
1545 {
1546 struct btrfs_delayed_item *item;
1547
1548 mutex_lock(&node->mutex);
1549 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1550 if (!item) {
1551 mutex_unlock(&node->mutex);
1552 return false;
1553 }
1554
1555 /*
1556 * For delayed items to insert, we track reserved metadata bytes based
1557 * on the number of leaves that we will use.
1558 * See btrfs_insert_delayed_dir_index() and
1559 * btrfs_delayed_item_reserve_metadata()).
1560 */
1561 ASSERT(item->bytes_reserved == 0);
1562 ASSERT(node->index_item_leaves > 0);
1563
1564 /*
1565 * If there's only one leaf reserved, we can decrement this item from the
1566 * current batch, otherwise we can not because we don't know which leaf
1567 * it belongs to. With the current limit on delayed items, we rarely
1568 * accumulate enough dir index items to fill more than one leaf (even
1569 * when using a leaf size of 4K).
1570 */
1571 if (node->index_item_leaves == 1) {
1572 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1573
1574 ASSERT(node->curr_index_batch_size >= data_len);
1575 node->curr_index_batch_size -= data_len;
1576 }
1577
1578 btrfs_release_delayed_item(item);
1579
1580 /* If we now have no more dir index items, we can release all leaves. */
1581 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1582 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1583 node->index_item_leaves = 0;
1584 }
1585
1586 mutex_unlock(&node->mutex);
1587 return true;
1588 }
1589
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1590 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1591 struct btrfs_inode *dir, u64 index)
1592 {
1593 struct btrfs_delayed_node *node;
1594 struct btrfs_delayed_item *item;
1595 int ret;
1596
1597 node = btrfs_get_or_create_delayed_node(dir);
1598 if (IS_ERR(node))
1599 return PTR_ERR(node);
1600
1601 if (btrfs_delete_delayed_insertion_item(node, index)) {
1602 ret = 0;
1603 goto end;
1604 }
1605
1606 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1607 if (!item) {
1608 ret = -ENOMEM;
1609 goto end;
1610 }
1611
1612 item->index = index;
1613
1614 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1615 /*
1616 * we have reserved enough space when we start a new transaction,
1617 * so reserving metadata failure is impossible.
1618 */
1619 if (ret < 0) {
1620 btrfs_err(trans->fs_info,
1621 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1622 index, btrfs_root_id(node->root), node->inode_id, ret);
1623 btrfs_release_delayed_item(item);
1624 goto end;
1625 }
1626
1627 mutex_lock(&node->mutex);
1628 ret = __btrfs_add_delayed_item(node, item);
1629 if (unlikely(ret)) {
1630 btrfs_err(trans->fs_info,
1631 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1632 index, btrfs_root_id(node->root), node->inode_id, ret);
1633 btrfs_delayed_item_release_metadata(dir->root, item);
1634 btrfs_release_delayed_item(item);
1635 }
1636 mutex_unlock(&node->mutex);
1637 end:
1638 btrfs_release_delayed_node(node);
1639 return ret;
1640 }
1641
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1642 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1643 {
1644 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1645
1646 if (!delayed_node)
1647 return -ENOENT;
1648
1649 /*
1650 * Since we have held i_mutex of this directory, it is impossible that
1651 * a new directory index is added into the delayed node and index_cnt
1652 * is updated now. So we needn't lock the delayed node.
1653 */
1654 if (!delayed_node->index_cnt) {
1655 btrfs_release_delayed_node(delayed_node);
1656 return -EINVAL;
1657 }
1658
1659 inode->index_cnt = delayed_node->index_cnt;
1660 btrfs_release_delayed_node(delayed_node);
1661 return 0;
1662 }
1663
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1664 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1665 u64 last_index,
1666 struct list_head *ins_list,
1667 struct list_head *del_list)
1668 {
1669 struct btrfs_delayed_node *delayed_node;
1670 struct btrfs_delayed_item *item;
1671
1672 delayed_node = btrfs_get_delayed_node(inode);
1673 if (!delayed_node)
1674 return false;
1675
1676 /*
1677 * We can only do one readdir with delayed items at a time because of
1678 * item->readdir_list.
