1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39 /*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59 bool blkcg_debug_stats = false;
60
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63 #define BLKG_DESTROY_BATCH_SIZE 64
64
65 /*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
init_blkcg_llists(struct blkcg * blkcg)83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94 }
95
96 /**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
blkcg_css(void)103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111 }
112
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)113 static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115 {
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118
blkg_free_workfn(struct work_struct * work)119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
147 kfree(blkg);
148 }
149
150 /**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
blkg_free(struct blkcg_gq * blkg)156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
167 }
168
__blkg_release(struct rcu_head * rcu)169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
189 blkg_free(blkg);
190 }
191
192 /*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
blkg_release(struct percpu_ref * ref)200 static void blkg_release(struct percpu_ref *ref)
201 {
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209
blkg_async_bio_workfn(struct work_struct * work)210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge_init(&bios, &blkg->async_bios);
222 spin_unlock(&blkg->async_bio_lock);
223
224 /* start plug only when bio_list contains at least 2 bios */
225 if (bios.head && bios.head->bi_next) {
226 need_plug = true;
227 blk_start_plug(&plug);
228 }
229 while ((bio = bio_list_pop(&bios)))
230 submit_bio(bio);
231 if (need_plug)
232 blk_finish_plug(&plug);
233 }
234
235 /*
236 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
237 * lead to priority inversions as the kthread can be trapped waiting for that
238 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
239 * a dedicated per-blkcg work item to avoid such priority inversions.
240 */
blkcg_punt_bio_submit(struct bio * bio)241 void blkcg_punt_bio_submit(struct bio *bio)
242 {
243 struct blkcg_gq *blkg = bio->bi_blkg;
244
245 if (blkg->parent) {
246 spin_lock(&blkg->async_bio_lock);
247 bio_list_add(&blkg->async_bios, bio);
248 spin_unlock(&blkg->async_bio_lock);
249 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
250 } else {
251 /* never bounce for the root cgroup */
252 submit_bio(bio);
253 }
254 }
255 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
256
blkcg_punt_bio_init(void)257 static int __init blkcg_punt_bio_init(void)
258 {
259 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
260 WQ_MEM_RECLAIM | WQ_FREEZABLE |
261 WQ_UNBOUND | WQ_SYSFS, 0);
262 if (!blkcg_punt_bio_wq)
263 return -ENOMEM;
264 return 0;
265 }
266 subsys_initcall(blkcg_punt_bio_init);
267 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
268
269 /**
270 * bio_blkcg_css - return the blkcg CSS associated with a bio
271 * @bio: target bio
272 *
273 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
274 * associated. Callers are expected to either handle %NULL or know association
275 * has been done prior to calling this.
276 */
bio_blkcg_css(struct bio * bio)277 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
278 {
279 if (!bio || !bio->bi_blkg)
280 return NULL;
281 return &bio->bi_blkg->blkcg->css;
282 }
283 EXPORT_SYMBOL_GPL(bio_blkcg_css);
284
285 /**
286 * blkcg_parent - get the parent of a blkcg
287 * @blkcg: blkcg of interest
288 *
289 * Return the parent blkcg of @blkcg. Can be called anytime.
290 */
blkcg_parent(struct blkcg * blkcg)291 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
292 {
293 return css_to_blkcg(blkcg->css.parent);
294 }
295
296 /**
297 * blkg_alloc - allocate a blkg
298 * @blkcg: block cgroup the new blkg is associated with
299 * @disk: gendisk the new blkg is associated with
300 * @gfp_mask: allocation mask to use
301 *
302 * Allocate a new blkg associating @blkcg and @disk.
303 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)304 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
305 gfp_t gfp_mask)
306 {
307 struct blkcg_gq *blkg;
308 int i, cpu;
309
310 /* alloc and init base part */
311 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
312 if (!blkg)
313 return NULL;
314 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
315 goto out_free_blkg;
316 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
317 if (!blkg->iostat_cpu)
318 goto out_exit_refcnt;
319 if (!blk_get_queue(disk->queue))
320 goto out_free_iostat;
321
322 blkg->q = disk->queue;
323 INIT_LIST_HEAD(&blkg->q_node);
324 blkg->blkcg = blkcg;
325 blkg->iostat.blkg = blkg;
326 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg->async_bio_lock);
328 bio_list_init(&blkg->async_bios);
329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330 #endif
331
332 u64_stats_init(&blkg->iostat.sync);
333 for_each_possible_cpu(cpu) {
334 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 }
337
338 for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 struct blkcg_policy *pol = blkcg_policy[i];
340 struct blkg_policy_data *pd;
341
342 if (!blkcg_policy_enabled(disk->queue, pol))
343 continue;
344
345 /* alloc per-policy data and attach it to blkg */
346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 if (!pd)
348 goto out_free_pds;
349 blkg->pd[i] = pd;
350 pd->blkg = blkg;
351 pd->plid = i;
352 pd->online = false;
353 }
354
355 return blkg;
356
357 out_free_pds:
358 while (--i >= 0)
359 if (blkg->pd[i])
360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 blk_put_queue(disk->queue);
362 out_free_iostat:
363 free_percpu(blkg->iostat_cpu);
364 out_exit_refcnt:
365 percpu_ref_exit(&blkg->refcnt);
366 out_free_blkg:
367 kfree(blkg);
368 return NULL;
369 }
370
371 /*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)375 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 struct blkcg_gq *new_blkg)
377 {
378 struct blkcg_gq *blkg;
379 int i, ret;
380
381 lockdep_assert_held(&disk->queue->queue_lock);
382
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk->queue)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(&blkcg->css)) {
391 ret = -ENODEV;
392 goto err_free_blkg;
393 }
394
395 /* allocate */
396 if (!new_blkg) {
397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 if (unlikely(!new_blkg)) {
399 ret = -ENOMEM;
400 goto err_put_css;
401 }
402 }
403 blkg = new_blkg;
404
405 /* link parent */
406 if (blkcg_parent(blkcg)) {
407 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408 if (WARN_ON_ONCE(!blkg->parent)) {
409 ret = -ENODEV;
410 goto err_put_css;
411 }
412 blkg_get(blkg->parent);
413 }
414
415 /* invoke per-policy init */
416 for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 struct blkcg_policy *pol = blkcg_policy[i];
418
419 if (blkg->pd[i] && pol->pd_init_fn)
420 pol->pd_init_fn(blkg->pd[i]);
421 }
422
423 /* insert */
424 spin_lock(&blkcg->lock);
425 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 if (likely(!ret)) {
427 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428 list_add(&blkg->q_node, &disk->queue->blkg_list);
429
430 for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 struct blkcg_policy *pol = blkcg_policy[i];
432
433 if (blkg->pd[i]) {
434 if (pol->pd_online_fn)
435 pol->pd_online_fn(blkg->pd[i]);
436 blkg->pd[i]->online = true;
437 }
438 }
439 }
440 blkg->online = true;
441 spin_unlock(&blkcg->lock);
442
443 if (!ret)
