xref: /linux/fs/bcachefs/btree_key_cache.c (revision 56770e24f678a84a21f21bcc1ae9cbc1364677bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14 
15 #include <linux/sched/mm.h>
16 
btree_uses_pcpu_readers(enum btree_id id)17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 	return id == BTREE_ID_subvolumes;
20 }
21 
22 static struct kmem_cache *bch2_key_cache;
23 
bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg * arg,const void * obj)24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 				       const void *obj)
26 {
27 	const struct bkey_cached *ck = obj;
28 	const struct bkey_cached_key *key = arg->key;
29 
30 	return ck->key.btree_id != key->btree_id ||
31 		!bpos_eq(ck->key.pos, key->pos);
32 }
33 
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 	.head_offset		= offsetof(struct bkey_cached, hash),
36 	.key_offset		= offsetof(struct bkey_cached, key),
37 	.key_len		= sizeof(struct bkey_cached_key),
38 	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
39 	.automatic_shrinking	= true,
40 };
41 
btree_path_cached_set(struct btree_trans * trans,struct btree_path * path,struct bkey_cached * ck,enum btree_node_locked_type lock_held)42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43 					 struct bkey_cached *ck,
44 					 enum btree_node_locked_type lock_held)
45 {
46 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
47 	path->l[0].b		= (void *) ck;
48 	mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50 
51 __flatten
52 inline struct bkey_cached *
bch2_btree_key_cache_find(struct bch_fs * c,enum btree_id btree_id,struct bpos pos)53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55 	struct bkey_cached_key key = {
56 		.btree_id	= btree_id,
57 		.pos		= pos,
58 	};
59 
60 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61 				      bch2_btree_key_cache_params);
62 }
63 
bkey_cached_lock_for_evict(struct bkey_cached * ck)64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66 	if (!six_trylock_intent(&ck->c.lock))
67 		return false;
68 
69 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70 		six_unlock_intent(&ck->c.lock);
71 		return false;
72 	}
73 
74 	if (!six_trylock_write(&ck->c.lock)) {
75 		six_unlock_intent(&ck->c.lock);
76 		return false;
77 	}
78 
79 	return true;
80 }
81 
bkey_cached_evict(struct btree_key_cache * c,struct bkey_cached * ck)82 static bool bkey_cached_evict(struct btree_key_cache *c,
83 			      struct bkey_cached *ck)
84 {
85 	bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
86 				      bch2_btree_key_cache_params);
87 	if (ret) {
88 		memset(&ck->key, ~0, sizeof(ck->key));
89 		atomic_long_dec(&c->nr_keys);
90 	}
91 
92 	return ret;
93 }
94 
__bkey_cached_free(struct rcu_pending * pending,struct rcu_head * rcu)95 static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
96 {
97 	struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
98 	struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
99 
100 	this_cpu_dec(*c->btree_key_cache.nr_pending);
101 	kmem_cache_free(bch2_key_cache, ck);
102 }
103 
bkey_cached_free(struct btree_key_cache * bc,struct bkey_cached * ck)104 static void bkey_cached_free(struct btree_key_cache *bc,
105 			     struct bkey_cached *ck)
106 {
107 	kfree(ck->k);
108 	ck->k		= NULL;
109 	ck->u64s	= 0;
110 
111 	six_unlock_write(&ck->c.lock);
112 	six_unlock_intent(&ck->c.lock);
113 
114 	bool pcpu_readers = ck->c.lock.readers != NULL;
115 	rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
116 	this_cpu_inc(*bc->nr_pending);
117 }
118 
__bkey_cached_alloc(unsigned key_u64s,gfp_t gfp)119 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
120 {
121 	gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
122 
123 	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
124 	if (unlikely(!ck))
