xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision 79f1a6adef3718c295b2ffb403049f15d5a2797d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 
38 #include "internal.h"
39 
40 struct ucode_patch {
41 	struct list_head plist;
42 	void *data;
43 	unsigned int size;
44 	u32 patch_id;
45 	u16 equiv_cpu;
46 };
47 
48 static LIST_HEAD(microcode_cache);
49 
50 #define UCODE_MAGIC			0x00414d44
51 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
52 #define UCODE_UCODE_TYPE		0x00000001
53 
54 #define SECTION_HDR_SIZE		8
55 #define CONTAINER_HDR_SZ		12
56 
57 struct equiv_cpu_entry {
58 	u32	installed_cpu;
59 	u32	fixed_errata_mask;
60 	u32	fixed_errata_compare;
61 	u16	equiv_cpu;
62 	u16	res;
63 } __packed;
64 
65 struct microcode_header_amd {
66 	u32	data_code;
67 	u32	patch_id;
68 	u16	mc_patch_data_id;
69 	u8	mc_patch_data_len;
70 	u8	init_flag;
71 	u32	mc_patch_data_checksum;
72 	u32	nb_dev_id;
73 	u32	sb_dev_id;
74 	u16	processor_rev_id;
75 	u8	nb_rev_id;
76 	u8	sb_rev_id;
77 	u8	bios_api_rev;
78 	u8	reserved1[3];
79 	u32	match_reg[8];
80 } __packed;
81 
82 struct microcode_amd {
83 	struct microcode_header_amd	hdr;
84 	unsigned int			mpb[];
85 };
86 
87 static struct equiv_cpu_table {
88 	unsigned int num_entries;
89 	struct equiv_cpu_entry *entry;
90 } equiv_table;
91 
92 union zen_patch_rev {
93 	struct {
94 		__u32 rev	 : 8,
95 		      stepping	 : 4,
96 		      model	 : 4,
97 		      __reserved : 4,
98 		      ext_model	 : 4,
99 		      ext_fam	 : 8;
100 	};
101 	__u32 ucode_rev;
102 };
103 
104 union cpuid_1_eax {
105 	struct {
106 		__u32 stepping    : 4,
107 		      model	  : 4,
108 		      family	  : 4,
109 		      __reserved0 : 4,
110 		      ext_model   : 4,
111 		      ext_fam     : 8,
112 		      __reserved1 : 4;
113 	};
114 	__u32 full;
115 };
116 
117 /*
118  * This points to the current valid container of microcode patches which we will
119  * save from the initrd/builtin before jettisoning its contents. @mc is the
120  * microcode patch we found to match.
121  */
122 struct cont_desc {
123 	struct microcode_amd *mc;
124 	u32		     psize;
125 	u8		     *data;
126 	size_t		     size;
127 };
128 
129 /*
130  * Microcode patch container file is prepended to the initrd in cpio
131  * format. See Documentation/arch/x86/microcode.rst
132  */
133 static const char
134 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
135 
136 /*
137  * This is CPUID(1).EAX on the BSP. It is used in two ways:
138  *
139  * 1. To ignore the equivalence table on Zen1 and newer.
140  *
141  * 2. To match which patches to load because the patch revision ID
142  *    already contains the f/m/s for which the microcode is destined
143  *    for.
144  */
145 static u32 bsp_cpuid_1_eax __ro_after_init;
146 
ucode_rev_to_cpuid(unsigned int val)147 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
148 {
149 	union zen_patch_rev p;
150 	union cpuid_1_eax c;
151 
152 	p.ucode_rev = val;
153 	c.full = 0;
154 
155 	c.stepping  = p.stepping;
156 	c.model     = p.model;
157 	c.ext_model = p.ext_model;
158 	c.family    = 0xf;
159 	c.ext_fam   = p.ext_fam;
160 
161 	return c;
162 }
163 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)164 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
165 {
166 	unsigned int i;
167 
168 	/* Zen and newer do not need an equivalence table. */
169 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
170 		return 0;
171 
172 	if (!et || !et->num_entries)
173 		return 0;
174 
175 	for (i = 0; i < et->num_entries; i++) {
176 		struct equiv_cpu_entry *e = &et->entry[i];
177 
178 		if (sig == e->installed_cpu)
179 			return e->equiv_cpu;
180 	}
181 	return 0;
182 }
183 
184 /*
185  * Check whether there is a valid microcode container file at the beginning
186  * of @buf of size @buf_size.
