1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 *
126 * Run the eBPF program and then cut skb->data to correct size returned by
127 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128 * than pkt_len we keep whole skb->data. This is the socket level
129 * wrapper to bpf_prog_run. It returns 0 if the packet should
130 * be accepted or -EPERM if the packet should be tossed.
131 *
132 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 int err;
136 struct sk_filter *filter;
137
138 /*
139 * If the skb was allocated from pfmemalloc reserves, only
140 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 * helping free memory
142 */
143 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 return -ENOMEM;
146 }
147 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 if (err)
149 return err;
150
151 err = security_sock_rcv_skb(sk, skb);
152 if (err)
153 return err;
154
155 rcu_read_lock();
156 filter = rcu_dereference(sk->sk_filter);
157 if (filter) {
158 struct sock *save_sk = skb->sk;
159 unsigned int pkt_len;
160
161 skb->sk = sk;
162 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 skb->sk = save_sk;
164 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 }
166 rcu_read_unlock();
167
168 return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 return skb_get_poff(skb);
175 }
176
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 struct nlattr *nla;
180
181 if (skb_is_nonlinear(skb))
182 return 0;
183
184 if (skb->len < sizeof(struct nlattr))
185 return 0;
186
187 if (a > skb->len - sizeof(struct nlattr))
188 return 0;
189
190 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 if (nla)
192 return (void *) nla - (void *) skb->data;
193
194 return 0;
195 }
196
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 struct nlattr *nla;
200
201 if (skb_is_nonlinear(skb))
202 return 0;
203
204 if (skb->len < sizeof(struct nlattr))
205 return 0;
206
207 if (a > skb->len - sizeof(struct nlattr))
208 return 0;
209
210 nla = (struct nlattr *) &skb->data[a];
211 if (!nla_ok(nla, skb->len - a))
212 return 0;
213
214 nla = nla_find_nested(nla, x);
215 if (nla)
216 return (void *) nla - (void *) skb->data;
217
218 return 0;
219 }
220
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)221 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
222 {
223 if (likely(offset >= 0))
224 return offset;
225
226 if (offset >= SKF_NET_OFF)
227 return offset - SKF_NET_OFF + skb_network_offset(skb);
228
229 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
230 return offset - SKF_LL_OFF + skb_mac_offset(skb);
231
232 return INT_MIN;
233 }
234
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
236 data, int, headlen, int, offset)
237 {
238 u8 tmp;
239 const int len = sizeof(tmp);
240
241 offset = bpf_skb_load_helper_convert_offset(skb, offset);
242 if (offset == INT_MIN)
243 return -EFAULT;
244
245 if (headlen - offset >= len)
246 return *(u8 *)(data + offset);
247 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248 return tmp;
249 else
250 return -EFAULT;
251 }
252
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)253 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
254 int, offset)
255 {
256 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
257 offset);
258 }
259
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)260 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
261 data, int, headlen, int, offset)
262 {
263 __be16 tmp;
264 const int len = sizeof(tmp);
265
266 offset = bpf_skb_load_helper_convert_offset(skb, offset);
267 if (offset == INT_MIN)
268 return -EFAULT;
269
270 if (headlen - offset >= len)
271 return get_unaligned_be16(data + offset);
272 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 return be16_to_cpu(tmp);
274 else
275 return -EFAULT;
276 }
277
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)278 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
279 int, offset)
280 {
281 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
282 offset);
283 }
284
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)285 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
286 data, int, headlen, int, offset)
287 {
288 __be32 tmp;
289 const int len = sizeof(tmp);
290
291 offset = bpf_skb_load_helper_convert_offset(skb, offset);
292 if (offset == INT_MIN)
293 return -EFAULT;
294
295 if (headlen - offset >= len)
296 return get_unaligned_be32(data + offset);
297 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
298 return be32_to_cpu(tmp);
299 else
300 return -EFAULT;
301 }
302
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)303 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
304 int, offset)
305 {
306 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
307 offset);
308 }
309
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)310 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
311 struct bpf_insn *insn_buf)
312 {
313 struct bpf_insn *insn = insn_buf;
314
315 switch (skb_field) {
316 case SKF_AD_MARK:
317 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
318
319 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
320 offsetof(struct sk_buff, mark));
321 break;
322
323 case SKF_AD_PKTTYPE:
324 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
325 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
326 #ifdef __BIG_ENDIAN_BITFIELD
327 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
328 #endif
329 break;
330
331 case SKF_AD_QUEUE:
332 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
333
334 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 offsetof(struct sk_buff, queue_mapping));
336 break;
337
338 case SKF_AD_VLAN_TAG:
339 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
340
341 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
342 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
343 offsetof(struct sk_buff, vlan_tci));
344 break;
345 case SKF_AD_VLAN_TAG_PRESENT:
346 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
347 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
348 offsetof(struct sk_buff, vlan_all));
349 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
350 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
351 break;
352 }
353
354 return insn - insn_buf;
355 }
356
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)357 static bool convert_bpf_extensions(struct sock_filter *fp,
358 struct bpf_insn **insnp)
359 {
360 struct bpf_insn *insn = *insnp;
361 u32 cnt;
362
363 switch (fp->k) {
364 case SKF_AD_OFF + SKF_AD_PROTOCOL:
365 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
366
367 /* A = *(u16 *) (CTX + offsetof(protocol)) */
368 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
369 offsetof(struct sk_buff, protocol));
370 /* A = ntohs(A) [emitting a nop or swap16] */
371 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
372 break;
373
374 case SKF_AD_OFF + SKF_AD_PKTTYPE:
375 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
376 insn += cnt - 1;
377 break;
378
379 case SKF_AD_OFF + SKF_AD_IFINDEX:
380 case SKF_AD_OFF + SKF_AD_HATYPE:
381 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
382 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
383
384 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
385 BPF_REG_TMP, BPF_REG_CTX,
386 offsetof(struct sk_buff, dev));
387 /* if (tmp != 0) goto pc + 1 */
388 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
389 *insn++ = BPF_EXIT_INSN();
390 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
391 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
392 offsetof(struct net_device, ifindex));
393 else
394 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
395 offsetof(struct net_device, type));
396 break;
397
398 case SKF_AD_OFF + SKF_AD_MARK:
399 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
400 insn += cnt - 1;
401 break;
402
403 case SKF_AD_OFF + SKF_AD_RXHASH:
404 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
405
406 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
407 offsetof(struct sk_buff, hash));
408 break;
409
410 case SKF_AD_OFF + SKF_AD_QUEUE:
411 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
412 insn += cnt - 1;
413 break;
414
415 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
416 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
417 BPF_REG_A, BPF_REG_CTX, insn);
418 insn += cnt - 1;
419 break;
420
421 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
422 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
423 BPF_REG_A, BPF_REG_CTX, insn);
424 insn += cnt - 1;
425 break;
426
427 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
428 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
429
430 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
431 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
432 offsetof(struct sk_buff, vlan_proto));
433 /* A = ntohs(A) [emitting a nop or swap16] */
434 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
435 break;
436
437 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
438 case SKF_AD_OFF + SKF_AD_NLATTR:
439 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 case SKF_AD_OFF + SKF_AD_CPU:
441 case SKF_AD_OFF + SKF_AD_RANDOM:
442 /* arg1 = CTX */
443 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
444 /* arg2 = A */
445 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
446 /* arg3 = X */
447 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
448 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
449 switch (fp->k) {
450 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
451 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
452 break;
453 case SKF_AD_OFF + SKF_AD_NLATTR:
454 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
455 break;
456 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
457 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
458 break;
459 case SKF_AD_OFF + SKF_AD_CPU:
460 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
461 break;
462 case SKF_AD_OFF + SKF_AD_RANDOM:
463 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
464 bpf_user_rnd_init_once();
465 break;
466 }
467 break;
468
469 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
470 /* A ^= X */
471 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
472 break;
473
474 default:
475 /* This is just a dummy call to avoid letting the compiler
476 * evict __bpf_call_base() as an optimization. Placed here
477 * where no-one bothers.
478 */
479 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
480 return false;
481 }
482
483 *insnp = insn;
484 return true;
485 }
486
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)487 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
488 {
489 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
490 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
491 bool endian = BPF_SIZE(fp->code) == BPF_H ||
492 BPF_SIZE(fp->code) == BPF_W;
493 bool indirect = BPF_MODE(fp->code) == BPF_IND;
494 const int ip_align = NET_IP_ALIGN;
495 struct bpf_insn *insn = *insnp;
496 int offset = fp->k;
497
498 if (!indirect &&
499 ((unaligned_ok && offset >= 0) ||
500 (!unaligned_ok && offset >= 0 &&
501 offset + ip_align >= 0 &&
502 offset + ip_align % size == 0))) {
503 bool ldx_off_ok = offset <= S16_MAX;
504
505 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
506 if (offset)
507 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
508 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
509 size, 2 + endian + (!ldx_off_ok * 2));
510 if (ldx_off_ok) {
511 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
512 BPF_REG_D, offset);
513 } else {
514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
515 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
516 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
517 BPF_REG_TMP, 0);
518 }
519 if (endian)
520 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
521 *insn++ = BPF_JMP_A(8);
522 }
523
524 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
525 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
526 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
527 if (!indirect) {
528 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
529 } else {
530 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
531 if (fp->k)
532 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
533 }
534
535 switch (BPF_SIZE(fp->code)) {
536 case BPF_B:
537 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
538 break;
539 case BPF_H:
540 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
541 break;
542 case BPF_W:
543 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
544 break;
545 default:
546 return false;
547 }
548
549 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
550 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
551 *insn = BPF_EXIT_INSN();
552
553 *insnp = insn;
554 return true;
555 }
556
557 /**
558 * bpf_convert_filter - convert filter program
559 * @prog: the user passed filter program
560 * @len: the length of the user passed filter program
561 * @new_prog: allocated 'struct bpf_prog' or NULL
562 * @new_len: pointer to store length of converted program
563 * @seen_ld_abs: bool whether we've seen ld_abs/ind
564 *
565 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
566 * style extended BPF (eBPF).
567 * Conversion workflow:
568 *
569 * 1) First pass for calculating the new program length:
570 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
571 *
572 * 2) 2nd pass to remap in two passes: 1st pass finds new
573 * jump offsets, 2nd pass remapping:
574 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
575 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)576 static int bpf_convert_filter(struct sock_filter *prog, int len,
577 struct bpf_prog *new_prog, int *new_len,
578 bool *seen_ld_abs)
579 {
580 int new_flen = 0, pass = 0, target, i, stack_off;
581 struct bpf_insn *new_insn, *first_insn = NULL;
582 struct sock_filter *fp;
583 int *addrs = NULL;
584 u8 bpf_src;
585
586 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
587 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
588
589 if (len <= 0 || len > BPF_MAXINSNS)
590 return -EINVAL;
591
592 if (new_prog) {
593 first_insn = new_prog->insnsi;
594 addrs = kcalloc(len, sizeof(*addrs),
595 GFP_KERNEL | __GFP_NOWARN);
596 if (!addrs)
597 return -ENOMEM;
598 }
599
600 do_pass:
601 new_insn = first_insn;
602 fp = prog;
603
604 /* Classic BPF related prologue emission. */
605 if (new_prog) {
606 /* Classic BPF expects A and X to be reset first. These need
607 * to be guaranteed to be the first two instructions.
608 */
609 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
610 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
611
612 /* All programs must keep CTX in callee saved BPF_REG_CTX.
613 * In eBPF case it's done by the compiler, here we need to
614 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
615 */
616 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
617 if (*seen_ld_abs) {
618 /* For packet access in classic BPF, cache skb->data
619 * in callee-saved BPF R8 and skb->len - skb->data_len
620 * (headlen) in BPF R9. Since classic BPF is read-only
621 * on CTX, we only need to cache it once.
622 */
623 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
624 BPF_REG_D, BPF_REG_CTX,
625 offsetof(struct sk_buff, data));
626 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
627 offsetof(struct sk_buff, len));
628 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
629 offsetof(struct sk_buff, data_len));
630 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
631 }
632 } else {
633 new_insn += 3;
634 }
635
636 for (i = 0; i < len; fp++, i++) {
637 struct bpf_insn tmp_insns[32] = { };
638 struct bpf_insn *insn = tmp_insns;
639
640 if (addrs)
641 addrs[i] = new_insn - first_insn;
642
643 switch (fp->code) {
644 /* All arithmetic insns and skb loads map as-is. */
645 case BPF_ALU | BPF_ADD | BPF_X:
646 case BPF_ALU | BPF_ADD | BPF_K:
647 case BPF_ALU | BPF_SUB | BPF_X:
648 case BPF_ALU | BPF_SUB | BPF_K:
649 case BPF_ALU | BPF_AND | BPF_X:
650 case BPF_ALU | BPF_AND | BPF_K:
651 case BPF_ALU | BPF_OR | BPF_X:
652 case BPF_ALU | BPF_OR | BPF_K:
653 case BPF_ALU | BPF_LSH | BPF_X:
654 case BPF_ALU | BPF_LSH | BPF_K:
655 case BPF_ALU | BPF_RSH | BPF_X:
656 case BPF_ALU | BPF_RSH | BPF_K:
657 case BPF_ALU | BPF_XOR | BPF_X:
658 case BPF_ALU | BPF_XOR | BPF_K:
659 case BPF_ALU | BPF_MUL | BPF_X:
660 case BPF_ALU | BPF_MUL | BPF_K:
661 case BPF_ALU | BPF_DIV | BPF_X:
662 case BPF_ALU | BPF_DIV | BPF_K:
663 case BPF_ALU | BPF_MOD | BPF_X:
664 case BPF_ALU | BPF_MOD | BPF_K:
665 case BPF_ALU | BPF_NEG:
666 case BPF_LD | BPF_ABS | BPF_W:
667 case BPF_LD | BPF_ABS | BPF_H:
668 case BPF_LD | BPF_ABS | BPF_B:
669 case BPF_LD | BPF_IND | BPF_W:
670 case BPF_LD | BPF_IND | BPF_H:
671 case BPF_LD | BPF_IND | BPF_B:
672 /* Check for overloaded BPF extension and
673 * directly convert it if found, otherwise
674 * just move on with mapping.
675 */
676 if (BPF_CLASS(fp->code) == BPF_LD &&
677 BPF_MODE(fp->code) == BPF_ABS &&
678 convert_bpf_extensions(fp, &insn))
679 break;
680 if (BPF_CLASS(fp->code) == BPF_LD &&
681 convert_bpf_ld_abs(fp, &insn)) {
682 *seen_ld_abs = true;
683 break;
684 }
685
686 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
687 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
688 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
689 /* Error with exception code on div/mod by 0.
690 * For cBPF programs, this was always return 0.
691 */
692 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
693 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
694 *insn++ = BPF_EXIT_INSN();
695 }
696
697 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
698 break;
699
700 /* Jump transformation cannot use BPF block macros
701 * everywhere as offset calculation and target updates
702 * require a bit more work than the rest, i.e. jump
703 * opcodes map as-is, but offsets need adjustment.
704 */
705
706 #define BPF_EMIT_JMP \
707 do { \
708 const s32 off_min = S16_MIN, off_max = S16_MAX; \
709 s32 off; \
710 \
711 if (target >= len || target < 0) \
712 goto err; \
713 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
714 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
715 off -= insn - tmp_insns; \
716 /* Reject anything not fitting into insn->off. */ \
717 if (off < off_min || off > off_max) \
718 goto err; \
719 insn->off = off; \
720 } while (0)
721
722 case BPF_JMP | BPF_JA:
723 target = i + fp->k + 1;
724 insn->code = fp->code;
725 BPF_EMIT_JMP;
726 break;
727
728 case BPF_JMP | BPF_JEQ | BPF_K:
729 case BPF_JMP | BPF_JEQ | BPF_X:
730 case BPF_JMP | BPF_JSET | BPF_K:
731 case BPF_JMP | BPF_JSET | BPF_X:
732 case BPF_JMP | BPF_JGT | BPF_K:
733 case BPF_JMP | BPF_JGT | BPF_X:
734 case BPF_JMP | BPF_JGE | BPF_K:
735 case BPF_JMP | BPF_JGE | BPF_X:
736 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
737 /* BPF immediates are signed, zero extend
738 * immediate into tmp register and use it
739 * in compare insn.
740 */
741 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
742
743 insn->dst_reg = BPF_REG_A;
744 insn->src_reg = BPF_REG_TMP;
745 bpf_src = BPF_X;
746 } else {
747 insn->dst_reg = BPF_REG_A;
748 insn->imm = fp->k;
749 bpf_src = BPF_SRC(fp->code);
750 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
751 }
752
753 /* Common case where 'jump_false' is next insn. */
754 if (fp->jf == 0) {
755 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
756 target = i + fp->jt + 1;
757 BPF_EMIT_JMP;
758 break;
759 }
760
761 /* Convert some jumps when 'jump_true' is next insn. */
762 if (fp->jt == 0) {
763 switch (BPF_OP(fp->code)) {
764 case BPF_JEQ:
765 insn->code = BPF_JMP | BPF_JNE | bpf_src;
766 break;
767 case BPF_JGT:
768 insn->code = BPF_JMP | BPF_JLE | bpf_src;
769 break;
770 case BPF_JGE:
771 insn->code = BPF_JMP | BPF_JLT | bpf_src;
772 break;
773 default:
774 goto jmp_rest;
775 }
776
777 target = i + fp->jf + 1;
778 BPF_EMIT_JMP;
779 break;
780 }
781 jmp_rest:
782 /* Other jumps are mapped into two insns: Jxx and JA. */
783 target = i + fp->jt + 1;
784 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
785 BPF_EMIT_JMP;
786 insn++;
787
788 insn->code = BPF_JMP | BPF_JA;
789 target = i + fp->jf + 1;
790 BPF_EMIT_JMP;
791 break;
792
793 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
794 case BPF_LDX | BPF_MSH | BPF_B: {
795 struct sock_filter tmp = {
796 .code = BPF_LD | BPF_ABS | BPF_B,
797 .k = fp->k,
798 };
799
800 *seen_ld_abs = true;
801
802 /* X = A */
803 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
804 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
805 convert_bpf_ld_abs(&tmp, &insn);
806 insn++;
807 /* A &= 0xf */
808 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
809 /* A <<= 2 */
810 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
811 /* tmp = X */
812 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
813 /* X = A */
814 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
815 /* A = tmp */
816 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
817 break;
818 }
819 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
820 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
821 */
822 case BPF_RET | BPF_A:
823 case BPF_RET | BPF_K:
824 if (BPF_RVAL(fp->code) == BPF_K)
825 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
826 0, fp->k);
827 *insn = BPF_EXIT_INSN();
828 break;
829
830 /* Store to stack. */
831 case BPF_ST:
832 case BPF_STX:
833 stack_off = fp->k * 4 + 4;
834 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
835 BPF_ST ? BPF_REG_A : BPF_REG_X,
836 -stack_off);
837 /* check_load_and_stores() verifies that classic BPF can
838 * load from stack only after write, so tracking
839 * stack_depth for ST|STX insns is enough
840 */
841 if (new_prog && new_prog->aux->stack_depth < stack_off)
842 new_prog->aux->stack_depth = stack_off;
843 break;
844
845 /* Load from stack. */
846 case BPF_LD | BPF_MEM:
847 case BPF_LDX | BPF_MEM:
848 stack_off = fp->k * 4 + 4;
849 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
850 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
851 -stack_off);
852 break;
853
854 /* A = K or X = K */
855 case BPF_LD | BPF_IMM:
856 case BPF_LDX | BPF_IMM:
857 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
858 BPF_REG_A : BPF_REG_X, fp->k);
859 break;
860
861 /* X = A */
862 case BPF_MISC | BPF_TAX:
863 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
864 break;
865
866 /* A = X */
867 case BPF_MISC | BPF_TXA:
868 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
869 break;
870
871 /* A = skb->len or X = skb->len */
872 case BPF_LD | BPF_W | BPF_LEN:
873 case BPF_LDX | BPF_W | BPF_LEN:
874 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
875 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
876 offsetof(struct sk_buff, len));
877 break;
878
879 /* Access seccomp_data fields. */
880 case BPF_LDX | BPF_ABS | BPF_W:
881 /* A = *(u32 *) (ctx + K) */
882 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
883 break;
884
885 /* Unknown instruction. */
886 default:
887 goto err;
888 }
889
890 insn++;
891 if (new_prog)
892 memcpy(new_insn, tmp_insns,
893 sizeof(*insn) * (insn - tmp_insns));
894 new_insn += insn - tmp_insns;
895 }
896
897 if (!new_prog) {
898 /* Only calculating new length. */
899 *new_len = new_insn - first_insn;
900 if (*seen_ld_abs)
901 *new_len += 4; /* Prologue bits. */
902 return 0;
903 }
904
905 pass++;
906 if (new_flen != new_insn - first_insn) {
907 new_flen = new_insn - first_insn;
908 if (pass > 2)
909 goto err;
910 goto do_pass;
911 }
912
913 kfree(addrs);
914 BUG_ON(*new_len != new_flen);
915 return 0;
916 err:
917 kfree(addrs);
918 return -EINVAL;
919 }
920
921 /* Security:
922 *
923 * As we dont want to clear mem[] array for each packet going through
924 * __bpf_prog_run(), we check that filter loaded by user never try to read
925 * a cell if not previously written, and we check all branches to be sure
926 * a malicious user doesn't try to abuse us.
927 */
check_load_and_stores(const struct sock_filter * filter,int flen)928 static int check_load_and_stores(const struct sock_filter *filter, int flen)
929 {
930 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
931 int pc, ret = 0;
932
933 BUILD_BUG_ON(BPF_MEMWORDS > 16);
934
935 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
936 if (!masks)
937 return -ENOMEM;
938
939 memset(masks, 0xff, flen * sizeof(*masks));
940
941 for (pc = 0; pc < flen; pc++) {
942 memvalid &= masks[pc];
943
944 switch (filter[pc].code) {
945 case BPF_ST:
946 case BPF_STX:
947 memvalid |= (1 << filter[pc].k);
948 break;
949 case BPF_LD | BPF_MEM:
950 case BPF_LDX | BPF_MEM:
951 if (!(memvalid & (1 << filter[pc].k))) {
952 ret = -EINVAL;
953 goto error;
954 }
955 break;
956 case BPF_JMP | BPF_JA:
957 /* A jump must set masks on target */
958 masks[pc + 1 + filter[pc].k] &= memvalid;
959 memvalid = ~0;
960 break;
961 case BPF_JMP | BPF_JEQ | BPF_K:
962 case BPF_JMP | BPF_JEQ | BPF_X:
963 case BPF_JMP | BPF_JGE | BPF_K:
964 case BPF_JMP | BPF_JGE | BPF_X:
965 case BPF_JMP | BPF_JGT | BPF_K:
966 case BPF_JMP | BPF_JGT | BPF_X:
967 case BPF_JMP | BPF_JSET | BPF_K:
968 case BPF_JMP | BPF_JSET | BPF_X:
969 /* A jump must set masks on targets */
970 masks[pc + 1 + filter[pc].jt] &= memvalid;
971 masks[pc + 1 + filter[pc].jf] &= memvalid;
972 memvalid = ~0;
973 break;
974 }
975 }
976 error:
977 kfree(masks);
978 return ret;
979 }
980
chk_code_allowed(u16 code_to_probe)981 static bool chk_code_allowed(u16 code_to_probe)
982 {
983 static const bool codes[] = {
984 /* 32 bit ALU operations */
985 [BPF_ALU | BPF_ADD | BPF_K] = true,
986 [BPF_ALU | BPF_ADD | BPF_X] = true,
987 [BPF_ALU | BPF_SUB | BPF_K] = true,
988 [BPF_ALU | BPF_SUB | BPF_X] = true,
989 [BPF_ALU | BPF_MUL | BPF_K] = true,
990 [BPF_ALU | BPF_MUL | BPF_X] = true,
991 [BPF_ALU | BPF_DIV | BPF_K] = true,
992 [BPF_ALU | BPF_DIV | BPF_X] = true,
993 [BPF_ALU | BPF_MOD | BPF_K] = true,
994 [BPF_ALU | BPF_MOD | BPF_X] = true,
995 [BPF_ALU | BPF_AND | BPF_K] = true,
996 [BPF_ALU | BPF_AND | BPF_X] = true,
997 [BPF_ALU | BPF_OR | BPF_K] = true,
998 [BPF_ALU | BPF_OR | BPF_X] = true,
999 [BPF_ALU | BPF_XOR | BPF_K] = true,
1000 [BPF_ALU | BPF_XOR | BPF_X] = true,
1001 [BPF_ALU | BPF_LSH | BPF_K] = true,
1002 [BPF_ALU | BPF_LSH | BPF_X] = true,
1003 [BPF_ALU | BPF_RSH | BPF_K] = true,
1004 [BPF_ALU | BPF_RSH | BPF_X] = true,
1005 [BPF_ALU | BPF_NEG] = true,
1006 /* Load instructions */
1007 [BPF_LD | BPF_W | BPF_ABS] = true,
1008 [BPF_LD | BPF_H | BPF_ABS] = true,
1009 [BPF_LD | BPF_B | BPF_ABS] = true,
1010 [BPF_LD | BPF_W | BPF_LEN] = true,
1011 [BPF_LD | BPF_W | BPF_IND] = true,
1012 [BPF_LD | BPF_H | BPF_IND] = true,
1013 [BPF_LD | BPF_B | BPF_IND] = true,
1014 [BPF_LD | BPF_IMM] = true,
1015 [BPF_LD | BPF_MEM] = true,
1016 [BPF_LDX | BPF_W | BPF_LEN] = true,
1017 [BPF_LDX | BPF_B | BPF_MSH] = true,
1018 [BPF_LDX | BPF_IMM] = true,
1019 [BPF_LDX | BPF_MEM] = true,
1020 /* Store instructions */
1021 [BPF_ST] = true,
1022 [BPF_STX] = true,
1023 /* Misc instructions */
1024 [BPF_MISC | BPF_TAX] = true,
1025 [BPF_MISC | BPF_TXA] = true,
1026 /* Return instructions */
1027 [BPF_RET | BPF_K] = true,
1028 [BPF_RET | BPF_A] = true,
1029 /* Jump instructions */
1030 [BPF_JMP | BPF_JA] = true,
1031 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1032 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1033 [BPF_JMP | BPF_JGE | BPF_K] = true,
1034 [BPF_JMP | BPF_JGE | BPF_X] = true,
1035 [BPF_JMP | BPF_JGT | BPF_K] = true,
1036 [BPF_JMP | BPF_JGT | BPF_X] = true,
1037 [BPF_JMP | BPF_JSET | BPF_K] = true,
1038 [BPF_JMP | BPF_JSET | BPF_X] = true,
1039 };
1040
1041 if (code_to_probe >= ARRAY_SIZE(codes))
1042 return false;
1043
1044 return codes[code_to_probe];
1045 }
1046
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1047 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1048 unsigned int flen)
1049 {
1050 if (filter == NULL)
1051 return false;
1052 if (flen == 0 || flen > BPF_MAXINSNS)
1053 return false;
1054
1055 return true;
1056 }
1057
1058 /**
1059 * bpf_check_classic - verify socket filter code
1060 * @filter: filter to verify
1061 * @flen: length of filter
1062 *
1063 * Check the user's filter code. If we let some ugly
1064 * filter code slip through kaboom! The filter must contain
1065 * no references or jumps that are out of range, no illegal
1066 * instructions, and must end with a RET instruction.
1067 *
1068 * All jumps are forward as they are not signed.
1069 *
1070 * Returns 0 if the rule set is legal or -EINVAL if not.
1071 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1072 static int bpf_check_classic(const struct sock_filter *filter,
1073 unsigned int flen)
1074 {
1075 bool anc_found;
1076 int pc;
1077
1078 /* Check the filter code now */
1079 for (pc = 0; pc < flen; pc++) {
1080 const struct sock_filter *ftest = &filter[pc];
1081
1082 /* May we actually operate on this code? */
1083 if (!chk_code_allowed(ftest->code))
1084 return -EINVAL;
1085
1086 /* Some instructions need special checks */
1087 switch (ftest->code) {
1088 case BPF_ALU | BPF_DIV | BPF_K:
1089 case BPF_ALU | BPF_MOD | BPF_K:
1090 /* Check for division by zero */
1091 if (ftest->k == 0)
1092 return -EINVAL;
1093 break;
1094 case BPF_ALU | BPF_LSH | BPF_K:
1095 case BPF_ALU | BPF_RSH | BPF_K:
1096 if (ftest->k >= 32)
1097 return -EINVAL;
1098 break;
1099 case BPF_LD | BPF_MEM:
1100 case BPF_LDX | BPF_MEM:
1101 case BPF_ST:
1102 case BPF_STX:
1103 /* Check for invalid memory addresses */
1104 if (ftest->k >= BPF_MEMWORDS)
1105 return -EINVAL;
1106 break;
1107 case BPF_JMP | BPF_JA:
1108 /* Note, the large ftest->k might cause loops.
1109 * Compare this with conditional jumps below,
1110 * where offsets are limited. --ANK (981016)
1111 */
1112 if (ftest->k >= (unsigned int)(flen - pc - 1))
1113 return -EINVAL;
1114 break;
1115 case BPF_JMP | BPF_JEQ | BPF_K:
1116 case BPF_JMP | BPF_JEQ | BPF_X:
1117 case BPF_JMP | BPF_JGE | BPF_K:
1118 case BPF_JMP | BPF_JGE | BPF_X:
1119 case BPF_JMP | BPF_JGT | BPF_K:
1120 case BPF_JMP | BPF_JGT | BPF_X:
1121 case BPF_JMP | BPF_JSET | BPF_K:
1122 case BPF_JMP | BPF_JSET | BPF_X:
1123 /* Both conditionals must be safe */
1124 if (pc + ftest->jt + 1 >= flen ||
1125 pc + ftest->jf + 1 >= flen)
1126 return -EINVAL;
1127 break;
1128 case BPF_LD | BPF_W | BPF_ABS:
1129 case BPF_LD | BPF_H | BPF_ABS:
1130 case BPF_LD | BPF_B | BPF_ABS:
1131 anc_found = false;
1132 if (bpf_anc_helper(ftest) & BPF_ANC)
1133 anc_found = true;
1134 /* Ancillary operation unknown or unsupported */
1135 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1136 return -EINVAL;
1137 }
1138 }
1139
1140 /* Last instruction must be a RET code */
1141 switch (filter[flen - 1].code) {
1142 case BPF_RET | BPF_K:
1143 case BPF_RET | BPF_A:
1144 return check_load_and_stores(filter, flen);
1145 }
1146
1147 return -EINVAL;
1148 }
1149
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1150 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1151 const struct sock_fprog *fprog)
1152 {
1153 unsigned int fsize = bpf_classic_proglen(fprog);
1154 struct sock_fprog_kern *fkprog;
1155
1156 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1157 if (!fp->orig_prog)
1158 return -ENOMEM;
1159
1160 fkprog = fp->orig_prog;
1161 fkprog->len = fprog->len;
1162
1163 fkprog->filter = kmemdup(fp->insns, fsize,
1164 GFP_KERNEL | __GFP_NOWARN);
1165 if (!fkprog->filter) {
1166 kfree(fp->orig_prog);
1167 return -ENOMEM;
1168 }
1169
1170 return 0;
1171 }
1172
bpf_release_orig_filter(struct bpf_prog * fp)1173 static void bpf_release_orig_filter(struct bpf_prog *fp)
1174 {
1175 struct sock_fprog_kern *fprog = fp->orig_prog;
1176
1177 if (fprog) {
1178 kfree(fprog->filter);
1179 kfree(fprog);
1180 }
1181 }
1182
__bpf_prog_release(struct bpf_prog * prog)1183 static void __bpf_prog_release(struct bpf_prog *prog)
1184 {
1185 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1186 bpf_prog_put(prog);
1187 } else {
1188 bpf_release_orig_filter(prog);
1189 bpf_prog_free(prog);
1190 }
1191 }
1192
__sk_filter_release(struct sk_filter * fp)1193 static void __sk_filter_release(struct sk_filter *fp)
1194 {
1195 __bpf_prog_release(fp->prog);
1196 kfree(fp);
1197 }
1198
1199 /**
1200 * sk_filter_release_rcu - Release a socket filter by rcu_head
1201 * @rcu: rcu_head that contains the sk_filter to free
1202 */
sk_filter_release_rcu(struct rcu_head * rcu)1203 static void sk_filter_release_rcu(struct rcu_head *rcu)
1204 {
1205 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1206
1207 __sk_filter_release(fp);
1208 }
1209
1210 /**
1211 * sk_filter_release - release a socket filter
1212 * @fp: filter to remove
1213 *
1214 * Remove a filter from a socket and release its resources.
1215 */
sk_filter_release(struct sk_filter * fp)1216 static void sk_filter_release(struct sk_filter *fp)
1217 {
1218 if (refcount_dec_and_test(&fp->refcnt))
1219 call_rcu(&fp->rcu, sk_filter_release_rcu);
1220 }
1221
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1222 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1223 {
1224 u32 filter_size = bpf_prog_size(fp->prog->len);
1225
1226 atomic_sub(filter_size, &sk->sk_omem_alloc);
1227 sk_filter_release(fp);
1228 }
1229
1230 /* try to charge the socket memory if there is space available
1231 * return true on success
1232 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1233 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1234 {
1235 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1236 u32 filter_size = bpf_prog_size(fp->prog->len);
1237
1238 /* same check as in sock_kmalloc() */
1239 if (filter_size <= optmem_max &&
1240 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1241 atomic_add(filter_size, &sk->sk_omem_alloc);
1242 return true;
1243 }
1244 return false;
1245 }
1246
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1247 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1248 {
1249 if (!refcount_inc_not_zero(&fp->refcnt))
1250 return false;
1251
1252 if (!__sk_filter_charge(sk, fp)) {
1253 sk_filter_release(fp);
1254 return false;
1255 }
1256 return true;
1257 }
1258
bpf_migrate_filter(struct bpf_prog * fp)1259 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1260 {
1261 struct sock_filter *old_prog;
1262 struct bpf_prog *old_fp;
1263 int err, new_len, old_len = fp->len;
1264 bool seen_ld_abs = false;
1265
1266 /* We are free to overwrite insns et al right here as it won't be used at
1267 * this point in time anymore internally after the migration to the eBPF
1268 * instruction representation.
1269 */
1270 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1271 sizeof(struct bpf_insn));
1272
1273 /* Conversion cannot happen on overlapping memory areas,
1274 * so we need to keep the user BPF around until the 2nd
1275 * pass. At this time, the user BPF is stored in fp->insns.
1276 */
1277 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1278 GFP_KERNEL | __GFP_NOWARN);
1279 if (!old_prog) {
1280 err = -ENOMEM;
1281 goto out_err;
1282 }
1283
1284 /* 1st pass: calculate the new program length. */
1285 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1286 &seen_ld_abs);
1287 if (err)
1288 goto out_err_free;
1289
1290 /* Expand fp for appending the new filter representation. */
1291 old_fp = fp;
1292 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1293 if (!fp) {
1294 /* The old_fp is still around in case we couldn't
1295 * allocate new memory, so uncharge on that one.
1296 */
1297 fp = old_fp;
1298 err = -ENOMEM;
1299 goto out_err_free;
1300 }
1301
1302 fp->len = new_len;
1303
1304 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1305 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1306 &seen_ld_abs);
1307 if (err)
1308 /* 2nd bpf_convert_filter() can fail only if it fails
1309 * to allocate memory, remapping must succeed. Note,
1310 * that at this time old_fp has already been released
1311 * by krealloc().
1312 */
1313 goto out_err_free;
1314
1315 fp = bpf_prog_select_runtime(fp, &err);
1316 if (err)
1317 goto out_err_free;
1318
1319 kfree(old_prog);
1320 return fp;
1321
1322 out_err_free:
1323 kfree(old_prog);
1324 out_err:
1325 __bpf_prog_release(fp);
1326 return ERR_PTR(err);
1327 }
1328
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1329 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1330 bpf_aux_classic_check_t trans)
1331 {
1332 int err;
1333
1334 fp->bpf_func = NULL;
1335 fp->jited = 0;
1336
1337 err = bpf_check_classic(fp->insns, fp->len);
1338 if (err) {
1339 __bpf_prog_release(fp);
1340 return ERR_PTR(err);
1341 }
1342
1343 /* There might be additional checks and transformations
1344 * needed on classic filters, f.e. in case of seccomp.
1345 */
1346 if (trans) {
1347 err = trans(fp->insns, fp->len);
1348 if (err) {
1349 __bpf_prog_release(fp);
1350 return ERR_PTR(err);
1351 }
1352 }
1353
1354 /* Probe if we can JIT compile the filter and if so, do
1355 * the compilation of the filter.
1356 */
1357 bpf_jit_compile(fp);
1358
1359 /* JIT compiler couldn't process this filter, so do the eBPF translation
1360 * for the optimized interpreter.
1361 */
1362 if (!fp->jited)
1363 fp = bpf_migrate_filter(fp);
1364
1365 return fp;
1366 }
1367
1368 /**
1369 * bpf_prog_create - create an unattached filter
1370 * @pfp: the unattached filter that is created
1371 * @fprog: the filter program
1372 *
1373 * Create a filter independent of any socket. We first run some
1374 * sanity checks on it to make sure it does not explode on us later.
1375 * If an error occurs or there is insufficient memory for the filter
1376 * a negative errno code is returned. On success the return is zero.
1377 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1378 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1379 {
1380 unsigned int fsize = bpf_classic_proglen(fprog);
1381 struct bpf_prog *fp;
1382
1383 /* Make sure new filter is there and in the right amounts. */
1384 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1385 return -EINVAL;
1386
1387 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1388 if (!fp)
1389 return -ENOMEM;
1390
1391 memcpy(fp->insns, fprog->filter, fsize);
1392
1393 fp->len = fprog->len;
1394 /* Since unattached filters are not copied back to user
1395 * space through sk_get_filter(), we do not need to hold
1396 * a copy here, and can spare us the work.
1397 */
1398 fp->orig_prog = NULL;
1399
1400 /* bpf_prepare_filter() already takes care of freeing
1401 * memory in case something goes wrong.
1402 */
1403 fp = bpf_prepare_filter(fp, NULL);
1404 if (IS_ERR(fp))
1405 return PTR_ERR(fp);
1406
1407 *pfp = fp;
1408 return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(bpf_prog_create);
1411
1412 /**
1413 * bpf_prog_create_from_user - create an unattached filter from user buffer
1414 * @pfp: the unattached filter that is created
1415 * @fprog: the filter program
1416 * @trans: post-classic verifier transformation handler
1417 * @save_orig: save classic BPF program
1418 *
1419 * This function effectively does the same as bpf_prog_create(), only
1420 * that it builds up its insns buffer from user space provided buffer.
1421 * It also allows for passing a bpf_aux_classic_check_t handler.
1422 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1423 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1424 bpf_aux_classic_check_t trans, bool save_orig)
1425 {
1426 unsigned int fsize = bpf_classic_proglen(fprog);
1427 struct bpf_prog *fp;
1428 int err;
1429
1430 /* Make sure new filter is there and in the right amounts. */
1431 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1432 return -EINVAL;
1433
1434 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1435 if (!fp)
1436 return -ENOMEM;
1437
1438 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1439 __bpf_prog_free(fp);
1440 return -EFAULT;
1441 }
1442
1443 fp->len = fprog->len;
1444 fp->orig_prog = NULL;
1445
1446 if (save_orig) {
1447 err = bpf_prog_store_orig_filter(fp, fprog);
1448 if (err) {
1449 __bpf_prog_free(fp);
1450 return -ENOMEM;
1451 }
1452 }
1453
1454 /* bpf_prepare_filter() already takes care of freeing
1455 * memory in case something goes wrong.
1456 */
1457 fp = bpf_prepare_filter(fp, trans);
1458 if (IS_ERR(fp))
1459 return PTR_ERR(fp);
1460
1461 *pfp = fp;
1462 return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1465
bpf_prog_destroy(struct bpf_prog * fp)1466 void bpf_prog_destroy(struct bpf_prog *fp)
1467 {
1468 __bpf_prog_release(fp);
1469 }
1470 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1471
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1472 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1473 {
1474 struct sk_filter *fp, *old_fp;
1475
1476 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1477 if (!fp)
1478 return -ENOMEM;
1479
1480 fp->prog = prog;
1481
1482 if (!__sk_filter_charge(sk, fp)) {
1483 kfree(fp);
1484 return -ENOMEM;
1485 }
1486 refcount_set(&fp->refcnt, 1);
1487
1488 old_fp = rcu_dereference_protected(sk->sk_filter,
1489 lockdep_sock_is_held(sk));
1490 rcu_assign_pointer(sk->sk_filter, fp);
1491
1492 if (old_fp)
1493 sk_filter_uncharge(sk, old_fp);
1494
1495 return 0;
1496 }
1497
1498 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1499 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1500 {
1501 unsigned int fsize = bpf_classic_proglen(fprog);
1502 struct bpf_prog *prog;
1503 int err;
1504
1505 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 return ERR_PTR(-EPERM);
1507
1508 /* Make sure new filter is there and in the right amounts. */
1509 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1510 return ERR_PTR(-EINVAL);
1511
1512 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1513 if (!prog)
1514 return ERR_PTR(-ENOMEM);
1515
1516 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1517 __bpf_prog_free(prog);
1518 return ERR_PTR(-EFAULT);
1519 }
1520
1521 prog->len = fprog->len;
1522
1523 err = bpf_prog_store_orig_filter(prog, fprog);
1524 if (err) {
1525 __bpf_prog_free(prog);
1526 return ERR_PTR(-ENOMEM);
1527 }
1528
1529 /* bpf_prepare_filter() already takes care of freeing
1530 * memory in case something goes wrong.
1531 */
1532 return bpf_prepare_filter(prog, NULL);
1533 }
1534
1535 /**
1536 * sk_attach_filter - attach a socket filter
1537 * @fprog: the filter program
1538 * @sk: the socket to use
1539 *
1540 * Attach the user's filter code. We first run some sanity checks on
1541 * it to make sure it does not explode on us later. If an error
1542 * occurs or there is insufficient memory for the filter a negative
1543 * errno code is returned. On success the return is zero.
1544 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1545 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547 struct bpf_prog *prog = __get_filter(fprog, sk);
1548 int err;
1549
1550 if (IS_ERR(prog))
1551 return PTR_ERR(prog);
1552
1553 err = __sk_attach_prog(prog, sk);
1554 if (err < 0) {
1555 __bpf_prog_release(prog);
1556 return err;
1557 }
1558
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(sk_attach_filter);
1562
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1563 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1564 {
1565 struct bpf_prog *prog = __get_filter(fprog, sk);
1566 int err, optmem_max;
1567
1568 if (IS_ERR(prog))
1569 return PTR_ERR(prog);
1570
1571 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1572 if (bpf_prog_size(prog->len) > optmem_max)
1573 err = -ENOMEM;
1574 else
1575 err = reuseport_attach_prog(sk, prog);
1576
1577 if (err)
1578 __bpf_prog_release(prog);
1579
1580 return err;
1581 }
1582
__get_bpf(u32 ufd,struct sock * sk)1583 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1584 {
1585 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1586 return ERR_PTR(-EPERM);
1587
1588 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1589 }
1590
sk_attach_bpf(u32 ufd,struct sock * sk)1591 int sk_attach_bpf(u32 ufd, struct sock *sk)
1592 {
1593 struct bpf_prog *prog = __get_bpf(ufd, sk);
1594 int err;
1595
1596 if (IS_ERR(prog))
1597 return PTR_ERR(prog);
1598
1599 err = __sk_attach_prog(prog, sk);
1600 if (err < 0) {
1601 bpf_prog_put(prog);
1602 return err;
1603 }
1604
1605 return 0;
1606 }
1607
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1608 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1609 {
1610 struct bpf_prog *prog;
1611 int err, optmem_max;
1612
1613 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1614 return -EPERM;
1615
1616 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1617 if (PTR_ERR(prog) == -EINVAL)
1618 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1619 if (IS_ERR(prog))
1620 return PTR_ERR(prog);
1621
1622 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1623 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1624 * bpf prog (e.g. sockmap). It depends on the
1625 * limitation imposed by bpf_prog_load().
1626 * Hence, sysctl_optmem_max is not checked.
