1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28
29 #include <linux/random.h>
30
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 BTREE_UPDATE_MODES()
34 #undef x
35 NULL
36 };
37
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
41
42 /*
43 * Verify that child nodes correctly span parent node's range:
44 */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
46 {
47 struct bch_fs *c = trans->c;
48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
50 : b->data->min_key;
51 struct btree_and_journal_iter iter;
52 struct bkey_s_c k;
53 struct printbuf buf = PRINTBUF;
54 struct bkey_buf prev;
55 int ret = 0;
56
57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
59 b->data->min_key));
60
61 if (b == btree_node_root(c, b)) {
62 if (!bpos_eq(b->data->min_key, POS_MIN)) {
63 printbuf_reset(&buf);
64 bch2_bpos_to_text(&buf, b->data->min_key);
65 need_fsck_err(trans, btree_root_bad_min_key,
66 "btree root with incorrect min_key: %s", buf.buf);
67 goto topology_repair;
68 }
69
70 if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
71 printbuf_reset(&buf);
72 bch2_bpos_to_text(&buf, b->data->max_key);
73 need_fsck_err(trans, btree_root_bad_max_key,
74 "btree root with incorrect max_key: %s", buf.buf);
75 goto topology_repair;
76 }
77 }
78
79 if (!b->c.level)
80 return 0;
81
82 bch2_bkey_buf_init(&prev);
83 bkey_init(&prev.k->k);
84 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
85
86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 if (k.k->type != KEY_TYPE_btree_ptr_v2)
88 goto out;
89
90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
91
92 struct bpos expected_min = bkey_deleted(&prev.k->k)
93 ? node_min
94 : bpos_successor(prev.k->k.p);
95
96 if (!bpos_eq(expected_min, bp.v->min_key)) {
97 bch2_topology_error(c);
98
99 printbuf_reset(&buf);
100 prt_str(&buf, "end of prev node doesn't match start of next node\n"),
101 prt_printf(&buf, " in btree %s level %u node ",
102 bch2_btree_id_str(b->c.btree_id), b->c.level);
103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 prt_str(&buf, "\n prev ");
105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 prt_str(&buf, "\n next ");
107 bch2_bkey_val_to_text(&buf, c, k);
108
109 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 goto topology_repair;
111 }
112
113 bch2_bkey_buf_reassemble(&prev, c, k);
114 bch2_btree_and_journal_iter_advance(&iter);
115 }
116
117 if (bkey_deleted(&prev.k->k)) {
118 bch2_topology_error(c);
119
120 printbuf_reset(&buf);
121 prt_str(&buf, "empty interior node\n");
122 prt_printf(&buf, " in btree %s level %u node ",
123 bch2_btree_id_str(b->c.btree_id), b->c.level);
124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
125
126 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 goto topology_repair;
128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 bch2_topology_error(c);
130
131 printbuf_reset(&buf);
132 prt_str(&buf, "last child node doesn't end at end of parent node\n");
133 prt_printf(&buf, " in btree %s level %u node ",
134 bch2_btree_id_str(b->c.btree_id), b->c.level);
135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 prt_str(&buf, "\n last key ");
137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
138
139 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 goto topology_repair;
141 }
142 out:
143 fsck_err:
144 bch2_btree_and_journal_iter_exit(&iter);
145 bch2_bkey_buf_exit(&prev, c);
146 printbuf_exit(&buf);
147 return ret;
148 topology_repair:
149 if ((c->opts.recovery_passes & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) &&
150 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) {
151 bch2_inconsistent_error(c);
152 ret = -BCH_ERR_btree_need_topology_repair;
153 } else {
154 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
155 }
156 goto out;
157 }
158
159 /* Calculate ideal packed bkey format for new btree nodes: */
160
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)161 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
162 {
163 struct bkey_packed *k;
164 struct bkey uk;
165
166 for_each_bset(b, t)
167 bset_tree_for_each_key(b, t, k)
168 if (!bkey_deleted(k)) {
169 uk = bkey_unpack_key(b, k);
170 bch2_bkey_format_add_key(s, &uk);
171 }
172 }
173
bch2_btree_calc_format(struct btree * b)174 static struct bkey_format bch2_btree_calc_format(struct btree *b)
175 {
176 struct bkey_format_state s;
177
178 bch2_bkey_format_init(&s);
179 bch2_bkey_format_add_pos(&s, b->data->min_key);
180 bch2_bkey_format_add_pos(&s, b->data->max_key);
181 __bch2_btree_calc_format(&s, b);
182
183 return bch2_bkey_format_done(&s);
184 }
185
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)186 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
187 struct bkey_format *old_f,
188 struct bkey_format *new_f)
189 {
190 /* stupid integer promotion rules */
191 ssize_t delta =
192 (((int) new_f->key_u64s - old_f->key_u64s) *
193 (int) nr.packed_keys) +
194 (((int) new_f->key_u64s - BKEY_U64s) *
195 (int) nr.unpacked_keys);
196
197 BUG_ON(delta + nr.live_u64s < 0);
198
199 return nr.live_u64s + delta;
200 }
201
202 /**
203 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
204 *
205 * @c: filesystem handle
206 * @b: btree node to rewrite
207 * @nr: number of keys for new node (i.e. b->nr)
208 * @new_f: bkey format to translate keys to
209 *
210 * Returns: true if all re-packed keys will be able to fit in a new node.
211 *
212 * Assumes all keys will successfully pack with the new format.
213 */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)214 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
215 struct btree_nr_keys nr,
216 struct bkey_format *new_f)
217 {
218 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
219
220 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
221 }
222
223 /* Btree node freeing/allocation: */
224
__btree_node_free(struct btree_trans * trans,struct btree * b)225 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
226 {
227 struct bch_fs *c = trans->c;
228
229 trace_and_count(c, btree_node_free, trans, b);
230
231 BUG_ON(btree_node_write_blocked(b));
232 BUG_ON(btree_node_dirty(b));
233 BUG_ON(btree_node_need_write(b));
234 BUG_ON(b == btree_node_root(c, b));
235 BUG_ON(b->ob.nr);
236 BUG_ON(!list_empty(&b->write_blocked));
237 BUG_ON(b->will_make_reachable);
238
239 clear_btree_node_noevict(b);
240 }
241
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)242 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
243 struct btree_path *path,
244 struct btree *b)
245 {
246 struct bch_fs *c = trans->c;
247 unsigned i, level = b->c.level;
248
249 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
250
251 __btree_node_free(trans, b);
252
253 mutex_lock(&c->btree_cache.lock);
254 bch2_btree_node_hash_remove(&c->btree_cache, b);
255 mutex_unlock(&c->btree_cache.lock);
256
257 six_unlock_write(&b->c.lock);
258 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
259
260 trans_for_each_path(trans, path, i)
261 if (path->l[level].b == b) {
262 btree_node_unlock(trans, path, level);
263 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
264 }
265 }
266
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)267 static void bch2_btree_node_free_never_used(struct btree_update *as,
268 struct btree_trans *trans,
269 struct btree *b)
270 {
271 struct bch_fs *c = as->c;
272 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
273 struct btree_path *path;
274 unsigned i, level = b->c.level;
275
276 BUG_ON(!list_empty(&b->write_blocked));
277 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
278
279 b->will_make_reachable = 0;
280 closure_put(&as->cl);
281
282 clear_btree_node_will_make_reachable(b);
283 clear_btree_node_accessed(b);
284 clear_btree_node_dirty_acct(c, b);
285 clear_btree_node_need_write(b);
286
287 mutex_lock(&c->btree_cache.lock);
288 __bch2_btree_node_hash_remove(&c->btree_cache, b);
289 mutex_unlock(&c->btree_cache.lock);
290
291 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
292 p->b[p->nr++] = b;
293
294 six_unlock_intent(&b->c.lock);
295
296 trans_for_each_path(trans, path, i)
297 if (path->l[level].b == b) {
298 btree_node_unlock(trans, path, level);
299 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
300 }
301 }
302
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned flags)303 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
304 struct disk_reservation *res,
305 struct closure *cl,
306 bool interior_node,
307 unsigned flags)
308 {
309 struct bch_fs *c = trans->c;
310 struct write_point *wp;
311 struct btree *b;
312 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
313 struct open_buckets obs = { .nr = 0 };
314 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
315 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
316 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
317 ? BTREE_NODE_RESERVE
318 : 0;
319 int ret;
320
321 b = bch2_btree_node_mem_alloc(trans, interior_node);
322 if (IS_ERR(b))
323 return b;
324
325 BUG_ON(b->ob.nr);
326
327 mutex_lock(&c->btree_reserve_cache_lock);
328 if (c->btree_reserve_cache_nr > nr_reserve) {
329 struct btree_alloc *a =
330 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
331
332 obs = a->ob;
333 bkey_copy(&tmp.k, &a->k);
334 mutex_unlock(&c->btree_reserve_cache_lock);
335 goto out;
336 }
337 mutex_unlock(&c->btree_reserve_cache_lock);
338 retry:
339 ret = bch2_alloc_sectors_start_trans(trans,
340 c->opts.metadata_target ?:
341 c->opts.foreground_target,
342 0,
343 writepoint_ptr(&c->btree_write_point),
344 &devs_have,
345 res->nr_replicas,
346 min(res->nr_replicas,
347 c->opts.metadata_replicas_required),
348 watermark, 0, cl, &wp);
349 if (unlikely(ret))
350 goto err;
351
352 if (wp->sectors_free < btree_sectors(c)) {
353 struct open_bucket *ob;
354 unsigned i;
355
356 open_bucket_for_each(c, &wp->ptrs, ob, i)
357 if (ob->sectors_free < btree_sectors(c))
358 ob->sectors_free = 0;
359
360 bch2_alloc_sectors_done(c, wp);
361 goto retry;
362 }
363
364 bkey_btree_ptr_v2_init(&tmp.k);
365 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
366
367 bch2_open_bucket_get(c, wp, &obs);
368 bch2_alloc_sectors_done(c, wp);
369 out:
370 bkey_copy(&b->key, &tmp.k);
371 b->ob = obs;
372 six_unlock_write(&b->c.lock);
373 six_unlock_intent(&b->c.lock);
374
375 return b;
376 err:
377 bch2_btree_node_to_freelist(c, b);