125 		return NULL;
126 	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
127 	if (unlikely(!ck->k)) {
128 		kmem_cache_free(bch2_key_cache, ck);
129 		return NULL;
130 	}
131 	ck->u64s = key_u64s;
132 	return ck;
133 }
134 
135 static struct bkey_cached *
bkey_cached_alloc(struct btree_trans * trans,struct btree_path * path,unsigned key_u64s)136 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
137 {
138 	struct bch_fs *c = trans->c;
139 	struct btree_key_cache *bc = &c->btree_key_cache;
140 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
141 	int ret;
142 
143 	struct bkey_cached *ck = container_of_or_null(
144 				rcu_pending_dequeue(&bc->pending[pcpu_readers]),
145 				struct bkey_cached, rcu);
146 	if (ck)
147 		goto lock;
148 
149 	ck = allocate_dropping_locks(trans, ret,
150 				     __bkey_cached_alloc(key_u64s, _gfp));
151 	if (ret) {
152 		if (ck)
153 			kfree(ck->k);
154 		kmem_cache_free(bch2_key_cache, ck);
155 		return ERR_PTR(ret);
156 	}
157 
158 	if (ck) {
159 		bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0, GFP_KERNEL);
160 		ck->c.cached = true;
161 		goto lock;
162 	}
163 
164 	ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
165 				  struct bkey_cached, rcu);
166 	if (ck)
167 		goto lock;
168 lock:
169 	six_lock_intent(&ck->c.lock, NULL, NULL);
170 	six_lock_write(&ck->c.lock, NULL, NULL);
171 	return ck;
172 }
173 
174 static struct bkey_cached *
bkey_cached_reuse(struct btree_key_cache * c)175 bkey_cached_reuse(struct btree_key_cache *c)
176 {
177 	struct bucket_table *tbl;
178 	struct rhash_head *pos;
179 	struct bkey_cached *ck;
180 	unsigned i;
181 
182 	rcu_read_lock();
183 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
184 	for (i = 0; i < tbl->size; i++)
185 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
186 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
187 			    bkey_cached_lock_for_evict(ck)) {
188 				if (bkey_cached_evict(c, ck))
189 					goto out;
190 				six_unlock_write(&ck->c.lock);
191 				six_unlock_intent(&ck->c.lock);
192 			}
193 		}
194 	ck = NULL;
195 out:
196 	rcu_read_unlock();
197 	return ck;
198 }
199 
btree_key_cache_create(struct btree_trans * trans,struct btree_path * path,struct btree_path * ck_path,struct bkey_s_c k)200 static int btree_key_cache_create(struct btree_trans *trans,
201 				  struct btree_path *path,
202 				  struct btree_path *ck_path,
203 				  struct bkey_s_c k)
204 {
205 	struct bch_fs *c = trans->c;
206 	struct btree_key_cache *bc = &c->btree_key_cache;
207 
208 	/*
209 	 * bch2_varint_decode can read past the end of the buffer by at
210 	 * most 7 bytes (it won't be used):
211 	 */
212 	unsigned key_u64s = k.k->u64s + 1;
213 
214 	/*
215 	 * Allocate some extra space so that the transaction commit path is less
216 	 * likely to have to reallocate, since that requires a transaction
217 	 * restart:
218 	 */
219 	key_u64s = min(256U, (key_u64s * 3) / 2);
220 	key_u64s = roundup_pow_of_two(key_u64s);
221 
222 	struct bkey_cached *ck = bkey_cached_alloc(trans, ck_path, key_u64s);
223 	int ret = PTR_ERR_OR_ZERO(ck);
224 	if (ret)
225 		return ret;
226 
227 	if (unlikely(!ck)) {
228 		ck = bkey_cached_reuse(bc);
229 		if (unlikely(!ck)) {
230 			bch_err(c, "error allocating memory for key cache item, btree %s",
231 				bch2_btree_id_str(ck_path->btree_id));
232 			return -BCH_ERR_ENOMEM_btree_key_cache_create;
233 		}
234 	}
235 
236 	ck->c.level		= 0;
237 	ck->c.btree_id		= ck_path->btree_id;
238 	ck->key.btree_id	= ck_path->btree_id;
239 	ck->key.pos		= ck_path->pos;
240 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
241 
242 	if (unlikely(key_u64s > ck->u64s)) {
243 		mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
244 
245 		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