1627 */
1628 if ((sk->sk_type != SOCK_STREAM &&
1629 sk->sk_type != SOCK_DGRAM) ||
1630 (sk->sk_protocol != IPPROTO_UDP &&
1631 sk->sk_protocol != IPPROTO_TCP) ||
1632 (sk->sk_family != AF_INET &&
1633 sk->sk_family != AF_INET6)) {
1634 err = -ENOTSUPP;
1635 goto err_prog_put;
1636 }
1637 } else {
1638 /* BPF_PROG_TYPE_SOCKET_FILTER */
1639 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1640 if (bpf_prog_size(prog->len) > optmem_max) {
1641 err = -ENOMEM;
1642 goto err_prog_put;
1643 }
1644 }
1645
1646 err = reuseport_attach_prog(sk, prog);
1647 err_prog_put:
1648 if (err)
1649 bpf_prog_put(prog);
1650
1651 return err;
1652 }
1653
sk_reuseport_prog_free(struct bpf_prog * prog)1654 void sk_reuseport_prog_free(struct bpf_prog *prog)
1655 {
1656 if (!prog)
1657 return;
1658
1659 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1660 bpf_prog_put(prog);
1661 else
1662 bpf_prog_destroy(prog);
1663 }
1664
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1665 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1666 unsigned int write_len)
1667 {
1668 #ifdef CONFIG_DEBUG_NET
1669 /* Avoid a splat in pskb_may_pull_reason() */
1670 if (write_len > INT_MAX)
1671 return -EINVAL;
1672 #endif
1673 return skb_ensure_writable(skb, write_len);
1674 }
1675
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1676 static inline int bpf_try_make_writable(struct sk_buff *skb,
1677 unsigned int write_len)
1678 {
1679 int err = __bpf_try_make_writable(skb, write_len);
1680
1681 bpf_compute_data_pointers(skb);
1682 return err;
1683 }
1684
bpf_try_make_head_writable(struct sk_buff * skb)1685 static int bpf_try_make_head_writable(struct sk_buff *skb)
1686 {
1687 return bpf_try_make_writable(skb, skb_headlen(skb));
1688 }
1689
bpf_push_mac_rcsum(struct sk_buff * skb)1690 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1691 {
1692 if (skb_at_tc_ingress(skb))
1693 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1694 }
1695
bpf_pull_mac_rcsum(struct sk_buff * skb)1696 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1697 {
1698 if (skb_at_tc_ingress(skb))
1699 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1700 }
1701
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1702 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1703 const void *, from, u32, len, u64, flags)
1704 {
1705 void *ptr;
1706
1707 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1708 return -EINVAL;
1709 if (unlikely(offset > INT_MAX))
1710 return -EFAULT;
1711 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1712 return -EFAULT;
1713
1714 ptr = skb->data + offset;
1715 if (flags & BPF_F_RECOMPUTE_CSUM)
1716 __skb_postpull_rcsum(skb, ptr, len, offset);
1717
1718 memcpy(ptr, from, len);
1719
1720 if (flags & BPF_F_RECOMPUTE_CSUM)
1721 __skb_postpush_rcsum(skb, ptr, len, offset);
1722 if (flags & BPF_F_INVALIDATE_HASH)
1723 skb_clear_hash(skb);
1724
1725 return 0;
1726 }
1727
1728 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1729 .func = bpf_skb_store_bytes,
1730 .gpl_only = false,
1731 .ret_type = RET_INTEGER,
1732 .arg1_type = ARG_PTR_TO_CTX,
1733 .arg2_type = ARG_ANYTHING,
1734 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1735 .arg4_type = ARG_CONST_SIZE,
1736 .arg5_type = ARG_ANYTHING,
1737 };
1738
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1739 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1740 u32 len, u64 flags)
1741 {
1742 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1743 }
1744
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1745 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1746 void *, to, u32, len)
1747 {
1748 void *ptr;
1749
1750 if (unlikely(offset > INT_MAX))
1751 goto err_clear;
1752
1753 ptr = skb_header_pointer(skb, offset, len, to);
1754 if (unlikely(!ptr))
1755 goto err_clear;
1756 if (ptr != to)
1757 memcpy(to, ptr, len);
1758
1759 return 0;
1760 err_clear:
1761 memset(to, 0, len);
1762 return -EFAULT;
1763 }
1764
1765 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1766 .func = bpf_skb_load_bytes,
1767 .gpl_only = false,
1768 .ret_type = RET_INTEGER,
1769 .arg1_type = ARG_PTR_TO_CTX,
1770 .arg2_type = ARG_ANYTHING,
1771 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1772 .arg4_type = ARG_CONST_SIZE,
1773 };
1774
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1775 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1776 {
1777 return ____bpf_skb_load_bytes(skb, offset, to, len);
1778 }
1779
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1780 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1781 const struct bpf_flow_dissector *, ctx, u32, offset,
1782 void *, to, u32, len)
1783 {
1784 void *ptr;
1785
1786 if (unlikely(offset > 0xffff))
1787 goto err_clear;
1788
1789 if (unlikely(!ctx->skb))
1790 goto err_clear;
1791
1792 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1793 if (unlikely(!ptr))
1794 goto err_clear;
1795 if (ptr != to)
1796 memcpy(to, ptr, len);
1797
1798 return 0;
1799 err_clear:
1800 memset(to, 0, len);
1801 return -EFAULT;
1802 }
1803
1804 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1805 .func = bpf_flow_dissector_load_bytes,
1806 .gpl_only = false,
1807 .ret_type = RET_INTEGER,
1808 .arg1_type = ARG_PTR_TO_CTX,
1809 .arg2_type = ARG_ANYTHING,
1810 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1811 .arg4_type = ARG_CONST_SIZE,
1812 };
1813
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1814 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1815 u32, offset, void *, to, u32, len, u32, start_header)
1816 {
1817 u8 *end = skb_tail_pointer(skb);
1818 u8 *start, *ptr;
1819
1820 if (unlikely(offset > 0xffff))
1821 goto err_clear;
1822
1823 switch (start_header) {
1824 case BPF_HDR_START_MAC:
1825 if (unlikely(!skb_mac_header_was_set(skb)))
1826 goto err_clear;
1827 start = skb_mac_header(skb);
1828 break;
1829 case BPF_HDR_START_NET:
1830 start = skb_network_header(skb);
1831 break;
1832 default:
1833 goto err_clear;
1834 }
1835
1836 ptr = start + offset;
1837
1838 if (likely(ptr + len <= end)) {
1839 memcpy(to, ptr, len);
1840 return 0;
1841 }
1842
1843 err_clear:
1844 memset(to, 0, len);
1845 return -EFAULT;
1846 }
1847
1848 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1849 .func = bpf_skb_load_bytes_relative,
1850 .gpl_only = false,
1851 .ret_type = RET_INTEGER,
1852 .arg1_type = ARG_PTR_TO_CTX,
1853 .arg2_type = ARG_ANYTHING,
1854 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1855 .arg4_type = ARG_CONST_SIZE,
1856 .arg5_type = ARG_ANYTHING,
1857 };
1858
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1859 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1860 {
1861 /* Idea is the following: should the needed direct read/write
1862 * test fail during runtime, we can pull in more data and redo
1863 * again, since implicitly, we invalidate previous checks here.
1864 *
1865 * Or, since we know how much we need to make read/writeable,
1866 * this can be done once at the program beginning for direct
1867 * access case. By this we overcome limitations of only current
1868 * headroom being accessible.
1869 */
1870 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1871 }
1872
1873 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1874 .func = bpf_skb_pull_data,
1875 .gpl_only = false,
1876 .ret_type = RET_INTEGER,
1877 .arg1_type = ARG_PTR_TO_CTX,
1878 .arg2_type = ARG_ANYTHING,
1879 };
1880
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1881 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1882 {
1883 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1884 }
1885
1886 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1887 .func = bpf_sk_fullsock,
1888 .gpl_only = false,
1889 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1890 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1891 };
1892
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1893 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1894 unsigned int write_len)
1895 {
1896 return __bpf_try_make_writable(skb, write_len);
1897 }
1898
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1899 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1900 {
1901 /* Idea is the following: should the needed direct read/write
1902 * test fail during runtime, we can pull in more data and redo
1903 * again, since implicitly, we invalidate previous checks here.
1904 *
1905 * Or, since we know how much we need to make read/writeable,
1906 * this can be done once at the program beginning for direct
1907 * access case. By this we overcome limitations of only current
1908 * headroom being accessible.
1909 */
1910 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1911 }
1912
1913 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1914 .func = sk_skb_pull_data,
1915 .gpl_only = false,
1916 .ret_type = RET_INTEGER,
1917 .arg1_type = ARG_PTR_TO_CTX,
1918 .arg2_type = ARG_ANYTHING,
1919 };
1920
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1921 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1922 u64, from, u64, to, u64, flags)
1923 {
1924 __sum16 *ptr;
1925
1926 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1927 return -EINVAL;
1928 if (unlikely(offset > 0xffff || offset & 1))
1929 return -EFAULT;
1930 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 return -EFAULT;
1932
1933 ptr = (__sum16 *)(skb->data + offset);
1934 switch (flags & BPF_F_HDR_FIELD_MASK) {
1935 case 0:
1936 if (unlikely(from != 0))
1937 return -EINVAL;
1938
1939 csum_replace_by_diff(ptr, to);
1940 break;
1941 case 2:
1942 csum_replace2(ptr, from, to);
1943 break;
1944 case 4:
1945 csum_replace4(ptr, from, to);
1946 break;
1947 default:
1948 return -EINVAL;
1949 }
1950
1951 return 0;
1952 }
1953
1954 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1955 .func = bpf_l3_csum_replace,
1956 .gpl_only = false,
1957 .ret_type = RET_INTEGER,
1958 .arg1_type = ARG_PTR_TO_CTX,
1959 .arg2_type = ARG_ANYTHING,
1960 .arg3_type = ARG_ANYTHING,
1961 .arg4_type = ARG_ANYTHING,
1962 .arg5_type = ARG_ANYTHING,
1963 };
1964
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1965 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1966 u64, from, u64, to, u64, flags)
1967 {
1968 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1969 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1970 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1971 __sum16 *ptr;
1972
1973 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1974 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1975 return -EINVAL;
1976 if (unlikely(offset > 0xffff || offset & 1))
1977 return -EFAULT;
1978 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1979 return -EFAULT;
1980
1981 ptr = (__sum16 *)(skb->data + offset);
1982 if (is_mmzero && !do_mforce && !*ptr)
1983 return 0;
1984
1985 switch (flags & BPF_F_HDR_FIELD_MASK) {
1986 case 0:
1987 if (unlikely(from != 0))
1988 return -EINVAL;
1989
1990 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1991 break;
1992 case 2:
1993 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1994 break;
1995 case 4:
1996 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1997 break;
1998 default:
1999 return -EINVAL;
2000 }
2001
2002 if (is_mmzero && !*ptr)
2003 *ptr = CSUM_MANGLED_0;
2004 return 0;
2005 }
2006
2007 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2008 .func = bpf_l4_csum_replace,
2009 .gpl_only = false,
2010 .ret_type = RET_INTEGER,
2011 .arg1_type = ARG_PTR_TO_CTX,
2012 .arg2_type = ARG_ANYTHING,
2013 .arg3_type = ARG_ANYTHING,
2014 .arg4_type = ARG_ANYTHING,
2015 .arg5_type = ARG_ANYTHING,
2016 };
2017
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2018 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2019 __be32 *, to, u32, to_size, __wsum, seed)
2020 {
2021 /* This is quite flexible, some examples:
2022 *
2023 * from_size == 0, to_size > 0, seed := csum --> pushing data
2024 * from_size > 0, to_size == 0, seed := csum --> pulling data
2025 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2026 *
2027 * Even for diffing, from_size and to_size don't need to be equal.
2028 */
2029
2030 __wsum ret = seed;
2031
2032 if (from_size && to_size)
2033 ret = csum_sub(csum_partial(to, to_size, ret),
2034 csum_partial(from, from_size, 0));
2035 else if (to_size)
2036 ret = csum_partial(to, to_size, ret);
2037
2038 else if (from_size)
2039 ret = ~csum_partial(from, from_size, ~ret);
2040
2041 return csum_from32to16((__force unsigned int)ret);
2042 }
2043
2044 static const struct bpf_func_proto bpf_csum_diff_proto = {
2045 .func = bpf_csum_diff,
2046 .gpl_only = false,
2047 .pkt_access = true,
2048 .ret_type = RET_INTEGER,
2049 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2050 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2051 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2052 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2053 .arg5_type = ARG_ANYTHING,
2054 };
2055
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2056 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2057 {
2058 /* The interface is to be used in combination with bpf_csum_diff()
2059 * for direct packet writes. csum rotation for alignment as well
2060 * as emulating csum_sub() can be done from the eBPF program.
2061 */
2062 if (skb->ip_summed == CHECKSUM_COMPLETE)
2063 return (skb->csum = csum_add(skb->csum, csum));
2064
2065 return -ENOTSUPP;
2066 }
2067
2068 static const struct bpf_func_proto bpf_csum_update_proto = {
2069 .func = bpf_csum_update,
2070 .gpl_only = false,
2071 .ret_type = RET_INTEGER,
2072 .arg1_type = ARG_PTR_TO_CTX,
2073 .arg2_type = ARG_ANYTHING,
2074 };
2075
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2076 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2077 {
2078 /* The interface is to be used in combination with bpf_skb_adjust_room()
2079 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2080 * is passed as flags, for example.
2081 */
2082 switch (level) {
2083 case BPF_CSUM_LEVEL_INC:
2084 __skb_incr_checksum_unnecessary(skb);
2085 break;
2086 case BPF_CSUM_LEVEL_DEC:
2087 __skb_decr_checksum_unnecessary(skb);
2088 break;
2089 case BPF_CSUM_LEVEL_RESET:
2090 __skb_reset_checksum_unnecessary(skb);
2091 break;
2092 case BPF_CSUM_LEVEL_QUERY:
2093 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2094 skb->csum_level : -EACCES;
2095 default:
2096 return -EINVAL;
2097 }
2098
2099 return 0;
2100 }
2101
2102 static const struct bpf_func_proto bpf_csum_level_proto = {
2103 .func = bpf_csum_level,
2104 .gpl_only = false,
2105 .ret_type = RET_INTEGER,
2106 .arg1_type = ARG_PTR_TO_CTX,
2107 .arg2_type = ARG_ANYTHING,
2108 };
2109
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2110 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2111 {
2112 return dev_forward_skb_nomtu(dev, skb);
2113 }
2114
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2115 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2116 struct sk_buff *skb)
2117 {
2118 int ret = ____dev_forward_skb(dev, skb, false);
2119
2120 if (likely(!ret)) {
2121 skb->dev = dev;
2122 ret = netif_rx(skb);
2123 }
2124
2125 return ret;
2126 }
2127
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2128 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2129 {
2130 int ret;
2131
2132 if (dev_xmit_recursion()) {
2133 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2134 kfree_skb(skb);
2135 return -ENETDOWN;
2136 }
2137
2138 skb->dev = dev;
2139 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2140 skb_clear_tstamp(skb);
2141
2142 dev_xmit_recursion_inc();
2143 ret = dev_queue_xmit(skb);
2144 dev_xmit_recursion_dec();
2145
2146 return ret;
2147 }
2148
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2149 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2150 u32 flags)
2151 {
2152 unsigned int mlen = skb_network_offset(skb);
2153
2154 if (unlikely(skb->len <= mlen)) {
2155 kfree_skb(skb);
2156 return -ERANGE;
2157 }
2158
2159 if (mlen) {
2160 __skb_pull(skb, mlen);
2161
2162 /* At ingress, the mac header has already been pulled once.
2163 * At egress, skb_pospull_rcsum has to be done in case that
2164 * the skb is originated from ingress (i.e. a forwarded skb)
2165 * to ensure that rcsum starts at net header.
2166 */
2167 if (!skb_at_tc_ingress(skb))
2168 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2169 }
2170 skb_pop_mac_header(skb);
2171 skb_reset_mac_len(skb);
2172 return flags & BPF_F_INGRESS ?
2173 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2176 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2177 u32 flags)
2178 {
2179 /* Verify that a link layer header is carried */
2180 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2181 kfree_skb(skb);
2182 return -ERANGE;
2183 }
2184
2185 bpf_push_mac_rcsum(skb);
2186 return flags & BPF_F_INGRESS ?
2187 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2188 }
2189
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2190 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2191 u32 flags)
2192 {
2193 if (dev_is_mac_header_xmit(dev))
2194 return __bpf_redirect_common(skb, dev, flags);
2195 else
2196 return __bpf_redirect_no_mac(skb, dev, flags);
2197 }
2198
2199 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2200 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2201 struct net_device *dev, struct bpf_nh_params *nh)
2202 {
2203 u32 hh_len = LL_RESERVED_SPACE(dev);
2204 const struct in6_addr *nexthop;
2205 struct dst_entry *dst = NULL;
2206 struct neighbour *neigh;
2207
2208 if (dev_xmit_recursion()) {
2209 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2210 goto out_drop;
2211 }
2212
2213 skb->dev = dev;
2214 skb_clear_tstamp(skb);
2215
2216 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2217 skb = skb_expand_head(skb, hh_len);
2218 if (!skb)
2219 return -ENOMEM;
2220 }
2221
2222 rcu_read_lock();
2223 if (!nh) {
2224 dst = skb_dst(skb);
2225 nexthop = rt6_nexthop(dst_rt6_info(dst),
2226 &ipv6_hdr(skb)->daddr);
2227 } else {
2228 nexthop = &nh->ipv6_nh;
2229 }
2230 neigh = ip_neigh_gw6(dev, nexthop);
2231 if (likely(!IS_ERR(neigh))) {
2232 int ret;
2233
2234 sock_confirm_neigh(skb, neigh);
2235 local_bh_disable();
2236 dev_xmit_recursion_inc();
2237 ret = neigh_output(neigh, skb, false);
2238 dev_xmit_recursion_dec();
2239 local_bh_enable();
2240 rcu_read_unlock();
2241 return ret;
2242 }
2243 rcu_read_unlock();
2244 if (dst)
2245 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2246 out_drop:
2247 kfree_skb(skb);
2248 return -ENETDOWN;
2249 }
2250
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2251 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2252 struct bpf_nh_params *nh)
2253 {
2254 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2255 struct net *net = dev_net(dev);
2256 int err, ret = NET_XMIT_DROP;
2257
2258 if (!nh) {
2259 struct dst_entry *dst;
2260 struct flowi6 fl6 = {
2261 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2262 .flowi6_mark = skb->mark,
2263 .flowlabel = ip6_flowinfo(ip6h),
2264 .flowi6_oif = dev->ifindex,
2265 .flowi6_proto = ip6h->nexthdr,
2266 .daddr = ip6h->daddr,
2267 .saddr = ip6h->saddr,
2268 };
2269
2270 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2271 if (IS_ERR(dst))
2272 goto out_drop;
2273
2274 skb_dst_set(skb, dst);
2275 } else if (nh->nh_family != AF_INET6) {
2276 goto out_drop;
2277 }
2278
2279 err = bpf_out_neigh_v6(net, skb, dev, nh);
2280 if (unlikely(net_xmit_eval(err)))
2281 DEV_STATS_INC(dev, tx_errors);
2282 else
2283 ret = NET_XMIT_SUCCESS;
2284 goto out_xmit;
2285 out_drop:
2286 DEV_STATS_INC(dev, tx_errors);
2287 kfree_skb(skb);
2288 out_xmit:
2289 return ret;
2290 }
2291 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2292 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2293 struct bpf_nh_params *nh)
2294 {
2295 kfree_skb(skb);
2296 return NET_XMIT_DROP;
2297 }
2298 #endif /* CONFIG_IPV6 */
2299
2300 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2301 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2302 struct net_device *dev, struct bpf_nh_params *nh)
2303 {
2304 u32 hh_len = LL_RESERVED_SPACE(dev);
2305 struct neighbour *neigh;
2306 bool is_v6gw = false;
2307
2308 if (dev_xmit_recursion()) {
2309 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2310 goto out_drop;
2311 }
2312
2313 skb->dev = dev;
2314 skb_clear_tstamp(skb);
2315
2316 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2317 skb = skb_expand_head(skb, hh_len);
2318 if (!skb)
2319 return -ENOMEM;
2320 }
2321
2322 rcu_read_lock();
2323 if (!nh) {
2324 struct rtable *rt = skb_rtable(skb);
2325
2326 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2327 } else if (nh->nh_family == AF_INET6) {
2328 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2329 is_v6gw = true;
2330 } else if (nh->nh_family == AF_INET) {
2331 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2332 } else {
2333 rcu_read_unlock();
2334 goto out_drop;
2335 }
2336
2337 if (likely(!IS_ERR(neigh))) {
2338 int ret;
2339
2340 sock_confirm_neigh(skb, neigh);
2341 local_bh_disable();
2342 dev_xmit_recursion_inc();
2343 ret = neigh_output(neigh, skb, is_v6gw);
2344 dev_xmit_recursion_dec();
2345 local_bh_enable();
2346 rcu_read_unlock();
2347 return ret;
2348 }
2349 rcu_read_unlock();
2350 out_drop:
2351 kfree_skb(skb);
2352 return -ENETDOWN;
2353 }
2354
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2355 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2356 struct bpf_nh_params *nh)
2357 {
2358 const struct iphdr *ip4h = ip_hdr(skb);
2359 struct net *net = dev_net(dev);
2360 int err, ret = NET_XMIT_DROP;
2361
2362 if (!nh) {
2363 struct flowi4 fl4 = {
2364 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2365 .flowi4_mark = skb->mark,
2366 .flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2367 .flowi4_oif = dev->ifindex,
2368 .flowi4_proto = ip4h->protocol,
2369 .daddr = ip4h->daddr,
2370 .saddr = ip4h->saddr,
2371 };
2372 struct rtable *rt;
2373
2374 rt = ip_route_output_flow(net, &fl4, NULL);
2375 if (IS_ERR(rt))
2376 goto out_drop;
2377 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2378 ip_rt_put(rt);
2379 goto out_drop;
2380 }
2381
2382 skb_dst_set(skb, &rt->dst);
2383 }
2384
2385 err = bpf_out_neigh_v4(net, skb, dev, nh);
2386 if (unlikely(net_xmit_eval(err)))
2387 DEV_STATS_INC(dev, tx_errors);
2388 else
2389 ret = NET_XMIT_SUCCESS;
2390 goto out_xmit;
2391 out_drop:
2392 DEV_STATS_INC(dev, tx_errors);
2393 kfree_skb(skb);
2394 out_xmit:
2395 return ret;
2396 }
2397 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2399 struct bpf_nh_params *nh)
2400 {
2401 kfree_skb(skb);
2402 return NET_XMIT_DROP;
2403 }
2404 #endif /* CONFIG_INET */
2405
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2406 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2407 struct bpf_nh_params *nh)
2408 {
2409 struct ethhdr *ethh = eth_hdr(skb);
2410
2411 if (unlikely(skb->mac_header >= skb->network_header))
2412 goto out;
2413 bpf_push_mac_rcsum(skb);
2414 if (is_multicast_ether_addr(ethh->h_dest))
2415 goto out;
2416
2417 skb_pull(skb, sizeof(*ethh));
2418 skb_unset_mac_header(skb);
2419 skb_reset_network_header(skb);
2420
2421 if (skb->protocol == htons(ETH_P_IP))
2422 return __bpf_redirect_neigh_v4(skb, dev, nh);
2423 else if (skb->protocol == htons(ETH_P_IPV6))
2424 return __bpf_redirect_neigh_v6(skb, dev, nh);
2425 out:
2426 kfree_skb(skb);
2427 return -ENOTSUPP;
2428 }
2429
2430 /* Internal, non-exposed redirect flags. */
2431 enum {
2432 BPF_F_NEIGH = (1ULL << 16),
2433 BPF_F_PEER = (1ULL << 17),
2434 BPF_F_NEXTHOP = (1ULL << 18),
2435 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2436 };
2437
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2438 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2439 {
2440 struct net_device *dev;
2441 struct sk_buff *clone;
2442 int ret;
2443
2444 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2445
2446 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2447 return -EINVAL;
2448
2449 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2450 if (unlikely(!dev))
2451 return -EINVAL;
2452
2453 clone = skb_clone(skb, GFP_ATOMIC);
2454 if (unlikely(!clone))
2455 return -ENOMEM;
2456
2457 /* For direct write, we need to keep the invariant that the skbs
2458 * we're dealing with need to be uncloned. Should uncloning fail
2459 * here, we need to free the just generated clone to unclone once
2460 * again.
2461 */
2462 ret = bpf_try_make_head_writable(skb);
2463 if (unlikely(ret)) {
2464 kfree_skb(clone);
2465 return -ENOMEM;
2466 }
2467
2468 return __bpf_redirect(clone, dev, flags);
2469 }
2470
2471 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2472 .func = bpf_clone_redirect,
2473 .gpl_only = false,
2474 .ret_type = RET_INTEGER,
2475 .arg1_type = ARG_PTR_TO_CTX,
2476 .arg2_type = ARG_ANYTHING,
2477 .arg3_type = ARG_ANYTHING,
2478 };
2479
skb_get_peer_dev(struct net_device * dev)2480 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2481 {
2482 const struct net_device_ops *ops = dev->netdev_ops;
2483
2484 if (likely(ops->ndo_get_peer_dev))
2485 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2486 netkit_peer_dev, dev);
2487 return NULL;
2488 }
2489
skb_do_redirect(struct sk_buff * skb)2490 int skb_do_redirect(struct sk_buff *skb)
2491 {
2492 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2493 struct net *net = dev_net(skb->dev);
2494 struct net_device *dev;
2495 u32 flags = ri->flags;
2496
2497 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2498 ri->tgt_index = 0;
2499 ri->flags = 0;
2500 if (unlikely(!dev))
2501 goto out_drop;
2502 if (flags & BPF_F_PEER) {
2503 if (unlikely(!skb_at_tc_ingress(skb)))
2504 goto out_drop;
2505 dev = skb_get_peer_dev(dev);
2506 if (unlikely(!dev ||
2507 !(dev->flags & IFF_UP) ||
2508 net_eq(net, dev_net(dev))))
2509 goto out_drop;
2510 skb->dev = dev;
2511 dev_sw_netstats_rx_add(dev, skb->len);
2512 return -EAGAIN;
2513 }
2514 return flags & BPF_F_NEIGH ?
2515 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2516 &ri->nh : NULL) :
2517 __bpf_redirect(skb, dev, flags);
2518 out_drop:
2519 kfree_skb(skb);
2520 return -EINVAL;
2521 }
2522
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2523 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2524 {
2525 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2526
2527 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2528 return TC_ACT_SHOT;
2529
2530 ri->flags = flags;
2531 ri->tgt_index = ifindex;
2532
2533 return TC_ACT_REDIRECT;
2534 }
2535
2536 static const struct bpf_func_proto bpf_redirect_proto = {
2537 .func = bpf_redirect,
2538 .gpl_only = false,
2539 .ret_type = RET_INTEGER,
2540 .arg1_type = ARG_ANYTHING,
2541 .arg2_type = ARG_ANYTHING,
2542 };
2543
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2544 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2545 {
2546 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2547
2548 if (unlikely(flags))
2549 return TC_ACT_SHOT;
2550
2551 ri->flags = BPF_F_PEER;
2552 ri->tgt_index = ifindex;
2553
2554 return TC_ACT_REDIRECT;
2555 }
2556
2557 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2558 .func = bpf_redirect_peer,
2559 .gpl_only = false,
2560 .ret_type = RET_INTEGER,
2561 .arg1_type = ARG_ANYTHING,
2562 .arg2_type = ARG_ANYTHING,
2563 };
2564
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2565 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2566 int, plen, u64, flags)
2567 {
2568 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2569
2570 if (unlikely((plen && plen < sizeof(*params)) || flags))
2571 return TC_ACT_SHOT;
2572
2573 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2574 ri->tgt_index = ifindex;
2575
2576 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2577 if (plen)
2578 memcpy(&ri->nh, params, sizeof(ri->nh));
2579
2580 return TC_ACT_REDIRECT;
2581 }
2582
2583 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2584 .func = bpf_redirect_neigh,
2585 .gpl_only = false,
2586 .ret_type = RET_INTEGER,
2587 .arg1_type = ARG_ANYTHING,
2588 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2589 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2590 .arg4_type = ARG_ANYTHING,
2591 };
2592
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2593 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2594 {
2595 msg->apply_bytes = bytes;
2596 return 0;
2597 }
2598
2599 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2600 .func = bpf_msg_apply_bytes,
2601 .gpl_only = false,
2602 .ret_type = RET_INTEGER,
2603 .arg1_type = ARG_PTR_TO_CTX,
2604 .arg2_type = ARG_ANYTHING,
2605 };
2606
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2607 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2608 {
2609 msg->cork_bytes = bytes;
2610 return 0;
2611 }
2612
sk_msg_reset_curr(struct sk_msg * msg)2613 static void sk_msg_reset_curr(struct sk_msg *msg)
2614 {
2615 if (!msg->sg.size) {
2616 msg->sg.curr = msg->sg.start;
2617 msg->sg.copybreak = 0;
2618 } else {
2619 u32 i = msg->sg.end;
2620
2621 sk_msg_iter_var_prev(i);
2622 msg->sg.curr = i;
2623 msg->sg.copybreak = msg->sg.data[i].length;
2624 }
2625 }
2626
2627 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2628 .func = bpf_msg_cork_bytes,
2629 .gpl_only = false,
2630 .ret_type = RET_INTEGER,
2631 .arg1_type = ARG_PTR_TO_CTX,
2632 .arg2_type = ARG_ANYTHING,
2633 };
2634
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2635 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2636 u32, end, u64, flags)
2637 {
2638 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2639 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2640 struct scatterlist *sge;
2641 u8 *raw, *to, *from;
2642 struct page *page;
2643
2644 if (unlikely(flags || end <= start))
2645 return -EINVAL;
2646
2647 /* First find the starting scatterlist element */
2648 i = msg->sg.start;
2649 do {
2650 offset += len;
2651 len = sk_msg_elem(msg, i)->length;
2652 if (start < offset + len)
2653 break;
2654 sk_msg_iter_var_next(i);
2655 } while (i != msg->sg.end);
2656
2657 if (unlikely(start >= offset + len))
2658 return -EINVAL;
2659
2660 first_sge = i;
2661 /* The start may point into the sg element so we need to also
2662 * account for the headroom.
2663 */
2664 bytes_sg_total = start - offset + bytes;
2665 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2666 goto out;
2667
2668 /* At this point we need to linearize multiple scatterlist
2669 * elements or a single shared page. Either way we need to
2670 * copy into a linear buffer exclusively owned by BPF. Then
2671 * place the buffer in the scatterlist and fixup the original
2672 * entries by removing the entries now in the linear buffer
2673 * and shifting the remaining entries. For now we do not try
2674 * to copy partial entries to avoid complexity of running out
2675 * of sg_entry slots. The downside is reading a single byte
2676 * will copy the entire sg entry.
2677 */
2678 do {
2679 copy += sk_msg_elem(msg, i)->length;
2680 sk_msg_iter_var_next(i);
2681 if (bytes_sg_total <= copy)
2682 break;
2683 } while (i != msg->sg.end);
2684 last_sge = i;
2685
2686 if (unlikely(bytes_sg_total > copy))
2687 return -EINVAL;
2688
2689 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2690 get_order(copy));
2691 if (unlikely(!page))
2692 return -ENOMEM;
2693
2694 raw = page_address(page);
2695 i = first_sge;
2696 do {
2697 sge = sk_msg_elem(msg, i);
2698 from = sg_virt(sge);
2699 len = sge->length;
2700 to = raw + poffset;
2701
2702 memcpy(to, from, len);
2703 poffset += len;
2704 sge->length = 0;
2705 put_page(sg_page(sge));
2706
2707 sk_msg_iter_var_next(i);
2708 } while (i != last_sge);
2709
2710 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2711
2712 /* To repair sg ring we need to shift entries. If we only
2713 * had a single entry though we can just replace it and
2714 * be done. Otherwise walk the ring and shift the entries.
2715 */
2716 WARN_ON_ONCE(last_sge == first_sge);
2717 shift = last_sge > first_sge ?
2718 last_sge - first_sge - 1 :
2719 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2720 if (!shift)
2721 goto out;
2722
2723 i = first_sge;
2724 sk_msg_iter_var_next(i);
2725 do {
2726 u32 move_from;
2727
2728 if (i + shift >= NR_MSG_FRAG_IDS)
2729 move_from = i + shift - NR_MSG_FRAG_IDS;
2730 else
2731 move_from = i + shift;
2732 if (move_from == msg->sg.end)
2733 break;
2734
2735 msg->sg.data[i] = msg->sg.data[move_from];
2736 msg->sg.data[move_from].length = 0;
2737 msg->sg.data[move_from].page_link = 0;
2738 msg->sg.data[move_from].offset = 0;
2739 sk_msg_iter_var_next(i);
2740 } while (1);
2741
2742 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2743 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2744 msg->sg.end - shift;
2745 out:
2746 sk_msg_reset_curr(msg);
2747 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2748 msg->data_end = msg->data + bytes;
2749 return 0;
2750 }
2751
2752 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2753 .func = bpf_msg_pull_data,
2754 .gpl_only = false,
2755 .ret_type = RET_INTEGER,
2756 .arg1_type = ARG_PTR_TO_CTX,
2757 .arg2_type = ARG_ANYTHING,
2758 .arg3_type = ARG_ANYTHING,
2759 .arg4_type = ARG_ANYTHING,
2760 };
2761
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2762 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2763 u32, len, u64, flags)
2764 {
2765 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2766 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2767 u8 *raw, *to, *from;
2768 struct page *page;
2769
2770 if (unlikely(flags))
2771 return -EINVAL;
2772
2773 if (unlikely(len == 0))
2774 return 0;
2775
2776 /* First find the starting scatterlist element */
2777 i = msg->sg.start;
2778 do {
2779 offset += l;
2780 l = sk_msg_elem(msg, i)->length;
2781
2782 if (start < offset + l)
2783 break;
2784 sk_msg_iter_var_next(i);
2785 } while (i != msg->sg.end);
2786
2787 if (start > offset + l)
2788 return -EINVAL;
2789
2790 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2791
2792 /* If no space available will fallback to copy, we need at
2793 * least one scatterlist elem available to push data into
2794 * when start aligns to the beginning of an element or two
2795 * when it falls inside an element. We handle the start equals
2796 * offset case because its the common case for inserting a
2797 * header.
2798 */
2799 if (!space || (space == 1 && start != offset))
2800 copy = msg->sg.data[i].length;
2801
2802 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2803 get_order(copy + len));
2804 if (unlikely(!page))
2805 return -ENOMEM;
2806
2807 if (copy) {
2808 int front, back;
2809
2810 raw = page_address(page);
2811
2812 if (i == msg->sg.end)
2813 sk_msg_iter_var_prev(i);
2814 psge = sk_msg_elem(msg, i);
2815 front = start - offset;
2816 back = psge->length - front;
2817 from = sg_virt(psge);
2818
2819 if (front)
2820 memcpy(raw, from, front);
2821
2822 if (back) {
2823 from += front;
2824 to = raw + front + len;
2825
2826 memcpy(to, from, back);
2827 }
2828
2829 put_page(sg_page(psge));
2830 new = i;
2831 goto place_new;
2832 }
2833
2834 if (start - offset) {
2835 if (i == msg->sg.end)
2836 sk_msg_iter_var_prev(i);
2837 psge = sk_msg_elem(msg, i);
2838 rsge = sk_msg_elem_cpy(msg, i);
2839
2840 psge->length = start - offset;
2841 rsge.length -= psge->length;
2842 rsge.offset += start;
2843
2844 sk_msg_iter_var_next(i);
2845 sg_unmark_end(psge);
2846 sg_unmark_end(&rsge);
2847 }
2848
2849 /* Slot(s) to place newly allocated data */
2850 sk_msg_iter_next(msg, end);
2851 new = i;
2852 sk_msg_iter_var_next(i);
2853
2854 if (i == msg->sg.end) {
2855 if (!rsge.length)
2856 goto place_new;
2857 sk_msg_iter_next(msg, end);
2858 goto place_new;
2859 }
2860
2861 /* Shift one or two slots as needed */
2862 sge = sk_msg_elem_cpy(msg, new);
2863 sg_unmark_end(&sge);
2864
2865 nsge = sk_msg_elem_cpy(msg, i);
2866 if (rsge.length) {
2867 sk_msg_iter_var_next(i);
2868 nnsge = sk_msg_elem_cpy(msg, i);
2869 sk_msg_iter_next(msg, end);
2870 }
2871
2872 while (i != msg->sg.end) {
2873 msg->sg.data[i] = sge;
2874 sge = nsge;
2875 sk_msg_iter_var_next(i);
2876 if (rsge.length) {
2877 nsge = nnsge;
2878 nnsge = sk_msg_elem_cpy(msg, i);
2879 } else {
2880 nsge = sk_msg_elem_cpy(msg, i);
2881 }
2882 }
2883
2884 place_new:
2885 /* Place newly allocated data buffer */
2886 sk_mem_charge(msg->sk, len);
2887 msg->sg.size += len;
2888 __clear_bit(new, msg->sg.copy);
2889 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2890 if (rsge.length) {
2891 get_page(sg_page(&rsge));
2892 sk_msg_iter_var_next(new);
2893 msg->sg.data[new] = rsge;
2894 }
2895
2896 sk_msg_reset_curr(msg);
2897 sk_msg_compute_data_pointers(msg);
2898 return 0;
2899 }
2900
2901 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2902 .func = bpf_msg_push_data,
2903 .gpl_only = false,
2904 .ret_type = RET_INTEGER,
2905 .arg1_type = ARG_PTR_TO_CTX,
2906 .arg2_type = ARG_ANYTHING,
2907 .arg3_type = ARG_ANYTHING,
2908 .arg4_type = ARG_ANYTHING,
2909 };
2910
sk_msg_shift_left(struct sk_msg * msg,int i)2911 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2912 {
2913 struct scatterlist *sge = sk_msg_elem(msg, i);
2914 int prev;
2915
2916 put_page(sg_page(sge));
2917 do {
2918 prev = i;
2919 sk_msg_iter_var_next(i);
2920 msg->sg.data[prev] = msg->sg.data[i];
2921 } while (i != msg->sg.end);
2922
2923 sk_msg_iter_prev(msg, end);
2924 }
2925
sk_msg_shift_right(struct sk_msg * msg,int i)2926 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2927 {
2928 struct scatterlist tmp, sge;
2929
2930 sk_msg_iter_next(msg, end);
2931 sge = sk_msg_elem_cpy(msg, i);
2932 sk_msg_iter_var_next(i);
2933 tmp = sk_msg_elem_cpy(msg, i);
2934
2935 while (i != msg->sg.end) {
2936 msg->sg.data[i] = sge;
2937 sk_msg_iter_var_next(i);
2938 sge = tmp;
2939 tmp = sk_msg_elem_cpy(msg, i);
2940 }
2941 }
2942
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2943 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2944 u32, len, u64, flags)
2945 {
2946 u32 i = 0, l = 0, space, offset = 0;
2947 u64 last = start + len;
2948 int pop;
2949
2950 if (unlikely(flags))
2951 return -EINVAL;
2952
2953 if (unlikely(len == 0))
2954 return 0;
2955
2956 /* First find the starting scatterlist element */
2957 i = msg->sg.start;
2958 do {
2959 offset += l;
2960 l = sk_msg_elem(msg, i)->length;
2961
2962 if (start < offset + l)
2963 break;
2964 sk_msg_iter_var_next(i);
2965 } while (i != msg->sg.end);
2966
2967 /* Bounds checks: start and pop must be inside message */
2968 if (start >= offset + l || last > msg->sg.size)
2969 return -EINVAL;
2970
2971 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2972
2973 pop = len;
2974 /* --------------| offset
2975 * -| start |-------- len -------|
2976 *
2977 * |----- a ----|-------- pop -------|----- b ----|
2978 * |______________________________________________| length
2979 *
2980 *
2981 * a: region at front of scatter element to save
2982 * b: region at back of scatter element to save when length > A + pop
2983 * pop: region to pop from element, same as input 'pop' here will be
2984 * decremented below per iteration.
2985 *
2986 * Two top-level cases to handle when start != offset, first B is non
2987 * zero and second B is zero corresponding to when a pop includes more
2988 * than one element.
2989 *
2990 * Then if B is non-zero AND there is no space allocate space and
2991 * compact A, B regions into page. If there is space shift ring to
2992 * the right free'ing the next element in ring to place B, leaving
2993 * A untouched except to reduce length.
2994 */
2995 if (start != offset) {
2996 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2997 int a = start - offset;
2998 int b = sge->length - pop - a;
2999
3000 sk_msg_iter_var_next(i);
3001
3002 if (b > 0) {
3003 if (space) {
3004 sge->length = a;
3005 sk_msg_shift_right(msg, i);
3006 nsge = sk_msg_elem(msg, i);
3007 get_page(sg_page(sge));
3008 sg_set_page(nsge,
3009 sg_page(sge),
3010 b, sge->offset + pop + a);
3011 } else {
3012 struct page *page, *orig;
3013 u8 *to, *from;
3014
3015 page = alloc_pages(__GFP_NOWARN |
3016 __GFP_COMP | GFP_ATOMIC,
3017 get_order(a + b));
3018 if (unlikely(!page))
3019 return -ENOMEM;
3020
3021 orig = sg_page(sge);
3022 from = sg_virt(sge);
3023 to = page_address(page);
3024 memcpy(to, from, a);
3025 memcpy(to + a, from + a + pop, b);
3026 sg_set_page(sge, page, a + b, 0);
3027 put_page(orig);
3028 }
3029 pop = 0;
3030 } else {
3031 pop -= (sge->length - a);
3032 sge->length = a;
3033 }
3034 }
3035
3036 /* From above the current layout _must_ be as follows,
3037 *
3038 * -| offset
3039 * -| start
3040 *
3041 * |---- pop ---|---------------- b ------------|
3042 * |____________________________________________| length
3043 *
3044 * Offset and start of the current msg elem are equal because in the
3045 * previous case we handled offset != start and either consumed the
3046 * entire element and advanced to the next element OR pop == 0.
3047 *
3048 * Two cases to handle here are first pop is less than the length
3049 * leaving some remainder b above. Simply adjust the element's layout
3050 * in this case. Or pop >= length of the element so that b = 0. In this
3051 * case advance to next element decrementing pop.
3052 */
3053 while (pop) {
3054 struct scatterlist *sge = sk_msg_elem(msg, i);
3055
3056 if (pop < sge->length) {
3057 sge->length -= pop;
3058 sge->offset += pop;
3059 pop = 0;
3060 } else {
3061 pop -= sge->length;
3062 sk_msg_shift_left(msg, i);
3063 }
3064 }
3065
3066 sk_mem_uncharge(msg->sk, len - pop);
3067 msg->sg.size -= (len - pop);
3068 sk_msg_reset_curr(msg);
3069 sk_msg_compute_data_pointers(msg);
3070 return 0;
3071 }
3072
3073 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3074 .func = bpf_msg_pop_data,
3075 .gpl_only = false,
3076 .ret_type = RET_INTEGER,
3077 .arg1_type = ARG_PTR_TO_CTX,
3078 .arg2_type = ARG_ANYTHING,
3079 .arg3_type = ARG_ANYTHING,
3080 .arg4_type = ARG_ANYTHING,
3081 };
3082
3083 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3084 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3085 {
3086 return __task_get_classid(current);
3087 }
3088
3089 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3090 .func = bpf_get_cgroup_classid_curr,
3091 .gpl_only = false,
3092 .ret_type = RET_INTEGER,
3093 };
3094
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3095 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3096 {
3097 struct sock *sk = skb_to_full_sk(skb);
3098
3099 if (!sk || !sk_fullsock(sk))
3100 return 0;
3101
3102 return sock_cgroup_classid(&sk->sk_cgrp_data);
3103 }
3104
3105 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3106 .func = bpf_skb_cgroup_classid,
3107 .gpl_only = false,
3108 .ret_type = RET_INTEGER,
3109 .arg1_type = ARG_PTR_TO_CTX,
3110 };
3111 #endif
3112
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3113 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3114 {
3115 return task_get_classid(skb);
3116 }
3117
3118 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3119 .func = bpf_get_cgroup_classid,
3120 .gpl_only = false,
3121 .ret_type = RET_INTEGER,
3122 .arg1_type = ARG_PTR_TO_CTX,
3123 };
3124
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3125 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3126 {
3127 return dst_tclassid(skb);
3128 }
3129
3130 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3131 .func = bpf_get_route_realm,
3132 .gpl_only = false,
3133 .ret_type = RET_INTEGER,
3134 .arg1_type = ARG_PTR_TO_CTX,
3135 };
3136
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3137 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3138 {
3139 /* If skb_clear_hash() was called due to mangling, we can
3140 * trigger SW recalculation here. Later access to hash
3141 * can then use the inline skb->hash via context directly
3142 * instead of calling this helper again.
3143 */
3144 return skb_get_hash(skb);
3145 }
3146
3147 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3148 .func = bpf_get_hash_recalc,
3149 .gpl_only = false,
3150 .ret_type = RET_INTEGER,
3151 .arg1_type = ARG_PTR_TO_CTX,
3152 };
3153
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3154 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3155 {
3156 /* After all direct packet write, this can be used once for
3157 * triggering a lazy recalc on next skb_get_hash() invocation.
3158 */
3159 skb_clear_hash(skb);
3160 return 0;
3161 }
3162
3163 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3164 .func = bpf_set_hash_invalid,
3165 .gpl_only = false,
3166 .ret_type = RET_INTEGER,
3167 .arg1_type = ARG_PTR_TO_CTX,
3168 };
3169
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3170 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3171 {
3172 /* Set user specified hash as L4(+), so that it gets returned
3173 * on skb_get_hash() call unless BPF prog later on triggers a
3174 * skb_clear_hash().