187  */
verify_container(const u8 * buf,size_t buf_size)188 static bool verify_container(const u8 *buf, size_t buf_size)
189 {
190 	u32 cont_magic;
191 
192 	if (buf_size <= CONTAINER_HDR_SZ) {
193 		pr_debug("Truncated microcode container header.\n");
194 		return false;
195 	}
196 
197 	cont_magic = *(const u32 *)buf;
198 	if (cont_magic != UCODE_MAGIC) {
199 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
200 		return false;
201 	}
202 
203 	return true;
204 }
205 
206 /*
207  * Check whether there is a valid, non-truncated CPU equivalence table at the
208  * beginning of @buf of size @buf_size.
209  */
verify_equivalence_table(const u8 * buf,size_t buf_size)210 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
211 {
212 	const u32 *hdr = (const u32 *)buf;
213 	u32 cont_type, equiv_tbl_len;
214 
215 	if (!verify_container(buf, buf_size))
216 		return false;
217 
218 	/* Zen and newer do not need an equivalence table. */
219 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
220 		return true;
221 
222 	cont_type = hdr[1];
223 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
224 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
225 			 cont_type);
226 		return false;
227 	}
228 
229 	buf_size -= CONTAINER_HDR_SZ;
230 
231 	equiv_tbl_len = hdr[2];
232 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
233 	    buf_size < equiv_tbl_len) {
234 		pr_debug("Truncated equivalence table.\n");
235 		return false;
236 	}
237 
238 	return true;
239 }
240 
241 /*
242  * Check whether there is a valid, non-truncated microcode patch section at the
243  * beginning of @buf of size @buf_size.
244  *
245  * On success, @sh_psize returns the patch size according to the section header,
246  * to the caller.
247  */
248 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)249 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
250 {
251 	u32 p_type, p_size;
252 	const u32 *hdr;
253 
254 	if (buf_size < SECTION_HDR_SIZE) {
255 		pr_debug("Truncated patch section.\n");
256 		return false;
257 	}
258 
259 	hdr = (const u32 *)buf;
260 	p_type = hdr[0];
261 	p_size = hdr[1];
262 
263 	if (p_type != UCODE_UCODE_TYPE) {
264 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
265 			 p_type);
266 		return false;
267 	}
268 
269 	if (p_size < sizeof(struct microcode_header_amd)) {
270 		pr_debug("Patch of size %u too short.\n", p_size);
271 		return false;
272 	}
273 
274 	*sh_psize = p_size;
275 
276 	return true;
277 }
278 
279 /*
280  * Check whether the passed remaining file @buf_size is large enough to contain
281  * a patch of the indicated @sh_psize (and also whether this size does not
282  * exceed the per-family maximum). @sh_psize is the size read from the section
283  * header.
284  */
__verify_patch_size(u32 sh_psize,size_t buf_size)285 static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
286 {
287 	u8 family = x86_family(bsp_cpuid_1_eax);
288 	u32 max_size;
289 
290 	if (family >= 0x15)
291 		return min_t(u32, sh_psize, buf_size);
292 
293 #define F1XH_MPB_MAX_SIZE 2048
294 #define F14H_MPB_MAX_SIZE 1824
295 
296 	switch (family) {
297 	case 0x10 ... 0x12:
298 		max_size = F1XH_MPB_MAX_SIZE;
299 		break;
300 	case 0x14:
301 		max_size = F14H_MPB_MAX_SIZE;
302 		break;
303 	default:
304 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
305 		return 0;
306 	}
307 
308 	if (sh_psize > min_t(u32, buf_size, max_size))
309 		return 0;
310 
311 	return sh_psize;
312 }
313 
314 /*
315  * Verify the patch in @buf.