246 				kmalloc(key_u64s * sizeof(u64), _gfp));
247 		if (unlikely(!new_k)) {
248 			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
249 				bch2_btree_id_str(ck->key.btree_id), key_u64s);
250 			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
251 		} else if (ret) {
252 			kfree(new_k);
253 			goto err;
254 		}
255 
256 		kfree(ck->k);
257 		ck->k = new_k;
258 		ck->u64s = key_u64s;
259 	}
260 
261 	bkey_reassemble(ck->k, k);
262 
263 	ret = bch2_btree_node_lock_write(trans, path, &path_l(path)->b->c);
264 	if (unlikely(ret))
265 		goto err;
266 
267 	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
268 
269 	bch2_btree_node_unlock_write(trans, path, path_l(path)->b);
270 
271 	if (unlikely(ret)) /* raced with another fill? */
272 		goto err;
273 
274 	atomic_long_inc(&bc->nr_keys);
275 	six_unlock_write(&ck->c.lock);
276 
277 	enum six_lock_type lock_want = __btree_lock_want(ck_path, 0);
278 	if (lock_want == SIX_LOCK_read)
279 		six_lock_downgrade(&ck->c.lock);
280 	btree_path_cached_set(trans, ck_path, ck, (enum btree_node_locked_type) lock_want);
281 	ck_path->uptodate = BTREE_ITER_UPTODATE;
282 	return 0;
283 err:
284 	bkey_cached_free(bc, ck);
285 	mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
286 
287 	return ret;
288 }
289 
do_trace_key_cache_fill(struct btree_trans * trans,struct btree_path * ck_path,struct bkey_s_c k)290 static noinline_for_stack void do_trace_key_cache_fill(struct btree_trans *trans,
291 						       struct btree_path *ck_path,
292 						       struct bkey_s_c k)
293 {
294 	struct printbuf buf = PRINTBUF;
295 
296 	bch2_bpos_to_text(&buf, ck_path->pos);
297 	prt_char(&buf, ' ');
298 	bch2_bkey_val_to_text(&buf, trans->c, k);
299 	trace_key_cache_fill(trans, buf.buf);
300 	printbuf_exit(&buf);
301 }
302 
btree_key_cache_fill(struct btree_trans * trans,struct btree_path * ck_path,unsigned flags)303 static noinline int btree_key_cache_fill(struct btree_trans *trans,
304 					 struct btree_path *ck_path,
305 					 unsigned flags)
306 {
307 	if (flags & BTREE_ITER_cached_nofill) {
308 		ck_path->l[0].b = NULL;
309 		return 0;
310 	}
311 
312 	struct bch_fs *c = trans->c;
313 	struct btree_iter iter;
314 	struct bkey_s_c k;
315 	int ret;
316 
317 	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
318 			     BTREE_ITER_intent|
319 			     BTREE_ITER_key_cache_fill|
320 			     BTREE_ITER_cached_nofill);
321 	iter.flags &= ~BTREE_ITER_with_journal;
322 	k = bch2_btree_iter_peek_slot(trans, &iter);
323 	ret = bkey_err(k);
324 	if (ret)
325 		goto err;
326 
327 	/* Recheck after btree lookup, before allocating: */
328 	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
329 	if (unlikely(ret))
330 		goto out;
331 
332 	ret = btree_key_cache_create(trans, btree_iter_path(trans, &iter), ck_path, k);
333 	if (ret)
334 		goto err;
335 
336 	if (trace_key_cache_fill_enabled())
337 		do_trace_key_cache_fill(trans, ck_path, k);
338 out:
339 	/* We're not likely to need this iterator again: */
340 	bch2_set_btree_iter_dontneed(trans, &iter);
341 err:
342 	bch2_trans_iter_exit(trans, &iter);
343 	return ret;
344 }
345 
btree_path_traverse_cached_fast(struct btree_trans * trans,struct btree_path * path)346 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
347 						  struct btree_path *path)
348 {
349 	struct bch_fs *c = trans->c;
350 	struct bkey_cached *ck;
351 retry:
352 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
353 	if (!ck)
354 		return -ENOENT;
355 
356 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
357 
358 	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
359 	if (ret)
360 		return ret;
361 
362 	if (ck->key.btree_id != path->btree_id ||
363 	    !bpos_eq(ck->key.pos, path->pos)) {
364 		six_unlock_type(&ck->c.lock, lock_want);
365 		goto retry;
366 	}