378 return ERR_PTR(ret);
379 }
380
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)381 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
382 struct btree_trans *trans,
383 unsigned level)
384 {
385 struct bch_fs *c = as->c;
386 struct btree *b;
387 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
388 int ret;
389
390 BUG_ON(level >= BTREE_MAX_DEPTH);
391 BUG_ON(!p->nr);
392
393 b = p->b[--p->nr];
394
395 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
396 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
397
398 set_btree_node_accessed(b);
399 set_btree_node_dirty_acct(c, b);
400 set_btree_node_need_write(b);
401
402 bch2_bset_init_first(b, &b->data->keys);
403 b->c.level = level;
404 b->c.btree_id = as->btree_id;
405 b->version_ondisk = c->sb.version;
406
407 memset(&b->nr, 0, sizeof(b->nr));
408 b->data->magic = cpu_to_le64(bset_magic(c));
409 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
410 b->data->flags = 0;
411 SET_BTREE_NODE_ID(b->data, as->btree_id);
412 SET_BTREE_NODE_LEVEL(b->data, level);
413
414 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
415 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
416
417 bp->v.mem_ptr = 0;
418 bp->v.seq = b->data->keys.seq;
419 bp->v.sectors_written = 0;
420 }
421
422 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
423
424 bch2_btree_build_aux_trees(b);
425
426 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
427 BUG_ON(ret);
428
429 trace_and_count(c, btree_node_alloc, trans, b);
430 bch2_increment_clock(c, btree_sectors(c), WRITE);
431 return b;
432 }
433
btree_set_min(struct btree * b,struct bpos pos)434 static void btree_set_min(struct btree *b, struct bpos pos)
435 {
436 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
437 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
438 b->data->min_key = pos;
439 }
440
btree_set_max(struct btree * b,struct bpos pos)441 static void btree_set_max(struct btree *b, struct bpos pos)
442 {
443 b->key.k.p = pos;
444 b->data->max_key = pos;
445 }
446
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)447 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
448 struct btree_trans *trans,
449 struct btree *b)
450 {
451 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
452 struct bkey_format format = bch2_btree_calc_format(b);
453
454 /*
455 * The keys might expand with the new format - if they wouldn't fit in
456 * the btree node anymore, use the old format for now:
457 */
458 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
459 format = b->format;
460
461 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
462
463 btree_set_min(n, b->data->min_key);
464 btree_set_max(n, b->data->max_key);
465
466 n->data->format = format;
467 btree_node_set_format(n, format);
468
469 bch2_btree_sort_into(as->c, n, b);
470
471 btree_node_reset_sib_u64s(n);
472 return n;
473 }
474
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)475 static struct btree *__btree_root_alloc(struct btree_update *as,
476 struct btree_trans *trans, unsigned level)
477 {
478 struct btree *b = bch2_btree_node_alloc(as, trans, level);
479
480 btree_set_min(b, POS_MIN);
481 btree_set_max(b, SPOS_MAX);
482 b->data->format = bch2_btree_calc_format(b);
483
484 btree_node_set_format(b, b->data->format);
485 bch2_btree_build_aux_trees(b);
486
487 return b;
488 }
489
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)490 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
491 {
492 struct bch_fs *c = as->c;
493 struct prealloc_nodes *p;
494
495 for (p = as->prealloc_nodes;
496 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
497 p++) {
498 while (p->nr) {
499 struct btree *b = p->b[--p->nr];
500
501 mutex_lock(&c->btree_reserve_cache_lock);
502
503 if (c->btree_reserve_cache_nr <
504 ARRAY_SIZE(c->btree_reserve_cache)) {
505 struct btree_alloc *a =
506 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
507
508 a->ob = b->ob;
509 b->ob.nr = 0;
510 bkey_copy(&a->k, &b->key);
511 } else {
512 bch2_open_buckets_put(c, &b->ob);
513 }
514
515 mutex_unlock(&c->btree_reserve_cache_lock);
516
517 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
518 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
519 __btree_node_free(trans, b);
520 bch2_btree_node_to_freelist(c, b);
521 }
522 }
523 }
524
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned flags,struct closure * cl)525 static int bch2_btree_reserve_get(struct btree_trans *trans,
526 struct btree_update *as,
527 unsigned nr_nodes[2],
528 unsigned flags,
529 struct closure *cl)
530 {
531 struct btree *b;
532 unsigned interior;
533 int ret = 0;
534
535 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
536
537 /*
538 * Protects reaping from the btree node cache and using the btree node
539 * open bucket reserve:
540 */
541 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
542 if (ret)
543 return ret;
544
545 for (interior = 0; interior < 2; interior++) {
546 struct prealloc_nodes *p = as->prealloc_nodes + interior;
547
548 while (p->nr < nr_nodes[interior]) {
549 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
550 interior, flags);
551 if (IS_ERR(b)) {
552 ret = PTR_ERR(b);
553 goto err;
554 }
555
556 p->b[p->nr++] = b;
557 }
558 }
559 err:
560 bch2_btree_cache_cannibalize_unlock(trans);
561 return ret;
562 }
563
564 /* Asynchronous interior node update machinery */
565
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)566 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
567 {
568 struct bch_fs *c = as->c;
569
570 if (as->took_gc_lock)
571 up_read(&c->gc_lock);
572 as->took_gc_lock = false;
573
574 bch2_journal_pin_drop(&c->journal, &as->journal);
575 bch2_journal_pin_flush(&c->journal, &as->journal);
576 bch2_disk_reservation_put(c, &as->disk_res);
577 bch2_btree_reserve_put(as, trans);
578
579 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
580 as->start_time);
581
582 mutex_lock(&c->btree_interior_update_lock);
583 list_del(&as->unwritten_list);
584 list_del(&as->list);
585
586 closure_debug_destroy(&as->cl);
587 mempool_free(as, &c->btree_interior_update_pool);
588
589 /*
590 * Have to do the wakeup with btree_interior_update_lock still held,
591 * since being on btree_interior_update_list is our ref on @c:
592 */
593 closure_wake_up(&c->btree_interior_update_wait);
594
595 mutex_unlock(&c->btree_interior_update_lock);
596 }
597
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)598 static void btree_update_add_key(struct btree_update *as,
599 struct keylist *keys, struct btree *b)
600 {
601 struct bkey_i *k = &b->key;
602
603 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
604 ARRAY_SIZE(as->_old_keys));
605
606 bkey_copy(keys->top, k);
607 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
608
609 bch2_keylist_push(keys);
610 }
611
btree_update_new_nodes_marked_sb(struct btree_update * as)612 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
613 {
614 for_each_keylist_key(&as->new_keys, k)
615 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
616 return false;
617 return true;
618 }
619
btree_update_new_nodes_mark_sb(struct btree_update * as)620 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
621 {
622 struct bch_fs *c = as->c;
623
624 mutex_lock(&c->sb_lock);
625 for_each_keylist_key(&as->new_keys, k)
626 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
627
628 bch2_write_super(c);
629 mutex_unlock(&c->sb_lock);
630 }
631
632 /*
633 * The transactional part of an interior btree node update, where we journal the
634 * update we did to the interior node and update alloc info:
635 */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)636 static int btree_update_nodes_written_trans(struct btree_trans *trans,
637 struct btree_update *as)
638 {
639 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
640 int ret = PTR_ERR_OR_ZERO(e);
641 if (ret)
642 return ret;
643
644 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
645
646 trans->journal_pin = &as->journal;
647
648 for_each_keylist_key(&as->old_keys, k) {
649 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
650
651 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
652 BTREE_TRIGGER_transactional);
653 if (ret)
654 return ret;
655 }
656
657 for_each_keylist_key(&as->new_keys, k) {
658 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
659
660 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
661 BTREE_TRIGGER_transactional);
662 if (ret)
663 return ret;
664 }
665
666 return 0;
667 }
668
btree_update_nodes_written(struct btree_update * as)669 static void btree_update_nodes_written(struct btree_update *as)
670 {
671 struct bch_fs *c = as->c;
672 struct btree *b;
673 struct btree_trans *trans = bch2_trans_get(c);
674 u64 journal_seq = 0;
675 unsigned i;
676 int ret;
677
678 /*
679 * If we're already in an error state, it might be because a btree node
680 * was never written, and we might be trying to free that same btree
681 * node here, but it won't have been marked as allocated and we'll see
682 * spurious disk usage inconsistencies in the transactional part below
683 * if we don't skip it:
684 */
685 ret = bch2_journal_error(&c->journal);
686 if (ret)
687 goto err;
688
689 if (!btree_update_new_nodes_marked_sb(as))
690 btree_update_new_nodes_mark_sb(as);
691
692 /*
693 * Wait for any in flight writes to finish before we free the old nodes
694 * on disk:
695 */
696 for (i = 0; i < as->nr_old_nodes; i++) {
697 __le64 seq;
698
699 b = as->old_nodes[i];
700
701 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
702 seq = b->data ? b->data->keys.seq : 0;
703 six_unlock_read(&b->c.lock);
704
705 if (seq == as->old_nodes_seq[i])
706 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
707 TASK_UNINTERRUPTIBLE);
708 }
709
710 /*
711 * We did an update to a parent node where the pointers we added pointed
712 * to child nodes that weren't written yet: now, the child nodes have
713 * been written so we can write out the update to the interior node.
714 */
715
716 /*
717 * We can't call into journal reclaim here: we'd block on the journal
718 * reclaim lock, but we may need to release the open buckets we have
719 * pinned in order for other btree updates to make forward progress, and
720 * journal reclaim does btree updates when flushing bkey_cached entries,
721 * which may require allocations as well.
