xref: /linux/include/linux/bio.h (revision 4adc13ed7c281c16152a700e47b65d17de07321a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 #define BIO_MAX_INLINE_VECS	UIO_MAXIOV
15 
16 struct queue_limits;
17 
18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 	return min(nr_segs, BIO_MAX_VECS);
21 }
22 
23 #define bio_iter_iovec(bio, iter)				\
24 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
25 
26 #define bio_iter_page(bio, iter)				\
27 	bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter)					\
29 	bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter)				\
31 	bvec_iter_offset((bio)->bi_io_vec, (iter))
32 
33 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
36 
37 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39 
40 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
42 
43 /*
44  * Return the data direction, READ or WRITE.
45  */
46 #define bio_data_dir(bio) \
47 	(op_is_write(bio_op(bio)) ? WRITE : READ)
48 
49 static inline bool bio_flagged(const struct bio *bio, unsigned int bit)
50 {
51 	return bio->bi_flags & (1U << bit);
52 }
53 
54 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
55 {
56 	bio->bi_flags |= (1U << bit);
57 }
58 
59 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
60 {
61 	bio->bi_flags &= ~(1U << bit);
62 }
63 
64 /*
65  * Check whether this bio carries any data or not. A NULL bio is allowed.
66  */
67 static inline bool bio_has_data(struct bio *bio)
68 {
69 	if (bio &&
70 	    bio->bi_iter.bi_size &&
71 	    bio_op(bio) != REQ_OP_DISCARD &&
72 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
73 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
74 		return true;
75 
76 	return false;
77 }
78 
79 static inline bool bio_no_advance_iter(const struct bio *bio)
80 {
81 	return bio_op(bio) == REQ_OP_DISCARD ||
82 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
83 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
84 }
85 
86 static inline void *bio_data(struct bio *bio)
87 {
88 	if (bio_has_data(bio))
89 		return page_address(bio_page(bio)) + bio_offset(bio);
90 
91 	return NULL;
92 }
93 
94 static inline bool bio_next_segment(const struct bio *bio,
95 				    struct bvec_iter_all *iter)
96 {
97 	if (iter->idx >= bio->bi_vcnt)
98 		return false;
99 
100 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
101 	return true;
102 }
103 
104 /*
105  * drivers should _never_ use the all version - the bio may have been split
106  * before it got to the driver and the driver won't own all of it
107  */
108 #define bio_for_each_segment_all(bvl, bio, iter) \
109 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
110 
111 static inline void bio_advance_iter(const struct bio *bio,
112 				    struct bvec_iter *iter, unsigned int bytes)
113 {
114 	iter->bi_sector += bytes >> 9;
115 
116 	if (bio_no_advance_iter(bio))
117 		iter->bi_size -= bytes;
118 	else
119 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
120 		/* TODO: It is reasonable to complete bio with error here. */
121 }
122 
123 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
124 static inline void bio_advance_iter_single(const struct bio *bio,
125 					   struct bvec_iter *iter,
126 					   unsigned int bytes)
127 {
128 	iter->bi_sector += bytes >> 9;
129 
130 	if (bio_no_advance_iter(bio))
131 		iter->bi_size -= bytes;
132 	else
133 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
134 }
135 
136 void __bio_advance(struct bio *, unsigned bytes);
137 
138 /**
139  * bio_advance - increment/complete a bio by some number of bytes
140  * @bio:	bio to advance
141  * @nbytes:	number of bytes to complete
142  *
143  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
144  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
145  * be updated on the last bvec as well.
146  *
147  * @bio will then represent the remaining, uncompleted portion of the io.
148  */
149 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
150 {
151 	if (nbytes == bio->bi_iter.bi_size) {
152 		bio->bi_iter.bi_size = 0;
153 		return;
154 	}
155 	__bio_advance(bio, nbytes);
156 }
157 
158 #define __bio_for_each_segment(bvl, bio, iter, start)			\
159 	for (iter = (start);						\
160 	     (iter).bi_size &&						\
161 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
162 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
163 
164 #define bio_for_each_segment(bvl, bio, iter)				\
165 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
166 
167 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
168 	for (iter = (start);						\
169 	     (iter).bi_size &&						\
170 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
171 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
172 
173 /* iterate over multi-page bvec */
174 #define bio_for_each_bvec(bvl, bio, iter)			\
175 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
176 
177 /*
178  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
179  * same reasons as bio_for_each_segment_all().