3175 */
3176 __skb_set_sw_hash(skb, hash, true);
3177 return 0;
3178 }
3179
3180 static const struct bpf_func_proto bpf_set_hash_proto = {
3181 .func = bpf_set_hash,
3182 .gpl_only = false,
3183 .ret_type = RET_INTEGER,
3184 .arg1_type = ARG_PTR_TO_CTX,
3185 .arg2_type = ARG_ANYTHING,
3186 };
3187
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3188 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3189 u16, vlan_tci)
3190 {
3191 int ret;
3192
3193 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3194 vlan_proto != htons(ETH_P_8021AD)))
3195 vlan_proto = htons(ETH_P_8021Q);
3196
3197 bpf_push_mac_rcsum(skb);
3198 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3199 bpf_pull_mac_rcsum(skb);
3200 skb_reset_mac_len(skb);
3201
3202 bpf_compute_data_pointers(skb);
3203 return ret;
3204 }
3205
3206 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3207 .func = bpf_skb_vlan_push,
3208 .gpl_only = false,
3209 .ret_type = RET_INTEGER,
3210 .arg1_type = ARG_PTR_TO_CTX,
3211 .arg2_type = ARG_ANYTHING,
3212 .arg3_type = ARG_ANYTHING,
3213 };
3214
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3215 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3216 {
3217 int ret;
3218
3219 bpf_push_mac_rcsum(skb);
3220 ret = skb_vlan_pop(skb);
3221 bpf_pull_mac_rcsum(skb);
3222
3223 bpf_compute_data_pointers(skb);
3224 return ret;
3225 }
3226
3227 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3228 .func = bpf_skb_vlan_pop,
3229 .gpl_only = false,
3230 .ret_type = RET_INTEGER,
3231 .arg1_type = ARG_PTR_TO_CTX,
3232 };
3233
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3234 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3235 {
3236 /* Caller already did skb_cow() with len as headroom,
3237 * so no need to do it here.
3238 */
3239 skb_push(skb, len);
3240 memmove(skb->data, skb->data + len, off);
3241 memset(skb->data + off, 0, len);
3242
3243 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3244 * needed here as it does not change the skb->csum
3245 * result for checksum complete when summing over
3246 * zeroed blocks.
3247 */
3248 return 0;
3249 }
3250
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3251 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3252 {
3253 void *old_data;
3254
3255 /* skb_ensure_writable() is not needed here, as we're
3256 * already working on an uncloned skb.
3257 */
3258 if (unlikely(!pskb_may_pull(skb, off + len)))
3259 return -ENOMEM;
3260
3261 old_data = skb->data;
3262 __skb_pull(skb, len);
3263 skb_postpull_rcsum(skb, old_data + off, len);
3264 memmove(skb->data, old_data, off);
3265
3266 return 0;
3267 }
3268
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3269 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3270 {
3271 bool trans_same = skb->transport_header == skb->network_header;
3272 int ret;
3273
3274 /* There's no need for __skb_push()/__skb_pull() pair to
3275 * get to the start of the mac header as we're guaranteed
3276 * to always start from here under eBPF.
3277 */
3278 ret = bpf_skb_generic_push(skb, off, len);
3279 if (likely(!ret)) {
3280 skb->mac_header -= len;
3281 skb->network_header -= len;
3282 if (trans_same)
3283 skb->transport_header = skb->network_header;
3284 }
3285
3286 return ret;
3287 }
3288
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3289 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3290 {
3291 bool trans_same = skb->transport_header == skb->network_header;
3292 int ret;
3293
3294 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3295 ret = bpf_skb_generic_pop(skb, off, len);
3296 if (likely(!ret)) {
3297 skb->mac_header += len;
3298 skb->network_header += len;
3299 if (trans_same)
3300 skb->transport_header = skb->network_header;
3301 }
3302
3303 return ret;
3304 }
3305
bpf_skb_proto_4_to_6(struct sk_buff * skb)3306 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3307 {
3308 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3309 u32 off = skb_mac_header_len(skb);
3310 int ret;
3311
3312 ret = skb_cow(skb, len_diff);
3313 if (unlikely(ret < 0))
3314 return ret;
3315
3316 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3317 if (unlikely(ret < 0))
3318 return ret;
3319
3320 if (skb_is_gso(skb)) {
3321 struct skb_shared_info *shinfo = skb_shinfo(skb);
3322
3323 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3324 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3325 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3326 shinfo->gso_type |= SKB_GSO_TCPV6;
3327 }
3328 }
3329
3330 skb->protocol = htons(ETH_P_IPV6);
3331 skb_clear_hash(skb);
3332
3333 return 0;
3334 }
3335
bpf_skb_proto_6_to_4(struct sk_buff * skb)3336 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3337 {
3338 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3339 u32 off = skb_mac_header_len(skb);
3340 int ret;
3341
3342 ret = skb_unclone(skb, GFP_ATOMIC);
3343 if (unlikely(ret < 0))
3344 return ret;
3345
3346 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3347 if (unlikely(ret < 0))
3348 return ret;
3349
3350 if (skb_is_gso(skb)) {
3351 struct skb_shared_info *shinfo = skb_shinfo(skb);
3352
3353 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3354 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3355 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3356 shinfo->gso_type |= SKB_GSO_TCPV4;
3357 }
3358 }
3359
3360 skb->protocol = htons(ETH_P_IP);
3361 skb_clear_hash(skb);
3362
3363 return 0;
3364 }
3365
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3366 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3367 {
3368 __be16 from_proto = skb->protocol;
3369
3370 if (from_proto == htons(ETH_P_IP) &&
3371 to_proto == htons(ETH_P_IPV6))
3372 return bpf_skb_proto_4_to_6(skb);
3373
3374 if (from_proto == htons(ETH_P_IPV6) &&
3375 to_proto == htons(ETH_P_IP))
3376 return bpf_skb_proto_6_to_4(skb);
3377
3378 return -ENOTSUPP;
3379 }
3380
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3381 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3382 u64, flags)
3383 {
3384 int ret;
3385
3386 if (unlikely(flags))
3387 return -EINVAL;
3388
3389 /* General idea is that this helper does the basic groundwork
3390 * needed for changing the protocol, and eBPF program fills the
3391 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3392 * and other helpers, rather than passing a raw buffer here.
3393 *
3394 * The rationale is to keep this minimal and without a need to
3395 * deal with raw packet data. F.e. even if we would pass buffers
3396 * here, the program still needs to call the bpf_lX_csum_replace()
3397 * helpers anyway. Plus, this way we keep also separation of
3398 * concerns, since f.e. bpf_skb_store_bytes() should only take
3399 * care of stores.
3400 *
3401 * Currently, additional options and extension header space are
3402 * not supported, but flags register is reserved so we can adapt
3403 * that. For offloads, we mark packet as dodgy, so that headers
3404 * need to be verified first.
3405 */
3406 ret = bpf_skb_proto_xlat(skb, proto);
3407 bpf_compute_data_pointers(skb);
3408 return ret;
3409 }
3410
3411 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3412 .func = bpf_skb_change_proto,
3413 .gpl_only = false,
3414 .ret_type = RET_INTEGER,
3415 .arg1_type = ARG_PTR_TO_CTX,
3416 .arg2_type = ARG_ANYTHING,
3417 .arg3_type = ARG_ANYTHING,
3418 };
3419
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3420 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3421 {
3422 /* We only allow a restricted subset to be changed for now. */
3423 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3424 !skb_pkt_type_ok(pkt_type)))
3425 return -EINVAL;
3426
3427 skb->pkt_type = pkt_type;
3428 return 0;
3429 }
3430
3431 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3432 .func = bpf_skb_change_type,
3433 .gpl_only = false,
3434 .ret_type = RET_INTEGER,
3435 .arg1_type = ARG_PTR_TO_CTX,
3436 .arg2_type = ARG_ANYTHING,
3437 };
3438
bpf_skb_net_base_len(const struct sk_buff * skb)3439 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3440 {
3441 switch (skb->protocol) {
3442 case htons(ETH_P_IP):
3443 return sizeof(struct iphdr);
3444 case htons(ETH_P_IPV6):
3445 return sizeof(struct ipv6hdr);
3446 default:
3447 return ~0U;
3448 }
3449 }
3450
3451 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3452 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3453
3454 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3455 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3456
3457 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3458 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3459 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3460 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3461 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3462 BPF_F_ADJ_ROOM_ENCAP_L2( \
3463 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3464 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3465
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3466 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3467 u64 flags)
3468 {
3469 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3470 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3471 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3472 unsigned int gso_type = SKB_GSO_DODGY;
3473 int ret;
3474
3475 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3476 /* udp gso_size delineates datagrams, only allow if fixed */
3477 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3478 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3479 return -ENOTSUPP;
3480 }
3481
3482 ret = skb_cow_head(skb, len_diff);
3483 if (unlikely(ret < 0))
3484 return ret;
3485
3486 if (encap) {
3487 if (skb->protocol != htons(ETH_P_IP) &&
3488 skb->protocol != htons(ETH_P_IPV6))
3489 return -ENOTSUPP;
3490
3491 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3492 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3493 return -EINVAL;
3494
3495 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3496 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3497 return -EINVAL;
3498
3499 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3500 inner_mac_len < ETH_HLEN)
3501 return -EINVAL;
3502
3503 if (skb->encapsulation)
3504 return -EALREADY;
3505
3506 mac_len = skb->network_header - skb->mac_header;
3507 inner_net = skb->network_header;
3508 if (inner_mac_len > len_diff)
3509 return -EINVAL;
3510 inner_trans = skb->transport_header;
3511 }
3512
3513 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3514 if (unlikely(ret < 0))
3515 return ret;
3516
3517 if (encap) {
3518 skb->inner_mac_header = inner_net - inner_mac_len;
3519 skb->inner_network_header = inner_net;
3520 skb->inner_transport_header = inner_trans;
3521
3522 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3523 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3524 else
3525 skb_set_inner_protocol(skb, skb->protocol);
3526
3527 skb->encapsulation = 1;
3528 skb_set_network_header(skb, mac_len);
3529
3530 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3531 gso_type |= SKB_GSO_UDP_TUNNEL;
3532 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3533 gso_type |= SKB_GSO_GRE;
3534 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3535 gso_type |= SKB_GSO_IPXIP6;
3536 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3537 gso_type |= SKB_GSO_IPXIP4;
3538
3539 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3540 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3541 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3542 sizeof(struct ipv6hdr) :
3543 sizeof(struct iphdr);
3544
3545 skb_set_transport_header(skb, mac_len + nh_len);
3546 }
3547
3548 /* Match skb->protocol to new outer l3 protocol */
3549 if (skb->protocol == htons(ETH_P_IP) &&
3550 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3551 skb->protocol = htons(ETH_P_IPV6);
3552 else if (skb->protocol == htons(ETH_P_IPV6) &&
3553 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3554 skb->protocol = htons(ETH_P_IP);
3555 }
3556
3557 if (skb_is_gso(skb)) {
3558 struct skb_shared_info *shinfo = skb_shinfo(skb);
3559
3560 /* Header must be checked, and gso_segs recomputed. */
3561 shinfo->gso_type |= gso_type;
3562 shinfo->gso_segs = 0;
3563
3564 /* Due to header growth, MSS needs to be downgraded.
3565 * There is a BUG_ON() when segmenting the frag_list with
3566 * head_frag true, so linearize the skb after downgrading
3567 * the MSS.
3568 */
3569 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3570 skb_decrease_gso_size(shinfo, len_diff);
3571 if (shinfo->frag_list)
3572 return skb_linearize(skb);
3573 }
3574 }
3575
3576 return 0;
3577 }
3578
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3579 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3580 u64 flags)
3581 {
3582 int ret;
3583
3584 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3585 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3586 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3587 return -EINVAL;
3588
3589 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3590 /* udp gso_size delineates datagrams, only allow if fixed */
3591 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3592 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3593 return -ENOTSUPP;
3594 }
3595
3596 ret = skb_unclone(skb, GFP_ATOMIC);
3597 if (unlikely(ret < 0))
3598 return ret;
3599
3600 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3601 if (unlikely(ret < 0))
3602 return ret;
3603
3604 /* Match skb->protocol to new outer l3 protocol */
3605 if (skb->protocol == htons(ETH_P_IP) &&
3606 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3607 skb->protocol = htons(ETH_P_IPV6);
3608 else if (skb->protocol == htons(ETH_P_IPV6) &&
3609 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3610 skb->protocol = htons(ETH_P_IP);
3611
3612 if (skb_is_gso(skb)) {
3613 struct skb_shared_info *shinfo = skb_shinfo(skb);
3614
3615 /* Due to header shrink, MSS can be upgraded. */
3616 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3617 skb_increase_gso_size(shinfo, len_diff);
3618
3619 /* Header must be checked, and gso_segs recomputed. */
3620 shinfo->gso_type |= SKB_GSO_DODGY;
3621 shinfo->gso_segs = 0;
3622 }
3623
3624 return 0;
3625 }
3626
3627 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3628
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3629 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3630 u32, mode, u64, flags)
3631 {
3632 u32 len_diff_abs = abs(len_diff);
3633 bool shrink = len_diff < 0;
3634 int ret = 0;
3635
3636 if (unlikely(flags || mode))
3637 return -EINVAL;
3638 if (unlikely(len_diff_abs > 0xfffU))
3639 return -EFAULT;
3640
3641 if (!shrink) {
3642 ret = skb_cow(skb, len_diff);
3643 if (unlikely(ret < 0))
3644 return ret;
3645 __skb_push(skb, len_diff_abs);
3646 memset(skb->data, 0, len_diff_abs);
3647 } else {
3648 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3649 return -ENOMEM;
3650 __skb_pull(skb, len_diff_abs);
3651 }
3652 if (tls_sw_has_ctx_rx(skb->sk)) {
3653 struct strp_msg *rxm = strp_msg(skb);
3654
3655 rxm->full_len += len_diff;
3656 }
3657 return ret;
3658 }
3659
3660 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3661 .func = sk_skb_adjust_room,
3662 .gpl_only = false,
3663 .ret_type = RET_INTEGER,
3664 .arg1_type = ARG_PTR_TO_CTX,
3665 .arg2_type = ARG_ANYTHING,
3666 .arg3_type = ARG_ANYTHING,
3667 .arg4_type = ARG_ANYTHING,
3668 };
3669
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3670 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3671 u32, mode, u64, flags)
3672 {
3673 u32 len_cur, len_diff_abs = abs(len_diff);
3674 u32 len_min = bpf_skb_net_base_len(skb);
3675 u32 len_max = BPF_SKB_MAX_LEN;
3676 __be16 proto = skb->protocol;
3677 bool shrink = len_diff < 0;
3678 u32 off;
3679 int ret;
3680
3681 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3682 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3683 return -EINVAL;
3684 if (unlikely(len_diff_abs > 0xfffU))
3685 return -EFAULT;
3686 if (unlikely(proto != htons(ETH_P_IP) &&
3687 proto != htons(ETH_P_IPV6)))
3688 return -ENOTSUPP;
3689
3690 off = skb_mac_header_len(skb);
3691 switch (mode) {
3692 case BPF_ADJ_ROOM_NET:
3693 off += bpf_skb_net_base_len(skb);
3694 break;
3695 case BPF_ADJ_ROOM_MAC:
3696 break;
3697 default:
3698 return -ENOTSUPP;
3699 }
3700
3701 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3702 if (!shrink)
3703 return -EINVAL;
3704
3705 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3706 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3707 len_min = sizeof(struct iphdr);
3708 break;
3709 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3710 len_min = sizeof(struct ipv6hdr);
3711 break;
3712 default:
3713 return -EINVAL;
3714 }
3715 }
3716
3717 len_cur = skb->len - skb_network_offset(skb);
3718 if ((shrink && (len_diff_abs >= len_cur ||
3719 len_cur - len_diff_abs < len_min)) ||
3720 (!shrink && (skb->len + len_diff_abs > len_max &&
3721 !skb_is_gso(skb))))
3722 return -ENOTSUPP;
3723
3724 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3725 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3726 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3727 __skb_reset_checksum_unnecessary(skb);
3728
3729 bpf_compute_data_pointers(skb);
3730 return ret;
3731 }
3732
3733 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3734 .func = bpf_skb_adjust_room,
3735 .gpl_only = false,
3736 .ret_type = RET_INTEGER,
3737 .arg1_type = ARG_PTR_TO_CTX,
3738 .arg2_type = ARG_ANYTHING,
3739 .arg3_type = ARG_ANYTHING,
3740 .arg4_type = ARG_ANYTHING,
3741 };
3742
__bpf_skb_min_len(const struct sk_buff * skb)3743 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3744 {
3745 int offset = skb_network_offset(skb);
3746 u32 min_len = 0;
3747
3748 if (offset > 0)
3749 min_len = offset;
3750 if (skb_transport_header_was_set(skb)) {
3751 offset = skb_transport_offset(skb);
3752 if (offset > 0)
3753 min_len = offset;
3754 }
3755 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 offset = skb_checksum_start_offset(skb) +
3757 skb->csum_offset + sizeof(__sum16);
3758 if (offset > 0)
3759 min_len = offset;
3760 }
3761 return min_len;
3762 }
3763
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3764 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3765 {
3766 unsigned int old_len = skb->len;
3767 int ret;
3768
3769 ret = __skb_grow_rcsum(skb, new_len);
3770 if (!ret)
3771 memset(skb->data + old_len, 0, new_len - old_len);
3772 return ret;
3773 }
3774
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3775 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3776 {
3777 return __skb_trim_rcsum(skb, new_len);
3778 }
3779
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3780 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3781 u64 flags)
3782 {
3783 u32 max_len = BPF_SKB_MAX_LEN;
3784 u32 min_len = __bpf_skb_min_len(skb);
3785 int ret;
3786
3787 if (unlikely(flags || new_len > max_len || new_len < min_len))
3788 return -EINVAL;
3789 if (skb->encapsulation)
3790 return -ENOTSUPP;
3791
3792 /* The basic idea of this helper is that it's performing the
3793 * needed work to either grow or trim an skb, and eBPF program
3794 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3795 * bpf_lX_csum_replace() and others rather than passing a raw
3796 * buffer here. This one is a slow path helper and intended
3797 * for replies with control messages.
3798 *
3799 * Like in bpf_skb_change_proto(), we want to keep this rather
3800 * minimal and without protocol specifics so that we are able
3801 * to separate concerns as in bpf_skb_store_bytes() should only
3802 * be the one responsible for writing buffers.
3803 *
3804 * It's really expected to be a slow path operation here for
3805 * control message replies, so we're implicitly linearizing,
3806 * uncloning and drop offloads from the skb by this.
3807 */
3808 ret = __bpf_try_make_writable(skb, skb->len);
3809 if (!ret) {
3810 if (new_len > skb->len)
3811 ret = bpf_skb_grow_rcsum(skb, new_len);
3812 else if (new_len < skb->len)
3813 ret = bpf_skb_trim_rcsum(skb, new_len);
3814 if (!ret && skb_is_gso(skb))
3815 skb_gso_reset(skb);
3816 }
3817 return ret;
3818 }
3819
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3820 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3821 u64, flags)
3822 {
3823 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3824
3825 bpf_compute_data_pointers(skb);
3826 return ret;
3827 }
3828
3829 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3830 .func = bpf_skb_change_tail,
3831 .gpl_only = false,
3832 .ret_type = RET_INTEGER,
3833 .arg1_type = ARG_PTR_TO_CTX,
3834 .arg2_type = ARG_ANYTHING,
3835 .arg3_type = ARG_ANYTHING,
3836 };
3837
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3838 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3839 u64, flags)
3840 {
3841 return __bpf_skb_change_tail(skb, new_len, flags);
3842 }
3843
3844 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3845 .func = sk_skb_change_tail,
3846 .gpl_only = false,
3847 .ret_type = RET_INTEGER,
3848 .arg1_type = ARG_PTR_TO_CTX,
3849 .arg2_type = ARG_ANYTHING,
3850 .arg3_type = ARG_ANYTHING,
3851 };
3852
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3853 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3854 u64 flags)
3855 {
3856 u32 max_len = BPF_SKB_MAX_LEN;
3857 u32 new_len = skb->len + head_room;
3858 int ret;
3859
3860 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3861 new_len < skb->len))
3862 return -EINVAL;
3863
3864 ret = skb_cow(skb, head_room);
3865 if (likely(!ret)) {
3866 /* Idea for this helper is that we currently only
3867 * allow to expand on mac header. This means that
3868 * skb->protocol network header, etc, stay as is.
3869 * Compared to bpf_skb_change_tail(), we're more
3870 * flexible due to not needing to linearize or
3871 * reset GSO. Intention for this helper is to be
3872 * used by an L3 skb that needs to push mac header
3873 * for redirection into L2 device.
3874 */
3875 __skb_push(skb, head_room);
3876 memset(skb->data, 0, head_room);
3877 skb_reset_mac_header(skb);
3878 skb_reset_mac_len(skb);
3879 }
3880
3881 return ret;
3882 }
3883
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3884 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3885 u64, flags)
3886 {
3887 int ret = __bpf_skb_change_head(skb, head_room, flags);
3888
3889 bpf_compute_data_pointers(skb);
3890 return ret;
3891 }
3892
3893 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3894 .func = bpf_skb_change_head,
3895 .gpl_only = false,
3896 .ret_type = RET_INTEGER,
3897 .arg1_type = ARG_PTR_TO_CTX,
3898 .arg2_type = ARG_ANYTHING,
3899 .arg3_type = ARG_ANYTHING,
3900 };
3901
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3902 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3903 u64, flags)
3904 {
3905 return __bpf_skb_change_head(skb, head_room, flags);
3906 }
3907
3908 static const struct bpf_func_proto sk_skb_change_head_proto = {
3909 .func = sk_skb_change_head,
3910 .gpl_only = false,
3911 .ret_type = RET_INTEGER,
3912 .arg1_type = ARG_PTR_TO_CTX,
3913 .arg2_type = ARG_ANYTHING,
3914 .arg3_type = ARG_ANYTHING,
3915 };
3916
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3917 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3918 {
3919 return xdp_get_buff_len(xdp);
3920 }
3921
3922 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3923 .func = bpf_xdp_get_buff_len,
3924 .gpl_only = false,
3925 .ret_type = RET_INTEGER,
3926 .arg1_type = ARG_PTR_TO_CTX,
3927 };
3928
3929 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3930
3931 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3932 .func = bpf_xdp_get_buff_len,
3933 .gpl_only = false,
3934 .arg1_type = ARG_PTR_TO_BTF_ID,
3935 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3936 };
3937
xdp_get_metalen(const struct xdp_buff * xdp)3938 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3939 {
3940 return xdp_data_meta_unsupported(xdp) ? 0 :
3941 xdp->data - xdp->data_meta;
3942 }
3943
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3944 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3945 {
3946 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3947 unsigned long metalen = xdp_get_metalen(xdp);
3948 void *data_start = xdp_frame_end + metalen;
3949 void *data = xdp->data + offset;
3950
3951 if (unlikely(data < data_start ||
3952 data > xdp->data_end - ETH_HLEN))
3953 return -EINVAL;
3954
3955 if (metalen)
3956 memmove(xdp->data_meta + offset,
3957 xdp->data_meta, metalen);
3958 xdp->data_meta += offset;
3959 xdp->data = data;
3960
3961 return 0;
3962 }
3963
3964 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3965 .func = bpf_xdp_adjust_head,
3966 .gpl_only = false,
3967 .ret_type = RET_INTEGER,
3968 .arg1_type = ARG_PTR_TO_CTX,
3969 .arg2_type = ARG_ANYTHING,
3970 };
3971
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3972 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3973 void *buf, unsigned long len, bool flush)
3974 {
3975 unsigned long ptr_len, ptr_off = 0;
3976 skb_frag_t *next_frag, *end_frag;
3977 struct skb_shared_info *sinfo;
3978 void *src, *dst;
3979 u8 *ptr_buf;
3980
3981 if (likely(xdp->data_end - xdp->data >= off + len)) {
3982 src = flush ? buf : xdp->data + off;
3983 dst = flush ? xdp->data + off : buf;
3984 memcpy(dst, src, len);
3985 return;
3986 }
3987
3988 sinfo = xdp_get_shared_info_from_buff(xdp);
3989 end_frag = &sinfo->frags[sinfo->nr_frags];
3990 next_frag = &sinfo->frags[0];
3991
3992 ptr_len = xdp->data_end - xdp->data;
3993 ptr_buf = xdp->data;
3994
3995 while (true) {
3996 if (off < ptr_off + ptr_len) {
3997 unsigned long copy_off = off - ptr_off;
3998 unsigned long copy_len = min(len, ptr_len - copy_off);
3999
4000 src = flush ? buf : ptr_buf + copy_off;
4001 dst = flush ? ptr_buf + copy_off : buf;
4002 memcpy(dst, src, copy_len);
4003
4004 off += copy_len;
4005 len -= copy_len;
4006 buf += copy_len;
4007 }
4008
4009 if (!len || next_frag == end_frag)
4010 break;
4011
4012 ptr_off += ptr_len;
4013 ptr_buf = skb_frag_address(next_frag);
4014 ptr_len = skb_frag_size(next_frag);
4015 next_frag++;
4016 }
4017 }
4018
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4019 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4020 {
4021 u32 size = xdp->data_end - xdp->data;
4022 struct skb_shared_info *sinfo;
4023 void *addr = xdp->data;
4024 int i;
4025
4026 if (unlikely(offset > 0xffff || len > 0xffff))
4027 return ERR_PTR(-EFAULT);
4028
4029 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4030 return ERR_PTR(-EINVAL);
4031
4032 if (likely(offset < size)) /* linear area */
4033 goto out;
4034
4035 sinfo = xdp_get_shared_info_from_buff(xdp);
4036 offset -= size;
4037 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4038 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4039
4040 if (offset < frag_size) {
4041 addr = skb_frag_address(&sinfo->frags[i]);
4042 size = frag_size;
4043 break;
4044 }
4045 offset -= frag_size;
4046 }
4047 out:
4048 return offset + len <= size ? addr + offset : NULL;
4049 }
4050
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4051 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4052 void *, buf, u32, len)
4053 {
4054 void *ptr;
4055
4056 ptr = bpf_xdp_pointer(xdp, offset, len);
4057 if (IS_ERR(ptr))
4058 return PTR_ERR(ptr);
4059
4060 if (!ptr)
4061 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4062 else
4063 memcpy(buf, ptr, len);
4064
4065 return 0;
4066 }
4067
4068 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4069 .func = bpf_xdp_load_bytes,
4070 .gpl_only = false,
4071 .ret_type = RET_INTEGER,
4072 .arg1_type = ARG_PTR_TO_CTX,
4073 .arg2_type = ARG_ANYTHING,
4074 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4075 .arg4_type = ARG_CONST_SIZE,
4076 };
4077
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4078 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4079 {
4080 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4081 }
4082
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4083 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4084 void *, buf, u32, len)
4085 {
4086 void *ptr;
4087
4088 ptr = bpf_xdp_pointer(xdp, offset, len);
4089 if (IS_ERR(ptr))
4090 return PTR_ERR(ptr);
4091
4092 if (!ptr)
4093 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4094 else
4095 memcpy(ptr, buf, len);
4096
4097 return 0;
4098 }
4099
4100 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4101 .func = bpf_xdp_store_bytes,
4102 .gpl_only = false,
4103 .ret_type = RET_INTEGER,
4104 .arg1_type = ARG_PTR_TO_CTX,
4105 .arg2_type = ARG_ANYTHING,
4106 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4107 .arg4_type = ARG_CONST_SIZE,
4108 };
4109
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4110 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4111 {
4112 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4113 }
4114
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4115 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4116 {
4117 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4118 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4119 struct xdp_rxq_info *rxq = xdp->rxq;
4120 unsigned int tailroom;
4121
4122 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4123 return -EOPNOTSUPP;
4124
4125 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4126 if (unlikely(offset > tailroom))
4127 return -EINVAL;
4128
4129 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4130 skb_frag_size_add(frag, offset);
4131 sinfo->xdp_frags_size += offset;
4132 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4133 xsk_buff_get_tail(xdp)->data_end += offset;
4134
4135 return 0;
4136 }
4137
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4138 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4139 enum xdp_mem_type mem_type, bool release)
4140 {
4141 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4142
4143 if (release) {
4144 xsk_buff_del_tail(zc_frag);
4145 __xdp_return(0, mem_type, false, zc_frag);
4146 } else {
4147 zc_frag->data_end -= shrink;
4148 }
4149 }
4150
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4151 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4152 int shrink)
4153 {
4154 enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4155 bool release = skb_frag_size(frag) == shrink;
4156
4157 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4158 bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4159 goto out;
4160 }
4161
4162 if (release)
4163 __xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4164
4165 out:
4166 return release;
4167 }
4168
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4169 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4170 {
4171 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4172 int i, n_frags_free = 0, len_free = 0;
4173
4174 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4175 return -EINVAL;
4176
4177 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4178 skb_frag_t *frag = &sinfo->frags[i];
4179 int shrink = min_t(int, offset, skb_frag_size(frag));
4180
4181 len_free += shrink;
4182 offset -= shrink;
4183 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4184 n_frags_free++;
4185 } else {
4186 skb_frag_size_sub(frag, shrink);
4187 break;
4188 }
4189 }
4190 sinfo->nr_frags -= n_frags_free;
4191 sinfo->xdp_frags_size -= len_free;
4192
4193 if (unlikely(!sinfo->nr_frags)) {
4194 xdp_buff_clear_frags_flag(xdp);
4195 xdp->data_end -= offset;
4196 }
4197
4198 return 0;
4199 }
4200
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4201 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4202 {
4203 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4204 void *data_end = xdp->data_end + offset;
4205
4206 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4207 if (offset < 0)
4208 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4209
4210 return bpf_xdp_frags_increase_tail(xdp, offset);
4211 }
4212
4213 /* Notice that xdp_data_hard_end have reserved some tailroom */
4214 if (unlikely(data_end > data_hard_end))
4215 return -EINVAL;
4216
4217 if (unlikely(data_end < xdp->data + ETH_HLEN))
4218 return -EINVAL;
4219
4220 /* Clear memory area on grow, can contain uninit kernel memory */
4221 if (offset > 0)
4222 memset(xdp->data_end, 0, offset);
4223
4224 xdp->data_end = data_end;
4225
4226 return 0;
4227 }
4228
4229 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4230 .func = bpf_xdp_adjust_tail,
4231 .gpl_only = false,
4232 .ret_type = RET_INTEGER,
4233 .arg1_type = ARG_PTR_TO_CTX,
4234 .arg2_type = ARG_ANYTHING,
4235 };
4236
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4237 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4238 {
4239 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4240 void *meta = xdp->data_meta + offset;
4241 unsigned long metalen = xdp->data - meta;
4242
4243 if (xdp_data_meta_unsupported(xdp))
4244 return -ENOTSUPP;
4245 if (unlikely(meta < xdp_frame_end ||
4246 meta > xdp->data))
4247 return -EINVAL;
4248 if (unlikely(xdp_metalen_invalid(metalen)))
4249 return -EACCES;
4250
4251 xdp->data_meta = meta;
4252
4253 return 0;
4254 }
4255
4256 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4257 .func = bpf_xdp_adjust_meta,
4258 .gpl_only = false,
4259 .ret_type = RET_INTEGER,
4260 .arg1_type = ARG_PTR_TO_CTX,
4261 .arg2_type = ARG_ANYTHING,
4262 };
4263
4264 /**
4265 * DOC: xdp redirect
4266 *
4267 * XDP_REDIRECT works by a three-step process, implemented in the functions
4268 * below:
4269 *
4270 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4271 * of the redirect and store it (along with some other metadata) in a per-CPU
4272 * struct bpf_redirect_info.
4273 *
4274 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4275 * call xdp_do_redirect() which will use the information in struct
4276 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4277 * bulk queue structure.
4278 *
4279 * 3. Before exiting its NAPI poll loop, the driver will call
4280 * xdp_do_flush(), which will flush all the different bulk queues,
4281 * thus completing the redirect. Note that xdp_do_flush() must be
4282 * called before napi_complete_done() in the driver, as the
4283 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4284 * through to the xdp_do_flush() call for RCU protection of all
4285 * in-kernel data structures.
4286 */
4287 /*
4288 * Pointers to the map entries will be kept around for this whole sequence of
4289 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4290 * the core code; instead, the RCU protection relies on everything happening
4291 * inside a single NAPI poll sequence, which means it's between a pair of calls
4292 * to local_bh_disable()/local_bh_enable().
4293 *
4294 * The map entries are marked as __rcu and the map code makes sure to
4295 * dereference those pointers with rcu_dereference_check() in a way that works
4296 * for both sections that to hold an rcu_read_lock() and sections that are
4297 * called from NAPI without a separate rcu_read_lock(). The code below does not
4298 * use RCU annotations, but relies on those in the map code.
4299 */
xdp_do_flush(void)4300 void xdp_do_flush(void)
4301 {
4302 struct list_head *lh_map, *lh_dev, *lh_xsk;
4303
4304 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4305 if (lh_dev)
4306 __dev_flush(lh_dev);
4307 if (lh_map)
4308 __cpu_map_flush(lh_map);
4309 if (lh_xsk)
4310 __xsk_map_flush(lh_xsk);
4311 }
4312 EXPORT_SYMBOL_GPL(xdp_do_flush);
4313
4314 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4315 void xdp_do_check_flushed(struct napi_struct *napi)
4316 {
4317 struct list_head *lh_map, *lh_dev, *lh_xsk;
4318 bool missed = false;
4319
4320 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4321 if (lh_dev) {
4322 __dev_flush(lh_dev);
4323 missed = true;
4324 }
4325 if (lh_map) {
4326 __cpu_map_flush(lh_map);
4327 missed = true;
4328 }
4329 if (lh_xsk) {
4330 __xsk_map_flush(lh_xsk);
4331 missed = true;
4332 }
4333
4334 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4335 napi->poll);
4336 }
4337 #endif
4338
4339 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4340 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4341
xdp_master_redirect(struct xdp_buff * xdp)4342 u32 xdp_master_redirect(struct xdp_buff *xdp)
4343 {
4344 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4345 struct net_device *master, *slave;
4346
4347 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4348 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4349 if (slave && slave != xdp->rxq->dev) {
4350 /* The target device is different from the receiving device, so
4351 * redirect it to the new device.
4352 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4353 * drivers to unmap the packet from their rx ring.
4354 */
4355 ri->tgt_index = slave->ifindex;
4356 ri->map_id = INT_MAX;
4357 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4358 return XDP_REDIRECT;
4359 }
4360 return XDP_TX;
4361 }
4362 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4363
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4364 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4365 const struct net_device *dev,
4366 struct xdp_buff *xdp,
4367 const struct bpf_prog *xdp_prog)
4368 {
4369 enum bpf_map_type map_type = ri->map_type;
4370 void *fwd = ri->tgt_value;
4371 u32 map_id = ri->map_id;
4372 int err;
4373
4374 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4375 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4376
4377 err = __xsk_map_redirect(fwd, xdp);
4378 if (unlikely(err))
4379 goto err;
4380
4381 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4382 return 0;
4383 err:
4384 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4385 return err;
4386 }
4387
4388 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4389 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4390 struct xdp_frame *xdpf,
4391 const struct bpf_prog *xdp_prog)
4392 {
4393 enum bpf_map_type map_type = ri->map_type;
4394 void *fwd = ri->tgt_value;
4395 u32 map_id = ri->map_id;
4396 u32 flags = ri->flags;
4397 struct bpf_map *map;
4398 int err;
4399
4400 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4401 ri->flags = 0;
4402 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4403
4404 if (unlikely(!xdpf)) {
4405 err = -EOVERFLOW;
4406 goto err;
4407 }
4408
4409 switch (map_type) {
4410 case BPF_MAP_TYPE_DEVMAP:
4411 fallthrough;
4412 case BPF_MAP_TYPE_DEVMAP_HASH:
4413 if (unlikely(flags & BPF_F_BROADCAST)) {
4414 map = READ_ONCE(ri->map);
4415
4416 /* The map pointer is cleared when the map is being torn
4417 * down by dev_map_free()
4418 */
4419 if (unlikely(!map)) {
4420 err = -ENOENT;
4421 break;
4422 }
4423
4424 WRITE_ONCE(ri->map, NULL);
4425 err = dev_map_enqueue_multi(xdpf, dev, map,
4426 flags & BPF_F_EXCLUDE_INGRESS);
4427 } else {
4428 err = dev_map_enqueue(fwd, xdpf, dev);
4429 }
4430 break;
4431 case BPF_MAP_TYPE_CPUMAP:
4432 err = cpu_map_enqueue(fwd, xdpf, dev);
4433 break;
4434 case BPF_MAP_TYPE_UNSPEC:
4435 if (map_id == INT_MAX) {
4436 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4437 if (unlikely(!fwd)) {
4438 err = -EINVAL;
4439 break;
4440 }
4441 err = dev_xdp_enqueue(fwd, xdpf, dev);
4442 break;
4443 }
4444 fallthrough;
4445 default:
4446 err = -EBADRQC;
4447 }
4448
4449 if (unlikely(err))
4450 goto err;
4451
4452 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4453 return 0;
4454 err:
4455 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4456 return err;
4457 }
4458
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4459 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4460 const struct bpf_prog *xdp_prog)
4461 {
4462 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4463 enum bpf_map_type map_type = ri->map_type;
4464
4465 if (map_type == BPF_MAP_TYPE_XSKMAP)
4466 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4467
4468 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4469 xdp_prog);
4470 }
4471 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4472
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4473 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4474 struct xdp_frame *xdpf,
4475 const struct bpf_prog *xdp_prog)
4476 {
4477 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4478 enum bpf_map_type map_type = ri->map_type;
4479
4480 if (map_type == BPF_MAP_TYPE_XSKMAP)
4481 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4482
4483 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4484 }
4485 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4486
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4487 static int xdp_do_generic_redirect_map(struct net_device *dev,
4488 struct sk_buff *skb,
4489 struct xdp_buff *xdp,
4490 const struct bpf_prog *xdp_prog,
4491 void *fwd, enum bpf_map_type map_type,
4492 u32 map_id, u32 flags)
4493 {
4494 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4495 struct bpf_map *map;
4496 int err;
4497
4498 switch (map_type) {
4499 case BPF_MAP_TYPE_DEVMAP:
4500 fallthrough;
4501 case BPF_MAP_TYPE_DEVMAP_HASH:
4502 if (unlikely(flags & BPF_F_BROADCAST)) {
4503 map = READ_ONCE(ri->map);
4504
4505 /* The map pointer is cleared when the map is being torn
4506 * down by dev_map_free()
4507 */
4508 if (unlikely(!map)) {
4509 err = -ENOENT;
4510 break;
4511 }
4512
4513 WRITE_ONCE(ri->map, NULL);
4514 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4515 flags & BPF_F_EXCLUDE_INGRESS);
4516 } else {
4517 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4518 }
4519 if (unlikely(err))
4520 goto err;
4521 break;
4522 case BPF_MAP_TYPE_XSKMAP:
4523 err = xsk_generic_rcv(fwd, xdp);
4524 if (err)
4525 goto err;
4526 consume_skb(skb);
4527 break;
4528 case BPF_MAP_TYPE_CPUMAP:
4529 err = cpu_map_generic_redirect(fwd, skb);
4530 if (unlikely(err))
4531 goto err;
4532 break;
4533 default:
4534 err = -EBADRQC;
4535 goto err;
4536 }
4537
4538 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4539 return 0;
4540 err:
4541 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4542 return err;
4543 }
4544
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4545 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4546 struct xdp_buff *xdp,
4547 const struct bpf_prog *xdp_prog)
4548 {
4549 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4550 enum bpf_map_type map_type = ri->map_type;
4551 void *fwd = ri->tgt_value;
4552 u32 map_id = ri->map_id;
4553 u32 flags = ri->flags;
4554 int err;
4555
4556 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4557 ri->flags = 0;
4558 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4559
4560 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4561 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4562 if (unlikely(!fwd)) {
4563 err = -EINVAL;
4564 goto err;
4565 }
4566
4567 err = xdp_ok_fwd_dev(fwd, skb->len);
4568 if (unlikely(err))
4569 goto err;
4570
4571 skb->dev = fwd;
4572 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4573 generic_xdp_tx(skb, xdp_prog);
4574 return 0;
4575 }
4576
4577 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4578 err:
4579 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4580 return err;
4581 }
4582
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4583 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4584 {
4585 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4586
4587 if (unlikely(flags))
4588 return XDP_ABORTED;
4589
4590 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4591 * by map_idr) is used for ifindex based XDP redirect.
4592 */
4593 ri->tgt_index = ifindex;
4594 ri->map_id = INT_MAX;
4595 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4596
4597 return XDP_REDIRECT;
4598 }
4599
4600 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4601 .func = bpf_xdp_redirect,
4602 .gpl_only = false,
4603 .ret_type = RET_INTEGER,
4604 .arg1_type = ARG_ANYTHING,
4605 .arg2_type = ARG_ANYTHING,
4606 };
4607
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4608 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4609 u64, flags)
4610 {
4611 return map->ops->map_redirect(map, key, flags);
4612 }
4613
4614 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4615 .func = bpf_xdp_redirect_map,
4616 .gpl_only = false,
4617 .ret_type = RET_INTEGER,
4618 .arg1_type = ARG_CONST_MAP_PTR,
4619 .arg2_type = ARG_ANYTHING,
4620 .arg3_type = ARG_ANYTHING,
4621 };
4622
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4623 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4624 unsigned long off, unsigned long len)
4625 {
4626 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4627
4628 if (unlikely(!ptr))
4629 return len;
4630 if (ptr != dst_buff)
4631 memcpy(dst_buff, ptr, len);
4632
4633 return 0;
4634 }
4635
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4636 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4637 u64, flags, void *, meta, u64, meta_size)
4638 {
4639 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4640
4641 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4642 return -EINVAL;
4643 if (unlikely(!skb || skb_size > skb->len))
4644 return -EFAULT;
4645
4646 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4647 bpf_skb_copy);
4648 }
4649
4650 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4651 .func = bpf_skb_event_output,
4652 .gpl_only = true,
4653 .ret_type = RET_INTEGER,
4654 .arg1_type = ARG_PTR_TO_CTX,
4655 .arg2_type = ARG_CONST_MAP_PTR,
4656 .arg3_type = ARG_ANYTHING,
4657 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4658 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4659 };
4660
4661 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4662
4663 const struct bpf_func_proto bpf_skb_output_proto = {
4664 .func = bpf_skb_event_output,
4665 .gpl_only = true,
4666 .ret_type = RET_INTEGER,
4667 .arg1_type = ARG_PTR_TO_BTF_ID,
4668 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4669 .arg2_type = ARG_CONST_MAP_PTR,
4670 .arg3_type = ARG_ANYTHING,
4671 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4672 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4673 };
4674
bpf_tunnel_key_af(u64 flags)4675 static unsigned short bpf_tunnel_key_af(u64 flags)
4676 {
4677 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4678 }
4679
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4680 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4681 u32, size, u64, flags)
4682 {
4683 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4684 u8 compat[sizeof(struct bpf_tunnel_key)];
4685 void *to_orig = to;
4686 int err;
4687
4688 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4689 BPF_F_TUNINFO_FLAGS)))) {
4690 err = -EINVAL;
4691 goto err_clear;
4692 }
4693 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4694 err = -EPROTO;
4695 goto err_clear;
4696 }
4697 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4698 err = -EINVAL;
4699 switch (size) {
4700 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4701 case offsetof(struct bpf_tunnel_key, tunnel_label):
4702 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4703 goto set_compat;
4704 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4705 /* Fixup deprecated structure layouts here, so we have
4706 * a common path later on.