444 return blkg;
445
446 /* @blkg failed fully initialized, use the usual release path */
447 blkg_put(blkg);
448 return ERR_PTR(ret);
449
450 err_put_css:
451 css_put(&blkcg->css);
452 err_free_blkg:
453 if (new_blkg)
454 blkg_free(new_blkg);
455 return ERR_PTR(ret);
456 }
457
458 /**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)471 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 struct gendisk *disk)
473 {
474 struct request_queue *q = disk->queue;
475 struct blkcg_gq *blkg;
476 unsigned long flags;
477
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 blkg = blkg_lookup(blkcg, q);
481 if (blkg)
482 return blkg;
483
484 spin_lock_irqsave(&q->queue_lock, flags);
485 blkg = blkg_lookup(blkcg, q);
486 if (blkg) {
487 if (blkcg != &blkcg_root &&
488 blkg != rcu_dereference(blkcg->blkg_hint))
489 rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 goto found;
491 }
492
493 /*
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
497 */
498 while (true) {
499 struct blkcg *pos = blkcg;
500 struct blkcg *parent = blkcg_parent(blkcg);
501 struct blkcg_gq *ret_blkg = q->root_blkg;
502
503 while (parent) {
504 blkg = blkg_lookup(parent, q);
505 if (blkg) {
506 /* remember closest blkg */
507 ret_blkg = blkg;
508 break;
509 }
510 pos = parent;
511 parent = blkcg_parent(parent);
512 }
513
514 blkg = blkg_create(pos, disk, NULL);
515 if (IS_ERR(blkg)) {
516 blkg = ret_blkg;
517 break;
518 }
519 if (pos == blkcg)
520 break;
521 }
522
523 found:
524 spin_unlock_irqrestore(&q->queue_lock, flags);
525 return blkg;
526 }
527
blkg_destroy(struct blkcg_gq * blkg)528 static void blkg_destroy(struct blkcg_gq *blkg)
529 {
530 struct blkcg *blkcg = blkg->blkcg;
531 int i;
532
533 lockdep_assert_held(&blkg->q->queue_lock);
534 lockdep_assert_held(&blkcg->lock);
535
536 /*
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
541 */
542 if (hlist_unhashed(&blkg->blkcg_node))
543 return;
544
545 for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 struct blkcg_policy *pol = blkcg_policy[i];
547
548 if (blkg->pd[i] && blkg->pd[i]->online) {
549 blkg->pd[i]->online = false;
550 if (pol->pd_offline_fn)
551 pol->pd_offline_fn(blkg->pd[i]);
552 }
553 }
554
555 blkg->online = false;
556
557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 hlist_del_init_rcu(&blkg->blkcg_node);
559
560 /*
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
564 */
565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568 /*
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
571 */
572 percpu_ref_kill(&blkg->refcnt);
573 }
574
blkg_destroy_all(struct gendisk * disk)575 static void blkg_destroy_all(struct gendisk *disk)
576 {
577 struct request_queue *q = disk->queue;
578 struct blkcg_gq *blkg;
579 int count = BLKG_DESTROY_BATCH_SIZE;
580 int i;
581
582 restart:
583 spin_lock_irq(&q->queue_lock);
584 list_for_each_entry(blkg, &q->blkg_list, q_node) {
585 struct blkcg *blkcg = blkg->blkcg;
586
587 if (hlist_unhashed(&blkg->blkcg_node))
588 continue;
589
590 spin_lock(&blkcg->lock);
591 blkg_destroy(blkg);
592 spin_unlock(&blkcg->lock);
593
594 /*
595 * in order to avoid holding the spin lock for too long, release
596 * it when a batch of blkgs are destroyed.
597 */
598 if (!(--count)) {
599 count = BLKG_DESTROY_BATCH_SIZE;
600 spin_unlock_irq(&q->queue_lock);
601 cond_resched();
602 goto restart;
603 }
604 }
605
606 /*
607 * Mark policy deactivated since policy offline has been done, and
608 * the free is scheduled, so future blkcg_deactivate_policy() can
609 * be bypassed
610 */
611 for (i = 0; i < BLKCG_MAX_POLS; i++) {
612 struct blkcg_policy *pol = blkcg_policy[i];
613
614 if (pol)
615 __clear_bit(pol->plid, q->blkcg_pols);
616 }
617
618 q->root_blkg = NULL;
619 spin_unlock_irq(&q->queue_lock);
620 }
621
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)622 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
623 {
624 int i;
625
626 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
627 dst->bytes[i] = src->bytes[i];
628 dst->ios[i] = src->ios[i];
629 }
630 }
631
__blkg_clear_stat(struct blkg_iostat_set * bis)632 static void __blkg_clear_stat(struct blkg_iostat_set *bis)
633 {
634 struct blkg_iostat cur = {0};
635 unsigned long flags;
636
637 flags = u64_stats_update_begin_irqsave(&bis->sync);
638 blkg_iostat_set(&bis->cur, &cur);
639 blkg_iostat_set(&bis->last, &cur);
640 u64_stats_update_end_irqrestore(&bis->sync, flags);
641 }
642
blkg_clear_stat(struct blkcg_gq * blkg)643 static void blkg_clear_stat(struct blkcg_gq *blkg)
644 {
645 int cpu;
646
647 for_each_possible_cpu(cpu) {
648 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
649
650 __blkg_clear_stat(s);
651 }
652 __blkg_clear_stat(&blkg->iostat);
653 }
654
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)655 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
656 struct cftype *cftype, u64 val)
657 {
658 struct blkcg *blkcg = css_to_blkcg(css);
659 struct blkcg_gq *blkg;
660 int i;
661
662 mutex_lock(&blkcg_pol_mutex);
663 spin_lock_irq(&blkcg->lock);
664
665 /*
666 * Note that stat reset is racy - it doesn't synchronize against
667 * stat updates. This is a debug feature which shouldn't exist
668 * anyway. If you get hit by a race, retry.
669 */
670 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
671 blkg_clear_stat(blkg);
672 for (i = 0; i < BLKCG_MAX_POLS; i++) {
673 struct blkcg_policy *pol = blkcg_policy[i];
674
675 if (blkg->pd[i] && pol->pd_reset_stats_fn)
676 pol->pd_reset_stats_fn(blkg->pd[i]);
677 }
678 }
679
680 spin_unlock_irq(&blkcg->lock);
681 mutex_unlock(&blkcg_pol_mutex);
682 return 0;
683 }
684
blkg_dev_name(struct blkcg_gq * blkg)685 const char *blkg_dev_name(struct blkcg_gq *blkg)
686 {
687 if (!blkg->q->disk)
688 return NULL;
689 return bdi_dev_name(blkg->q->disk->bdi);
690 }
691
692 /**
693 * blkcg_print_blkgs - helper for printing per-blkg data
694 * @sf: seq_file to print to
695 * @blkcg: blkcg of interest
696 * @prfill: fill function to print out a blkg
697 * @pol: policy in question
698 * @data: data to be passed to @prfill
699 * @show_total: to print out sum of prfill return values or not
700 *
701 * This function invokes @prfill on each blkg of @blkcg if pd for the
702 * policy specified by @pol exists. @prfill is invoked with @sf, the
703 * policy data and @data and the matching queue lock held. If @show_total
704 * is %true, the sum of the return values from @prfill is printed with
705 * "Total" label at the end.
706 *
707 * This is to be used to construct print functions for
708 * cftype->read_seq_string method.
709 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)710 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
711 u64 (*prfill)(struct seq_file *,
712 struct blkg_policy_data *, int),
713 const struct blkcg_policy *pol, int data,
714 bool show_total)
715 {
716 struct blkcg_gq *blkg;
717 u64 total = 0;
718
719 rcu_read_lock();
720 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
721 spin_lock_irq(&blkg->q->queue_lock);
722 if (blkcg_policy_enabled(blkg->q, pol))
723 total += prfill(sf, blkg->pd[pol->plid], data);
724 spin_unlock_irq(&blkg->q->queue_lock);
725 }
726 rcu_read_unlock();
727
728 if (show_total)
729 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
730 }
731 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
732
733 /**
734 * __blkg_prfill_u64 - prfill helper for a single u64 value
735 * @sf: seq_file to print to
736 * @pd: policy private data of interest
737 * @v: value to print
738 *
739 * Print @v to @sf for the device associated with @pd.