1679 */
1680 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1681 btrfs_inode_lock(inode, 0);
1682
1683 mutex_lock(&delayed_node->mutex);
1684 item = __btrfs_first_delayed_insertion_item(delayed_node);
1685 while (item && item->index <= last_index) {
1686 refcount_inc(&item->refs);
1687 list_add_tail(&item->readdir_list, ins_list);
1688 item = __btrfs_next_delayed_item(item);
1689 }
1690
1691 item = __btrfs_first_delayed_deletion_item(delayed_node);
1692 while (item && item->index <= last_index) {
1693 refcount_inc(&item->refs);
1694 list_add_tail(&item->readdir_list, del_list);
1695 item = __btrfs_next_delayed_item(item);
1696 }
1697 mutex_unlock(&delayed_node->mutex);
1698 /*
1699 * This delayed node is still cached in the btrfs inode, so refs
1700 * must be > 1 now, and we needn't check it is going to be freed
1701 * or not.
1702 *
1703 * Besides that, this function is used to read dir, we do not
1704 * insert/delete delayed items in this period. So we also needn't
1705 * requeue or dequeue this delayed node.
1706 */
1707 refcount_dec(&delayed_node->refs);
1708
1709 return true;
1710 }
1711
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1712 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1713 struct list_head *ins_list,
1714 struct list_head *del_list)
1715 {
1716 struct btrfs_delayed_item *curr, *next;
1717
1718 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1719 list_del(&curr->readdir_list);
1720 if (refcount_dec_and_test(&curr->refs))
1721 kfree(curr);
1722 }
1723
1724 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1725 list_del(&curr->readdir_list);
1726 if (refcount_dec_and_test(&curr->refs))
1727 kfree(curr);
1728 }
1729
1730 /*
1731 * The VFS is going to do up_read(), so we need to downgrade back to a
1732 * read lock.
1733 */
1734 downgrade_write(&inode->vfs_inode.i_rwsem);
1735 }
1736
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1737 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1738 {
1739 struct btrfs_delayed_item *curr;
1740 bool ret = false;
1741
1742 list_for_each_entry(curr, del_list, readdir_list) {
1743 if (curr->index > index)
1744 break;
1745 if (curr->index == index) {
1746 ret = true;
1747 break;
1748 }
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * Read dir info stored in the delayed tree.
1755 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1756 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1757 const struct list_head *ins_list)
1758 {
1759 struct btrfs_dir_item *di;
1760 struct btrfs_delayed_item *curr, *next;
1761 struct btrfs_key location;
1762 char *name;
1763 int name_len;
1764 unsigned char d_type;
1765
1766 /*
1767 * Changing the data of the delayed item is impossible. So
1768 * we needn't lock them. And we have held i_mutex of the
1769 * directory, nobody can delete any directory indexes now.
1770 */
1771 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1772 bool over;
1773
1774 list_del(&curr->readdir_list);
1775
1776 if (curr->index < ctx->pos) {
1777 if (refcount_dec_and_test(&curr->refs))
1778 kfree(curr);
1779 continue;
1780 }
1781
1782 ctx->pos = curr->index;
1783
1784 di = (struct btrfs_dir_item *)curr->data;
1785 name = (char *)(di + 1);
1786 name_len = btrfs_stack_dir_name_len(di);
1787
1788 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1789 btrfs_disk_key_to_cpu(&location, &di->location);
1790
1791 over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1792
1793 if (refcount_dec_and_test(&curr->refs))
1794 kfree(curr);
1795
1796 if (over)
1797 return true;
1798 ctx->pos++;
1799 }
1800 return false;
1801 }
1802
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1803 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1804 struct btrfs_inode_item *inode_item,
1805 struct btrfs_inode *inode)
1806 {
1807 struct inode *vfs_inode = &inode->vfs_inode;
1808 u64 flags;
1809
1810 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1811 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1812 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1813 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1814 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1815 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1816 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1817 btrfs_set_stack_inode_sequence(inode_item,
1818 inode_peek_iversion(vfs_inode));
1819 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1820 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1821 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1822 btrfs_set_stack_inode_flags(inode_item, flags);
1823 btrfs_set_stack_inode_block_group(inode_item, 0);
1824
1825 btrfs_set_stack_timespec_sec(&inode_item->atime,
1826 inode_get_atime_sec(vfs_inode));
1827 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1828 inode_get_atime_nsec(vfs_inode));