316  *
317  * Returns:
318  * negative: on error
319  * positive: patch is not for this family, skip it
320  * 0: success
321  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)322 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
323 {
324 	u8 family = x86_family(bsp_cpuid_1_eax);
325 	struct microcode_header_amd *mc_hdr;
326 	unsigned int ret;
327 	u32 sh_psize;
328 	u16 proc_id;
329 	u8 patch_fam;
330 
331 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
332 		return -1;
333 
334 	/*
335 	 * The section header length is not included in this indicated size
336 	 * but is present in the leftover file length so we need to subtract
337 	 * it before passing this value to the function below.
338 	 */
339 	buf_size -= SECTION_HDR_SIZE;
340 
341 	/*
342 	 * Check if the remaining buffer is big enough to contain a patch of
343 	 * size sh_psize, as the section claims.
344 	 */
345 	if (buf_size < sh_psize) {
346 		pr_debug("Patch of size %u truncated.\n", sh_psize);
347 		return -1;
348 	}
349 
350 	ret = __verify_patch_size(sh_psize, buf_size);
351 	if (!ret) {
352 		pr_debug("Per-family patch size mismatch.\n");
353 		return -1;
354 	}
355 
356 	*patch_size = sh_psize;
357 
358 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
359 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
360 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
361 		return -1;
362 	}
363 
364 	proc_id	= mc_hdr->processor_rev_id;
365 	patch_fam = 0xf + (proc_id >> 12);
366 	if (patch_fam != family)
367 		return 1;
368 
369 	return 0;
370 }
371 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)372 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
373 {
374 	/* Zen and newer do not need an equivalence table. */
375 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
376 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
377 	else
378 		return eq_id == mc->hdr.processor_rev_id;
379 }
380 
381 /*
382  * This scans the ucode blob for the proper container as we can have multiple
383  * containers glued together. Returns the equivalence ID from the equivalence
384  * table or 0 if none found.
385  * Returns the amount of bytes consumed while scanning. @desc contains all the
386  * data we're going to use in later stages of the application.
387  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)388 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
389 {
390 	struct equiv_cpu_table table;
391 	size_t orig_size = size;
392 	u32 *hdr = (u32 *)ucode;
393 	u16 eq_id;
394 	u8 *buf;
395 
396 	if (!verify_equivalence_table(ucode, size))
397 		return 0;
398 
399 	buf = ucode;
400 
401 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
402 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
403 
404 	/*
405 	 * Find the equivalence ID of our CPU in this table. Even if this table
406 	 * doesn't contain a patch for the CPU, scan through the whole container
407 	 * so that it can be skipped in case there are other containers appended.
408 	 */
409 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
410 
411 	buf  += hdr[2] + CONTAINER_HDR_SZ;
412 	size -= hdr[2] + CONTAINER_HDR_SZ;
413 
414 	/*
415 	 * Scan through the rest of the container to find where it ends. We do
416 	 * some basic sanity-checking too.
417 	 */
418 	while (size > 0) {
419 		struct microcode_amd *mc;
420 		u32 patch_size;
421 		int ret;
422 
423 		ret = verify_patch(buf, size, &patch_size);
424 		if (ret < 0) {
425 			/*
426 			 * Patch verification failed, skip to the next container, if
427 			 * there is one. Before exit, check whether that container has
428 			 * found a patch already. If so, use it.
429 			 */
430 			goto out;
431 		} else if (ret > 0) {
432 			goto skip;
433 		}
434 
435 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
436 		if (mc_patch_matches(mc, eq_id)) {
437 			desc->psize = patch_size;
438 			desc->mc = mc;
439 		}
440 
441 skip:
442 		/* Skip patch section header too: */
443 		buf  += patch_size + SECTION_HDR_SIZE;
444 		size -= patch_size + SECTION_HDR_SIZE;
445 	}
446 
447 out:
448 	/*
449 	 * If we have found a patch (desc->mc), it means we're looking at the
450 	 * container which has a patch for this CPU so return 0 to mean, @ucode
451 	 * already points to the proper container. Otherwise, we return the size
452 	 * we scanned so that we can advance to the next container in the
453 	 * buffer.
454 	 */
455 	if (desc->mc) {
456 		desc->data = ucode;
457 		desc->size = orig_size - size;
458 
459 		return 0;
460 	}
461 
462 	return orig_size - size;
463 }
464 
465 /*
466  * Scan the ucode blob for the proper container as we can have multiple
467  * containers glued together.
