xref: /linux/fs/btrfs/messages.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "fs.h"
4 #include "messages.h"
5 #include "discard.h"
6 #include "super.h"
7 
8 #ifdef CONFIG_PRINTK
9 
10 #define STATE_STRING_PREFACE	" state "
11 #define STATE_STRING_BUF_LEN	(sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT + 1)
12 
13 /*
14  * Characters to print to indicate error conditions or uncommon filesystem state.
15  * RO is not an error.
16  */
17 static const char fs_state_chars[] = {
18 	[BTRFS_FS_STATE_REMOUNTING]		= 'M',
19 	[BTRFS_FS_STATE_RO]			= 0,
20 	[BTRFS_FS_STATE_TRANS_ABORTED]		= 'A',
21 	[BTRFS_FS_STATE_LOG_REPLAY_ABORTED]	= 'O',
22 	[BTRFS_FS_STATE_DEV_REPLACING]		= 'R',
23 	[BTRFS_FS_STATE_DUMMY_FS_INFO]		= 0,
24 	[BTRFS_FS_STATE_NO_DATA_CSUMS]		= 'C',
25 	[BTRFS_FS_STATE_SKIP_META_CSUMS]	= 'S',
26 	[BTRFS_FS_STATE_LOG_CLEANUP_ERROR]	= 'L',
27 	[BTRFS_FS_STATE_EMERGENCY_SHUTDOWN]	= 'E',
28 };
29 
30 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
31 {
32 	unsigned int bit;
33 	bool states_printed = false;
34 	unsigned long fs_state = READ_ONCE(info->fs_state);
35 	char *curr = buf;
36 
37 	memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
38 	curr += sizeof(STATE_STRING_PREFACE) - 1;
39 
40 	if (BTRFS_FS_ERROR(info)) {
41 		*curr++ = 'E';
42 		states_printed = true;
43 	}
44 
45 	for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
46 		WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
47 		if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
48 			*curr++ = fs_state_chars[bit];
49 			states_printed = true;
50 		}
51 	}
52 
53 	/* If no states were printed, reset the buffer */
54 	if (!states_printed)
55 		curr = buf;
56 
57 	*curr++ = 0;
58 }
59 #endif
60 
61 /*
62  * Generally the error codes correspond to their respective errors, but there
63  * are a few special cases.
64  *
65  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
66  *          instance will return EUCLEAN if any of the blocks are corrupted in
67  *          a way that is problematic.  We want to reserve EUCLEAN for these
68  *          sort of corruptions.
69  *
70  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
71  *        need to use EROFS for this case.  We will have no idea of the
72  *        original failure, that will have been reported at the time we tripped
73  *        over the error.  Each subsequent error that doesn't have any context
74  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
75  */
76 const char * __attribute_const__ btrfs_decode_error(int error)
77 {
78 	char *errstr = "unknown";
79 
80 	switch (error) {
81 	case -ENOENT:		/* -2 */
82 		errstr = "No such entry";
83 		break;
84 	case -EIO:		/* -5 */
85 		errstr = "IO failure";
86 		break;
87 	case -ENOMEM:		/* -12*/
88 		errstr = "Out of memory";
89 		break;
90 	case -EEXIST:		/* -17 */
91 		errstr = "Object already exists";
92 		break;
93 	case -ENOSPC:		/* -28 */
94 		errstr = "No space left";
95 		break;
96 	case -EROFS:		/* -30 */
97 		errstr = "Readonly filesystem";
98 		break;
99 	case -EOPNOTSUPP:	/* -95 */
100 		errstr = "Operation not supported";
101 		break;
102 	case -EUCLEAN:		/* -117 */
103 		errstr = "Filesystem corrupted";
104 		break;
105 	case -EDQUOT:		/* -122 */
106 		errstr = "Quota exceeded";
107 		break;
108 	}
109 
110 	return errstr;
111 }
112 
113 /*
114  * Decodes expected errors from the caller and invokes the appropriate error
115  * response.
116  */
117 __cold
118 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
119 		       unsigned int line, int error, const char *fmt, ...)
120 {
121 	struct super_block *sb = fs_info->sb;
122 #ifdef CONFIG_PRINTK
123 	char statestr[STATE_STRING_BUF_LEN];
124 	const char *errstr;
125 #endif
126 
127 #ifdef CONFIG_PRINTK_INDEX
128 	printk_index_subsys_emit(
129 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s", KERN_CRIT, fmt);
130 #endif
131 
132 	/*
133 	 * Special case: if the error is EROFS, and we're already under
134 	 * SB_RDONLY, then it is safe here.