1829
1830 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1831 inode_get_mtime_sec(vfs_inode));
1832 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1833 inode_get_mtime_nsec(vfs_inode));
1834
1835 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1836 inode_get_ctime_sec(vfs_inode));
1837 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1838 inode_get_ctime_nsec(vfs_inode));
1839
1840 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1841 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1842 }
1843
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1844 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1845 {
1846 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1847 struct btrfs_delayed_node *delayed_node;
1848 struct btrfs_inode_item *inode_item;
1849 struct inode *vfs_inode = &inode->vfs_inode;
1850
1851 delayed_node = btrfs_get_delayed_node(inode);
1852 if (!delayed_node)
1853 return -ENOENT;
1854
1855 mutex_lock(&delayed_node->mutex);
1856 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1857 mutex_unlock(&delayed_node->mutex);
1858 btrfs_release_delayed_node(delayed_node);
1859 return -ENOENT;
1860 }
1861
1862 inode_item = &delayed_node->inode_item;
1863
1864 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1865 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1866 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1867 btrfs_inode_set_file_extent_range(inode, 0,
1868 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
1869 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1870 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1871 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1872 inode->generation = btrfs_stack_inode_generation(inode_item);
1873 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1874
1875 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1876 vfs_inode->i_rdev = 0;
1877 *rdev = btrfs_stack_inode_rdev(inode_item);
1878 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1879 &inode->flags, &inode->ro_flags);
1880
1881 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1882 btrfs_stack_timespec_nsec(&inode_item->atime));
1883
1884 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1885 btrfs_stack_timespec_nsec(&inode_item->mtime));
1886
1887 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1888 btrfs_stack_timespec_nsec(&inode_item->ctime));
1889
1890 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1891 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1892
1893 vfs_inode->i_generation = inode->generation;
1894 if (S_ISDIR(vfs_inode->i_mode))
1895 inode->index_cnt = (u64)-1;
1896
1897 mutex_unlock(&delayed_node->mutex);
1898 btrfs_release_delayed_node(delayed_node);
1899 return 0;
1900 }
1901
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1902 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1903 struct btrfs_inode *inode)
1904 {
1905 struct btrfs_root *root = inode->root;
1906 struct btrfs_delayed_node *delayed_node;
1907 int ret = 0;
1908
1909 delayed_node = btrfs_get_or_create_delayed_node(inode);
1910 if (IS_ERR(delayed_node))
1911 return PTR_ERR(delayed_node);
1912
1913 mutex_lock(&delayed_node->mutex);
1914 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1915 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1916 goto release_node;
1917 }
1918
1919 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1920 if (ret)
1921 goto release_node;
1922
1923 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1924 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1925 delayed_node->count++;
1926 atomic_inc(&root->fs_info->delayed_root->items);
1927 release_node:
1928 mutex_unlock(&delayed_node->mutex);
1929 btrfs_release_delayed_node(delayed_node);
1930 return ret;
1931 }
1932
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1933 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1934 {
1935 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1936 struct btrfs_delayed_node *delayed_node;
1937
1938 /*
1939 * we don't do delayed inode updates during log recovery because it
1940 * leads to enospc problems. This means we also can't do
1941 * delayed inode refs
1942 */
1943 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1944 return -EAGAIN;
1945
1946 delayed_node = btrfs_get_or_create_delayed_node(inode);
1947 if (IS_ERR(delayed_node))
1948 return PTR_ERR(delayed_node);
1949
1950 /*
1951 * We don't reserve space for inode ref deletion is because:
1952 * - We ONLY do async inode ref deletion for the inode who has only
1953 * one link(i_nlink == 1), it means there is only one inode ref.
1954 * And in most case, the inode ref and the inode item are in the
1955 * same leaf, and we will deal with them at the same time.