722 */
723 ret = commit_do(trans, &as->disk_res, &journal_seq,
724 BCH_WATERMARK_interior_updates|
725 BCH_TRANS_COMMIT_no_enospc|
726 BCH_TRANS_COMMIT_no_check_rw|
727 BCH_TRANS_COMMIT_journal_reclaim,
728 btree_update_nodes_written_trans(trans, as));
729 bch2_trans_unlock(trans);
730
731 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
732 "%s", bch2_err_str(ret));
733 err:
734 /*
735 * Ensure transaction is unlocked before using btree_node_lock_nopath()
736 * (the use of which is always suspect, we need to work on removing this
737 * in the future)
738 *
739 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
740 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
741 * rarely end up with a locked path besides the one we have here:
742 */
743 bch2_trans_unlock(trans);
744 bch2_trans_begin(trans);
745
746 /*
747 * We have to be careful because another thread might be getting ready
748 * to free as->b and calling btree_update_reparent() on us - we'll
749 * recheck under btree_update_lock below:
750 */
751 b = READ_ONCE(as->b);
752 if (b) {
753 /*
754 * @b is the node we did the final insert into:
755 *
756 * On failure to get a journal reservation, we still have to
757 * unblock the write and allow most of the write path to happen
758 * so that shutdown works, but the i->journal_seq mechanism
759 * won't work to prevent the btree write from being visible (we
760 * didn't get a journal sequence number) - instead
761 * __bch2_btree_node_write() doesn't do the actual write if
762 * we're in journal error state:
763 */
764
765 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
766 as->btree_id, b->c.level, b->key.k.p);
767 struct btree_path *path = trans->paths + path_idx;
768 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
769 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
770 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
771 path->l[b->c.level].b = b;
772
773 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
774
775 mutex_lock(&c->btree_interior_update_lock);
776
777 list_del(&as->write_blocked_list);
778 if (list_empty(&b->write_blocked))
779 clear_btree_node_write_blocked(b);
780
781 /*
782 * Node might have been freed, recheck under
783 * btree_interior_update_lock:
784 */
785 if (as->b == b) {
786 BUG_ON(!b->c.level);
787 BUG_ON(!btree_node_dirty(b));
788
789 if (!ret) {
790 struct bset *last = btree_bset_last(b);
791
792 last->journal_seq = cpu_to_le64(
793 max(journal_seq,
794 le64_to_cpu(last->journal_seq)));
795
796 bch2_btree_add_journal_pin(c, b, journal_seq);
797 } else {
798 /*
799 * If we didn't get a journal sequence number we
800 * can't write this btree node, because recovery
801 * won't know to ignore this write:
802 */
803 set_btree_node_never_write(b);
804 }
805 }
806
807 mutex_unlock(&c->btree_interior_update_lock);
808
809 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
810 six_unlock_write(&b->c.lock);
811
812 btree_node_write_if_need(c, b, SIX_LOCK_intent);
813 btree_node_unlock(trans, path, b->c.level);
814 bch2_path_put(trans, path_idx, true);
815 }
816
817 bch2_journal_pin_drop(&c->journal, &as->journal);
818
819 mutex_lock(&c->btree_interior_update_lock);
820 for (i = 0; i < as->nr_new_nodes; i++) {
821 b = as->new_nodes[i];
822
823 BUG_ON(b->will_make_reachable != (unsigned long) as);
824 b->will_make_reachable = 0;
825 clear_btree_node_will_make_reachable(b);
826 }
827 mutex_unlock(&c->btree_interior_update_lock);
828
829 for (i = 0; i < as->nr_new_nodes; i++) {
830 b = as->new_nodes[i];
831
832 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
833 btree_node_write_if_need(c, b, SIX_LOCK_read);
834 six_unlock_read(&b->c.lock);
835 }
836
837 for (i = 0; i < as->nr_open_buckets; i++)
838 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
839
840 bch2_btree_update_free(as, trans);
841 bch2_trans_put(trans);
842 }
843
btree_interior_update_work(struct work_struct * work)844 static void btree_interior_update_work(struct work_struct *work)
845 {
846 struct bch_fs *c =
847 container_of(work, struct bch_fs, btree_interior_update_work);
848 struct btree_update *as;
849
850 while (1) {
851 mutex_lock(&c->btree_interior_update_lock);
852 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
853 struct btree_update, unwritten_list);
854 if (as && !as->nodes_written)
855 as = NULL;
856 mutex_unlock(&c->btree_interior_update_lock);
857
858 if (!as)
859 break;
860
861 btree_update_nodes_written(as);
862 }
863 }
864
CLOSURE_CALLBACK(btree_update_set_nodes_written)865 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
866 {
867 closure_type(as, struct btree_update, cl);
868 struct bch_fs *c = as->c;
869
870 mutex_lock(&c->btree_interior_update_lock);
871 as->nodes_written = true;
872 mutex_unlock(&c->btree_interior_update_lock);
873
874 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
875 }
876
877 /*
878 * We're updating @b with pointers to nodes that haven't finished writing yet:
879 * block @b from being written until @as completes
880 */
btree_update_updated_node(struct btree_update * as,struct btree * b)881 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
882 {
883 struct bch_fs *c = as->c;
884
885 BUG_ON(as->mode != BTREE_UPDATE_none);
886 BUG_ON(as->update_level_end < b->c.level);
887 BUG_ON(!btree_node_dirty(b));
888 BUG_ON(!b->c.level);
889
890 mutex_lock(&c->btree_interior_update_lock);
891 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
892
893 as->mode = BTREE_UPDATE_node;
894 as->b = b;
895 as->update_level_end = b->c.level;
896
897 set_btree_node_write_blocked(b);
898 list_add(&as->write_blocked_list, &b->write_blocked);
899
900 mutex_unlock(&c->btree_interior_update_lock);
901 }
902
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)903 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
904 struct journal_entry_pin *_pin, u64 seq)
905 {
906 return 0;
907 }
908
btree_update_reparent(struct btree_update * as,struct btree_update * child)909 static void btree_update_reparent(struct btree_update *as,
910 struct btree_update *child)
911 {
912 struct bch_fs *c = as->c;
913
914 lockdep_assert_held(&c->btree_interior_update_lock);
915
916 child->b = NULL;
917 child->mode = BTREE_UPDATE_update;
918
919 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
920 bch2_update_reparent_journal_pin_flush);
921 }
922
btree_update_updated_root(struct btree_update * as,struct btree * b)923 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
924 {
925 struct bkey_i *insert = &b->key;
926 struct bch_fs *c = as->c;
927
928 BUG_ON(as->mode != BTREE_UPDATE_none);
929
930 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
931 ARRAY_SIZE(as->journal_entries));
932
933 as->journal_u64s +=
934 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
935 BCH_JSET_ENTRY_btree_root,
936 b->c.btree_id, b->c.level,
937 insert, insert->k.u64s);
938
939 mutex_lock(&c->btree_interior_update_lock);
940 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
941
942 as->mode = BTREE_UPDATE_root;
943 mutex_unlock(&c->btree_interior_update_lock);
944 }
945
946 /*
947 * bch2_btree_update_add_new_node:
948 *
949 * This causes @as to wait on @b to be written, before it gets to
950 * bch2_btree_update_nodes_written
951 *
952 * Additionally, it sets b->will_make_reachable to prevent any additional writes
953 * to @b from happening besides the first until @b is reachable on disk
954 *
955 * And it adds @b to the list of @as's new nodes, so that we can update sector
956 * counts in bch2_btree_update_nodes_written:
957 */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)958 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
959 {
960 struct bch_fs *c = as->c;
961
962 closure_get(&as->cl);
963
964 mutex_lock(&c->btree_interior_update_lock);
965 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
966 BUG_ON(b->will_make_reachable);
967
968 as->new_nodes[as->nr_new_nodes++] = b;
969 b->will_make_reachable = 1UL|(unsigned long) as;
970 set_btree_node_will_make_reachable(b);
971
972 mutex_unlock(&c->btree_interior_update_lock);
973
974 btree_update_add_key(as, &as->new_keys, b);
975
976 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
977 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
978 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
979
980 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
981 cpu_to_le16(sectors);
982 }
983 }
984
985 /*
986 * returns true if @b was a new node
987 */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)988 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
989 {
990 struct btree_update *as;
991 unsigned long v;
992 unsigned i;
993
994 mutex_lock(&c->btree_interior_update_lock);
995 /*
996 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
997 * dropped when it gets written by bch2_btree_complete_write - the
998 * xchg() is for synchronization with bch2_btree_complete_write:
999 */
1000 v = xchg(&b->will_make_reachable, 0);
1001 clear_btree_node_will_make_reachable(b);
1002 as = (struct btree_update *) (v & ~1UL);
1003
1004 if (!as) {
1005 mutex_unlock(&c->btree_interior_update_lock);
1006 return;
1007 }
1008
1009 for (i = 0; i < as->nr_new_nodes; i++)
1010 if (as->new_nodes[i] == b)
1011 goto found;
1012
1013 BUG();
1014 found:
1015 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1016 mutex_unlock(&c->btree_interior_update_lock);
1017
1018 if (v & 1)
1019 closure_put(&as->cl);
1020 }
1021
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1022 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1023 {
1024 while (b->ob.nr)
1025 as->open_buckets[as->nr_open_buckets++] =
1026 b->ob.v[--b->ob.nr];
1027 }
1028
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1029 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1030 struct journal_entry_pin *_pin, u64 seq)
1031 {
1032 return 0;
1033 }
1034
1035 /*
1036 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1037 * nodes and thus outstanding btree_updates - redirect @b's
1038 * btree_updates to point to this btree_update:
1039 */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1040 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1041 struct btree *b)
1042 {
1043 struct bch_fs *c = as->c;
1044 struct btree_update *p, *n;
1045 struct btree_write *w;
1046
1047 set_btree_node_dying(b);
1048
1049 if (btree_node_fake(b))
1050 return;
1051
1052 mutex_lock(&c->btree_interior_update_lock);
1053
1054 /*
1055 * Does this node have any btree_update operations preventing
1056 * it from being written?