367 
368 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
369 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
370 
371 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
372 	path->uptodate = BTREE_ITER_UPTODATE;
373 	return 0;
374 }
375 
bch2_btree_path_traverse_cached(struct btree_trans * trans,struct btree_path * path,unsigned flags)376 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
377 				    unsigned flags)
378 {
379 	EBUG_ON(path->level);
380 
381 	path->l[1].b = NULL;
382 
383 	int ret;
384 	do {
385 		ret = btree_path_traverse_cached_fast(trans, path);
386 		if (unlikely(ret == -ENOENT))
387 			ret = btree_key_cache_fill(trans, path, flags);
388 	} while (ret == -EEXIST);
389 
390 	if (unlikely(ret)) {
391 		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
392 		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
393 			btree_node_unlock(trans, path, 0);
394 			path->l[0].b = ERR_PTR(ret);
395 		}
396 	}
397 	return ret;
398 }
399 
btree_key_cache_flush_pos(struct btree_trans * trans,struct bkey_cached_key key,u64 journal_seq,unsigned commit_flags,bool evict)400 static int btree_key_cache_flush_pos(struct btree_trans *trans,
401 				     struct bkey_cached_key key,
402 				     u64 journal_seq,
403 				     unsigned commit_flags,
404 				     bool evict)
405 {
406 	struct bch_fs *c = trans->c;
407 	struct journal *j = &c->journal;
408 	struct btree_iter c_iter, b_iter;
409 	struct bkey_cached *ck = NULL;
410 	int ret;
411 
412 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
413 			     BTREE_ITER_slots|
414 			     BTREE_ITER_intent|
415 			     BTREE_ITER_all_snapshots);
416 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
417 			     BTREE_ITER_cached|
418 			     BTREE_ITER_intent);
419 	b_iter.flags &= ~BTREE_ITER_with_key_cache;
420 
421 	ret = bch2_btree_iter_traverse(trans, &c_iter);
422 	if (ret)
423 		goto out;
424 
425 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
426 	if (!ck)
427 		goto out;
428 
429 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
430 		if (evict)
431 			goto evict;
432 		goto out;
433 	}
434 
435 	if (journal_seq && ck->journal.seq != journal_seq)
436 		goto out;
437 
438 	trans->journal_res.seq = ck->journal.seq;
439 
440 	/*
441 	 * If we're at the end of the journal, we really want to free up space
442 	 * in the journal right away - we don't want to pin that old journal
443 	 * sequence number with a new btree node write, we want to re-journal
444 	 * the update
445 	 */
446 	if (ck->journal.seq == journal_last_seq(j))
447 		commit_flags |= BCH_WATERMARK_reclaim;
448 
449 	if (ck->journal.seq != journal_last_seq(j) ||
450 	    !test_bit(JOURNAL_space_low, &c->journal.flags))
451 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
452 
453 	struct bkey_s_c btree_k = bch2_btree_iter_peek_slot(trans, &b_iter);
454 	ret = bkey_err(btree_k);
455 	if (ret)
456 		goto err;
457 
458 	/* * Check that we're not violating cache coherency rules: */
459 	BUG_ON(bkey_deleted(btree_k.k));
460 
461 	ret   = bch2_trans_update(trans, &b_iter, ck->k,
462 				  BTREE_UPDATE_key_cache_reclaim|
463 				  BTREE_UPDATE_internal_snapshot_node|
464 				  BTREE_TRIGGER_norun) ?:
465 		bch2_trans_commit(trans, NULL, NULL,
466 				  BCH_TRANS_COMMIT_no_check_rw|
467 				  BCH_TRANS_COMMIT_no_enospc|
468 				  commit_flags);
469 err:
470 	bch2_fs_fatal_err_on(ret &&
471 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
472 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
473 			     !bch2_journal_error(j), c,
474 			     "flushing key cache: %s", bch2_err_str(ret));
475 	if (ret)
476 		goto out;
477 
478 	bch2_journal_pin_drop(j, &ck->journal);
479 
480 	struct btree_path *path = btree_iter_path(trans, &c_iter);
481 	BUG_ON(!btree_node_locked(path, 0));