740 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)741 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
742 {
743 const char *dname = blkg_dev_name(pd->blkg);
744
745 if (!dname)
746 return 0;
747
748 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
749 return v;
750 }
751 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
752
753 /**
754 * blkg_conf_init - initialize a blkg_conf_ctx
755 * @ctx: blkg_conf_ctx to initialize
756 * @input: input string
757 *
758 * Initialize @ctx which can be used to parse blkg config input string @input.
759 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
760 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
761 */
blkg_conf_init(struct blkg_conf_ctx * ctx,char * input)762 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
763 {
764 *ctx = (struct blkg_conf_ctx){ .input = input };
765 }
766 EXPORT_SYMBOL_GPL(blkg_conf_init);
767
768 /**
769 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
770 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
771 *
772 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
773 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
774 * set to point past the device node prefix.
775 *
776 * This function may be called multiple times on @ctx and the extra calls become
777 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
778 * explicitly if bdev access is needed without resolving the blkcg / policy part
779 * of @ctx->input. Returns -errno on error.
780 */
blkg_conf_open_bdev(struct blkg_conf_ctx * ctx)781 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
782 {
783 char *input = ctx->input;
784 unsigned int major, minor;
785 struct block_device *bdev;
786 int key_len;
787
788 if (ctx->bdev)
789 return 0;
790
791 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
792 return -EINVAL;
793
794 input += key_len;
795 if (!isspace(*input))
796 return -EINVAL;
797 input = skip_spaces(input);
798
799 bdev = blkdev_get_no_open(MKDEV(major, minor));
800 if (!bdev)
801 return -ENODEV;
802 if (bdev_is_partition(bdev)) {
803 blkdev_put_no_open(bdev);
804 return -ENODEV;
805 }
806
807 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
808 if (!disk_live(bdev->bd_disk)) {
809 blkdev_put_no_open(bdev);
810 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
811 return -ENODEV;
812 }
813
814 ctx->body = input;
815 ctx->bdev = bdev;
816 return 0;
817 }
818
819 /**
820 * blkg_conf_prep - parse and prepare for per-blkg config update
821 * @blkcg: target block cgroup
822 * @pol: target policy
823 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
824 *
825 * Parse per-blkg config update from @ctx->input and initialize @ctx
826 * accordingly. On success, @ctx->body points to the part of @ctx->input
827 * following MAJ:MIN, @ctx->bdev points to the target block device and
828 * @ctx->blkg to the blkg being configured.
829 *
830 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
831 * function returns with queue lock held and must be followed by
832 * blkg_conf_exit().
833 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,struct blkg_conf_ctx * ctx)834 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
835 struct blkg_conf_ctx *ctx)
836 __acquires(&bdev->bd_queue->queue_lock)
837 {
838 struct gendisk *disk;
839 struct request_queue *q;
840 struct blkcg_gq *blkg;
841 int ret;
842
843 ret = blkg_conf_open_bdev(ctx);
844 if (ret)
845 return ret;
846
847 disk = ctx->bdev->bd_disk;
848 q = disk->queue;
849
850 /*
851 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
852 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
853 */
854 ret = blk_queue_enter(q, 0);
855 if (ret)
856 goto fail;
857
858 spin_lock_irq(&q->queue_lock);
859
860 if (!blkcg_policy_enabled(q, pol)) {
861 ret = -EOPNOTSUPP;
862 goto fail_unlock;
863 }
864
865 blkg = blkg_lookup(blkcg, q);
866 if (blkg)
867 goto success;
868
869 /*
870 * Create blkgs walking down from blkcg_root to @blkcg, so that all
871 * non-root blkgs have access to their parents.
872 */
873 while (true) {
874 struct blkcg *pos = blkcg;
875 struct blkcg *parent;
876 struct blkcg_gq *new_blkg;
877
878 parent = blkcg_parent(blkcg);
879 while (parent && !blkg_lookup(parent, q)) {
880 pos = parent;
881 parent = blkcg_parent(parent);
882 }
883
884 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
885 spin_unlock_irq(&q->queue_lock);
886
887 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
888 if (unlikely(!new_blkg)) {
889 ret = -ENOMEM;
890 goto fail_exit_queue;
891 }
892
893 if (radix_tree_preload(GFP_KERNEL)) {
894 blkg_free(new_blkg);
895 ret = -ENOMEM;
896 goto fail_exit_queue;
897 }
898
899 spin_lock_irq(&q->queue_lock);
900
901 if (!blkcg_policy_enabled(q, pol)) {
902 blkg_free(new_blkg);
903 ret = -EOPNOTSUPP;
904 goto fail_preloaded;
905 }
906
907 blkg = blkg_lookup(pos, q);
908 if (blkg) {
909 blkg_free(new_blkg);
910 } else {
911 blkg = blkg_create(pos, disk, new_blkg);
912 if (IS_ERR(blkg)) {
913 ret = PTR_ERR(blkg);
914 goto fail_preloaded;
915 }
916 }
917
918 radix_tree_preload_end();
919
920 if (pos == blkcg)
921 goto success;
922 }
923 success:
924 blk_queue_exit(q);
925 ctx->blkg = blkg;
926 return 0;
927
928 fail_preloaded:
929 radix_tree_preload_end();
930 fail_unlock:
931 spin_unlock_irq(&q->queue_lock);
932 fail_exit_queue:
933 blk_queue_exit(q);
934 fail:
935 /*
936 * If queue was bypassing, we should retry. Do so after a
937 * short msleep(). It isn't strictly necessary but queue
938 * can be bypassing for some time and it's always nice to
939 * avoid busy looping.
940 */
941 if (ret == -EBUSY) {
942 msleep(10);
943 ret = restart_syscall();
944 }
945 return ret;
946 }
947 EXPORT_SYMBOL_GPL(blkg_conf_prep);
948
949 /**
950 * blkg_conf_exit - clean up per-blkg config update
951 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
952 *
953 * Clean up after per-blkg config update. This function must be called on all
954 * blkg_conf_ctx's initialized with blkg_conf_init().
955 */
blkg_conf_exit(struct blkg_conf_ctx * ctx)956 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
957 __releases(&ctx->bdev->bd_queue->queue_lock)
958 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
959 {
960 if (ctx->blkg) {
961 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
962 ctx->blkg = NULL;
963 }
964
965 if (ctx->bdev) {
966 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
967 blkdev_put_no_open(ctx->bdev);
968 ctx->body = NULL;
969 ctx->bdev = NULL;
970 }
971 }
972 EXPORT_SYMBOL_GPL(blkg_conf_exit);
973
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)974 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
975 {
976 int i;
977
978 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
979 dst->bytes[i] += src->bytes[i];
980 dst->ios[i] += src->ios[i];
981 }
982 }
983
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)984 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
985 {
986 int i;
987
988 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
989 dst->bytes[i] -= src->bytes[i];
990 dst->ios[i] -= src->ios[i];
991 }
992 }
993
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)994 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
995 struct blkg_iostat *last)
996 {
997 struct blkg_iostat delta;
998 unsigned long flags;
999
1000 /* propagate percpu delta to global */
1001 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1002 blkg_iostat_set(&delta, cur);
1003 blkg_iostat_sub(&delta, last);
1004 blkg_iostat_add(&blkg->iostat.cur, &delta);
1005 blkg_iostat_add(last, &delta);
1006 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1007 }
1008
__blkcg_rstat_flush(struct blkcg * blkcg,int cpu)1009 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1010 {
1011 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1012 struct llist_node *lnode;
1013 struct blkg_iostat_set *bisc, *next_bisc;
1014 unsigned long flags;
1015
1016 rcu_read_lock();
1017
1018 lnode = llist_del_all(lhead);
1019 if (!lnode)
1020 goto out;
1021
1022 /*
1023 * For covering concurrent parent blkg update from blkg_release().