1057 *
1058 * If so, redirect them to point to this btree_update: we can
1059 * write out our new nodes, but we won't make them visible until those
1060 * operations complete
1061 */
1062 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1063 list_del_init(&p->write_blocked_list);
1064 btree_update_reparent(as, p);
1065
1066 /*
1067 * for flush_held_btree_writes() waiting on updates to flush or
1068 * nodes to be writeable:
1069 */
1070 closure_wake_up(&c->btree_interior_update_wait);
1071 }
1072
1073 clear_btree_node_dirty_acct(c, b);
1074 clear_btree_node_need_write(b);
1075 clear_btree_node_write_blocked(b);
1076
1077 /*
1078 * Does this node have unwritten data that has a pin on the journal?
1079 *
1080 * If so, transfer that pin to the btree_update operation -
1081 * note that if we're freeing multiple nodes, we only need to keep the
1082 * oldest pin of any of the nodes we're freeing. We'll release the pin
1083 * when the new nodes are persistent and reachable on disk:
1084 */
1085 w = btree_current_write(b);
1086 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1087 bch2_btree_update_will_free_node_journal_pin_flush);
1088 bch2_journal_pin_drop(&c->journal, &w->journal);
1089
1090 w = btree_prev_write(b);
1091 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1092 bch2_btree_update_will_free_node_journal_pin_flush);
1093 bch2_journal_pin_drop(&c->journal, &w->journal);
1094
1095 mutex_unlock(&c->btree_interior_update_lock);
1096
1097 /*
1098 * Is this a node that isn't reachable on disk yet?
1099 *
1100 * Nodes that aren't reachable yet have writes blocked until they're
1101 * reachable - now that we've cancelled any pending writes and moved
1102 * things waiting on that write to wait on this update, we can drop this
1103 * node from the list of nodes that the other update is making
1104 * reachable, prior to freeing it:
1105 */
1106 btree_update_drop_new_node(c, b);
1107
1108 btree_update_add_key(as, &as->old_keys, b);
1109
1110 as->old_nodes[as->nr_old_nodes] = b;
1111 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1112 as->nr_old_nodes++;
1113 }
1114
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1115 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1116 {
1117 struct bch_fs *c = as->c;
1118 u64 start_time = as->start_time;
1119
1120 BUG_ON(as->mode == BTREE_UPDATE_none);
1121
1122 if (as->took_gc_lock)
1123 up_read(&as->c->gc_lock);
1124 as->took_gc_lock = false;
1125
1126 bch2_btree_reserve_put(as, trans);
1127
1128 continue_at(&as->cl, btree_update_set_nodes_written,
1129 as->c->btree_interior_update_worker);
1130
1131 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1132 start_time);
1133 }
1134
1135 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned flags)1136 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1137 unsigned level_start, bool split, unsigned flags)
1138 {
1139 struct bch_fs *c = trans->c;
1140 struct btree_update *as;
1141 u64 start_time = local_clock();
1142 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1143 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1144 unsigned nr_nodes[2] = { 0, 0 };
1145 unsigned level_end = level_start;
1146 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1147 int ret = 0;
1148 u32 restart_count = trans->restart_count;
1149
1150 BUG_ON(!path->should_be_locked);
1151
1152 if (watermark == BCH_WATERMARK_copygc)
1153 watermark = BCH_WATERMARK_btree_copygc;
1154 if (watermark < BCH_WATERMARK_btree)
1155 watermark = BCH_WATERMARK_btree;
1156
1157 flags &= ~BCH_WATERMARK_MASK;
1158 flags |= watermark;
1159
1160 if (watermark < BCH_WATERMARK_reclaim &&
1161 test_bit(JOURNAL_space_low, &c->journal.flags)) {
1162 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1163 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1164
1165 ret = drop_locks_do(trans,
1166 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1167 if (ret)
1168 return ERR_PTR(ret);
1169 }
1170
1171 while (1) {
1172 nr_nodes[!!level_end] += 1 + split;
1173 level_end++;
1174
1175 ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1176 if (ret)
1177 return ERR_PTR(ret);
1178
1179 if (!btree_path_node(path, level_end)) {
1180 /* Allocating new root? */
1181 nr_nodes[1] += split;
1182 level_end = BTREE_MAX_DEPTH;
1183 break;
1184 }
1185
1186 /*
1187 * Always check for space for two keys, even if we won't have to
1188 * split at prior level - it might have been a merge instead:
1189 */
1190 if (bch2_btree_node_insert_fits(path->l[level_end].b,
1191 BKEY_BTREE_PTR_U64s_MAX * 2))
1192 break;
1193
1194 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1195 }
1196
1197 if (!down_read_trylock(&c->gc_lock)) {
1198 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1199 if (ret) {
1200 up_read(&c->gc_lock);
1201 return ERR_PTR(ret);
1202 }
1203 }
1204
1205 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1206 memset(as, 0, sizeof(*as));
1207 closure_init(&as->cl, NULL);
1208 as->c = c;
1209 as->start_time = start_time;
1210 as->ip_started = _RET_IP_;
1211 as->mode = BTREE_UPDATE_none;
1212 as->flags = flags;
1213 as->took_gc_lock = true;
1214 as->btree_id = path->btree_id;
1215 as->update_level_start = level_start;
1216 as->update_level_end = level_end;
1217 INIT_LIST_HEAD(&as->list);
1218 INIT_LIST_HEAD(&as->unwritten_list);
1219 INIT_LIST_HEAD(&as->write_blocked_list);
1220 bch2_keylist_init(&as->old_keys, as->_old_keys);
1221 bch2_keylist_init(&as->new_keys, as->_new_keys);
1222 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1223
1224 mutex_lock(&c->btree_interior_update_lock);
1225 list_add_tail(&as->list, &c->btree_interior_update_list);
1226 mutex_unlock(&c->btree_interior_update_lock);
1227
1228 /*
1229 * We don't want to allocate if we're in an error state, that can cause
1230 * deadlock on emergency shutdown due to open buckets getting stuck in
1231 * the btree_reserve_cache after allocator shutdown has cleared it out.
1232 * This check needs to come after adding us to the btree_interior_update
1233 * list but before calling bch2_btree_reserve_get, to synchronize with
1234 * __bch2_fs_read_only().
1235 */
1236 ret = bch2_journal_error(&c->journal);
1237 if (ret)
1238 goto err;
1239
1240 ret = bch2_disk_reservation_get(c, &as->disk_res,
1241 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1242 c->opts.metadata_replicas,
1243 disk_res_flags);
1244 if (ret)
1245 goto err;
1246
1247 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1248 if (bch2_err_matches(ret, ENOSPC) ||
1249 bch2_err_matches(ret, ENOMEM)) {
1250 struct closure cl;
1251
1252 /*
1253 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1254 * flag
1255 */
1256 if (bch2_err_matches(ret, ENOSPC) &&
1257 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1258 watermark < BCH_WATERMARK_reclaim) {
1259 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1260 goto err;
1261 }
1262
1263 closure_init_stack(&cl);
1264
1265 do {
1266 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1267
1268 bch2_trans_unlock(trans);
1269 bch2_wait_on_allocator(c, &cl);
1270 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1271 }
1272
1273 if (ret) {
1274 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1275 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1276 goto err;
1277 }
1278
1279 ret = bch2_trans_relock(trans);
1280 if (ret)
1281 goto err;
1282
1283 bch2_trans_verify_not_restarted(trans, restart_count);
1284 return as;
1285 err:
1286 bch2_btree_update_free(as, trans);
1287 if (!bch2_err_matches(ret, ENOSPC) &&
1288 !bch2_err_matches(ret, EROFS) &&
1289 ret != -BCH_ERR_journal_reclaim_would_deadlock)
1290 bch_err_fn_ratelimited(c, ret);
1291 return ERR_PTR(ret);
1292 }
1293
1294 /* Btree root updates: */
1295
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1296 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1297 {
1298 /* Root nodes cannot be reaped */
1299 mutex_lock(&c->btree_cache.lock);
1300 list_del_init(&b->list);
1301 mutex_unlock(&c->btree_cache.lock);
1302
1303 mutex_lock(&c->btree_root_lock);
1304 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1305 mutex_unlock(&c->btree_root_lock);
1306
1307 bch2_recalc_btree_reserve(c);
1308 }
1309
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1310 static int bch2_btree_set_root(struct btree_update *as,
1311 struct btree_trans *trans,
1312 struct btree_path *path,
1313 struct btree *b,
1314 bool nofail)
1315 {
1316 struct bch_fs *c = as->c;
1317
1318 trace_and_count(c, btree_node_set_root, trans, b);
1319
1320 struct btree *old = btree_node_root(c, b);
1321
1322 /*
1323 * Ensure no one is using the old root while we switch to the
1324 * new root:
1325 */
1326 if (nofail) {
1327 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1328 } else {
1329 int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1330 if (ret)
1331 return ret;
1332 }
1333
1334 bch2_btree_set_root_inmem(c, b);
1335
1336 btree_update_updated_root(as, b);
1337
1338 /*
1339 * Unlock old root after new root is visible:
1340 *
1341 * The new root isn't persistent, but that's ok: we still have
1342 * an intent lock on the new root, and any updates that would
1343 * depend on the new root would have to update the new root.