468  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)469 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
470 {
471 	while (size) {
472 		size_t s = parse_container(ucode, size, desc);
473 		if (!s)
474 			return;
475 
476 		/* catch wraparound */
477 		if (size >= s) {
478 			ucode += s;
479 			size  -= s;
480 		} else {
481 			return;
482 		}
483 	}
484 }
485 
__apply_microcode_amd(struct microcode_amd * mc)486 static int __apply_microcode_amd(struct microcode_amd *mc)
487 {
488 	u32 rev, dummy;
489 
490 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
491 
492 	/* verify patch application was successful */
493 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
494 
495 	if (rev != mc->hdr.patch_id)
496 		return -1;
497 
498 	return 0;
499 }
500 
501 /*
502  * Early load occurs before we can vmalloc(). So we look for the microcode
503  * patch container file in initrd, traverse equivalent cpu table, look for a
504  * matching microcode patch, and update, all in initrd memory in place.
505  * When vmalloc() is available for use later -- on 64-bit during first AP load,
506  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
507  * load_microcode_amd() to save equivalent cpu table and microcode patches in
508  * kernel heap memory.
509  *
510  * Returns true if container found (sets @desc), false otherwise.
511  */
early_apply_microcode(u32 old_rev,void * ucode,size_t size)512 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
513 {
514 	struct cont_desc desc = { 0 };
515 	struct microcode_amd *mc;
516 	bool ret = false;
517 
518 	scan_containers(ucode, size, &desc);
519 
520 	mc = desc.mc;
521 	if (!mc)
522 		return ret;
523 
524 	/*
525 	 * Allow application of the same revision to pick up SMT-specific
526 	 * changes even if the revision of the other SMT thread is already
527 	 * up-to-date.
528 	 */
529 	if (old_rev > mc->hdr.patch_id)
530 		return ret;
531 
532 	return !__apply_microcode_amd(mc);
533 }
534 
get_builtin_microcode(struct cpio_data * cp)535 static bool get_builtin_microcode(struct cpio_data *cp)
536 {
537 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
538 	u8 family = x86_family(bsp_cpuid_1_eax);
539 	struct firmware fw;
540 
541 	if (IS_ENABLED(CONFIG_X86_32))
542 		return false;
543 
544 	if (family >= 0x15)
545 		snprintf(fw_name, sizeof(fw_name),
546 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
547 
548 	if (firmware_request_builtin(&fw, fw_name)) {
549 		cp->size = fw.size;
550 		cp->data = (void *)fw.data;
551 		return true;
552 	}
553 
554 	return false;
555 }
556 
find_blobs_in_containers(struct cpio_data * ret)557 static void __init find_blobs_in_containers(struct cpio_data *ret)
558 {
559 	struct cpio_data cp;
560 
561 	if (!get_builtin_microcode(&cp))
562 		cp = find_microcode_in_initrd(ucode_path);
563 
564 	*ret = cp;
565 }
566 
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)567 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
568 {
569 	struct cpio_data cp = { };
570 	u32 dummy;
571 
572 	bsp_cpuid_1_eax = cpuid_1_eax;
573 
574 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
575 
576 	/* Needed in load_microcode_amd() */
577 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
578 
579 	find_blobs_in_containers(&cp);
580 	if (!(cp.data && cp.size))
581 		return;
582 
583 	if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
584 		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
585 }
586 
587 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
588 
save_microcode_in_initrd(void)589 static int __init save_microcode_in_initrd(void)
590 {
591 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
592 	struct cpuinfo_x86 *c = &boot_cpu_data;
593 	struct cont_desc desc = { 0 };
594 	enum ucode_state ret;