1024 *
1025 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1026 * this lock won't cause contention most of time.
1027 */
1028 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1029
1030 /*
1031 * Iterate only the iostat_cpu's queued in the lockless list.
1032 */
1033 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1034 struct blkcg_gq *blkg = bisc->blkg;
1035 struct blkcg_gq *parent = blkg->parent;
1036 struct blkg_iostat cur;
1037 unsigned int seq;
1038
1039 /*
1040 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1041 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1042 * avoiding to assign `next_bisc` with new next pointer added
1043 * in blk_cgroup_bio_start() in case of re-ordering.
1044 *
1045 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1046 */
1047 smp_mb();
1048
1049 WRITE_ONCE(bisc->lqueued, false);
1050 if (bisc == &blkg->iostat)
1051 goto propagate_up; /* propagate up to parent only */
1052
1053 /* fetch the current per-cpu values */
1054 do {
1055 seq = u64_stats_fetch_begin(&bisc->sync);
1056 blkg_iostat_set(&cur, &bisc->cur);
1057 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1058
1059 blkcg_iostat_update(blkg, &cur, &bisc->last);
1060
1061 propagate_up:
1062 /* propagate global delta to parent (unless that's root) */
1063 if (parent && parent->parent) {
1064 blkcg_iostat_update(parent, &blkg->iostat.cur,
1065 &blkg->iostat.last);
1066 /*
1067 * Queue parent->iostat to its blkcg's lockless
1068 * list to propagate up to the grandparent if the
1069 * iostat hasn't been queued yet.
1070 */
1071 if (!parent->iostat.lqueued) {
1072 struct llist_head *plhead;
1073
1074 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1075 llist_add(&parent->iostat.lnode, plhead);
1076 parent->iostat.lqueued = true;
1077 }
1078 }
1079 }
1080 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1081 out:
1082 rcu_read_unlock();
1083 }
1084
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)1085 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1086 {
1087 /* Root-level stats are sourced from system-wide IO stats */
1088 if (cgroup_parent(css->cgroup))
1089 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1090 }
1091
1092 /*
1093 * We source root cgroup stats from the system-wide stats to avoid
1094 * tracking the same information twice and incurring overhead when no
1095 * cgroups are defined. For that reason, cgroup_rstat_flush in
1096 * blkcg_print_stat does not actually fill out the iostat in the root
1097 * cgroup's blkcg_gq.
1098 *
1099 * However, we would like to re-use the printing code between the root and
1100 * non-root cgroups to the extent possible. For that reason, we simulate
1101 * flushing the root cgroup's stats by explicitly filling in the iostat
1102 * with disk level statistics.
1103 */
blkcg_fill_root_iostats(void)1104 static void blkcg_fill_root_iostats(void)
1105 {
1106 struct class_dev_iter iter;
1107 struct device *dev;
1108
1109 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1110 while ((dev = class_dev_iter_next(&iter))) {
1111 struct block_device *bdev = dev_to_bdev(dev);
1112 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1113 struct blkg_iostat tmp;
1114 int cpu;
1115 unsigned long flags;
1116
1117 memset(&tmp, 0, sizeof(tmp));
1118 for_each_possible_cpu(cpu) {
1119 struct disk_stats *cpu_dkstats;
1120
1121 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1122 tmp.ios[BLKG_IOSTAT_READ] +=
1123 cpu_dkstats->ios[STAT_READ];
1124 tmp.ios[BLKG_IOSTAT_WRITE] +=
1125 cpu_dkstats->ios[STAT_WRITE];
1126 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1127 cpu_dkstats->ios[STAT_DISCARD];
1128 // convert sectors to bytes
1129 tmp.bytes[BLKG_IOSTAT_READ] +=
1130 cpu_dkstats->sectors[STAT_READ] << 9;
1131 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1132 cpu_dkstats->sectors[STAT_WRITE] << 9;
1133 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1134 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1135 }
1136
1137 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1138 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1139 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1140 }
1141 }
1142
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)1143 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1144 {
1145 struct blkg_iostat_set *bis = &blkg->iostat;
1146 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1147 const char *dname;
1148 unsigned seq;
1149 int i;
1150
1151 if (!blkg->online)
1152 return;
1153
1154 dname = blkg_dev_name(blkg);
1155 if (!dname)
1156 return;
1157
1158 seq_printf(s, "%s ", dname);
1159
1160 do {
1161 seq = u64_stats_fetch_begin(&bis->sync);
1162
1163 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1164 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1165 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1166 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1167 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1168 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1169 } while (u64_stats_fetch_retry(&bis->sync, seq));
1170
1171 if (rbytes || wbytes || rios || wios) {
1172 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1173 rbytes, wbytes, rios, wios,
1174 dbytes, dios);
1175 }
1176
1177 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1178 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1179 atomic_read(&blkg->use_delay),
1180 atomic64_read(&blkg->delay_nsec));
1181 }
1182
1183 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1184 struct blkcg_policy *pol = blkcg_policy[i];
1185
1186 if (!blkg->pd[i] || !pol->pd_stat_fn)
1187 continue;
1188
1189 pol->pd_stat_fn(blkg->pd[i], s);
1190 }
1191
1192 seq_puts(s, "\n");
1193 }
1194
blkcg_print_stat(struct seq_file * sf,void * v)1195 static int blkcg_print_stat(struct seq_file *sf, void *v)
1196 {
1197 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1198 struct blkcg_gq *blkg;
1199
1200 if (!seq_css(sf)->parent)
1201 blkcg_fill_root_iostats();
1202 else
1203 cgroup_rstat_flush(blkcg->css.cgroup);
1204
1205 rcu_read_lock();
1206 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1207 spin_lock_irq(&blkg->q->queue_lock);
1208 blkcg_print_one_stat(blkg, sf);
1209 spin_unlock_irq(&blkg->q->queue_lock);
1210 }
1211 rcu_read_unlock();
1212 return 0;
1213 }
1214
1215 static struct cftype blkcg_files[] = {
1216 {
1217 .name = "stat",
1218 .seq_show = blkcg_print_stat,
1219 },
1220 { } /* terminate */
1221 };
1222
1223 static struct cftype blkcg_legacy_files[] = {
1224 {
1225 .name = "reset_stats",
1226 .write_u64 = blkcg_reset_stats,
1227 },
1228 { } /* terminate */
1229 };
1230
1231 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1232 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1233 {
1234 return &css_to_blkcg(css)->cgwb_list;
1235 }
1236 #endif
1237
1238 /*
1239 * blkcg destruction is a three-stage process.
1240 *
1241 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1242 * which offlines writeback. Here we tie the next stage of blkg destruction
1243 * to the completion of writeback associated with the blkcg. This lets us
1244 * avoid punting potentially large amounts of outstanding writeback to root
1245 * while maintaining any ongoing policies. The next stage is triggered when
1246 * the nr_cgwbs count goes to zero.
1247 *
1248 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1249 * and handles the destruction of blkgs. Here the css reference held by
1250 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1251 * This work may occur in cgwb_release_workfn() on the cgwb_release
1252 * workqueue. Any submitted ios that fail to get the blkg ref will be
1253 * punted to the root_blkg.
1254 *
1255 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1256 * This finally frees the blkcg.
1257 */
1258
1259 /**
1260 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1261 * @blkcg: blkcg of interest
1262 *
1263 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1264 * is nested inside q lock, this function performs reverse double lock dancing.
1265 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1266 * blkcg_css_free to eventually be called.