1344 */
1345 bch2_btree_node_unlock_write(trans, path, old);
1346 return 0;
1347 }
1348
1349 /* Interior node updates: */
1350
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1351 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1352 struct btree_trans *trans,
1353 struct btree_path *path,
1354 struct btree *b,
1355 struct btree_node_iter *node_iter,
1356 struct bkey_i *insert)
1357 {
1358 struct bch_fs *c = as->c;
1359 struct bkey_packed *k;
1360 struct printbuf buf = PRINTBUF;
1361 unsigned long old, new;
1362
1363 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1364 !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1365
1366 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1367 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1368
1369 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert),
1370 btree_node_type(b), BCH_VALIDATE_write) ?:
1371 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) {
1372 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1373 dump_stack();
1374 }
1375
1376 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1377 ARRAY_SIZE(as->journal_entries));
1378
1379 as->journal_u64s +=
1380 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1381 BCH_JSET_ENTRY_btree_keys,
1382 b->c.btree_id, b->c.level,
1383 insert, insert->k.u64s);
1384
1385 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1386 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1387 bch2_btree_node_iter_advance(node_iter, b);
1388
1389 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1390 set_btree_node_dirty_acct(c, b);
1391
1392 old = READ_ONCE(b->flags);
1393 do {
1394 new = old;
1395
1396 new &= ~BTREE_WRITE_TYPE_MASK;
1397 new |= BTREE_WRITE_interior;
1398 new |= 1 << BTREE_NODE_need_write;
1399 } while (!try_cmpxchg(&b->flags, &old, new));
1400
1401 printbuf_exit(&buf);
1402 }
1403
1404 static void
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1405 bch2_btree_insert_keys_interior(struct btree_update *as,
1406 struct btree_trans *trans,
1407 struct btree_path *path,
1408 struct btree *b,
1409 struct btree_node_iter node_iter,
1410 struct keylist *keys)
1411 {
1412 struct bkey_i *insert = bch2_keylist_front(keys);
1413 struct bkey_packed *k;
1414
1415 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1416
1417 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1418 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1419 ;
1420
1421 while (!bch2_keylist_empty(keys)) {
1422 insert = bch2_keylist_front(keys);
1423
1424 if (bpos_gt(insert->k.p, b->key.k.p))
1425 break;
1426
1427 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1428 bch2_keylist_pop_front(keys);
1429 }
1430 }
1431
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1432 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1433 {
1434 if (insert_keys)
1435 for_each_keylist_key(insert_keys, k)
1436 if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1437 return true;
1438 return false;
1439 }
1440
1441 /*
1442 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1443 * node)
1444 */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1445 static void __btree_split_node(struct btree_update *as,
1446 struct btree_trans *trans,
1447 struct btree *b,
1448 struct btree *n[2],
1449 struct keylist *insert_keys)
1450 {
1451 struct bkey_packed *k;
1452 struct bpos n1_pos = POS_MIN;
1453 struct btree_node_iter iter;
1454 struct bset *bsets[2];
1455 struct bkey_format_state format[2];
1456 struct bkey_packed *out[2];
1457 struct bkey uk;
1458 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1459 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1460 int i;
1461
1462 memset(&nr_keys, 0, sizeof(nr_keys));
1463
1464 for (i = 0; i < 2; i++) {
1465 BUG_ON(n[i]->nsets != 1);
1466
1467 bsets[i] = btree_bset_first(n[i]);
1468 out[i] = bsets[i]->start;
1469
1470 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1471 bch2_bkey_format_init(&format[i]);
1472 }
1473
1474 u64s = 0;
1475 for_each_btree_node_key(b, k, &iter) {
1476 if (bkey_deleted(k))
1477 continue;
1478
1479 uk = bkey_unpack_key(b, k);
1480
1481 if (b->c.level &&
1482 u64s < n1_u64s &&
1483 u64s + k->u64s >= n1_u64s &&
1484 (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1485 key_deleted_in_insert(insert_keys, uk.p)))
1486 n1_u64s += k->u64s;
1487
1488 i = u64s >= n1_u64s;
1489 u64s += k->u64s;
1490 if (!i)
1491 n1_pos = uk.p;
1492 bch2_bkey_format_add_key(&format[i], &uk);
1493
1494 nr_keys[i].nr_keys++;
1495 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1496 }
1497
1498 btree_set_min(n[0], b->data->min_key);
1499 btree_set_max(n[0], n1_pos);
1500 btree_set_min(n[1], bpos_successor(n1_pos));
1501 btree_set_max(n[1], b->data->max_key);
1502
1503 for (i = 0; i < 2; i++) {
1504 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1505 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1506
1507 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1508
1509 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1510 nr_keys[i].val_u64s;
1511 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1512 n[i]->data->format = b->format;
1513
1514 btree_node_set_format(n[i], n[i]->data->format);
1515 }
1516
1517 u64s = 0;
1518 for_each_btree_node_key(b, k, &iter) {
1519 if (bkey_deleted(k))
1520 continue;
1521
1522 i = u64s >= n1_u64s;
1523 u64s += k->u64s;
1524
1525 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1526 ? &b->format: &bch2_bkey_format_current, k))
1527 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1528 else
1529 bch2_bkey_unpack(b, (void *) out[i], k);
1530
1531 out[i]->needs_whiteout = false;
1532
1533 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1534 out[i] = bkey_p_next(out[i]);
1535 }
1536
1537 for (i = 0; i < 2; i++) {
1538 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1539
1540 BUG_ON(!bsets[i]->u64s);
1541
1542 set_btree_bset_end(n[i], n[i]->set);
1543
1544 btree_node_reset_sib_u64s(n[i]);
1545
1546 bch2_verify_btree_nr_keys(n[i]);
1547
1548 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1549 }
1550 }
1551
1552 /*
1553 * For updates to interior nodes, we've got to do the insert before we split
1554 * because the stuff we're inserting has to be inserted atomically. Post split,
1555 * the keys might have to go in different nodes and the split would no longer be
1556 * atomic.
1557 *
1558 * Worse, if the insert is from btree node coalescing, if we do the insert after
1559 * we do the split (and pick the pivot) - the pivot we pick might be between
1560 * nodes that were coalesced, and thus in the middle of a child node post
1561 * coalescing:
1562 */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1563 static void btree_split_insert_keys(struct btree_update *as,
1564 struct btree_trans *trans,
1565 btree_path_idx_t path_idx,
1566 struct btree *b,
1567 struct keylist *keys)
1568 {
1569 struct btree_path *path = trans->paths + path_idx;
1570
1571 if (!bch2_keylist_empty(keys) &&
1572 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1573 struct btree_node_iter node_iter;
1574
1575 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1576
1577 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1578
1579 BUG_ON(bch2_btree_node_check_topology(trans, b));
1580 }
1581 }
1582
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1583 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1584 btree_path_idx_t path, struct btree *b,
1585 struct keylist *keys)
1586 {
1587 struct bch_fs *c = as->c;
1588 struct btree *parent = btree_node_parent(trans->paths + path, b);
1589 struct btree *n1, *n2 = NULL, *n3 = NULL;
1590 btree_path_idx_t path1 = 0, path2 = 0;
1591 u64 start_time = local_clock();
1592 int ret = 0;
1593
1594 bch2_verify_btree_nr_keys(b);
1595 BUG_ON(!parent && (b != btree_node_root(c, b)));
1596 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1597
1598 ret = bch2_btree_node_check_topology(trans, b);
1599 if (ret)
1600 return ret;
1601
1602 bch2_btree_interior_update_will_free_node(as, b);
1603
1604 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1605 struct btree *n[2];
1606
1607 trace_and_count(c, btree_node_split, trans, b);
1608
1609 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1610 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1611
1612 __btree_split_node(as, trans, b, n, keys);
1613
1614 if (keys) {
1615 btree_split_insert_keys(as, trans, path, n1, keys);
1616 btree_split_insert_keys(as, trans, path, n2, keys);
1617 BUG_ON(!bch2_keylist_empty(keys));
1618 }
1619
1620 bch2_btree_build_aux_trees(n2);
1621 bch2_btree_build_aux_trees(n1);
1622
1623 bch2_btree_update_add_new_node(as, n1);
1624 bch2_btree_update_add_new_node(as, n2);
1625 six_unlock_write(&n2->c.lock);
1626 six_unlock_write(&n1->c.lock);
1627
1628 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1629 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1630 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1631 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1632
1633 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1634 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1635 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1636 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1637
1638 /*
1639 * Note that on recursive parent_keys == keys, so we
1640 * can't start adding new keys to parent_keys before emptying it
1641 * out (which we did with btree_split_insert_keys() above)
1642 */
1643 bch2_keylist_add(&as->parent_keys, &n1->key);
1644 bch2_keylist_add(&as->parent_keys, &n2->key);
1645
1646 if (!parent) {
1647 /* Depth increases, make a new root */
1648 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1649
1650 bch2_btree_update_add_new_node(as, n3);
1651 six_unlock_write(&n3->c.lock);
1652
1653 trans->paths[path2].locks_want++;
1654 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1655 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1656 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1657 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1658
1659 n3->sib_u64s[0] = U16_MAX;
1660 n3->sib_u64s[1] = U16_MAX;
1661
1662 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1663 }
1664 } else {
1665 trace_and_count(c, btree_node_compact, trans, b);
1666
1667 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1668
1669 if (keys) {
1670 btree_split_insert_keys(as, trans, path, n1, keys);
1671 BUG_ON(!bch2_keylist_empty(keys));
1672 }
1673
1674 bch2_btree_build_aux_trees(n1);
1675 bch2_btree_update_add_new_node(as, n1);
1676 six_unlock_write(&n1->c.lock);
1677
1678 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1679 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1680 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1681 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1682
1683 if (parent)
1684 bch2_keylist_add(&as->parent_keys, &n1->key);
1685 }
1686
1687 /* New nodes all written, now make them visible: */
1688
1689 if (parent) {
1690 /* Split a non root node */
1691 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1692 } else if (n3) {
1693 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1694 } else {
1695 /* Root filled up but didn't need to be split */
1696 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1697 }
1698
1699 if (ret)
1700 goto err;
1701
1702 if (n3) {
1703 bch2_btree_update_get_open_buckets(as, n3);
1704 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1705 }
1706 if (n2) {
1707 bch2_btree_update_get_open_buckets(as, n2);
1708 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1709 }
1710 bch2_btree_update_get_open_buckets(as, n1);
1711 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1712
1713 /*
1714 * The old node must be freed (in memory) _before_ unlocking the new
1715 * nodes - else another thread could re-acquire a read lock on the old
1716 * node after another thread has locked and updated the new node, thus
1717 * seeing stale data:
1718 */
1719 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1720
1721 if (n3)
1722 bch2_trans_node_add(trans, trans->paths + path, n3);
1723 if (n2)
1724 bch2_trans_node_add(trans, trans->paths + path2, n2);
1725 bch2_trans_node_add(trans, trans->paths + path1, n1);
1726
1727 if (n3)
1728 six_unlock_intent(&n3->c.lock);
1729 if (n2)
1730 six_unlock_intent(&n2->c.lock);
1731 six_unlock_intent(&n1->c.lock);
1732 out:
1733 if (path2) {
1734 __bch2_btree_path_unlock(trans, trans->paths + path2);
1735 bch2_path_put(trans, path2, true);
1736 }
1737 if (path1) {
1738 __bch2_btree_path_unlock(trans, trans->paths + path1);
1739 bch2_path_put(trans, path1, true);
1740 }
1741
1742 bch2_trans_verify_locks(trans);
1743
1744 bch2_time_stats_update(&c->times[n2
1745 ? BCH_TIME_btree_node_split
1746 : BCH_TIME_btree_node_compact],
1747 start_time);
1748 return ret;
1749 err:
1750 if (n3)
1751 bch2_btree_node_free_never_used(as, trans, n3);
1752 if (n2)
1753 bch2_btree_node_free_never_used(as, trans, n2);
1754 bch2_btree_node_free_never_used(as, trans, n1);
1755 goto out;
1756 }
1757
1758 /**
1759 * bch2_btree_insert_node - insert bkeys into a given btree node
1760 *
1761 * @as: btree_update object
1762 * @trans: btree_trans object
1763 * @path_idx: path that points to current node
1764 * @b: node to insert keys into
1765 * @keys: list of keys to insert
1766 *
1767 * Returns: 0 on success, typically transaction restart error on failure
1768 *
1769 * Inserts as many keys as it can into a given btree node, splitting it if full.