180  */
181 #define bio_for_each_bvec_all(bvl, bio, i)		\
182 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
183 	     i < (bio)->bi_vcnt; i++, bvl++)
184 
185 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
186 
187 static inline unsigned bio_segments(struct bio *bio)
188 {
189 	unsigned segs = 0;
190 	struct bio_vec bv;
191 	struct bvec_iter iter;
192 
193 	/*
194 	 * We special case discard/write same/write zeroes, because they
195 	 * interpret bi_size differently:
196 	 */
197 
198 	switch (bio_op(bio)) {
199 	case REQ_OP_DISCARD:
200 	case REQ_OP_SECURE_ERASE:
201 	case REQ_OP_WRITE_ZEROES:
202 		return 0;
203 	default:
204 		break;
205 	}
206 
207 	bio_for_each_segment(bv, bio, iter)
208 		segs++;
209 
210 	return segs;
211 }
212 
213 /*
214  * get a reference to a bio, so it won't disappear. the intended use is
215  * something like:
216  *
217  * bio_get(bio);
218  * submit_bio(rw, bio);
219  * if (bio->bi_flags ...)
220  *	do_something
221  * bio_put(bio);
222  *
223  * without the bio_get(), it could potentially complete I/O before submit_bio
224  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
225  * runs
226  */
227 static inline void bio_get(struct bio *bio)
228 {
229 	bio->bi_flags |= (1 << BIO_REFFED);
230 	smp_mb__before_atomic();
231 	atomic_inc(&bio->__bi_cnt);
232 }
233 
234 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
235 {
236 	if (count != 1) {
237 		bio->bi_flags |= (1 << BIO_REFFED);
238 		smp_mb();
239 	}
240 	atomic_set(&bio->__bi_cnt, count);
241 }
242 
243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 	return bio->bi_io_vec;
247 }
248 
249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 	return bio_first_bvec_all(bio)->bv_page;
252 }
253 
254 static inline struct folio *bio_first_folio_all(struct bio *bio)
255 {
256 	return page_folio(bio_first_page_all(bio));
257 }
258 
259 /**
260  * struct folio_iter - State for iterating all folios in a bio.
261  * @folio: The current folio we're iterating.  NULL after the last folio.
262  * @offset: The byte offset within the current folio.
263  * @length: The number of bytes in this iteration (will not cross folio
264  *	boundary).
265  */
266 struct folio_iter {
267 	struct folio *folio;
268 	size_t offset;
269 	size_t length;
270 	/* private: for use by the iterator */
271 	struct folio *_next;
272 	size_t _seg_count;
273 	int _i;
274 };
275 
276 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
277 				   int i)
278 {
279 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
280 
281 	if (unlikely(i >= bio->bi_vcnt)) {
282 		fi->folio = NULL;
283 		return;
284 	}
285 
286 	fi->folio = page_folio(bvec->bv_page);
287 	fi->offset = bvec->bv_offset +
288 			PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
289 	fi->_seg_count = bvec->bv_len;
290 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
291 	fi->_next = folio_next(fi->folio);
292 	fi->_i = i;
293 }
294 
295 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
296 {
297 	fi->_seg_count -= fi->length;
298 	if (fi->_seg_count) {
299 		fi->folio = fi->_next;
300 		fi->offset = 0;
301 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
302 		fi->_next = folio_next(fi->folio);
303 	} else {
304 		bio_first_folio(fi, bio, fi->_i + 1);
305 	}
306 }
307 
308 /**
309  * bio_for_each_folio_all - Iterate over each folio in a bio.
310  * @fi: struct folio_iter which is updated for each folio.
311  * @bio: struct bio to iterate over.
312  */
313 #define bio_for_each_folio_all(fi, bio)				\
314 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
315 
316 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
317 extern struct bio *bio_split(struct bio *bio, int sectors,
318 			     gfp_t gfp, struct bio_set *bs);
319 int bio_split_io_at(struct bio *bio, const struct queue_limits *lim,
320 		unsigned *segs, unsigned max_bytes, unsigned len_align);
321 u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next,
322 		u8 gaps_bit);
323 
324 /**
325  * bio_next_split - get next @sectors from a bio, splitting if necessary
326  * @bio:	bio to split
327  * @sectors:	number of sectors to split from the front of @bio
328  * @gfp:	gfp mask
329  * @bs:		bio set to allocate from
330  *
331  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
332  * than @sectors, returns the original bio unchanged.