1956 * Since we are sure we will reserve the space for the inode item,
1957 * it is unnecessary to reserve space for inode ref deletion.
1958 * - If the inode ref and the inode item are not in the same leaf,
1959 * We also needn't worry about enospc problem, because we reserve
1960 * much more space for the inode update than it needs.
1961 * - At the worst, we can steal some space from the global reservation.
1962 * It is very rare.
1963 */
1964 mutex_lock(&delayed_node->mutex);
1965 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1966 goto release_node;
1967
1968 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1969 delayed_node->count++;
1970 atomic_inc(&fs_info->delayed_root->items);
1971 release_node:
1972 mutex_unlock(&delayed_node->mutex);
1973 btrfs_release_delayed_node(delayed_node);
1974 return 0;
1975 }
1976
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1977 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1978 {
1979 struct btrfs_root *root = delayed_node->root;
1980 struct btrfs_fs_info *fs_info = root->fs_info;
1981 struct btrfs_delayed_item *curr_item, *prev_item;
1982
1983 mutex_lock(&delayed_node->mutex);
1984 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1985 while (curr_item) {
1986 prev_item = curr_item;
1987 curr_item = __btrfs_next_delayed_item(prev_item);
1988 btrfs_release_delayed_item(prev_item);
1989 }
1990
1991 if (delayed_node->index_item_leaves > 0) {
1992 btrfs_delayed_item_release_leaves(delayed_node,
1993 delayed_node->index_item_leaves);
1994 delayed_node->index_item_leaves = 0;
1995 }
1996
1997 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1998 while (curr_item) {
1999 btrfs_delayed_item_release_metadata(root, curr_item);
2000 prev_item = curr_item;
2001 curr_item = __btrfs_next_delayed_item(prev_item);
2002 btrfs_release_delayed_item(prev_item);
2003 }
2004
2005 btrfs_release_delayed_iref(delayed_node);
2006
2007 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2008 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2009 btrfs_release_delayed_inode(delayed_node);
2010 }
2011 mutex_unlock(&delayed_node->mutex);
2012 }
2013
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2014 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2015 {
2016 struct btrfs_delayed_node *delayed_node;
2017
2018 delayed_node = btrfs_get_delayed_node(inode);
2019 if (!delayed_node)
2020 return;
2021
2022 __btrfs_kill_delayed_node(delayed_node);
2023 btrfs_release_delayed_node(delayed_node);
2024 }
2025
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2026 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2027 {
2028 unsigned long index = 0;
2029 struct btrfs_delayed_node *delayed_nodes[8];
2030
2031 while (1) {
2032 struct btrfs_delayed_node *node;
2033 int count;
2034
2035 xa_lock(&root->delayed_nodes);
2036 if (xa_empty(&root->delayed_nodes)) {
2037 xa_unlock(&root->delayed_nodes);
2038 return;
2039 }
2040
2041 count = 0;
2042 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2043 /*
2044 * Don't increase refs in case the node is dead and
2045 * about to be removed from the tree in the loop below
2046 */
2047 if (refcount_inc_not_zero(&node->refs)) {
2048 delayed_nodes[count] = node;
2049 count++;
2050 }
2051 if (count >= ARRAY_SIZE(delayed_nodes))
2052 break;
2053 }
2054 xa_unlock(&root->delayed_nodes);
2055 index++;
2056
2057 for (int i = 0; i < count; i++) {
2058 __btrfs_kill_delayed_node(delayed_nodes[i]);
2059 btrfs_release_delayed_node(delayed_nodes[i]);
2060 }
2061 }
2062 }
2063
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2064 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2065 {
2066 struct btrfs_delayed_node *curr_node, *prev_node;
2067
2068 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2069 while (curr_node) {
2070 __btrfs_kill_delayed_node(curr_node);
2071
2072 prev_node = curr_node;
2073 curr_node = btrfs_next_delayed_node(curr_node);
2074 btrfs_release_delayed_node(prev_node);
2075 }
2076 }
2077
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2078 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2079 struct list_head *ins_list,
2080 struct list_head *del_list)
2081 {
2082 struct btrfs_delayed_node *node;
2083 struct btrfs_delayed_item *item;
2084
2085 node = btrfs_get_delayed_node(inode);
2086 if (!node)
2087 return;
2088
2089 mutex_lock(&node->mutex);
2090 item = __btrfs_first_delayed_insertion_item(node);
2091 while (item) {
2092 /*
2093 * It's possible that the item is already in a log list. This
2094 * can happen in case two tasks are trying to log the same
2095 * directory. For example if we have tasks A and task B:
2096 *
2097 * Task A collected the delayed items into a log list while
2098 * under the inode's log_mutex (at btrfs_log_inode()), but it
2099 * only releases the items after logging the inodes they point
2100 * to (if they are new inodes), which happens after unlocking
2101 * the log mutex;
2102 *
2103 * Task B enters btrfs_log_inode() and acquires the log_mutex
2104 * of the same directory inode, before task B releases the
2105 * delayed items. This can happen for example when logging some
2106 * inode we need to trigger logging of its parent directory, so
2107 * logging two files that have the same parent directory can
2108 * lead to this.