1770 * If a split occurred, this function will return early. This can only happen
1771 * for leaf nodes -- inserts into interior nodes have to be atomic.
1772 */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1773 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1774 btree_path_idx_t path_idx, struct btree *b,
1775 struct keylist *keys)
1776 {
1777 struct bch_fs *c = as->c;
1778 struct btree_path *path = trans->paths + path_idx, *linked;
1779 unsigned i;
1780 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1781 int old_live_u64s = b->nr.live_u64s;
1782 int live_u64s_added, u64s_added;
1783 int ret;
1784
1785 lockdep_assert_held(&c->gc_lock);
1786 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1787 BUG_ON(!b->c.level);
1788 BUG_ON(!as || as->b);
1789 bch2_verify_keylist_sorted(keys);
1790
1791 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1792 if (ret)
1793 return ret;
1794
1795 bch2_btree_node_prep_for_write(trans, path, b);
1796
1797 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1798 bch2_btree_node_unlock_write(trans, path, b);
1799 goto split;
1800 }
1801
1802 ret = bch2_btree_node_check_topology(trans, b);
1803 if (ret) {
1804 bch2_btree_node_unlock_write(trans, path, b);
1805 return ret;
1806 }
1807
1808 bch2_btree_insert_keys_interior(as, trans, path, b,
1809 path->l[b->c.level].iter, keys);
1810
1811 trans_for_each_path_with_node(trans, b, linked, i)
1812 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1813
1814 bch2_trans_verify_paths(trans);
1815
1816 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1817 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1818
1819 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1820 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1821 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1822 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1823
1824 if (u64s_added > live_u64s_added &&
1825 bch2_maybe_compact_whiteouts(c, b))
1826 bch2_trans_node_reinit_iter(trans, b);
1827
1828 btree_update_updated_node(as, b);
1829 bch2_btree_node_unlock_write(trans, path, b);
1830
1831 BUG_ON(bch2_btree_node_check_topology(trans, b));
1832 return 0;
1833 split:
1834 /*
1835 * We could attempt to avoid the transaction restart, by calling
1836 * bch2_btree_path_upgrade() and allocating more nodes:
1837 */
1838 if (b->c.level >= as->update_level_end) {
1839 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1840 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1841 }
1842
1843 return btree_split(as, trans, path_idx, b, keys);
1844 }
1845
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1846 int bch2_btree_split_leaf(struct btree_trans *trans,
1847 btree_path_idx_t path,
1848 unsigned flags)
1849 {
1850 /* btree_split & merge may both cause paths array to be reallocated */
1851 struct btree *b = path_l(trans->paths + path)->b;
1852 struct btree_update *as;
1853 unsigned l;
1854 int ret = 0;
1855
1856 as = bch2_btree_update_start(trans, trans->paths + path,
1857 trans->paths[path].level,
1858 true, flags);
1859 if (IS_ERR(as))
1860 return PTR_ERR(as);
1861
1862 ret = btree_split(as, trans, path, b, NULL);
1863 if (ret) {
1864 bch2_btree_update_free(as, trans);
1865 return ret;
1866 }
1867
1868 bch2_btree_update_done(as, trans);
1869
1870 for (l = trans->paths[path].level + 1;
1871 btree_node_intent_locked(&trans->paths[path], l) && !ret;
1872 l++)
1873 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1874
1875 return ret;
1876 }
1877
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1878 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1879 btree_path_idx_t path_idx)
1880 {
1881 struct bch_fs *c = as->c;
1882 struct btree_path *path = trans->paths + path_idx;
1883 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1884
1885 BUG_ON(!btree_node_locked(path, b->c.level));
1886
1887 n = __btree_root_alloc(as, trans, b->c.level + 1);
1888
1889 bch2_btree_update_add_new_node(as, n);
1890 six_unlock_write(&n->c.lock);
1891
1892 path->locks_want++;
1893 BUG_ON(btree_node_locked(path, n->c.level));
1894 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1895 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1896 bch2_btree_path_level_init(trans, path, n);
1897
1898 n->sib_u64s[0] = U16_MAX;
1899 n->sib_u64s[1] = U16_MAX;
1900
1901 bch2_keylist_add(&as->parent_keys, &b->key);
1902 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1903
1904 int ret = bch2_btree_set_root(as, trans, path, n, true);
1905 BUG_ON(ret);
1906
1907 bch2_btree_update_get_open_buckets(as, n);
1908 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1909 bch2_trans_node_add(trans, path, n);
1910 six_unlock_intent(&n->c.lock);
1911
1912 mutex_lock(&c->btree_cache.lock);
1913 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1914 mutex_unlock(&c->btree_cache.lock);
1915
1916 bch2_trans_verify_locks(trans);
1917 }
1918
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1919 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1920 {
1921 struct bch_fs *c = trans->c;
1922 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1923
1924 if (btree_node_fake(b))
1925 return bch2_btree_split_leaf(trans, path, flags);
1926
1927 struct btree_update *as =
1928 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1929 if (IS_ERR(as))
1930 return PTR_ERR(as);
1931
1932 __btree_increase_depth(as, trans, path);
1933 bch2_btree_update_done(as, trans);
1934 return 0;
1935 }
1936
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)1937 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1938 btree_path_idx_t path,
1939 unsigned level,
1940 unsigned flags,
1941 enum btree_node_sibling sib)
1942 {
1943 struct bch_fs *c = trans->c;
1944 struct btree_update *as;
1945 struct bkey_format_state new_s;
1946 struct bkey_format new_f;
1947 struct bkey_i delete;
1948 struct btree *b, *m, *n, *prev, *next, *parent;
1949 struct bpos sib_pos;
1950 size_t sib_u64s;
1951 enum btree_id btree = trans->paths[path].btree_id;
1952 btree_path_idx_t sib_path = 0, new_path = 0;
1953 u64 start_time = local_clock();
1954 int ret = 0;
1955
1956 bch2_trans_verify_not_in_restart(trans);
1957 bch2_trans_verify_not_unlocked(trans);
1958 BUG_ON(!trans->paths[path].should_be_locked);
1959 BUG_ON(!btree_node_locked(&trans->paths[path], level));
1960
1961 /*
1962 * Work around a deadlock caused by the btree write buffer not doing
1963 * merges and leaving tons of merges for us to do - we really don't need
1964 * to be doing merges at all from the interior update path, and if the
1965 * interior update path is generating too many new interior updates we
1966 * deadlock:
1967 */
1968 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1969 return 0;
1970
1971 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1972 flags &= ~BCH_WATERMARK_MASK;
1973 flags |= BCH_WATERMARK_btree;
1974 flags |= BCH_TRANS_COMMIT_journal_reclaim;
1975 }
1976
1977 b = trans->paths[path].l[level].b;
1978
1979 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1980 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1981 b->sib_u64s[sib] = U16_MAX;
1982 return 0;
1983 }
1984
1985 sib_pos = sib == btree_prev_sib
1986 ? bpos_predecessor(b->data->min_key)
1987 : bpos_successor(b->data->max_key);
1988
1989 sib_path = bch2_path_get(trans, btree, sib_pos,
1990 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1991 ret = bch2_btree_path_traverse(trans, sib_path, false);
1992 if (ret)
1993 goto err;
1994
1995 btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1996
1997 m = trans->paths[sib_path].l[level].b;
1998
1999 if (btree_node_parent(trans->paths + path, b) !=
2000 btree_node_parent(trans->paths + sib_path, m)) {
2001 b->sib_u64s[sib] = U16_MAX;
2002 goto out;
2003 }
2004
2005 if (sib == btree_prev_sib) {
2006 prev = m;
2007 next = b;
2008 } else {
2009 prev = b;
2010 next = m;
2011 }
2012
2013 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2014 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2015
2016 bch2_bpos_to_text(&buf1, prev->data->max_key);
2017 bch2_bpos_to_text(&buf2, next->data->min_key);
2018 bch_err(c,
2019 "%s(): btree topology error:\n"
2020 " prev ends at %s\n"
2021 " next starts at %s",
2022 __func__, buf1.buf, buf2.buf);
2023 printbuf_exit(&buf1);
2024 printbuf_exit(&buf2);
2025 ret = bch2_topology_error(c);
2026 goto err;
2027 }
2028
2029 bch2_bkey_format_init(&new_s);
2030 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2031 __bch2_btree_calc_format(&new_s, prev);
2032 __bch2_btree_calc_format(&new_s, next);
2033 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2034 new_f = bch2_bkey_format_done(&new_s);
2035
2036 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2037 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2038
2039 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2040 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2041 sib_u64s /= 2;
2042 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2043 }
2044
2045 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2046 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2047 b->sib_u64s[sib] = sib_u64s;
2048
2049 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2050 goto out;
2051
2052 parent = btree_node_parent(trans->paths + path, b);
2053 as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2054 BCH_TRANS_COMMIT_no_enospc|flags);
2055 ret = PTR_ERR_OR_ZERO(as);
2056 if (ret)
2057 goto err;
2058
2059 trace_and_count(c, btree_node_merge, trans, b);
2060
2061 bch2_btree_interior_update_will_free_node(as, b);
2062 bch2_btree_interior_update_will_free_node(as, m);
2063
2064 n = bch2_btree_node_alloc(as, trans, b->c.level);
2065
2066 SET_BTREE_NODE_SEQ(n->data,
2067 max(BTREE_NODE_SEQ(b->data),