1267 *
1268 * This is the blkcg counterpart of ioc_release_fn().
1269 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1270 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1271 {
1272 might_sleep();
1273
1274 spin_lock_irq(&blkcg->lock);
1275
1276 while (!hlist_empty(&blkcg->blkg_list)) {
1277 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1278 struct blkcg_gq, blkcg_node);
1279 struct request_queue *q = blkg->q;
1280
1281 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1282 /*
1283 * Given that the system can accumulate a huge number
1284 * of blkgs in pathological cases, check to see if we
1285 * need to rescheduling to avoid softlockup.
1286 */
1287 spin_unlock_irq(&blkcg->lock);
1288 cond_resched();
1289 spin_lock_irq(&blkcg->lock);
1290 continue;
1291 }
1292
1293 blkg_destroy(blkg);
1294 spin_unlock(&q->queue_lock);
1295 }
1296
1297 spin_unlock_irq(&blkcg->lock);
1298 }
1299
1300 /**
1301 * blkcg_pin_online - pin online state
1302 * @blkcg_css: blkcg of interest
1303 *
1304 * While pinned, a blkcg is kept online. This is primarily used to
1305 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1306 * while an associated cgwb is still active.
1307 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1308 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1309 {
1310 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1311 }
1312
1313 /**
1314 * blkcg_unpin_online - unpin online state
1315 * @blkcg_css: blkcg of interest
1316 *
1317 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1318 * that blkg doesn't go offline while an associated cgwb is still active.
1319 * When this count goes to zero, all active cgwbs have finished so the
1320 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1321 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1322 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1323 {
1324 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1325
1326 do {
1327 if (!refcount_dec_and_test(&blkcg->online_pin))
1328 break;
1329 blkcg_destroy_blkgs(blkcg);
1330 blkcg = blkcg_parent(blkcg);
1331 } while (blkcg);
1332 }
1333
1334 /**
1335 * blkcg_css_offline - cgroup css_offline callback
1336 * @css: css of interest
1337 *
1338 * This function is called when @css is about to go away. Here the cgwbs are
1339 * offlined first and only once writeback associated with the blkcg has
1340 * finished do we start step 2 (see above).
1341 */
blkcg_css_offline(struct cgroup_subsys_state * css)1342 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1343 {
1344 /* this prevents anyone from attaching or migrating to this blkcg */
1345 wb_blkcg_offline(css);
1346
1347 /* put the base online pin allowing step 2 to be triggered */
1348 blkcg_unpin_online(css);
1349 }
1350
blkcg_css_free(struct cgroup_subsys_state * css)1351 static void blkcg_css_free(struct cgroup_subsys_state *css)
1352 {
1353 struct blkcg *blkcg = css_to_blkcg(css);
1354 int i;
1355
1356 mutex_lock(&blkcg_pol_mutex);
1357
1358 list_del(&blkcg->all_blkcgs_node);
1359
1360 for (i = 0; i < BLKCG_MAX_POLS; i++)
1361 if (blkcg->cpd[i])
1362 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1363
1364 mutex_unlock(&blkcg_pol_mutex);
1365
1366 free_percpu(blkcg->lhead);
1367 kfree(blkcg);
1368 }
1369
1370 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1371 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1372 {
1373 struct blkcg *blkcg;
1374 int i;
1375
1376 mutex_lock(&blkcg_pol_mutex);
1377
1378 if (!parent_css) {
1379 blkcg = &blkcg_root;
1380 } else {
1381 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1382 if (!blkcg)
1383 goto unlock;
1384 }
1385
1386 if (init_blkcg_llists(blkcg))
1387 goto free_blkcg;
1388
1389 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1390 struct blkcg_policy *pol = blkcg_policy[i];
1391 struct blkcg_policy_data *cpd;
1392
1393 /*
1394 * If the policy hasn't been attached yet, wait for it
1395 * to be attached before doing anything else. Otherwise,
1396 * check if the policy requires any specific per-cgroup
1397 * data: if it does, allocate and initialize it.
1398 */
1399 if (!pol || !pol->cpd_alloc_fn)
1400 continue;
1401
1402 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1403 if (!cpd)
1404 goto free_pd_blkcg;
1405
1406 blkcg->cpd[i] = cpd;
1407 cpd->blkcg = blkcg;
1408 cpd->plid = i;
1409 }
1410
1411 spin_lock_init(&blkcg->lock);
1412 refcount_set(&blkcg->online_pin, 1);
1413 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1414 INIT_HLIST_HEAD(&blkcg->blkg_list);
1415 #ifdef CONFIG_CGROUP_WRITEBACK
1416 INIT_LIST_HEAD(&blkcg->cgwb_list);
1417 #endif
1418 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1419
1420 mutex_unlock(&blkcg_pol_mutex);
1421 return &blkcg->css;
1422
1423 free_pd_blkcg:
1424 for (i--; i >= 0; i--)
1425 if (blkcg->cpd[i])
1426 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1427 free_percpu(blkcg->lhead);
1428 free_blkcg:
1429 if (blkcg != &blkcg_root)
1430 kfree(blkcg);
1431 unlock:
1432 mutex_unlock(&blkcg_pol_mutex);
1433 return ERR_PTR(-ENOMEM);
1434 }
1435
blkcg_css_online(struct cgroup_subsys_state * css)1436 static int blkcg_css_online(struct cgroup_subsys_state *css)
1437 {
1438 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1439
1440 /*
1441 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1442 * don't go offline while cgwbs are still active on them. Pin the
1443 * parent so that offline always happens towards the root.
1444 */
1445 if (parent)
1446 blkcg_pin_online(&parent->css);
1447 return 0;
1448 }
1449
blkg_init_queue(struct request_queue * q)1450 void blkg_init_queue(struct request_queue *q)
1451 {
1452 INIT_LIST_HEAD(&q->blkg_list);
1453 mutex_init(&q->blkcg_mutex);
1454 }
1455
blkcg_init_disk(struct gendisk * disk)1456 int blkcg_init_disk(struct gendisk *disk)
1457 {
1458 struct request_queue *q = disk->queue;
1459 struct blkcg_gq *new_blkg, *blkg;
1460 bool preloaded;
1461
1462 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1463 if (!new_blkg)
1464 return -ENOMEM;
1465
1466 preloaded = !radix_tree_preload(GFP_KERNEL);
1467
1468 /* Make sure the root blkg exists. */
1469 /* spin_lock_irq can serve as RCU read-side critical section. */
1470 spin_lock_irq(&q->queue_lock);
1471 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1472 if (IS_ERR(blkg))
1473 goto err_unlock;
1474 q->root_blkg = blkg;
1475 spin_unlock_irq(&q->queue_lock);
1476
1477 if (preloaded)
1478 radix_tree_preload_end();
1479
1480 return 0;
1481
1482 err_unlock:
1483 spin_unlock_irq(&q->queue_lock);
1484 if (preloaded)
1485 radix_tree_preload_end();
1486 return PTR_ERR(blkg);
1487 }
1488
blkcg_exit_disk(struct gendisk * disk)1489 void blkcg_exit_disk(struct gendisk *disk)
1490 {
1491 blkg_destroy_all(disk);
1492 blk_throtl_exit(disk);
1493 }
1494
blkcg_exit(struct task_struct * tsk)1495 static void blkcg_exit(struct task_struct *tsk)
1496 {
1497 if (tsk->throttle_disk)
1498 put_disk(tsk->throttle_disk);
1499 tsk->throttle_disk = NULL;
1500 }
1501
1502 struct cgroup_subsys io_cgrp_subsys = {
1503 .css_alloc = blkcg_css_alloc,
1504 .css_online = blkcg_css_online,
1505 .css_offline = blkcg_css_offline,
1506 .css_free = blkcg_css_free,
1507 .css_rstat_flush = blkcg_rstat_flush,
1508 .dfl_cftypes = blkcg_files,
1509 .legacy_cftypes = blkcg_legacy_files,
1510 .legacy_name = "blkio",
1511 .exit = blkcg_exit,
1512 #ifdef CONFIG_MEMCG
1513 /*
1514 * This ensures that, if available, memcg is automatically enabled
1515 * together on the default hierarchy so that the owner cgroup can
1516 * be retrieved from writeback pages.