482 
483 	if (!evict) {
484 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
485 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
486 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
487 		}
488 	} else {
489 		struct btree_path *path2;
490 		unsigned i;
491 evict:
492 		trans_for_each_path(trans, path2, i)
493 			if (path2 != path)
494 				__bch2_btree_path_unlock(trans, path2);
495 
496 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
497 
498 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
499 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
500 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
501 		}
502 
503 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
504 		if (bkey_cached_evict(&c->btree_key_cache, ck)) {
505 			bkey_cached_free(&c->btree_key_cache, ck);
506 		} else {
507 			six_unlock_write(&ck->c.lock);
508 			six_unlock_intent(&ck->c.lock);
509 		}
510 	}
511 out:
512 	bch2_trans_iter_exit(trans, &b_iter);
513 	bch2_trans_iter_exit(trans, &c_iter);
514 	return ret;
515 }
516 
bch2_btree_key_cache_journal_flush(struct journal * j,struct journal_entry_pin * pin,u64 seq)517 int bch2_btree_key_cache_journal_flush(struct journal *j,
518 				struct journal_entry_pin *pin, u64 seq)
519 {
520 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
521 	struct bkey_cached *ck =
522 		container_of(pin, struct bkey_cached, journal);
523 	struct bkey_cached_key key;
524 	struct btree_trans *trans = bch2_trans_get(c);
525 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
526 	int ret = 0;
527 
528 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
529 	key = ck->key;
530 
531 	if (ck->journal.seq != seq ||
532 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
533 		six_unlock_read(&ck->c.lock);
534 		goto unlock;
535 	}
536 
537 	if (ck->seq != seq) {
538 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
539 					bch2_btree_key_cache_journal_flush);
540 		six_unlock_read(&ck->c.lock);
541 		goto unlock;
542 	}
543 	six_unlock_read(&ck->c.lock);
544 
545 	ret = lockrestart_do(trans,
546 		btree_key_cache_flush_pos(trans, key, seq,
547 				BCH_TRANS_COMMIT_journal_reclaim, false));
548 unlock:
549 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
550 
551 	bch2_trans_put(trans);
552 	return ret;
553 }
554 
bch2_btree_insert_key_cached(struct btree_trans * trans,unsigned flags,struct btree_insert_entry * insert_entry)555 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
556 				  unsigned flags,
557 				  struct btree_insert_entry *insert_entry)
558 {
559 	struct bch_fs *c = trans->c;
560 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
561 	struct bkey_i *insert = insert_entry->k;
562 	bool kick_reclaim = false;
563 
564 	BUG_ON(insert->k.u64s > ck->u64s);
565 
566 	bkey_copy(ck->k, insert);
567 
568 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
569 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
570 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
571 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
572 
573 		if (bch2_nr_btree_keys_need_flush(c))
574 			kick_reclaim = true;
575 	}
576 
577 	/*
578 	 * To minimize lock contention, we only add the journal pin here and
579 	 * defer pin updates to the flush callback via ->seq. Be careful not to
580 	 * update ->seq on nojournal commits because we don't want to update the
581 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
582 	 * we risk losing the update after a crash.
583 	 *
584 	 * The only exception is if the pin is not active in the first place. We
585 	 * have to add the pin because journal reclaim drives key cache
586 	 * flushing. The flush callback will not proceed unless ->seq matches
587 	 * the latest pin, so make sure it starts with a consistent value.