135 	 */
136 	if (error == -EROFS && sb_rdonly(sb))
137 		return;
138 
139 #ifdef CONFIG_PRINTK
140 	errstr = btrfs_decode_error(error);
141 	btrfs_state_to_string(fs_info, statestr);
142 	if (fmt) {
143 		struct va_format vaf;
144 		va_list args;
145 
146 		va_start(args, fmt);
147 		vaf.fmt = fmt;
148 		vaf.va = &args;
149 
150 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
151 			sb->s_id, statestr, function, line, error, errstr, &vaf);
152 		va_end(args);
153 	} else {
154 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
155 			sb->s_id, statestr, function, line, error, errstr);
156 	}
157 #endif
158 
159 	/*
160 	 * Today we only save the error info to memory.  Long term we'll also
161 	 * send it down to the disk.
162 	 */
163 	WRITE_ONCE(fs_info->fs_error, error);
164 
165 	/* Don't go through full error handling during mount. */
166 	if (!(sb->s_flags & SB_BORN))
167 		return;
168 
169 	if (sb_rdonly(sb))
170 		return;
171 
172 	btrfs_discard_stop(fs_info);
173 
174 	/* Handle error by forcing the filesystem readonly. */
175 	btrfs_set_sb_rdonly(sb);
176 	btrfs_info(fs_info, "forced readonly");
177 	/*
178 	 * Note that a running device replace operation is not canceled here
179 	 * although there is no way to update the progress. It would add the
180 	 * risk of a deadlock, therefore the canceling is omitted. The only
181 	 * penalty is that some I/O remains active until the procedure
182 	 * completes. The next time when the filesystem is mounted writable
183 	 * again, the device replace operation continues.
184 	 */
185 }
186 
187 #ifdef CONFIG_PRINTK
188 static const char * const logtypes[] = {
189 	"emergency",
190 	"alert",
191 	"critical",
192 	"error",
193 	"warning",
194 	"notice",
195 	"info",
196 	"debug",
197 };
198 
199 /*
200  * Use one ratelimit state per log level so that a flood of less important
201  * messages doesn't cause more important ones to be dropped.
202  */
203 static struct ratelimit_state printk_limits[] = {
204 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
205 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
206 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
207 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
212 };
213 
214 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
215 {
216 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
217 	struct va_format vaf;
218 	va_list args;
219 	int kern_level;
220 	const char *type = logtypes[4];
221 	struct ratelimit_state *ratelimit = &printk_limits[4];
222 
223 #ifdef CONFIG_PRINTK_INDEX
224 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);
225 #endif
226 
227 	va_start(args, fmt);
228 
229 	while ((kern_level = printk_get_level(fmt)) != 0) {
230 		size_t size = printk_skip_level(fmt) - fmt;
231 
232 		if (kern_level >= '0' && kern_level <= '7') {
233 			memcpy(lvl, fmt,  size);
234 			lvl[size] = '\0';
235 			type = logtypes[kern_level - '0'];
236 			ratelimit = &printk_limits[kern_level - '0'];
237 		}
238 		fmt += size;
239 	}
240 
241 	vaf.fmt = fmt;
242 	vaf.va = &args;
243 
244 	/* Do not ratelimit if CONFIG_BTRFS_DEBUG is enabled. */
245 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG) || __ratelimit(ratelimit)) {
246 		if (fs_info) {
247 			char statestr[STATE_STRING_BUF_LEN];
248 
249 			btrfs_state_to_string(fs_info, statestr);
250 			_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
251 				fs_info->sb->s_id, statestr, &vaf);
252 		} else {
253 			_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
254 		}
255 	}
256 
257 	va_end(args);
258 }
259 #endif
260 
261 #if BITS_PER_LONG == 32
262 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
263 {
264 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
265 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
266 		btrfs_warn(fs_info,
267 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
268 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
269 		btrfs_warn(fs_info,
270 			   "please consider upgrading to 64bit kernel/hardware");
271 	}
272 }
273 
274 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
275 {
276 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
277 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
278 		btrfs_err(fs_info,
279 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
280 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
281 		btrfs_err(fs_info,
282 			   "please consider upgrading to 64bit kernel/hardware");
283 	}
284 }
285 #endif
286 
287 /*
288  * Decode unexpected, fatal errors from the caller, issue an alert, and either
289  * panic or BUGs, depending on mount options.
290  */
291 __cold
292 void __btrfs_panic(const struct btrfs_fs_info *fs_info, const char *function,
293 		   unsigned int line, int error, const char *fmt, ...)
294 {
295 	char *s_id = "<unknown>";
296 	const char *errstr;
297 	struct va_format vaf = { .fmt = fmt };
298 	va_list args;
299 
300 	if (fs_info)
301 		s_id = fs_info->sb->s_id;
302 
303 	va_start(args, fmt);
304 	vaf.va = &args;
305 
306 	errstr = btrfs_decode_error(error);
307 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
308 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
309 			s_id, function, line, &vaf, error, errstr);
310 
311 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
312 		   function, line, &vaf, error, errstr);
313 	va_end(args);
314 	/* Caller calls BUG() */
315 }
316