1517 */
1518 .depends_on = 1 << memory_cgrp_id,
1519 #endif
1520 };
1521 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1522
1523 /**
1524 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1525 * @disk: gendisk of interest
1526 * @pol: blkcg policy to activate
1527 *
1528 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1529 * bypass mode to populate its blkgs with policy_data for @pol.
1530 *
1531 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1532 * from IO path. Update of each blkg is protected by both queue and blkcg
1533 * locks so that holding either lock and testing blkcg_policy_enabled() is
1534 * always enough for dereferencing policy data.
1535 *
1536 * The caller is responsible for synchronizing [de]activations and policy
1537 * [un]registerations. Returns 0 on success, -errno on failure.
1538 */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1539 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1540 {
1541 struct request_queue *q = disk->queue;
1542 struct blkg_policy_data *pd_prealloc = NULL;
1543 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1544 int ret;
1545
1546 if (blkcg_policy_enabled(q, pol))
1547 return 0;
1548
1549 /*
1550 * Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1551 * for example, ioprio. Such policy will work on blkcg level, not disk
1552 * level, and don't need to be activated.
1553 */
1554 if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1555 return -EINVAL;
1556
1557 if (queue_is_mq(q))
1558 blk_mq_freeze_queue(q);
1559 retry:
1560 spin_lock_irq(&q->queue_lock);
1561
1562 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1563 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1564 struct blkg_policy_data *pd;
1565
1566 if (blkg->pd[pol->plid])
1567 continue;
1568
1569 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1570 if (blkg == pinned_blkg) {
1571 pd = pd_prealloc;
1572 pd_prealloc = NULL;
1573 } else {
1574 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1575 GFP_NOWAIT | __GFP_NOWARN);
1576 }
1577
1578 if (!pd) {
1579 /*
1580 * GFP_NOWAIT failed. Free the existing one and
1581 * prealloc for @blkg w/ GFP_KERNEL.
1582 */
1583 if (pinned_blkg)
1584 blkg_put(pinned_blkg);
1585 blkg_get(blkg);
1586 pinned_blkg = blkg;
1587
1588 spin_unlock_irq(&q->queue_lock);
1589
1590 if (pd_prealloc)
1591 pol->pd_free_fn(pd_prealloc);
1592 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1593 GFP_KERNEL);
1594 if (pd_prealloc)
1595 goto retry;
1596 else
1597 goto enomem;
1598 }
1599
1600 spin_lock(&blkg->blkcg->lock);
1601
1602 pd->blkg = blkg;
1603 pd->plid = pol->plid;
1604 blkg->pd[pol->plid] = pd;
1605
1606 if (pol->pd_init_fn)
1607 pol->pd_init_fn(pd);
1608
1609 if (pol->pd_online_fn)
1610 pol->pd_online_fn(pd);
1611 pd->online = true;
1612
1613 spin_unlock(&blkg->blkcg->lock);
1614 }
1615
1616 __set_bit(pol->plid, q->blkcg_pols);
1617 ret = 0;
1618
1619 spin_unlock_irq(&q->queue_lock);
1620 out:
1621 if (queue_is_mq(q))
1622 blk_mq_unfreeze_queue(q);
1623 if (pinned_blkg)
1624 blkg_put(pinned_blkg);
1625 if (pd_prealloc)
1626 pol->pd_free_fn(pd_prealloc);
1627 return ret;
1628
1629 enomem:
1630 /* alloc failed, take down everything */
1631 spin_lock_irq(&q->queue_lock);
1632 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1633 struct blkcg *blkcg = blkg->blkcg;
1634 struct blkg_policy_data *pd;
1635
1636 spin_lock(&blkcg->lock);
1637 pd = blkg->pd[pol->plid];
1638 if (pd) {
1639 if (pd->online && pol->pd_offline_fn)
1640 pol->pd_offline_fn(pd);
1641 pd->online = false;
1642 pol->pd_free_fn(pd);
1643 blkg->pd[pol->plid] = NULL;
1644 }
1645 spin_unlock(&blkcg->lock);
1646 }
1647 spin_unlock_irq(&q->queue_lock);
1648 ret = -ENOMEM;
1649 goto out;
1650 }
1651 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1652
1653 /**
1654 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1655 * @disk: gendisk of interest
1656 * @pol: blkcg policy to deactivate
1657 *
1658 * Deactivate @pol on @disk. Follows the same synchronization rules as
1659 * blkcg_activate_policy().
1660 */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1661 void blkcg_deactivate_policy(struct gendisk *disk,
1662 const struct blkcg_policy *pol)
1663 {
1664 struct request_queue *q = disk->queue;
1665 struct blkcg_gq *blkg;
1666
1667 if (!blkcg_policy_enabled(q, pol))
1668 return;
1669
1670 if (queue_is_mq(q))
1671 blk_mq_freeze_queue(q);
1672
1673 mutex_lock(&q->blkcg_mutex);
1674 spin_lock_irq(&q->queue_lock);
1675
1676 __clear_bit(pol->plid, q->blkcg_pols);
1677
1678 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1679 struct blkcg *blkcg = blkg->blkcg;
1680
1681 spin_lock(&blkcg->lock);
1682 if (blkg->pd[pol->plid]) {
1683 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1684 pol->pd_offline_fn(blkg->pd[pol->plid]);
1685 pol->pd_free_fn(blkg->pd[pol->plid]);
1686 blkg->pd[pol->plid] = NULL;
1687 }
1688 spin_unlock(&blkcg->lock);
1689 }
1690
1691 spin_unlock_irq(&q->queue_lock);
1692 mutex_unlock(&q->blkcg_mutex);
1693
1694 if (queue_is_mq(q))
1695 blk_mq_unfreeze_queue(q);
1696 }
1697 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1698
blkcg_free_all_cpd(struct blkcg_policy * pol)1699 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1700 {
1701 struct blkcg *blkcg;
1702
1703 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1704 if (blkcg->cpd[pol->plid]) {
1705 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1706 blkcg->cpd[pol->plid] = NULL;
1707 }
1708 }
1709 }
1710
1711 /**
1712 * blkcg_policy_register - register a blkcg policy
1713 * @pol: blkcg policy to register
1714 *
1715 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1716 * successful registration. Returns 0 on success and -errno on failure.
1717 */
blkcg_policy_register(struct blkcg_policy * pol)1718 int blkcg_policy_register(struct blkcg_policy *pol)
1719 {
1720 struct blkcg *blkcg;
1721 int i, ret;
1722
1723 mutex_lock(&blkcg_pol_register_mutex);
1724 mutex_lock(&blkcg_pol_mutex);
1725
1726 /* find an empty slot */
1727 ret = -ENOSPC;
1728 for (i = 0; i < BLKCG_MAX_POLS; i++)
1729 if (!blkcg_policy[i])
1730 break;
1731 if (i >= BLKCG_MAX_POLS) {
1732 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1733 goto err_unlock;
1734 }
1735
1736 /*
1737 * Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1738 * without pd_alloc_fn/pd_free_fn can't be activated.