595 	struct cpio_data cp;
596 
597 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
598 		return 0;
599 
600 	find_blobs_in_containers(&cp);
601 	if (!(cp.data && cp.size))
602 		return -EINVAL;
603 
604 	scan_containers(cp.data, cp.size, &desc);
605 	if (!desc.mc)
606 		return -EINVAL;
607 
608 	ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
609 	if (ret > UCODE_UPDATED)
610 		return -EINVAL;
611 
612 	return 0;
613 }
614 early_initcall(save_microcode_in_initrd);
615 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n)616 static inline bool patch_cpus_equivalent(struct ucode_patch *p, struct ucode_patch *n)
617 {
618 	/* Zen and newer hardcode the f/m/s in the patch ID */
619         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
620 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
621 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
622 
623 		/* Zap stepping */
624 		p_cid.stepping = 0;
625 		n_cid.stepping = 0;
626 
627 		return p_cid.full == n_cid.full;
628 	} else {
629 		return p->equiv_cpu == n->equiv_cpu;
630 	}
631 }
632 
633 /*
634  * a small, trivial cache of per-family ucode patches
635  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)636 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
637 {
638 	struct ucode_patch *p;
639 	struct ucode_patch n;
640 
641 	n.equiv_cpu = equiv_cpu;
642 	n.patch_id  = uci->cpu_sig.rev;
643 
644 	WARN_ON_ONCE(!n.patch_id);
645 
646 	list_for_each_entry(p, &microcode_cache, plist)
647 		if (patch_cpus_equivalent(p, &n))
648 			return p;
649 
650 	return NULL;
651 }
652 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)653 static inline bool patch_newer(struct ucode_patch *p, struct ucode_patch *n)
654 {
655 	/* Zen and newer hardcode the f/m/s in the patch ID */
656         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
657 		union zen_patch_rev zp, zn;
658 
659 		zp.ucode_rev = p->patch_id;
660 		zn.ucode_rev = n->patch_id;
661 
662 		return zn.rev > zp.rev;
663 	} else {
664 		return n->patch_id > p->patch_id;
665 	}
666 }
667 
update_cache(struct ucode_patch * new_patch)668 static void update_cache(struct ucode_patch *new_patch)
669 {
670 	struct ucode_patch *p;
671 
672 	list_for_each_entry(p, &microcode_cache, plist) {
673 		if (patch_cpus_equivalent(p, new_patch)) {
674 			if (!patch_newer(p, new_patch)) {
675 				/* we already have the latest patch */
676 				kfree(new_patch->data);
677 				kfree(new_patch);
678 				return;
679 			}
680 
681 			list_replace(&p->plist, &new_patch->plist);
682 			kfree(p->data);
683 			kfree(p);
684 			return;
685 		}
686 	}
687 	/* no patch found, add it */
688 	list_add_tail(&new_patch->plist, &microcode_cache);
689 }
690 
free_cache(void)691 static void free_cache(void)
692 {
693 	struct ucode_patch *p, *tmp;
694 
695 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
696 		__list_del(p->plist.prev, p->plist.next);
697 		kfree(p->data);
698 		kfree(p);
699 	}
700 }
701 
find_patch(unsigned int cpu)702 static struct ucode_patch *find_patch(unsigned int cpu)
703 {
704 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
705 	u32 rev, dummy __always_unused;
706 	u16 equiv_id = 0;
707 
708 	/* fetch rev if not populated yet: */
709 	if (!uci->cpu_sig.rev) {
710 		rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
711 		uci->cpu_sig.rev = rev;
712 	}
713 
714 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
715 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
716 		if (!equiv_id)
717 			return NULL;
718 	}
719 
720 	return cache_find_patch(uci, equiv_id);
721 }
722 
reload_ucode_amd(unsigned int cpu)723 void reload_ucode_amd(unsigned int cpu)
724 {
725 	u32 rev, dummy __always_unused;
726 	struct microcode_amd *mc;
727 	struct ucode_patch *p;
728 
729 	p = find_patch(cpu);