2109 *
2110 * If this happens, just ignore delayed items already in a log
2111 * list. All the tasks logging the directory are under a log
2112 * transaction and whichever finishes first can not sync the log
2113 * before the other completes and leaves the log transaction.
2114 */
2115 if (!item->logged && list_empty(&item->log_list)) {
2116 refcount_inc(&item->refs);
2117 list_add_tail(&item->log_list, ins_list);
2118 }
2119 item = __btrfs_next_delayed_item(item);
2120 }
2121
2122 item = __btrfs_first_delayed_deletion_item(node);
2123 while (item) {
2124 /* It may be non-empty, for the same reason mentioned above. */
2125 if (!item->logged && list_empty(&item->log_list)) {
2126 refcount_inc(&item->refs);
2127 list_add_tail(&item->log_list, del_list);
2128 }
2129 item = __btrfs_next_delayed_item(item);
2130 }
2131 mutex_unlock(&node->mutex);
2132
2133 /*
2134 * We are called during inode logging, which means the inode is in use
2135 * and can not be evicted before we finish logging the inode. So we never
2136 * have the last reference on the delayed inode.
2137 * Also, we don't use btrfs_release_delayed_node() because that would
2138 * requeue the delayed inode (change its order in the list of prepared
2139 * nodes) and we don't want to do such change because we don't create or
2140 * delete delayed items.
2141 */
2142 ASSERT(refcount_read(&node->refs) > 1);
2143 refcount_dec(&node->refs);
2144 }
2145
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2146 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2147 struct list_head *ins_list,
2148 struct list_head *del_list)
2149 {
2150 struct btrfs_delayed_node *node;
2151 struct btrfs_delayed_item *item;
2152 struct btrfs_delayed_item *next;
2153
2154 node = btrfs_get_delayed_node(inode);
2155 if (!node)
2156 return;
2157
2158 mutex_lock(&node->mutex);
2159
2160 list_for_each_entry_safe(item, next, ins_list, log_list) {
2161 item->logged = true;
2162 list_del_init(&item->log_list);
2163 if (refcount_dec_and_test(&item->refs))
2164 kfree(item);
2165 }
2166
2167 list_for_each_entry_safe(item, next, del_list, log_list) {
2168 item->logged = true;
2169 list_del_init(&item->log_list);
2170 if (refcount_dec_and_test(&item->refs))
2171 kfree(item);
2172 }
2173
2174 mutex_unlock(&node->mutex);
2175
2176 /*
2177 * We are called during inode logging, which means the inode is in use
2178 * and can not be evicted before we finish logging the inode. So we never
2179 * have the last reference on the delayed inode.
2180 * Also, we don't use btrfs_release_delayed_node() because that would
2181 * requeue the delayed inode (change its order in the list of prepared
2182 * nodes) and we don't want to do such change because we don't create or
2183 * delete delayed items.
2184 */
2185 ASSERT(refcount_read(&node->refs) > 1);
2186 refcount_dec(&node->refs);
2187 }
2188