333  */
334 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
335 					 gfp_t gfp, struct bio_set *bs)
336 {
337 	if (sectors >= bio_sectors(bio))
338 		return bio;
339 
340 	return bio_split(bio, sectors, gfp, bs);
341 }
342 
343 enum {
344 	BIOSET_NEED_BVECS = BIT(0),
345 	BIOSET_NEED_RESCUER = BIT(1),
346 	BIOSET_PERCPU_CACHE = BIT(2),
347 };
348 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
349 extern void bioset_exit(struct bio_set *);
350 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
351 
352 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
353 			     blk_opf_t opf, gfp_t gfp_mask,
354 			     struct bio_set *bs);
355 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
356 extern void bio_put(struct bio *);
357 
358 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
359 		gfp_t gfp, struct bio_set *bs);
360 int bio_init_clone(struct block_device *bdev, struct bio *bio,
361 		struct bio *bio_src, gfp_t gfp);
362 
363 extern struct bio_set fs_bio_set;
364 
365 static inline struct bio *bio_alloc(struct block_device *bdev,
366 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
367 {
368 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
369 }
370 
371 void submit_bio(struct bio *bio);
372 
373 extern void bio_endio(struct bio *);
374 
375 static inline void bio_io_error(struct bio *bio)
376 {
377 	bio->bi_status = BLK_STS_IOERR;
378 	bio_endio(bio);
379 }
380 
381 static inline void bio_wouldblock_error(struct bio *bio)
382 {
383 	bio_set_flag(bio, BIO_QUIET);
384 	bio->bi_status = BLK_STS_AGAIN;
385 	bio_endio(bio);
386 }
387 
388 /*
389  * Calculate number of bvec segments that should be allocated to fit data
390  * pointed by @iter. If @iter is backed by bvec it's going to be reused
391  * instead of allocating a new one.
392  */
393 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
394 {
395 	if (iov_iter_is_bvec(iter))
396 		return 0;
397 	return iov_iter_npages(iter, max_segs);
398 }
399 
400 /**
401  * bio_iov_bounce_nr_vecs - calculate number of bvecs for a bounce bio
402  * @iter:	iter to bounce from
403  * @op:		REQ_OP_* for the bio
404  *
405  * Calculates how many bvecs are needed for the next bio to bounce from/to
406  * @iter.
407  */
408 static inline unsigned short
409 bio_iov_bounce_nr_vecs(struct iov_iter *iter, blk_opf_t op)
410 {
411 	/*
412 	 * We still need to bounce bvec iters, so don't special case them
413 	 * here unlike in bio_iov_vecs_to_alloc.
414 	 *
415 	 * For reads we need to use a vector for the bounce buffer, account
416 	 * for that here.
417 	 */
418 	if (op_is_write(op))
419 		return iov_iter_npages(iter, BIO_MAX_VECS);
420 	return iov_iter_npages(iter, BIO_MAX_VECS - 1) + 1;
421 }
422 
423 struct request_queue;
424 
425 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
426 	      unsigned short max_vecs, blk_opf_t opf);
427 static inline void bio_init_inline(struct bio *bio, struct block_device *bdev,
428 	      unsigned short max_vecs, blk_opf_t opf)
429 {
430 	bio_init(bio, bdev, bio_inline_vecs(bio), max_vecs, opf);
431 }
432 extern void bio_uninit(struct bio *);
433 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
434 void bio_reuse(struct bio *bio, blk_opf_t opf);
435 void bio_chain(struct bio *, struct bio *);
436 
437 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
438 			      unsigned off);
439 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
440 				size_t len, size_t off);
441 void __bio_add_page(struct bio *bio, struct page *page,
442 		unsigned int len, unsigned int off);
443 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
444 			  size_t off);
445 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len);
446 
447 /**
448  * bio_add_max_vecs - number of bio_vecs needed to add data to a bio
449  * @kaddr: kernel virtual address to add
450  * @len: length in bytes to add
451  *
452  * Calculate how many bio_vecs need to be allocated to add the kernel virtual
453  * address range in [@kaddr:@len] in the worse case.