730 	if (!p)
731 		return;
732 
733 	mc = p->data;
734 
735 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
736 
737 	if (rev < mc->hdr.patch_id) {
738 		if (!__apply_microcode_amd(mc))
739 			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
740 	}
741 }
742 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)743 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
744 {
745 	struct cpuinfo_x86 *c = &cpu_data(cpu);
746 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
747 	struct ucode_patch *p;
748 
749 	csig->sig = cpuid_eax(0x00000001);
750 	csig->rev = c->microcode;
751 
752 	/*
753 	 * a patch could have been loaded early, set uci->mc so that
754 	 * mc_bp_resume() can call apply_microcode()
755 	 */
756 	p = find_patch(cpu);
757 	if (p && (p->patch_id == csig->rev))
758 		uci->mc = p->data;
759 
760 	return 0;
761 }
762 
apply_microcode_amd(int cpu)763 static enum ucode_state apply_microcode_amd(int cpu)
764 {
765 	struct cpuinfo_x86 *c = &cpu_data(cpu);
766 	struct microcode_amd *mc_amd;
767 	struct ucode_cpu_info *uci;
768 	struct ucode_patch *p;
769 	enum ucode_state ret;
770 	u32 rev;
771 
772 	BUG_ON(raw_smp_processor_id() != cpu);
773 
774 	uci = ucode_cpu_info + cpu;
775 
776 	p = find_patch(cpu);
777 	if (!p)
778 		return UCODE_NFOUND;
779 
780 	rev = uci->cpu_sig.rev;
781 
782 	mc_amd  = p->data;
783 	uci->mc = p->data;
784 
785 	/* need to apply patch? */
786 	if (rev > mc_amd->hdr.patch_id) {
787 		ret = UCODE_OK;
788 		goto out;
789 	}
790 
791 	if (__apply_microcode_amd(mc_amd)) {
792 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
793 			cpu, mc_amd->hdr.patch_id);
794 		return UCODE_ERROR;
795 	}
796 
797 	rev = mc_amd->hdr.patch_id;
798 	ret = UCODE_UPDATED;
799 
800 out:
801 	uci->cpu_sig.rev = rev;
802 	c->microcode	 = rev;
803 
804 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
805 	if (c->cpu_index == boot_cpu_data.cpu_index)
806 		boot_cpu_data.microcode = rev;
807 
808 	return ret;
809 }
810 
load_ucode_amd_ap(unsigned int cpuid_1_eax)811 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
812 {
813 	unsigned int cpu = smp_processor_id();
814 
815 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
816 	apply_microcode_amd(cpu);
817 }
818 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)819 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
820 {
821 	u32 equiv_tbl_len;
822 	const u32 *hdr;
823 
824 	if (!verify_equivalence_table(buf, buf_size))
825 		return 0;
826 
827 	hdr = (const u32 *)buf;
828 	equiv_tbl_len = hdr[2];
829 
830 	/* Zen and newer do not need an equivalence table. */
831 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
832 		goto out;
833 
834 	equiv_table.entry = vmalloc(equiv_tbl_len);
835 	if (!equiv_table.entry) {
836 		pr_err("failed to allocate equivalent CPU table\n");
837 		return 0;
838 	}
839 
840 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
841 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
842 
843 out:
844 	/* add header length */
845 	return equiv_tbl_len + CONTAINER_HDR_SZ;
846 }
847 
free_equiv_cpu_table(void)848 static void free_equiv_cpu_table(void)
849 {
850 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
851 		return;
852 
853 	vfree(equiv_table.entry);
854 	memset(&equiv_table, 0, sizeof(equiv_table));
855 }
856 
cleanup(void)857 static void cleanup(void)
858 {
859 	free_equiv_cpu_table();
860 	free_cache();
861 }
862 
863 /*
864  * Return a non-negative value even if some of the checks failed so that
865  * we can skip over the next patch. If we return a negative value, we
866  * signal a grave error like a memory allocation has failed and the
867  * driver cannot continue functioning normally. In such cases, we tear
868  * down everything we've used up so far and exit.