4707 */
4708 if (ip_tunnel_info_af(info) != AF_INET)
4709 goto err_clear;
4710 set_compat:
4711 to = (struct bpf_tunnel_key *)compat;
4712 break;
4713 default:
4714 goto err_clear;
4715 }
4716 }
4717
4718 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4719 to->tunnel_tos = info->key.tos;
4720 to->tunnel_ttl = info->key.ttl;
4721 if (flags & BPF_F_TUNINFO_FLAGS)
4722 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4723 else
4724 to->tunnel_ext = 0;
4725
4726 if (flags & BPF_F_TUNINFO_IPV6) {
4727 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4728 sizeof(to->remote_ipv6));
4729 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4730 sizeof(to->local_ipv6));
4731 to->tunnel_label = be32_to_cpu(info->key.label);
4732 } else {
4733 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4734 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4735 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4736 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4737 to->tunnel_label = 0;
4738 }
4739
4740 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4741 memcpy(to_orig, to, size);
4742
4743 return 0;
4744 err_clear:
4745 memset(to_orig, 0, size);
4746 return err;
4747 }
4748
4749 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4750 .func = bpf_skb_get_tunnel_key,
4751 .gpl_only = false,
4752 .ret_type = RET_INTEGER,
4753 .arg1_type = ARG_PTR_TO_CTX,
4754 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4755 .arg3_type = ARG_CONST_SIZE,
4756 .arg4_type = ARG_ANYTHING,
4757 };
4758
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4759 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4760 {
4761 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4762 int err;
4763
4764 if (unlikely(!info ||
4765 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4766 err = -ENOENT;
4767 goto err_clear;
4768 }
4769 if (unlikely(size < info->options_len)) {
4770 err = -ENOMEM;
4771 goto err_clear;
4772 }
4773
4774 ip_tunnel_info_opts_get(to, info);
4775 if (size > info->options_len)
4776 memset(to + info->options_len, 0, size - info->options_len);
4777
4778 return info->options_len;
4779 err_clear:
4780 memset(to, 0, size);
4781 return err;
4782 }
4783
4784 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4785 .func = bpf_skb_get_tunnel_opt,
4786 .gpl_only = false,
4787 .ret_type = RET_INTEGER,
4788 .arg1_type = ARG_PTR_TO_CTX,
4789 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4790 .arg3_type = ARG_CONST_SIZE,
4791 };
4792
4793 static struct metadata_dst __percpu *md_dst;
4794
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4795 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4796 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4797 {
4798 struct metadata_dst *md = this_cpu_ptr(md_dst);
4799 u8 compat[sizeof(struct bpf_tunnel_key)];
4800 struct ip_tunnel_info *info;
4801
4802 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4803 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4804 BPF_F_NO_TUNNEL_KEY)))
4805 return -EINVAL;
4806 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4807 switch (size) {
4808 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4809 case offsetof(struct bpf_tunnel_key, tunnel_label):
4810 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4811 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4812 /* Fixup deprecated structure layouts here, so we have
4813 * a common path later on.
4814 */
4815 memcpy(compat, from, size);
4816 memset(compat + size, 0, sizeof(compat) - size);
4817 from = (const struct bpf_tunnel_key *) compat;
4818 break;
4819 default:
4820 return -EINVAL;
4821 }
4822 }
4823 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4824 from->tunnel_ext))
4825 return -EINVAL;
4826
4827 skb_dst_drop(skb);
4828 dst_hold((struct dst_entry *) md);
4829 skb_dst_set(skb, (struct dst_entry *) md);
4830
4831 info = &md->u.tun_info;
4832 memset(info, 0, sizeof(*info));
4833 info->mode = IP_TUNNEL_INFO_TX;
4834
4835 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4836 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4837 flags & BPF_F_DONT_FRAGMENT);
4838 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4839 !(flags & BPF_F_ZERO_CSUM_TX));
4840 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4841 flags & BPF_F_SEQ_NUMBER);
4842 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4843 !(flags & BPF_F_NO_TUNNEL_KEY));
4844
4845 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4846 info->key.tos = from->tunnel_tos;
4847 info->key.ttl = from->tunnel_ttl;
4848
4849 if (flags & BPF_F_TUNINFO_IPV6) {
4850 info->mode |= IP_TUNNEL_INFO_IPV6;
4851 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4852 sizeof(from->remote_ipv6));
4853 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4854 sizeof(from->local_ipv6));
4855 info->key.label = cpu_to_be32(from->tunnel_label) &
4856 IPV6_FLOWLABEL_MASK;
4857 } else {
4858 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4859 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4860 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4861 }
4862
4863 return 0;
4864 }
4865
4866 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4867 .func = bpf_skb_set_tunnel_key,
4868 .gpl_only = false,
4869 .ret_type = RET_INTEGER,
4870 .arg1_type = ARG_PTR_TO_CTX,
4871 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4872 .arg3_type = ARG_CONST_SIZE,
4873 .arg4_type = ARG_ANYTHING,
4874 };
4875
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4876 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4877 const u8 *, from, u32, size)
4878 {
4879 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4880 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4881 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4882
4883 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4884 return -EINVAL;
4885 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4886 return -ENOMEM;
4887
4888 ip_tunnel_set_options_present(present);
4889 ip_tunnel_info_opts_set(info, from, size, present);
4890
4891 return 0;
4892 }
4893
4894 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4895 .func = bpf_skb_set_tunnel_opt,
4896 .gpl_only = false,
4897 .ret_type = RET_INTEGER,
4898 .arg1_type = ARG_PTR_TO_CTX,
4899 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4900 .arg3_type = ARG_CONST_SIZE,
4901 };
4902
4903 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4904 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4905 {
4906 if (!md_dst) {
4907 struct metadata_dst __percpu *tmp;
4908
4909 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4910 METADATA_IP_TUNNEL,
4911 GFP_KERNEL);
4912 if (!tmp)
4913 return NULL;
4914 if (cmpxchg(&md_dst, NULL, tmp))
4915 metadata_dst_free_percpu(tmp);
4916 }
4917
4918 switch (which) {
4919 case BPF_FUNC_skb_set_tunnel_key:
4920 return &bpf_skb_set_tunnel_key_proto;
4921 case BPF_FUNC_skb_set_tunnel_opt:
4922 return &bpf_skb_set_tunnel_opt_proto;
4923 default:
4924 return NULL;
4925 }
4926 }
4927
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4928 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4929 u32, idx)
4930 {
4931 struct bpf_array *array = container_of(map, struct bpf_array, map);
4932 struct cgroup *cgrp;
4933 struct sock *sk;
4934
4935 sk = skb_to_full_sk(skb);
4936 if (!sk || !sk_fullsock(sk))
4937 return -ENOENT;
4938 if (unlikely(idx >= array->map.max_entries))
4939 return -E2BIG;
4940
4941 cgrp = READ_ONCE(array->ptrs[idx]);
4942 if (unlikely(!cgrp))
4943 return -EAGAIN;
4944
4945 return sk_under_cgroup_hierarchy(sk, cgrp);
4946 }
4947
4948 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4949 .func = bpf_skb_under_cgroup,
4950 .gpl_only = false,
4951 .ret_type = RET_INTEGER,
4952 .arg1_type = ARG_PTR_TO_CTX,
4953 .arg2_type = ARG_CONST_MAP_PTR,
4954 .arg3_type = ARG_ANYTHING,
4955 };
4956
4957 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4958 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4959 {
4960 struct cgroup *cgrp;
4961
4962 sk = sk_to_full_sk(sk);
4963 if (!sk || !sk_fullsock(sk))
4964 return 0;
4965
4966 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4967 return cgroup_id(cgrp);
4968 }
4969
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4970 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4971 {
4972 return __bpf_sk_cgroup_id(skb->sk);
4973 }
4974
4975 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4976 .func = bpf_skb_cgroup_id,
4977 .gpl_only = false,
4978 .ret_type = RET_INTEGER,
4979 .arg1_type = ARG_PTR_TO_CTX,
4980 };
4981
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4982 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4983 int ancestor_level)
4984 {
4985 struct cgroup *ancestor;
4986 struct cgroup *cgrp;
4987
4988 sk = sk_to_full_sk(sk);
4989 if (!sk || !sk_fullsock(sk))
4990 return 0;
4991
4992 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4993 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4994 if (!ancestor)
4995 return 0;
4996
4997 return cgroup_id(ancestor);
4998 }
4999
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5000 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5001 ancestor_level)
5002 {
5003 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5004 }
5005
5006 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5007 .func = bpf_skb_ancestor_cgroup_id,
5008 .gpl_only = false,
5009 .ret_type = RET_INTEGER,
5010 .arg1_type = ARG_PTR_TO_CTX,
5011 .arg2_type = ARG_ANYTHING,
5012 };
5013
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5014 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5015 {
5016 return __bpf_sk_cgroup_id(sk);
5017 }
5018
5019 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5020 .func = bpf_sk_cgroup_id,
5021 .gpl_only = false,
5022 .ret_type = RET_INTEGER,
5023 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5024 };
5025
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5026 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5027 {
5028 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5029 }
5030
5031 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5032 .func = bpf_sk_ancestor_cgroup_id,
5033 .gpl_only = false,
5034 .ret_type = RET_INTEGER,
5035 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5036 .arg2_type = ARG_ANYTHING,
5037 };
5038 #endif
5039
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5040 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5041 unsigned long off, unsigned long len)
5042 {
5043 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5044
5045 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5046 return 0;
5047 }
5048
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5049 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5050 u64, flags, void *, meta, u64, meta_size)
5051 {
5052 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5053
5054 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5055 return -EINVAL;
5056
5057 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5058 return -EFAULT;
5059
5060 return bpf_event_output(map, flags, meta, meta_size, xdp,
5061 xdp_size, bpf_xdp_copy);
5062 }
5063
5064 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5065 .func = bpf_xdp_event_output,
5066 .gpl_only = true,
5067 .ret_type = RET_INTEGER,
5068 .arg1_type = ARG_PTR_TO_CTX,
5069 .arg2_type = ARG_CONST_MAP_PTR,
5070 .arg3_type = ARG_ANYTHING,
5071 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5072 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5073 };
5074
5075 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5076
5077 const struct bpf_func_proto bpf_xdp_output_proto = {
5078 .func = bpf_xdp_event_output,
5079 .gpl_only = true,
5080 .ret_type = RET_INTEGER,
5081 .arg1_type = ARG_PTR_TO_BTF_ID,
5082 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5083 .arg2_type = ARG_CONST_MAP_PTR,
5084 .arg3_type = ARG_ANYTHING,
5085 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5086 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5087 };
5088
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5089 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5090 {
5091 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5092 }
5093
5094 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5095 .func = bpf_get_socket_cookie,
5096 .gpl_only = false,
5097 .ret_type = RET_INTEGER,
5098 .arg1_type = ARG_PTR_TO_CTX,
5099 };
5100
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5101 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5102 {
5103 return __sock_gen_cookie(ctx->sk);
5104 }
5105
5106 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5107 .func = bpf_get_socket_cookie_sock_addr,
5108 .gpl_only = false,
5109 .ret_type = RET_INTEGER,
5110 .arg1_type = ARG_PTR_TO_CTX,
5111 };
5112
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5113 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5114 {
5115 return __sock_gen_cookie(ctx);
5116 }
5117
5118 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5119 .func = bpf_get_socket_cookie_sock,
5120 .gpl_only = false,
5121 .ret_type = RET_INTEGER,
5122 .arg1_type = ARG_PTR_TO_CTX,
5123 };
5124
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5125 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5126 {
5127 return sk ? sock_gen_cookie(sk) : 0;
5128 }
5129
5130 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5131 .func = bpf_get_socket_ptr_cookie,
5132 .gpl_only = false,
5133 .ret_type = RET_INTEGER,
5134 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5135 };
5136
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5137 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5138 {
5139 return __sock_gen_cookie(ctx->sk);
5140 }
5141
5142 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5143 .func = bpf_get_socket_cookie_sock_ops,
5144 .gpl_only = false,
5145 .ret_type = RET_INTEGER,
5146 .arg1_type = ARG_PTR_TO_CTX,
5147 };
5148
__bpf_get_netns_cookie(struct sock * sk)5149 static u64 __bpf_get_netns_cookie(struct sock *sk)
5150 {
5151 const struct net *net = sk ? sock_net(sk) : &init_net;
5152
5153 return net->net_cookie;
5154 }
5155
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5156 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5157 {
5158 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5159 }
5160
5161 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5162 .func = bpf_get_netns_cookie,
5163 .ret_type = RET_INTEGER,
5164 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5165 };
5166
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5167 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5168 {
5169 return __bpf_get_netns_cookie(ctx);
5170 }
5171
5172 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5173 .func = bpf_get_netns_cookie_sock,
5174 .gpl_only = false,
5175 .ret_type = RET_INTEGER,
5176 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5177 };
5178
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5179 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5180 {
5181 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5182 }
5183
5184 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5185 .func = bpf_get_netns_cookie_sock_addr,
5186 .gpl_only = false,
5187 .ret_type = RET_INTEGER,
5188 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5189 };
5190
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5191 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5192 {
5193 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5194 }
5195
5196 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5197 .func = bpf_get_netns_cookie_sock_ops,
5198 .gpl_only = false,
5199 .ret_type = RET_INTEGER,
5200 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5201 };
5202
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5203 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5204 {
5205 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5206 }
5207
5208 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5209 .func = bpf_get_netns_cookie_sk_msg,
5210 .gpl_only = false,
5211 .ret_type = RET_INTEGER,
5212 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5213 };
5214
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5215 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5216 {
5217 struct sock *sk = sk_to_full_sk(skb->sk);
5218 kuid_t kuid;
5219
5220 if (!sk || !sk_fullsock(sk))
5221 return overflowuid;
5222 kuid = sock_net_uid(sock_net(sk), sk);
5223 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5224 }
5225
5226 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5227 .func = bpf_get_socket_uid,
5228 .gpl_only = false,
5229 .ret_type = RET_INTEGER,
5230 .arg1_type = ARG_PTR_TO_CTX,
5231 };
5232
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5233 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5234 {
5235 u32 sk_bpf_cb_flags;
5236
5237 if (getopt) {
5238 *(u32 *)optval = sk->sk_bpf_cb_flags;
5239 return 0;
5240 }
5241
5242 sk_bpf_cb_flags = *(u32 *)optval;
5243
5244 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5245 return -EINVAL;
5246
5247 sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5248
5249 return 0;
5250 }
5251
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5252 static int sol_socket_sockopt(struct sock *sk, int optname,
5253 char *optval, int *optlen,
5254 bool getopt)
5255 {
5256 switch (optname) {
5257 case SO_REUSEADDR:
5258 case SO_SNDBUF:
5259 case SO_RCVBUF:
5260 case SO_KEEPALIVE:
5261 case SO_PRIORITY:
5262 case SO_REUSEPORT:
5263 case SO_RCVLOWAT:
5264 case SO_MARK:
5265 case SO_MAX_PACING_RATE:
5266 case SO_BINDTOIFINDEX:
5267 case SO_TXREHASH:
5268 case SK_BPF_CB_FLAGS:
5269 if (*optlen != sizeof(int))
5270 return -EINVAL;
5271 break;
5272 case SO_BINDTODEVICE:
5273 break;
5274 default:
5275 return -EINVAL;
5276 }
5277
5278 if (optname == SK_BPF_CB_FLAGS)
5279 return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5280
5281 if (getopt) {
5282 if (optname == SO_BINDTODEVICE)
5283 return -EINVAL;
5284 return sk_getsockopt(sk, SOL_SOCKET, optname,
5285 KERNEL_SOCKPTR(optval),
5286 KERNEL_SOCKPTR(optlen));
5287 }
5288
5289 return sk_setsockopt(sk, SOL_SOCKET, optname,
5290 KERNEL_SOCKPTR(optval), *optlen);
5291 }
5292
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5293 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5294 char *optval, int optlen)
5295 {
5296 if (optlen != sizeof(int))
5297 return -EINVAL;
5298
5299 switch (optname) {
5300 case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5301 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5302
5303 memcpy(optval, &cb_flags, optlen);
5304 break;
5305 }
5306 case TCP_BPF_RTO_MIN: {
5307 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5308
5309 memcpy(optval, &rto_min_us, optlen);
5310 break;
5311 }
5312 case TCP_BPF_DELACK_MAX: {
5313 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5314
5315 memcpy(optval, &delack_max_us, optlen);
5316 break;
5317 }
5318 default:
5319 return -EINVAL;
5320 }
5321
5322 return 0;
5323 }
5324
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5325 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5326 char *optval, int optlen)
5327 {
5328 struct tcp_sock *tp = tcp_sk(sk);
5329 unsigned long timeout;
5330 int val;
5331
5332 if (optlen != sizeof(int))
5333 return -EINVAL;
5334
5335 val = *(int *)optval;
5336
5337 /* Only some options are supported */
5338 switch (optname) {
5339 case TCP_BPF_IW:
5340 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5341 return -EINVAL;
5342 tcp_snd_cwnd_set(tp, val);
5343 break;
5344 case TCP_BPF_SNDCWND_CLAMP:
5345 if (val <= 0)
5346 return -EINVAL;
5347 tp->snd_cwnd_clamp = val;
5348 tp->snd_ssthresh = val;
5349 break;
5350 case TCP_BPF_DELACK_MAX:
5351 timeout = usecs_to_jiffies(val);
5352 if (timeout > TCP_DELACK_MAX ||
5353 timeout < TCP_TIMEOUT_MIN)
5354 return -EINVAL;
5355 inet_csk(sk)->icsk_delack_max = timeout;
5356 break;
5357 case TCP_BPF_RTO_MIN:
5358 timeout = usecs_to_jiffies(val);
5359 if (timeout > TCP_RTO_MIN ||
5360 timeout < TCP_TIMEOUT_MIN)
5361 return -EINVAL;
5362 inet_csk(sk)->icsk_rto_min = timeout;
5363 break;
5364 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5365 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5366 return -EINVAL;
5367 tp->bpf_sock_ops_cb_flags = val;
5368 break;
5369 default:
5370 return -EINVAL;
5371 }
5372
5373 return 0;
5374 }
5375
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5376 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5377 int *optlen, bool getopt)
5378 {
5379 struct tcp_sock *tp;
5380 int ret;
5381
5382 if (*optlen < 2)
5383 return -EINVAL;
5384
5385 if (getopt) {
5386 if (!inet_csk(sk)->icsk_ca_ops)
5387 return -EINVAL;
5388 /* BPF expects NULL-terminated tcp-cc string */
5389 optval[--(*optlen)] = '\0';
5390 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5391 KERNEL_SOCKPTR(optval),
5392 KERNEL_SOCKPTR(optlen));
5393 }
5394
5395 /* "cdg" is the only cc that alloc a ptr
5396 * in inet_csk_ca area. The bpf-tcp-cc may
5397 * overwrite this ptr after switching to cdg.
5398 */
5399 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5400 return -ENOTSUPP;
5401
5402 /* It stops this looping
5403 *
5404 * .init => bpf_setsockopt(tcp_cc) => .init =>
5405 * bpf_setsockopt(tcp_cc)" => .init => ....
5406 *
5407 * The second bpf_setsockopt(tcp_cc) is not allowed
5408 * in order to break the loop when both .init
5409 * are the same bpf prog.
5410 *
5411 * This applies even the second bpf_setsockopt(tcp_cc)
5412 * does not cause a loop. This limits only the first
5413 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5414 * pick a fallback cc (eg. peer does not support ECN)
5415 * and the second '.init' cannot fallback to
5416 * another.
5417 */
5418 tp = tcp_sk(sk);
5419 if (tp->bpf_chg_cc_inprogress)
5420 return -EBUSY;
5421
5422 tp->bpf_chg_cc_inprogress = 1;
5423 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5424 KERNEL_SOCKPTR(optval), *optlen);
5425 tp->bpf_chg_cc_inprogress = 0;
5426 return ret;
5427 }
5428
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5429 static int sol_tcp_sockopt(struct sock *sk, int optname,
5430 char *optval, int *optlen,
5431 bool getopt)
5432 {
5433 if (sk->sk_protocol != IPPROTO_TCP)
5434 return -EINVAL;
5435
5436 switch (optname) {
5437 case TCP_NODELAY:
5438 case TCP_MAXSEG:
5439 case TCP_KEEPIDLE:
5440 case TCP_KEEPINTVL:
5441 case TCP_KEEPCNT:
5442 case TCP_SYNCNT:
5443 case TCP_WINDOW_CLAMP:
5444 case TCP_THIN_LINEAR_TIMEOUTS:
5445 case TCP_USER_TIMEOUT:
5446 case TCP_NOTSENT_LOWAT:
5447 case TCP_SAVE_SYN:
5448 case TCP_RTO_MAX_MS:
5449 if (*optlen != sizeof(int))
5450 return -EINVAL;
5451 break;
5452 case TCP_CONGESTION:
5453 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5454 case TCP_SAVED_SYN:
5455 if (*optlen < 1)
5456 return -EINVAL;
5457 break;
5458 default:
5459 if (getopt)
5460 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5461 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5462 }
5463
5464 if (getopt) {
5465 if (optname == TCP_SAVED_SYN) {
5466 struct tcp_sock *tp = tcp_sk(sk);
5467
5468 if (!tp->saved_syn ||
5469 *optlen > tcp_saved_syn_len(tp->saved_syn))
5470 return -EINVAL;
5471 memcpy(optval, tp->saved_syn->data, *optlen);
5472 /* It cannot free tp->saved_syn here because it
5473 * does not know if the user space still needs it.
5474 */
5475 return 0;
5476 }
5477
5478 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5479 KERNEL_SOCKPTR(optval),
5480 KERNEL_SOCKPTR(optlen));
5481 }
5482
5483 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5484 KERNEL_SOCKPTR(optval), *optlen);
5485 }
5486
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5487 static int sol_ip_sockopt(struct sock *sk, int optname,
5488 char *optval, int *optlen,
5489 bool getopt)
5490 {
5491 if (sk->sk_family != AF_INET)
5492 return -EINVAL;
5493
5494 switch (optname) {
5495 case IP_TOS:
5496 if (*optlen != sizeof(int))
5497 return -EINVAL;
5498 break;
5499 default:
5500 return -EINVAL;
5501 }
5502
5503 if (getopt)
5504 return do_ip_getsockopt(sk, SOL_IP, optname,
5505 KERNEL_SOCKPTR(optval),
5506 KERNEL_SOCKPTR(optlen));
5507
5508 return do_ip_setsockopt(sk, SOL_IP, optname,
5509 KERNEL_SOCKPTR(optval), *optlen);
5510 }
5511
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5512 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5513 char *optval, int *optlen,
5514 bool getopt)
5515 {
5516 if (sk->sk_family != AF_INET6)
5517 return -EINVAL;
5518
5519 switch (optname) {
5520 case IPV6_TCLASS:
5521 case IPV6_AUTOFLOWLABEL:
5522 if (*optlen != sizeof(int))
5523 return -EINVAL;
5524 break;
5525 default:
5526 return -EINVAL;
5527 }
5528
5529 if (getopt)
5530 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5531 KERNEL_SOCKPTR(optval),
5532 KERNEL_SOCKPTR(optlen));
5533
5534 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5535 KERNEL_SOCKPTR(optval), *optlen);
5536 }
5537
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5538 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5539 char *optval, int optlen)
5540 {
5541 if (!sk_fullsock(sk))
5542 return -EINVAL;
5543
5544 if (level == SOL_SOCKET)
5545 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5546 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5547 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5548 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5549 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5550 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5551 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5552
5553 return -EINVAL;
5554 }
5555
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5556 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5557 {
5558 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5559 }
5560
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5561 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5562 char *optval, int optlen)
5563 {
5564 if (sk_fullsock(sk))
5565 sock_owned_by_me(sk);
5566 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5567 }
5568
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5569 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5570 char *optval, int optlen)
5571 {
5572 int err, saved_optlen = optlen;
5573
5574 if (!sk_fullsock(sk)) {
5575 err = -EINVAL;
5576 goto done;
5577 }
5578
5579 if (level == SOL_SOCKET)
5580 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5581 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5582 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5583 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5584 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5585 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5586 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5587 else
5588 err = -EINVAL;
5589
5590 done:
5591 if (err)
5592 optlen = 0;
5593 if (optlen < saved_optlen)
5594 memset(optval + optlen, 0, saved_optlen - optlen);
5595 return err;
5596 }
5597
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5598 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5599 char *optval, int optlen)
5600 {
5601 if (sk_fullsock(sk))
5602 sock_owned_by_me(sk);
5603 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5604 }
5605
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5606 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5607 int, optname, char *, optval, int, optlen)
5608 {
5609 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5610 }
5611
5612 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5613 .func = bpf_sk_setsockopt,
5614 .gpl_only = false,
5615 .ret_type = RET_INTEGER,
5616 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5617 .arg2_type = ARG_ANYTHING,
5618 .arg3_type = ARG_ANYTHING,
5619 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5620 .arg5_type = ARG_CONST_SIZE,
5621 };
5622
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5623 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5624 int, optname, char *, optval, int, optlen)
5625 {
5626 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5627 }
5628
5629 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5630 .func = bpf_sk_getsockopt,
5631 .gpl_only = false,
5632 .ret_type = RET_INTEGER,
5633 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5634 .arg2_type = ARG_ANYTHING,
5635 .arg3_type = ARG_ANYTHING,
5636 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5637 .arg5_type = ARG_CONST_SIZE,
5638 };
5639
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5640 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5641 int, optname, char *, optval, int, optlen)
5642 {
5643 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5644 }
5645
5646 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5647 .func = bpf_unlocked_sk_setsockopt,
5648 .gpl_only = false,
5649 .ret_type = RET_INTEGER,
5650 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5651 .arg2_type = ARG_ANYTHING,
5652 .arg3_type = ARG_ANYTHING,
5653 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5654 .arg5_type = ARG_CONST_SIZE,
5655 };
5656
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5657 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5658 int, optname, char *, optval, int, optlen)
5659 {
5660 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5661 }
5662
5663 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5664 .func = bpf_unlocked_sk_getsockopt,
5665 .gpl_only = false,
5666 .ret_type = RET_INTEGER,
5667 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5668 .arg2_type = ARG_ANYTHING,
5669 .arg3_type = ARG_ANYTHING,
5670 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5671 .arg5_type = ARG_CONST_SIZE,
5672 };
5673
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5674 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5675 int, level, int, optname, char *, optval, int, optlen)
5676 {
5677 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5678 }
5679
5680 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5681 .func = bpf_sock_addr_setsockopt,
5682 .gpl_only = false,
5683 .ret_type = RET_INTEGER,
5684 .arg1_type = ARG_PTR_TO_CTX,
5685 .arg2_type = ARG_ANYTHING,
5686 .arg3_type = ARG_ANYTHING,
5687 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5688 .arg5_type = ARG_CONST_SIZE,
5689 };
5690
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5691 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5692 int, level, int, optname, char *, optval, int, optlen)
5693 {
5694 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5695 }
5696
5697 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5698 .func = bpf_sock_addr_getsockopt,
5699 .gpl_only = false,
5700 .ret_type = RET_INTEGER,
5701 .arg1_type = ARG_PTR_TO_CTX,
5702 .arg2_type = ARG_ANYTHING,
5703 .arg3_type = ARG_ANYTHING,
5704 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5705 .arg5_type = ARG_CONST_SIZE,
5706 };
5707
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5708 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5709 int, level, int, optname, char *, optval, int, optlen)
5710 {
5711 if (!is_locked_tcp_sock_ops(bpf_sock))
5712 return -EOPNOTSUPP;
5713
5714 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5715 }
5716
5717 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5718 .func = bpf_sock_ops_setsockopt,
5719 .gpl_only = false,
5720 .ret_type = RET_INTEGER,
5721 .arg1_type = ARG_PTR_TO_CTX,
5722 .arg2_type = ARG_ANYTHING,
5723 .arg3_type = ARG_ANYTHING,
5724 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5725 .arg5_type = ARG_CONST_SIZE,
5726 };
5727
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5728 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5729 int optname, const u8 **start)
5730 {
5731 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5732 const u8 *hdr_start;
5733 int ret;
5734
5735 if (syn_skb) {
5736 /* sk is a request_sock here */
5737
5738 if (optname == TCP_BPF_SYN) {
5739 hdr_start = syn_skb->data;
5740 ret = tcp_hdrlen(syn_skb);
5741 } else if (optname == TCP_BPF_SYN_IP) {
5742 hdr_start = skb_network_header(syn_skb);
5743 ret = skb_network_header_len(syn_skb) +
5744 tcp_hdrlen(syn_skb);
5745 } else {
5746 /* optname == TCP_BPF_SYN_MAC */
5747 hdr_start = skb_mac_header(syn_skb);
5748 ret = skb_mac_header_len(syn_skb) +
5749 skb_network_header_len(syn_skb) +
5750 tcp_hdrlen(syn_skb);
5751 }
5752 } else {
5753 struct sock *sk = bpf_sock->sk;
5754 struct saved_syn *saved_syn;
5755
5756 if (sk->sk_state == TCP_NEW_SYN_RECV)
5757 /* synack retransmit. bpf_sock->syn_skb will
5758 * not be available. It has to resort to
5759 * saved_syn (if it is saved).
5760 */
5761 saved_syn = inet_reqsk(sk)->saved_syn;
5762 else
5763 saved_syn = tcp_sk(sk)->saved_syn;
5764
5765 if (!saved_syn)
5766 return -ENOENT;
5767
5768 if (optname == TCP_BPF_SYN) {
5769 hdr_start = saved_syn->data +
5770 saved_syn->mac_hdrlen +
5771 saved_syn->network_hdrlen;
5772 ret = saved_syn->tcp_hdrlen;
5773 } else if (optname == TCP_BPF_SYN_IP) {
5774 hdr_start = saved_syn->data +
5775 saved_syn->mac_hdrlen;
5776 ret = saved_syn->network_hdrlen +
5777 saved_syn->tcp_hdrlen;
5778 } else {
5779 /* optname == TCP_BPF_SYN_MAC */
5780
5781 /* TCP_SAVE_SYN may not have saved the mac hdr */
5782 if (!saved_syn->mac_hdrlen)
5783 return -ENOENT;
5784
5785 hdr_start = saved_syn->data;
5786 ret = saved_syn->mac_hdrlen +
5787 saved_syn->network_hdrlen +
5788 saved_syn->tcp_hdrlen;
5789 }
5790 }
5791
5792 *start = hdr_start;
5793 return ret;
5794 }
5795
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5796 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5797 int, level, int, optname, char *, optval, int, optlen)
5798 {
5799 if (!is_locked_tcp_sock_ops(bpf_sock))
5800 return -EOPNOTSUPP;
5801
5802 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5803 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5804 int ret, copy_len = 0;
5805 const u8 *start;
5806
5807 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5808 if (ret > 0) {
5809 copy_len = ret;
5810 if (optlen < copy_len) {
5811 copy_len = optlen;
5812 ret = -ENOSPC;
5813 }
5814
5815 memcpy(optval, start, copy_len);
5816 }
5817
5818 /* Zero out unused buffer at the end */
5819 memset(optval + copy_len, 0, optlen - copy_len);
5820
5821 return ret;
5822 }
5823
5824 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5825 }
5826
5827 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5828 .func = bpf_sock_ops_getsockopt,
5829 .gpl_only = false,
5830 .ret_type = RET_INTEGER,
5831 .arg1_type = ARG_PTR_TO_CTX,
5832 .arg2_type = ARG_ANYTHING,
5833 .arg3_type = ARG_ANYTHING,
5834 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5835 .arg5_type = ARG_CONST_SIZE,
5836 };
5837
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5838 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5839 int, argval)
5840 {
5841 struct sock *sk = bpf_sock->sk;
5842 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5843
5844 if (!is_locked_tcp_sock_ops(bpf_sock))
5845 return -EOPNOTSUPP;
5846
5847 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5848 return -EINVAL;
5849
5850 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5851
5852 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5853 }
5854
5855 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5856 .func = bpf_sock_ops_cb_flags_set,
5857 .gpl_only = false,
5858 .ret_type = RET_INTEGER,
5859 .arg1_type = ARG_PTR_TO_CTX,
5860 .arg2_type = ARG_ANYTHING,
5861 };
5862
5863 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5864 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5865
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5866 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5867 int, addr_len)
5868 {
5869 #ifdef CONFIG_INET
5870 struct sock *sk = ctx->sk;
5871 u32 flags = BIND_FROM_BPF;
5872 int err;
5873
5874 err = -EINVAL;
5875 if (addr_len < offsetofend(struct sockaddr, sa_family))
5876 return err;
5877 if (addr->sa_family == AF_INET) {
5878 if (addr_len < sizeof(struct sockaddr_in))
5879 return err;
5880 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5881 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5882 return __inet_bind(sk, addr, addr_len, flags);
5883 #if IS_ENABLED(CONFIG_IPV6)
5884 } else if (addr->sa_family == AF_INET6) {
5885 if (addr_len < SIN6_LEN_RFC2133)
5886 return err;
5887 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5888 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5889 /* ipv6_bpf_stub cannot be NULL, since it's called from
5890 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5891 */
5892 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5893 #endif /* CONFIG_IPV6 */
5894 }
5895 #endif /* CONFIG_INET */
5896
5897 return -EAFNOSUPPORT;
5898 }
5899
5900 static const struct bpf_func_proto bpf_bind_proto = {
5901 .func = bpf_bind,
5902 .gpl_only = false,
5903 .ret_type = RET_INTEGER,
5904 .arg1_type = ARG_PTR_TO_CTX,
5905 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5906 .arg3_type = ARG_CONST_SIZE,
5907 };
5908
5909 #ifdef CONFIG_XFRM
5910
5911 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5912 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5913
5914 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5915 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5916
5917 #endif
5918
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5919 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5920 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5921 {
5922 const struct sec_path *sp = skb_sec_path(skb);
5923 const struct xfrm_state *x;
5924
5925 if (!sp || unlikely(index >= sp->len || flags))
5926 goto err_clear;
5927
5928 x = sp->xvec[index];
5929
5930 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5931 goto err_clear;
5932
5933 to->reqid = x->props.reqid;
5934 to->spi = x->id.spi;
5935 to->family = x->props.family;
5936 to->ext = 0;
5937
5938 if (to->family == AF_INET6) {
5939 memcpy(to->remote_ipv6, x->props.saddr.a6,
5940 sizeof(to->remote_ipv6));
5941 } else {
5942 to->remote_ipv4 = x->props.saddr.a4;
5943 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5944 }
5945
5946 return 0;
5947 err_clear:
5948 memset(to, 0, size);
5949 return -EINVAL;
5950 }
5951
5952 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5953 .func = bpf_skb_get_xfrm_state,
5954 .gpl_only = false,
5955 .ret_type = RET_INTEGER,
5956 .arg1_type = ARG_PTR_TO_CTX,
5957 .arg2_type = ARG_ANYTHING,
5958 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5959 .arg4_type = ARG_CONST_SIZE,
5960 .arg5_type = ARG_ANYTHING,
5961 };
5962 #endif
5963
5964 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5965 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5966 {
5967 params->h_vlan_TCI = 0;
5968 params->h_vlan_proto = 0;
5969 if (mtu)
5970 params->mtu_result = mtu; /* union with tot_len */
5971
5972 return 0;
5973 }
5974 #endif
5975
5976 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5977 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5978 u32 flags, bool check_mtu)
5979 {
5980 struct fib_nh_common *nhc;
5981 struct in_device *in_dev;
5982 struct neighbour *neigh;
5983 struct net_device *dev;
5984 struct fib_result res;
5985 struct flowi4 fl4;
5986 u32 mtu = 0;
5987 int err;
5988
5989 dev = dev_get_by_index_rcu(net, params->ifindex);
5990 if (unlikely(!dev))
5991 return -ENODEV;
5992
5993 /* verify forwarding is enabled on this interface */
5994 in_dev = __in_dev_get_rcu(dev);
5995 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5996 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5997
5998 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5999 fl4.flowi4_iif = 1;
6000 fl4.flowi4_oif = params->ifindex;
6001 } else {
6002 fl4.flowi4_iif = params->ifindex;
6003 fl4.flowi4_oif = 0;
6004 }
6005 fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
6006 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6007 fl4.flowi4_flags = 0;
6008
6009 fl4.flowi4_proto = params->l4_protocol;
6010 fl4.daddr = params->ipv4_dst;
6011 fl4.saddr = params->ipv4_src;
6012 fl4.fl4_sport = params->sport;
6013 fl4.fl4_dport = params->dport;
6014 fl4.flowi4_multipath_hash = 0;
6015
6016 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6017 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6018 struct fib_table *tb;
6019
6020 if (flags & BPF_FIB_LOOKUP_TBID) {
6021 tbid = params->tbid;
6022 /* zero out for vlan output */
6023 params->tbid = 0;
6024 }
6025
6026 tb = fib_get_table(net, tbid);
6027 if (unlikely(!tb))
6028 return BPF_FIB_LKUP_RET_NOT_FWDED;
6029
6030 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6031 } else {
6032 if (flags & BPF_FIB_LOOKUP_MARK)
6033 fl4.flowi4_mark = params->mark;
6034 else
6035 fl4.flowi4_mark = 0;
6036 fl4.flowi4_secid = 0;
6037 fl4.flowi4_tun_key.tun_id = 0;
6038 fl4.flowi4_uid = sock_net_uid(net, NULL);
6039
6040 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6041 }
6042
6043 if (err) {
6044 /* map fib lookup errors to RTN_ type */
6045 if (err == -EINVAL)
6046 return BPF_FIB_LKUP_RET_BLACKHOLE;
6047 if (err == -EHOSTUNREACH)
6048 return BPF_FIB_LKUP_RET_UNREACHABLE;
6049 if (err == -EACCES)
6050 return BPF_FIB_LKUP_RET_PROHIBIT;
6051
6052 return BPF_FIB_LKUP_RET_NOT_FWDED;
6053 }
6054
6055 if (res.type != RTN_UNICAST)
6056 return BPF_FIB_LKUP_RET_NOT_FWDED;
6057
6058 if (fib_info_num_path(res.fi) > 1)
6059 fib_select_path(net, &res, &fl4, NULL);
6060
6061 if (check_mtu) {
6062 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6063 if (params->tot_len > mtu) {
6064 params->mtu_result = mtu; /* union with tot_len */
6065 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6066 }
6067 }
6068
6069 nhc = res.nhc;
6070
6071 /* do not handle lwt encaps right now */
6072 if (nhc->nhc_lwtstate)
6073 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6074
6075 dev = nhc->nhc_dev;
6076
6077 params->rt_metric = res.fi->fib_priority;
6078 params->ifindex = dev->ifindex;
6079
6080 if (flags & BPF_FIB_LOOKUP_SRC)
6081 params->ipv4_src = fib_result_prefsrc(net, &res);
6082
6083 /* xdp and cls_bpf programs are run in RCU-bh so
6084 * rcu_read_lock_bh is not needed here
6085 */
6086 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6087 if (nhc->nhc_gw_family)
6088 params->ipv4_dst = nhc->nhc_gw.ipv4;
6089 } else {
6090 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6091
6092 params->family = AF_INET6;
6093 *dst = nhc->nhc_gw.ipv6;
6094 }
6095
6096 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6097 goto set_fwd_params;
6098
6099 if (likely(nhc->nhc_gw_family != AF_INET6))
6100 neigh = __ipv4_neigh_lookup_noref(dev,
6101 (__force u32)params->ipv4_dst);
6102 else
6103 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6104
6105 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6106 return BPF_FIB_LKUP_RET_NO_NEIGH;
6107 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6108 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6109
6110 set_fwd_params:
6111 return bpf_fib_set_fwd_params(params, mtu);
6112 }
6113 #endif
6114
6115 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6116 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6117 u32 flags, bool check_mtu)
6118 {
6119 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6120 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6121 struct fib6_result res = {};
6122 struct neighbour *neigh;
6123 struct net_device *dev;
6124 struct inet6_dev *idev;
6125 struct flowi6 fl6;
6126 int strict = 0;
6127 int oif, err;
6128 u32 mtu = 0;
6129
6130 /* link local addresses are never forwarded */
6131 if (rt6_need_strict(dst) || rt6_need_strict(src))
6132 return BPF_FIB_LKUP_RET_NOT_FWDED;
6133
6134 dev = dev_get_by_index_rcu(net, params->ifindex);
6135 if (unlikely(!dev))
6136 return -ENODEV;
6137
6138 idev = __in6_dev_get_safely(dev);
6139 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6140 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6141
6142 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6143 fl6.flowi6_iif = 1;
6144 oif = fl6.flowi6_oif = params->ifindex;
6145 } else {
6146 oif = fl6.flowi6_iif = params->ifindex;
6147 fl6.flowi6_oif = 0;
6148 strict = RT6_LOOKUP_F_HAS_SADDR;
6149 }
6150 fl6.flowlabel = params->flowinfo;
6151 fl6.flowi6_scope = 0;
6152 fl6.flowi6_flags = 0;
6153 fl6.mp_hash = 0;
6154
6155 fl6.flowi6_proto = params->l4_protocol;
6156 fl6.daddr = *dst;
6157 fl6.saddr = *src;
6158 fl6.fl6_sport = params->sport;
6159 fl6.fl6_dport = params->dport;
6160
6161 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6162 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6163 struct fib6_table *tb;
6164
6165 if (flags & BPF_FIB_LOOKUP_TBID) {
6166 tbid = params->tbid;
6167 /* zero out for vlan output */
6168 params->tbid = 0;
6169 }
6170
6171 tb = ipv6_stub->fib6_get_table(net, tbid);
6172 if (unlikely(!tb))
6173 return BPF_FIB_LKUP_RET_NOT_FWDED;
6174
6175 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6176 strict);
6177 } else {
6178 if (flags & BPF_FIB_LOOKUP_MARK)
6179 fl6.flowi6_mark = params->mark;
6180 else
6181 fl6.flowi6_mark = 0;
6182 fl6.flowi6_secid = 0;
6183 fl6.flowi6_tun_key.tun_id = 0;
6184 fl6.flowi6_uid = sock_net_uid(net, NULL);
6185
6186 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6187 }
6188
6189 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6190 res.f6i == net->ipv6.fib6_null_entry))
6191 return BPF_FIB_LKUP_RET_NOT_FWDED;
6192
6193 switch (res.fib6_type) {
6194 /* only unicast is forwarded */
6195 case RTN_UNICAST:
6196 break;
6197 case RTN_BLACKHOLE:
6198 return BPF_FIB_LKUP_RET_BLACKHOLE;
6199 case RTN_UNREACHABLE:
6200 return BPF_FIB_LKUP_RET_UNREACHABLE;
6201 case RTN_PROHIBIT:
6202 return BPF_FIB_LKUP_RET_PROHIBIT;
6203 default:
6204 return BPF_FIB_LKUP_RET_NOT_FWDED;
6205 }
6206
6207 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6208 fl6.flowi6_oif != 0, NULL, strict);
6209
6210 if (check_mtu) {
6211 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6212 if (params->tot_len > mtu) {
6213 params->mtu_result = mtu; /* union with tot_len */
6214 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6215 }
6216 }
6217
6218 if (res.nh->fib_nh_lws)
6219 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6220
6221 if (res.nh->fib_nh_gw_family)
6222 *dst = res.nh->fib_nh_gw6;
6223
6224 dev = res.nh->fib_nh_dev;
6225 params->rt_metric = res.f6i->fib6_metric;
6226 params->ifindex = dev->ifindex;
6227
6228 if (flags & BPF_FIB_LOOKUP_SRC) {
6229 if (res.f6i->fib6_prefsrc.plen) {
6230 *src = res.f6i->fib6_prefsrc.addr;
6231 } else {
6232 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6233 &fl6.daddr, 0,
6234 src);
6235 if (err)
6236 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6237 }
6238 }
6239
6240 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6241 goto set_fwd_params;
6242
6243 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6244 * not needed here.
6245 */
6246 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6247 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6248 return BPF_FIB_LKUP_RET_NO_NEIGH;
6249 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6250 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6251
6252 set_fwd_params:
6253 return bpf_fib_set_fwd_params(params, mtu);
6254 }
6255 #endif
6256
6257 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6258 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6259 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6260
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6261 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6262 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6263 {
6264 if (plen < sizeof(*params))
6265 return -EINVAL;
6266
6267 if (flags & ~BPF_FIB_LOOKUP_MASK)
6268 return -EINVAL;
6269
6270 switch (params->family) {
6271 #if IS_ENABLED(CONFIG_INET)
6272 case AF_INET:
6273 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6274 flags, true);
6275 #endif
6276 #if IS_ENABLED(CONFIG_IPV6)
6277 case AF_INET6:
6278 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6279 flags, true);
6280 #endif
6281 }
6282 return -EAFNOSUPPORT;
6283 }
6284
6285 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6286 .func = bpf_xdp_fib_lookup,
6287 .gpl_only = true,
6288 .ret_type = RET_INTEGER,
6289 .arg1_type = ARG_PTR_TO_CTX,
6290 .arg2_type = ARG_PTR_TO_MEM,
6291 .arg3_type = ARG_CONST_SIZE,
6292 .arg4_type = ARG_ANYTHING,
6293 };
6294
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6295 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6296 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6297 {
6298 struct net *net = dev_net(skb->dev);
6299 int rc = -EAFNOSUPPORT;
6300 bool check_mtu = false;
6301
6302 if (plen < sizeof(*params))
6303 return -EINVAL;
6304
6305 if (flags & ~BPF_FIB_LOOKUP_MASK)
6306 return -EINVAL;
6307
6308 if (params->tot_len)
6309 check_mtu = true;
6310
6311 switch (params->family) {
6312 #if IS_ENABLED(CONFIG_INET)
6313 case AF_INET:
6314 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6315 break;
6316 #endif
6317 #if IS_ENABLED(CONFIG_IPV6)
6318 case AF_INET6:
6319 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6320 break;
6321 #endif
6322 }
6323
6324 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6325 struct net_device *dev;
6326
6327 /* When tot_len isn't provided by user, check skb
6328 * against MTU of FIB lookup resulting net_device
6329 */
6330 dev = dev_get_by_index_rcu(net, params->ifindex);
6331 if (!is_skb_forwardable(dev, skb))
6332 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6333
6334 params->mtu_result = dev->mtu; /* union with tot_len */
6335 }
6336
6337 return rc;
6338 }
6339
6340 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6341 .func = bpf_skb_fib_lookup,
6342 .gpl_only = true,
6343 .ret_type = RET_INTEGER,
6344 .arg1_type = ARG_PTR_TO_CTX,
6345 .arg2_type = ARG_PTR_TO_MEM,
6346 .arg3_type = ARG_CONST_SIZE,
6347 .arg4_type = ARG_ANYTHING,
6348 };
6349
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6350 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6351 u32 ifindex)
6352 {
6353 struct net *netns = dev_net(dev_curr);
6354
6355 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6356 if (ifindex == 0)
6357 return dev_curr;
6358
6359 return dev_get_by_index_rcu(netns, ifindex);
6360 }
6361
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6362 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6363 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6364 {
6365 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6366 struct net_device *dev = skb->dev;
6367 int mtu, dev_len, skb_len;
6368
6369 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6370 return -EINVAL;
6371 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6372 return -EINVAL;
6373
6374 dev = __dev_via_ifindex(dev, ifindex);
6375 if (unlikely(!dev))
6376 return -ENODEV;
6377
6378 mtu = READ_ONCE(dev->mtu);
6379 dev_len = mtu + dev->hard_header_len;
6380
6381 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6382 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6383
6384 skb_len += len_diff; /* minus result pass check */
6385 if (skb_len <= dev_len) {
6386 ret = BPF_MTU_CHK_RET_SUCCESS;
6387 goto out;
6388 }
6389 /* At this point, skb->len exceed MTU, but as it include length of all
6390 * segments, it can still be below MTU. The SKB can possibly get
6391 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6392 * must choose if segs are to be MTU checked.