454  */
455 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len)
456 {
457 	if (is_vmalloc_addr(kaddr))
458 		return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE);
459 	return 1;
460 }
461 
462 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len);
463 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len);
464 
465 int submit_bio_wait(struct bio *bio);
466 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
467 		size_t len, enum req_op op);
468 
469 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
470 		unsigned len_align_mask);
471 
472 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
473 void __bio_release_pages(struct bio *bio, bool mark_dirty);
474 extern void bio_set_pages_dirty(struct bio *bio);
475 extern void bio_check_pages_dirty(struct bio *bio);
476 
477 int bio_iov_iter_bounce(struct bio *bio, struct iov_iter *iter);
478 void bio_iov_iter_unbounce(struct bio *bio, bool is_error, bool mark_dirty);
479 
480 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
481 			       struct bio *src, struct bvec_iter *src_iter);
482 extern void bio_copy_data(struct bio *dst, struct bio *src);
483 extern void bio_free_pages(struct bio *bio);
484 void guard_bio_eod(struct bio *bio);
485 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
486 
487 static inline void zero_fill_bio(struct bio *bio)
488 {
489 	zero_fill_bio_iter(bio, bio->bi_iter);
490 }
491 
492 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
493 {
494 	if (bio_flagged(bio, BIO_PAGE_PINNED))
495 		__bio_release_pages(bio, mark_dirty);
496 }
497 
498 #define bio_dev(bio) \
499 	disk_devt((bio)->bi_bdev->bd_disk)
500 
501 #ifdef CONFIG_BLK_CGROUP
502 void bio_associate_blkg(struct bio *bio);
503 void bio_associate_blkg_from_css(struct bio *bio,
504 				 struct cgroup_subsys_state *css);
505 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
506 void blkcg_punt_bio_submit(struct bio *bio);
507 #else	/* CONFIG_BLK_CGROUP */
508 static inline void bio_associate_blkg(struct bio *bio) { }
509 static inline void bio_associate_blkg_from_css(struct bio *bio,
510 					       struct cgroup_subsys_state *css)
511 { }
512 static inline void bio_clone_blkg_association(struct bio *dst,
513 					      struct bio *src) { }
514 static inline void blkcg_punt_bio_submit(struct bio *bio)
515 {
516 	submit_bio(bio);
517 }
518 #endif	/* CONFIG_BLK_CGROUP */
519 
520 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
521 {
522 	bio_clear_flag(bio, BIO_REMAPPED);
523 	if (bio->bi_bdev != bdev)
524 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
525 	bio->bi_bdev = bdev;
526 	bio_associate_blkg(bio);
527 }
528 
529 /*
530  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
531  *
532  * A bio_list anchors a singly-linked list of bios chained through the bi_next
533  * member of the bio.  The bio_list also caches the last list member to allow
534  * fast access to the tail.
535  */
536 struct bio_list {
537 	struct bio *head;
538 	struct bio *tail;
539 };
540 
541 static inline int bio_list_empty(const struct bio_list *bl)
542 {
543 	return bl->head == NULL;
544 }
545 
546 static inline void bio_list_init(struct bio_list *bl)
547 {
548 	bl->head = bl->tail = NULL;
549 }
550 
551 #define BIO_EMPTY_LIST	{ NULL, NULL }
552 
553 #define bio_list_for_each(bio, bl) \
554 	for (bio = (bl)->head; bio; bio = bio->bi_next)
555 
556 static inline unsigned bio_list_size(const struct bio_list *bl)
557 {
558 	unsigned sz = 0;
559 	struct bio *bio;
560 
561 	bio_list_for_each(bio, bl)
562 		sz++;
563 
564 	return sz;
565 }
566 
567 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
568 {
569 	bio->bi_next = NULL;
570 
571 	if (bl->tail)
572 		bl->tail->bi_next = bio;
573 	else
574 		bl->head = bio;
575 
576 	bl->tail = bio;
577 }
578 
579 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
580 {
581 	bio->bi_next = bl->head;
582 
583 	bl->head = bio;
584 
585 	if (!bl->tail)
586 		bl->tail = bio;
587 }
588 
589 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
590 {
591 	if (!bl2->head)
592 		return;
593 
594 	if (bl->tail)