588 	 */
589 	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
590 	    !journal_pin_active(&ck->journal)) {
591 		ck->seq = trans->journal_res.seq;
592 	}
593 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
594 			     &ck->journal, bch2_btree_key_cache_journal_flush);
595 
596 	if (kick_reclaim)
597 		journal_reclaim_kick(&c->journal);
598 	return true;
599 }
600 
bch2_btree_key_cache_drop(struct btree_trans * trans,struct btree_path * path)601 void bch2_btree_key_cache_drop(struct btree_trans *trans,
602 			       struct btree_path *path)
603 {
604 	struct bch_fs *c = trans->c;
605 	struct btree_key_cache *bc = &c->btree_key_cache;
606 	struct bkey_cached *ck = (void *) path->l[0].b;
607 
608 	/*
609 	 * We just did an update to the btree, bypassing the key cache: the key
610 	 * cache key is now stale and must be dropped, even if dirty:
611 	 */
612 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
613 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
614 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
615 		bch2_journal_pin_drop(&c->journal, &ck->journal);
616 	}
617 
618 	bkey_cached_evict(bc, ck);
619 	bkey_cached_free(bc, ck);
620 
621 	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
622 
623 	struct btree_path *path2;
624 	unsigned i;
625 	trans_for_each_path(trans, path2, i)
626 		if (path2->l[0].b == (void *) ck) {
627 			__bch2_btree_path_unlock(trans, path2);
628 			path2->l[0].b = ERR_PTR(-BCH_ERR_no_btree_node_drop);
629 			path2->should_be_locked = false;
630 			btree_path_set_dirty(path2, BTREE_ITER_NEED_TRAVERSE);
631 		}
632 
633 	bch2_trans_verify_locks(trans);
634 }
635 
bch2_btree_key_cache_scan(struct shrinker * shrink,struct shrink_control * sc)636 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
637 					   struct shrink_control *sc)
638 {
639 	struct bch_fs *c = shrink->private_data;
640 	struct btree_key_cache *bc = &c->btree_key_cache;
641 	struct bucket_table *tbl;
642 	struct bkey_cached *ck;
643 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
644 	unsigned iter, start;
645 	int srcu_idx;
646 
647 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
648 	rcu_read_lock();
649 
650 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
651 
652 	/*
653 	 * Scanning is expensive while a rehash is in progress - most elements
654 	 * will be on the new hashtable, if it's in progress
655 	 *
656 	 * A rehash could still start while we're scanning - that's ok, we'll
657 	 * still see most elements.
658 	 */
659 	if (unlikely(tbl->nest)) {
660 		rcu_read_unlock();
661 		srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
662 		return SHRINK_STOP;
663 	}
664 
665 	iter = bc->shrink_iter;
666 	if (iter >= tbl->size)
667 		iter = 0;
668 	start = iter;
669 
670 	do {
671 		struct rhash_head *pos, *next;
672 
673 		pos = rht_ptr_rcu(&tbl->buckets[iter]);
674 
675 		while (!rht_is_a_nulls(pos)) {
676 			next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
677 			ck = container_of(pos, struct bkey_cached, hash);
678 
679 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
680 				bc->skipped_dirty++;
681 			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
682 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
683 				bc->skipped_accessed++;
684 			} else if (!bkey_cached_lock_for_evict(ck)) {
685 				bc->skipped_lock_fail++;
686 			} else if (bkey_cached_evict(bc, ck)) {
687 				bkey_cached_free(bc, ck);
688 				bc->freed++;
689 				freed++;
690 			} else {
691 				six_unlock_write(&ck->c.lock);
692 				six_unlock_intent(&ck->c.lock);
693 			}
694 
695 			scanned++;
696 			if (scanned >= nr)
697 				goto out;
698 
699 			pos = next;
700 		}
701 
702 		iter++;
703 		if (iter >= tbl->size)
704 			iter = 0;
705 	} while (scanned < nr && iter != start);
706 out:
707 	bc->shrink_iter = iter;
708 
709 	rcu_read_unlock();
710 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
711 
712 	return freed;
713 }
714 
bch2_btree_key_cache_count(struct shrinker * shrink,struct shrink_control * sc)715 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
716 					    struct shrink_control *sc)
717 {
718 	struct bch_fs *c = shrink->private_data;
719 	struct btree_key_cache *bc = &c->btree_key_cache;
720 	long nr = atomic_long_read(&bc->nr_keys) -
721 		atomic_long_read(&bc->nr_dirty);
722 
723 	/*
724 	 * Avoid hammering our shrinker too much if it's nearly empty - the