2068 BTREE_NODE_SEQ(m->data)) + 1);
2069
2070 btree_set_min(n, prev->data->min_key);
2071 btree_set_max(n, next->data->max_key);
2072
2073 n->data->format = new_f;
2074 btree_node_set_format(n, new_f);
2075
2076 bch2_btree_sort_into(c, n, prev);
2077 bch2_btree_sort_into(c, n, next);
2078
2079 bch2_btree_build_aux_trees(n);
2080 bch2_btree_update_add_new_node(as, n);
2081 six_unlock_write(&n->c.lock);
2082
2083 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2084 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2085 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2086 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2087
2088 bkey_init(&delete.k);
2089 delete.k.p = prev->key.k.p;
2090 bch2_keylist_add(&as->parent_keys, &delete);
2091 bch2_keylist_add(&as->parent_keys, &n->key);
2092
2093 bch2_trans_verify_paths(trans);
2094
2095 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2096 if (ret)
2097 goto err_free_update;
2098
2099 bch2_trans_verify_paths(trans);
2100
2101 bch2_btree_update_get_open_buckets(as, n);
2102 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2103
2104 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2105 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2106
2107 bch2_trans_node_add(trans, trans->paths + path, n);
2108
2109 bch2_trans_verify_paths(trans);
2110
2111 six_unlock_intent(&n->c.lock);
2112
2113 bch2_btree_update_done(as, trans);
2114
2115 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2116 out:
2117 err:
2118 if (new_path)
2119 bch2_path_put(trans, new_path, true);
2120 bch2_path_put(trans, sib_path, true);
2121 bch2_trans_verify_locks(trans);
2122 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2123 ret = 0;
2124 if (!ret)
2125 ret = bch2_trans_relock(trans);
2126 return ret;
2127 err_free_update:
2128 bch2_btree_node_free_never_used(as, trans, n);
2129 bch2_btree_update_free(as, trans);
2130 goto out;
2131 }
2132
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned flags)2133 int bch2_btree_node_rewrite(struct btree_trans *trans,
2134 struct btree_iter *iter,
2135 struct btree *b,
2136 unsigned flags)
2137 {
2138 struct bch_fs *c = trans->c;
2139 struct btree *n, *parent;
2140 struct btree_update *as;
2141 btree_path_idx_t new_path = 0;
2142 int ret;
2143
2144 flags |= BCH_TRANS_COMMIT_no_enospc;
2145
2146 struct btree_path *path = btree_iter_path(trans, iter);
2147 parent = btree_node_parent(path, b);
2148 as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2149 ret = PTR_ERR_OR_ZERO(as);
2150 if (ret)
2151 goto out;
2152
2153 bch2_btree_interior_update_will_free_node(as, b);
2154
2155 n = bch2_btree_node_alloc_replacement(as, trans, b);
2156
2157 bch2_btree_build_aux_trees(n);
2158 bch2_btree_update_add_new_node(as, n);
2159 six_unlock_write(&n->c.lock);
2160
2161 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2162 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2163 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2164 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2165
2166 trace_and_count(c, btree_node_rewrite, trans, b);
2167
2168 if (parent) {
2169 bch2_keylist_add(&as->parent_keys, &n->key);
2170 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2171 } else {
2172 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2173 }
2174
2175 if (ret)
2176 goto err;
2177
2178 bch2_btree_update_get_open_buckets(as, n);
2179 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2180
2181 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2182
2183 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2184 six_unlock_intent(&n->c.lock);
2185
2186 bch2_btree_update_done(as, trans);
2187 out:
2188 if (new_path)
2189 bch2_path_put(trans, new_path, true);
2190 bch2_trans_downgrade(trans);
2191 return ret;
2192 err:
2193 bch2_btree_node_free_never_used(as, trans, n);
2194 bch2_btree_update_free(as, trans);
2195 goto out;
2196 }
2197
2198 struct async_btree_rewrite {
2199 struct bch_fs *c;
2200 struct work_struct work;
2201 struct list_head list;
2202 enum btree_id btree_id;
2203 unsigned level;
2204 struct bpos pos;
2205 __le64 seq;
2206 };
2207
async_btree_node_rewrite_trans(struct btree_trans * trans,struct async_btree_rewrite * a)2208 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2209 struct async_btree_rewrite *a)
2210 {
2211 struct bch_fs *c = trans->c;
2212 struct btree_iter iter;
2213 struct btree *b;
2214 int ret;
2215
2216 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2217 BTREE_MAX_DEPTH, a->level, 0);
2218 b = bch2_btree_iter_peek_node(&iter);
2219 ret = PTR_ERR_OR_ZERO(b);
2220 if (ret)
2221 goto out;
2222
2223 if (!b || b->data->keys.seq != a->seq) {
2224 struct printbuf buf = PRINTBUF;
2225
2226 if (b)
2227 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2228 else
2229 prt_str(&buf, "(null");
2230 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2231 __func__, a->seq, buf.buf);
2232 printbuf_exit(&buf);
2233 goto out;
2234 }
2235
2236 ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2237 out:
2238 bch2_trans_iter_exit(trans, &iter);
2239
2240 return ret;
2241 }
2242
async_btree_node_rewrite_work(struct work_struct * work)2243 static void async_btree_node_rewrite_work(struct work_struct *work)
2244 {
2245 struct async_btree_rewrite *a =
2246 container_of(work, struct async_btree_rewrite, work);
2247 struct bch_fs *c = a->c;
2248
2249 int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a));
2250 bch_err_fn_ratelimited(c, ret);
2251 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2252 kfree(a);
2253 }
2254
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2255 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2256 {
2257 struct async_btree_rewrite *a;
2258 int ret;
2259
2260 a = kmalloc(sizeof(*a), GFP_NOFS);
2261 if (!a) {
2262 bch_err(c, "%s: error allocating memory", __func__);
2263 return;
2264 }
2265
2266 a->c = c;
2267 a->btree_id = b->c.btree_id;
2268 a->level = b->c.level;
2269 a->pos = b->key.k.p;
2270 a->seq = b->data->keys.seq;
2271 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2272
2273 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2274 mutex_lock(&c->pending_node_rewrites_lock);
2275 list_add(&a->list, &c->pending_node_rewrites);
2276 mutex_unlock(&c->pending_node_rewrites_lock);
2277 return;
2278 }
2279
2280 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2281 if (test_bit(BCH_FS_started, &c->flags)) {
2282 bch_err(c, "%s: error getting c->writes ref", __func__);
2283 kfree(a);
2284 return;
2285 }
2286
2287 ret = bch2_fs_read_write_early(c);
2288 bch_err_msg(c, ret, "going read-write");
2289 if (ret) {
2290 kfree(a);
2291 return;
2292 }
2293
2294 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2295 }
2296
2297 queue_work(c->btree_node_rewrite_worker, &a->work);
2298 }
2299
bch2_do_pending_node_rewrites(struct bch_fs * c)2300 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2301 {
2302 struct async_btree_rewrite *a, *n;
2303
2304 mutex_lock(&c->pending_node_rewrites_lock);
2305 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2306 list_del(&a->list);
2307
2308 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2309 queue_work(c->btree_node_rewrite_worker, &a->work);
2310 }
2311 mutex_unlock(&c->pending_node_rewrites_lock);
2312 }
2313
bch2_free_pending_node_rewrites(struct bch_fs * c)2314 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2315 {
2316 struct async_btree_rewrite *a, *n;
2317
2318 mutex_lock(&c->pending_node_rewrites_lock);
2319 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2320 list_del(&a->list);
2321
2322 kfree(a);
2323 }
2324 mutex_unlock(&c->pending_node_rewrites_lock);
2325 }
2326
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2327 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2328 struct btree_iter *iter,
2329 struct btree *b, struct btree *new_hash,
2330 struct bkey_i *new_key,
2331 unsigned commit_flags,
2332 bool skip_triggers)
2333 {
2334 struct bch_fs *c = trans->c;
2335 struct btree_iter iter2 = { NULL };
2336 struct btree *parent;
2337 int ret;
2338
2339 if (!skip_triggers) {
2340 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2341 bkey_i_to_s_c(&b->key),
2342 BTREE_TRIGGER_transactional) ?:
2343 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2344 bkey_i_to_s(new_key),
2345 BTREE_TRIGGER_transactional);
2346 if (ret)
2347 return ret;
2348 }
2349
2350 if (new_hash) {
2351 bkey_copy(&new_hash->key, new_key);
2352 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2353 new_hash, b->c.level, b->c.btree_id);
2354 BUG_ON(ret);
2355 }
2356
2357 parent = btree_node_parent(btree_iter_path(trans, iter), b);
2358 if (parent) {
2359 bch2_trans_copy_iter(&iter2, iter);
2360
2361 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2362 iter2.flags & BTREE_ITER_intent,
2363 _THIS_IP_);
2364
2365 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2366 BUG_ON(path2->level != b->c.level);
2367 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2368
2369 btree_path_set_level_up(trans, path2);
2370
2371 trans->paths_sorted = false;
2372
2373 ret = bch2_btree_iter_traverse(&iter2) ?:
2374 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2375 if (ret)
2376 goto err;
2377 } else {
2378 BUG_ON(btree_node_root(c, b) != b);
2379
2380 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2381 jset_u64s(new_key->k.u64s));
2382 ret = PTR_ERR_OR_ZERO(e);
2383 if (ret)
2384 return ret;
2385
2386 journal_entry_set(e,
2387 BCH_JSET_ENTRY_btree_root,
2388 b->c.btree_id, b->c.level,
2389 new_key, new_key->k.u64s);
2390 }
2391
2392 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2393 if (ret)
2394 goto err;
2395
2396 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2397
2398 if (new_hash) {
2399 mutex_lock(&c->btree_cache.lock);