869  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)870 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
871 				unsigned int *patch_size)
872 {
873 	struct microcode_header_amd *mc_hdr;
874 	struct ucode_patch *patch;
875 	u16 proc_id;
876 	int ret;
877 
878 	ret = verify_patch(fw, leftover, patch_size);
879 	if (ret)
880 		return ret;
881 
882 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
883 	if (!patch) {
884 		pr_err("Patch allocation failure.\n");
885 		return -EINVAL;
886 	}
887 
888 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
889 	if (!patch->data) {
890 		pr_err("Patch data allocation failure.\n");
891 		kfree(patch);
892 		return -EINVAL;
893 	}
894 	patch->size = *patch_size;
895 
896 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
897 	proc_id     = mc_hdr->processor_rev_id;
898 
899 	INIT_LIST_HEAD(&patch->plist);
900 	patch->patch_id  = mc_hdr->patch_id;
901 	patch->equiv_cpu = proc_id;
902 
903 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
904 		 __func__, patch->patch_id, proc_id);
905 
906 	/* ... and add to cache. */
907 	update_cache(patch);
908 
909 	return 0;
910 }
911 
912 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)913 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
914 					     size_t size)
915 {
916 	u8 *fw = (u8 *)data;
917 	size_t offset;
918 
919 	offset = install_equiv_cpu_table(data, size);
920 	if (!offset)
921 		return UCODE_ERROR;
922 
923 	fw   += offset;
924 	size -= offset;
925 
926 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
927 		pr_err("invalid type field in container file section header\n");
928 		free_equiv_cpu_table();
929 		return UCODE_ERROR;
930 	}
931 
932 	while (size > 0) {
933 		unsigned int crnt_size = 0;
934 		int ret;
935 
936 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
937 		if (ret < 0)
938 			return UCODE_ERROR;
939 
940 		fw   +=  crnt_size + SECTION_HDR_SIZE;
941 		size -= (crnt_size + SECTION_HDR_SIZE);
942 	}
943 
944 	return UCODE_OK;
945 }
946 
load_microcode_amd(u8 family,const u8 * data,size_t size)947 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
948 {
949 	struct cpuinfo_x86 *c;
950 	unsigned int nid, cpu;
951 	struct ucode_patch *p;
952 	enum ucode_state ret;
953 
954 	/* free old equiv table */
955 	free_equiv_cpu_table();
956 
957 	ret = __load_microcode_amd(family, data, size);
958 	if (ret != UCODE_OK) {
959 		cleanup();
960 		return ret;
961 	}
962 
963 	for_each_node(nid) {
964 		cpu = cpumask_first(cpumask_of_node(nid));
965 		c = &cpu_data(cpu);
966 
967 		p = find_patch(cpu);
968 		if (!p)
969 			continue;
970 
971 		if (c->microcode >= p->patch_id)
972 			continue;
973 
974 		ret = UCODE_NEW;
975 	}
976 
977 	return ret;
978 }
979 
980 /*
981  * AMD microcode firmware naming convention, up to family 15h they are in
982  * the legacy file:
983  *
984  *    amd-ucode/microcode_amd.bin
985  *
986  * This legacy file is always smaller than 2K in size.
987  *
988  * Beginning with family 15h, they are in family-specific firmware files:
989  *
990  *    amd-ucode/microcode_amd_fam15h.bin
991  *    amd-ucode/microcode_amd_fam16h.bin
992  *    ...
993  *
994  * These might be larger than 2K.
995  */
request_microcode_amd(int cpu,struct device * device)996 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
997 {
998 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
999 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1000 	enum ucode_state ret = UCODE_NFOUND;
1001 	const struct firmware *fw;
1002 
1003 	if (force_minrev)
1004 		return UCODE_NFOUND;
1005 
1006 	if (c->x86 >= 0x15)
1007 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1008 
1009 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1010 		pr_debug("failed to load file %s\n", fw_name);
1011 		goto out;
1012 	}
1013 
1014 	ret = UCODE_ERROR;
1015 	if (!verify_container(fw->data, fw->size))
1016 		goto fw_release;
1017 
1018 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1019 
1020  fw_release:
1021 	release_firmware(fw);
1022 
1023  out:
1024 	return ret;
1025 }
1026 
microcode_fini_cpu_amd(int cpu)1027 static void microcode_fini_cpu_amd(int cpu)
1028 {
1029 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1030 
1031 	uci->mc = NULL;
1032 }
1033 
1034 static struct microcode_ops microcode_amd_ops = {
1035 	.request_microcode_fw	= request_microcode_amd,
1036 	.collect_cpu_info	= collect_cpu_info_amd,
1037 	.apply_microcode	= apply_microcode_amd,
1038 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1039 	.nmi_safe		= true,
1040 };
1041 
init_amd_microcode(void)1042 struct microcode_ops * __init init_amd_microcode(void)
1043 {
1044 	struct cpuinfo_x86 *c = &boot_cpu_data;
1045 
1046 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1047 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1048 		return NULL;
1049 	}
1050 	return &microcode_amd_ops;
1051 }
1052 
exit_amd_microcode(void)1053 void __exit exit_amd_microcode(void)
1054 {
1055 	cleanup();
1056 }
1057