6393 */
6394 if (skb_is_gso(skb)) {
6395 ret = BPF_MTU_CHK_RET_SUCCESS;
6396 if (flags & BPF_MTU_CHK_SEGS &&
6397 !skb_gso_validate_network_len(skb, mtu))
6398 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6399 }
6400 out:
6401 *mtu_len = mtu;
6402 return ret;
6403 }
6404
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6405 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6406 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6407 {
6408 struct net_device *dev = xdp->rxq->dev;
6409 int xdp_len = xdp->data_end - xdp->data;
6410 int ret = BPF_MTU_CHK_RET_SUCCESS;
6411 int mtu, dev_len;
6412
6413 /* XDP variant doesn't support multi-buffer segment check (yet) */
6414 if (unlikely(flags))
6415 return -EINVAL;
6416
6417 dev = __dev_via_ifindex(dev, ifindex);
6418 if (unlikely(!dev))
6419 return -ENODEV;
6420
6421 mtu = READ_ONCE(dev->mtu);
6422 dev_len = mtu + dev->hard_header_len;
6423
6424 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6425 if (*mtu_len)
6426 xdp_len = *mtu_len + dev->hard_header_len;
6427
6428 xdp_len += len_diff; /* minus result pass check */
6429 if (xdp_len > dev_len)
6430 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6431
6432 *mtu_len = mtu;
6433 return ret;
6434 }
6435
6436 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6437 .func = bpf_skb_check_mtu,
6438 .gpl_only = true,
6439 .ret_type = RET_INTEGER,
6440 .arg1_type = ARG_PTR_TO_CTX,
6441 .arg2_type = ARG_ANYTHING,
6442 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6443 .arg3_size = sizeof(u32),
6444 .arg4_type = ARG_ANYTHING,
6445 .arg5_type = ARG_ANYTHING,
6446 };
6447
6448 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6449 .func = bpf_xdp_check_mtu,
6450 .gpl_only = true,
6451 .ret_type = RET_INTEGER,
6452 .arg1_type = ARG_PTR_TO_CTX,
6453 .arg2_type = ARG_ANYTHING,
6454 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6455 .arg3_size = sizeof(u32),
6456 .arg4_type = ARG_ANYTHING,
6457 .arg5_type = ARG_ANYTHING,
6458 };
6459
6460 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6461 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6462 {
6463 int err;
6464 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6465
6466 if (!seg6_validate_srh(srh, len, false))
6467 return -EINVAL;
6468
6469 switch (type) {
6470 case BPF_LWT_ENCAP_SEG6_INLINE:
6471 if (skb->protocol != htons(ETH_P_IPV6))
6472 return -EBADMSG;
6473
6474 err = seg6_do_srh_inline(skb, srh);
6475 break;
6476 case BPF_LWT_ENCAP_SEG6:
6477 skb_reset_inner_headers(skb);
6478 skb->encapsulation = 1;
6479 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6480 break;
6481 default:
6482 return -EINVAL;
6483 }
6484
6485 bpf_compute_data_pointers(skb);
6486 if (err)
6487 return err;
6488
6489 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6490
6491 return seg6_lookup_nexthop(skb, NULL, 0);
6492 }
6493 #endif /* CONFIG_IPV6_SEG6_BPF */
6494
6495 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6496 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6497 bool ingress)
6498 {
6499 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6500 }
6501 #endif
6502
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6503 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6504 u32, len)
6505 {
6506 switch (type) {
6507 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6508 case BPF_LWT_ENCAP_SEG6:
6509 case BPF_LWT_ENCAP_SEG6_INLINE:
6510 return bpf_push_seg6_encap(skb, type, hdr, len);
6511 #endif
6512 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6513 case BPF_LWT_ENCAP_IP:
6514 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6515 #endif
6516 default:
6517 return -EINVAL;
6518 }
6519 }
6520
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6521 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6522 void *, hdr, u32, len)
6523 {
6524 switch (type) {
6525 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6526 case BPF_LWT_ENCAP_IP:
6527 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6528 #endif
6529 default:
6530 return -EINVAL;
6531 }
6532 }
6533
6534 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6535 .func = bpf_lwt_in_push_encap,
6536 .gpl_only = false,
6537 .ret_type = RET_INTEGER,
6538 .arg1_type = ARG_PTR_TO_CTX,
6539 .arg2_type = ARG_ANYTHING,
6540 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6541 .arg4_type = ARG_CONST_SIZE
6542 };
6543
6544 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6545 .func = bpf_lwt_xmit_push_encap,
6546 .gpl_only = false,
6547 .ret_type = RET_INTEGER,
6548 .arg1_type = ARG_PTR_TO_CTX,
6549 .arg2_type = ARG_ANYTHING,
6550 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6551 .arg4_type = ARG_CONST_SIZE
6552 };
6553
6554 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6555 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6556 const void *, from, u32, len)
6557 {
6558 struct seg6_bpf_srh_state *srh_state =
6559 this_cpu_ptr(&seg6_bpf_srh_states);
6560 struct ipv6_sr_hdr *srh = srh_state->srh;
6561 void *srh_tlvs, *srh_end, *ptr;
6562 int srhoff = 0;
6563
6564 lockdep_assert_held(&srh_state->bh_lock);
6565 if (srh == NULL)
6566 return -EINVAL;
6567
6568 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6569 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6570
6571 ptr = skb->data + offset;
6572 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6573 srh_state->valid = false;
6574 else if (ptr < (void *)&srh->flags ||
6575 ptr + len > (void *)&srh->segments)
6576 return -EFAULT;
6577
6578 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6579 return -EFAULT;
6580 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6581 return -EINVAL;
6582 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6583
6584 memcpy(skb->data + offset, from, len);
6585 return 0;
6586 }
6587
6588 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6589 .func = bpf_lwt_seg6_store_bytes,
6590 .gpl_only = false,
6591 .ret_type = RET_INTEGER,
6592 .arg1_type = ARG_PTR_TO_CTX,
6593 .arg2_type = ARG_ANYTHING,
6594 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6595 .arg4_type = ARG_CONST_SIZE
6596 };
6597
bpf_update_srh_state(struct sk_buff * skb)6598 static void bpf_update_srh_state(struct sk_buff *skb)
6599 {
6600 struct seg6_bpf_srh_state *srh_state =
6601 this_cpu_ptr(&seg6_bpf_srh_states);
6602 int srhoff = 0;
6603
6604 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6605 srh_state->srh = NULL;
6606 } else {
6607 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6608 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6609 srh_state->valid = true;
6610 }
6611 }
6612
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6613 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6614 u32, action, void *, param, u32, param_len)
6615 {
6616 struct seg6_bpf_srh_state *srh_state =
6617 this_cpu_ptr(&seg6_bpf_srh_states);
6618 int hdroff = 0;
6619 int err;
6620
6621 lockdep_assert_held(&srh_state->bh_lock);
6622 switch (action) {
6623 case SEG6_LOCAL_ACTION_END_X:
6624 if (!seg6_bpf_has_valid_srh(skb))
6625 return -EBADMSG;
6626 if (param_len != sizeof(struct in6_addr))
6627 return -EINVAL;
6628 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6629 case SEG6_LOCAL_ACTION_END_T:
6630 if (!seg6_bpf_has_valid_srh(skb))
6631 return -EBADMSG;
6632 if (param_len != sizeof(int))
6633 return -EINVAL;
6634 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6635 case SEG6_LOCAL_ACTION_END_DT6:
6636 if (!seg6_bpf_has_valid_srh(skb))
6637 return -EBADMSG;
6638 if (param_len != sizeof(int))
6639 return -EINVAL;
6640
6641 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6642 return -EBADMSG;
6643 if (!pskb_pull(skb, hdroff))
6644 return -EBADMSG;
6645
6646 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6647 skb_reset_network_header(skb);
6648 skb_reset_transport_header(skb);
6649 skb->encapsulation = 0;
6650
6651 bpf_compute_data_pointers(skb);
6652 bpf_update_srh_state(skb);
6653 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6654 case SEG6_LOCAL_ACTION_END_B6:
6655 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6656 return -EBADMSG;
6657 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6658 param, param_len);
6659 if (!err)
6660 bpf_update_srh_state(skb);
6661
6662 return err;
6663 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6664 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6665 return -EBADMSG;
6666 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6667 param, param_len);
6668 if (!err)
6669 bpf_update_srh_state(skb);
6670
6671 return err;
6672 default:
6673 return -EINVAL;
6674 }
6675 }
6676
6677 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6678 .func = bpf_lwt_seg6_action,
6679 .gpl_only = false,
6680 .ret_type = RET_INTEGER,
6681 .arg1_type = ARG_PTR_TO_CTX,
6682 .arg2_type = ARG_ANYTHING,
6683 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6684 .arg4_type = ARG_CONST_SIZE
6685 };
6686
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6687 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6688 s32, len)
6689 {
6690 struct seg6_bpf_srh_state *srh_state =
6691 this_cpu_ptr(&seg6_bpf_srh_states);
6692 struct ipv6_sr_hdr *srh = srh_state->srh;
6693 void *srh_end, *srh_tlvs, *ptr;
6694 struct ipv6hdr *hdr;
6695 int srhoff = 0;
6696 int ret;
6697
6698 lockdep_assert_held(&srh_state->bh_lock);
6699 if (unlikely(srh == NULL))
6700 return -EINVAL;
6701
6702 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6703 ((srh->first_segment + 1) << 4));
6704 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6705 srh_state->hdrlen);
6706 ptr = skb->data + offset;
6707
6708 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6709 return -EFAULT;
6710 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6711 return -EFAULT;
6712
6713 if (len > 0) {
6714 ret = skb_cow_head(skb, len);
6715 if (unlikely(ret < 0))
6716 return ret;
6717
6718 ret = bpf_skb_net_hdr_push(skb, offset, len);
6719 } else {
6720 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6721 }
6722
6723 bpf_compute_data_pointers(skb);
6724 if (unlikely(ret < 0))
6725 return ret;
6726
6727 hdr = (struct ipv6hdr *)skb->data;
6728 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6729
6730 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6731 return -EINVAL;
6732 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6733 srh_state->hdrlen += len;
6734 srh_state->valid = false;
6735 return 0;
6736 }
6737
6738 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6739 .func = bpf_lwt_seg6_adjust_srh,
6740 .gpl_only = false,
6741 .ret_type = RET_INTEGER,
6742 .arg1_type = ARG_PTR_TO_CTX,
6743 .arg2_type = ARG_ANYTHING,
6744 .arg3_type = ARG_ANYTHING,
6745 };
6746 #endif /* CONFIG_IPV6_SEG6_BPF */
6747
6748 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6749 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6750 int dif, int sdif, u8 family, u8 proto)
6751 {
6752 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6753 bool refcounted = false;
6754 struct sock *sk = NULL;
6755
6756 if (family == AF_INET) {
6757 __be32 src4 = tuple->ipv4.saddr;
6758 __be32 dst4 = tuple->ipv4.daddr;
6759
6760 if (proto == IPPROTO_TCP)
6761 sk = __inet_lookup(net, hinfo, NULL, 0,
6762 src4, tuple->ipv4.sport,
6763 dst4, tuple->ipv4.dport,
6764 dif, sdif, &refcounted);
6765 else
6766 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6767 dst4, tuple->ipv4.dport,
6768 dif, sdif, net->ipv4.udp_table, NULL);
6769 #if IS_ENABLED(CONFIG_IPV6)
6770 } else {
6771 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6772 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6773
6774 if (proto == IPPROTO_TCP)
6775 sk = __inet6_lookup(net, hinfo, NULL, 0,
6776 src6, tuple->ipv6.sport,
6777 dst6, ntohs(tuple->ipv6.dport),
6778 dif, sdif, &refcounted);
6779 else if (likely(ipv6_bpf_stub))
6780 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6781 src6, tuple->ipv6.sport,
6782 dst6, tuple->ipv6.dport,
6783 dif, sdif,
6784 net->ipv4.udp_table, NULL);
6785 #endif
6786 }
6787
6788 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6789 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6790 sk = NULL;
6791 }
6792 return sk;
6793 }
6794
6795 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6796 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6797 */
6798 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6799 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6800 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6801 u64 flags, int sdif)
6802 {
6803 struct sock *sk = NULL;
6804 struct net *net;
6805 u8 family;
6806
6807 if (len == sizeof(tuple->ipv4))
6808 family = AF_INET;
6809 else if (len == sizeof(tuple->ipv6))
6810 family = AF_INET6;
6811 else
6812 return NULL;
6813
6814 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6815 goto out;
6816
6817 if (sdif < 0) {
6818 if (family == AF_INET)
6819 sdif = inet_sdif(skb);
6820 else
6821 sdif = inet6_sdif(skb);
6822 }
6823
6824 if ((s32)netns_id < 0) {
6825 net = caller_net;
6826 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6827 } else {
6828 net = get_net_ns_by_id(caller_net, netns_id);
6829 if (unlikely(!net))
6830 goto out;
6831 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6832 put_net(net);
6833 }
6834
6835 out:
6836 return sk;
6837 }
6838
6839 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6840 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6841 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6842 u64 flags, int sdif)
6843 {
6844 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6845 ifindex, proto, netns_id, flags,
6846 sdif);
6847
6848 if (sk) {
6849 struct sock *sk2 = sk_to_full_sk(sk);
6850
6851 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6852 * sock refcnt is decremented to prevent a request_sock leak.
6853 */
6854 if (sk2 != sk) {
6855 sock_gen_put(sk);
6856 /* Ensure there is no need to bump sk2 refcnt */
6857 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6858 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6859 return NULL;
6860 }
6861 sk = sk2;
6862 }
6863 }
6864
6865 return sk;
6866 }
6867
6868 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6869 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6870 u8 proto, u64 netns_id, u64 flags)
6871 {
6872 struct net *caller_net;
6873 int ifindex;
6874
6875 if (skb->dev) {
6876 caller_net = dev_net(skb->dev);
6877 ifindex = skb->dev->ifindex;
6878 } else {
6879 caller_net = sock_net(skb->sk);
6880 ifindex = 0;
6881 }
6882
6883 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6884 netns_id, flags, -1);
6885 }
6886
6887 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6888 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6889 u8 proto, u64 netns_id, u64 flags)
6890 {
6891 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6892 flags);
6893
6894 if (sk) {
6895 struct sock *sk2 = sk_to_full_sk(sk);
6896
6897 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6898 * sock refcnt is decremented to prevent a request_sock leak.
6899 */
6900 if (sk2 != sk) {
6901 sock_gen_put(sk);
6902 /* Ensure there is no need to bump sk2 refcnt */
6903 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6904 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6905 return NULL;
6906 }
6907 sk = sk2;
6908 }
6909 }
6910
6911 return sk;
6912 }
6913
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6914 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6915 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6916 {
6917 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6918 netns_id, flags);
6919 }
6920
6921 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6922 .func = bpf_skc_lookup_tcp,
6923 .gpl_only = false,
6924 .pkt_access = true,
6925 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6926 .arg1_type = ARG_PTR_TO_CTX,
6927 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6928 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6929 .arg4_type = ARG_ANYTHING,
6930 .arg5_type = ARG_ANYTHING,
6931 };
6932
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6933 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6934 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6935 {
6936 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6937 netns_id, flags);
6938 }
6939
6940 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6941 .func = bpf_sk_lookup_tcp,
6942 .gpl_only = false,
6943 .pkt_access = true,
6944 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6945 .arg1_type = ARG_PTR_TO_CTX,
6946 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6947 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6948 .arg4_type = ARG_ANYTHING,
6949 .arg5_type = ARG_ANYTHING,
6950 };
6951
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6952 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6953 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6954 {
6955 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6956 netns_id, flags);
6957 }
6958
6959 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6960 .func = bpf_sk_lookup_udp,
6961 .gpl_only = false,
6962 .pkt_access = true,
6963 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6964 .arg1_type = ARG_PTR_TO_CTX,
6965 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6966 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6967 .arg4_type = ARG_ANYTHING,
6968 .arg5_type = ARG_ANYTHING,
6969 };
6970
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6971 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6972 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6973 {
6974 struct net_device *dev = skb->dev;
6975 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6976 struct net *caller_net = dev_net(dev);
6977
6978 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6979 ifindex, IPPROTO_TCP, netns_id,
6980 flags, sdif);
6981 }
6982
6983 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6984 .func = bpf_tc_skc_lookup_tcp,
6985 .gpl_only = false,
6986 .pkt_access = true,
6987 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6988 .arg1_type = ARG_PTR_TO_CTX,
6989 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6990 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6991 .arg4_type = ARG_ANYTHING,
6992 .arg5_type = ARG_ANYTHING,
6993 };
6994
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6995 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6996 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6997 {
6998 struct net_device *dev = skb->dev;
6999 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7000 struct net *caller_net = dev_net(dev);
7001
7002 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7003 ifindex, IPPROTO_TCP, netns_id,
7004 flags, sdif);
7005 }
7006
7007 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7008 .func = bpf_tc_sk_lookup_tcp,
7009 .gpl_only = false,
7010 .pkt_access = true,
7011 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7012 .arg1_type = ARG_PTR_TO_CTX,
7013 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7014 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7015 .arg4_type = ARG_ANYTHING,
7016 .arg5_type = ARG_ANYTHING,
7017 };
7018
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7019 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7020 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7021 {
7022 struct net_device *dev = skb->dev;
7023 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7024 struct net *caller_net = dev_net(dev);
7025
7026 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7027 ifindex, IPPROTO_UDP, netns_id,
7028 flags, sdif);
7029 }
7030
7031 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7032 .func = bpf_tc_sk_lookup_udp,
7033 .gpl_only = false,
7034 .pkt_access = true,
7035 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7036 .arg1_type = ARG_PTR_TO_CTX,
7037 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7038 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7039 .arg4_type = ARG_ANYTHING,
7040 .arg5_type = ARG_ANYTHING,
7041 };
7042
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7043 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7044 {
7045 if (sk && sk_is_refcounted(sk))
7046 sock_gen_put(sk);
7047 return 0;
7048 }
7049
7050 static const struct bpf_func_proto bpf_sk_release_proto = {
7051 .func = bpf_sk_release,
7052 .gpl_only = false,
7053 .ret_type = RET_INTEGER,
7054 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7055 };
7056
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7057 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7058 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7059 {
7060 struct net_device *dev = ctx->rxq->dev;
7061 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7062 struct net *caller_net = dev_net(dev);
7063
7064 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7065 ifindex, IPPROTO_UDP, netns_id,
7066 flags, sdif);
7067 }
7068
7069 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7070 .func = bpf_xdp_sk_lookup_udp,
7071 .gpl_only = false,
7072 .pkt_access = true,
7073 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7074 .arg1_type = ARG_PTR_TO_CTX,
7075 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7076 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7077 .arg4_type = ARG_ANYTHING,
7078 .arg5_type = ARG_ANYTHING,
7079 };
7080
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7081 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7082 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7083 {
7084 struct net_device *dev = ctx->rxq->dev;
7085 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7086 struct net *caller_net = dev_net(dev);
7087
7088 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7089 ifindex, IPPROTO_TCP, netns_id,
7090 flags, sdif);
7091 }
7092
7093 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7094 .func = bpf_xdp_skc_lookup_tcp,
7095 .gpl_only = false,
7096 .pkt_access = true,
7097 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7098 .arg1_type = ARG_PTR_TO_CTX,
7099 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7100 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7101 .arg4_type = ARG_ANYTHING,
7102 .arg5_type = ARG_ANYTHING,
7103 };
7104
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7105 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7106 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7107 {
7108 struct net_device *dev = ctx->rxq->dev;
7109 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7110 struct net *caller_net = dev_net(dev);
7111
7112 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7113 ifindex, IPPROTO_TCP, netns_id,
7114 flags, sdif);
7115 }
7116
7117 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7118 .func = bpf_xdp_sk_lookup_tcp,
7119 .gpl_only = false,
7120 .pkt_access = true,
7121 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7122 .arg1_type = ARG_PTR_TO_CTX,
7123 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7124 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7125 .arg4_type = ARG_ANYTHING,
7126 .arg5_type = ARG_ANYTHING,
7127 };
7128
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7129 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7130 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7131 {
7132 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7133 sock_net(ctx->sk), 0,
7134 IPPROTO_TCP, netns_id, flags,
7135 -1);
7136 }
7137
7138 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7139 .func = bpf_sock_addr_skc_lookup_tcp,
7140 .gpl_only = false,
7141 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7142 .arg1_type = ARG_PTR_TO_CTX,
7143 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7144 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7145 .arg4_type = ARG_ANYTHING,
7146 .arg5_type = ARG_ANYTHING,
7147 };
7148
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7149 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7150 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7151 {
7152 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7153 sock_net(ctx->sk), 0, IPPROTO_TCP,
7154 netns_id, flags, -1);
7155 }
7156
7157 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7158 .func = bpf_sock_addr_sk_lookup_tcp,
7159 .gpl_only = false,
7160 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7161 .arg1_type = ARG_PTR_TO_CTX,
7162 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7163 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7164 .arg4_type = ARG_ANYTHING,
7165 .arg5_type = ARG_ANYTHING,
7166 };
7167
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7168 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7169 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7170 {
7171 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7172 sock_net(ctx->sk), 0, IPPROTO_UDP,
7173 netns_id, flags, -1);
7174 }
7175
7176 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7177 .func = bpf_sock_addr_sk_lookup_udp,
7178 .gpl_only = false,
7179 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7180 .arg1_type = ARG_PTR_TO_CTX,
7181 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7182 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7183 .arg4_type = ARG_ANYTHING,
7184 .arg5_type = ARG_ANYTHING,
7185 };
7186
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7187 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7188 struct bpf_insn_access_aux *info)
7189 {
7190 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7191 icsk_retransmits))
7192 return false;
7193
7194 if (off % size != 0)
7195 return false;
7196
7197 switch (off) {
7198 case offsetof(struct bpf_tcp_sock, bytes_received):
7199 case offsetof(struct bpf_tcp_sock, bytes_acked):
7200 return size == sizeof(__u64);
7201 default:
7202 return size == sizeof(__u32);
7203 }
7204 }
7205
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7206 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7207 const struct bpf_insn *si,
7208 struct bpf_insn *insn_buf,
7209 struct bpf_prog *prog, u32 *target_size)
7210 {
7211 struct bpf_insn *insn = insn_buf;
7212
7213 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7214 do { \
7215 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7216 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7217 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7218 si->dst_reg, si->src_reg, \
7219 offsetof(struct tcp_sock, FIELD)); \
7220 } while (0)
7221
7222 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7223 do { \
7224 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7225 FIELD) > \
7226 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7227 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7228 struct inet_connection_sock, \
7229 FIELD), \
7230 si->dst_reg, si->src_reg, \
7231 offsetof( \
7232 struct inet_connection_sock, \
7233 FIELD)); \
7234 } while (0)
7235
7236 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7237
7238 switch (si->off) {
7239 case offsetof(struct bpf_tcp_sock, rtt_min):
7240 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7241 sizeof(struct minmax));
7242 BUILD_BUG_ON(sizeof(struct minmax) <
7243 sizeof(struct minmax_sample));
7244
7245 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7246 offsetof(struct tcp_sock, rtt_min) +
7247 offsetof(struct minmax_sample, v));
7248 break;
7249 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7250 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7251 break;
7252 case offsetof(struct bpf_tcp_sock, srtt_us):
7253 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7254 break;
7255 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7256 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7257 break;
7258 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7259 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7260 break;
7261 case offsetof(struct bpf_tcp_sock, snd_nxt):
7262 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7263 break;
7264 case offsetof(struct bpf_tcp_sock, snd_una):
7265 BPF_TCP_SOCK_GET_COMMON(snd_una);
7266 break;
7267 case offsetof(struct bpf_tcp_sock, mss_cache):
7268 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7269 break;
7270 case offsetof(struct bpf_tcp_sock, ecn_flags):
7271 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7272 break;
7273 case offsetof(struct bpf_tcp_sock, rate_delivered):
7274 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7275 break;
7276 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7277 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7278 break;
7279 case offsetof(struct bpf_tcp_sock, packets_out):
7280 BPF_TCP_SOCK_GET_COMMON(packets_out);
7281 break;
7282 case offsetof(struct bpf_tcp_sock, retrans_out):
7283 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7284 break;
7285 case offsetof(struct bpf_tcp_sock, total_retrans):
7286 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7287 break;
7288 case offsetof(struct bpf_tcp_sock, segs_in):
7289 BPF_TCP_SOCK_GET_COMMON(segs_in);
7290 break;
7291 case offsetof(struct bpf_tcp_sock, data_segs_in):
7292 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7293 break;
7294 case offsetof(struct bpf_tcp_sock, segs_out):
7295 BPF_TCP_SOCK_GET_COMMON(segs_out);
7296 break;
7297 case offsetof(struct bpf_tcp_sock, data_segs_out):
7298 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7299 break;
7300 case offsetof(struct bpf_tcp_sock, lost_out):
7301 BPF_TCP_SOCK_GET_COMMON(lost_out);
7302 break;
7303 case offsetof(struct bpf_tcp_sock, sacked_out):
7304 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7305 break;
7306 case offsetof(struct bpf_tcp_sock, bytes_received):
7307 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7308 break;
7309 case offsetof(struct bpf_tcp_sock, bytes_acked):
7310 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7311 break;
7312 case offsetof(struct bpf_tcp_sock, dsack_dups):
7313 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7314 break;
7315 case offsetof(struct bpf_tcp_sock, delivered):
7316 BPF_TCP_SOCK_GET_COMMON(delivered);
7317 break;
7318 case offsetof(struct bpf_tcp_sock, delivered_ce):
7319 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7320 break;
7321 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7322 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7323 break;
7324 }
7325
7326 return insn - insn_buf;
7327 }
7328
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7329 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7330 {
7331 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7332 return (unsigned long)sk;
7333
7334 return (unsigned long)NULL;
7335 }
7336
7337 const struct bpf_func_proto bpf_tcp_sock_proto = {
7338 .func = bpf_tcp_sock,
7339 .gpl_only = false,
7340 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7341 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7342 };
7343
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7344 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7345 {
7346 sk = sk_to_full_sk(sk);
7347
7348 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7349 return (unsigned long)sk;
7350
7351 return (unsigned long)NULL;
7352 }
7353
7354 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7355 .func = bpf_get_listener_sock,
7356 .gpl_only = false,
7357 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7358 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7359 };
7360
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7361 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7362 {
7363 unsigned int iphdr_len;
7364
7365 switch (skb_protocol(skb, true)) {
7366 case cpu_to_be16(ETH_P_IP):
7367 iphdr_len = sizeof(struct iphdr);
7368 break;
7369 case cpu_to_be16(ETH_P_IPV6):
7370 iphdr_len = sizeof(struct ipv6hdr);
7371 break;
7372 default:
7373 return 0;
7374 }
7375
7376 if (skb_headlen(skb) < iphdr_len)
7377 return 0;
7378
7379 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7380 return 0;
7381
7382 return INET_ECN_set_ce(skb);
7383 }
7384
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7385 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7386 struct bpf_insn_access_aux *info)
7387 {
7388 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7389 return false;
7390
7391 if (off % size != 0)
7392 return false;
7393
7394 switch (off) {
7395 default:
7396 return size == sizeof(__u32);
7397 }
7398 }
7399
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7400 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7401 const struct bpf_insn *si,
7402 struct bpf_insn *insn_buf,
7403 struct bpf_prog *prog, u32 *target_size)
7404 {
7405 struct bpf_insn *insn = insn_buf;
7406
7407 #define BPF_XDP_SOCK_GET(FIELD) \
7408 do { \
7409 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7410 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7411 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7412 si->dst_reg, si->src_reg, \
7413 offsetof(struct xdp_sock, FIELD)); \
7414 } while (0)
7415
7416 switch (si->off) {
7417 case offsetof(struct bpf_xdp_sock, queue_id):
7418 BPF_XDP_SOCK_GET(queue_id);
7419 break;
7420 }
7421
7422 return insn - insn_buf;
7423 }
7424
7425 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7426 .func = bpf_skb_ecn_set_ce,
7427 .gpl_only = false,
7428 .ret_type = RET_INTEGER,
7429 .arg1_type = ARG_PTR_TO_CTX,
7430 };
7431
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7432 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7433 struct tcphdr *, th, u32, th_len)
7434 {
7435 #ifdef CONFIG_SYN_COOKIES
7436 int ret;
7437
7438 if (unlikely(!sk || th_len < sizeof(*th)))
7439 return -EINVAL;
7440
7441 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7442 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7443 return -EINVAL;
7444
7445 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7446 return -EINVAL;
7447
7448 if (!th->ack || th->rst || th->syn)
7449 return -ENOENT;
7450
7451 if (unlikely(iph_len < sizeof(struct iphdr)))
7452 return -EINVAL;
7453
7454 if (tcp_synq_no_recent_overflow(sk))
7455 return -ENOENT;
7456
7457 /* Both struct iphdr and struct ipv6hdr have the version field at the
7458 * same offset so we can cast to the shorter header (struct iphdr).
7459 */
7460 switch (((struct iphdr *)iph)->version) {
7461 case 4:
7462 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7463 return -EINVAL;
7464
7465 ret = __cookie_v4_check((struct iphdr *)iph, th);
7466 break;
7467
7468 #if IS_BUILTIN(CONFIG_IPV6)
7469 case 6:
7470 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7471 return -EINVAL;
7472
7473 if (sk->sk_family != AF_INET6)
7474 return -EINVAL;
7475
7476 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7477 break;
7478 #endif /* CONFIG_IPV6 */
7479
7480 default:
7481 return -EPROTONOSUPPORT;
7482 }
7483
7484 if (ret > 0)
7485 return 0;
7486
7487 return -ENOENT;
7488 #else
7489 return -ENOTSUPP;
7490 #endif
7491 }
7492
7493 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7494 .func = bpf_tcp_check_syncookie,
7495 .gpl_only = true,
7496 .pkt_access = true,
7497 .ret_type = RET_INTEGER,
7498 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7499 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7500 .arg3_type = ARG_CONST_SIZE,
7501 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7502 .arg5_type = ARG_CONST_SIZE,
7503 };
7504
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7505 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7506 struct tcphdr *, th, u32, th_len)
7507 {
7508 #ifdef CONFIG_SYN_COOKIES
7509 u32 cookie;
7510 u16 mss;
7511
7512 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7513 return -EINVAL;
7514
7515 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7516 return -EINVAL;
7517
7518 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7519 return -ENOENT;
7520
7521 if (!th->syn || th->ack || th->fin || th->rst)
7522 return -EINVAL;
7523
7524 if (unlikely(iph_len < sizeof(struct iphdr)))
7525 return -EINVAL;
7526
7527 /* Both struct iphdr and struct ipv6hdr have the version field at the
7528 * same offset so we can cast to the shorter header (struct iphdr).
7529 */
7530 switch (((struct iphdr *)iph)->version) {
7531 case 4:
7532 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7533 return -EINVAL;
7534
7535 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7536 break;
7537
7538 #if IS_BUILTIN(CONFIG_IPV6)
7539 case 6:
7540 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7541 return -EINVAL;
7542
7543 if (sk->sk_family != AF_INET6)
7544 return -EINVAL;
7545
7546 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7547 break;
7548 #endif /* CONFIG_IPV6 */
7549
7550 default:
7551 return -EPROTONOSUPPORT;
7552 }
7553 if (mss == 0)
7554 return -ENOENT;
7555
7556 return cookie | ((u64)mss << 32);
7557 #else
7558 return -EOPNOTSUPP;
7559 #endif /* CONFIG_SYN_COOKIES */
7560 }
7561
7562 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7563 .func = bpf_tcp_gen_syncookie,
7564 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7565 .pkt_access = true,
7566 .ret_type = RET_INTEGER,
7567 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7568 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7569 .arg3_type = ARG_CONST_SIZE,
7570 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7571 .arg5_type = ARG_CONST_SIZE,
7572 };
7573
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7574 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7575 {
7576 if (!sk || flags != 0)
7577 return -EINVAL;
7578 if (!skb_at_tc_ingress(skb))
7579 return -EOPNOTSUPP;
7580 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7581 return -ENETUNREACH;
7582 if (sk_unhashed(sk))
7583 return -EOPNOTSUPP;
7584 if (sk_is_refcounted(sk) &&
7585 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7586 return -ENOENT;
7587
7588 skb_orphan(skb);
7589 skb->sk = sk;
7590 skb->destructor = sock_pfree;
7591
7592 return 0;
7593 }
7594
7595 static const struct bpf_func_proto bpf_sk_assign_proto = {
7596 .func = bpf_sk_assign,
7597 .gpl_only = false,
7598 .ret_type = RET_INTEGER,
7599 .arg1_type = ARG_PTR_TO_CTX,
7600 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7601 .arg3_type = ARG_ANYTHING,
7602 };
7603
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7604 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7605 u8 search_kind, const u8 *magic,
7606 u8 magic_len, bool *eol)
7607 {
7608 u8 kind, kind_len;
7609
7610 *eol = false;
7611
7612 while (op < opend) {
7613 kind = op[0];
7614
7615 if (kind == TCPOPT_EOL) {
7616 *eol = true;
7617 return ERR_PTR(-ENOMSG);
7618 } else if (kind == TCPOPT_NOP) {
7619 op++;
7620 continue;
7621 }
7622
7623 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7624 /* Something is wrong in the received header.
7625 * Follow the TCP stack's tcp_parse_options()
7626 * and just bail here.
7627 */
7628 return ERR_PTR(-EFAULT);
7629
7630 kind_len = op[1];
7631 if (search_kind == kind) {
7632 if (!magic_len)
7633 return op;
7634
7635 if (magic_len > kind_len - 2)
7636 return ERR_PTR(-ENOMSG);
7637
7638 if (!memcmp(&op[2], magic, magic_len))
7639 return op;
7640 }
7641
7642 op += kind_len;
7643 }
7644
7645 return ERR_PTR(-ENOMSG);
7646 }
7647
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7648 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7649 void *, search_res, u32, len, u64, flags)
7650 {
7651 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7652 const u8 *op, *opend, *magic, *search = search_res;
7653 u8 search_kind, search_len, copy_len, magic_len;
7654 int ret;
7655
7656 if (!is_locked_tcp_sock_ops(bpf_sock))
7657 return -EOPNOTSUPP;
7658
7659 /* 2 byte is the minimal option len except TCPOPT_NOP and
7660 * TCPOPT_EOL which are useless for the bpf prog to learn
7661 * and this helper disallow loading them also.
7662 */
7663 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7664 return -EINVAL;
7665
7666 search_kind = search[0];
7667 search_len = search[1];
7668
7669 if (search_len > len || search_kind == TCPOPT_NOP ||
7670 search_kind == TCPOPT_EOL)
7671 return -EINVAL;
7672
7673 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7674 /* 16 or 32 bit magic. +2 for kind and kind length */
7675 if (search_len != 4 && search_len != 6)
7676 return -EINVAL;
7677 magic = &search[2];
7678 magic_len = search_len - 2;
7679 } else {
7680 if (search_len)
7681 return -EINVAL;
7682 magic = NULL;
7683 magic_len = 0;
7684 }
7685
7686 if (load_syn) {
7687 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7688 if (ret < 0)
7689 return ret;
7690
7691 opend = op + ret;
7692 op += sizeof(struct tcphdr);
7693 } else {
7694 if (!bpf_sock->skb ||
7695 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7696 /* This bpf_sock->op cannot call this helper */
7697 return -EPERM;
7698
7699 opend = bpf_sock->skb_data_end;
7700 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7701 }
7702
7703 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7704 &eol);
7705 if (IS_ERR(op))
7706 return PTR_ERR(op);
7707
7708 copy_len = op[1];
7709 ret = copy_len;
7710 if (copy_len > len) {
7711 ret = -ENOSPC;
7712 copy_len = len;
7713 }
7714
7715 memcpy(search_res, op, copy_len);
7716 return ret;
7717 }
7718
7719 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7720 .func = bpf_sock_ops_load_hdr_opt,
7721 .gpl_only = false,
7722 .ret_type = RET_INTEGER,
7723 .arg1_type = ARG_PTR_TO_CTX,
7724 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7725 .arg3_type = ARG_CONST_SIZE,
7726 .arg4_type = ARG_ANYTHING,
7727 };
7728
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7729 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7730 const void *, from, u32, len, u64, flags)
7731 {
7732 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7733 const u8 *op, *new_op, *magic = NULL;
7734 struct sk_buff *skb;
7735 bool eol;
7736
7737 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7738 return -EPERM;
7739
7740 if (len < 2 || flags)
7741 return -EINVAL;
7742
7743 new_op = from;
7744 new_kind = new_op[0];
7745 new_kind_len = new_op[1];
7746
7747 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7748 new_kind == TCPOPT_EOL)
7749 return -EINVAL;
7750
7751 if (new_kind_len > bpf_sock->remaining_opt_len)
7752 return -ENOSPC;
7753
7754 /* 253 is another experimental kind */
7755 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7756 if (new_kind_len < 4)
7757 return -EINVAL;
7758 /* Match for the 2 byte magic also.
7759 * RFC 6994: the magic could be 2 or 4 bytes.
7760 * Hence, matching by 2 byte only is on the
7761 * conservative side but it is the right
7762 * thing to do for the 'search-for-duplication'
7763 * purpose.
7764 */
7765 magic = &new_op[2];
7766 magic_len = 2;
7767 }
7768
7769 /* Check for duplication */
7770 skb = bpf_sock->skb;
7771 op = skb->data + sizeof(struct tcphdr);
7772 opend = bpf_sock->skb_data_end;
7773
7774 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7775 &eol);
7776 if (!IS_ERR(op))
7777 return -EEXIST;
7778
7779 if (PTR_ERR(op) != -ENOMSG)
7780 return PTR_ERR(op);
7781
7782 if (eol)
7783 /* The option has been ended. Treat it as no more
7784 * header option can be written.