1739 */
1740 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1741 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1742 goto err_unlock;
1743
1744 /* register @pol */
1745 pol->plid = i;
1746 blkcg_policy[pol->plid] = pol;
1747
1748 /* allocate and install cpd's */
1749 if (pol->cpd_alloc_fn) {
1750 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1751 struct blkcg_policy_data *cpd;
1752
1753 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1754 if (!cpd)
1755 goto err_free_cpds;
1756
1757 blkcg->cpd[pol->plid] = cpd;
1758 cpd->blkcg = blkcg;
1759 cpd->plid = pol->plid;
1760 }
1761 }
1762
1763 mutex_unlock(&blkcg_pol_mutex);
1764
1765 /* everything is in place, add intf files for the new policy */
1766 if (pol->dfl_cftypes)
1767 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1768 pol->dfl_cftypes));
1769 if (pol->legacy_cftypes)
1770 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1771 pol->legacy_cftypes));
1772 mutex_unlock(&blkcg_pol_register_mutex);
1773 return 0;
1774
1775 err_free_cpds:
1776 if (pol->cpd_free_fn)
1777 blkcg_free_all_cpd(pol);
1778
1779 blkcg_policy[pol->plid] = NULL;
1780 err_unlock:
1781 mutex_unlock(&blkcg_pol_mutex);
1782 mutex_unlock(&blkcg_pol_register_mutex);
1783 return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1786
1787 /**
1788 * blkcg_policy_unregister - unregister a blkcg policy
1789 * @pol: blkcg policy to unregister
1790 *
1791 * Undo blkcg_policy_register(@pol). Might sleep.
1792 */
blkcg_policy_unregister(struct blkcg_policy * pol)1793 void blkcg_policy_unregister(struct blkcg_policy *pol)
1794 {
1795 mutex_lock(&blkcg_pol_register_mutex);
1796
1797 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1798 goto out_unlock;
1799
1800 /* kill the intf files first */
1801 if (pol->dfl_cftypes)
1802 cgroup_rm_cftypes(pol->dfl_cftypes);
1803 if (pol->legacy_cftypes)
1804 cgroup_rm_cftypes(pol->legacy_cftypes);
1805
1806 /* remove cpds and unregister */
1807 mutex_lock(&blkcg_pol_mutex);
1808
1809 if (pol->cpd_free_fn)
1810 blkcg_free_all_cpd(pol);
1811
1812 blkcg_policy[pol->plid] = NULL;
1813
1814 mutex_unlock(&blkcg_pol_mutex);
1815 out_unlock:
1816 mutex_unlock(&blkcg_pol_register_mutex);
1817 }
1818 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1819
1820 /*
1821 * Scale the accumulated delay based on how long it has been since we updated
1822 * the delay. We only call this when we are adding delay, in case it's been a
1823 * while since we added delay, and when we are checking to see if we need to
1824 * delay a task, to account for any delays that may have occurred.
1825 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1826 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1827 {
1828 u64 old = atomic64_read(&blkg->delay_start);
1829
1830 /* negative use_delay means no scaling, see blkcg_set_delay() */
1831 if (atomic_read(&blkg->use_delay) < 0)
1832 return;
1833
1834 /*
1835 * We only want to scale down every second. The idea here is that we
1836 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1837 * time window. We only want to throttle tasks for recent delay that
1838 * has occurred, in 1 second time windows since that's the maximum
1839 * things can be throttled. We save the current delay window in
1840 * blkg->last_delay so we know what amount is still left to be charged
1841 * to the blkg from this point onward. blkg->last_use keeps track of
1842 * the use_delay counter. The idea is if we're unthrottling the blkg we
1843 * are ok with whatever is happening now, and we can take away more of
1844 * the accumulated delay as we've already throttled enough that
1845 * everybody is happy with their IO latencies.
1846 */
1847 if (time_before64(old + NSEC_PER_SEC, now) &&
1848 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1849 u64 cur = atomic64_read(&blkg->delay_nsec);
1850 u64 sub = min_t(u64, blkg->last_delay, now - old);
1851 int cur_use = atomic_read(&blkg->use_delay);
1852
1853 /*
1854 * We've been unthrottled, subtract a larger chunk of our
1855 * accumulated delay.
1856 */
1857 if (cur_use < blkg->last_use)
1858 sub = max_t(u64, sub, blkg->last_delay >> 1);
1859
1860 /*
1861 * This shouldn't happen, but handle it anyway. Our delay_nsec
1862 * should only ever be growing except here where we subtract out
1863 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1864 * rather not end up with negative numbers.
1865 */
1866 if (unlikely(cur < sub)) {
1867 atomic64_set(&blkg->delay_nsec, 0);
1868 blkg->last_delay = 0;
1869 } else {
1870 atomic64_sub(sub, &blkg->delay_nsec);
1871 blkg->last_delay = cur - sub;
1872 }
1873 blkg->last_use = cur_use;
1874 }
1875 }
1876
1877 /*
1878 * This is called when we want to actually walk up the hierarchy and check to
1879 * see if we need to throttle, and then actually throttle if there is some
1880 * accumulated delay. This should only be called upon return to user space so
1881 * we're not holding some lock that would induce a priority inversion.
1882 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1883 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1884 {
1885 unsigned long pflags;
1886 bool clamp;
1887 u64 now = blk_time_get_ns();
1888 u64 exp;
1889 u64 delay_nsec = 0;
1890 int tok;
1891
1892 while (blkg->parent) {
1893 int use_delay = atomic_read(&blkg->use_delay);
1894
1895 if (use_delay) {
1896 u64 this_delay;
1897
1898 blkcg_scale_delay(blkg, now);
1899 this_delay = atomic64_read(&blkg->delay_nsec);
1900 if (this_delay > delay_nsec) {
1901 delay_nsec = this_delay;
1902 clamp = use_delay > 0;
1903 }
1904 }
1905 blkg = blkg->parent;
1906 }
1907
1908 if (!delay_nsec)
1909 return;
1910
1911 /*
1912 * Let's not sleep for all eternity if we've amassed a huge delay.
1913 * Swapping or metadata IO can accumulate 10's of seconds worth of
1914 * delay, and we want userspace to be able to do _something_ so cap the
1915 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1916 * tasks will be delayed for 0.25 second for every syscall. If
1917 * blkcg_set_delay() was used as indicated by negative use_delay, the
1918 * caller is responsible for regulating the range.
1919 */
1920 if (clamp)
1921 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1922
1923 if (use_memdelay)
1924 psi_memstall_enter(&pflags);
1925
1926 exp = ktime_add_ns(now, delay_nsec);
1927 tok = io_schedule_prepare();
1928 do {
1929 __set_current_state(TASK_KILLABLE);
1930 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1931 break;
1932 } while (!fatal_signal_pending(current));
1933 io_schedule_finish(tok);
1934
1935 if (use_memdelay)
1936 psi_memstall_leave(&pflags);
1937 }
1938
1939 /**
1940 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1941 *
1942 * This is only called if we've been marked with set_notify_resume(). Obviously
1943 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1944 * check to see if current->throttle_disk is set and if not this doesn't do
1945 * anything. This should only ever be called by the resume code, it's not meant
1946 * to be called by people willy-nilly as it will actually do the work to
1947 * throttle the task if it is setup for throttling.