595 		bl->tail->bi_next = bl2->head;
596 	else
597 		bl->head = bl2->head;
598 
599 	bl->tail = bl2->tail;
600 }
601 
602 static inline void bio_list_merge_init(struct bio_list *bl,
603 		struct bio_list *bl2)
604 {
605 	bio_list_merge(bl, bl2);
606 	bio_list_init(bl2);
607 }
608 
609 static inline void bio_list_merge_head(struct bio_list *bl,
610 				       struct bio_list *bl2)
611 {
612 	if (!bl2->head)
613 		return;
614 
615 	if (bl->head)
616 		bl2->tail->bi_next = bl->head;
617 	else
618 		bl->tail = bl2->tail;
619 
620 	bl->head = bl2->head;
621 }
622 
623 static inline struct bio *bio_list_peek(struct bio_list *bl)
624 {
625 	return bl->head;
626 }
627 
628 static inline struct bio *bio_list_pop(struct bio_list *bl)
629 {
630 	struct bio *bio = bl->head;
631 
632 	if (bio) {
633 		bl->head = bl->head->bi_next;
634 		if (!bl->head)
635 			bl->tail = NULL;
636 
637 		bio->bi_next = NULL;
638 	}
639 
640 	return bio;
641 }
642 
643 static inline struct bio *bio_list_get(struct bio_list *bl)
644 {
645 	struct bio *bio = bl->head;
646 
647 	bl->head = bl->tail = NULL;
648 
649 	return bio;
650 }
651 
652 /*
653  * Increment chain count for the bio. Make sure the CHAIN flag update
654  * is visible before the raised count.
655  */
656 static inline void bio_inc_remaining(struct bio *bio)
657 {
658 	bio_set_flag(bio, BIO_CHAIN);
659 	smp_mb__before_atomic();
660 	atomic_inc(&bio->__bi_remaining);
661 }
662 
663 /*
664  * bio_set is used to allow other portions of the IO system to
665  * allocate their own private memory pools for bio and iovec structures.
666  * These memory pools in turn all allocate from the bio_slab
667  * and the bvec_slabs[].
668  */
669 #define BIO_POOL_SIZE 2
670 
671 struct bio_set {
672 	struct kmem_cache *bio_slab;
673 	unsigned int front_pad;
674 
675 	/*
676 	 * per-cpu bio alloc cache
677 	 */
678 	struct bio_alloc_cache __percpu *cache;
679 
680 	mempool_t bio_pool;
681 	mempool_t bvec_pool;
682 
683 	unsigned int back_pad;
684 	/*
685 	 * Deadlock avoidance for stacking block drivers: see comments in
686 	 * bio_alloc_bioset() for details
687 	 */
688 	spinlock_t		rescue_lock;
689 	struct bio_list		rescue_list;
690 	struct work_struct	rescue_work;
691 	struct workqueue_struct	*rescue_workqueue;
692 
693 	/*
694 	 * Hot un-plug notifier for the per-cpu cache, if used
695 	 */
696 	struct hlist_node cpuhp_dead;
697 };
698 
699 static inline bool bioset_initialized(struct bio_set *bs)
700 {
701 	return bs->bio_slab != NULL;
702 }
703 
704 /*
705  * Mark a bio as polled. Note that for async polled IO, the caller must
706  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
707  * We cannot block waiting for requests on polled IO, as those completions
708  * must be found by the caller. This is different than IRQ driven IO, where
709  * it's safe to wait for IO to complete.
710  */
711 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
712 {
713 	bio->bi_opf |= REQ_POLLED;
714 	if (kiocb->ki_flags & IOCB_NOWAIT)
715 		bio->bi_opf |= REQ_NOWAIT;
716 }
717 
718 static inline void bio_clear_polled(struct bio *bio)
719 {
720 	bio->bi_opf &= ~REQ_POLLED;
721 }
722 
723 /**
724  * bio_is_zone_append - is this a zone append bio?
725  * @bio:	bio to check
726  *
727  * Check if @bio is a zone append operation.  Core block layer code and end_io
728  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
729  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
730  * it is not natively supported.
731  */
732 static inline bool bio_is_zone_append(struct bio *bio)
733 {
734 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
735 		return false;
736 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
737 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
738 }
739 
740 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
741 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
742 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
743 
744 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
745 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
746 
747 #endif /* __LINUX_BIO_H */
748