2400 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2401
2402 __bch2_btree_node_hash_remove(&c->btree_cache, b);
2403
2404 bkey_copy(&b->key, new_key);
2405 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2406 BUG_ON(ret);
2407 mutex_unlock(&c->btree_cache.lock);
2408 } else {
2409 bkey_copy(&b->key, new_key);
2410 }
2411
2412 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2413 out:
2414 bch2_trans_iter_exit(trans, &iter2);
2415 return ret;
2416 err:
2417 if (new_hash) {
2418 mutex_lock(&c->btree_cache.lock);
2419 bch2_btree_node_hash_remove(&c->btree_cache, b);
2420 mutex_unlock(&c->btree_cache.lock);
2421 }
2422 goto out;
2423 }
2424
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2425 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2426 struct btree *b, struct bkey_i *new_key,
2427 unsigned commit_flags, bool skip_triggers)
2428 {
2429 struct bch_fs *c = trans->c;
2430 struct btree *new_hash = NULL;
2431 struct btree_path *path = btree_iter_path(trans, iter);
2432 struct closure cl;
2433 int ret = 0;
2434
2435 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2436 if (ret)
2437 return ret;
2438
2439 closure_init_stack(&cl);
2440
2441 /*
2442 * check btree_ptr_hash_val() after @b is locked by
2443 * btree_iter_traverse():
2444 */
2445 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2446 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2447 if (ret) {
2448 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2449 if (ret)
2450 return ret;
2451 }
2452
2453 new_hash = bch2_btree_node_mem_alloc(trans, false);
2454 ret = PTR_ERR_OR_ZERO(new_hash);
2455 if (ret)
2456 goto err;
2457 }
2458
2459 path->intent_ref++;
2460 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2461 commit_flags, skip_triggers);
2462 --path->intent_ref;
2463
2464 if (new_hash)
2465 bch2_btree_node_to_freelist(c, new_hash);
2466 err:
2467 closure_sync(&cl);
2468 bch2_btree_cache_cannibalize_unlock(trans);
2469 return ret;
2470 }
2471
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2472 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2473 struct btree *b, struct bkey_i *new_key,
2474 unsigned commit_flags, bool skip_triggers)
2475 {
2476 struct btree_iter iter;
2477 int ret;
2478
2479 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2480 BTREE_MAX_DEPTH, b->c.level,
2481 BTREE_ITER_intent);
2482 ret = bch2_btree_iter_traverse(&iter);
2483 if (ret)
2484 goto out;
2485
2486 /* has node been freed? */
2487 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2488 /* node has been freed: */
2489 BUG_ON(!btree_node_dying(b));
2490 goto out;
2491 }
2492
2493 BUG_ON(!btree_node_hashed(b));
2494
2495 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2496 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2497
2498 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2499 commit_flags, skip_triggers);
2500 out:
2501 bch2_trans_iter_exit(trans, &iter);
2502 return ret;
2503 }
2504
2505 /* Init code: */
2506
2507 /*
2508 * Only for filesystem bringup, when first reading the btree roots or allocating
2509 * btree roots when initializing a new filesystem:
2510 */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2511 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2512 {
2513 BUG_ON(btree_node_root(c, b));
2514
2515 bch2_btree_set_root_inmem(c, b);
2516 }
2517
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2518 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2519 {
2520 struct bch_fs *c = trans->c;
2521 struct closure cl;
2522 struct btree *b;
2523 int ret;
2524
2525 closure_init_stack(&cl);
2526
2527 do {
2528 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2529 closure_sync(&cl);
2530 } while (ret);
2531
2532 b = bch2_btree_node_mem_alloc(trans, false);
2533 bch2_btree_cache_cannibalize_unlock(trans);
2534
2535 ret = PTR_ERR_OR_ZERO(b);
2536 if (ret)
2537 return ret;
2538
2539 set_btree_node_fake(b);
2540 set_btree_node_need_rewrite(b);
2541 b->c.level = level;
2542 b->c.btree_id = id;
2543
2544 bkey_btree_ptr_init(&b->key);
2545 b->key.k.p = SPOS_MAX;
2546 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2547
2548 bch2_bset_init_first(b, &b->data->keys);
2549 bch2_btree_build_aux_trees(b);
2550
2551 b->data->flags = 0;
2552 btree_set_min(b, POS_MIN);
2553 btree_set_max(b, SPOS_MAX);
2554 b->data->format = bch2_btree_calc_format(b);
2555 btree_node_set_format(b, b->data->format);
2556
2557 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2558 b->c.level, b->c.btree_id);
2559 BUG_ON(ret);
2560
2561 bch2_btree_set_root_inmem(c, b);
2562
2563 six_unlock_write(&b->c.lock);
2564 six_unlock_intent(&b->c.lock);
2565 return 0;
2566 }
2567
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2568 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2569 {
2570 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2571 }
2572
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2573 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2574 {
2575 prt_printf(out, "%ps: ", (void *) as->ip_started);
2576 bch2_trans_commit_flags_to_text(out, as->flags);
2577
2578 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2579 bch2_btree_id_str(as->btree_id),
2580 as->update_level_start,
2581 as->update_level_end,
2582 bch2_btree_update_modes[as->mode],
2583 as->nodes_written,
2584 closure_nr_remaining(&as->cl),
2585 as->journal.seq);
2586 }
2587
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2588 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2589 {
2590 struct btree_update *as;
2591
2592 mutex_lock(&c->btree_interior_update_lock);
2593 list_for_each_entry(as, &c->btree_interior_update_list, list)
2594 bch2_btree_update_to_text(out, as);
2595 mutex_unlock(&c->btree_interior_update_lock);
2596 }
2597
bch2_btree_interior_updates_pending(struct bch_fs * c)2598 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2599 {
2600 bool ret;
2601
2602 mutex_lock(&c->btree_interior_update_lock);
2603 ret = !list_empty(&c->btree_interior_update_list);
2604 mutex_unlock(&c->btree_interior_update_lock);
2605
2606 return ret;
2607 }
2608
bch2_btree_interior_updates_flush(struct bch_fs * c)2609 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2610 {
2611 bool ret = bch2_btree_interior_updates_pending(c);
2612
2613 if (ret)
2614 closure_wait_event(&c->btree_interior_update_wait,
2615 !bch2_btree_interior_updates_pending(c));
2616 return ret;
2617 }
2618
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2619 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2620 {
2621 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2622
2623 mutex_lock(&c->btree_root_lock);
2624
2625 r->level = entry->level;
2626 r->alive = true;
2627 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2628
2629 mutex_unlock(&c->btree_root_lock);
2630 }
2631
2632 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2633 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2634 struct jset_entry *end,
2635 unsigned long skip)
2636 {
2637 unsigned i;
2638
2639 mutex_lock(&c->btree_root_lock);
2640
2641 for (i = 0; i < btree_id_nr_alive(c); i++) {
2642 struct btree_root *r = bch2_btree_id_root(c, i);
2643
2644 if (r->alive && !test_bit(i, &skip)) {
2645 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2646 i, r->level, &r->key, r->key.k.u64s);
2647 end = vstruct_next(end);
2648 }
2649 }
2650
2651 mutex_unlock(&c->btree_root_lock);
2652
2653 return end;
2654 }
2655
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2656 static void bch2_btree_alloc_to_text(struct printbuf *out,
2657 struct bch_fs *c,
2658 struct btree_alloc *a)
2659 {
2660 printbuf_indent_add(out, 2);
2661 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2662 prt_newline(out);
2663
2664 struct open_bucket *ob;
2665 unsigned i;
2666 open_bucket_for_each(c, &a->ob, ob, i)
2667 bch2_open_bucket_to_text(out, c, ob);
2668
2669 printbuf_indent_sub(out, 2);
2670 }
2671
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2672 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2673 {
2674 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2675 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2676 }
2677
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2678 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2679 {
2680 if (c->btree_node_rewrite_worker)
2681 destroy_workqueue(c->btree_node_rewrite_worker);
2682 if (c->btree_interior_update_worker)
2683 destroy_workqueue(c->btree_interior_update_worker);
2684 mempool_exit(&c->btree_interior_update_pool);
2685 }
2686
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2687 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2688 {
2689 mutex_init(&c->btree_reserve_cache_lock);
2690 INIT_LIST_HEAD(&c->btree_interior_update_list);
2691 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2692 mutex_init(&c->btree_interior_update_lock);
2693 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2694
2695 INIT_LIST_HEAD(&c->pending_node_rewrites);
2696 mutex_init(&c->pending_node_rewrites_lock);
2697 }
2698
bch2_fs_btree_interior_update_init(struct bch_fs * c)2699 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2700 {
2701 c->btree_interior_update_worker =
2702 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2703 if (!c->btree_interior_update_worker)
2704 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2705
2706 c->btree_node_rewrite_worker =
2707 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2708 if (!c->btree_node_rewrite_worker)
2709 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2710
2711 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2712 sizeof(struct btree_update)))
2713 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2714
2715 return 0;
2716 }
2717