1948 */
blkcg_maybe_throttle_current(void)1949 void blkcg_maybe_throttle_current(void)
1950 {
1951 struct gendisk *disk = current->throttle_disk;
1952 struct blkcg *blkcg;
1953 struct blkcg_gq *blkg;
1954 bool use_memdelay = current->use_memdelay;
1955
1956 if (!disk)
1957 return;
1958
1959 current->throttle_disk = NULL;
1960 current->use_memdelay = false;
1961
1962 rcu_read_lock();
1963 blkcg = css_to_blkcg(blkcg_css());
1964 if (!blkcg)
1965 goto out;
1966 blkg = blkg_lookup(blkcg, disk->queue);
1967 if (!blkg)
1968 goto out;
1969 if (!blkg_tryget(blkg))
1970 goto out;
1971 rcu_read_unlock();
1972
1973 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1974 blkg_put(blkg);
1975 put_disk(disk);
1976 return;
1977 out:
1978 rcu_read_unlock();
1979 }
1980
1981 /**
1982 * blkcg_schedule_throttle - this task needs to check for throttling
1983 * @disk: disk to throttle
1984 * @use_memdelay: do we charge this to memory delay for PSI
1985 *
1986 * This is called by the IO controller when we know there's delay accumulated
1987 * for the blkg for this task. We do not pass the blkg because there are places
1988 * we call this that may not have that information, the swapping code for
1989 * instance will only have a block_device at that point. This set's the
1990 * notify_resume for the task to check and see if it requires throttling before
1991 * returning to user space.
1992 *
1993 * We will only schedule once per syscall. You can call this over and over
1994 * again and it will only do the check once upon return to user space, and only
1995 * throttle once. If the task needs to be throttled again it'll need to be
1996 * re-set at the next time we see the task.
1997 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)1998 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1999 {
2000 if (unlikely(current->flags & PF_KTHREAD))
2001 return;
2002
2003 if (current->throttle_disk != disk) {
2004 if (test_bit(GD_DEAD, &disk->state))
2005 return;
2006 get_device(disk_to_dev(disk));
2007
2008 if (current->throttle_disk)
2009 put_disk(current->throttle_disk);
2010 current->throttle_disk = disk;
2011 }
2012
2013 if (use_memdelay)
2014 current->use_memdelay = use_memdelay;
2015 set_notify_resume(current);
2016 }
2017
2018 /**
2019 * blkcg_add_delay - add delay to this blkg
2020 * @blkg: blkg of interest
2021 * @now: the current time in nanoseconds
2022 * @delta: how many nanoseconds of delay to add
2023 *
2024 * Charge @delta to the blkg's current delay accumulation. This is used to
2025 * throttle tasks if an IO controller thinks we need more throttling.
2026 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)2027 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2028 {
2029 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2030 return;
2031 blkcg_scale_delay(blkg, now);
2032 atomic64_add(delta, &blkg->delay_nsec);
2033 }
2034
2035 /**
2036 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2037 * @bio: target bio
2038 * @css: target css
2039 *
2040 * As the failure mode here is to walk up the blkg tree, this ensure that the
2041 * blkg->parent pointers are always valid. This returns the blkg that it ended
2042 * up taking a reference on or %NULL if no reference was taken.
2043 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)2044 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2045 struct cgroup_subsys_state *css)
2046 {
2047 struct blkcg_gq *blkg, *ret_blkg = NULL;
2048
2049 rcu_read_lock();
2050 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2051 while (blkg) {
2052 if (blkg_tryget(blkg)) {
2053 ret_blkg = blkg;
2054 break;
2055 }
2056 blkg = blkg->parent;
2057 }
2058 rcu_read_unlock();
2059
2060 return ret_blkg;
2061 }
2062
2063 /**
2064 * bio_associate_blkg_from_css - associate a bio with a specified css
2065 * @bio: target bio
2066 * @css: target css
2067 *
2068 * Associate @bio with the blkg found by combining the css's blkg and the
2069 * request_queue of the @bio. An association failure is handled by walking up
2070 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2071 * and q->root_blkg. This situation only happens when a cgroup is dying and
2072 * then the remaining bios will spill to the closest alive blkg.
2073 *
2074 * A reference will be taken on the blkg and will be released when @bio is
2075 * freed.
2076 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2077 void bio_associate_blkg_from_css(struct bio *bio,
2078 struct cgroup_subsys_state *css)
2079 {
2080 if (bio->bi_blkg)
2081 blkg_put(bio->bi_blkg);
2082
2083 if (css && css->parent) {
2084 bio->bi_blkg = blkg_tryget_closest(bio, css);
2085 } else {
2086 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2087 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2088 }
2089 }
2090 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2091
2092 /**
2093 * bio_associate_blkg - associate a bio with a blkg
2094 * @bio: target bio
2095 *
2096 * Associate @bio with the blkg found from the bio's css and request_queue.
2097 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2098 * already associated, the css is reused and association redone as the
2099 * request_queue may have changed.
2100 */
bio_associate_blkg(struct bio * bio)2101 void bio_associate_blkg(struct bio *bio)
2102 {
2103 struct cgroup_subsys_state *css;
2104
2105 if (blk_op_is_passthrough(bio->bi_opf))
2106 return;
2107
2108 rcu_read_lock();
2109
2110 if (bio->bi_blkg)
2111 css = bio_blkcg_css(bio);
2112 else
2113 css = blkcg_css();
2114
2115 bio_associate_blkg_from_css(bio, css);
2116
2117 rcu_read_unlock();
2118 }
2119 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2120
2121 /**
2122 * bio_clone_blkg_association - clone blkg association from src to dst bio
2123 * @dst: destination bio
2124 * @src: source bio
2125 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2126 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2127 {
2128 if (src->bi_blkg)
2129 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2130 }
2131 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2132
blk_cgroup_io_type(struct bio * bio)2133 static int blk_cgroup_io_type(struct bio *bio)
2134 {
2135 if (op_is_discard(bio->bi_opf))
2136 return BLKG_IOSTAT_DISCARD;
2137 if (op_is_write(bio->bi_opf))
2138 return BLKG_IOSTAT_WRITE;
2139 return BLKG_IOSTAT_READ;
2140 }
2141
blk_cgroup_bio_start(struct bio * bio)2142 void blk_cgroup_bio_start(struct bio *bio)
2143 {
2144 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2145 int rwd = blk_cgroup_io_type(bio), cpu;
2146 struct blkg_iostat_set *bis;
2147 unsigned long flags;
2148
2149 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2150 return;
2151
2152 /* Root-level stats are sourced from system-wide IO stats */
2153 if (!cgroup_parent(blkcg->css.cgroup))
2154 return;
2155
2156 cpu = get_cpu();
2157 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2158 flags = u64_stats_update_begin_irqsave(&bis->sync);
2159
2160 /*
2161 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2162 * bio and we would have already accounted for the size of the bio.
2163 */
2164 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2165 bio_set_flag(bio, BIO_CGROUP_ACCT);
2166 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2167 }
2168 bis->cur.ios[rwd]++;
2169
2170 /*
2171 * If the iostat_cpu isn't in a lockless list, put it into the
2172 * list to indicate that a stat update is pending.
2173 */
2174 if (!READ_ONCE(bis->lqueued)) {
2175 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2176
2177 llist_add(&bis->lnode, lhead);
2178 WRITE_ONCE(bis->lqueued, true);
2179 }
2180
2181 u64_stats_update_end_irqrestore(&bis->sync, flags);
2182 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2183 put_cpu();
2184 }
2185
blk_cgroup_congested(void)2186 bool blk_cgroup_congested(void)
2187 {
2188 struct blkcg *blkcg;
2189 bool ret = false;
2190
2191 rcu_read_lock();
2192 for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2193 blkcg = blkcg_parent(blkcg)) {
2194 if (atomic_read(&blkcg->congestion_count)) {
2195 ret = true;
2196 break;
2197 }
2198 }
2199 rcu_read_unlock();
2200 return ret;
2201 }
2202
2203 module_param(blkcg_debug_stats, bool, 0644);
2204 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2205