7785 */
7786 return -ENOSPC;
7787
7788 /* No duplication found. Store the header option. */
7789 memcpy(opend, from, new_kind_len);
7790
7791 bpf_sock->remaining_opt_len -= new_kind_len;
7792 bpf_sock->skb_data_end += new_kind_len;
7793
7794 return 0;
7795 }
7796
7797 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7798 .func = bpf_sock_ops_store_hdr_opt,
7799 .gpl_only = false,
7800 .ret_type = RET_INTEGER,
7801 .arg1_type = ARG_PTR_TO_CTX,
7802 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7803 .arg3_type = ARG_CONST_SIZE,
7804 .arg4_type = ARG_ANYTHING,
7805 };
7806
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7807 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7808 u32, len, u64, flags)
7809 {
7810 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7811 return -EPERM;
7812
7813 if (flags || len < 2)
7814 return -EINVAL;
7815
7816 if (len > bpf_sock->remaining_opt_len)
7817 return -ENOSPC;
7818
7819 bpf_sock->remaining_opt_len -= len;
7820
7821 return 0;
7822 }
7823
7824 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7825 .func = bpf_sock_ops_reserve_hdr_opt,
7826 .gpl_only = false,
7827 .ret_type = RET_INTEGER,
7828 .arg1_type = ARG_PTR_TO_CTX,
7829 .arg2_type = ARG_ANYTHING,
7830 .arg3_type = ARG_ANYTHING,
7831 };
7832
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7833 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7834 u64, tstamp, u32, tstamp_type)
7835 {
7836 /* skb_clear_delivery_time() is done for inet protocol */
7837 if (skb->protocol != htons(ETH_P_IP) &&
7838 skb->protocol != htons(ETH_P_IPV6))
7839 return -EOPNOTSUPP;
7840
7841 switch (tstamp_type) {
7842 case BPF_SKB_CLOCK_REALTIME:
7843 skb->tstamp = tstamp;
7844 skb->tstamp_type = SKB_CLOCK_REALTIME;
7845 break;
7846 case BPF_SKB_CLOCK_MONOTONIC:
7847 if (!tstamp)
7848 return -EINVAL;
7849 skb->tstamp = tstamp;
7850 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7851 break;
7852 case BPF_SKB_CLOCK_TAI:
7853 if (!tstamp)
7854 return -EINVAL;
7855 skb->tstamp = tstamp;
7856 skb->tstamp_type = SKB_CLOCK_TAI;
7857 break;
7858 default:
7859 return -EINVAL;
7860 }
7861
7862 return 0;
7863 }
7864
7865 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7866 .func = bpf_skb_set_tstamp,
7867 .gpl_only = false,
7868 .ret_type = RET_INTEGER,
7869 .arg1_type = ARG_PTR_TO_CTX,
7870 .arg2_type = ARG_ANYTHING,
7871 .arg3_type = ARG_ANYTHING,
7872 };
7873
7874 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7875 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7876 struct tcphdr *, th, u32, th_len)
7877 {
7878 u32 cookie;
7879 u16 mss;
7880
7881 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7882 return -EINVAL;
7883
7884 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7885 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7886
7887 return cookie | ((u64)mss << 32);
7888 }
7889
7890 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7891 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7892 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7893 .pkt_access = true,
7894 .ret_type = RET_INTEGER,
7895 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7896 .arg1_size = sizeof(struct iphdr),
7897 .arg2_type = ARG_PTR_TO_MEM,
7898 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7899 };
7900
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7901 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7902 struct tcphdr *, th, u32, th_len)
7903 {
7904 #if IS_BUILTIN(CONFIG_IPV6)
7905 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7906 sizeof(struct ipv6hdr);
7907 u32 cookie;
7908 u16 mss;
7909
7910 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7911 return -EINVAL;
7912
7913 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7914 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7915
7916 return cookie | ((u64)mss << 32);
7917 #else
7918 return -EPROTONOSUPPORT;
7919 #endif
7920 }
7921
7922 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7923 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7924 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7925 .pkt_access = true,
7926 .ret_type = RET_INTEGER,
7927 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7928 .arg1_size = sizeof(struct ipv6hdr),
7929 .arg2_type = ARG_PTR_TO_MEM,
7930 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7931 };
7932
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7933 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7934 struct tcphdr *, th)
7935 {
7936 if (__cookie_v4_check(iph, th) > 0)
7937 return 0;
7938
7939 return -EACCES;
7940 }
7941
7942 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7943 .func = bpf_tcp_raw_check_syncookie_ipv4,
7944 .gpl_only = true, /* __cookie_v4_check is GPL */
7945 .pkt_access = true,
7946 .ret_type = RET_INTEGER,
7947 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7948 .arg1_size = sizeof(struct iphdr),
7949 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7950 .arg2_size = sizeof(struct tcphdr),
7951 };
7952
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7953 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7954 struct tcphdr *, th)
7955 {
7956 #if IS_BUILTIN(CONFIG_IPV6)
7957 if (__cookie_v6_check(iph, th) > 0)
7958 return 0;
7959
7960 return -EACCES;
7961 #else
7962 return -EPROTONOSUPPORT;
7963 #endif
7964 }
7965
7966 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7967 .func = bpf_tcp_raw_check_syncookie_ipv6,
7968 .gpl_only = true, /* __cookie_v6_check is GPL */
7969 .pkt_access = true,
7970 .ret_type = RET_INTEGER,
7971 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7972 .arg1_size = sizeof(struct ipv6hdr),
7973 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7974 .arg2_size = sizeof(struct tcphdr),
7975 };
7976 #endif /* CONFIG_SYN_COOKIES */
7977
7978 #endif /* CONFIG_INET */
7979
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7980 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7981 {
7982 switch (func_id) {
7983 case BPF_FUNC_clone_redirect:
7984 case BPF_FUNC_l3_csum_replace:
7985 case BPF_FUNC_l4_csum_replace:
7986 case BPF_FUNC_lwt_push_encap:
7987 case BPF_FUNC_lwt_seg6_action:
7988 case BPF_FUNC_lwt_seg6_adjust_srh:
7989 case BPF_FUNC_lwt_seg6_store_bytes:
7990 case BPF_FUNC_msg_pop_data:
7991 case BPF_FUNC_msg_pull_data:
7992 case BPF_FUNC_msg_push_data:
7993 case BPF_FUNC_skb_adjust_room:
7994 case BPF_FUNC_skb_change_head:
7995 case BPF_FUNC_skb_change_proto:
7996 case BPF_FUNC_skb_change_tail:
7997 case BPF_FUNC_skb_pull_data:
7998 case BPF_FUNC_skb_store_bytes:
7999 case BPF_FUNC_skb_vlan_pop:
8000 case BPF_FUNC_skb_vlan_push:
8001 case BPF_FUNC_store_hdr_opt:
8002 case BPF_FUNC_xdp_adjust_head:
8003 case BPF_FUNC_xdp_adjust_meta:
8004 case BPF_FUNC_xdp_adjust_tail:
8005 /* tail-called program could call any of the above */
8006 case BPF_FUNC_tail_call:
8007 return true;
8008 default:
8009 return false;
8010 }
8011 }
8012
8013 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8014 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8015
8016 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8017 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8018 {
8019 const struct bpf_func_proto *func_proto;
8020
8021 func_proto = cgroup_common_func_proto(func_id, prog);
8022 if (func_proto)
8023 return func_proto;
8024
8025 func_proto = cgroup_current_func_proto(func_id, prog);
8026 if (func_proto)
8027 return func_proto;
8028
8029 switch (func_id) {
8030 case BPF_FUNC_get_socket_cookie:
8031 return &bpf_get_socket_cookie_sock_proto;
8032 case BPF_FUNC_get_netns_cookie:
8033 return &bpf_get_netns_cookie_sock_proto;
8034 case BPF_FUNC_perf_event_output:
8035 return &bpf_event_output_data_proto;
8036 case BPF_FUNC_sk_storage_get:
8037 return &bpf_sk_storage_get_cg_sock_proto;
8038 case BPF_FUNC_ktime_get_coarse_ns:
8039 return &bpf_ktime_get_coarse_ns_proto;
8040 default:
8041 return bpf_base_func_proto(func_id, prog);
8042 }
8043 }
8044
8045 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8046 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8047 {
8048 const struct bpf_func_proto *func_proto;
8049
8050 func_proto = cgroup_common_func_proto(func_id, prog);
8051 if (func_proto)
8052 return func_proto;
8053
8054 func_proto = cgroup_current_func_proto(func_id, prog);
8055 if (func_proto)
8056 return func_proto;
8057
8058 switch (func_id) {
8059 case BPF_FUNC_bind:
8060 switch (prog->expected_attach_type) {
8061 case BPF_CGROUP_INET4_CONNECT:
8062 case BPF_CGROUP_INET6_CONNECT:
8063 return &bpf_bind_proto;
8064 default:
8065 return NULL;
8066 }
8067 case BPF_FUNC_get_socket_cookie:
8068 return &bpf_get_socket_cookie_sock_addr_proto;
8069 case BPF_FUNC_get_netns_cookie:
8070 return &bpf_get_netns_cookie_sock_addr_proto;
8071 case BPF_FUNC_perf_event_output:
8072 return &bpf_event_output_data_proto;
8073 #ifdef CONFIG_INET
8074 case BPF_FUNC_sk_lookup_tcp:
8075 return &bpf_sock_addr_sk_lookup_tcp_proto;
8076 case BPF_FUNC_sk_lookup_udp:
8077 return &bpf_sock_addr_sk_lookup_udp_proto;
8078 case BPF_FUNC_sk_release:
8079 return &bpf_sk_release_proto;
8080 case BPF_FUNC_skc_lookup_tcp:
8081 return &bpf_sock_addr_skc_lookup_tcp_proto;
8082 #endif /* CONFIG_INET */
8083 case BPF_FUNC_sk_storage_get:
8084 return &bpf_sk_storage_get_proto;
8085 case BPF_FUNC_sk_storage_delete:
8086 return &bpf_sk_storage_delete_proto;
8087 case BPF_FUNC_setsockopt:
8088 switch (prog->expected_attach_type) {
8089 case BPF_CGROUP_INET4_BIND:
8090 case BPF_CGROUP_INET6_BIND:
8091 case BPF_CGROUP_INET4_CONNECT:
8092 case BPF_CGROUP_INET6_CONNECT:
8093 case BPF_CGROUP_UNIX_CONNECT:
8094 case BPF_CGROUP_UDP4_RECVMSG:
8095 case BPF_CGROUP_UDP6_RECVMSG:
8096 case BPF_CGROUP_UNIX_RECVMSG:
8097 case BPF_CGROUP_UDP4_SENDMSG:
8098 case BPF_CGROUP_UDP6_SENDMSG:
8099 case BPF_CGROUP_UNIX_SENDMSG:
8100 case BPF_CGROUP_INET4_GETPEERNAME:
8101 case BPF_CGROUP_INET6_GETPEERNAME:
8102 case BPF_CGROUP_UNIX_GETPEERNAME:
8103 case BPF_CGROUP_INET4_GETSOCKNAME:
8104 case BPF_CGROUP_INET6_GETSOCKNAME:
8105 case BPF_CGROUP_UNIX_GETSOCKNAME:
8106 return &bpf_sock_addr_setsockopt_proto;
8107 default:
8108 return NULL;
8109 }
8110 case BPF_FUNC_getsockopt:
8111 switch (prog->expected_attach_type) {
8112 case BPF_CGROUP_INET4_BIND:
8113 case BPF_CGROUP_INET6_BIND:
8114 case BPF_CGROUP_INET4_CONNECT:
8115 case BPF_CGROUP_INET6_CONNECT:
8116 case BPF_CGROUP_UNIX_CONNECT:
8117 case BPF_CGROUP_UDP4_RECVMSG:
8118 case BPF_CGROUP_UDP6_RECVMSG:
8119 case BPF_CGROUP_UNIX_RECVMSG:
8120 case BPF_CGROUP_UDP4_SENDMSG:
8121 case BPF_CGROUP_UDP6_SENDMSG:
8122 case BPF_CGROUP_UNIX_SENDMSG:
8123 case BPF_CGROUP_INET4_GETPEERNAME:
8124 case BPF_CGROUP_INET6_GETPEERNAME:
8125 case BPF_CGROUP_UNIX_GETPEERNAME:
8126 case BPF_CGROUP_INET4_GETSOCKNAME:
8127 case BPF_CGROUP_INET6_GETSOCKNAME:
8128 case BPF_CGROUP_UNIX_GETSOCKNAME:
8129 return &bpf_sock_addr_getsockopt_proto;
8130 default:
8131 return NULL;
8132 }
8133 default:
8134 return bpf_sk_base_func_proto(func_id, prog);
8135 }
8136 }
8137
8138 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8139 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8140 {
8141 switch (func_id) {
8142 case BPF_FUNC_skb_load_bytes:
8143 return &bpf_skb_load_bytes_proto;
8144 case BPF_FUNC_skb_load_bytes_relative:
8145 return &bpf_skb_load_bytes_relative_proto;
8146 case BPF_FUNC_get_socket_cookie:
8147 return &bpf_get_socket_cookie_proto;
8148 case BPF_FUNC_get_netns_cookie:
8149 return &bpf_get_netns_cookie_proto;
8150 case BPF_FUNC_get_socket_uid:
8151 return &bpf_get_socket_uid_proto;
8152 case BPF_FUNC_perf_event_output:
8153 return &bpf_skb_event_output_proto;
8154 default:
8155 return bpf_sk_base_func_proto(func_id, prog);
8156 }
8157 }
8158
8159 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8160 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8161
8162 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8163 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8164 {
8165 const struct bpf_func_proto *func_proto;
8166
8167 func_proto = cgroup_common_func_proto(func_id, prog);
8168 if (func_proto)
8169 return func_proto;
8170
8171 switch (func_id) {
8172 case BPF_FUNC_sk_fullsock:
8173 return &bpf_sk_fullsock_proto;
8174 case BPF_FUNC_sk_storage_get:
8175 return &bpf_sk_storage_get_proto;
8176 case BPF_FUNC_sk_storage_delete:
8177 return &bpf_sk_storage_delete_proto;
8178 case BPF_FUNC_perf_event_output:
8179 return &bpf_skb_event_output_proto;
8180 #ifdef CONFIG_SOCK_CGROUP_DATA
8181 case BPF_FUNC_skb_cgroup_id:
8182 return &bpf_skb_cgroup_id_proto;
8183 case BPF_FUNC_skb_ancestor_cgroup_id:
8184 return &bpf_skb_ancestor_cgroup_id_proto;
8185 case BPF_FUNC_sk_cgroup_id:
8186 return &bpf_sk_cgroup_id_proto;
8187 case BPF_FUNC_sk_ancestor_cgroup_id:
8188 return &bpf_sk_ancestor_cgroup_id_proto;
8189 #endif
8190 #ifdef CONFIG_INET
8191 case BPF_FUNC_sk_lookup_tcp:
8192 return &bpf_sk_lookup_tcp_proto;
8193 case BPF_FUNC_sk_lookup_udp:
8194 return &bpf_sk_lookup_udp_proto;
8195 case BPF_FUNC_sk_release:
8196 return &bpf_sk_release_proto;
8197 case BPF_FUNC_skc_lookup_tcp:
8198 return &bpf_skc_lookup_tcp_proto;
8199 case BPF_FUNC_tcp_sock:
8200 return &bpf_tcp_sock_proto;
8201 case BPF_FUNC_get_listener_sock:
8202 return &bpf_get_listener_sock_proto;
8203 case BPF_FUNC_skb_ecn_set_ce:
8204 return &bpf_skb_ecn_set_ce_proto;
8205 #endif
8206 default:
8207 return sk_filter_func_proto(func_id, prog);
8208 }
8209 }
8210
8211 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8212 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8213 {
8214 switch (func_id) {
8215 case BPF_FUNC_skb_store_bytes:
8216 return &bpf_skb_store_bytes_proto;
8217 case BPF_FUNC_skb_load_bytes:
8218 return &bpf_skb_load_bytes_proto;
8219 case BPF_FUNC_skb_load_bytes_relative:
8220 return &bpf_skb_load_bytes_relative_proto;
8221 case BPF_FUNC_skb_pull_data:
8222 return &bpf_skb_pull_data_proto;
8223 case BPF_FUNC_csum_diff:
8224 return &bpf_csum_diff_proto;
8225 case BPF_FUNC_csum_update:
8226 return &bpf_csum_update_proto;
8227 case BPF_FUNC_csum_level:
8228 return &bpf_csum_level_proto;
8229 case BPF_FUNC_l3_csum_replace:
8230 return &bpf_l3_csum_replace_proto;
8231 case BPF_FUNC_l4_csum_replace:
8232 return &bpf_l4_csum_replace_proto;
8233 case BPF_FUNC_clone_redirect:
8234 return &bpf_clone_redirect_proto;
8235 case BPF_FUNC_get_cgroup_classid:
8236 return &bpf_get_cgroup_classid_proto;
8237 case BPF_FUNC_skb_vlan_push:
8238 return &bpf_skb_vlan_push_proto;
8239 case BPF_FUNC_skb_vlan_pop:
8240 return &bpf_skb_vlan_pop_proto;
8241 case BPF_FUNC_skb_change_proto:
8242 return &bpf_skb_change_proto_proto;
8243 case BPF_FUNC_skb_change_type:
8244 return &bpf_skb_change_type_proto;
8245 case BPF_FUNC_skb_adjust_room:
8246 return &bpf_skb_adjust_room_proto;
8247 case BPF_FUNC_skb_change_tail:
8248 return &bpf_skb_change_tail_proto;
8249 case BPF_FUNC_skb_change_head:
8250 return &bpf_skb_change_head_proto;
8251 case BPF_FUNC_skb_get_tunnel_key:
8252 return &bpf_skb_get_tunnel_key_proto;
8253 case BPF_FUNC_skb_set_tunnel_key:
8254 return bpf_get_skb_set_tunnel_proto(func_id);
8255 case BPF_FUNC_skb_get_tunnel_opt:
8256 return &bpf_skb_get_tunnel_opt_proto;
8257 case BPF_FUNC_skb_set_tunnel_opt:
8258 return bpf_get_skb_set_tunnel_proto(func_id);
8259 case BPF_FUNC_redirect:
8260 return &bpf_redirect_proto;
8261 case BPF_FUNC_redirect_neigh:
8262 return &bpf_redirect_neigh_proto;
8263 case BPF_FUNC_redirect_peer:
8264 return &bpf_redirect_peer_proto;
8265 case BPF_FUNC_get_route_realm:
8266 return &bpf_get_route_realm_proto;
8267 case BPF_FUNC_get_hash_recalc:
8268 return &bpf_get_hash_recalc_proto;
8269 case BPF_FUNC_set_hash_invalid:
8270 return &bpf_set_hash_invalid_proto;
8271 case BPF_FUNC_set_hash:
8272 return &bpf_set_hash_proto;
8273 case BPF_FUNC_perf_event_output:
8274 return &bpf_skb_event_output_proto;
8275 case BPF_FUNC_get_smp_processor_id:
8276 return &bpf_get_smp_processor_id_proto;
8277 case BPF_FUNC_skb_under_cgroup:
8278 return &bpf_skb_under_cgroup_proto;
8279 case BPF_FUNC_get_socket_cookie:
8280 return &bpf_get_socket_cookie_proto;
8281 case BPF_FUNC_get_netns_cookie:
8282 return &bpf_get_netns_cookie_proto;
8283 case BPF_FUNC_get_socket_uid:
8284 return &bpf_get_socket_uid_proto;
8285 case BPF_FUNC_fib_lookup:
8286 return &bpf_skb_fib_lookup_proto;
8287 case BPF_FUNC_check_mtu:
8288 return &bpf_skb_check_mtu_proto;
8289 case BPF_FUNC_sk_fullsock:
8290 return &bpf_sk_fullsock_proto;
8291 case BPF_FUNC_sk_storage_get:
8292 return &bpf_sk_storage_get_proto;
8293 case BPF_FUNC_sk_storage_delete:
8294 return &bpf_sk_storage_delete_proto;
8295 #ifdef CONFIG_XFRM
8296 case BPF_FUNC_skb_get_xfrm_state:
8297 return &bpf_skb_get_xfrm_state_proto;
8298 #endif
8299 #ifdef CONFIG_CGROUP_NET_CLASSID
8300 case BPF_FUNC_skb_cgroup_classid:
8301 return &bpf_skb_cgroup_classid_proto;
8302 #endif
8303 #ifdef CONFIG_SOCK_CGROUP_DATA
8304 case BPF_FUNC_skb_cgroup_id:
8305 return &bpf_skb_cgroup_id_proto;
8306 case BPF_FUNC_skb_ancestor_cgroup_id:
8307 return &bpf_skb_ancestor_cgroup_id_proto;
8308 #endif
8309 #ifdef CONFIG_INET
8310 case BPF_FUNC_sk_lookup_tcp:
8311 return &bpf_tc_sk_lookup_tcp_proto;
8312 case BPF_FUNC_sk_lookup_udp:
8313 return &bpf_tc_sk_lookup_udp_proto;
8314 case BPF_FUNC_sk_release:
8315 return &bpf_sk_release_proto;
8316 case BPF_FUNC_tcp_sock:
8317 return &bpf_tcp_sock_proto;
8318 case BPF_FUNC_get_listener_sock:
8319 return &bpf_get_listener_sock_proto;
8320 case BPF_FUNC_skc_lookup_tcp:
8321 return &bpf_tc_skc_lookup_tcp_proto;
8322 case BPF_FUNC_tcp_check_syncookie:
8323 return &bpf_tcp_check_syncookie_proto;
8324 case BPF_FUNC_skb_ecn_set_ce:
8325 return &bpf_skb_ecn_set_ce_proto;
8326 case BPF_FUNC_tcp_gen_syncookie:
8327 return &bpf_tcp_gen_syncookie_proto;
8328 case BPF_FUNC_sk_assign:
8329 return &bpf_sk_assign_proto;
8330 case BPF_FUNC_skb_set_tstamp:
8331 return &bpf_skb_set_tstamp_proto;
8332 #ifdef CONFIG_SYN_COOKIES
8333 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8334 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8335 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8336 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8337 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8338 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8339 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8340 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8341 #endif
8342 #endif
8343 default:
8344 return bpf_sk_base_func_proto(func_id, prog);
8345 }
8346 }
8347
8348 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8349 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8350 {
8351 switch (func_id) {
8352 case BPF_FUNC_perf_event_output:
8353 return &bpf_xdp_event_output_proto;
8354 case BPF_FUNC_get_smp_processor_id:
8355 return &bpf_get_smp_processor_id_proto;
8356 case BPF_FUNC_csum_diff:
8357 return &bpf_csum_diff_proto;
8358 case BPF_FUNC_xdp_adjust_head:
8359 return &bpf_xdp_adjust_head_proto;
8360 case BPF_FUNC_xdp_adjust_meta:
8361 return &bpf_xdp_adjust_meta_proto;
8362 case BPF_FUNC_redirect:
8363 return &bpf_xdp_redirect_proto;
8364 case BPF_FUNC_redirect_map:
8365 return &bpf_xdp_redirect_map_proto;
8366 case BPF_FUNC_xdp_adjust_tail:
8367 return &bpf_xdp_adjust_tail_proto;
8368 case BPF_FUNC_xdp_get_buff_len:
8369 return &bpf_xdp_get_buff_len_proto;
8370 case BPF_FUNC_xdp_load_bytes:
8371 return &bpf_xdp_load_bytes_proto;
8372 case BPF_FUNC_xdp_store_bytes:
8373 return &bpf_xdp_store_bytes_proto;
8374 case BPF_FUNC_fib_lookup:
8375 return &bpf_xdp_fib_lookup_proto;
8376 case BPF_FUNC_check_mtu:
8377 return &bpf_xdp_check_mtu_proto;
8378 #ifdef CONFIG_INET
8379 case BPF_FUNC_sk_lookup_udp:
8380 return &bpf_xdp_sk_lookup_udp_proto;
8381 case BPF_FUNC_sk_lookup_tcp:
8382 return &bpf_xdp_sk_lookup_tcp_proto;
8383 case BPF_FUNC_sk_release:
8384 return &bpf_sk_release_proto;
8385 case BPF_FUNC_skc_lookup_tcp:
8386 return &bpf_xdp_skc_lookup_tcp_proto;
8387 case BPF_FUNC_tcp_check_syncookie:
8388 return &bpf_tcp_check_syncookie_proto;
8389 case BPF_FUNC_tcp_gen_syncookie:
8390 return &bpf_tcp_gen_syncookie_proto;
8391 #ifdef CONFIG_SYN_COOKIES
8392 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8393 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8394 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8395 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8396 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8397 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8398 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8399 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8400 #endif
8401 #endif
8402 default:
8403 return bpf_sk_base_func_proto(func_id, prog);
8404 }
8405
8406 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8407 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8408 * kfuncs are defined in two different modules, and we want to be able
8409 * to use them interchangeably with the same BTF type ID. Because modules
8410 * can't de-duplicate BTF IDs between each other, we need the type to be
8411 * referenced in the vmlinux BTF or the verifier will get confused about
8412 * the different types. So we add this dummy type reference which will
8413 * be included in vmlinux BTF, allowing both modules to refer to the
8414 * same type ID.
8415 */
8416 BTF_TYPE_EMIT(struct nf_conn___init);
8417 #endif
8418 }
8419
8420 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8421 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8422
8423 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8424 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8425 {
8426 const struct bpf_func_proto *func_proto;
8427
8428 func_proto = cgroup_common_func_proto(func_id, prog);
8429 if (func_proto)
8430 return func_proto;
8431
8432 switch (func_id) {
8433 case BPF_FUNC_setsockopt:
8434 return &bpf_sock_ops_setsockopt_proto;
8435 case BPF_FUNC_getsockopt:
8436 return &bpf_sock_ops_getsockopt_proto;
8437 case BPF_FUNC_sock_ops_cb_flags_set:
8438 return &bpf_sock_ops_cb_flags_set_proto;
8439 case BPF_FUNC_sock_map_update:
8440 return &bpf_sock_map_update_proto;
8441 case BPF_FUNC_sock_hash_update:
8442 return &bpf_sock_hash_update_proto;
8443 case BPF_FUNC_get_socket_cookie:
8444 return &bpf_get_socket_cookie_sock_ops_proto;
8445 case BPF_FUNC_perf_event_output:
8446 return &bpf_event_output_data_proto;
8447 case BPF_FUNC_sk_storage_get:
8448 return &bpf_sk_storage_get_proto;
8449 case BPF_FUNC_sk_storage_delete:
8450 return &bpf_sk_storage_delete_proto;
8451 case BPF_FUNC_get_netns_cookie:
8452 return &bpf_get_netns_cookie_sock_ops_proto;
8453 #ifdef CONFIG_INET
8454 case BPF_FUNC_load_hdr_opt:
8455 return &bpf_sock_ops_load_hdr_opt_proto;
8456 case BPF_FUNC_store_hdr_opt:
8457 return &bpf_sock_ops_store_hdr_opt_proto;
8458 case BPF_FUNC_reserve_hdr_opt:
8459 return &bpf_sock_ops_reserve_hdr_opt_proto;
8460 case BPF_FUNC_tcp_sock:
8461 return &bpf_tcp_sock_proto;
8462 #endif /* CONFIG_INET */
8463 default:
8464 return bpf_sk_base_func_proto(func_id, prog);
8465 }
8466 }
8467
8468 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8469 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8470
8471 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8472 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8473 {
8474 switch (func_id) {
8475 case BPF_FUNC_msg_redirect_map:
8476 return &bpf_msg_redirect_map_proto;
8477 case BPF_FUNC_msg_redirect_hash:
8478 return &bpf_msg_redirect_hash_proto;
8479 case BPF_FUNC_msg_apply_bytes:
8480 return &bpf_msg_apply_bytes_proto;
8481 case BPF_FUNC_msg_cork_bytes:
8482 return &bpf_msg_cork_bytes_proto;
8483 case BPF_FUNC_msg_pull_data:
8484 return &bpf_msg_pull_data_proto;
8485 case BPF_FUNC_msg_push_data:
8486 return &bpf_msg_push_data_proto;
8487 case BPF_FUNC_msg_pop_data:
8488 return &bpf_msg_pop_data_proto;
8489 case BPF_FUNC_perf_event_output:
8490 return &bpf_event_output_data_proto;
8491 case BPF_FUNC_get_current_uid_gid:
8492 return &bpf_get_current_uid_gid_proto;
8493 case BPF_FUNC_sk_storage_get:
8494 return &bpf_sk_storage_get_proto;
8495 case BPF_FUNC_sk_storage_delete:
8496 return &bpf_sk_storage_delete_proto;
8497 case BPF_FUNC_get_netns_cookie:
8498 return &bpf_get_netns_cookie_sk_msg_proto;
8499 #ifdef CONFIG_CGROUP_NET_CLASSID
8500 case BPF_FUNC_get_cgroup_classid:
8501 return &bpf_get_cgroup_classid_curr_proto;
8502 #endif
8503 default:
8504 return bpf_sk_base_func_proto(func_id, prog);
8505 }
8506 }
8507
8508 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8509 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8510
8511 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8512 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8513 {
8514 switch (func_id) {
8515 case BPF_FUNC_skb_store_bytes:
8516 return &bpf_skb_store_bytes_proto;
8517 case BPF_FUNC_skb_load_bytes:
8518 return &bpf_skb_load_bytes_proto;
8519 case BPF_FUNC_skb_pull_data:
8520 return &sk_skb_pull_data_proto;
8521 case BPF_FUNC_skb_change_tail:
8522 return &sk_skb_change_tail_proto;
8523 case BPF_FUNC_skb_change_head:
8524 return &sk_skb_change_head_proto;
8525 case BPF_FUNC_skb_adjust_room:
8526 return &sk_skb_adjust_room_proto;
8527 case BPF_FUNC_get_socket_cookie:
8528 return &bpf_get_socket_cookie_proto;
8529 case BPF_FUNC_get_socket_uid:
8530 return &bpf_get_socket_uid_proto;
8531 case BPF_FUNC_sk_redirect_map:
8532 return &bpf_sk_redirect_map_proto;
8533 case BPF_FUNC_sk_redirect_hash:
8534 return &bpf_sk_redirect_hash_proto;
8535 case BPF_FUNC_perf_event_output:
8536 return &bpf_skb_event_output_proto;
8537 #ifdef CONFIG_INET
8538 case BPF_FUNC_sk_lookup_tcp:
8539 return &bpf_sk_lookup_tcp_proto;
8540 case BPF_FUNC_sk_lookup_udp:
8541 return &bpf_sk_lookup_udp_proto;
8542 case BPF_FUNC_sk_release:
8543 return &bpf_sk_release_proto;
8544 case BPF_FUNC_skc_lookup_tcp:
8545 return &bpf_skc_lookup_tcp_proto;
8546 #endif
8547 default:
8548 return bpf_sk_base_func_proto(func_id, prog);
8549 }
8550 }
8551
8552 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8553 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8554 {
8555 switch (func_id) {
8556 case BPF_FUNC_skb_load_bytes:
8557 return &bpf_flow_dissector_load_bytes_proto;
8558 default:
8559 return bpf_sk_base_func_proto(func_id, prog);
8560 }
8561 }
8562
8563 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8564 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8565 {
8566 switch (func_id) {
8567 case BPF_FUNC_skb_load_bytes:
8568 return &bpf_skb_load_bytes_proto;
8569 case BPF_FUNC_skb_pull_data:
8570 return &bpf_skb_pull_data_proto;
8571 case BPF_FUNC_csum_diff:
8572 return &bpf_csum_diff_proto;
8573 case BPF_FUNC_get_cgroup_classid:
8574 return &bpf_get_cgroup_classid_proto;
8575 case BPF_FUNC_get_route_realm:
8576 return &bpf_get_route_realm_proto;
8577 case BPF_FUNC_get_hash_recalc:
8578 return &bpf_get_hash_recalc_proto;
8579 case BPF_FUNC_perf_event_output:
8580 return &bpf_skb_event_output_proto;
8581 case BPF_FUNC_get_smp_processor_id:
8582 return &bpf_get_smp_processor_id_proto;
8583 case BPF_FUNC_skb_under_cgroup:
8584 return &bpf_skb_under_cgroup_proto;
8585 default:
8586 return bpf_sk_base_func_proto(func_id, prog);
8587 }
8588 }
8589
8590 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8591 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8592 {
8593 switch (func_id) {
8594 case BPF_FUNC_lwt_push_encap:
8595 return &bpf_lwt_in_push_encap_proto;
8596 default:
8597 return lwt_out_func_proto(func_id, prog);
8598 }
8599 }
8600
8601 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8602 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8603 {
8604 switch (func_id) {
8605 case BPF_FUNC_skb_get_tunnel_key:
8606 return &bpf_skb_get_tunnel_key_proto;
8607 case BPF_FUNC_skb_set_tunnel_key:
8608 return bpf_get_skb_set_tunnel_proto(func_id);
8609 case BPF_FUNC_skb_get_tunnel_opt:
8610 return &bpf_skb_get_tunnel_opt_proto;
8611 case BPF_FUNC_skb_set_tunnel_opt:
8612 return bpf_get_skb_set_tunnel_proto(func_id);
8613 case BPF_FUNC_redirect:
8614 return &bpf_redirect_proto;
8615 case BPF_FUNC_clone_redirect:
8616 return &bpf_clone_redirect_proto;
8617 case BPF_FUNC_skb_change_tail:
8618 return &bpf_skb_change_tail_proto;
8619 case BPF_FUNC_skb_change_head:
8620 return &bpf_skb_change_head_proto;
8621 case BPF_FUNC_skb_store_bytes:
8622 return &bpf_skb_store_bytes_proto;
8623 case BPF_FUNC_csum_update:
8624 return &bpf_csum_update_proto;
8625 case BPF_FUNC_csum_level:
8626 return &bpf_csum_level_proto;
8627 case BPF_FUNC_l3_csum_replace:
8628 return &bpf_l3_csum_replace_proto;
8629 case BPF_FUNC_l4_csum_replace:
8630 return &bpf_l4_csum_replace_proto;
8631 case BPF_FUNC_set_hash_invalid:
8632 return &bpf_set_hash_invalid_proto;
8633 case BPF_FUNC_lwt_push_encap:
8634 return &bpf_lwt_xmit_push_encap_proto;
8635 default:
8636 return lwt_out_func_proto(func_id, prog);
8637 }
8638 }
8639
8640 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8641 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8642 {
8643 switch (func_id) {
8644 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8645 case BPF_FUNC_lwt_seg6_store_bytes:
8646 return &bpf_lwt_seg6_store_bytes_proto;
8647 case BPF_FUNC_lwt_seg6_action:
8648 return &bpf_lwt_seg6_action_proto;
8649 case BPF_FUNC_lwt_seg6_adjust_srh:
8650 return &bpf_lwt_seg6_adjust_srh_proto;
8651 #endif
8652 default:
8653 return lwt_out_func_proto(func_id, prog);
8654 }
8655 }
8656
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8657 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8658 const struct bpf_prog *prog,
8659 struct bpf_insn_access_aux *info)
8660 {
8661 const int size_default = sizeof(__u32);
8662
8663 if (off < 0 || off >= sizeof(struct __sk_buff))
8664 return false;
8665
8666 /* The verifier guarantees that size > 0. */
8667 if (off % size != 0)
8668 return false;
8669
8670 switch (off) {
8671 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8672 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8673 return false;
8674 break;
8675 case bpf_ctx_range(struct __sk_buff, data):
8676 case bpf_ctx_range(struct __sk_buff, data_meta):
8677 case bpf_ctx_range(struct __sk_buff, data_end):
8678 if (info->is_ldsx || size != size_default)
8679 return false;
8680 break;
8681 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8682 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8683 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8684 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8685 if (size != size_default)
8686 return false;
8687 break;
8688 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8689 return false;
8690 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8691 if (type == BPF_WRITE || size != sizeof(__u64))
8692 return false;
8693 break;
8694 case bpf_ctx_range(struct __sk_buff, tstamp):
8695 if (size != sizeof(__u64))
8696 return false;
8697 break;
8698 case offsetof(struct __sk_buff, sk):
8699 if (type == BPF_WRITE || size != sizeof(__u64))
8700 return false;
8701 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8702 break;
8703 case offsetof(struct __sk_buff, tstamp_type):
8704 return false;
8705 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8706 /* Explicitly prohibit access to padding in __sk_buff. */
8707 return false;
8708 default:
8709 /* Only narrow read access allowed for now. */
8710 if (type == BPF_WRITE) {
8711 if (size != size_default)
8712 return false;
8713 } else {
8714 bpf_ctx_record_field_size(info, size_default);
8715 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8716 return false;
8717 }
8718 }
8719
8720 return true;
8721 }
8722
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8723 static bool sk_filter_is_valid_access(int off, int size,
8724 enum bpf_access_type type,
8725 const struct bpf_prog *prog,
8726 struct bpf_insn_access_aux *info)
8727 {
8728 switch (off) {
8729 case bpf_ctx_range(struct __sk_buff, tc_classid):
8730 case bpf_ctx_range(struct __sk_buff, data):
8731 case bpf_ctx_range(struct __sk_buff, data_meta):
8732 case bpf_ctx_range(struct __sk_buff, data_end):
8733 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8734 case bpf_ctx_range(struct __sk_buff, tstamp):
8735 case bpf_ctx_range(struct __sk_buff, wire_len):
8736 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8737 return false;
8738 }
8739
8740 if (type == BPF_WRITE) {
8741 switch (off) {
8742 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8743 break;
8744 default:
8745 return false;
8746 }
8747 }
8748
8749 return bpf_skb_is_valid_access(off, size, type, prog, info);
8750 }
8751
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8752 static bool cg_skb_is_valid_access(int off, int size,
8753 enum bpf_access_type type,
8754 const struct bpf_prog *prog,
8755 struct bpf_insn_access_aux *info)
8756 {
8757 switch (off) {
8758 case bpf_ctx_range(struct __sk_buff, tc_classid):
8759 case bpf_ctx_range(struct __sk_buff, data_meta):
8760 case bpf_ctx_range(struct __sk_buff, wire_len):
8761 return false;
8762 case bpf_ctx_range(struct __sk_buff, data):
8763 case bpf_ctx_range(struct __sk_buff, data_end):
8764 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8765 return false;
8766 break;
8767 }
8768
8769 if (type == BPF_WRITE) {
8770 switch (off) {
8771 case bpf_ctx_range(struct __sk_buff, mark):
8772 case bpf_ctx_range(struct __sk_buff, priority):
8773 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8774 break;
8775 case bpf_ctx_range(struct __sk_buff, tstamp):
8776 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8777 return false;
8778 break;
8779 default:
8780 return false;
8781 }
8782 }
8783
8784 switch (off) {
8785 case bpf_ctx_range(struct __sk_buff, data):
8786 info->reg_type = PTR_TO_PACKET;
8787 break;
8788 case bpf_ctx_range(struct __sk_buff, data_end):
8789 info->reg_type = PTR_TO_PACKET_END;
8790 break;
8791 }
8792
8793 return bpf_skb_is_valid_access(off, size, type, prog, info);
8794 }
8795
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8796 static bool lwt_is_valid_access(int off, int size,
8797 enum bpf_access_type type,
8798 const struct bpf_prog *prog,
8799 struct bpf_insn_access_aux *info)
8800 {
8801 switch (off) {
8802 case bpf_ctx_range(struct __sk_buff, tc_classid):
8803 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8804 case bpf_ctx_range(struct __sk_buff, data_meta):
8805 case bpf_ctx_range(struct __sk_buff, tstamp):
8806 case bpf_ctx_range(struct __sk_buff, wire_len):
8807 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8808 return false;
8809 }
8810
8811 if (type == BPF_WRITE) {
8812 switch (off) {
8813 case bpf_ctx_range(struct __sk_buff, mark):
8814 case bpf_ctx_range(struct __sk_buff, priority):
8815 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8816 break;
8817 default:
8818 return false;
8819 }
8820 }
8821
8822 switch (off) {
8823 case bpf_ctx_range(struct __sk_buff, data):
8824 info->reg_type = PTR_TO_PACKET;
8825 break;
8826 case bpf_ctx_range(struct __sk_buff, data_end):
8827 info->reg_type = PTR_TO_PACKET_END;
8828 break;
8829 }
8830
8831 return bpf_skb_is_valid_access(off, size, type, prog, info);
8832 }
8833
8834 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8835 static bool __sock_filter_check_attach_type(int off,
8836 enum bpf_access_type access_type,
8837 enum bpf_attach_type attach_type)
8838 {
8839 switch (off) {
8840 case offsetof(struct bpf_sock, bound_dev_if):
8841 case offsetof(struct bpf_sock, mark):
8842 case offsetof(struct bpf_sock, priority):
8843 switch (attach_type) {
8844 case BPF_CGROUP_INET_SOCK_CREATE:
8845 case BPF_CGROUP_INET_SOCK_RELEASE:
8846 goto full_access;
8847 default:
8848 return false;
8849 }
8850 case bpf_ctx_range(struct bpf_sock, src_ip4):
8851 switch (attach_type) {
8852 case BPF_CGROUP_INET4_POST_BIND:
8853 goto read_only;
8854 default:
8855 return false;
8856 }
8857 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8858 switch (attach_type) {
8859 case BPF_CGROUP_INET6_POST_BIND:
8860 goto read_only;
8861 default:
8862 return false;
8863 }
8864 case bpf_ctx_range(struct bpf_sock, src_port):
8865 switch (attach_type) {
8866 case BPF_CGROUP_INET4_POST_BIND:
8867 case BPF_CGROUP_INET6_POST_BIND:
8868 goto read_only;
8869 default:
8870 return false;
8871 }
8872 }
8873 read_only:
8874 return access_type == BPF_READ;
8875 full_access:
8876 return true;
8877 }
8878
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8879 bool bpf_sock_common_is_valid_access(int off, int size,
8880 enum bpf_access_type type,
8881 struct bpf_insn_access_aux *info)
8882 {
8883 switch (off) {
8884 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8885 return false;
8886 default:
8887 return bpf_sock_is_valid_access(off, size, type, info);
8888 }
8889 }
8890
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8891 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8892 struct bpf_insn_access_aux *info)
8893 {
8894 const int size_default = sizeof(__u32);
8895 int field_size;
8896
8897 if (off < 0 || off >= sizeof(struct bpf_sock))
8898 return false;
8899 if (off % size != 0)
8900 return false;
8901
8902 switch (off) {
8903 case offsetof(struct bpf_sock, state):
8904 case offsetof(struct bpf_sock, family):
8905 case offsetof(struct bpf_sock, type):
8906 case offsetof(struct bpf_sock, protocol):
8907 case offsetof(struct bpf_sock, src_port):
8908 case offsetof(struct bpf_sock, rx_queue_mapping):
8909 case bpf_ctx_range(struct bpf_sock, src_ip4):
8910 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8911 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8912 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8913 bpf_ctx_record_field_size(info, size_default);
8914 return bpf_ctx_narrow_access_ok(off, size, size_default);
8915 case bpf_ctx_range(struct bpf_sock, dst_port):
8916 field_size = size == size_default ?
8917 size_default : sizeof_field(struct bpf_sock, dst_port);
8918 bpf_ctx_record_field_size(info, field_size);
8919 return bpf_ctx_narrow_access_ok(off, size, field_size);
8920 case offsetofend(struct bpf_sock, dst_port) ...
8921 offsetof(struct bpf_sock, dst_ip4) - 1:
8922 return false;
8923 }
8924
8925 return size == size_default;
8926 }
8927
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8928 static bool sock_filter_is_valid_access(int off, int size,
8929 enum bpf_access_type type,
8930 const struct bpf_prog *prog,
8931 struct bpf_insn_access_aux *info)
8932 {
8933 if (!bpf_sock_is_valid_access(off, size, type, info))
8934 return false;
8935 return __sock_filter_check_attach_type(off, type,
8936 prog->expected_attach_type);
8937 }
8938
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8939 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8940 const struct bpf_prog *prog)
8941 {
8942 /* Neither direct read nor direct write requires any preliminary
8943 * action.
8944 */
8945 return 0;
8946 }
8947
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8948 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8949 const struct bpf_prog *prog, int drop_verdict)
8950 {
8951 struct bpf_insn *insn = insn_buf;
8952
8953 if (!direct_write)
8954 return 0;
8955
8956 /* if (!skb->cloned)
8957 * goto start;
8958 *
8959 * (Fast-path, otherwise approximation that we might be
8960 * a clone, do the rest in helper.)
8961 */
8962 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8963 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8964 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8965
8966 /* ret = bpf_skb_pull_data(skb, 0); */
8967 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8968 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8969 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8970 BPF_FUNC_skb_pull_data);
8971 /* if (!ret)
8972 * goto restore;
8973 * return TC_ACT_SHOT;
8974 */
8975 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8976 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8977 *insn++ = BPF_EXIT_INSN();
8978
8979 /* restore: */
8980 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8981 /* start: */
8982 *insn++ = prog->insnsi[0];
8983
8984 return insn - insn_buf;
8985 }
8986
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8987 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8988 struct bpf_insn *insn_buf)
8989 {
8990 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8991 struct bpf_insn *insn = insn_buf;
8992
8993 if (!indirect) {
8994 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8995 } else {
8996 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8997 if (orig->imm)
8998 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8999 }
9000 /* We're guaranteed here that CTX is in R6. */
9001 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9002
9003 switch (BPF_SIZE(orig->code)) {
9004 case BPF_B:
9005 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9006 break;
9007 case BPF_H:
9008 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9009 break;
9010 case BPF_W:
9011 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9012 break;
9013 }
9014
9015 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9016 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9017 *insn++ = BPF_EXIT_INSN();
9018
9019 return insn - insn_buf;
9020 }
9021
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9022 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9023 const struct bpf_prog *prog)
9024 {
9025 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9026 }
9027
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9028 static bool tc_cls_act_is_valid_access(int off, int size,
9029 enum bpf_access_type type,
9030 const struct bpf_prog *prog,
9031 struct bpf_insn_access_aux *info)
9032 {
9033 if (type == BPF_WRITE) {
9034 switch (off) {
9035 case bpf_ctx_range(struct __sk_buff, mark):
9036 case bpf_ctx_range(struct __sk_buff, tc_index):
9037 case bpf_ctx_range(struct __sk_buff, priority):
9038 case bpf_ctx_range(struct __sk_buff, tc_classid):
9039 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9040 case bpf_ctx_range(struct __sk_buff, tstamp):
9041 case bpf_ctx_range(struct __sk_buff, queue_mapping):
9042 break;
9043 default:
9044 return false;
9045 }
9046 }
9047
9048 switch (off) {
9049 case bpf_ctx_range(struct __sk_buff, data):
9050 info->reg_type = PTR_TO_PACKET;
9051 break;
9052 case bpf_ctx_range(struct __sk_buff, data_meta):
9053 info->reg_type = PTR_TO_PACKET_META;
9054 break;
9055 case bpf_ctx_range(struct __sk_buff, data_end):
9056 info->reg_type = PTR_TO_PACKET_END;
9057 break;
9058 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9059 return false;
9060 case offsetof(struct __sk_buff, tstamp_type):
9061 /* The convert_ctx_access() on reading and writing
9062 * __sk_buff->tstamp depends on whether the bpf prog
9063 * has used __sk_buff->tstamp_type or not.
9064 * Thus, we need to set prog->tstamp_type_access
9065 * earlier during is_valid_access() here.
9066 */
9067 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
9068 return size == sizeof(__u8);
9069 }
9070
9071 return bpf_skb_is_valid_access(off, size, type, prog, info);
9072 }
9073
9074 DEFINE_MUTEX(nf_conn_btf_access_lock);
9075 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9076
9077 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9078 const struct bpf_reg_state *reg,
9079 int off, int size);
9080 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9081
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9082 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9083 const struct bpf_reg_state *reg,
9084 int off, int size)
9085 {
9086 int ret = -EACCES;
9087
9088 mutex_lock(&nf_conn_btf_access_lock);
9089 if (nfct_btf_struct_access)
9090 ret = nfct_btf_struct_access(log, reg, off, size);
9091 mutex_unlock(&nf_conn_btf_access_lock);
9092
9093 return ret;
9094 }
9095
__is_valid_xdp_access(int off,int size)9096 static bool __is_valid_xdp_access(int off, int size)
9097 {
9098 if (off < 0 || off >= sizeof(struct xdp_md))
9099 return false;
9100 if (off % size != 0)
9101 return false;
9102 if (size != sizeof(__u32))
9103 return false;
9104
9105 return true;
9106 }
9107
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9108 static bool xdp_is_valid_access(int off, int size,
9109 enum bpf_access_type type,
9110 const struct bpf_prog *prog,
9111 struct bpf_insn_access_aux *info)
9112 {
9113 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9114 switch (off) {
9115 case offsetof(struct xdp_md, egress_ifindex):
9116 return false;
9117 }
9118 }
9119
9120 if (type == BPF_WRITE) {
9121 if (bpf_prog_is_offloaded(prog->aux)) {
9122 switch (off) {
9123 case offsetof(struct xdp_md, rx_queue_index):
9124 return __is_valid_xdp_access(off, size);
9125 }
9126 }
9127 return false;
9128 } else {
9129 switch (off) {
9130 case offsetof(struct xdp_md, data_meta):
9131 case offsetof(struct xdp_md, data):
9132 case offsetof(struct xdp_md, data_end):
9133 if (info->is_ldsx)
9134 return false;
9135 }
9136 }
9137
9138 switch (off) {
9139 case offsetof(struct xdp_md, data):
9140 info->reg_type = PTR_TO_PACKET;
9141 break;
9142 case offsetof(struct xdp_md, data_meta):
9143 info->reg_type = PTR_TO_PACKET_META;
9144 break;
9145 case offsetof(struct xdp_md, data_end):
9146 info->reg_type = PTR_TO_PACKET_END;
9147 break;
9148 }
9149
9150 return __is_valid_xdp_access(off, size);
9151 }
9152
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9153 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9154 const struct bpf_prog *prog, u32 act)
9155 {
9156 const u32 act_max = XDP_REDIRECT;
9157
9158 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9159 act > act_max ? "Illegal" : "Driver unsupported",
9160 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9161 }
9162 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9163
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9164 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9165 const struct bpf_reg_state *reg,
9166 int off, int size)
9167 {
9168 int ret = -EACCES;
9169
9170 mutex_lock(&nf_conn_btf_access_lock);
9171 if (nfct_btf_struct_access)
9172 ret = nfct_btf_struct_access(log, reg, off, size);
9173 mutex_unlock(&nf_conn_btf_access_lock);
9174
9175 return ret;
9176 }
9177
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9178 static bool sock_addr_is_valid_access(int off, int size,
9179 enum bpf_access_type type,
9180 const struct bpf_prog *prog,
9181 struct bpf_insn_access_aux *info)
9182 {
9183 const int size_default = sizeof(__u32);
9184
9185 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9186 return false;
9187 if (off % size != 0)
9188 return false;
9189
9190 /* Disallow access to fields not belonging to the attach type's address
9191 * family.