725 	 * shrinker code doesn't take into account how big our cache is, if it's
726 	 * mostly empty but the system is under memory pressure it causes nasty
727 	 * lock contention:
728 	 */
729 	nr -= 128;
730 
731 	return max(0L, nr);
732 }
733 
bch2_fs_btree_key_cache_exit(struct btree_key_cache * bc)734 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
735 {
736 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
737 	struct bucket_table *tbl;
738 	struct bkey_cached *ck;
739 	struct rhash_head *pos;
740 	LIST_HEAD(items);
741 	unsigned i;
742 
743 	shrinker_free(bc->shrink);
744 
745 	/*
746 	 * The loop is needed to guard against racing with rehash:
747 	 */
748 	while (atomic_long_read(&bc->nr_keys)) {
749 		rcu_read_lock();
750 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
751 		if (tbl) {
752 			if (tbl->nest) {
753 				/* wait for in progress rehash */
754 				rcu_read_unlock();
755 				mutex_lock(&bc->table.mutex);
756 				mutex_unlock(&bc->table.mutex);
757 				continue;
758 			}
759 			for (i = 0; i < tbl->size; i++)
760 				while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
761 					ck = container_of(pos, struct bkey_cached, hash);
762 					BUG_ON(!bkey_cached_evict(bc, ck));
763 					kfree(ck->k);
764 					kmem_cache_free(bch2_key_cache, ck);
765 				}
766 		}
767 		rcu_read_unlock();
768 	}
769 
770 	if (atomic_long_read(&bc->nr_dirty) &&
771 	    !bch2_journal_error(&c->journal) &&
772 	    test_bit(BCH_FS_was_rw, &c->flags))
773 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
774 		      atomic_long_read(&bc->nr_dirty));
775 
776 	if (atomic_long_read(&bc->nr_keys))
777 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
778 		      atomic_long_read(&bc->nr_keys));
779 
780 	if (bc->table_init_done)
781 		rhashtable_destroy(&bc->table);
782 
783 	rcu_pending_exit(&bc->pending[0]);
784 	rcu_pending_exit(&bc->pending[1]);
785 
786 	free_percpu(bc->nr_pending);
787 }
788 
bch2_fs_btree_key_cache_init_early(struct btree_key_cache * c)789 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
790 {
791 }
792 
bch2_fs_btree_key_cache_init(struct btree_key_cache * bc)793 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
794 {
795 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
796 	struct shrinker *shrink;
797 
798 	bc->nr_pending = alloc_percpu(size_t);
799 	if (!bc->nr_pending)
800 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
801 
802 	if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
803 	    rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
804 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
805 
806 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
807 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
808 
809 	bc->table_init_done = true;
810 
811 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
812 	if (!shrink)
813 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
814 	bc->shrink = shrink;
815 	shrink->count_objects	= bch2_btree_key_cache_count;
816 	shrink->scan_objects	= bch2_btree_key_cache_scan;
817 	shrink->batch		= 1 << 14;
818 	shrink->seeks		= 0;
819 	shrink->private_data	= c;
820 	shrinker_register(shrink);
821 	return 0;
822 }
823 
bch2_btree_key_cache_to_text(struct printbuf * out,struct btree_key_cache * bc)824 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
825 {
826 	printbuf_tabstop_push(out, 24);
827 	printbuf_tabstop_push(out, 12);
828 
829 	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
830 	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
831 	prt_printf(out, "table size:\t%u\r\n",		bc->table.tbl->size);
832 	prt_newline(out);
833 	prt_printf(out, "shrinker:\n");
834 	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
835 	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
836 	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
837 	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
838 	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
839 	prt_newline(out);
840 	prt_printf(out, "pending:\t%zu\r\n",		per_cpu_sum(bc->nr_pending));
841 }
842 
bch2_btree_key_cache_exit(void)843 void bch2_btree_key_cache_exit(void)
844 {
845 	kmem_cache_destroy(bch2_key_cache);
846 }
847 
bch2_btree_key_cache_init(void)848 int __init bch2_btree_key_cache_init(void)
849 {
850 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
851 	if (!bch2_key_cache)
852 		return -ENOMEM;
853 
854 	return 0;
855 }
856