9192 */
9193 switch (off) {
9194 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9195 switch (prog->expected_attach_type) {
9196 case BPF_CGROUP_INET4_BIND:
9197 case BPF_CGROUP_INET4_CONNECT:
9198 case BPF_CGROUP_INET4_GETPEERNAME:
9199 case BPF_CGROUP_INET4_GETSOCKNAME:
9200 case BPF_CGROUP_UDP4_SENDMSG:
9201 case BPF_CGROUP_UDP4_RECVMSG:
9202 break;
9203 default:
9204 return false;
9205 }
9206 break;
9207 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9208 switch (prog->expected_attach_type) {
9209 case BPF_CGROUP_INET6_BIND:
9210 case BPF_CGROUP_INET6_CONNECT:
9211 case BPF_CGROUP_INET6_GETPEERNAME:
9212 case BPF_CGROUP_INET6_GETSOCKNAME:
9213 case BPF_CGROUP_UDP6_SENDMSG:
9214 case BPF_CGROUP_UDP6_RECVMSG:
9215 break;
9216 default:
9217 return false;
9218 }
9219 break;
9220 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9221 switch (prog->expected_attach_type) {
9222 case BPF_CGROUP_UDP4_SENDMSG:
9223 break;
9224 default:
9225 return false;
9226 }
9227 break;
9228 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9229 msg_src_ip6[3]):
9230 switch (prog->expected_attach_type) {
9231 case BPF_CGROUP_UDP6_SENDMSG:
9232 break;
9233 default:
9234 return false;
9235 }
9236 break;
9237 }
9238
9239 switch (off) {
9240 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9241 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9242 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9243 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9244 msg_src_ip6[3]):
9245 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9246 if (type == BPF_READ) {
9247 bpf_ctx_record_field_size(info, size_default);
9248
9249 if (bpf_ctx_wide_access_ok(off, size,
9250 struct bpf_sock_addr,
9251 user_ip6))
9252 return true;
9253
9254 if (bpf_ctx_wide_access_ok(off, size,
9255 struct bpf_sock_addr,
9256 msg_src_ip6))
9257 return true;
9258
9259 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9260 return false;
9261 } else {
9262 if (bpf_ctx_wide_access_ok(off, size,
9263 struct bpf_sock_addr,
9264 user_ip6))
9265 return true;
9266
9267 if (bpf_ctx_wide_access_ok(off, size,
9268 struct bpf_sock_addr,
9269 msg_src_ip6))
9270 return true;
9271
9272 if (size != size_default)
9273 return false;
9274 }
9275 break;
9276 case offsetof(struct bpf_sock_addr, sk):
9277 if (type != BPF_READ)
9278 return false;
9279 if (size != sizeof(__u64))
9280 return false;
9281 info->reg_type = PTR_TO_SOCKET;
9282 break;
9283 default:
9284 if (type == BPF_READ) {
9285 if (size != size_default)
9286 return false;
9287 } else {
9288 return false;
9289 }
9290 }
9291
9292 return true;
9293 }
9294
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9295 static bool sock_ops_is_valid_access(int off, int size,
9296 enum bpf_access_type type,
9297 const struct bpf_prog *prog,
9298 struct bpf_insn_access_aux *info)
9299 {
9300 const int size_default = sizeof(__u32);
9301
9302 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9303 return false;
9304
9305 /* The verifier guarantees that size > 0. */
9306 if (off % size != 0)
9307 return false;
9308
9309 if (type == BPF_WRITE) {
9310 switch (off) {
9311 case offsetof(struct bpf_sock_ops, reply):
9312 case offsetof(struct bpf_sock_ops, sk_txhash):
9313 if (size != size_default)
9314 return false;
9315 break;
9316 default:
9317 return false;
9318 }
9319 } else {
9320 switch (off) {
9321 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9322 bytes_acked):
9323 if (size != sizeof(__u64))
9324 return false;
9325 break;
9326 case offsetof(struct bpf_sock_ops, sk):
9327 if (size != sizeof(__u64))
9328 return false;
9329 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9330 break;
9331 case offsetof(struct bpf_sock_ops, skb_data):
9332 if (size != sizeof(__u64))
9333 return false;
9334 info->reg_type = PTR_TO_PACKET;
9335 break;
9336 case offsetof(struct bpf_sock_ops, skb_data_end):
9337 if (size != sizeof(__u64))
9338 return false;
9339 info->reg_type = PTR_TO_PACKET_END;
9340 break;
9341 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9342 bpf_ctx_record_field_size(info, size_default);
9343 return bpf_ctx_narrow_access_ok(off, size,
9344 size_default);
9345 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9346 if (size != sizeof(__u64))
9347 return false;
9348 break;
9349 default:
9350 if (size != size_default)
9351 return false;
9352 break;
9353 }
9354 }
9355
9356 return true;
9357 }
9358
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9359 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9360 const struct bpf_prog *prog)
9361 {
9362 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9363 }
9364
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9365 static bool sk_skb_is_valid_access(int off, int size,
9366 enum bpf_access_type type,
9367 const struct bpf_prog *prog,
9368 struct bpf_insn_access_aux *info)
9369 {
9370 switch (off) {
9371 case bpf_ctx_range(struct __sk_buff, tc_classid):
9372 case bpf_ctx_range(struct __sk_buff, data_meta):
9373 case bpf_ctx_range(struct __sk_buff, tstamp):
9374 case bpf_ctx_range(struct __sk_buff, wire_len):
9375 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9376 return false;
9377 }
9378
9379 if (type == BPF_WRITE) {
9380 switch (off) {
9381 case bpf_ctx_range(struct __sk_buff, tc_index):
9382 case bpf_ctx_range(struct __sk_buff, priority):
9383 break;
9384 default:
9385 return false;
9386 }
9387 }
9388
9389 switch (off) {
9390 case bpf_ctx_range(struct __sk_buff, mark):
9391 return false;
9392 case bpf_ctx_range(struct __sk_buff, data):
9393 info->reg_type = PTR_TO_PACKET;
9394 break;
9395 case bpf_ctx_range(struct __sk_buff, data_end):
9396 info->reg_type = PTR_TO_PACKET_END;
9397 break;
9398 }
9399
9400 return bpf_skb_is_valid_access(off, size, type, prog, info);
9401 }
9402
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9403 static bool sk_msg_is_valid_access(int off, int size,
9404 enum bpf_access_type type,
9405 const struct bpf_prog *prog,
9406 struct bpf_insn_access_aux *info)
9407 {
9408 if (type == BPF_WRITE)
9409 return false;
9410
9411 if (off % size != 0)
9412 return false;
9413
9414 switch (off) {
9415 case offsetof(struct sk_msg_md, data):
9416 info->reg_type = PTR_TO_PACKET;
9417 if (size != sizeof(__u64))
9418 return false;
9419 break;
9420 case offsetof(struct sk_msg_md, data_end):
9421 info->reg_type = PTR_TO_PACKET_END;
9422 if (size != sizeof(__u64))
9423 return false;
9424 break;
9425 case offsetof(struct sk_msg_md, sk):
9426 if (size != sizeof(__u64))
9427 return false;
9428 info->reg_type = PTR_TO_SOCKET;
9429 break;
9430 case bpf_ctx_range(struct sk_msg_md, family):
9431 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9432 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9433 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9434 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9435 case bpf_ctx_range(struct sk_msg_md, remote_port):
9436 case bpf_ctx_range(struct sk_msg_md, local_port):
9437 case bpf_ctx_range(struct sk_msg_md, size):
9438 if (size != sizeof(__u32))
9439 return false;
9440 break;
9441 default:
9442 return false;
9443 }
9444 return true;
9445 }
9446
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9447 static bool flow_dissector_is_valid_access(int off, int size,
9448 enum bpf_access_type type,
9449 const struct bpf_prog *prog,
9450 struct bpf_insn_access_aux *info)
9451 {
9452 const int size_default = sizeof(__u32);
9453
9454 if (off < 0 || off >= sizeof(struct __sk_buff))
9455 return false;
9456
9457 if (type == BPF_WRITE)
9458 return false;
9459
9460 switch (off) {
9461 case bpf_ctx_range(struct __sk_buff, data):
9462 if (info->is_ldsx || size != size_default)
9463 return false;
9464 info->reg_type = PTR_TO_PACKET;
9465 return true;
9466 case bpf_ctx_range(struct __sk_buff, data_end):
9467 if (info->is_ldsx || size != size_default)
9468 return false;
9469 info->reg_type = PTR_TO_PACKET_END;
9470 return true;
9471 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9472 if (size != sizeof(__u64))
9473 return false;
9474 info->reg_type = PTR_TO_FLOW_KEYS;
9475 return true;
9476 default:
9477 return false;
9478 }
9479 }
9480
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9481 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9482 const struct bpf_insn *si,
9483 struct bpf_insn *insn_buf,
9484 struct bpf_prog *prog,
9485 u32 *target_size)
9486
9487 {
9488 struct bpf_insn *insn = insn_buf;
9489
9490 switch (si->off) {
9491 case offsetof(struct __sk_buff, data):
9492 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9493 si->dst_reg, si->src_reg,
9494 offsetof(struct bpf_flow_dissector, data));
9495 break;
9496
9497 case offsetof(struct __sk_buff, data_end):
9498 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9499 si->dst_reg, si->src_reg,
9500 offsetof(struct bpf_flow_dissector, data_end));
9501 break;
9502
9503 case offsetof(struct __sk_buff, flow_keys):
9504 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9505 si->dst_reg, si->src_reg,
9506 offsetof(struct bpf_flow_dissector, flow_keys));
9507 break;
9508 }
9509
9510 return insn - insn_buf;
9511 }
9512
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9513 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9514 struct bpf_insn *insn)
9515 {
9516 __u8 value_reg = si->dst_reg;
9517 __u8 skb_reg = si->src_reg;
9518 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9519 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9520 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9521 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9522 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9523 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9524 #ifdef __BIG_ENDIAN_BITFIELD
9525 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9526 #else
9527 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9528 #endif
9529
9530 return insn;
9531 }
9532
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9533 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9534 struct bpf_insn *insn)
9535 {
9536 /* si->dst_reg = skb_shinfo(SKB); */
9537 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9538 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9539 BPF_REG_AX, skb_reg,
9540 offsetof(struct sk_buff, end));
9541 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9542 dst_reg, skb_reg,
9543 offsetof(struct sk_buff, head));
9544 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9545 #else
9546 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9547 dst_reg, skb_reg,
9548 offsetof(struct sk_buff, end));
9549 #endif
9550
9551 return insn;
9552 }
9553
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9554 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9555 const struct bpf_insn *si,
9556 struct bpf_insn *insn)
9557 {
9558 __u8 value_reg = si->dst_reg;
9559 __u8 skb_reg = si->src_reg;
9560
9561 #ifdef CONFIG_NET_XGRESS
9562 /* If the tstamp_type is read,
9563 * the bpf prog is aware the tstamp could have delivery time.
9564 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9565 */
9566 if (!prog->tstamp_type_access) {
9567 /* AX is needed because src_reg and dst_reg could be the same */
9568 __u8 tmp_reg = BPF_REG_AX;
9569
9570 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9571 /* check if ingress mask bits is set */
9572 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9573 *insn++ = BPF_JMP_A(4);
9574 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9575 *insn++ = BPF_JMP_A(2);
9576 /* skb->tc_at_ingress && skb->tstamp_type,
9577 * read 0 as the (rcv) timestamp.
9578 */
9579 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9580 *insn++ = BPF_JMP_A(1);
9581 }
9582 #endif
9583
9584 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9585 offsetof(struct sk_buff, tstamp));
9586 return insn;
9587 }
9588
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9589 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9590 const struct bpf_insn *si,
9591 struct bpf_insn *insn)
9592 {
9593 __u8 value_reg = si->src_reg;
9594 __u8 skb_reg = si->dst_reg;
9595
9596 #ifdef CONFIG_NET_XGRESS
9597 /* If the tstamp_type is read,
9598 * the bpf prog is aware the tstamp could have delivery time.
9599 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9600 * Otherwise, writing at ingress will have to clear the
9601 * skb->tstamp_type bit also.
9602 */
9603 if (!prog->tstamp_type_access) {
9604 __u8 tmp_reg = BPF_REG_AX;
9605
9606 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9607 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9608 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9609 /* goto <store> */
9610 *insn++ = BPF_JMP_A(2);
9611 /* <clear>: skb->tstamp_type */
9612 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9613 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9614 }
9615 #endif
9616
9617 /* <store>: skb->tstamp = tstamp */
9618 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9619 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9620 return insn;
9621 }
9622
9623 #define BPF_EMIT_STORE(size, si, off) \
9624 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9625 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9626
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9627 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9628 const struct bpf_insn *si,
9629 struct bpf_insn *insn_buf,
9630 struct bpf_prog *prog, u32 *target_size)
9631 {
9632 struct bpf_insn *insn = insn_buf;
9633 int off;
9634
9635 switch (si->off) {
9636 case offsetof(struct __sk_buff, len):
9637 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9638 bpf_target_off(struct sk_buff, len, 4,
9639 target_size));
9640 break;
9641
9642 case offsetof(struct __sk_buff, protocol):
9643 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9644 bpf_target_off(struct sk_buff, protocol, 2,
9645 target_size));
9646 break;
9647
9648 case offsetof(struct __sk_buff, vlan_proto):
9649 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9650 bpf_target_off(struct sk_buff, vlan_proto, 2,
9651 target_size));
9652 break;
9653
9654 case offsetof(struct __sk_buff, priority):
9655 if (type == BPF_WRITE)
9656 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9657 bpf_target_off(struct sk_buff, priority, 4,
9658 target_size));
9659 else
9660 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9661 bpf_target_off(struct sk_buff, priority, 4,
9662 target_size));
9663 break;
9664
9665 case offsetof(struct __sk_buff, ingress_ifindex):
9666 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9667 bpf_target_off(struct sk_buff, skb_iif, 4,
9668 target_size));
9669 break;
9670
9671 case offsetof(struct __sk_buff, ifindex):
9672 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9673 si->dst_reg, si->src_reg,
9674 offsetof(struct sk_buff, dev));
9675 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9676 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9677 bpf_target_off(struct net_device, ifindex, 4,
9678 target_size));
9679 break;
9680
9681 case offsetof(struct __sk_buff, hash):
9682 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9683 bpf_target_off(struct sk_buff, hash, 4,
9684 target_size));
9685 break;
9686
9687 case offsetof(struct __sk_buff, mark):
9688 if (type == BPF_WRITE)
9689 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9690 bpf_target_off(struct sk_buff, mark, 4,
9691 target_size));
9692 else
9693 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9694 bpf_target_off(struct sk_buff, mark, 4,
9695 target_size));
9696 break;
9697
9698 case offsetof(struct __sk_buff, pkt_type):
9699 *target_size = 1;
9700 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9701 PKT_TYPE_OFFSET);
9702 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9703 #ifdef __BIG_ENDIAN_BITFIELD
9704 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9705 #endif
9706 break;
9707
9708 case offsetof(struct __sk_buff, queue_mapping):
9709 if (type == BPF_WRITE) {
9710 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9711
9712 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9713 *insn++ = BPF_JMP_A(0); /* noop */
9714 break;
9715 }
9716
9717 if (BPF_CLASS(si->code) == BPF_STX)
9718 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9719 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9720 } else {
9721 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9722 bpf_target_off(struct sk_buff,
9723 queue_mapping,
9724 2, target_size));
9725 }
9726 break;
9727
9728 case offsetof(struct __sk_buff, vlan_present):
9729 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9730 bpf_target_off(struct sk_buff,
9731 vlan_all, 4, target_size));
9732 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9733 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9734 break;
9735
9736 case offsetof(struct __sk_buff, vlan_tci):
9737 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9738 bpf_target_off(struct sk_buff, vlan_tci, 2,
9739 target_size));
9740 break;
9741
9742 case offsetof(struct __sk_buff, cb[0]) ...
9743 offsetofend(struct __sk_buff, cb[4]) - 1:
9744 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9745 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9746 offsetof(struct qdisc_skb_cb, data)) %
9747 sizeof(__u64));
9748
9749 prog->cb_access = 1;
9750 off = si->off;
9751 off -= offsetof(struct __sk_buff, cb[0]);
9752 off += offsetof(struct sk_buff, cb);
9753 off += offsetof(struct qdisc_skb_cb, data);
9754 if (type == BPF_WRITE)
9755 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9756 else
9757 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9758 si->src_reg, off);
9759 break;
9760
9761 case offsetof(struct __sk_buff, tc_classid):
9762 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9763
9764 off = si->off;
9765 off -= offsetof(struct __sk_buff, tc_classid);
9766 off += offsetof(struct sk_buff, cb);
9767 off += offsetof(struct qdisc_skb_cb, tc_classid);
9768 *target_size = 2;
9769 if (type == BPF_WRITE)
9770 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9771 else
9772 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9773 si->src_reg, off);
9774 break;
9775
9776 case offsetof(struct __sk_buff, data):
9777 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9778 si->dst_reg, si->src_reg,
9779 offsetof(struct sk_buff, data));
9780 break;
9781
9782 case offsetof(struct __sk_buff, data_meta):
9783 off = si->off;
9784 off -= offsetof(struct __sk_buff, data_meta);
9785 off += offsetof(struct sk_buff, cb);
9786 off += offsetof(struct bpf_skb_data_end, data_meta);
9787 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9788 si->src_reg, off);
9789 break;
9790
9791 case offsetof(struct __sk_buff, data_end):
9792 off = si->off;
9793 off -= offsetof(struct __sk_buff, data_end);
9794 off += offsetof(struct sk_buff, cb);
9795 off += offsetof(struct bpf_skb_data_end, data_end);
9796 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9797 si->src_reg, off);
9798 break;
9799
9800 case offsetof(struct __sk_buff, tc_index):
9801 #ifdef CONFIG_NET_SCHED
9802 if (type == BPF_WRITE)
9803 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9804 bpf_target_off(struct sk_buff, tc_index, 2,
9805 target_size));
9806 else
9807 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9808 bpf_target_off(struct sk_buff, tc_index, 2,
9809 target_size));
9810 #else
9811 *target_size = 2;
9812 if (type == BPF_WRITE)
9813 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9814 else
9815 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9816 #endif
9817 break;
9818
9819 case offsetof(struct __sk_buff, napi_id):
9820 #if defined(CONFIG_NET_RX_BUSY_POLL)
9821 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9822 bpf_target_off(struct sk_buff, napi_id, 4,
9823 target_size));
9824 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9825 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9826 #else
9827 *target_size = 4;
9828 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9829 #endif
9830 break;
9831 case offsetof(struct __sk_buff, family):
9832 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9833
9834 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9835 si->dst_reg, si->src_reg,
9836 offsetof(struct sk_buff, sk));
9837 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9838 bpf_target_off(struct sock_common,
9839 skc_family,
9840 2, target_size));
9841 break;
9842 case offsetof(struct __sk_buff, remote_ip4):
9843 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9844
9845 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9846 si->dst_reg, si->src_reg,
9847 offsetof(struct sk_buff, sk));
9848 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9849 bpf_target_off(struct sock_common,
9850 skc_daddr,
9851 4, target_size));
9852 break;
9853 case offsetof(struct __sk_buff, local_ip4):
9854 BUILD_BUG_ON(sizeof_field(struct sock_common,
9855 skc_rcv_saddr) != 4);
9856
9857 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9858 si->dst_reg, si->src_reg,
9859 offsetof(struct sk_buff, sk));
9860 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9861 bpf_target_off(struct sock_common,
9862 skc_rcv_saddr,
9863 4, target_size));
9864 break;
9865 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9866 offsetof(struct __sk_buff, remote_ip6[3]):
9867 #if IS_ENABLED(CONFIG_IPV6)
9868 BUILD_BUG_ON(sizeof_field(struct sock_common,
9869 skc_v6_daddr.s6_addr32[0]) != 4);
9870
9871 off = si->off;
9872 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9873
9874 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9875 si->dst_reg, si->src_reg,
9876 offsetof(struct sk_buff, sk));
9877 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9878 offsetof(struct sock_common,
9879 skc_v6_daddr.s6_addr32[0]) +
9880 off);
9881 #else
9882 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9883 #endif
9884 break;
9885 case offsetof(struct __sk_buff, local_ip6[0]) ...
9886 offsetof(struct __sk_buff, local_ip6[3]):
9887 #if IS_ENABLED(CONFIG_IPV6)
9888 BUILD_BUG_ON(sizeof_field(struct sock_common,
9889 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9890
9891 off = si->off;
9892 off -= offsetof(struct __sk_buff, local_ip6[0]);
9893
9894 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9895 si->dst_reg, si->src_reg,
9896 offsetof(struct sk_buff, sk));
9897 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9898 offsetof(struct sock_common,
9899 skc_v6_rcv_saddr.s6_addr32[0]) +
9900 off);
9901 #else
9902 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9903 #endif
9904 break;
9905
9906 case offsetof(struct __sk_buff, remote_port):
9907 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9908
9909 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9910 si->dst_reg, si->src_reg,
9911 offsetof(struct sk_buff, sk));
9912 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9913 bpf_target_off(struct sock_common,
9914 skc_dport,
9915 2, target_size));
9916 #ifndef __BIG_ENDIAN_BITFIELD
9917 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9918 #endif
9919 break;
9920
9921 case offsetof(struct __sk_buff, local_port):
9922 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9923
9924 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9925 si->dst_reg, si->src_reg,
9926 offsetof(struct sk_buff, sk));
9927 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9928 bpf_target_off(struct sock_common,
9929 skc_num, 2, target_size));
9930 break;
9931
9932 case offsetof(struct __sk_buff, tstamp):
9933 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9934
9935 if (type == BPF_WRITE)
9936 insn = bpf_convert_tstamp_write(prog, si, insn);
9937 else
9938 insn = bpf_convert_tstamp_read(prog, si, insn);
9939 break;
9940
9941 case offsetof(struct __sk_buff, tstamp_type):
9942 insn = bpf_convert_tstamp_type_read(si, insn);
9943 break;
9944
9945 case offsetof(struct __sk_buff, gso_segs):
9946 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9947 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9948 si->dst_reg, si->dst_reg,
9949 bpf_target_off(struct skb_shared_info,
9950 gso_segs, 2,
9951 target_size));
9952 break;
9953 case offsetof(struct __sk_buff, gso_size):
9954 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9955 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9956 si->dst_reg, si->dst_reg,
9957 bpf_target_off(struct skb_shared_info,
9958 gso_size, 2,
9959 target_size));
9960 break;
9961 case offsetof(struct __sk_buff, wire_len):
9962 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9963
9964 off = si->off;
9965 off -= offsetof(struct __sk_buff, wire_len);
9966 off += offsetof(struct sk_buff, cb);
9967 off += offsetof(struct qdisc_skb_cb, pkt_len);
9968 *target_size = 4;
9969 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9970 break;
9971
9972 case offsetof(struct __sk_buff, sk):
9973 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9974 si->dst_reg, si->src_reg,
9975 offsetof(struct sk_buff, sk));
9976 break;
9977 case offsetof(struct __sk_buff, hwtstamp):
9978 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9979 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9980
9981 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9982 *insn++ = BPF_LDX_MEM(BPF_DW,
9983 si->dst_reg, si->dst_reg,
9984 bpf_target_off(struct skb_shared_info,
9985 hwtstamps, 8,
9986 target_size));
9987 break;
9988 }
9989
9990 return insn - insn_buf;
9991 }
9992
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9993 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9994 const struct bpf_insn *si,
9995 struct bpf_insn *insn_buf,
9996 struct bpf_prog *prog, u32 *target_size)
9997 {
9998 struct bpf_insn *insn = insn_buf;
9999 int off;
10000
10001 switch (si->off) {
10002 case offsetof(struct bpf_sock, bound_dev_if):
10003 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10004
10005 if (type == BPF_WRITE)
10006 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10007 offsetof(struct sock, sk_bound_dev_if));
10008 else
10009 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10010 offsetof(struct sock, sk_bound_dev_if));
10011 break;
10012
10013 case offsetof(struct bpf_sock, mark):
10014 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10015
10016 if (type == BPF_WRITE)
10017 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10018 offsetof(struct sock, sk_mark));
10019 else
10020 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10021 offsetof(struct sock, sk_mark));
10022 break;
10023
10024 case offsetof(struct bpf_sock, priority):
10025 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10026
10027 if (type == BPF_WRITE)
10028 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10029 offsetof(struct sock, sk_priority));
10030 else
10031 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10032 offsetof(struct sock, sk_priority));
10033 break;
10034
10035 case offsetof(struct bpf_sock, family):
10036 *insn++ = BPF_LDX_MEM(
10037 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10038 si->dst_reg, si->src_reg,
10039 bpf_target_off(struct sock_common,
10040 skc_family,
10041 sizeof_field(struct sock_common,
10042 skc_family),
10043 target_size));
10044 break;
10045
10046 case offsetof(struct bpf_sock, type):
10047 *insn++ = BPF_LDX_MEM(
10048 BPF_FIELD_SIZEOF(struct sock, sk_type),
10049 si->dst_reg, si->src_reg,
10050 bpf_target_off(struct sock, sk_type,
10051 sizeof_field(struct sock, sk_type),
10052 target_size));
10053 break;
10054
10055 case offsetof(struct bpf_sock, protocol):
10056 *insn++ = BPF_LDX_MEM(
10057 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10058 si->dst_reg, si->src_reg,
10059 bpf_target_off(struct sock, sk_protocol,
10060 sizeof_field(struct sock, sk_protocol),
10061 target_size));
10062 break;
10063
10064 case offsetof(struct bpf_sock, src_ip4):
10065 *insn++ = BPF_LDX_MEM(
10066 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10067 bpf_target_off(struct sock_common, skc_rcv_saddr,
10068 sizeof_field(struct sock_common,
10069 skc_rcv_saddr),
10070 target_size));
10071 break;
10072
10073 case offsetof(struct bpf_sock, dst_ip4):
10074 *insn++ = BPF_LDX_MEM(
10075 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10076 bpf_target_off(struct sock_common, skc_daddr,
10077 sizeof_field(struct sock_common,
10078 skc_daddr),
10079 target_size));
10080 break;
10081
10082 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10083 #if IS_ENABLED(CONFIG_IPV6)
10084 off = si->off;
10085 off -= offsetof(struct bpf_sock, src_ip6[0]);
10086 *insn++ = BPF_LDX_MEM(
10087 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10088 bpf_target_off(
10089 struct sock_common,
10090 skc_v6_rcv_saddr.s6_addr32[0],
10091 sizeof_field(struct sock_common,
10092 skc_v6_rcv_saddr.s6_addr32[0]),
10093 target_size) + off);
10094 #else
10095 (void)off;
10096 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10097 #endif
10098 break;
10099
10100 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10101 #if IS_ENABLED(CONFIG_IPV6)
10102 off = si->off;
10103 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10104 *insn++ = BPF_LDX_MEM(
10105 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10106 bpf_target_off(struct sock_common,
10107 skc_v6_daddr.s6_addr32[0],
10108 sizeof_field(struct sock_common,
10109 skc_v6_daddr.s6_addr32[0]),
10110 target_size) + off);
10111 #else
10112 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10113 *target_size = 4;
10114 #endif
10115 break;
10116
10117 case offsetof(struct bpf_sock, src_port):
10118 *insn++ = BPF_LDX_MEM(
10119 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10120 si->dst_reg, si->src_reg,
10121 bpf_target_off(struct sock_common, skc_num,
10122 sizeof_field(struct sock_common,
10123 skc_num),
10124 target_size));
10125 break;
10126
10127 case offsetof(struct bpf_sock, dst_port):
10128 *insn++ = BPF_LDX_MEM(
10129 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10130 si->dst_reg, si->src_reg,
10131 bpf_target_off(struct sock_common, skc_dport,
10132 sizeof_field(struct sock_common,
10133 skc_dport),
10134 target_size));
10135 break;
10136
10137 case offsetof(struct bpf_sock, state):
10138 *insn++ = BPF_LDX_MEM(
10139 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10140 si->dst_reg, si->src_reg,
10141 bpf_target_off(struct sock_common, skc_state,
10142 sizeof_field(struct sock_common,
10143 skc_state),
10144 target_size));
10145 break;
10146 case offsetof(struct bpf_sock, rx_queue_mapping):
10147 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10148 *insn++ = BPF_LDX_MEM(
10149 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10150 si->dst_reg, si->src_reg,
10151 bpf_target_off(struct sock, sk_rx_queue_mapping,
10152 sizeof_field(struct sock,
10153 sk_rx_queue_mapping),
10154 target_size));
10155 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10156 1);
10157 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10158 #else
10159 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10160 *target_size = 2;
10161 #endif
10162 break;
10163 }
10164
10165 return insn - insn_buf;
10166 }
10167
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10168 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10169 const struct bpf_insn *si,
10170 struct bpf_insn *insn_buf,
10171 struct bpf_prog *prog, u32 *target_size)
10172 {
10173 struct bpf_insn *insn = insn_buf;
10174
10175 switch (si->off) {
10176 case offsetof(struct __sk_buff, ifindex):
10177 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10178 si->dst_reg, si->src_reg,
10179 offsetof(struct sk_buff, dev));
10180 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10181 bpf_target_off(struct net_device, ifindex, 4,
10182 target_size));
10183 break;
10184 default:
10185 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10186 target_size);
10187 }
10188
10189 return insn - insn_buf;
10190 }
10191
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10192 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10193 const struct bpf_insn *si,
10194 struct bpf_insn *insn_buf,
10195 struct bpf_prog *prog, u32 *target_size)
10196 {
10197 struct bpf_insn *insn = insn_buf;
10198
10199 switch (si->off) {
10200 case offsetof(struct xdp_md, data):
10201 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10202 si->dst_reg, si->src_reg,
10203 offsetof(struct xdp_buff, data));
10204 break;
10205 case offsetof(struct xdp_md, data_meta):
10206 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10207 si->dst_reg, si->src_reg,
10208 offsetof(struct xdp_buff, data_meta));
10209 break;
10210 case offsetof(struct xdp_md, data_end):
10211 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10212 si->dst_reg, si->src_reg,
10213 offsetof(struct xdp_buff, data_end));
10214 break;
10215 case offsetof(struct xdp_md, ingress_ifindex):
10216 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10217 si->dst_reg, si->src_reg,
10218 offsetof(struct xdp_buff, rxq));
10219 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10220 si->dst_reg, si->dst_reg,
10221 offsetof(struct xdp_rxq_info, dev));
10222 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10223 offsetof(struct net_device, ifindex));
10224 break;
10225 case offsetof(struct xdp_md, rx_queue_index):
10226 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10227 si->dst_reg, si->src_reg,
10228 offsetof(struct xdp_buff, rxq));
10229 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10230 offsetof(struct xdp_rxq_info,
10231 queue_index));
10232 break;
10233 case offsetof(struct xdp_md, egress_ifindex):
10234 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10235 si->dst_reg, si->src_reg,
10236 offsetof(struct xdp_buff, txq));
10237 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10238 si->dst_reg, si->dst_reg,
10239 offsetof(struct xdp_txq_info, dev));
10240 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10241 offsetof(struct net_device, ifindex));
10242 break;
10243 }
10244
10245 return insn - insn_buf;
10246 }
10247
10248 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10249 * context Structure, F is Field in context structure that contains a pointer
10250 * to Nested Structure of type NS that has the field NF.
10251 *
10252 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10253 * sure that SIZE is not greater than actual size of S.F.NF.
10254 *
10255 * If offset OFF is provided, the load happens from that offset relative to
10256 * offset of NF.
10257 */
10258 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10259 do { \
10260 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10261 si->src_reg, offsetof(S, F)); \
10262 *insn++ = BPF_LDX_MEM( \
10263 SIZE, si->dst_reg, si->dst_reg, \
10264 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10265 target_size) \
10266 + OFF); \
10267 } while (0)
10268
10269 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10270 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10271 BPF_FIELD_SIZEOF(NS, NF), 0)
10272
10273 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10274 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10275 *
10276 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10277 * "register" since two registers available in convert_ctx_access are not
10278 * enough: we can't override neither SRC, since it contains value to store, nor
10279 * DST since it contains pointer to context that may be used by later
10280 * instructions. But we need a temporary place to save pointer to nested
10281 * structure whose field we want to store to.
10282 */
10283 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10284 do { \
10285 int tmp_reg = BPF_REG_9; \
10286 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10287 --tmp_reg; \
10288 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10289 --tmp_reg; \
10290 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10291 offsetof(S, TF)); \
10292 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10293 si->dst_reg, offsetof(S, F)); \
10294 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10295 tmp_reg, si->src_reg, \
10296 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10297 target_size) \
10298 + OFF, \
10299 si->imm); \
10300 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10301 offsetof(S, TF)); \
10302 } while (0)
10303
10304 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10305 TF) \
10306 do { \
10307 if (type == BPF_WRITE) { \
10308 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10309 OFF, TF); \
10310 } else { \
10311 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10312 S, NS, F, NF, SIZE, OFF); \
10313 } \
10314 } while (0)
10315
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10316 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10317 const struct bpf_insn *si,
10318 struct bpf_insn *insn_buf,
10319 struct bpf_prog *prog, u32 *target_size)
10320 {
10321 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10322 struct bpf_insn *insn = insn_buf;
10323
10324 switch (si->off) {
10325 case offsetof(struct bpf_sock_addr, user_family):
10326 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10327 struct sockaddr, uaddr, sa_family);
10328 break;
10329
10330 case offsetof(struct bpf_sock_addr, user_ip4):
10331 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10332 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10333 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10334 break;
10335
10336 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10337 off = si->off;
10338 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10339 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10340 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10341 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10342 tmp_reg);
10343 break;
10344
10345 case offsetof(struct bpf_sock_addr, user_port):
10346 /* To get port we need to know sa_family first and then treat
10347 * sockaddr as either sockaddr_in or sockaddr_in6.
10348 * Though we can simplify since port field has same offset and
10349 * size in both structures.
10350 * Here we check this invariant and use just one of the
10351 * structures if it's true.
10352 */
10353 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10354 offsetof(struct sockaddr_in6, sin6_port));
10355 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10356 sizeof_field(struct sockaddr_in6, sin6_port));
10357 /* Account for sin6_port being smaller than user_port. */
10358 port_size = min(port_size, BPF_LDST_BYTES(si));
10359 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10360 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10361 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10362 break;
10363
10364 case offsetof(struct bpf_sock_addr, family):
10365 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10366 struct sock, sk, sk_family);
10367 break;
10368
10369 case offsetof(struct bpf_sock_addr, type):
10370 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10371 struct sock, sk, sk_type);
10372 break;
10373
10374 case offsetof(struct bpf_sock_addr, protocol):
10375 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10376 struct sock, sk, sk_protocol);
10377 break;
10378
10379 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10380 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10381 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10382 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10383 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10384 break;
10385
10386 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10387 msg_src_ip6[3]):
10388 off = si->off;
10389 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10390 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10391 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10392 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10393 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10394 break;
10395 case offsetof(struct bpf_sock_addr, sk):
10396 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10397 si->dst_reg, si->src_reg,
10398 offsetof(struct bpf_sock_addr_kern, sk));
10399 break;
10400 }
10401
10402 return insn - insn_buf;
10403 }
10404
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10405 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10406 const struct bpf_insn *si,
10407 struct bpf_insn *insn_buf,
10408 struct bpf_prog *prog,
10409 u32 *target_size)
10410 {
10411 struct bpf_insn *insn = insn_buf;
10412 int off;
10413
10414 /* Helper macro for adding read access to tcp_sock or sock fields. */
10415 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10416 do { \
10417 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10418 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10419 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10420 if (si->dst_reg == reg || si->src_reg == reg) \
10421 reg--; \
10422 if (si->dst_reg == reg || si->src_reg == reg) \
10423 reg--; \
10424 if (si->dst_reg == si->src_reg) { \
10425 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10426 offsetof(struct bpf_sock_ops_kern, \
10427 temp)); \
10428 fullsock_reg = reg; \
10429 jmp += 2; \
10430 } \
10431 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10432 struct bpf_sock_ops_kern, \
10433 is_locked_tcp_sock), \
10434 fullsock_reg, si->src_reg, \
10435 offsetof(struct bpf_sock_ops_kern, \
10436 is_locked_tcp_sock)); \
10437 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10438 if (si->dst_reg == si->src_reg) \
10439 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10440 offsetof(struct bpf_sock_ops_kern, \
10441 temp)); \
10442 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10443 struct bpf_sock_ops_kern, sk),\
10444 si->dst_reg, si->src_reg, \
10445 offsetof(struct bpf_sock_ops_kern, sk));\
10446 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10447 OBJ_FIELD), \
10448 si->dst_reg, si->dst_reg, \
10449 offsetof(OBJ, OBJ_FIELD)); \
10450 if (si->dst_reg == si->src_reg) { \
10451 *insn++ = BPF_JMP_A(1); \
10452 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10453 offsetof(struct bpf_sock_ops_kern, \
10454 temp)); \
10455 } \
10456 } while (0)
10457
10458 #define SOCK_OPS_GET_SK() \
10459 do { \
10460 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10461 if (si->dst_reg == reg || si->src_reg == reg) \
10462 reg--; \
10463 if (si->dst_reg == reg || si->src_reg == reg) \
10464 reg--; \
10465 if (si->dst_reg == si->src_reg) { \
10466 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10467 offsetof(struct bpf_sock_ops_kern, \
10468 temp)); \
10469 fullsock_reg = reg; \
10470 jmp += 2; \
10471 } \
10472 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10473 struct bpf_sock_ops_kern, \
10474 is_fullsock), \
10475 fullsock_reg, si->src_reg, \
10476 offsetof(struct bpf_sock_ops_kern, \
10477 is_fullsock)); \
10478 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10479 if (si->dst_reg == si->src_reg) \
10480 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10481 offsetof(struct bpf_sock_ops_kern, \
10482 temp)); \
10483 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10484 struct bpf_sock_ops_kern, sk),\
10485 si->dst_reg, si->src_reg, \
10486 offsetof(struct bpf_sock_ops_kern, sk));\
10487 if (si->dst_reg == si->src_reg) { \
10488 *insn++ = BPF_JMP_A(1); \
10489 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10490 offsetof(struct bpf_sock_ops_kern, \
10491 temp)); \
10492 } \
10493 } while (0)
10494
10495 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10496 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10497
10498 /* Helper macro for adding write access to tcp_sock or sock fields.
10499 * The macro is called with two registers, dst_reg which contains a pointer
10500 * to ctx (context) and src_reg which contains the value that should be
10501 * stored. However, we need an additional register since we cannot overwrite
10502 * dst_reg because it may be used later in the program.
10503 * Instead we "borrow" one of the other register. We first save its value
10504 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10505 * it at the end of the macro.
10506 */
10507 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10508 do { \
10509 int reg = BPF_REG_9; \
10510 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10511 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10512 if (si->dst_reg == reg || si->src_reg == reg) \
10513 reg--; \
10514 if (si->dst_reg == reg || si->src_reg == reg) \
10515 reg--; \
10516 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10517 offsetof(struct bpf_sock_ops_kern, \
10518 temp)); \
10519 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10520 struct bpf_sock_ops_kern, \
10521 is_locked_tcp_sock), \
10522 reg, si->dst_reg, \
10523 offsetof(struct bpf_sock_ops_kern, \
10524 is_locked_tcp_sock)); \
10525 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10526 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10527 struct bpf_sock_ops_kern, sk),\
10528 reg, si->dst_reg, \
10529 offsetof(struct bpf_sock_ops_kern, sk));\
10530 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10531 BPF_MEM | BPF_CLASS(si->code), \
10532 reg, si->src_reg, \
10533 offsetof(OBJ, OBJ_FIELD), \
10534 si->imm); \
10535 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10536 offsetof(struct bpf_sock_ops_kern, \
10537 temp)); \
10538 } while (0)
10539
10540 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10541 do { \
10542 if (TYPE == BPF_WRITE) \
10543 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10544 else \
10545 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10546 } while (0)
10547
10548 switch (si->off) {
10549 case offsetof(struct bpf_sock_ops, op):
10550 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10551 op),
10552 si->dst_reg, si->src_reg,
10553 offsetof(struct bpf_sock_ops_kern, op));
10554 break;
10555
10556 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10557 offsetof(struct bpf_sock_ops, replylong[3]):
10558 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10559 sizeof_field(struct bpf_sock_ops_kern, reply));
10560 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10561 sizeof_field(struct bpf_sock_ops_kern, replylong));
10562 off = si->off;
10563 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10564 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10565 if (type == BPF_WRITE)
10566 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10567 else
10568 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10569 off);
10570 break;
10571
10572 case offsetof(struct bpf_sock_ops, family):
10573 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10574
10575 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10576 struct bpf_sock_ops_kern, sk),
10577 si->dst_reg, si->src_reg,
10578 offsetof(struct bpf_sock_ops_kern, sk));
10579 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10580 offsetof(struct sock_common, skc_family));
10581 break;
10582
10583 case offsetof(struct bpf_sock_ops, remote_ip4):
10584 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10585
10586 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10587 struct bpf_sock_ops_kern, sk),
10588 si->dst_reg, si->src_reg,
10589 offsetof(struct bpf_sock_ops_kern, sk));
10590 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10591 offsetof(struct sock_common, skc_daddr));
10592 break;
10593
10594 case offsetof(struct bpf_sock_ops, local_ip4):
10595 BUILD_BUG_ON(sizeof_field(struct sock_common,
10596 skc_rcv_saddr) != 4);
10597
10598 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10599 struct bpf_sock_ops_kern, sk),
10600 si->dst_reg, si->src_reg,
10601 offsetof(struct bpf_sock_ops_kern, sk));
10602 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10603 offsetof(struct sock_common,
10604 skc_rcv_saddr));
10605 break;
10606
10607 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10608 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10609 #if IS_ENABLED(CONFIG_IPV6)
10610 BUILD_BUG_ON(sizeof_field(struct sock_common,
10611 skc_v6_daddr.s6_addr32[0]) != 4);
10612
10613 off = si->off;
10614 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10615 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10616 struct bpf_sock_ops_kern, sk),
10617 si->dst_reg, si->src_reg,
10618 offsetof(struct bpf_sock_ops_kern, sk));
10619 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10620 offsetof(struct sock_common,
10621 skc_v6_daddr.s6_addr32[0]) +
10622 off);
10623 #else
10624 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10625 #endif
10626 break;
10627
10628 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10629 offsetof(struct bpf_sock_ops, local_ip6[3]):
10630 #if IS_ENABLED(CONFIG_IPV6)
10631 BUILD_BUG_ON(sizeof_field(struct sock_common,
10632 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10633
10634 off = si->off;
10635 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10636 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10637 struct bpf_sock_ops_kern, sk),
10638 si->dst_reg, si->src_reg,
10639 offsetof(struct bpf_sock_ops_kern, sk));
10640 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10641 offsetof(struct sock_common,
10642 skc_v6_rcv_saddr.s6_addr32[0]) +
10643 off);
10644 #else
10645 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10646 #endif
10647 break;
10648
10649 case offsetof(struct bpf_sock_ops, remote_port):
10650 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10651
10652 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10653 struct bpf_sock_ops_kern, sk),
10654 si->dst_reg, si->src_reg,
10655 offsetof(struct bpf_sock_ops_kern, sk));
10656 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10657 offsetof(struct sock_common, skc_dport));
10658 #ifndef __BIG_ENDIAN_BITFIELD
10659 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10660 #endif
10661 break;
10662
10663 case offsetof(struct bpf_sock_ops, local_port):
10664 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10665
10666 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10667 struct bpf_sock_ops_kern, sk),
10668 si->dst_reg, si->src_reg,
10669 offsetof(struct bpf_sock_ops_kern, sk));
10670 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10671 offsetof(struct sock_common, skc_num));
10672 break;
10673
10674 case offsetof(struct bpf_sock_ops, is_fullsock):
10675 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10676 struct bpf_sock_ops_kern,
10677 is_fullsock),
10678 si->dst_reg, si->src_reg,
10679 offsetof(struct bpf_sock_ops_kern,
10680 is_fullsock));
10681 break;
10682
10683 case offsetof(struct bpf_sock_ops, state):
10684 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10685
10686 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10687 struct bpf_sock_ops_kern, sk),
10688 si->dst_reg, si->src_reg,
10689 offsetof(struct bpf_sock_ops_kern, sk));
10690 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10691 offsetof(struct sock_common, skc_state));
10692 break;
10693
10694 case offsetof(struct bpf_sock_ops, rtt_min):
10695 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10696 sizeof(struct minmax));
10697 BUILD_BUG_ON(sizeof(struct minmax) <
10698 sizeof(struct minmax_sample));
10699
10700 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10701 struct bpf_sock_ops_kern, sk),
10702 si->dst_reg, si->src_reg,
10703 offsetof(struct bpf_sock_ops_kern, sk));
10704 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10705 offsetof(struct tcp_sock, rtt_min) +
10706 sizeof_field(struct minmax_sample, t));
10707 break;
10708
10709 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10710 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10711 struct tcp_sock);
10712 break;
10713
10714 case offsetof(struct bpf_sock_ops, sk_txhash):
10715 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10716 struct sock, type);
10717 break;
10718 case offsetof(struct bpf_sock_ops, snd_cwnd):
10719 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10720 break;
10721 case offsetof(struct bpf_sock_ops, srtt_us):
10722 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10723 break;
10724 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10725 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10726 break;
10727 case offsetof(struct bpf_sock_ops, rcv_nxt):
10728 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10729 break;
10730 case offsetof(struct bpf_sock_ops, snd_nxt):
10731 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10732 break;
10733 case offsetof(struct bpf_sock_ops, snd_una):
10734 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10735 break;
10736 case offsetof(struct bpf_sock_ops, mss_cache):
10737 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10738 break;
10739 case offsetof(struct bpf_sock_ops, ecn_flags):
10740 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10741 break;
10742 case offsetof(struct bpf_sock_ops, rate_delivered):
10743 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10744 break;
10745 case offsetof(struct bpf_sock_ops, rate_interval_us):
10746 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10747 break;
10748 case offsetof(struct bpf_sock_ops, packets_out):
10749 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10750 break;
10751 case offsetof(struct bpf_sock_ops, retrans_out):
10752 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10753 break;
10754 case offsetof(struct bpf_sock_ops, total_retrans):
10755 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10756 break;
10757 case offsetof(struct bpf_sock_ops, segs_in):
10758 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10759 break;
10760 case offsetof(struct bpf_sock_ops, data_segs_in):
10761 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10762 break;
10763 case offsetof(struct bpf_sock_ops, segs_out):
10764 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10765 break;
10766 case offsetof(struct bpf_sock_ops, data_segs_out):
10767 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10768 break;
10769 case offsetof(struct bpf_sock_ops, lost_out):
10770 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10771 break;
10772 case offsetof(struct bpf_sock_ops, sacked_out):
10773 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10774 break;
10775 case offsetof(struct bpf_sock_ops, bytes_received):
10776 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10777 break;
10778 case offsetof(struct bpf_sock_ops, bytes_acked):
10779 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10780 break;
10781 case offsetof(struct bpf_sock_ops, sk):
10782 SOCK_OPS_GET_SK();
10783 break;
10784 case offsetof(struct bpf_sock_ops, skb_data_end):
10785 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10786 skb_data_end),
10787 si->dst_reg, si->src_reg,
10788 offsetof(struct bpf_sock_ops_kern,
10789 skb_data_end));
10790 break;
10791 case offsetof(struct bpf_sock_ops, skb_data):
10792 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10793 skb),
10794 si->dst_reg, si->src_reg,
10795 offsetof(struct bpf_sock_ops_kern,
10796 skb));
10797 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10798 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10799 si->dst_reg, si->dst_reg,
10800 offsetof(struct sk_buff, data));
10801 break;
10802 case offsetof(struct bpf_sock_ops, skb_len):
10803 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10804 skb),
10805 si->dst_reg, si->src_reg,
10806 offsetof(struct bpf_sock_ops_kern,
10807 skb));
10808 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10809 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10810 si->dst_reg, si->dst_reg,
10811 offsetof(struct sk_buff, len));
10812 break;
10813 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10814 off = offsetof(struct sk_buff, cb);
10815 off += offsetof(struct tcp_skb_cb, tcp_flags);
10816 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10817 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10818 skb),
10819 si->dst_reg, si->src_reg,
10820 offsetof(struct bpf_sock_ops_kern,
10821 skb));
10822 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10823 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10824 tcp_flags),
10825 si->dst_reg, si->dst_reg, off);
10826 break;
10827 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10828 struct bpf_insn *jmp_on_null_skb;
10829
10830 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10831 skb),
10832 si->dst_reg, si->src_reg,
10833 offsetof(struct bpf_sock_ops_kern,
10834 skb));
10835 /* Reserve one insn to test skb == NULL */
10836 jmp_on_null_skb = insn++;
10837 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10838 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10839 bpf_target_off(struct skb_shared_info,
10840 hwtstamps, 8,
10841 target_size));
10842 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10843 insn - jmp_on_null_skb - 1);
10844 break;
10845 }
10846 }
10847 return insn - insn_buf;
10848 }
10849
10850 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10851 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10852 struct bpf_insn *insn)
10853 {
10854 int reg;
10855 int temp_reg_off = offsetof(struct sk_buff, cb) +
10856 offsetof(struct sk_skb_cb, temp_reg);
10857
10858 if (si->src_reg == si->dst_reg) {
10859 /* We need an extra register, choose and save a register. */
10860 reg = BPF_REG_9;
10861 if (si->src_reg == reg || si->dst_reg == reg)
10862 reg--;
10863 if (si->src_reg == reg || si->dst_reg == reg)
10864 reg--;
10865 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10866 } else {
10867 reg = si->dst_reg;
10868 }
10869
10870 /* reg = skb->data */
10871 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10872 reg, si->src_reg,
10873 offsetof(struct sk_buff, data));
10874 /* AX = skb->len */
10875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10876 BPF_REG_AX, si->src_reg,
10877 offsetof(struct sk_buff, len));
10878 /* reg = skb->data + skb->len */
10879 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10880 /* AX = skb->data_len */
10881 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10882 BPF_REG_AX, si->src_reg,
10883 offsetof(struct sk_buff, data_len));
10884
10885 /* reg = skb->data + skb->len - skb->data_len */
10886 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10887
10888 if (si->src_reg == si->dst_reg) {
10889 /* Restore the saved register */
10890 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10891 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10892 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10893 }
10894
10895 return insn;
10896 }
10897
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10898 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10899 const struct bpf_insn *si,
10900 struct bpf_insn *insn_buf,
10901 struct bpf_prog *prog, u32 *target_size)
10902 {
10903 struct bpf_insn *insn = insn_buf;
10904 int off;
10905
10906 switch (si->off) {
10907 case offsetof(struct __sk_buff, data_end):
10908 insn = bpf_convert_data_end_access(si, insn);
10909 break;
10910 case offsetof(struct __sk_buff, cb[0]) ...
10911 offsetofend(struct __sk_buff, cb[4]) - 1:
10912 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10913 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10914 offsetof(struct sk_skb_cb, data)) %
10915 sizeof(__u64));
10916
10917 prog->cb_access = 1;
10918 off = si->off;
10919 off -= offsetof(struct __sk_buff, cb[0]);
10920 off += offsetof(struct sk_buff, cb);
10921 off += offsetof(struct sk_skb_cb, data);
10922 if (type == BPF_WRITE)
10923 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10924 else
10925 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10926 si->src_reg, off);
10927 break;
10928
10929
10930 default:
10931 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10932 target_size);
10933 }
10934
10935 return insn - insn_buf;
10936 }
10937
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10938 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10939 const struct bpf_insn *si,
10940 struct bpf_insn *insn_buf,
10941 struct bpf_prog *prog, u32 *target_size)
10942 {
10943 struct bpf_insn *insn = insn_buf;
10944 #if IS_ENABLED(CONFIG_IPV6)
10945 int off;
10946 #endif
10947
10948 /* convert ctx uses the fact sg element is first in struct */
10949 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10950
10951 switch (si->off) {
10952 case offsetof(struct sk_msg_md, data):
10953 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10954 si->dst_reg, si->src_reg,
10955 offsetof(struct sk_msg, data));
10956 break;
10957 case offsetof(struct sk_msg_md, data_end):
10958 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10959 si->dst_reg, si->src_reg,
10960 offsetof(struct sk_msg, data_end));
10961 break;
10962 case offsetof(struct sk_msg_md, family):
10963 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10964
10965 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10966 struct sk_msg, sk),
10967 si->dst_reg, si->src_reg,
10968 offsetof(struct sk_msg, sk));
10969 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10970 offsetof(struct sock_common, skc_family));
10971 break;
10972
10973 case offsetof(struct sk_msg_md, remote_ip4):
10974 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10975
10976 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10977 struct sk_msg, sk),
10978 si->dst_reg, si->src_reg,
10979 offsetof(struct sk_msg, sk));
10980 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10981 offsetof(struct sock_common, skc_daddr));
10982 break;
10983
10984 case offsetof(struct sk_msg_md, local_ip4):
10985 BUILD_BUG_ON(sizeof_field(struct sock_common,
10986 skc_rcv_saddr) != 4);
10987
10988 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10989 struct sk_msg, sk),
10990 si->dst_reg, si->src_reg,
10991 offsetof(struct sk_msg, sk));
10992 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10993 offsetof(struct sock_common,
10994 skc_rcv_saddr));
10995 break;
10996
10997 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10998 offsetof(struct sk_msg_md, remote_ip6[3]):
10999 #if IS_ENABLED(CONFIG_IPV6)
11000 BUILD_BUG_ON(sizeof_field(struct sock_common,
11001 skc_v6_daddr.s6_addr32[0]) != 4);
11002
11003 off = si->off;
11004 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11005 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11006 struct sk_msg, sk),
11007 si->dst_reg, si->src_reg,
11008 offsetof(struct sk_msg, sk));
11009 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11010 offsetof(struct sock_common,
11011 skc_v6_daddr.s6_addr32[0]) +
11012 off);
11013 #else
11014 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11015 #endif
11016 break;
11017
11018 case offsetof(struct sk_msg_md, local_ip6[0]) ...
11019 offsetof(struct sk_msg_md, local_ip6[3]):
11020 #if IS_ENABLED(CONFIG_IPV6)
11021 BUILD_BUG_ON(sizeof_field(struct sock_common,
11022 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11023
11024 off = si->off;
11025 off -= offsetof(struct sk_msg_md, local_ip6[0]);
11026 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11027 struct sk_msg, sk),
11028 si->dst_reg, si->src_reg,
11029 offsetof(struct sk_msg, sk));
11030 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11031 offsetof(struct sock_common,
11032 skc_v6_rcv_saddr.s6_addr32[0]) +
11033 off);
11034 #else
11035 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11036 #endif
11037 break;
11038
11039 case offsetof(struct sk_msg_md, remote_port):
11040 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11041
11042 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11043 struct sk_msg, sk),
11044 si->dst_reg, si->src_reg,
11045 offsetof(struct sk_msg, sk));
11046 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11047 offsetof(struct sock_common, skc_dport));
11048 #ifndef __BIG_ENDIAN_BITFIELD
11049 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11050 #endif
11051 break;
11052
11053 case offsetof(struct sk_msg_md, local_port):
11054 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11055
11056 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11057 struct sk_msg, sk),
11058 si->dst_reg, si->src_reg,
11059 offsetof(struct sk_msg, sk));
11060 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11061 offsetof(struct sock_common, skc_num));
11062 break;
11063
11064 case offsetof(struct sk_msg_md, size):
11065 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11066 si->dst_reg, si->src_reg,
11067 offsetof(struct sk_msg_sg, size));
11068 break;
11069
11070 case offsetof(struct sk_msg_md, sk):
11071 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11072 si->dst_reg, si->src_reg,
11073 offsetof(struct sk_msg, sk));
11074 break;
11075 }
11076
11077 return insn - insn_buf;
11078 }
11079
11080 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11081 .get_func_proto = sk_filter_func_proto,
11082 .is_valid_access = sk_filter_is_valid_access,
11083 .convert_ctx_access = bpf_convert_ctx_access,
11084 .gen_ld_abs = bpf_gen_ld_abs,
11085 };
11086
11087 const struct bpf_prog_ops sk_filter_prog_ops = {
11088 .test_run = bpf_prog_test_run_skb,
11089 };
11090
11091 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11092 .get_func_proto = tc_cls_act_func_proto,
11093 .is_valid_access = tc_cls_act_is_valid_access,
11094 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11095 .gen_prologue = tc_cls_act_prologue,
11096 .gen_ld_abs = bpf_gen_ld_abs,
11097 .btf_struct_access = tc_cls_act_btf_struct_access,
11098 };
11099
11100 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11101 .test_run = bpf_prog_test_run_skb,
11102 };
11103
11104 const struct bpf_verifier_ops xdp_verifier_ops = {
11105 .get_func_proto = xdp_func_proto,
11106 .is_valid_access = xdp_is_valid_access,
11107 .convert_ctx_access = xdp_convert_ctx_access,
11108 .gen_prologue = bpf_noop_prologue,
11109 .btf_struct_access = xdp_btf_struct_access,
11110 };
11111
11112 const struct bpf_prog_ops xdp_prog_ops = {
11113 .test_run = bpf_prog_test_run_xdp,
11114 };
11115
11116 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11117 .get_func_proto = cg_skb_func_proto,
11118 .is_valid_access = cg_skb_is_valid_access,
11119 .convert_ctx_access = bpf_convert_ctx_access,
11120 };
11121
11122 const struct bpf_prog_ops cg_skb_prog_ops = {
11123 .test_run = bpf_prog_test_run_skb,
11124 };
11125
11126 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11127 .get_func_proto = lwt_in_func_proto,
11128 .is_valid_access = lwt_is_valid_access,
11129 .convert_ctx_access = bpf_convert_ctx_access,
11130 };
11131
11132 const struct bpf_prog_ops lwt_in_prog_ops = {
11133 .test_run = bpf_prog_test_run_skb,
11134 };
11135
11136 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11137 .get_func_proto = lwt_out_func_proto,
11138 .is_valid_access = lwt_is_valid_access,
11139 .convert_ctx_access = bpf_convert_ctx_access,
11140 };
11141
11142 const struct bpf_prog_ops lwt_out_prog_ops = {
11143 .test_run = bpf_prog_test_run_skb,
11144 };
11145
11146 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11147 .get_func_proto = lwt_xmit_func_proto,
11148 .is_valid_access = lwt_is_valid_access,
11149 .convert_ctx_access = bpf_convert_ctx_access,
11150 .gen_prologue = tc_cls_act_prologue,
11151 };
11152
11153 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11154 .test_run = bpf_prog_test_run_skb,
11155 };
11156
11157 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11158 .get_func_proto = lwt_seg6local_func_proto,
11159 .is_valid_access = lwt_is_valid_access,
11160 .convert_ctx_access = bpf_convert_ctx_access,
11161 };
11162
11163 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11164 };
11165
11166 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11167 .get_func_proto = sock_filter_func_proto,
11168 .is_valid_access = sock_filter_is_valid_access,
11169 .convert_ctx_access = bpf_sock_convert_ctx_access,
11170 };
11171
11172 const struct bpf_prog_ops cg_sock_prog_ops = {
11173 };
11174
11175 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11176 .get_func_proto = sock_addr_func_proto,
11177 .is_valid_access = sock_addr_is_valid_access,
11178 .convert_ctx_access = sock_addr_convert_ctx_access,
11179 };
11180
11181 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11182 };
11183
11184 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11185 .get_func_proto = sock_ops_func_proto,
11186 .is_valid_access = sock_ops_is_valid_access,
11187 .convert_ctx_access = sock_ops_convert_ctx_access,
11188 };
11189
11190 const struct bpf_prog_ops sock_ops_prog_ops = {
11191 };
11192
11193 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11194 .get_func_proto = sk_skb_func_proto,
11195 .is_valid_access = sk_skb_is_valid_access,
11196 .convert_ctx_access = sk_skb_convert_ctx_access,
11197 .gen_prologue = sk_skb_prologue,
11198 };
11199
11200 const struct bpf_prog_ops sk_skb_prog_ops = {
11201 };
11202
11203 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11204 .get_func_proto = sk_msg_func_proto,
11205 .is_valid_access = sk_msg_is_valid_access,
11206 .convert_ctx_access = sk_msg_convert_ctx_access,
11207 .gen_prologue = bpf_noop_prologue,
11208 };
11209
11210 const struct bpf_prog_ops sk_msg_prog_ops = {
11211 };
11212
11213 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11214 .get_func_proto = flow_dissector_func_proto,
11215 .is_valid_access = flow_dissector_is_valid_access,
11216 .convert_ctx_access = flow_dissector_convert_ctx_access,
11217 };
11218
11219 const struct bpf_prog_ops flow_dissector_prog_ops = {
11220 .test_run = bpf_prog_test_run_flow_dissector,
11221 };
11222
sk_detach_filter(struct sock * sk)11223 int sk_detach_filter(struct sock *sk)
11224 {
11225 int ret = -ENOENT;
11226 struct sk_filter *filter;
11227
11228 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11229 return -EPERM;
11230
11231 filter = rcu_dereference_protected(sk->sk_filter,
11232 lockdep_sock_is_held(sk));
11233 if (filter) {
11234 RCU_INIT_POINTER(sk->sk_filter, NULL);
11235 sk_filter_uncharge(sk, filter);
11236 ret = 0;
11237 }
11238
11239 return ret;
11240 }
11241 EXPORT_SYMBOL_GPL(sk_detach_filter);
11242
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11243 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11244 {
11245 struct sock_fprog_kern *fprog;
11246 struct sk_filter *filter;
11247 int ret = 0;
11248
11249 sockopt_lock_sock(sk);
11250 filter = rcu_dereference_protected(sk->sk_filter,
11251 lockdep_sock_is_held(sk));
11252 if (!filter)
11253 goto out;
11254
11255 /* We're copying the filter that has been originally attached,
11256 * so no conversion/decode needed anymore. eBPF programs that
11257 * have no original program cannot be dumped through this.
11258 */
11259 ret = -EACCES;
11260 fprog = filter->prog->orig_prog;
11261 if (!fprog)
11262 goto out;
11263
11264 ret = fprog->len;
11265 if (!len)
11266 /* User space only enquires number of filter blocks. */
11267 goto out;
11268
11269 ret = -EINVAL;
11270 if (len < fprog->len)
11271 goto out;
11272
11273 ret = -EFAULT;
11274 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11275 goto out;
11276
11277 /* Instead of bytes, the API requests to return the number
11278 * of filter blocks.
11279 */
11280 ret = fprog->len;
11281 out:
11282 sockopt_release_sock(sk);
11283 return ret;
11284 }
11285
11286 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11287 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11288 struct sock_reuseport *reuse,
11289 struct sock *sk, struct sk_buff *skb,
11290 struct sock *migrating_sk,
11291 u32 hash)
11292 {
11293 reuse_kern->skb = skb;
11294 reuse_kern->sk = sk;
11295 reuse_kern->selected_sk = NULL;
11296 reuse_kern->migrating_sk = migrating_sk;
11297 reuse_kern->data_end = skb->data + skb_headlen(skb);
11298 reuse_kern->hash = hash;
11299 reuse_kern->reuseport_id = reuse->reuseport_id;
11300 reuse_kern->bind_inany = reuse->bind_inany;
11301 }
11302
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11303 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11304 struct bpf_prog *prog, struct sk_buff *skb,
11305 struct sock *migrating_sk,
11306 u32 hash)
11307 {
11308 struct sk_reuseport_kern reuse_kern;
11309 enum sk_action action;
11310
11311 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11312 action = bpf_prog_run(prog, &reuse_kern);
11313
11314 if (action == SK_PASS)
11315 return reuse_kern.selected_sk;
11316 else
11317 return ERR_PTR(-ECONNREFUSED);
11318 }
11319
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11320 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11321 struct bpf_map *, map, void *, key, u32, flags)
11322 {
11323 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11324 struct sock_reuseport *reuse;
11325 struct sock *selected_sk;
11326 int err;
11327
11328 selected_sk = map->ops->map_lookup_elem(map, key);
11329 if (!selected_sk)
11330 return -ENOENT;
11331
11332 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11333 if (!reuse) {
11334 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11335 * The only (!reuse) case here is - the sk has already been
11336 * unhashed (e.g. by close()), so treat it as -ENOENT.
11337 *
11338 * Other maps (e.g. sock_map) do not provide this guarantee and
11339 * the sk may never be in the reuseport group to begin with.
11340 */
11341 err = is_sockarray ? -ENOENT : -EINVAL;
11342 goto error;
11343 }
11344
11345 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11346 struct sock *sk = reuse_kern->sk;
11347
11348 if (sk->sk_protocol != selected_sk->sk_protocol) {
11349 err = -EPROTOTYPE;
11350 } else if (sk->sk_family != selected_sk->sk_family) {
11351 err = -EAFNOSUPPORT;
11352 } else {
11353 /* Catch all. Likely bound to a different sockaddr. */
11354 err = -EBADFD;
11355 }
11356 goto error;
11357 }
11358
11359 reuse_kern->selected_sk = selected_sk;
11360
11361 return 0;
11362 error:
11363 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11364 if (sk_is_refcounted(selected_sk))
11365 sock_put(selected_sk);
11366
11367 return err;
11368 }
11369
11370 static const struct bpf_func_proto sk_select_reuseport_proto = {
11371 .func = sk_select_reuseport,
11372 .gpl_only = false,
11373 .ret_type = RET_INTEGER,
11374 .arg1_type = ARG_PTR_TO_CTX,
11375 .arg2_type = ARG_CONST_MAP_PTR,
11376 .arg3_type = ARG_PTR_TO_MAP_KEY,
11377 .arg4_type = ARG_ANYTHING,
11378 };
11379
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11380 BPF_CALL_4(sk_reuseport_load_bytes,
11381 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11382 void *, to, u32, len)
11383 {
11384 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11385 }
11386
11387 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11388 .func = sk_reuseport_load_bytes,
11389 .gpl_only = false,
11390 .ret_type = RET_INTEGER,
11391 .arg1_type = ARG_PTR_TO_CTX,
11392 .arg2_type = ARG_ANYTHING,
11393 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11394 .arg4_type = ARG_CONST_SIZE,
11395 };
11396
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11397 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11398 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11399 void *, to, u32, len, u32, start_header)
11400 {
11401 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11402 len, start_header);
11403 }
11404
11405 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11406 .func = sk_reuseport_load_bytes_relative,
11407 .gpl_only = false,
11408 .ret_type = RET_INTEGER,
11409 .arg1_type = ARG_PTR_TO_CTX,
11410 .arg2_type = ARG_ANYTHING,
11411 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11412 .arg4_type = ARG_CONST_SIZE,
11413 .arg5_type = ARG_ANYTHING,
11414 };
11415
11416 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11417 sk_reuseport_func_proto(enum bpf_func_id func_id,
11418 const struct bpf_prog *prog)
11419 {
11420 switch (func_id) {
11421 case BPF_FUNC_sk_select_reuseport:
11422 return &sk_select_reuseport_proto;
11423 case BPF_FUNC_skb_load_bytes:
11424 return &sk_reuseport_load_bytes_proto;
11425 case BPF_FUNC_skb_load_bytes_relative:
11426 return &sk_reuseport_load_bytes_relative_proto;
11427 case BPF_FUNC_get_socket_cookie:
11428 return &bpf_get_socket_ptr_cookie_proto;
11429 case BPF_FUNC_ktime_get_coarse_ns:
11430 return &bpf_ktime_get_coarse_ns_proto;
11431 default:
11432 return bpf_base_func_proto(func_id, prog);
11433 }
11434 }
11435
11436 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11437 sk_reuseport_is_valid_access(int off, int size,
11438 enum bpf_access_type type,
11439 const struct bpf_prog *prog,
11440 struct bpf_insn_access_aux *info)
11441 {
11442 const u32 size_default = sizeof(__u32);
11443
11444 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11445 off % size || type != BPF_READ)
11446 return false;
11447
11448 switch (off) {
11449 case offsetof(struct sk_reuseport_md, data):
11450 info->reg_type = PTR_TO_PACKET;
11451 return size == sizeof(__u64);
11452
11453 case offsetof(struct sk_reuseport_md, data_end):
11454 info->reg_type = PTR_TO_PACKET_END;
11455 return size == sizeof(__u64);
11456
11457 case offsetof(struct sk_reuseport_md, hash):
11458 return size == size_default;
11459
11460 case offsetof(struct sk_reuseport_md, sk):
11461 info->reg_type = PTR_TO_SOCKET;
11462 return size == sizeof(__u64);
11463
11464 case offsetof(struct sk_reuseport_md, migrating_sk):
11465 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11466 return size == sizeof(__u64);
11467
11468 /* Fields that allow narrowing */
11469 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11470 if (size < sizeof_field(struct sk_buff, protocol))
11471 return false;
11472 fallthrough;
11473 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11474 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11475 case bpf_ctx_range(struct sk_reuseport_md, len):
11476 bpf_ctx_record_field_size(info, size_default);
11477 return bpf_ctx_narrow_access_ok(off, size, size_default);
11478
11479 default:
11480 return false;
11481 }
11482 }
11483
11484 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11485 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11486 si->dst_reg, si->src_reg, \
11487 bpf_target_off(struct sk_reuseport_kern, F, \
11488 sizeof_field(struct sk_reuseport_kern, F), \
11489 target_size)); \
11490 })
11491
11492 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11493 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11494 struct sk_buff, \
11495 skb, \
11496 SKB_FIELD)
11497
11498 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11499 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11500 struct sock, \
11501 sk, \
11502 SK_FIELD)
11503
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11504 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11505 const struct bpf_insn *si,
11506 struct bpf_insn *insn_buf,
11507 struct bpf_prog *prog,
11508 u32 *target_size)
11509 {
11510 struct bpf_insn *insn = insn_buf;
11511
11512 switch (si->off) {
11513 case offsetof(struct sk_reuseport_md, data):
11514 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11515 break;
11516
11517 case offsetof(struct sk_reuseport_md, len):
11518 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11519 break;
11520
11521 case offsetof(struct sk_reuseport_md, eth_protocol):
11522 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11523 break;
11524
11525 case offsetof(struct sk_reuseport_md, ip_protocol):
11526 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11527 break;
11528
11529 case offsetof(struct sk_reuseport_md, data_end):
11530 SK_REUSEPORT_LOAD_FIELD(data_end);
11531 break;
11532
11533 case offsetof(struct sk_reuseport_md, hash):
11534 SK_REUSEPORT_LOAD_FIELD(hash);
11535 break;
11536
11537 case offsetof(struct sk_reuseport_md, bind_inany):
11538 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11539 break;
11540
11541 case offsetof(struct sk_reuseport_md, sk):
11542 SK_REUSEPORT_LOAD_FIELD(sk);
11543 break;
11544
11545 case offsetof(struct sk_reuseport_md, migrating_sk):
11546 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11547 break;
11548 }
11549
11550 return insn - insn_buf;
11551 }
11552
11553 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11554 .get_func_proto = sk_reuseport_func_proto,
11555 .is_valid_access = sk_reuseport_is_valid_access,
11556 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11557 };
11558
11559 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11560 };
11561
11562 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11563 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11564
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11565 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11566 struct sock *, sk, u64, flags)
11567 {
11568 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11569 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11570 return -EINVAL;
11571 if (unlikely(sk && sk_is_refcounted(sk)))
11572 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11573 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11574 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11575 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11576 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11577
11578 /* Check if socket is suitable for packet L3/L4 protocol */
11579 if (sk && sk->sk_protocol != ctx->protocol)
11580 return -EPROTOTYPE;
11581 if (sk && sk->sk_family != ctx->family &&
11582 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11583 return -EAFNOSUPPORT;
11584
11585 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11586 return -EEXIST;
11587
11588 /* Select socket as lookup result */
11589 ctx->selected_sk = sk;
11590 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11591 return 0;
11592 }
11593
11594 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11595 .func = bpf_sk_lookup_assign,
11596 .gpl_only = false,
11597 .ret_type = RET_INTEGER,
11598 .arg1_type = ARG_PTR_TO_CTX,
11599 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11600 .arg3_type = ARG_ANYTHING,
11601 };
11602
11603 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11604 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11605 {
11606 switch (func_id) {
11607 case BPF_FUNC_perf_event_output:
11608 return &bpf_event_output_data_proto;
11609 case BPF_FUNC_sk_assign:
11610 return &bpf_sk_lookup_assign_proto;
11611 case BPF_FUNC_sk_release:
11612 return &bpf_sk_release_proto;
11613 default:
11614 return bpf_sk_base_func_proto(func_id, prog);
11615 }
11616 }
11617
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11618 static bool sk_lookup_is_valid_access(int off, int size,
11619 enum bpf_access_type type,
11620 const struct bpf_prog *prog,
11621 struct bpf_insn_access_aux *info)
11622 {
11623 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11624 return false;
11625 if (off % size != 0)
11626 return false;
11627 if (type != BPF_READ)
11628 return false;
11629
11630 switch (off) {
11631 case offsetof(struct bpf_sk_lookup, sk):
11632 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11633 return size == sizeof(__u64);
11634
11635 case bpf_ctx_range(struct bpf_sk_lookup, family):
11636 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11637 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11638 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11639 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11640 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11641 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11642 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11643 bpf_ctx_record_field_size(info, sizeof(__u32));
11644 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11645
11646 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11647 /* Allow 4-byte access to 2-byte field for backward compatibility */
11648 if (size == sizeof(__u32))
11649 return true;
11650 bpf_ctx_record_field_size(info, sizeof(__be16));
11651 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11652
11653 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11654 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11655 /* Allow access to zero padding for backward compatibility */
11656 bpf_ctx_record_field_size(info, sizeof(__u16));
11657 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11658
11659 default:
11660 return false;
11661 }
11662 }
11663
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11664 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11665 const struct bpf_insn *si,
11666 struct bpf_insn *insn_buf,
11667 struct bpf_prog *prog,
11668 u32 *target_size)
11669 {
11670 struct bpf_insn *insn = insn_buf;
11671
11672 switch (si->off) {
11673 case offsetof(struct bpf_sk_lookup, sk):
11674 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11675 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11676 break;
11677
11678 case offsetof(struct bpf_sk_lookup, family):
11679 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11680 bpf_target_off(struct bpf_sk_lookup_kern,
11681 family, 2, target_size));
11682 break;
11683
11684 case offsetof(struct bpf_sk_lookup, protocol):
11685 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11686 bpf_target_off(struct bpf_sk_lookup_kern,
11687 protocol, 2, target_size));
11688 break;
11689
11690 case offsetof(struct bpf_sk_lookup, remote_ip4):
11691 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11692 bpf_target_off(struct bpf_sk_lookup_kern,
11693 v4.saddr, 4, target_size));
11694 break;
11695
11696 case offsetof(struct bpf_sk_lookup, local_ip4):
11697 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11698 bpf_target_off(struct bpf_sk_lookup_kern,
11699 v4.daddr, 4, target_size));
11700 break;
11701
11702 case bpf_ctx_range_till(struct bpf_sk_lookup,
11703 remote_ip6[0], remote_ip6[3]): {
11704 #if IS_ENABLED(CONFIG_IPV6)
11705 int off = si->off;
11706
11707 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11708 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11709 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11710 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11711 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11712 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11713 #else
11714 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11715 #endif
11716 break;
11717 }
11718 case bpf_ctx_range_till(struct bpf_sk_lookup,
11719 local_ip6[0], local_ip6[3]): {
11720 #if IS_ENABLED(CONFIG_IPV6)
11721 int off = si->off;
11722
11723 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11724 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11725 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11726 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11727 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11728 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11729 #else
11730 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11731 #endif
11732 break;
11733 }
11734 case offsetof(struct bpf_sk_lookup, remote_port):
11735 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11736 bpf_target_off(struct bpf_sk_lookup_kern,
11737 sport, 2, target_size));
11738 break;
11739
11740 case offsetofend(struct bpf_sk_lookup, remote_port):
11741 *target_size = 2;
11742 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11743 break;
11744
11745 case offsetof(struct bpf_sk_lookup, local_port):
11746 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11747 bpf_target_off(struct bpf_sk_lookup_kern,
11748 dport, 2, target_size));
11749 break;
11750
11751 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11752 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11753 bpf_target_off(struct bpf_sk_lookup_kern,
11754 ingress_ifindex, 4, target_size));
11755 break;
11756 }
11757
11758 return insn - insn_buf;
11759 }
11760
11761 const struct bpf_prog_ops sk_lookup_prog_ops = {
11762 .test_run = bpf_prog_test_run_sk_lookup,
11763 };
11764
11765 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11766 .get_func_proto = sk_lookup_func_proto,
11767 .is_valid_access = sk_lookup_is_valid_access,
11768 .convert_ctx_access = sk_lookup_convert_ctx_access,
11769 };
11770
11771 #endif /* CONFIG_INET */
11772
DEFINE_BPF_DISPATCHER(xdp)11773 DEFINE_BPF_DISPATCHER(xdp)
11774
11775 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11776 {
11777 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11778 }
11779
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11780 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11781 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11782 BTF_SOCK_TYPE_xxx
11783 #undef BTF_SOCK_TYPE
11784
11785 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11786 {
11787 /* tcp6_sock type is not generated in dwarf and hence btf,
11788 * trigger an explicit type generation here.
11789 */
11790 BTF_TYPE_EMIT(struct tcp6_sock);
11791 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11792 sk->sk_family == AF_INET6)
11793 return (unsigned long)sk;
11794
11795 return (unsigned long)NULL;
11796 }
11797
11798 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11799 .func = bpf_skc_to_tcp6_sock,
11800 .gpl_only = false,
11801 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11802 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11803 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11804 };
11805
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11806 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11807 {
11808 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11809 return (unsigned long)sk;
11810
11811 return (unsigned long)NULL;
11812 }
11813
11814 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11815 .func = bpf_skc_to_tcp_sock,
11816 .gpl_only = false,
11817 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11818 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11819 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11820 };
11821
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11822 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11823 {
11824 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11825 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11826 */
11827 BTF_TYPE_EMIT(struct inet_timewait_sock);
11828 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11829
11830 #ifdef CONFIG_INET
11831 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11832 return (unsigned long)sk;
11833 #endif
11834
11835 #if IS_BUILTIN(CONFIG_IPV6)
11836 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11837 return (unsigned long)sk;
11838 #endif
11839
11840 return (unsigned long)NULL;
11841 }
11842
11843 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11844 .func = bpf_skc_to_tcp_timewait_sock,
11845 .gpl_only = false,
11846 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11847 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11848 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11849 };
11850
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11851 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11852 {
11853 #ifdef CONFIG_INET
11854 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11855 return (unsigned long)sk;
11856 #endif
11857
11858 #if IS_BUILTIN(CONFIG_IPV6)
11859 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11860 return (unsigned long)sk;
11861 #endif
11862
11863 return (unsigned long)NULL;
11864 }
11865
11866 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11867 .func = bpf_skc_to_tcp_request_sock,
11868 .gpl_only = false,
11869 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11870 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11871 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11872 };
11873
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11874 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11875 {
11876 /* udp6_sock type is not generated in dwarf and hence btf,
11877 * trigger an explicit type generation here.
11878 */
11879 BTF_TYPE_EMIT(struct udp6_sock);
11880 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11881 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11882 return (unsigned long)sk;
11883
11884 return (unsigned long)NULL;
11885 }
11886
11887 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11888 .func = bpf_skc_to_udp6_sock,
11889 .gpl_only = false,
11890 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11891 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11892 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11893 };
11894
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11895 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11896 {
11897 /* unix_sock type is not generated in dwarf and hence btf,
11898 * trigger an explicit type generation here.
11899 */
11900 BTF_TYPE_EMIT(struct unix_sock);
11901 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11902 return (unsigned long)sk;
11903
11904 return (unsigned long)NULL;
11905 }
11906
11907 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11908 .func = bpf_skc_to_unix_sock,
11909 .gpl_only = false,
11910 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11911 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11912 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11913 };
11914
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11915 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11916 {
11917 BTF_TYPE_EMIT(struct mptcp_sock);
11918 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11919 }
11920
11921 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11922 .func = bpf_skc_to_mptcp_sock,
11923 .gpl_only = false,
11924 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11925 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11926 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11927 };
11928
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11929 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11930 {
11931 return (unsigned long)sock_from_file(file);
11932 }
11933
11934 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11935 BTF_ID(struct, socket)
11936 BTF_ID(struct, file)
11937
11938 const struct bpf_func_proto bpf_sock_from_file_proto = {
11939 .func = bpf_sock_from_file,
11940 .gpl_only = false,
11941 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11942 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11943 .arg1_type = ARG_PTR_TO_BTF_ID,
11944 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11945 };
11946
11947 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11948 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11949 {
11950 const struct bpf_func_proto *func;
11951
11952 switch (func_id) {
11953 case BPF_FUNC_skc_to_tcp6_sock:
11954 func = &bpf_skc_to_tcp6_sock_proto;
11955 break;
11956 case BPF_FUNC_skc_to_tcp_sock:
11957 func = &bpf_skc_to_tcp_sock_proto;
11958 break;
11959 case BPF_FUNC_skc_to_tcp_timewait_sock:
11960 func = &bpf_skc_to_tcp_timewait_sock_proto;
11961 break;
11962 case BPF_FUNC_skc_to_tcp_request_sock:
11963 func = &bpf_skc_to_tcp_request_sock_proto;
11964 break;
11965 case BPF_FUNC_skc_to_udp6_sock:
11966 func = &bpf_skc_to_udp6_sock_proto;
11967 break;
11968 case BPF_FUNC_skc_to_unix_sock:
11969 func = &bpf_skc_to_unix_sock_proto;
11970 break;
11971 case BPF_FUNC_skc_to_mptcp_sock:
11972 func = &bpf_skc_to_mptcp_sock_proto;
11973 break;
11974 case BPF_FUNC_ktime_get_coarse_ns:
11975 return &bpf_ktime_get_coarse_ns_proto;
11976 default:
11977 return bpf_base_func_proto(func_id, prog);
11978 }
11979
11980 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11981 return NULL;
11982
11983 return func;
11984 }
11985
11986 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11987 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11988 struct bpf_dynptr *ptr__uninit)
11989 {
11990 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11991 struct sk_buff *skb = (struct sk_buff *)s;
11992
11993 if (flags) {
11994 bpf_dynptr_set_null(ptr);
11995 return -EINVAL;
11996 }
11997
11998 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11999
12000 return 0;
12001 }
12002
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12003 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12004 struct bpf_dynptr *ptr__uninit)
12005 {
12006 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12007 struct xdp_buff *xdp = (struct xdp_buff *)x;
12008
12009 if (flags) {
12010 bpf_dynptr_set_null(ptr);
12011 return -EINVAL;
12012 }
12013
12014 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12015
12016 return 0;
12017 }
12018
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12019 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12020 const u8 *sun_path, u32 sun_path__sz)
12021 {
12022 struct sockaddr_un *un;
12023
12024 if (sa_kern->sk->sk_family != AF_UNIX)
12025 return -EINVAL;
12026
12027 /* We do not allow changing the address to unnamed or larger than the
12028 * maximum allowed address size for a unix sockaddr.
12029 */
12030 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12031 return -EINVAL;
12032
12033 un = (struct sockaddr_un *)sa_kern->uaddr;
12034 memcpy(un->sun_path, sun_path, sun_path__sz);
12035 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12036
12037 return 0;
12038 }
12039
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12040 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12041 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12042 {
12043 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12044 struct sk_buff *skb = (struct sk_buff *)s;
12045 const struct request_sock_ops *ops;
12046 struct inet_request_sock *ireq;
12047 struct tcp_request_sock *treq;
12048 struct request_sock *req;
12049 struct net *net;
12050 __u16 min_mss;
12051 u32 tsoff = 0;
12052
12053 if (attrs__sz != sizeof(*attrs) ||
12054 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12055 return -EINVAL;
12056
12057 if (!skb_at_tc_ingress(skb))
12058 return -EINVAL;
12059
12060 net = dev_net(skb->dev);
12061 if (net != sock_net(sk))
12062 return -ENETUNREACH;
12063
12064 switch (skb->protocol) {
12065 case htons(ETH_P_IP):
12066 ops = &tcp_request_sock_ops;
12067 min_mss = 536;
12068 break;
12069 #if IS_BUILTIN(CONFIG_IPV6)
12070 case htons(ETH_P_IPV6):
12071 ops = &tcp6_request_sock_ops;
12072 min_mss = IPV6_MIN_MTU - 60;
12073 break;
12074 #endif
12075 default:
12076 return -EINVAL;
12077 }
12078
12079 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12080 sk_is_mptcp(sk))
12081 return -EINVAL;
12082
12083 if (attrs->mss < min_mss)
12084 return -EINVAL;
12085
12086 if (attrs->wscale_ok) {
12087 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12088 return -EINVAL;
12089
12090 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12091 attrs->rcv_wscale > TCP_MAX_WSCALE)
12092 return -EINVAL;
12093 }
12094
12095 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12096 return -EINVAL;
12097
12098 if (attrs->tstamp_ok) {
12099 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12100 return -EINVAL;
12101
12102 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12103 }
12104
12105 req = inet_reqsk_alloc(ops, sk, false);
12106 if (!req)
12107 return -ENOMEM;
12108
12109 ireq = inet_rsk(req);
12110 treq = tcp_rsk(req);
12111
12112 req->rsk_listener = sk;
12113 req->syncookie = 1;
12114 req->mss = attrs->mss;
12115 req->ts_recent = attrs->rcv_tsval;
12116
12117 ireq->snd_wscale = attrs->snd_wscale;
12118 ireq->rcv_wscale = attrs->rcv_wscale;
12119 ireq->tstamp_ok = !!attrs->tstamp_ok;
12120 ireq->sack_ok = !!attrs->sack_ok;
12121 ireq->wscale_ok = !!attrs->wscale_ok;
12122 ireq->ecn_ok = !!attrs->ecn_ok;
12123
12124 treq->req_usec_ts = !!attrs->usec_ts_ok;
12125 treq->ts_off = tsoff;
12126
12127 skb_orphan(skb);
12128 skb->sk = req_to_sk(req);
12129 skb->destructor = sock_pfree;
12130
12131 return 0;
12132 #else
12133 return -EOPNOTSUPP;
12134 #endif
12135 }
12136
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12137 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12138 u64 flags)
12139 {
12140 struct sk_buff *skb;
12141
12142 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12143 return -EOPNOTSUPP;
12144
12145 if (flags)
12146 return -EINVAL;
12147
12148 skb = skops->skb;
12149 skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12150 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12151 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12152
12153 return 0;
12154 }
12155
12156 __bpf_kfunc_end_defs();
12157
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12158 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12159 struct bpf_dynptr *ptr__uninit)
12160 {
12161 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12162 int err;
12163
12164 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12165 if (err)
12166 return err;
12167
12168 bpf_dynptr_set_rdonly(ptr);
12169
12170 return 0;
12171 }
12172
12173 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12174 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12175 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12176
12177 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12178 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12179 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12180
12181 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12182 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12183 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12184
12185 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12186 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12187 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12188
12189 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12190 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12191 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12192
12193 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12194 .owner = THIS_MODULE,
12195 .set = &bpf_kfunc_check_set_skb,
12196 };
12197
12198 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12199 .owner = THIS_MODULE,
12200 .set = &bpf_kfunc_check_set_xdp,
12201 };
12202
12203 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12204 .owner = THIS_MODULE,
12205 .set = &bpf_kfunc_check_set_sock_addr,
12206 };
12207
12208 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12209 .owner = THIS_MODULE,
12210 .set = &bpf_kfunc_check_set_tcp_reqsk,
12211 };
12212
12213 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12214 .owner = THIS_MODULE,
12215 .set = &bpf_kfunc_check_set_sock_ops,
12216 };
12217
bpf_kfunc_init(void)12218 static int __init bpf_kfunc_init(void)
12219 {
12220 int ret;
12221
12222 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12223 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12224 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12225 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12226 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12227 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12228 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12229 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12230 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12231 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12232 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12233 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12234 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12235 &bpf_kfunc_set_sock_addr);
12236 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12237 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12238 }
12239 late_initcall(bpf_kfunc_init);
12240
12241 __bpf_kfunc_start_defs();
12242
12243 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12244 *
12245 * The function expects a non-NULL pointer to a socket, and invokes the
12246 * protocol specific socket destroy handlers.
12247 *
12248 * The helper can only be called from BPF contexts that have acquired the socket
12249 * locks.
12250 *
12251 * Parameters:
12252 * @sock: Pointer to socket to be destroyed
12253 *
12254 * Return:
12255 * On error, may return EPROTONOSUPPORT, EINVAL.
12256 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12257 * 0 otherwise
12258 */
bpf_sock_destroy(struct sock_common * sock)12259 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12260 {
12261 struct sock *sk = (struct sock *)sock;
12262
12263 /* The locking semantics that allow for synchronous execution of the
12264 * destroy handlers are only supported for TCP and UDP.
12265 * Supporting protocols will need to acquire sock lock in the BPF context
12266 * prior to invoking this kfunc.
12267 */
12268 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12269 sk->sk_protocol != IPPROTO_UDP))
12270 return -EOPNOTSUPP;
12271
12272 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12273 }
12274
12275 __bpf_kfunc_end_defs();
12276
12277 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12278 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12279 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12280
12281 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12282 {
12283 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12284 prog->expected_attach_type != BPF_TRACE_ITER)
12285 return -EACCES;
12286 return 0;
12287 }
12288
12289 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12290 .owner = THIS_MODULE,
12291 .set = &bpf_sk_iter_kfunc_ids,
12292 .filter = tracing_iter_filter,
12293 };
12294
init_subsystem(void)12295 static int init_subsystem(void)
12296 {
12297 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12298 }
12299 late_initcall(init_subsystem);
12300